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Abstract 
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Donghyun Lee 

Department of Materials and Science and Engineering 
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Seoul National University 

 

Group III-nitride has been regarded as one of the most promising material for 

optoelectronic device applications such as light-emitting diode (LED) and 

laser diode (LD) over past few decades. In order to realize highly efficient 

and reliable optoelectronic devices, high quality III-nitride epitaxial layers 

are required. A major problem in the epitaxial growth of III-nitride is that the 

use of native substrates is still limited due to lack of commercially available 

substrates. Therefore, III-nitride epitaxial layers are grown on foreign 

substrates such as sapphire and Si. However, large lattice mismatch and 

thermal mismatch between the III-nitride epitaxial layers and the substrates 

lead to several problems such as high-density dislocations, low light 

extraction efficiency (LEE), and residual film stress, thus hinder the 

realization of highly efficient III-nitride optoelectronic devices. Therefore, to 

obtain high quality III-nitride epitaxial layers that are less defective, less 
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strained, and more effective to enhance the LEE is very important for various 

III-nitride LED applications. In this study, nano-patterned substrates have 

been proposed to obtain the high quality III-nitride layers for important 

epitaxial structures in the III-nitride LED applications such as GaN on Si 

substrate, AlN on sapphire substrate, and GaN on sapphire substrate. The 

epitaxial growth of III-nitrides on the nano-patterned substrates was 

investigated by metal-organic chemical vapor deposition. 

Firstly, for the case of GaN on Si substrate, nanoheteroepitaxy (NHE) of 

GaN on the AlN/Si(111) nanorod structure was investigated. Silica 

nanosphere lithography was employed to fabricate the periodic hexagonal 

nanorod array with a narrow gap of 30 nm between the nanorods. Fully 

coalesced GaN film was obtained over the nanorod structure and its threading 

dislocation density (TDD) was found to decrease down to half, compared to 

that of GaN grown on the planar AlN/Si(111) substrate. Transmission 

electron microscopy (TEM) revealed that threading dislocation (TD) bending 

and TD termination by stacking faults occurred near the interface between 

GaN and AlN/Si(111) nanorods, contributing to the TDD reduction. 

Moreover, the 70% relaxation of the tensile stress of the NHE GaN was 

confirmed by Raman and PL measurements compared to GaN on the planar 

AlN/Si(111) substrate. These results suggested that NHE on the AlN/Si(111) 

nanorods fabricated by nanosphere lithography is a promising technique to 

obtain continuous GaN layers with the improved crystalline quality and the 

reduced residual stress. 

Secondly, a nano-patterned AlN/sapphire substrate was developed to 

improve the performance of deep ultraviolet (DUV) LEDs, for the case of 

AlN on sapphire substrate. We demonstrated AlGaN-based DUV LEDs with 
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periodic air-voids-incorporated nanoscale patterns enabled by nanosphere 

lithography and epitaxial lateral overgrowth (ELO). The nanoscale ELO on 

the nano-patterned substrate improved the crystal quality of overgrown 

epitaxial layers at relatively low growth temperature of 1050 oC and at small 

coalescence thickness. The air voids formed in the AlN epitaxial layer 

effectively relaxed the tensile stress during growth, so that crack-free DUV 

LED epitaxial layers were obtained on 4-in. sapphire substrate. In addition, 

the periodically embedded air-void nanostructure enhanced the LEE of DUV 

LEDs by breaking the total internal reflection that is particularly severe for 

the predominant anisotropic emission in AlGaN-based DUV LEDs. The light 

output power of the DUV LEDs on the nano-patterned substrate was 

enhanced by 67% at an injection current of 20 mA compared to that of the 

reference DUV LEDs. We attribute such a remarkable enhancement to the 

formation of embedded periodic air voids which cause simultaneous 

improvements in the crystal quality of epitaxial layers by ELO and LEE 

enabled by breaking the predominant in-plane guided propagation of DUV 

photons. 

Lastly, we proposed the ELO of GaN using the nano-cavity patterned 

sapphire substrate (NCPSS), which has hexagonally non-close-packed nano-

cavity patterns on the sapphire substrates, to grow high quality GaN on 

sapphire substrate. The fabrication of the NCPSS was enabled by polystyrene 

coating followed by deposition of alumina and thermal annealing. The 

coalescence of GaN on the NCPSS was achieved by the formation of 

relatively large GaN islands and enhanced ELO of the GaN islands over 

several nano-cavity patterns. The TDD was significantly reduced from 

2.4×108 cm-2 to 6.9×107 cm-2 by using the NCPSS. Dislocation behaviors that 
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contribute to the reduction of TDD of the GaN layer were observed by TEM. 

Raman spectroscopy revealed that the compressive stress in the GaN layer 

was reduced by 21% due to the embedded nano-cavities. In addition, the 

diffuse reflectance of GaN on the NCPSS was enhanced by 54% ~ 62%, 

which is attributed to the increased probability of light extraction through 

effective light scattering by nano-cavities. 
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Chapter 1. Introduction 

 

1.1 III-nitride based devices 

 

1.1.1 General properties of III-nitride materials 

 

Group III-nitrides including gallium nitride (GaN), aluminum nitride (AlN), 

indium nitride (InN), and their alloys have been regarded as one of the most 

promising materials for optoelectronic device applications such as laser diode 

(LD) and light-emitting diode (LED) and electronic device applications over 

past few decades. The III-nitrides and their alloys form continuous and direct 

bandgaps ranging from 6.2 eV (AlN) to 0.7 eV (InN), so that the III-nitrides 

enable the fabrication of optoelectronic devices whose emission wavelengths 

include the whole visible region and extend to the ultraviolet (UV) and 

infrared (IR) region as shown in Fig. 1.1.1,2 In addition to the excellent 

optical properties, III-nitrides also exhibit good thermal stability at high 

temperature, high mechanical strength, large thermal conductivity, and good 

chemical stability. III-nitrides commonly have wurtzite crystal structure, with 

the spacing group of P63𝑚𝑐.3 The wurtzite structure is a member of the 

hexagonal crystal system, thus, has a hexagonal unit cell and two lattice 

constants a and c, as shown in Fig. 1.2. General properties of III-nitrides are 

summarized in Table 1.1. Since the III-nitrides have excellent characteristics, 

III-nitrides have been widely used not only in optoelectronic devices such as 

LD, LED, solar cell, and photodetector but also in electronic devices, for 

example, high electron mobility transistor (HEMT).4 
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1.1.2 III-nitride based LEDs 

 

The LED structure consists of a stack of epitaxial layers including p-type and 

n-type semiconductors, forming a p-n junction. A schematic of GaN-based 

blue LED structure is shown in Fig. 1.3.5 The n-type nitride material is doped 

with impurities which contribute free electrons and the p-type nitride material 

is doped with impurities which create the deficiency of valence electrons 

(holes). When a forward voltage is applied to the LED, the free electron and 

the hole recombine radiatively, thus photon is emitted from the nitride 

semiconductors. For III-nitrides, Si and Mg are used as dopants of n-type 

semiconductor and p-type semiconductor, respectively. 

The III-nitride based LEDs has attracted much attention and extensively 

investigated as the next generation light sources. The primary focus of III-

nitride based LEDs has been the development of GaN-based visible LEDs for 

application of solid-state lighting. GaN-based visible LEDs are candidates 

which replace the conventional light sources including incandescent lamps 

and fluorescent lamps, taking advantages in high efficiency, compactness, 

and non-toxicity. Although GaN-based visible LEDs have already been 

commercialized via significant technology advancement, the efficiency and 

the cost reduction still need to be improved further. In addition, recently, 

AlGaN-based deep ultraviolet (DUV) LEDs are of great interest for 

applications such as sterilization, water purification, and chemi/bio-sensing.6 

However, the efficiency of AlGaN-based DUV LEDs is still much lower than 

that of GaN-based visible LEDs.7,8 
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Figure 1.1. Bandgap of III-nitrides and versus lattice constant 
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Figure 1.2. Crystal structure of wurtzite AlN and GaN 
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Table 1.1. General properties of III-nitrides 
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Figure 1.3. Schematic structure of typical GaN-based blue LEDs.5 
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1.2 Epitaxial growth of III-nitrides 

  

The term of epitaxy, epitaxial growth, originates from the two ancient Greek 

words,  (epi, placed or resting upon) and  (taxis, arrangement). Thus, 

epitaxy means the growth of a single crystalline film on top of a crystalline 

substrate.9 The epitaxial growth has played important rules of the formation 

of thin films in the thin-film device technology because it has been desired 

that the deposited thin films are single crystalline for most technology 

applications. The substrate serves as a seed crystal and the the crystal 

structure of the deposited film follows the crystal structure of the substrate if 

the thin film is epitaxially grown. If not, it is not an epitaxial growth. There 

are several types of epitaxy as follows: homoepitaxy; heteroepitaxy of 

strained thin film; and heteroepitaxy of strain-relaxed thin film as shown in 

Fig. 1.4. Homoepitaxy refers to an epitaxy of a single crystalline film on a 

same substrate or the same material. Homoepitaxy is used to grow a thin film 

which has an improved crystal quality compared to the substrate and to 

fabricate thin films with different doping levels. Fig. 1.4(a) shows the lattice 

arrangement of semiconductors during the homoepitaxy. The lattice contants 

of the deposited thin film and the substrate are the same, so strain-free and 

dislocation-free thin film could be obtained. However, homoepitaxy of III-

nitrides is not available due to the lack of mature fabrication technology of 

nitride substrates. III-nitrides are commonly grown by heteropitaxy. 

Heteroepitaxy refers to an epitaxy of a single crystalline film on a foreign 

substrate or foreign layers. For heteroepitaxy, the deposited thin film suffers 

from several problems due to differences in lattice constant and thermal 

expansion coefficient between the film and the substrate. During the growth, 
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the film might experience a strain to accommodate the lattice contant 

mismatch as shown in Fig. 1.4(b). The strain is accummulated as the growth 

proceeds, and dislocations are inevitably generated at the interface between 

the film and the substrate when the film thickness exceeds a certain critical 

thickness, leading to the relaxation of the film strain as shown in Fig. 1.4(c). 

The structural imperfection of the film affects the physical, optical, and 

electrical properties. Therefore, it is crucial to consider the lattice constant 

mismatch for the heteroepitaxy of III-nitrides. In addition, the difference in 

thermal expansion coefficient between the film and the substrate induces a 

residual stress in the film. 
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Figure 1.4. Epitaxy; (a) homoepitaxy, (b) heteroepitaxy of strained thin film, 

and (c) heteroepitaxy of strain-relaxed thin film. 
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1.3 Substrate for III-nitride 

 

A major problem in the epitaxial growth of III-nitride is the difficulty of 

using native substrates. The homoepitaxial growth of III-nitrides on native 

substrates are still limited due to lack of commercially available substrate. 

Therefore, to obtain III-nitride epitaxial layers, heteroepitaxial growth on 

foreign substrates is essential. In order to determine suitable substrates for the 

epitaxial growth of III-nitrides, the crystal structure and the lattice constant 

mismatch have been considered as the primary criteria.10 In addition, other 

properties such as thermal stability at high growth temperatures, thermal, 

chemical, and electrical properties are also important because the substrates 

might affect the device performance of III-nitride semiconductors. The 

crystal structure of III-nitrides is the hexagonal wurtzite as shown in Fig. 1.2, 

so substrate candidates should have hexagonal crystal structures with a small 

lattice constant mismatch with III-nitride layers. Also, substrate candidiates 

should be commercially available. Considering these factors, the most 

commonly used substrates are sapphire and Si substrates. The properties of 

sapphire substrate and Si substrate are described as follows. 

 

 

1.3.1 Sapphire substrate 

 

Sapphire, single crystalline α-phase aluminum oxide, is the most commonly 

used substrate for the epitaxial growth of III-nitrides due to its commercial 

availability, thermal stability, transparency, and gradual improvements in 

wafer size and crystal quality. The crystal structure of sapphire, as shown in 
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Fig. 1.5(a), is a corundum structure with the space group of sapphire is R3̅𝑐. 

The crystallographic symmetry can be decribed as rhombohedral or 

hexagonal. The epitaxial growth of III-nitrides on c-plane sapphire results in 

the c-plane nitrides. In order to reduce the lattice constant mismatch between 

III-nitrides and sapphire substrates, III-nitrides are grown with the rotation by 

30o with respect to the sapphire.11 Therefore, the epitaxial relationships 

between the nitrides and sapphire substrates are GaN <0002>‖ 

sapphire<0006> and GaN<011̅0>‖sapphire<2̅110>. As a result, the lattice 

constant mismatch is reduced from 33% to 16% for the case of GaN on 

sapphire, as described in Fig. 1.5(b).  

 

 

1.3.2 Si substrate 

 

Si substrate is very low cost and commercially available in very large 

diameters up to 18 in. due to the well-established single crystal growth 

technique and development. The use of Si substrate as a substrate for the 

epitaxial growth of GaN has attracted much interests to penetrate the LED 

market reducing the production cost. Besides, the integration of 

optoelectronic nitride devices with Si electronics has attracted much 

attention.12 The epitaxial growth of GaN on Si substrate was demonstrated by 

molecular beam epitaxy (MBE) in 1998.13 During the last decade, the growth 

of GaN on Si substrate has been extensively studied. The crystal structure of 

Si is diamond-lattice structure with the space group of Fd3̅𝑚. The structure 

is defined as face-centered cubic (FCC) lattice containing 4 additional atoms 

in the lattice which is surrounded by four equidistant nearest neighbors that 
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lie at the corners of a tetrahedron.10 Fig. 1.6(a) shows the atomic 

arrangements along the [001], [011], and [111] directions of the Si unit cell. 

For the growth of wurtzite III-nitrides, Si(111) is the most preffered substrate 

due to its trigonal symmetry. The crystallographic alignment of GaN on 

Si(111) substrate is shown in Fig. 1.6(b), which shows a good rotational 

matching between them. The epitaxial relationships between GaN and Si are 

GaN <0002>‖ Si <111>  and GaN <101̅0>‖ Si <1̅12> . The lattice constant 

mismatches of Si with GaN and AlN are 17% and 19%, respectively, as listed 

in Table 1.2. 
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Figure 1.5. (a) Crystal structure of sapphire substrate14 and (b) atomic 

arrangement of GaN and sapphire substrate.12 
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Figure 1.6. (a) Atomic arrangement of Si substrate along [001], [011], and 

[111] direction.10 (b) Crystallographic alignment of GaN on Si substrate.12 
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Table 1.2. Properties of sapphire and Si substrates 
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1.4 Problems of heteroepitaxial III-nitrides 

 

There are several problems of III-nitride semiconductors, which affect the 

physical, structural, optical, and electrical properties, thus deteriorate the 

performance of III-nitride LEDs. The problems mainly originate from the 

differences in properties of III-nitrides and the substrates which is inevitable 

for the heteroepitaxial growth of III-nitrides. The problems are dislocation, 

low light extraction efficiency, and film stress. 

