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Despite the advantages of organic light-emitting diode (OLED) displays over liquid 

crystal displays, OLED displays suffer from reliability concerns related to luminance 

degradation and color shift. In particular, existing testing schemes are unable to reliably 

estimate the lifetime of large OLED displays (i.e., displays of 55 inches or larger). The 

limited number of test samples and the immature technology result in great hurdles for 

timely product development. 

This study proposes a statistical approach to develop a lifetime model for OLED panels. 

The proposed approach incorporates manufacturing and operational uncertainties, and 

accurately estimates the lifetime of the OLED panels under normal usage conditions. The 

proposed statistical analysis approach consists of: (1) design of accelerated degradation 

tests (ADTs) for OLED panels, (2) establishment of a systematic scheme to build bivariate 

lifetime models for OLED panels, (3) development of two bivariate lifetime models for 
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OLED panels, and (4) statistical model validation for the heat dissipation analysis model 

for OLED TV design. This four-step statistical approach will help enable accurate lifetime 

prediction for large OLED panels subjected to various uncertainties. Thereby, this 

approach will foster efficient and effective OLED TV design to meet desired lifespan 

requirements. 

Furthermore, two bivariate acceleration models are proposed in this research to estimate 

the lifetime of OLED panels under real-world usage conditions, subject to manufacturing 

and operational uncertainties. These bivariate acceleration models take into account two 

main factors—temperature and initial luminance intensity. The first bivariate acceleration 

model estimates the luminance degradation of the OLED panel; the second estimates the 

panel’s color shift. The lifespan predicted by the proposed lifetime model shows a good 

agreement with experimental results.  

Ensuring the color shift lifetime is a great hurdle for OLED product development. 

However, at present, there is no effective way to estimate the color shift lifetime at the 

early stages of product development while the product design is still changing. The 

research described here proposes a novel scheme for color shift lifetime analysis. The 

proposed method consists of: (1) a finite element model for OLED thermal analysis that 

incorporates the uncertainty of the measured surface temperature, (2) statistical model 

validation, including model calibration, to verify agreement between the predicted results 

and a set of experimental data (achieved through adjustment of a set of physical input 

variables and hypothesis tests for validity checking to measure the degree of mismatch 

between the predicted and observed results), and (3) a regression model that can predict 

the color shift lifetime using the surface temperature at the early stages of product 
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development. It is expected that the regression model can substantially shorten the product 

development time by predicting the color shift lifetime through OLED thermal analysis. 
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Nomenclature 

ALD = accelerated testing 

AF = acceleration factor 

RUL = remaining useful life 

LSR = least square regression 

TFT = thin film transistor 

TTF = time to failure 

ATSC = Advanced Television System Committee 

IEC = International Electrotechnical Commission 

CIE = the Commission Internationale de l’Eclairage 

MTTF = the mean time to failure 

BET = Brunauer, Emmett and Teller 

y = experimental data 

u = the cumulative density corresponding to all experimental data 

F(y) = predictive cumulative density function 

Um = area metric determined by calculating the area between the CDF of the uniform 

distribution and the empirical CDF of u value 

α = a significant level 

β = the shape parameter of the Weibull distribution 

𝛽̃ = the common shape parameter  

η = the shape parameter of the Weibull distribution 

𝜗 = the ideal limit of luminance intensity 



 

xiv 

 

𝛉 = unknown model variable vector 

𝚯 = calibration parameter vector  

𝜇 = mean 

𝜎 = standard deviation 

Di(α) = a critical value of the area metric using the empirical probability distribution 

of the area metric   

l(t) = performance luminance model according to time (t) 

c(t) = performance color shift model according to time (t) 

tf = the time to failure of luminance degradation (time to 50% degradation) 

tfc = the time to failure of color shift 

AFlum = the acceleration factor of luminance degradation for initial luminance 

intensity 

AFC = the acceleration factor of color shift for initial luminance intensity 

AFtemp = the acceleration factor for temperature 

L = the likelihood function 

Ln = the lifespan of luminance degradation under normal usage conditions 

LCn = the lifespan of color shift under normal usage conditions 

La = the lifespan of luminance degradation under accelerated loading conditions 

LCa = the lifespan of color shift under accelerated loading conditions 

Ilumn = the initial luminance intensity under normal usage conditions 

Iluma = the initial luminance intensity under accelerated loading conditions 

Tn = the temperature under normal usage conditions 

Ta = the temperature under accelerated conditions 
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H0 = the null hypothesis  