 

 

1.4.1 Dislocation 

 

Lattice misfit is an important quantity that characterizes the epitaxial growth 

of the film on the foreign substrate and defined as follow: 

 

Lattice misfit = [𝑎0(𝑠) − 𝑎0(𝑓)]/𝑎0(𝑠) 

 

where 𝑎0(𝑠)  and 𝑎0(𝑓)  represent the lattice constant of unstrained 

substrate and film, respectively. The lattice misfits between nitrides (AlN and 

GaN) and two representative substrates (sapphire and Si) are listed in Table 

1.2: for example, the lattice misfit between GaN and sapphire is 16%. Due to 

the lattice misfit between the III-nitrides and the substrates, high-density 

structural defects such as threading dislocations, are generated in the III-

nitride epitaxial layers. The threading dislocations are reported to be non-

radiative recombination centers which deteriorate the efficiency of devices.15 

In addition, the lifetime of III-nitride devices are affected by the defects in 
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the epitaxial layers. Although the epitaxial growth of III-nitrides has been 

extensively studied and significant improvement of crystal quality have been 

achieved, III-nitrides still suffer from high-density threading dislocations 

with the density of 108–1010 cm-2. To improve the efficiency and the 

reliablility of III-nitride LEDs, it is crucial to grow high quality epitaxial 

layers with low-density dislocations. 

 

 

1.4.2 Low light extraction efficiency 

 

Light extraction efficiency (LEE) is defined as the number of photons 

extracted to free space per unit time to the number of photons emitted from 

active retion per unit time.16 Most of the photons generated in the active 

region cannot escape from the semiconductor, resulting in low LEE. This is 

attributed to the total internal reflection, which is fundamentally based on 

Snell’s law. When a light ray travels penetrating an interface between two 

different materials, the light experiences its velocity change depending on the 

refractive indices of the materials. The larger refractive index the material has, 

the smaller the velocity of the light in the material is, and the smaller the 

critical angle is. III-nitride materials have relatively large refractive indices 

(nGaN=2.5), so that the total internal reflection severly reduces the LEE of III-

nitride LEDs. For example, the critical angle at the GaN/sapphire is 23.6o, 

calculated by using the refractive indices of GaN and air. This calculation 

indicates that only 4.2% of total light can be extracted from the structure 

based on the escape cone as shown in Fig. 1.7. 
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1.4.3 Film stress 

 

The III-nitrides suffer from the residual film stress due to the differences in 

the lattice mismatch and the thermal expansion coefficient between the III-

nitrides and the substrates as listed in Table 1.2. Because the III-nitride 

epitaxial layers commonly grown on foreign substrates at the growth 

temperature of 1000 oC by vapor phase epitaxy, the III-nitride layers are 

highly strained dominantly by the thermal mismatch when the III-nitrides are 

cooled to room temperature after the growth. The residual strain in the layers 

results in a wafer bow. The status of film stress is mainly determined by the 

thermal expansion coefficients of the film and the substrate. Considering the 

case of GaN on sapphire, the thermal expansion coefficient of sapphire is 

larger than that of GaN. Consequently, GaN layers grown on sapphire are 

compressively strained after the growth. On the contrary, in the case of GaN 

on Si, GaN layers grown on Si are under tensile stress. In addition to the 

thermal stress, intrinsic stresses are generated during the growth. Tensile 

stress is induced in the III-nitride layers on foreign substrates during the 

coalescence process of grains at initial growth stage. As shown in Fig. 1.8, 

when the grains of the deposited material coaslese together at the grain 

boundaries, the total energy of the system is minimized with the reduction of 

the surface area, i.e., surface energy, accompanied by the elastic deformation 

resulting in the tensile stress.17 For the growth of AlN epitaxial layer on 

sapphire substrate, large tensile stress is applied in the AlN layer due to the 

high density of grains compared to GaN, thus lots of cracks are generated on 

the surface during the growth at high temperature.18,19 
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Figure 1.7. (a) Definition of the critical angle (ϕc) of the total internal 

reflection. (b) Area element dA. (c) Area of dome-shaped region.16 
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Figure 1.8. (a) Polycrystalline thin film before and after the coalescence of 

crystallites and (b) coalescence process showing the elastic displacement and 

stress associated with forming a continuous film.17 
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1.5 Epitaxial growth of III-nitrides on patterned substrates 

 

To solve the problems in III-nitride LEDs and realize highly efficient III-

nitride LEDs, many researches have been carried out until now. 

Representative technologies to grow high quality III-nitrides and improve the 

efficiency of III-nitride LEDs are epitaxial lateral overgrowth (ELO) and 

patterned sapphire substrate (PSS).20-22 

In order to improve the efficiency of III-nitride LEDs, the growth of high 

quality III-nitride materials with low-density defects is crucial. ELO is a 

conventional technique to reduce the dislocation density. The schematic 

diagram of a typical ELO process is shown in Fig. 1.9. Firstly, a GaN 

epitaxial layer is grown on the foreign substrates such as sapphire, SiC, and 

Si. The GaN template has lots of threading dislocations. Secondly, dielectric 

growth masks such as silicon oxide (SiOx) and silicon nitride (SiNx) are 

patterned on the GaN template by using the deposition of dielectric layer on 

the GaN template and photolithography as shown in Fig. 1.9(a). In this step, 

there are window regions where the GaN layer is exposed. Subsequently, 

GaN is grown on the mask-patterned GaN template. During the growth, 

selective area growth of GaN is achieved, which indicates that the GaN is 

grown only in the window region except for the mask region. As the growth 

progresses, the GaN on the window region grows vertically and laterally as 

shown in Fig. 1.9(b). The GaN is laterally grown on the growth masks and 

finally forms a continuous layer through the coalescence of GaN as shown in 

Fig. 1.9(c). The growth masks block the propagation of threading 

dislocations beneath the masks, which is called as a dislocation filtering. As a 

result, the dislocation density of laterally grown GaN is reduced. 
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The dislocation filtering is also carried out by using the microstructure of 

GaN and the resultant dislocation bending behavior. The strategy is 2-step 

growth composed of (i) formation of side facets and (ii) lateral growth.23 The 

vertical growth is preferred in the first step and the lateral growth is promoted 

in the second step. When side facets are developed during the 2-step growth, 

the threading dislocations bend towards the free surfaces, i.e., side facets as 

shown in Fig. 1.10(a). It is reported that the threading dislocations minimize 

their free energy by bending towards to free surfaces when they meet the side 

facets in the layer.24 Fig. 1.10(b) shows the schematic diagram of the bending 

behavior of dislocations (solid lines) clearly. Consequently, the dislocation 

density could be further reduced using the dislocation bending behavior. 

Derived from the ELO, PSS technology is the most widely used 

technology in GaN-based LED industries to achieve highly efficient LEDs. 

The PSS is fabricated by using the photolithography and dry etching of the 

sapphire substrates. The PSS not only reduces the dislocation density of the 

nitride material thereon but also enhances the LEE.25 Fig. 1.11 shows the 

mechanism for the enhancement of LEE. As mentioned in Chap. 1.4.2, only 

4.2% of total light could escape from the air/GaN interface, experiencing the 

total internal reflections. Likewise, 13% of total light could be extracted at 

the GaN/sapphire interface. Most of light generated in the active layer is 

trapped in the semiconductor as shown in Fig. 1.11(a). On the contrary, the 

PSS effectively enhances the LEE by breaking the total internal reflections. 

The patterns in the PSS play role in scattering the light randomly and give 

photons more chances to enter the escape cone as shown in Fig. 1.11(b), 

resulting in the enhancement of LEE.26  

In addition, the PSS technology is superior to conventional ELO 
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technology in that it does not use any dielectric mask and does not require a 

growth interruption. So, the PSS is a contamination-free substrate and it 

saves manufacturing cost with reduced growth time. 
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Figure 1.9. Schematic diagrams of a typical ELO process: (a) Patterning of 

dielectric materials such as SiOx and SiNx as the growth mask on the GaN 

template, (b) regrowth of GaN, and (c) coalescence of GaN forming a 

continuous film. 
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Figure 1.10. (a) Cross-section TEM image showing the bending of threading 

dislocation. (b) Schematic diagram showing the 2-step ELO. The dashed 

lines join the dislocation bending points and the solid lines indicate 

dislocations.23 
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Figure 1.11. Schematic LED structure and photon trajectories: (a) LED on a 

planar substrate and (b) LED on a PSS.25 
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1.6 Thesis contents and organization 

 

The major goal of this study is to grow high quality III-nitride epitaxial layers 

on foregin substrates for LED applications. As we discussed above, patterned 

substrates is crucial to improve the crystal quality of III-nitrides and enhance 

the LEE of optical devices. When the patterned substrates are fabricated in 

microscale, however, several problems such as large spacing between the 

patterns, small diffusion length of adatoms, and production cost still exist. To 

overcome the problems, nano-patterned substrates for the epitaxial growth of 

III-nitrides were proposed in this study. It contains three big parts as research 

subjects about new nano-patterned substrates for important epitaxial 

structures in the III-nitride LED applications such as GaN on Si, AlN on 

sapphire, and GaN on sapphire, in parallel. 

 

1. Nano-patterned AlN/Si substrates were proposed for the epitaxial 

growth of GaN on Si. Nanoheteroepitaxy is a useful technique to 

growth high quality GaN films on Si substrates, however, it is 

difficult to obtain continuous nitride layers on the nano-patterned due 

to the limit in narrowing the pitch between the patterns and the small 

and non-uniform patterns fabricated by former nanopatterning 

techniques. In addition, an unwanted growth of GaN between the Si 

nanopatterns, leading to the polycrystal GaN film. To solve the 

problem, we proposed an AlN/Si(111) nanorod substrate. To 

fabricate the pattern, we employed a simple and cost-effective 

nanosphere lithography technique. It provides a uniform pattern of 

nanoscale hexagonal close-packed array with a narrow gap between 
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the nanorods. The in-situ nitridation of exposed Si surfaces of 

AlN/Si(111) nanorods was performed to grow GaN film only on the 

AlN seed and avoid Ga-Si meltback etching reaction. The growth of 

GaN on AlN/Si(111) nanorods fabricated by nanosphere lithography 

and properties of GaN layers were studied.  

2. Nano-patterned AlN/sapphire substrates were proposed for the 

epitaxial growth of AlN on sapphire. The growth of AlN on sapphire 

substrates leads to a high density of extended defects such as 

threading dislocations and cracks due to the large lattice mismatch 

and thermal mismatch between the epitaxial layer and substrates as 

well as the low surface mobility of Al adatoms. In addition, the LEE 

of AlGaN-based deep UV LEDs is severely limited. It has been 

reported that ELO on microscale patterned substrates is effective to 

improve the crystal quality of overgrown AlN layers. However, it 

requires high growth temperature and long growth time, thus high 

cost. To solve the problems, we proposed nano-patterned 

AlN/sapphire substrates fabricated by nanosphere lithography. We 

confirmed that the nano-patterned AlN/sapphire substrate improve 

the crystal quality, reducing the residual film stress. Also, DUV 

LEDs were fabricated and characterized.  

3. Nano-cavity patterned sapphire substrates were proposed for the 

epitaxial growth of GaN on sapphire. The embedment of void in the 

GaN layer is considered as a promising technique to solve most of the 

problems of GaN-based LEDs simultaneously. Besides, the trend in 

the substrate patterning is to reduce the pattern size from microscale 
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to nanoscale. In comparison to the micro-patterned substrates, nano-

patterned substrates have been reported to enhance the LEE due to 

the increased density of patterns in the same area. For this purpose, 

nanoscale cavity patterns patterns which are composed of nanoscale 

voids surrounded by thin alumina shell were fabricated by a simple 

and cost-effective spin coating process. The epitaxial growth of GaN 

on the NCPSS was investigated by varying the growth times. The 

nanoscale ELO improved the crystal quality further by delaying the 

coalescence of GaN. The nano-cavities embedded in the GaN layer 

relaxed the residual compressive stress and enhanced diffuse 

reflectance, i.e. LEE, by breaking the total internal reflections of 

lights. 
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Chapter 2. Experiments and analysis 

 

2.1  Growth process 

 

2.1.1 Metal-organic chemical vapor deposition (MOCVD) 

 

Thomas Swan 6×2 in. close-coupled showehead MOCVD system was used 

to grow III-nitride epitaxial layers in this work. 

Metal-organic precursors including trimethylaluminum (TMAl, 

(CH3)3Al), trimethylgallium (TMGa, (CH3)3Ga) were used as the precursors 

of the group III sources. Ammonia (NH3) was used as the precursor of the 

group V source. Hydrogen gas (H2) was used as a carrier gas during the 

growth. 

 

2.1.2 Atomic layer deposition (ALD) 

 

Amorphous aluminum oxide, also called as alumina, was deposited by ALD 

(Lucida D100). TMAl and de-ionized water (H2O) were used as the 

precursors of Al and O, respectively. Nitrogen gas (N2) was used as a purge 

gas. Each ALD cycle consists of the alternative supply of TMAl and H2O. 

The duration times for the precursor supply and the purge were 0.2 s and 3 s, 

repectively. 
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2.2  Analysis tools 

 

2.2.1 Scanning electron microscopy (SEM) 

 

Structural characteristics of the fabricated substrates and nitride epitaxial 

layers were analyzed by field-emission SEM (Hitachi S-4800). Platinum (Pt) 

was coated on the samples by sputtering to avoid the surface charging before 

putting the SEM specimens in the SEM chamber.  

 

2.2.2 High resolution X-ray diffraction (XRD) 

 

Crystal structure and crystal quality were measured by high resolution XRD 

(Phillips PANalytical X’pert Pro) using theta-2theta scan and  rocking 

curve scan. The wavelength of X-ray was 1.5406 Å  from Cu-Kα1 radiation. 

The angle resolution is 12 arcsec or less by using 4 bounce Ge 220 

monochrometer. 

 

2.2.3 Atomic force microscopy (AFM) 

 

The AFM measurement was carried out using Park Systems XE-100 to 

analyze the surface morphology of nitride layers. The surface of nitride layers 

were scanned by non-contact mode. XEI 1.8.0 was used for the analysis of 

AFM results. 
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2.2.4 Photoluminescence (PL) 

 

PL measurement, which is a non-destructive analaysis, was performed to 

investigate the optical spectra of nitride semiconductors. The excitation 

source was a 325 nm line of He-Cd laser.  

 

2.2.5 Cathodoluminescence (CL) 

 

In order to investigate the crystal quality of nitride layers, the CL 

measurement (Gatan MonoCL4) was carried out in panchromatic mode at 

room temperature. The acceleration voltage was 5 kV and the working 

distance between the samples and the objective lense was 6 mm. 

 

2.2.6 Micro-Raman spectroscopy 

 

Micro-Raman spectroscopy (Horiba JY Labram ARAMIS) was carried out to 

evaluate the residual stress of nitride layers. The 633 nm line of He-Ne laser 

was used as the excitation source. The Raman scattered light signal was 

collected in a backscattering geometry using the x100 microscope objective 

lens. The frequency of the Raman lines were calibrated using the c-Si wafer 

at 520.6 cm-1. 

 

2.2.7 Transmission electron microscopy (TEM) 

 

TEM specimens were prepared by using focused ion beam (FIB, NOVA 600 

Nanolab). Cross-section TEM micrographs were obtained by JEOL JEM-
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2100F with the acceleration voltage of 200 kV. Bright-field mode was used 

to investigate the threading dislocations in epitaxial layers. Selected area 

diffraction patterns of alumina were obtained to analyze the crystal structure. 

 

2.2.8 Light-current-voltage (L-I-V) measurement 

 

For I-V measurement, Agilent B2902A Precision Source/Measurement unit 

was used with voltage sweep from -5 V to 15 V under DC current condition. 

For L-I measurements, light output (5 ms current pulse sweep, 1% duty cycle) 

was measured as a photocurrent using a Si photodetector, the same 

Source/Measurement unit, and bottom-emission measurement setup in a 

freestanding condition in a dark room environment. The measurement was 

carried out with the help from Nano Photonics and Optoelectronics 

Laboratory, Pohang University of Science and Techonology. 
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Chapter 3. Nanoheteroepitaxy of GaN on AlN/Si(111) 

nanorods 

 

3.1 Introduction: nanoheteroepitaxy of GaN on Si substrate 

 

The growth of GaN on Si substrates has attracted much attention because Si 

has several advantages including low cost, availability of large wafer size, 

and high thermal conductivity.1,2 In addition, the epitaxial growth of GaN on 

Si has benefits of compatibility with well-established Si technology and 

potential for optoelectronic device integration with Si-based circuits. 

However, the growth of GaN on Si substrates is challenging due to the large 

mismatches in thermal expansion coefficient (56%) and lattice constant (17%) 

between GaN and Si, resulting in the high dislocation density (~1010 cm-2) 

and the formation of cracks.3-5 To overcome the problems and to realize the 

GaN-based devices on Si substrates, various methods including low-

temperature AlN interlayer,6 Si delta-doping,7 AlGaN buffer layer,4 and 

patterned substrate8,9 have been investigated. 

Nanoheteroepitaxy (NHE), a selective growth of heteroepitaxial film on 

nanopatterned substrates, has been investigated for the growth of lattice-

mismatched materials.10 Luryi et al. provided a background study of NHE 

that both epitaxial film and substrate experience a three-dimensional 

deformation so that the strain associated with the lattice mismatch can be 

relaxed.11 Fig. 3.1 shows the strain-relief mechanism through NHE. In the 

case of planar structure, the epitaxial layer can elastically deform only along 

vertical direction as shown in Fig. 3.1(a). On the contrary, in nanoscale 
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islands the epitaxial layer and substrate can deform vertically and laterally as 

shown in Fig. 3.1(b). Therefore, when epitaxial layer is grown on the 

nanoscale islands, there is strain partitioning between the epitaxial layer and 

the substrate as shown in Fig. 3.1(c). Moreover, the strain decays 

exponentially away from the interface. The strain energy and effective range 

of strain is proportional to the island diameter. The smaller the diameter is, 

the faster the strain decays. 

Besides the theoretical study, experimental results for the growth of GaN 

on nanopatterned Si have been reported, demonstrating that NHE was a 

useful technique to obtain high quality GaN films on Si substrates. 12-17 In 

order to fabricate the nanopatterned Si substrates for NHE, several techniques 

such as interferometric lithography12-14 as shown in Fig. 3.2(a) and patterning 

with anodic aluminum oxide (AAO) mask15-17 as shown in Fig. 3.2(b) have 

been adopted. However, most of the results reported the growth of non-

continuous GaN islands. This is due to the limit in narrowing the pitch 

between the patterns by interferometric lithography12 and due to the small 

(~60 nm) and non-uniform patterns transferred by AAO mask resulting in the 

variation in size of the GaN nuclei overgrown on the patterns.17 In addition to 

the growth of GaN on top of the Si patterns, Liang et al. reported an 

unwanted growth of GaN between the Si nanopatterns, leading to the 

polycrystalline GaN film.15 Considering the above results, we believe that 

uniform distribution of patterns with a narrow gap and careful selective 

growth on top of the patterns is essential to obtain a fully coalesced GaN film 

using NHE. In this chapter, we investigate NHE of GaN film on an 

AlN/Si(111) nanorod substrate. To fabricate the pattern, we have employed a 

simple and cost-effective nanosphere lithography technique. It provided a 
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uniform pattern of nanoscale hexagonal close-packed array with a narrow gap 

between the nanorods, which is critical for the realization of the continuous 

GaN film growth. 
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Figure 3.1. Concept of nanoheteroepitaxy: schematic diagrams showing (a) 

epitaxial layer on the planar substrate, (b) three-dimensional epitaxial island 

on the planar substrate, and (c) epitaxial layer selectively grown on the 

nanoscale substrate. 

 

 

 

 



42 

 

 

 

 

 

 

Figure 3.2. Nano-patterned Si substrates and GaN grown on the substrates 

fabricated by (a) interferometric lithography12 and (b) lithography using 

AAO nanoporous mask.17 
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3.2 Experimental procedure 

 

Fig. 3.3 shows the schematic diagram of NHE GaN on AlN/Si(111) nanorods. 

Si(111) substrates were loaded in a 6×2 in. Thomas Swan close-coupled 

showerhead MOCVD reactor. A native oxide layer on the surface was 

thermally removed in H2 ambient at 1070 oC for 5 min. Subsequently, an 170 

nm-thick AlN layer was grown on the Si(111) substrate at 1045 oC, following 

the 10 s Al pre-deposition to suppress the nitridation of the Si surface.18 The 

samples were taken out and a monolayer of silica (SiO2) nanospheres was 

coated on the AlN layer by spin coating. The silica nanospheres of a 300 nm 

diameter were synthesized by the Stöber method.19 Reactive ion etching (RIE) 

was carried out to make the AlN/Si(111) nanorod substrate with 10 sccm Cl2 

and 2 sccm Ar flow rates at 6.7 Pa and 200 W RF power. The silica 

nanospheres behave as the etch mask during the etching process. The etched 

substrate was cleaned with a buffered oxide etchant to remove the residual 

silica nanospheres. The AlN/Si(111) nanorod substrate was loaded into the 

MOCVD reactor for the growth of GaN layer. Prior to the growth, in-situ 

nitridation of the exposed Si surface was performed in NH3 ambient, 

resulting in the SiNx passivation of the Si surface. This scheme enabled us to 

grow GaN film only on the AlN layer on top of the nanorods avoiding the 

Ga-Si meltback etching reaction and the growth of GaN between the 

nanorods. Then, a thin (50 nm) AlGaN buffer layer was deposited and 

subsequently, a GaN epitaxial layer was grown on the top at 1045 oC and 

10.1 kPa. For comparison, a planar AlN/Si(111) substrate was loaded in the 

same batch of the MOCVD growth of GaN. TMAl, TMGa, and NH3 were 

used as the precursors of Al, Ga, and N, respectively. 
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The structural characteristics of the GaN layers were analyzed by field 

emission SEM and TEM. The TEM samples were prepared by focused ion 

beam. The crystalline quality was characterized by XRD and CL. The 

residual stress in the GaN layers was measured by micro-Raman 

spectroscopy with a 633 nm line of He-Ne laser. The optical properties were 

evaluated by PL measurement at 20 K using a 325 nm He-Cd laser. 
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Figure 3.3. Schematics showing nanoheteroepitaxy of GaN on AlN/Si(111) 

nanorods fabricated by silica nanosphere lithography. 
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3.3 Results and discussion 

 

3.3.1 Fabrication of AlN/Si(111) nanorods 

 

An AlN layer was grown on Si(111) substrate by MOCVD as a seed layer for 

the growth of GaN thereon. The AlN layers were grown by two different 

growth scheme: (i) 1-step growth at 1040 oC for 10 min and (ii) 2-step 

growth at 1000 oC for 5 min and 1040 oC for 5 min. The total thicknesses of 

both AlN layers were same as 170 nm. Fig. 3.4(a) represents AFM and SEM 

images showing the surface morphologies of the 1-step AlN layer. The 

surface roughness measured by AFM was 2.224 nm and the 1-step AlN 

showed three-dimensional surfaces. Fig. 3.4(b) shows AFM and SEM images 

of the surface of the 2-step AlN layer. The surface was flattened and the 

surface roughness decreased to 1.518 nm compared to that of the 1-step AlN. 

During the temperature ramping-up process, the recrystallization of the AlN 

layer grown at 1000 oC occurred, which resulted in the reduction of surface 

roughness of the two-step AlN. 

Fig. 3.5 shows SEM images of Si nanopillars fabricated by polystyrene 

nanosphere lithography reported by Cheng and coworkers.20 The polystyrene 

nanospheres act as etch masks. As shown in Fig. 3.5, nanosphere lithography 

provides periodic hexagonal array with narrow spacing between the 

nanopillars, which enables the overgrowth of continuous GaN films on the 

patterns. Furthermore, the nanosphere lithography using nanosphere coating 

is a simple and cost-effective technology compared to other nanopatterning 

methods. 

A schematic diagram showing a typical spin coating process is shown in 
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Fig. 3.6(a). First step is the deposition of nanosphere solution composed of 

nanospheres and solvent on a target substrate. Second step is the spinning of 

the substrate. During the spinning process, the nanospheres are arranged on 

the substrate by various forces acting on them. As shown in Fig. 3.6(b), there 

are forces applied to them such as capillary force and van der Waals force 

between the nanospheres, centrifugal force, and charge/attractive force 

between the nanospheres and the substrate.21 By balancing the forces, self-

assembly of nanospheres could be achieved. 

Fig. 3.7(a) and 3.7(b) show SEM images of a monolayer of hexagonally 

close-packed silica nanospheres on the AlN layer. As shown in Fig. 3.7(a), 

well-aligned silica nanospheres were coated on the AlN layer by spin coating. 

Occassionally, defects of silica nanosphere array such as vacancies and grain 

boundaries were observed, as shown in Fig. 3.7(b). The periodic silica 

nanosphere array was used as the etch mask for the fabrication of the 

nanopatterned AlN/Si(111) substrate by the RIE.  

Fig. 3.8 shows the well-defined AlN/Si(111) nanorod substrate. Each 

AlN/Si(111) nanorod included a cylindrical Si rod and a thin AlN layer on 

the top of the cylinder which behaved as a seed layer for the subsequent 

epitaxial growth of GaN. The diameter and the height of the AlN/Si(111) 

nanorods were about 285 nm and 950 nm, respectively. The gap between the 

nanorods was measured to be as narrow as 30 nm, which was expected to 

enable the growth of a fully coalesced GaN film. The structural parameters of 

the AlN/Si(111) nanorods such as diameter, height, and resultant gap were 

controlled by the RIE time. 
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Figure 3.4. Surface morphologies measured by AFM and SEM of 170 nm-

thick AlN layer on Si(111) substrate using (a) 1-step growth and (b) 2-step 

growth. 
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Figure 3.5. Nanosphere lithography combined by patterning of nanospheres 

and following dry etching of underlying material with nanosphere mask.20 
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Figure 3.6. (a) Schematics showing the patterning of nanospheres by spin 

coating and (b) self-assembly of nanospheres resulting from varous forces 

acting on them.21 
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Figure 3.7. (a) SEM image of well-defined silica nanosphere monolayer 

coated on the AlN/Si(111) and (b) defects of patterns such as vacancy and 

grain boundary of the nanosphere array. 
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Figure 3.8. (a) Schematic diagram of AlN/Si(111) nanorods and (b) bird’s-

eye-view SEM image of the fabricated AlN/Si(111) nanorods. 
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3.3.2 Growth of GaN on AlN/Si(111) nanorods 

 

Fig. 3.9 is a schematic growth process for NHE GaN on the fabricated 

AlN/Si(111) nanorod template. The growth temperature and the pressure 

were fixed to 1045 oC and 76 torr, respectively. While previous NHE reports 

starts with nanopatterned Si substrate, we used AlN/Si template with 

nitridation process as starting NHE template. Before the main nitride growth, 

in-situ nitridation of the exposed Si surface was perfomed in NH3 ambient to 

grow nitrides only on top of the nanorods selectively and avoid Ga-Si 

meltback etching. Before the nitridation process, the sidewall of AlN/Si(111) 

nanorod is Si, which might cause Ga-Si meltback etching when Ga-

containing nitrides are grown on it, as illustrated in Fig. 3.10(a). If the Si 

surface of AlN/Si(111) nanorod is nitridated by in-situ nitridation, the surface 

is passivated by silicon nitride (SiNx) as shown in Fig. 3.10(b). The resultant 

SiNx passivation layers of the AlN/Si(111) nanorods not only suppress the 

Ga-Si meltback etching but also enhance a growth selectivity by suppressing 

the growth of nitrides on SiNx and promote the growth on AlN top seed layer. 

And 50 nm-thick AlGaN was used as an interlayer between GaN and AlN. 

Fig. 3.11(a) and the inset are plan-view and bird’s-eye-view SEM images 

of the GaN islands grown on the AlN/Si(111) nanorods for 3 min. It was 

shown that, at the initial growth stage, the GaN islands have well-defined 

hexagonally truncated pyramidal shapes surrounded by the side facets of 

{11̅01} planes which were determined by the angle of 62o with respect to the 

basal (0001) planes. When the growth progressed, the GaN islands were 

expected to grow not only in the vertical direction but also in the lateral one 

and finally to form a continuous GaN film on the nanorods.  
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After the 40 min growth, the thickness of the NHE GaN film was 

measured to be 1.85 μm. Fig. 3.12 shows a cross-section SEM image of the 

fully coalesced GaN film overgrown on the AlN/Si(111) nanorods. We found 

that each nanorod consisted of the well-defined Si rod, the AlN thin film, and 

the AlGaN buffer layer which was deposited in a truncated pyramidal shape 

on the top. Also, it was clear that the film was grown only on the AlN 

seeding layer but the growth of GaN on undesirable sites, the area between 

the Si-rods and the sidewall, was effectively suppressed by the SiNx 

passivation layer. The air voids were formed between the nanorods and they 

were expected to relieve the stress in the epitaxial layer. The surface 

examination showed that the continuous film was obtained, although some 

small pits were found on the surface. 