H1 = the alternative hypothesis  

χ2(1-α; J-1) = the 100th(1-α) percentile of the chi-square distribution with J-1 degrees 

of freedom 
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Chapter 1.  Introduction 

 

1.1 Background and Motivation 

White organic light-emitting diode (WOLED) displays have recently gained 

attention due to their simple fabrication process, thin structure, and display qualities 

that include a wide viewing angle and high contrast ratio. OLED technology has 

already successfully penetrated the television (TV) market, and the versatility of 

OLED is expected to make future design innovation in televisions more flexible and 

transparent. However, remaining reliability issues must be solved before OLED 

displays can be widely adopted. The primary issue is that OLED luminance degrades 

over time. This degradation not only reduces the display luminance, but also shifts 

its emission color. To date, reliability issues related to both luminance and color shift 

have been overcome by implementing a tandem structure for the emissive layer and 

through additional testing during the manufacturing process. In particular, a tandem 

structure of the emissive layer is suitable for mass production of large-sized OLED 

TVs because it overcomes various limitations otherwise found in mass production 

of OLEDs, such as sagging and misalignment of the fine metal mask [1, 2]. 

Numerous experimental studies have been conducted to date to assess the 

reliability of solid-state lighting, mostly through accelerated life testing (ALT). Prior 

research has also been conducted to find a relevant acceleration model that represents 
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the effect of operational conditions on the degradation of OLEDs. Several studies 

employed a single acceleration factor (AF) to build an acceleration model. However, 

OLED panels in real-world applications (e.g., TV sets) are subjected to a 

combination of AFs. Moreover, individual OLED pixels in the panel are subjected 

to various physical and operating uncertainties. Although numerous mature 

technologies that were developed for LCDs are being incorporated into OLED 

displays, it is still challenging to address these uncertainties in large OLED panels. 

Thus, to date, no statistical analysis procedures have been developed that incorporate 

manufacturing and operational uncertainties to accurately estimate the lifetime 

distribution of large OLED panels. 

 

1.2 Overview and Significance 

 This research encompasses four advanced research areas necessary for 

estimating the nominal lifetime of OLEDs: Research Thrust 1 – design of accelerated 

degradation tests for OLED panels, Research Thrust 2 – development of two novel 

bivariate acceleration models, Research Thrust 3 – a systematic scheme to build 

bivariate lifetime models for OLED panels, and Research Thrust 4 – statistical model 

validation of a heat dissipation analysis model. The proposed statistical approach 

considers manufacturing and operational uncertainties throughout a likelihood-ratio-

based validation method; this approach will provide guidance to quality and 

reliability engineers. The two proposed novel bivariate lifetime models can estimate 
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the exact nominal lifetime of luminance and color shift with the interaction term 

between the ambient temperature and the luminance intensity. The proposed models 

outperform existing models. Based on the empirical relationship between surface 

temperature and time to failure (TTF) of color shift, the reliability of color shift can 

be predicted at an early stage of product development through surface temperature 

analysis. The statistical validation procedure for heat dissipation analysis for large 

OLED TV sets with various uncertainties is outlined in Research Thrust 4. Thus, the 

research scope of this thesis is to develop technical advances in the following four 

research thrusts: 