To investigate the crystal structure of NHE GaN, XRD measurement was 

carried out. Fig. 3.13(a) is a 2theta-omega scan and indicates that the 

epitaxial structure is composed of GaN, AlGaN, and AlN on the Si(111) 

substrate. The lattice parameter along the c-axis of AlGaN was calculated to 

be 0.507 nm. Accordingly, the Al composition of the AlGaN layer was 

calculated to be 54% from and Vegard’s law as follow:22 

 

𝑥𝐴𝑙 = (𝑐𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁 − 𝑐𝐺𝑎𝑁)/(𝑐𝐴𝑙𝑁 − 𝑐𝐺𝑎𝑁), 

 

where c and x represent the lattice parameter along the c-axis and the Al 

composition, respectively. As shown in Fig. 3.13(b), six peaks with 60o 

intervals from the phi scan of asymmetric (102) reflection reveals that the 

NHE GaN layer is a single crystal with hexagonal symmetry.  
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Cross-section TEM analysis was carried out to investigate the crystalline 

quality and dislocation behavior in the NHE GaN layers. The comparison of 

Fig. 3.14(a) and 3.14(b), cross-section TEM images of the interfacial region 

along [112̅0] zone axis, showed that the threading dislocation density (TDD) 

of the NHE GaN grown on the AlN/Si(111) nanorods was somewhat lower 

than that of GaN on the planar AlN/Si(111). To confirm the reduction of 

TDD, CL measurement was conducted on both GaN layers as shown in Fig. 

3.14(c) and 3.14(d). TDDs determined by dark spots in the CL images were 

about 2.2×109 and 1.2×109 cm-2 for the GaN grown on the planar AlN/Si(111) 

and on the AlN/Si(111) nanorods, respectively. TDD was found to decrease 

down to half. In order to investigate the mechanism for the reduction of TDD, 

TEM images were taken at the interfacial area for GaN on the AlN/Si(111) 

nanorod substrate. Fig. 3.15(a) and 3.15(b) are bright-field TEM images 

taken at the same region under g = [0002] and g = [11̅00] diffraction 

conditions, respectively. Screw-type (S, Burgers vector b =< 0002 >) and 

mixed-type (M, b = 1/3 < 112̅3 >) TDs are visible under the g = [0002] 

diffraction condition, while edge-type (E, b = 1/3 < 112̅0 >) and mixed-

type TDs are observable under the g = [11̅00] diffraction condition. Based 

on the observation, we believe that all the types of dislocations experienced 

the bending, which was also observed for the NHE of GaN on a nanoporous 

Si.17 It is worth noting that some of the mixed-type dislocations generated at 

the interface propagated in the [0001] direction, and when they met the 

{11̅01} sidewalls of growing GaN truncated pyramids shown in Fig. 3.15(a), 

they changed the propagation direction as indicated by the arrows. Then, the 

bent TDs continued to propagate parallel to the (0001) basal plane as shown 

in Fig. 3.15(a) and 3.15(b). Sun et al. have suggested that TDs were bent to 
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minimize their energy when meeting the {11̅01} sidewalls as shown in Fig. 

3.16.23 In addition, stacking faults formed near the interface could block the 

propagation of TDs, indicated by arrows in Fig. 3.17. It is well known that 

stacking faults are typical defects in NHE GaN formed near the GaN/Si 

interface14-16 when the GaN islands coalesced together24 as shown in Fig. 

3.18. Consequently, we speculate that the TD bending and the termination of 

TD by stacking faults contributed to the reduction of TDD in the GaN layer 

on the AlN/Si(111) nanorods. 

Fig. 3.19(a) and 3.19(b) are XRD rocking curves of (002) plane and (102) 

plane of the GaN layers. The peak intensities were normalized. The full width 

at half maximum (FWHM) values of (002) planes were 557 and 540 arcsec 

for the GaN layer on AlN/Si(111) nanorods and planar AlN/Si(111), 

respectively. Unlike the similar FWHM values of (002) plane for both 

samples, the NHE GaN showed a somewhat lower FWHM value of (102) 

plane, 728 arcsec, compared to 1005 arcsec for GaN on the planar 

AlN/Si(111). This result is consistent with the TEM and CL results showing 

the improved crystalline quality with the lower TDD for the NHE GaN.  
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Figure 3.9. MOCVD growth scheme of GaN on AlN/Si(111) nanorods 

including the in-situ nitridation step. 

 

 

 

 

Figure 3.10. AlN/Si(111) nanorods (a) before and (b) after the in-situ 

nitridation step. 
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Figure 3.11. (a) Plan-view SEM image of GaN grown on the AlN/Si(111) 

nanorods after 3 min growth with an inset showing the bird’s-eye-view image 

and (b) structural configuration of GaN island on the AlN/Si(111) nanorod 

from a cross-section view. 
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Figure 3.12. Cross-section SEM image of the GaN layer on the AlN/Si(111) 

nanorods including air voids with the schematics of the corresponding 

epitaxial structure. 
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Figure 3.13. (a) 2theta-theta scan and (b) phi scan of the NHE GaN on 

AlN/Si(111) nanorods using the XRD measurement. 
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Figure 3.14. Cross-section TEM images of (a) GaN grown on the planar 

AlN/Si(111) and (b) the NHE GaN grown on the AlN/Si(111) nanorods. 

Plan-view CL images of (c) GaN grown on the planar AlN/Si(111) and (d) 

the NHE GaN. 
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Figure 3.15. High-magnification TEM images taken at the interfacial area 

between GaN and Si in the NHE GaN showing the bending of threading 

dislocations with (a) g = [0002] and (b) g = [11̅00]. 
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Figure 3.16. Formation of GaN pyramids with {11̅01} side facets observed 

by (a) SEM and (b) TEM. (c) TEM observation showing the resultant 

bending of threading dislocations to the side facets.23 
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Figure 3.17. TEM image showing the termination of threading dislocation 

propagation by stacking faults. 
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Figure 3.18. Cross-section TEM images of (a) GaN grown on the planar 

sapphire substrate and (b) GaN grown on the SiO2 nanorod-patterned 

sapphire substrate. (c) Schematics describing the formation of stacking faults 

in GaN grown on the nano-patterned substrate.24 
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Figure 3.19. XRD omega rocking curves of the NHE GaN and GaN on the 

planar AlN/Si(111) from (a) (002) plane and (b) (102) plane. 
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3.3.3 Effect of nano-patterned substrate on GaN-on-Si structure 

 

Micro-Raman spectroscopy was used to evaluate the residual stress in the 

GaN films. Fig. 3.20 shows the E2 (high) mode peaks in micro-Raman 

spectra of the two GaN layers grown on the AlN/Si(111) nanorods and the 

planar AlN/Si(111), and a thick free-standing GaN crystal of a 200 μm 

thickness grown by hydride vapor phase epitaxy. The peaks were centered at 

566.7, 565.2, and 567.3 cm-1, respectively. The red shift of the peaks for the 

epitaxial GaN layers from that for the free-standing GaN crystal indicates 

that tensile stress was built in the GaN films.25 Based on the shift of the E2 

(high) mode peak, the tensile stress in the GaN films can be obtained by a 

linear relation as follow:26 



 

 

where and xx represent the peak shift and the residual stress, respectively. 

According to the equation, the residual tensile stresses were calculated to be 

0.14 and 0.49 GPa for the NHE GaN and the GaN layer grown on the planar 

AlN/Si(111), respectively. This indicates the 70% reduction of the tensile 

stress for the NHE GaN by introducing the AlN/Si(111) nanorod structure 

forming air voids between them. It was suggested that air voids between 

nanorods facilitated a three dimensional stress relief mechanism, resulting in 

the reduction of the tensile stress.17 

Fig. 3.21 shows low-temperature PL spectra of the samples measured at 

20 K. The peaks corresponding to the near band edge emission were located 

4.3
xx cm GPa





 
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at 357.1 nm and 358.1 nm for the NHE GaN and the GaN layer on the planar 

AlN/Si(111), respectively. The blue shift of the emission wavelength 

indicates that the residual stress in the GaN films grown on the AlN/Si(111) 

nanorod structure was relaxed27 which is in good agreement with the micro-

Raman result. Besides, it was observed that the integrated PL intensity of the 

NHE GaN was much higher than that of GaN on the planar AlN/Si(111). We 

consider that most part of the enhancement is attributed to the strong light 

scattering by the pattern, but we also expect that the improvement in the 

crystalline quality of the GaN layer on the AlN/Si(111) nanorod structure 

such as the reduction of dislocation density could contribute to the PL 

improvement. 
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Figure 3.20. Micro-Raman spectra of the NHE GaN, GaN on the planar 

AlN/Si(111), and the free-standing GaN crystal. 
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Figure 3.21. Low-temperature (20 K) PL spectra of the NHE GaN and GaN 

grown on the planar AlN/Si(111). 
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3.4 Summary 

 

NHE of GaN on the AlN/Si(111) nanorod structure was investigated by using 

MOCVD. Silica nanosphere lithography was employed to fabricate the 

periodic hexagonal nanorod array with a narrow gap of 30 nm between the 

nanorods. Fully coalesced GaN film was obtained over the nanorod structure 

and its TDD was found to decrease down to half, compared to that of GaN 

grown on the planar AlN/Si(111) substrate. TEM measurement revealed that 

TD bending and TD termination by stacking faults occurred near the 

interface between GaN and AlN/Si(111) nanorods, contributing to the TDD 

reduction. Moreover, the 70% relaxation of the tensile stress of the NHE GaN 

was confirmed by micro-Raman and PL measurements compared to GaN on 

the planar AlN/Si(111) substrate. These results suggested that NHE on 

AlN/Si(111) nanorods fabricated by nanosphere lithography is a promising 

technique to obtain continuous GaN films with the improved crystalline 

quality and the reduced residual stress. 
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Chapter 4. AlGaN-based deep ultraviolet light-

emitting diode on nano-patterned AlN/sapphire 

substrate 

 

4.1 Introduction 

 

AlGaN-based deep ultraviolet (DUV) LEDs have attracted much attention 

due to their various applications such as water purification, sterilization, 

curing, and bio-agent detection as shown in Fig. 4.1.1 A spectrum of light is 

categorized into regions such as visible, UV, and IR with respect to the 

wavelength of the light as shown in Fig. 4.2. The UV region is further 

divided into several regions: near UV (300 – 400 nm); DUV (200 – 300 nm); 

and vacuum UV (10 – 200 nm). Recently, DUV light has attracted much 

interest for environmental applications due to its high photon energy. DUV 

light interacts with the deoxyribonucleic acid (DNA) structure of 

microbiological contaminants such as bacteria and virus, disrupting their 

DNA. As a result, the replication of microorganisms is prevented by DUV 

light. The emission wavelength of optical devices is determined by the 

bandgap of the nitride semiconductors composing the active layer. AlGaN-

based LEDs can emit from 200 nm (AlN) to 365 nm (GaN), thus AlGaN with 

high Al content have been used to fabricate DUV LEDs as showin in Fig. 4.B. 

In addition, there are advantages of AlGaN-based DUV LEDs in in size, 

spectral control, and Hg-free operation compared to the conventional Hg-

vapor lamp. According to the Yole development (2016), DUV LED market 
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will grow from 7 million dollars in 2015 to 610 million dollars by 2021 with 

a compound annual growth rate (CAGR) of 210 during the period.2 

However, the external quantum efficiency (EQE) of AlGaN-based DUV 

LEDs (typically less than 10% for 280 nm LEDs) is much lower than that of 

InGaN-based visible LEDs (60% for 450 nm blue LEDs) due to intrinsic 

material properties of AlGaN which lead to poor internal quantum efficiency 

(IQE) as well as LEE.3,4 Fig. 4.3 shows the typical AlGaN-based DUV LED 

structure. The DUV LED consists of AlN layer, n-AlGaN layer, MQW, p-

AlGaN layer, p-GaN contact layer, and electrodes. Increasing the Al 

composition x in AlxGa1-xN for the emission of deeper UV photons generally 

leads to a high density of extended defects such as threading dislocations and 

cracks due to large lattice mismatch and thermal mismatch between the 

AlGaN epitaxial layer and foreign substrates as well as the low surface 

mobility of Al-containing alloys. These extended defects are known to act as 

non-radiative recombination centers, thus cause low IQE.5-7 In addition, the 

LEE of AlGaN-based DUV LEDs is severely limited due to strong 

absorption of DUV photons by top p-type GaN contact layer and light 

trapping by total internal reflections particularly for the strong anisotropic 

transverse-magnetic polarized emission from the AlGaN active region.8,9 As 

a result, the EQE of AlGaN-based DUV LED is limited to 20% due to both 

low IQE and low LEE as shown in Fig. 4.4. The EQE of the LED decreases 

sharply as the Al content in AlGaN increases as shown in Fig. 4.5. 

Since the EQE is determined by both IQE and LEE, in order to overcome 

such significant limitations in EQE, thus, to realize highly efficient DUV 

LEDs, it is essential to enhance the IQE by realization of high quality AlGaN 

epitaxial layers and the LEE simultaneously. 
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Figure 4.1. DUV LED for healthier living environment.  

 

 

 

 

 

Figure 4.2. AlGaN for UV-emitting devices.   
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Figure 4.3. Structure of AlGaN-based DUV LED and issues of DUV LEDs. 
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Figure 4.4. Flow chart of losses during operation of InGaN-based blue LEDs 

(450 nm) and AlGaN-based DUV LEDs (250 nm).3  
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Figure 4.5. EQE of AlGaN-based UV LEDs by different research groups.  
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4.1.1 Growth of AlxGa1-xN layer on patterned substrate 

 

PSS is a universal technology used in GaN-based LED structures to improve 

the crystal quality and increase the LEE at the same time, as described above. 

However, in the case of AlN growth, the ELO mechanism is not possible. Fig. 

4.6 shows our growth result of AlN on PSS with the growth temperature of 

1050 oC using MOCVD. When AlN is grown on the PSS, the AlN is not a 

single crystal but a polycrystal because there is no growth selectivity between 

the growth mask (pattern) and the growth window due to the small diffusion 

length of Al adatoms. 

Several growth techniques such as migration-enhanced epitaxy10 and 

multilayer-AlN buffer growth by NH3 pulse-flow method11 have been 

reported to reduce the TDD in AlN on sapphire by enhancing the surface 

migration of Al-species.10,11 ELO on microscale patterned sapphire substrates 

and AlN/sapphire substrates has been investigated, demonstrating the 

reduction of TDD and the enhancement of the light output power (LOP) of 

UV LEDs.12-16 ELO of AlN on the patterned substrates, high quality AlN 

layers with low defect density was obtained as shown in Fig. 4.7.17 However, 

ELO on microscale patterned substrates requires high growth temperature 

above 1300 oC for enough surface migration of Al adatoms as well as a long 

growth time for the coalescence of AlN over the wing region as shown in Fig. 

4.8, thus high cost.18 Recently, Dong et al. suggested nanoscale ELO of AlN 

on nano-patterned sapphire substrates at the growth temperature of 1200 oC 

to reduce the coalescence gap as well as to increase the light scattering, and 

have achieved an enhanced EQE.19 Conroy et al. also have reported 

nanoscale ELO of AlN on uniform array of 1 μm-thick AlN nanorods on 
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sapphire substrate at the growth temperature of 1100 oC showing an 

improved crystal quality of the overgrown AlN films.20 Although thinner 

coalescence thicknesses and high quality AlN layers were accomplished by 

the nanoscale ELO, careful consideration should be given to the effect of 

nanoscale patterns and resultant formation of a periodic refractive-index 

contrast between the AlN layer and air on the extraction of DUV photons, 

thus, on the EQE in order to further improve the efficiency of DUV LEDs. 
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Figure 4.6. (a) PSS and (b) SEM images of poly-crystalline AlN grown on 

the PSS. 
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Figure 4.7. (a) AlN grown on the patterned substrate using pulsed growth 

mode and (b) cross-section TEM image of the overgrown AlN showing 

reduced density of TDD over wing regions.17 

 

 

 

 

Figure 4.8. High-temperature growth of AlN with (a) 1-step growth at 1400 

oC and (b) 2-step growth at 1300 oC and 1400 oC.18 
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4.1.2 Technique for enhancing LEE 

 

Conventional LEE-enhancing techniques such as reflective electrodes,21 

surface roughening,22,23 and anti-reflection coating24 are known to be 

effective for InGaN-based visible LEDs, but less effective for AlGaN-based 

DUV LEDs due to the strong DUV light absorption in the p-type GaN layer 

and the difference in intrinsic material properties.9,25  

The main key to enhance the LEE of DUV LEDs which have typically 

flip-chip configurations for better light extraction and heat dissipation26 is to 

extract the DUV photons through the sapphire substrate effectively before the 

photons being absorbed in the device structures by reducing the photon path 

length for extraction. Khizar et al. reported an enhancement of LEE of DUV 

LEDs by introducing microlenses on the sapphire substrates as shown in Fig. 

4.9(a).27 An enhancement of LEE by 55%, which is shown in Fig. 4.9(b), is 

attributed to the reduced total internal reflection on the light. In addition to 

the sapphire substrate roughening, patterning of AlN substrates is also 

effective to improve the LEE of DUV LEDs. Inoue et al. have demonstrated 

the enhancement of LEE by fabricating AlN nanostructures on the 

transparent AlN substrates as shown in Fig. 4.10.28 
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Figure 4.9. Microlense on the sapphire substrate for enhancing the LEE of 

DUV LED. (a) Schematics of microlense patterned DUV LED, (b) AFM 

image showing the surface of microlense, and (c) LOPs of DUV LEDs with 

and without microlense array.27 

 

 

 

Figure 4.10. (a) Schematics showing photonic crystals on AlN substrate, (b) 

SEM images of the fabricated photonic crystal, and (c) LEE enhancement 

from the experimental and theoretical results.28 
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4.2 Experimental procedure 

 

When nano-patterned substrate is applied to the growth of AlN, nanoscale 

ELO is possible. In this case, improvement of crystal quality can be achieved 

through ELO, and a rapid coalescence of AlN at relatively low growth 

temperature is possible even for nitrides containing high Al content. The 

advantage is that the reduction of both growth thickness and growth 

temperature for ELO of AlN can directly lead to much reduced 

manufacturing cost. In addition, air voids are inserted in the final epitaxial 

structures, which are expected to play a role of relaxing the stress of the film 

and improving the LEE. This is the motivation for the epitaxial growth of 

AlN on the nano-patterned substrates, as summarized in Fig. 4.11. 

Fig. 4.12 is a schematic fabrication process of AlGaN-based DUV LEDs 

on nano-patterned AlN/sapphire substrates. A monolayer of self-assembled 

silica nanospheres was coated on the AlN layer by spin coating. The silica 

nanospheres were synthesized by the Stöber method29 and the diameter was 

700 nm. To transfer the nanosphere pattern to the underlying AlN layer, Cl2-

based RIE was carried out. The residual silica nanospheres after the etching 

were cleaned by dipping the substrate in hydrofluoric acid (HF). The 

fabricated NPS was loaded again into the MOCVD reactor and AlN layer 

was grown on top of the AlN nano-patterns. ELO of AlN on the NPS was 

performed at a growth temperature of 1050 oC. 

An Al0.43Ga0.57N/Al0.58Ga0.42N multiple-quantum well (MQW) DUV 

LED was grown on the NPS with a 3 μm-thick AlN buffer layer. The DUV 

LED consists of AlN/AlGaN superlattice buffer layers, a 2.4 μm-thick Si-

doped n-type Al0.58Ga0.42N layer, five periods of MQWs composed of 2 nm-
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thick Al0.43Ga0.57N quantum wells and 10 nm-thick Al0.58Ga0.42N quantum 

barriers, a 15 nm-thick Mg-doped Al0.8Ga0.2N electron blocking layer, a Mg-

doped p-type AlGaN cladding layer with a graded Al composition from 58% 

to 0%, and a 200 nm-thick Mg-doped p-type GaN contact layer. For a 

reference, AlN layer and DUV LED were also grown on a planar AlN 

template without the patterning in the MOCVD reactor. TMAl, TMGa, and 

NH3 were used as the sources of Al, Ga, and N, respectively. The structural 

characteristics were analyzed by field-emission SEM, AFM, and OM. The 

crystal quality was examined by XRD. 
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Figure 4.11. Motivation for the introduction of nano-patterned substrate for 

highly efficient AlGaN-based DUV LEDs. 
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Figure 4.12. Schematics showing the fabrication process flow of AlGaN-

based DUV LEDs on nano-patterned AlN/sapphire substrates. 
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4.3 Results and discussion 



4.3.1 Fabrication of nano-patterned AlN/sapphire substrate 

 

A 1.3 μm-thick AlN layer was grown on a 4-in. c-plane sapphire substrate 

(0.35o miscut toward the m-plane) by an Aixtron G3 MOCVD system. In 

order to obtain a flat surface of AlN and suppress parasitic reactions between 

TMAl and NH3, V/III ratio was lowered to ~160 for AlN growth. Then, silica 

nanosphere lithography technique was employed to fabricate the NPS. The 

silica nanospheres with average diameter of 700 nm were synthesized by the 

Stöber  method. Self-assembled silica nanospheres as etch masks were 

coated on the AlN layer uniformly over the 4-in. wafer by spin coating. Fig. 

4.13 shows the coating results measured by SEM images for three locations 

at different distances from the center of 4-in. substrate. Although there are 

defects in the silica nanosphere array such as grain boundaries and vacancies, 

monolayer of hexagonal silica nanosphere array was obtained on the 4-in. 

sapphire substrate.  

Then, Cl2-based reactive ion etching was carried out to transfer the 

nanosphere pattern to the underlying AlN layer. RF power, chamber pressure, 

and Cl2 flow rate were fixed to 200 W, 50 mTorr, and 16 sccm, respectively. 

With increasing the etching time, the shapes of the AlN and silica 

nanospheres were investigated. Fig. 4.14 shows plan-view and cross-section 

SEM images of AlN nanostructures as a function of the etching time. As 

expected, the shrinkage of the silica nanospheres was proceeded as the 

etching time increased. As a result, the diameter of the fabricated AlN 

nanorods decreased and the height of the AlN nanorods increased with the 
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increased etching time. During the RIE process, AlN was etched by chemical 

reaction with reactive ions by forming volatile aluminum chloride gas (AlCl3), 

while silica nanospheres are etched by physical sputtering. The one step Cl2-

based RIE enabled us to fabricate AlN nanorods on the sapphire substrate. 

The residual silica nanospheres after the etching were cleaned by dipping 

the substrate in HF. Fig. 4.15(a) and 4.15(b) are plan-view and bird’s-eye-

view SEM images of the fabricated NPS. A well-defined hexagonal array of 

AlN nanorods with c-plane flat top surfaces on the sapphire substrate was 

obtained after the nanosphere lithography. The resultant diameter and height 

of nanorods with the etching time of 30 min were measured to be ~630 nm 

and 1.3 μm, respectively. The air spacing between the nanorods along the 

center-to-center direction was about 130 nm, which was small enough to 

enable the coalescence of overgrown AlN layers on the nanorods overcoming 

the limited surface migration of Al adatoms.    
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Figure 4.13. Spin coating results showing self-assembled silica nanospheres 

on AlN/sapphire template at different positions in 4-in. sapphire substrate. 
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Figure 4.14. Plan-view and cross-section SEM images of AlN nanostructures 

as a function of Cl2-based RIE time. 
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Figure 4.15. (a) Plan-view and (b) bird’s-eye-view SEM images of well-

defined AlN nanorods fabricated by silica nanosphere lithography. 
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4.3.2 Growth of AlxGa1-xN layers on nano-patterned AlN/sapphire 

substrate 

 

The NPS was loaded again into the MOCVD reactor to grow AlN layer on it. 

ELO of AlN on the NPS was performed at a growth temperature of 1050 oC, 

which is much lower than that for microscale ELO (1300-1400 oC)12-16 and 

even lower than that for former nanoscale ELO (1100-1200 oC).19,20 The 

surface temperature of the MOCVD susceptor, defined as the growth 

temperature in this study, was measured by a pyrometer. Growth conditions 

for ELO of AlN were the same as those used for the growth of AlN layer on 

the planar sapphire substrate. No pulsed growth mode was used for AlN on 

NPS. For a comparative study, reference AlN was grown on the planar AlN 

layer at the same time. Fig. 4.16 shows the structure of AlN layer grown on 

the NPS characterized by SEM and AFM. Fig. 4.16(a) and 4.16(b) are cross-

section and plan-view SEM images of the 5.2-μm thick AlN layer overgrown 

on the NPS. Note that, despite the much lower growth temperature, the AlN 

completely coalesced within ~200 nm overgrowth, indicating much faster 

coalescence compared to the previous microscale ELO results, 12-16 thanks to 

the ELO of AlN on nanoscale patterns as reported in the previous results.19,20 

The coalescence thicknesses with the spacing of the patterned substrates with 

different researches are summarized in Fig. 4.17. The reduction of both 

growth temperature and growth thickness for ELO of AlN by introducing the 

NPS can directly lead to much reduced manufacturing cost. In addition, air 

voids surrounding the AlN nanorods were formed periodically between the 

overgrown AlN layer and the sapphire substrate as a result of the ELO of 

AlN on top of the nanorods. It is expected that the embedded air voids can (i) 
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relieve the stress of the AlN film by reducing the contact area between the 

epitaxial layer and the underlying substrate, as well as (ii) make a periodic 

refractive-index contrast between air and AlN. Fig. 4.16(b) shows a fully 

coalesced top surface of the AlN layer. Zigzag macro-steps along [11̅00]AlN 

observed on the SEM image and also identified by AFM image shown in Fig. 

4.16(c) originate from the miscut of the sapphire substrate, as reported 

previously.30 Fig. 4.18 shows OM images of reference AlN grown on the 

planar AlN template without patterning and AlN grown on the NPS, 

respectively. While there were cracks on the surface of reference AlN, crack-

free AlN layers were obtained on NPS over the whole 4-in. wafer. The tensile 

stress is built up with increasing the thickness of AlN layers during the 

growth and the accumulated stress leads to the crack formation. The 

embedded air voids formed in the AlN epitaxial layer effectively released the 

tensile stress induced in the AlN layer during the growth, so that thick and 

crack-free AlN layer was grown on the NPS.  

To evaluate the crystal qualities of the AlN layers, XRD measurement 

was carried out. Fig. 4.19(a) and 4.19(b) are X-ray rocking curves of 

symmetric (002) and asymmetric (102) reflections of AlN layers with 

normalized peak intensities. The FWHM values of (002) planes were 186 

arcsec and 235 arcsec for the AlN on NPS and the reference AlN, 

respectively. Those of (102) planes were measured to be 432 arcsec and 457 

arcsec for the AlN on NPS and the reference AlN, respectively. The 

reduction of FWHM values of both (002) and (102) reflections indicates that 

the crystal quality of AlN layers grown on NPS was improved by nanoscale 

ELO. 

An Al0.43Ga0.57N/Al0.58Ga0.42N multiple-quantum well (MQW) DUV 
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LED was grown on the NPS with a 3 m-thick AlN buffer layer. Fig. 4.20 is 

a cross-section SEM image of the LED structure and the total thickness was 

7.9 m. Similarly with the AlN growth result, crack-free DUV LED epitaxial 

layer was obtained on the NPS while reference showed lots of cracks on the 

surface. 

As shown in Fig. 4.21, the TDD of the DUV LED on NPS is lower than 

that of the reference DUV LED. TDDs in n-AlGaN layers measured by TEM 

were 4.4×109 cm-2 and 6.0×109 cm-2 for the DUV LED and the reference 

DUV LED, respectively. The reduced TDD indicates the improved crystal 

quality of AlN and overgrown AlGaN thereon by ELO. In addition to the 

XRD result for AlN layers, crystal qualities of n-AlGaN layers were analyzed 

by XRD. FWHM values of (002) planes were 379 arcsec and 490 arcsec for 

n-AlGaN overgrown on the NPS and reference n-AlGaN, respectively. Those 

of (102) planes were measured to be 718 arcsec and 759 arcsec for n-AlGaN 

overgrown on the NPS and reference n-AlGaN, respectively. The reduction 

of FWHM values of both (002) and (102) reflections indicates the improved 

crystal quality of n-AlGaN on NPS. Fig. 4.22 is a cross-section TEM image 

of AlN grown on the NPS with g = [0002]. Threading dislocations near the 

voids were found to bend towards the free surfaces (indicated by arrows). We 

believe that this dislocation filtering effect contributed to the reduction of 

TDD in AlN and DUV LED on NPS. 
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Figure 4.16. Cross-section SEM image of the overgrown AlN layer on the 

NPS. 
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Figure 4.17. Coalescence thickness vs. spacing between the patterned 

substrates for ELO of AlN. The growth temperature of each result is noted. 
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Figure 4.18. OM images of (a) crack-free AlN layer on the NPS and (b) AlN 

layer on the planar sapphire substrate with lots of cracks on the surface. 
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Figure 4.19. XRD omega rocking curves of (a) symmetric (002) and (b) 

asymmetric (102) reflection of the AlN on the NPS and the reference AlN. 
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Figure 4.20. Cross-section SEM image of crack-free 7.9 μm-thick DUV LED 

epitaxial layers grown on the NPS. 
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Figure 4.21. Cross-section TEM images of (a) DUV LED on NPS and (b) 

reference DUV LED taken along [𝟏𝟏̅𝟎𝟎] zone axis of AlGaN. 

 

 

 

Figure 4.22. Cross-section TEM image of DUV LED on NPS showing the 

bending of threading dislocations. 
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4.3.3 Device fabrication and characterization 

 

The DUV LEDs on NPS and the reference DUV LEDs were fabricated with 

a chip size of 300 ×300 m2 by using conventional GaN-based LED 

fabrication processes. Fig. 4.23(a) shows the OM images taken after 

fabrication steps. First, mesa structures were formed by using 

photolithography and inductively coupled plasma dry etching. The etching 

depth was ~1 μm to expose the n-type AlGaN. Then, the n-contact 

Ti/Al/Ni/Au (30/120/40/100 nm) metal layers were deposited on the n-type 

AlGaN layer by electron-beam evaporation and annealed at 900 oC for 1 min 

in N2 ambient. The p-contact Ni/Au (20/100 nm) metal layers were also 

deposited on the p-type GaN surface, followed by thermal annealing at 750 

oC for 1 min in air ambient. Lastly, a Ti/Au (20/100 nm) pad metal was 

deposited on both n- and p-type metal contacts. The target structure is a flip-

chip structure which is widely used in DUV LEDs for better heat-dissipation 

and light extraction as shown in Fig. 4.23(b). So, the photons are mainly 

extracted to the sapphire substrate, the bottom side. 

For current-voltage (I-V) measurements, an Agilent B2902A Precision 

Source/Measurement unit was used with voltage sweep from -5 V to 15 V 

under DC current condition. For light-current (L-I) measurements, light 

output (5 ms current pulse sweep, 1% duty cycle) was measured as a 

photocurrent using a Si photodetector, the same Source/Measurement unit, 

and bottom-emission measurement setup in a free-standing condition in a 

dark room environment. To avoid the possible performance variation over the 

4-in. wafers, the center parts of both wafers were used.  
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Fig. 4.24 shows electroluminescence (EL) spectra as a function of 

wavelength of DUV LED on the NPS and reference DUV LED, showing the 

emission with peak wavelength of 280 nm without parasitic emission. Fig. 

4.25 shows the representative I-V characteristics for both reference DUV 

LED and DUV LED on NPS. The inset shows the log plot. The reference 

DUV LED has much higher forward leakage current than that of the DUV 

LED on NPS. Reducing forward leakage is very important for improving 

overall performance of LEDs because it is well correlated with device 

reliability and determines ideal power consumption. The high forward 

leakage is commonly believed to be defect-assisted tunneling current 

resulting from high-density defects in III-nitride films heteroeptaxially grown 

on foreign substrates.31,32 The forward leakage of the DUV LED on NPS is 

significantly reduced compared to the reference DUV LED because 

nanoscale ELO on the NPS method can efficiently reduce the defects and 

improve the crystal quality of overgrown AlGaN layers. In addition, the 

carrier mobility is also increased in the DUV LED on NPS because of 

reduced grain boundaries and defects, resulting in low sheet resistance.33 As a 

result, at the injection current of 20 mA, the operating voltage of the DUV 

LED on NPS is 9.3 ± 0.16 V, 1.5 V smaller than that of the reference DUV 

LED (10.8 ± 0.66 V), which is attributed to the reduced sheet resistance in 

the DUV LED on NPS. 

Fig. 4.26 shows the average LOP with error bars as a function of the 

injection current measured from 50 LEDs at room-temperature. The relative 

EQE, estimated by dividing the photocurrent by the injection current, is also 

shown in Fig. 4.27. The LOP of the DUV LEDs on NPS shows much higher 

LOP by 67% than that of the reference DUV LED at the injection current of 
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20 mA. Consequently, the DUV LED on NPS shows a remarkably higher 

relative EQE throughout the whole injection current than that of the reference 

DUV LED. It is worthwhile to note that efficiency peak point and efficiency 

droop behavior are different for both DUV LEDs. The DUV LED on NPS 

has a peak efficiency at 2.6 mA and an efficiency droop of 25.7% when the 

current is increased up to 20 mA, while the reference DUV LED shows low 

peak efficiency and little efficiency droop without a pronounced efficiency 

peak. Based on a model describing the rates of carrier recombination 

mechanisms, EQE can be expressed by a combination of the carrier 

concentration in the active region (n), defect-related non-radiative Shockley-

Read-Hall (SRH) coefficient (A), and radiative coefficient (B) as follows; 

 

2

2
EQE LEE IQE LEE

( )

Bn

An Bn f n
   

 
, 

 

where f(n) represents the carrier loss rate by electron leakage and Auger 

recombination. For the reference DUV LED with lower crystal quality, i.e., 

higher point defects and extended defects such as threading dislocations and 

grain boundaries, the SRH non-radiative lifetime is sufficiently short to 

suppress the radiative recombination, thus, the radiative recombination is 

never dominant, resulting in a very low efficiency lack of a pronounced 

efficiency peak.34 Consequently, efficiency droop is not observed at 

measured currents up to 20 mA. In the case of the DUV LED on NPS with 

smaller A than that of the reference DUV LED, the radiative recombination 

process becomes dominant at a low current, followed by pronounced 

efficiency droop phenomenon when other non-radiative mechanisms such as 
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electron leakage and Auger recombination become dominant as the current 

increases. 
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Figure 4.23. (a) Device fabrication process of DUV LEDs and (b) flip-chip 

configuration extracting the DUV photons through the sapphire substrate 

with the chip size of 300×300 μm2. 
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Figure 4.24. EL spectra of DUV LEDs. 
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Figure 4.25. I-V characteristics of DUV LEDs. The inset shows the log plot. 
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Figure 4.26. Average LOPs with error bars as a function of injection current 

measured from 50 representative DUV LEDs. 
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Figure 4.27. Representative EQE of DUV LEDs as a function of injection 

current. 
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4.3.4 3-D finite-difference time-domain (FDTD) simulation: effect 

of embedded air void on light extraction 

 

Three-dimensional (3-D) finite-difference time-domain (FDTD) method 

(Lumerical FDTD Solutions) was used to analyze the effect of the embedded 

air-void nanostructure in the AlN layer on the light extraction. Fig. 4.28 

shows three-dimensional FDTD simulation models of reference DUV LED 

and DUV LED on NPS. The simulation models were composed of p-type 

GaN, MQWs, n-type AlGaN, AlN, and sapphire substrate. The boundary 

conditions were a periodic boundary condition at lateral surfaces, a mirror at 

the top of p-type GaN layer, and a perfectly matched layer which absorbs the 

incident light on it outside of the detector, bottom of the sapphire substrate. 

For the DUV LED on NPS, the embedded air-void nanostructure which has 

the periodic hexagonal array of AlN nanorods surrounded by the air void was 

located in the AlN layer. The light source was a 280 nm monochromatic 

dipole source and located in the MQW region. The refractive indices at the 

wavelength of 280 nm were selected as 2.6, 2.6, 2.16, and 1.82 for p-type 

GaN, AlGaN, AlN, and sapphire, respectively.35 The absorption coefficient 

of the p-type GaN layer, a strongly DUV light-absorbing layer, was set to be 

170,000 cm-1.36 Those of MQW layer and n-type AlGaN layer were chosen to 

be 1,000 and 10 cm-1.37 Fig. 4.29 shows the light propagation at 2 fs intervals 

in DUV LEDs without [(a)-(c)-(e)-(g)] and with the embedded air-void 

nanostructure [(b)-(d)-(f)-(h)]. For the reference DUV LED, the light emitted 

from the MQW active region radiates in all directions. As a result, most of 

the light experiences the total internal reflection at the interfaces between 

AlN/sapphire and sapphire/air, resulting in the huge DUV light loss due to 
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the absorption in the strongly DUV light-absorbing p-type GaN and MQWs. 

On the other hand, the light emitted from the MQWs in the DUV LEDs with 

the embedded air-void nanostructure propagates vertically by passing through 

the embedded structure. Thus, more DUV photons can be extracted via 

shorter photon path length before being absorbed by the p-type GaN and 

MQWs avoiding the total internal reflection. The result indicates that the 

embedded air-void nanostructure in the DUV LEDs contributed to the 

enhancement of LEE remarkably.  
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Figure 4.28. FDTD simulation models of (a) reference DUV LED and (b) 

DUV LED on the NPS. 
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Figure 4.29. FDTD simulation of light propagation at 2 fs intervals in 

reference DUV LED [(a)–(c)–(e)–(g)] and DUV LED on NPS [(b)–(d)–(f)–

(h)]. 
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4.4 Summary 

 

We demonstrated AlGaN-based DUV LEDs with periodic air-voids-

incorporated nanoscale patterns enabled by nanosphere lithography and ELO. 

The nanoscale ELO on the NPS improved the crystal quality of overgrown 

epitaxial layers at relatively low growth temperature of 1050 oC and at small 

coalescence thickness. The air voids formed in the AlN epitaxial layer 

effectively relaxed the tensile stress during growth, so that crack-free DUV 

LED epitaxial layers were obtained on 4-in. sapphire substrate. In addition, 

the periodically embedded air-void nanostructure enhanced the LEE of DUV 

LEDs by breaking the total internal reflection that is particularly severe for 

the predominant anisotropic emission in AlGaN-based DUV LEDs. The LOP 

of the DUV LEDs on NPS was enhanced by 67% at the injection current of 

20 mA compared to that of the reference DUV LEDs. We believe that the 

significant enhancement of LOP was attributed to the simultaneous 

improvements in the crystal quality of AlGaN epitaxial layer, i.e., IQE and 

LEE.  
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Chapter 5. Epitaxial lateral overgrowth of GaN on 

nano-cavity patterned sapphire substrate (NCPSS) 

  

5.1 Introduction: growth of GaN with embedded voids 

 

Large mismatches in lattice constant and thermal expansion coefficient 

between GaN and substrate result in high TDD and severe film stress 

resulting in significant wafer bow, thus decrease IQE and hinder mass 

production of LEDs using large size wafers. In addition, photons generated in 

the active region of GaN-based LEDs experience total internal reflections due 

to the large difference in refractive indices between GaN (n≈2.5) and air 

(n=1), resulting in low LEE.1,2  

Many techniques have been investigated to solve the problems in GaN-

based LEDs. ELO has been reported to significantly reduce the TDD of 

heteroepitaxial GaN layers.3-5 PSS have been developed and widely used to 

realize highly efficient GaN-based LEDs.6-8 In addition, it has been reported 

that the growth of high quality GaN layers was achieved by embedding 

microscale and nanoscale particles instead of patterns fabricated by 

photolithography.9-12 However, the efficiencies including IQE and LEE and 

cost reduction still need to be improved further. 

The embedment of void in the GaN layer has been investigated as a 

promising technique to obtain high quality GaN epitaxial layers that are less 

defective, less strained, and more effective to enhance the LEE.13-15 Recently, 

the incorporation of well-defined void patterns in the GaN layer has been 

reported by using cavity-engineered substrates, which not only enhance the 
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LEE further due to the large refractive-index contrast between GaN and the 

embedded void but also relax the residual stress of the GaN layer.16,17 In 

comparison to the micro-patterned substrates, nano-patterned substrates have 

been reported to enhance the LEE due to the increased density of patterns in 

the same area.18-20 However, there is a debate that the nano-patterned 

substrates is not beneficial in reducing the TDD because the high density 

patterns and potential coalescence fronts would generate lots of dislocations 

in the GaN layer during the coalescence over the patterns.21 Kim et al. have 

obtained less strained and high quality GaN layers by using cost-effective 

silica hollow nanosphere coated sapphire substrates, however, there was a 

limit in obtaining high-coverage and periodic patterns.22 In this chapter, we 

propose the growth of GaN using a nano-cavity patterned sapphire substrate 

(NCPSS), which has high-coverage and periodic nano-cavity patterns on a 

sapphire substrate, employing polystyrene (PS) sphere patterning. The PS 

patterning by spin coating, a simple and cost-effective process, enabled us to 

fabricate periodic nano-cavity patterns which are composed of nanoscale 

voids surrounded by thin alumina shell. This approach is expected to improve 

the efficiency and reduce the production cost of GaN-based LEDs. The 

motivation for the introduction of the NCPSS to GaN-based LEDs is 

summarized in Fig. 5.1. 
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Figure 5.1. NCPSS for highly efficient LEDs. 
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5.2 Experimental procedure 

 

A schematic fabrication process of NCPSS is shown in Fig. 5.2. The first step 

to fabricate the nanoscale cavity patterns is coating of PS spheres with a 

diameter of ~1020 nm on a 2-in. c-plane sapphire substrate. Spin coating, a 

simple and cost-effective process for the fabrication of large-area and well-

ordered nanoscale patterns,23,24 was employed to fabricate a monolayer of 

self-assembled PS spheres. After PS patterning, O2 RIE was carried out with 

30 sccm O2 flow rate at 8.0 Pa and 80 W RF power. The O2 RIE was 

performed in terms of two reasons; one is to create a growth window of GaN 

between the patterns and the other is to remove the surface contaminants on 

the sapphire substrate which might be present after the PS coating process. 

Then, a 63 nm-thick amorphous alumina layer was deposited on the PS-

patterned sapphire substrate by ALD at the temperature of 110 oC. The 

precursors of aluminum and oxygen were TMAl and de-ionized water, 

respectively. The alumina-deposited substrate was put into the furnace and 

annealed at 1100 oC for two hours in air ambient to burn the PS core and 

crystallize the ALD-deposited amorphous alumina layer to α-phase alumina, 

i.e., sapphire.  

The fabricated NCPSS was loaded in a 6×2 in. Thomas Swan close-

coupled showerhead MOCVD reactor for the growth of GaN. TMGa and 

NH3 were used as precursors of Ga and N, respectively. The substrate was 

thermally cleaned in H2 ambient at 1070 oC for 5 min. Then, the temperature 

was lowered to 560 oC and a 30 nm-thick GaN buffer layer was grown at 

13.3 kPa. Subsequently, a GaN epitaxial layer was grown at 1040 oC and 

33.3 kPa. For comparison, a planar c-plane sapphire substrate was loaded in 
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the same batch of the MOCVD reactor. The structure analysis on nano-cavity 

patterned sapphire substrates and GaN layers was carried out by field-

emission SEM. CL and XRD were used to evaluate the crystal quality of 

GaN layers. TEM was carried out to investigate the behavior of threading 

dislocations in the GaN layers. The TEM specimens were prepared by 

focused ion beam. The residual stress in the GaN layer was evaluated by 

using micro-Raman spectroscopy with a 633 nm line of He-Ne laser. The 

diffuse reflectance of GaN layers was measured by spectrophotometer 

(Varian Cary5000) with an integrating sphere to investigate the effect of 

nano-cavity patterns on light extraction. 
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Figure 5.2. Schematic fabrication process of NCPSS.  
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5.3 Results and discussion 

 

5.3.1 Fabrication of NCPSS 

 

Fig. 5.3 is a plan-view SEM image showing the PS sphere array on the 

sapphire substrate coated by using the spin coating method. A monolayer of 

hexagonally close-packed PS spheres was obtained. Fig. 5.4 shows plane-

view and cross-section SEM images of PS patterns as a function of O2 RIE 

time. As the etching time increases, both the diameter and height of the PS 

pattern gradually decreases. The size of PS patterns gradually decreased to 

550 nm in diameter as the etch time increased up to 4 min. Further etching 

caused collapse and deformation of PS patterns. Since the position of PS 

pattern after O2 RIE remains unchanged, the spacing between the PS patterns, 

which will be the growth window for GaN, increases with the decrease of the 

PS pattern size. Consequently, a non-close-packed hexagonal PS array was 

developed by O2 RIE from the close-packed PS array as shown in Fig. 5.4. 

Cross-section SEM images reveal the shape of PS patterns after the etching. 

During the O2 RIE process, the reactive ions reach the PS-patterned substrate 

in a direction perpendicular to the surface of substrate so that the top of the 

PS patterns was effectively etched while the bottom was not. The top surface 

of the PS pattern was roughened with increased etching time due to the 

formation of cross-linked regions on the PS pattern by plasma treatment.25 

Fig. 5.5 reveals that the O2 RIE process enables the precise adjustment of the 

PS pattern size and the spacing by manipulating the etching time though the 

excessive etching induces the surface roughening of the PS patterns.  
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Figure 5.3. PS spheres coated on the sapphire substrate. 
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Figure 5.4. Size control of PS by O2 RIE. 
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Figure 5.5. O2 RIE results as a function of etching time. 
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Fig. 5.6(a) and 5.6(b) show plan-view and cross-section SEM images of 

the fabricated NCPSS, respectively. As shown in Fig. 5.6(a), periodically 

distributed nanoscale patterns were formed on the sapphire substrate. The 

non-close-packed hexagonal array was developed by self-assembly of close-

packed PS spheres followed by O2 RIE, deposition of amorphous alumina, 

and thermal annealing. The resultant diameter and coverage of patterns were 

measured to be ~ 930 nm and 75%, respectively. Fig. 5.6(b) reveals that each 

nanoscale pattern consists of a cavity and an alumina shell surrounding it. 

The shape of cavity pattern was ellipsoidal, which was determined by the 

shape of the PS pattern after O2 RIE. After the O2 RIE with the etching time 

of 2 min, amorphous alumina layer with the thickness of 63 nm was 

deposited conformally along the shape of the PS pattern with the help of high 

step coverage of atomic layer deposition. During the thermal annealing, the 

PS inside the alumina shell was removed by oxidation and a cavity was 

formed as shown in Fig. 5.6(b).  

The O2 RIE time and the thickness of alumina determine the pattern size. 

By changing the O2 RIE time and the deposition thickness of alumina, the 

fabrication window was investigated as shown in Fig. 5.7. The fabrication of 

stable cavity patterns depends on the PS pattern size and the thickness of 

alumina shell. If the alumina thin film is too thin compared to the PS pattern 

size, the cavity structures collapse or disappear during the thermal annealing 

process. The pattern size is adjustable by varying the deposition thickness of 

alumina shell even if the same PS pattern was used. 

The crystal structure of the alumina shell after thermal annealing was 

investigated by TEM measurement. Fig. 5.8(a) and 5.8(b) show a cross-

section TEM image of the nano-cavity pattern on the sapphire substrate and 
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selected area diffraction patterns (SADPs) of positions including an original 

sapphire substrate and alumina that is deposited by ALD and annealed by 

thermal treatment. It was confirmed that the SADPs of all the positions, ‘A’, 

‘B’, and ‘C’ positions in Fig. 5.8, are the same as that of single crystalline α-

phase alumina, exactly same with that of sapphire substrate indicated by the 

position ‘S’, which reveals that as-deposited amorphous alumina layer was 

transformed to α-phase during the thermal annealing process through solid-

phase epitaxy as shown in the schematic diagram in Fig. 5.8(c).26,27 Therefore, 

it was confirmed that the NCPSS is a single crystalline c-plane sapphire 

substrate which enables the epitaxial growth of nitrides thereon. 
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Figure 5.6. (a) Plan-view and (b) cross-section SEM images of the fabricated 

NCPSS showing the periodic array of nano-cavity patterns. 
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Figure 5.7. NCPSS fabricated by varying O2 RIE time and ALD cycle. 
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Figure 5.8. (a) Cross-section TEM image of the nano-cavity pattern and (b) 

the SADP from each position corresponding to the alphabet in (a). Schematic 

diagram showing the transformation of the alumina during thermal annealing. 
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5.3.2 Epitaxial lateral overgrowth of GaN on NCPSS 

 

GaN was grown on the NCPSS by using conventional 2-step growth 

composed of (i) the growth of a buffer layer at low temperature and (ii) the 

growth of an epitaxial layer at high temperature. The growth temperature and 

the pressure for the high-temperature (HT) GaN were fixed to 1040 oC and 

33.3 kPa.  

A morphological evolution of GaN on the NCPSS during the MOCVD 

growth was investigated by a series of the growth interruptions as shown in 

Fig. 5.9. The growth time of high-temperature GaN was varied from 5 min to 

40 min. At first, nanoscale GaN islands were grown both on the spacing 

between the patterns and on top of the patterns as shown in Fig. 5.9(a). It is 

worth noting that the top surface of the pattern as well as the planar surface 

between the patterns are c-plane sapphire surfaces, which enable the epitaxial 

growth of GaN thereon. The inset of Fig. 5.9(a) is a cross-section SEM image, 

which shows that both the GaN islands grown on the spacing between the 

patterns and top of the patterns have top (0001) planes and side facets of 

{11̅01} planes which have a tilt angle of 62o with respect to the (0001) 

planes. As the growth progressed, GaN islands grown on the spacing between 

the patterns coalesced together with neighboring islands, forming relatively 

large islands, while the growth of hexagonal GaN islands on top of the 

patterns was limited, as shown in Fig. 5.9(b). We believe that the relatively 

large GaN islands were grown preferentially at wide spaces between the 

patterns of the as-fabricated NCPSS compared to neighboring growth 

windows due to higher density of GaN seeds and higher incoming Ga flux. It 

is noticeable that the relatively large GaN islands coalesced and grew 
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laterally over several nano-cavity patterns while the growth of GaN on the 

other regions was suppressed, as shown in Fig. 5.9(c) and 5.9(d). As a result, 

ELO of GaN over the patterns and small GaN islands was proceeded with 

further growth. This interesting phenomena causes a delayed coalescence of 

GaN, which is different from the growth of GaN on microscale patterned 

substrates where GaN coalesced on each pattern as shown in Fig. 5.10.16 

The delayed coalescence of GaN was achieved by (i) the selective 

formation of relatively large GaN islands and (ii) the ELO of GaN over the 

neighboring GaN. The growth mechanism was investigated in detail step by 

step. 

Some observations lead to a clue to the preferenctial growth site of the 

relatively large GaN islands at the early growth stage. Fig. 5.11(a) and 5.11(b) 

are bird’s-eye-view SEM images of GaN grown on the NCPSS with the 

growth time of 5 min. There are pattern defects such as vacancies and grain 

boundaries as shown in Fig. 5.11(a) and 5.11(b), respectively. These defect 

structures provide relatively larger spaces compared to regular structures. We 

believe that the relatively large GaN islands were developed preferentially at 

wide spaces between the patterns of the as-fabricated NCPSS compared to 

neighboring growth windows. Fig. 5.12 is a schematic diagram of nucleation 

and growth of GaN at the initial growth stage. The larger the spacing, the 

higher the density of the GaN seed immediately after the recrystallization 

process, the higher incoming Ga flux is supplied, and eventually the 

relatively large GaN islands are developed. 

It is important to understand why the relatively large GaN islands are 

grown over the neighboring small GaN islands. The growth mechanism can 

be explained by the two kinetic pathways of incoming Ga flux to the large 
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GaN islands during the growth: (i) vapor pahse diffusion process and (ii) 

surface diffusion of Ga adatoms. During the vapor phase diffusion process, 

the atomic concentration gradient nearby the relatively large GaN islands is 

large so that more vapor precursors are supplied to the large GaN islands as 

shown in Fig. 5.13(a). The relatively large GaN islands provide a large 

surface area, where Ga adatoms can adsorb and contribute to the growth of 

{11̅01} side facets as well as (0001) plane, while other small GaN islands 

confined by neighboring patterns do not. As a result, a large amount of 

excess Ga adatoms which do not participate in the growth migrate to the 

surrounding large GaN islands to participate in the growth thereon as shown 

in Fig. 5.13(b). The relatively large GaN islands become bigger and bigger 

while the neighboring small GaN islands experience a limited growth as 

shown in Fig. 5.13(c). The growth steps are summarized in Fig. 5.14. 

A fully coalesced and continuous GaN layer was obtained on the NCPSS 

after the 4 hr growth, as shown in Fig. 5.15(a). The thickness of the GaN 

layer was 5.9 m and nano-cavity patterns were embedded between the GaN 

layer and the sapphire substrate, as shown in Fig. 5.15(b). The embedded 

nano-cavity patterns are expected to relax the film stress and enhance light 

scattering by introducing a high refractive-index contrast. 
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Figure 5.9. Plan-view SEM images showing the growth evolution of GaN on 

the NCPSS. The inset shows a cross-section SEM image. 
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Figure 5.10. Growth of GaN on microscale CES.16 
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Figure 5.11. GaN islands observed at defect sites of patterns such as (a) 

vacancy and (b) grain boundary. 
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Figure 5.12. Schematic diagram of nucleation and growth of GaN at the 

initial growth stage including (a) income of Ga atoms and (b) GaN growth 

after surface reaction. 
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Figure 5.13. Schematic diagram explaining the inhomogeneous growth of 

GaN on the NCPSS governed by (a) vapor phase diffusion and (b) surface 

diffusion of Ga atoms, resulting in (c) the grain growth of GaN islands. 
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Figure 5.14. Growth steps of GaN on the NCPSS. 
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Figure 5.15. (a) Plan-view and (b) cross-section SEM images of GaN grown 

on the NCPSS with the growth time of 4 hr. 
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5.3.3 Structural and optical properties of GaN on NCPSS 

 

The surface morphologies of GaN layers were investigated by AFM and are 

shown in Fig. 5.16. Both GaN layers grown on the NCPSS and the planar 

substrate showed smooth surfaces with the root-mean-square (RMS) 

roughness of 0.133 nm and 0.152 nm, repectively. 

The crystal qualities of GaN layers were characterized by CL and XRD 

measurements. Fig. 5.17 shows CL images of both GaN layers grown on the 

NCPSS and on the planar substrate. TDDs calculated by dark spot densities 

of CL images were 6.9×107 cm-2 and 2.4×108 cm-2 for GaN on the NCPSS 

and GaN on the planar substrate, respectively. The significant decrease of the 

TDD was attributed to the delayed coalescence of GaN enabled by the 

selective growth of relatively large GaN islands followed by the ELO of GaN 

over the patterns.  

There is a correlation between the distribution of the defects on the CL 

image and the growth aspect. Fig. 5.18(a) shows a SEM image of GaN grown 

on the NCPSS with the growth time of 40 min and Fig. 5.18(b) shows the CL 

image for the continuous GaN layer with the growth time of 4 hr. The 

magnification of the two images are the same. It is worth noting that the SEM 

and CL images were not obtained from the same location. As mentioned in 

Chap. 5.3.2, GaN islands are surrounded by (0001) plane and {11̅01} side 

facets. As the growth progressed, coalescence defects are generated along the 

<112̅0> direction perpendicular to <11̅00> direction when the GaN islands 

coalesce, as shown in Fig. 5.18(c). The coalescence of GaN inevitably causes 

the generation of coalescence defects, however, it should be noted that the 
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growth of GaN on the NCPSS siginificantly reduced the dislocation density 

by delaying the coalescence of GaN islands through the enhanced ELO.  

FWHM values of X-ray rocking curves were also measured to study the 

crystal qualities of GaN layers. The FWHM values for (002) planes of GaN 

layer on the NCPSS and GaN layer on the planar substrate were 241 arcsec 

and 220 arcsec, respectively, which are comparable. Those for (102) planes 

of GaN layer on the NCPSS were 300 arcsec and 366 arcsec, respectively. 

The reduction of FWHM values for (102) planes also indicates that the 

crystal quality of GaN layer was improved by the ELO of GaN on the 

NCPSS. 

To analyze the defects of GaN layer grown on the NCPSS, TEM 

measurement was carried out. Fig. 5.19(a) and 5.19(b) are cross-section 

bright-field TEM images taken at the interfacial area between GaN and 

sapphire substrate for GaN on the NCPSS along the zone axis of [11̅00]GaN. 

From the TEM analysis, two distinctive defect reduction mechanisms were 

observed. One is the formation of stacking faults near the nano-cavity 

patterns and blocking the propagation of threading dislocations by them, as 

indicated by a solid arrow in Fig. 5.19. It has been reported that stacking 

faults are generated at coalescence fronts when neighboring GaN islands 

grown on nano-patterned substrates coalesce together.28,29 The stacking faults 

suppress the propagation of threading dislocations. The other is the bending 

of threading dislocations. It was observed that some dislocations generated at 

the surface of the sapphire substrate and at the top of the patterns bent normal 

to the c-axis of GaN, as indicated by dashed arrows in Fig. 5.19. The GaN 

islands grown on the surface of the sapphire and on top of the patterns have 

{11̅01} side facets. When the threading dislocations meet the side facets, they 
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bend in a direction perpendicular to the c-axis. This is because threading 

dislocations tend to minimize their free energy by bending to side facets.30 As 

a result, we believe that both the termination of threading dislocations by 

stacking faults and the bending of threading dislocations contribute to the 

reduction of TDD. 
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Figure 5.16. AFM images (2×2 μm2) showing surface morphologies of GaN 

layers grown (a) on the planar substrate and (b) on the NCPSS, respectively. 
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Figure 5.17. CL images of (a) GaN on the NCPSS and (b) GaN on the planar 

substrate. 
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Figure 5.18. (a) Plan-view SEM image of GaN grown on the NCPSS with the 

growth time of 40 min, (b) CL images of GaN on the NCPSS after 4 hr 

growth (continuous film), and (c) crystallographic orientation of hexagonal 

GaN. Dashed lines indicates possible coalescence fronts along <112̅0>GaN. 
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Figure 5.19. (a) and (b) Cross-section TEM images of GaN on the NCPSS 

taken at the interfacial area between GaN and sapphire substrate showing the 

termination of threading dislocation by stacking faults (solid arrow) and the 

bending of threading dislocation (dashed arrows). 
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Raman spectroscopy was used to investigate the residual stresses of GaN 

layer grown on NCPSS and the reference GaN grown on the planar substrate. 

Fig. 5.20 shows E2 (high) mode peaks in Raman spectra of the two GaN 

layers grown on the NCPSS and on the planar substrate, and free-standing 

bulk GaN with a thickness of 200 μm grown by hydride vapor phase epitaxy. 

The peak positions were 570.2, 569.6, and 567.4 cm-1, respectively. The blue 

peak shift of GaN layers from that of bulk GaN indicates that GaN layers are 

under compressive stress. The shift of E2 (high) peak from the strain-free 

bulk GaN has a linear relationship with the residual stress of GaN layer as 

follows:31 

4.3
xx cm GPa





  , 

 

where σ𝑥𝑥 and ∆ω are biaxial residual stress and Raman shift, respectively. 

Based on the equation, the residual stresses of GaN on NCPSS and reference 

GaN were calculated to be 0.51 and 0.65 GPa, respectively. This result shows 

that the embedded nano-cavity in the GaN layer relaxed the residual stress by 

21%. The nano-cavity pattern composed of void and surrounding alumina 

shell deforms elastically and relaxes the compressive stress of GaN layer. 

PL measurement was carried out to characterize the optical properties of 

GaN layers. Fig. 5.21 shows the PL spectra of GaN layers on the NCPSS and 

GaN on the planar substrate measured at room temperature. The PL intensity 

of GaN on the NCPSS is higher than that of GaN on the planar substrate, 

which indicates the improved crystal quality of GaN layers on the NCPSS. In 

addition, the position of the near-band-edge (NBE) peak from GaN on the 

NCPSS is red-shifted compared to that from GaN on the planar substrate, 
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which reveals that the compressive stress is partly relaxed by the introduction 

of nano-cavities in the GaN layer. This result showing the relaxation of the 

residual stress in the GaN layer is consistent with the Raman result. 

To investigate the effect of nano-cavities on light extraction, diffuse 

reflectance spectra of both GaN on the NCPSS and GaN on the planar 

substrate were measured by collecting the reflected light using an integrating 

sphere, as shown in Fig. 5.22. There is an abrupt decrease of diffuse 

reflectance at a wavelength of 365 nm for both GaN layers due to the 

absorption of light by GaN. A strong Fabry-Perot oscillation was observed 

for GaN on the planar substrate which has optically flat interfaces at air/GaN 

and GaN/sapphire substrate, which is attributed to a coherent interference of 

light from the specular reflection. On the contrary, for GaN on the NCPSS, 

the Fabry-Perot oscillation was weakened due to the deterioration of 

coherence of light by the nano-cavities at the GaN/sapphire substrate. The 

diffuse reflectance of GaN on the NCPSS was enhanced by 54%–62% 

compared to that of GaN on the planar substrate for the wavelength ranging 

from 400 nm to 800 nm. The significant enhancement is attributed to the 

increased probability of light extraction through effective light scattering by 

nano-cavities as a low refractive index material (nvoid = 1) introduced at the 

interface between GaN and the sapphire substrate. From the diffuse 

reflectance result, we believe that the nano-cavities improve the LEE of 

visible LEDs over a full visible range of blue, green, and red. The effect of 

nano-cavities on the light extraction can be further improved by optimizing 

the size and structure of the nano-cavity patterns. 
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Figure 5.20. E2 (high) Raman spectra of strain-free bulk GaN, GaN on the 

NCPSS, and GaN on the planar substrate. 
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Figure 5.21. PL spectra of GaN on the NCPSS and GaN on the planar 

substrate measured at room temperature. 
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Figure 5.22. Diffuse reflectance spectra of GaN on the NCPSS and GaN on 

the planar substrate. 
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5.4 Summary 

 

We report the growth of GaN using the NCPSS which has hexagonally non-

close-packed nano-cavity patterns on the sapphire substrate fabricated by the 

simple and cost-effective PS patterning process. The ELO of GaN on the 

NCPSS was achieved by the formation of relatively large GaN islands 

followed by enhanced lateral overgrowth of GaN over several nano-cavity 

patterns. The TDD of GaN calculated by the CL measurement was 

significantly reduced from 2.4×108 cm-2 to 6.9×107 cm-2 by using the 

NCPSS. The nano-cavities embedded in the GaN layer relaxed the residual 

compressive stress by 21%. Furthermore, the diffuse reflectance of GaN on 

the NCPSS was enhanced by 54%–62% compared to that of GaN on the 

planar substrate. The enhancement is attributed to the increased refractive-

index-contrast by introducing the air at the interface between GaN and the 

sapphire substrate and probability of light extraction through effective light 

scattering by nano-cavities. 
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Chapter 6. Conclusions 

 

The nano-patterned substrates have been proposed to solve the current 

problems such as high-density dislocations, low LEE, and film stress and to 

obtain the high quality III-nitride epitaxial layers for important epitaxial 

structures in the III-nitride LED applications such as GaN on Si substrate, 

AlN on sapphire substrate, and GaN on sapphire substrate. 

Firstly, for the case of GaN on Si substrate, NHE of GaN on the 

AlN/Si(111) nanorod structure was investigated by using MOCVD. Silica 

nanosphere lithography was employed to fabricate the periodic hexagonal 

nanorod array with a narrow gap of 30 nm between the nanorods. Fully 

coalesced GaN film was obtained over the nanorod structure and its TDD 

was found to decrease down to half, compared to that of GaN grown on the 

planar AlN/Si(111) substrate. TEM measurement revealed that TD bending 

and TD termination by stacking faults occurred near the interface between 

GaN and AlN/Si(111) nanorods, contributing to the TDD reduction. 

Moreover, the 70% relaxation of the tensile stress of the NHE GaN was 

confirmed by Raman and PL measurements compared to GaN on the planar 

AlN/Si(111) substrate. These results suggested that NHE on AlN/Si(111) 

nanorods fabricated by nanosphere lithography is a promising technique to 

obtain continuous GaN films with the improved crystalline quality and the 

reduced residual stress. 

Secondly, nano-patterned AlN/sapphire substrate was developed to 

improve the performance of DUV LEDs, for the case of AlN on sapphire 
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substrate. We demonstrated AlGaN-based DUV LEDs with periodic air-

voids-incorporated nanoscale patterns enabled by nanosphere lithography and 

ELO. The nanoscale ELO on the NPS improved the crystal quality of 

overgrown epitaxial layers at relatively low growth temperature of 1050 oC 

and at small coalescence thickness. The air voids formed in the AlN epitaxial 

layer effectively relaxed the tensile stress during growth, so that crack-free 

DUV LED epitaxial layers were obtained on 4-in. sapphire substrate. In 

addition, the periodically embedded air-void nanostructure enhanced the LEE 

of DUV LEDs by breaking the total internal reflection that is particularly 

severe for the predominant anisotropic emission in AlGaN-based DUV LEDs. 

The LOP of the DUV LEDs on NPS was enhanced by 67% at the injection 

current of 20 mA compared to that of the reference DUV LEDs. We attribute 

such a remarkable enhancement to the formation of embedded periodic air 

voids which cause simultaneous improvements in the crystal quality of 

epitaxial layers by ELO and LEE enabled by breaking the predominant in-

plane guided propagation of DUV photons. 

Lastly, the ELO of GaN using the NCPSS, which has hexagonally non-

close-packed nano-cavity patterns on the sapphire substrates, was suggested 

to grow high quality GaN on sapphire substrate. The fabrication of the 

NCPSS was enabled by PS coating followed by deposition of alumina, and 

thermal annealing. The ELO of GaN using the fabricated NCPSS was 

investigated. The coalescence of GaN on the NCPSS was achieved by the 

formation of relatively large GaN islands and ELO of the GaN islands over 

several nano-cavity patterns. The TDD calculated by CL measurement was 
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significantly reduced from 2.4×108 cm-2 to 6.9×107 cm-2 by using the 

NCPSS. Dislocation behaviors that contribute to the reduction of TDD of the 

GaN layer were observed by TEM. Raman spectroscopy revealed that the 

compressive stress in the GaN layer was reduced by 21% due to the 

embedded nano-cavities. In addition, the diffuse reflectance of GaN on the 

NCPSS was enhanced by 54%–62%, which is attributed to the increased 

probability of light extraction through effective light scattering by nano-

cavities. 
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국 문 초 록 

 

3 족 질화물 반도체는 지난 수십 년 동안 발광다이오드 및 레이져 

다이오드와 같은 광전자 소자로의 응용을 위한 가장 유망한 재료 

중 하나로 여겨져 왔다. 고효율의 신뢰성 있는 광전자 소자를 

구현하기 위해서는 고품질의 3 족 질화물 에피층 성장이 

필수적이다. 3 족 질화물의 에피성장에 있어 가장 큰 문제점은 

상업적으로 이용 가능한 동종 기판이 없어 여전히 동종 기판 상의 

에피성장이 제한된다는 점이다. 이에 따라, 3 족 질화물 에피층은 

사파이어 기판 및 실리콘 기판과 같은 이종 기판 상에 성장된다. 

그러나, 3 족 질화물 에피층과 기판 사이의 큰 격자 상수 차이 및 

열팽창계수 차이로 인해 고밀도의 전위결함이 생성되고, 광추출 

효율이 낮으며, 그리고 잔류 응력이 발생하는 문제점이 있으며, 

이는 고효율의 3 족 질화물 기반 광전자 소자의 구현을 방해한다. 

그러므로, 3 족 질화물 발광다이오드 응용을 위해서는 결함이 적고 

응력이 완화된, 그리고 광추출 효율을 향상시키는데 효과적인 

고품질의 에피층을 얻는 것이 매우 중요하다. 본 연구에서는 

나노패턴된 기판을 제안하여, 3 족 질화물 발광다이오드 응용에 

있어 중요한 에피텍셜 구조들인 실리콘 기판 상의 GaN, 사파이어 

기판 상의 AlN, 그리고 사파이어 기판 상의 GaN 구조에 대하여 

고품질의 3 족 질화물을 얻고자 하였다. 나노패턴된 기판 상 3 족 

질화물 에피성장은 유기금속화학기상증착법을 이용하여 연구하였다. 
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우선, 실리콘 기판 상의 GaN 구조에 대하여, AlN/Si(111) 

나노로드 구조 상의 GaN 의 나노이종에피성장에 대한 연구를 

진행하였다. 실리카 나노구체 리소그래피를 도입하여 나노로드 

사이에 30 nm 의 좁은 간격을 갖는 규칙적인 배열을 갖는 나노로드 

구조를 제작하였다. GaN 성장으로 완전히 합쳐진 연속적인 GaN 

층을 나노로드 구조 상에 형성하였으며, 관통전위밀도는 평면 

구조의 AlN/Si(111) 기판 상에 성장한 GaN 에 비해 절반으로 

감소하는 것을 확인하였다. 투과전자현미경 분석으로 GaN 과 

AlN/Si(111) 나노로드 사이의 계면 부근에서 관통전위밀도의 감소에 

기여하는 관통전위의 휨 현상 및 적층 결함에 의한 관통전위의 

종단 현상을 관찰하였다. 또한, 에피층 내부에 형성된 공극으로 

인하여 평면 구조의 AlN/Si(111) 기판 상의 GaN 과 비교하여 

나노이종에피성장으로 얻은 GaN 의 인장 응력이 70% 감소하였다. 

나노구체 리소그래피 방법을 이용하여 제작한 AlN/Si(111) 기판 

상의 나노이종에피성장으로 결정성이 향상되고 잔류 응력이 크게 

완화된 연속적인 GaN 층을 얻는데 성공하였다. 

다음으로, 사파이어 기판 상의 AlN 구조의 경우, 심자외선 

발광다이오드의 성능을 향상시키기 위하여 나노패턴된 AlN/sapphire 

기판을 제안하였다. 나노구체 리소그래피와 측면에피성장법을 

활용하여 주기적인 배열을 갖는 공극이 삽입된 나노크기의 패턴을 

적용한 AlGaN 기반 심자외선 발광다이오드를 구현하였다. 
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나노패턴된 기판 상의 나노 측면에피성장법으로 1050 oC 의 비교적 

낮은 성장 온도와 얇은 두께의 유착 두께로도 AlN 의 측면성장을 

가능케 하였으며 에피층의 결정성을 향상시켰다. AlN 에피층 

내부에 형성된 공극은 성장 중에 AlN 의 인장 응력을 효과적으로 

완화시켰으며, 이를 통해 4 인치 사파이어 기판 상에서 균열이 

없는 심자외선 발광다이오드 에피층을 얻을 수 있었다. 또한, 

주기적으로 삽입된 나노공극 구조는 빛의 이방성 방출이 우세한 

AlGaN 기반 심자외선 발광다이오드의 경우에 있어 특히 심각한 

내부전반사 현상을 억제함으로써 광추출 효율을 향상시키는데 

효과적임을 확인하였다. 나노패턴된 기판 상에 심자외선 

발광다이오드를 제작하였으며, 평면 기판 상의 발광다이오드에 

비해 광출력이 67% 증가하었다. 이러한 광출력의 증가는 

측면에피성장에 의한 에피층의 결정성 향상과 에피층에 삽입된 

공극 구조에 의한 광추출 효율 향상에서 비롯된다. 

마지막으로, 우리는 사파이어 기판 상에 고품질의 GaN 를 

성장하기 위하여, 사파이어 기판 상에 육각형으로 배열된 

나노크기의 공극 패턴을 가진 기판을 제안하였다. 폴리스티렌 구체 

코팅과 후속 산화알루미늄 증착 및 열처리에 의해 나노공극이 

패턴된 사파이어 기판을 제작할 수 있었다. 나노공극이 패턴된 

사파이어 기판 상에서의 GaN 성장연구를 통하여, 상대적으로 큰 

GaN 들이 먼저 발달하고, 이러한 GaN 들의 측면에피성장을 통하여 

연속적인 GaN 에피층이 형성됨을 확인하였다. 이를 통해 



175 

 

관통전위밀도가 2.4 × 108 cm-2 에서 6.9 × 107 cm-2 로 크게 

감소하였으며, 투과전자현미경 분석으로 관통전위밀도 감소에 

기여하는 전위 거동을 관찰하였다. 또한, GaN 에피층과 기판 사이 

계면에 삽입된 공극은 잔류 압축 응력을 완화하고, 동시에 

효과적인 광 산란으로 광추출 효율을 증가시키는데 효과적이다. 
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