Research Thrust 1: Design of Accelerated Degradation Tests 

Research Thrust 1 suggests an experimental setup for accelerated degradation 

tests to overcome the limited sample sizes of real-world applications and to consider 

the spatial uncertainty present in OLED panels. This research is needed, because  

reliability engineers and product designers of commercial manufacturers have 

difficulty getting enough samples for degradation tests at the early design stages of 

product development. Thus, the design of this experiment that considers two main 

acceleration factors – initial luminance intensity and ambient temperature – will 

provide much-needed reductions in the test period during the design phase. The 

display pattern in each TV set is suggested to consider the spatial temperature 

variation by the natural convection effect and the electrical components on the back 

of the OLED panel. 
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Research Thrust 2: A Systematic Scheme to Build Bivariate Lifetime Models 

for OLED Panels 

Research Thrust 2 addresses the research challenge that there is presently no 

statistical procedure to analyze the accelerated test data of OLED panels; these 

panels are subject to various uncertainties and test samples of panels are not many. 

The procedure consists of: (1) estimation of the time to failure (TTF) using 

accelerated data and the proposed degradation model, (2) inference of a common 

shape parameter of the lifetime distribution, (3) evaluation of validity through 

likelihood ratio analysis, (4) prediction of the lifetime distribution of OLED panels 

via the proposed bivariate AF model, and (5) validation of the proposed model by 

comparison with observed data. 

The two main statistical validity checks suggested in this study are the likelihood 

ratio analysis for checking the validity of a common shape parameter of the lifetime 

distribution and the goodness-of-fitness test for comparing the estimated lifetimes 

derived from the regression model and from the observed data. 

Research Thrust 3: Two Bivariate Lifetime Models 

Research Thrust 3 suggests two novel bivariate lifetime models to estimate the 

lifetime under normal usage conditions. Extensive prior research studies have 

focused on acceleration of OLED degradation with a single acceleration factor (AF). 

However, OLED panels in real-world applications (e.g., TV sets) are subjected to a 
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combination of AFs. The AFs for degradation of OLEDs include the operating 

temperature and the driving current (or initial luminance intensity).  

The first novel bivariate lifetime model is proposed to analyze the lifespan testing 

data for OLEDs’ luminance degradation. The proposed bivariate lifetime model, 

which includes an interaction term between the ambient temperature and the 

luminance intensity, outperformed existing models. 

The second proposed novel bivariate lifetime model examines OLED lifetime as 

related to color shift; the model assumes that the acceleration factor of initial 

luminance intensity follows the BET (Brunauer, Emmett and Teller) theory, and that 

the temperature follows the Arrhenius equation.  

The normal life estimated using both of these proposed bivariate lifetime models 

showed exact agreement with the experimental data.   

Research Thrust 4: Statistical Model Validation of the Heat Dissipation 

Analysis Model 

Following the development of Research Thrust 3 for estimation of the OLED 

lifetime resulting from color shift, Research Thrust 4 is designed to estimate color 

shift reliability through surface temperature data that is acquired from a 

computational heat dissipation model with high fidelity throughout a model 

validation framework. Most OLED TV manufacturers continuously try to reduce the 
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product design period and manufacturing cost. Thus, manufacturers have focused on 

reducing the time needed for analyzing OLED reliability. The key to success in this 

effort is to verify how quickly the various reliability criteria of the product are met 

when innovative materials and manufacturing processes are applied.  

The proposed thermal analysis model that was statistically calibrated and 

validated out of the calibration domain is expected to allow thermal designers and 

quality engineers to estimate the display quality through a verification and validation 

(V&V) framework. Additionally, a regression model in which the lifetime of color 

shift is related to the surface temperature of the OLED panel will help thermal 

engineers estimate the lifetime as it relates to color shift in the early stages of product 

development.  

 

1.3 Thesis Layout 

The thesis is organized as follows. Chapter 2 reviews the current state of 

knowledge related to OLED degradation models and model verification and 

validation. Chapter 3 describes a review of chromaticity and degradation 

mechanisms of OLEDs with consideration of luminance and color shift. Chapter 4 

presents an experimental method for accelerated life testing and the definition of the 

time to failure for luminance degradation and color shift. Chapter 5 presents a 

proposed bivariate lifetime model for OLEDs. In addition, we show that the lifespan 
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distribution of OLEDs statistically follows the Weibull distribution; we also  

estimate the common shape parameter. Chapter 6 presents the statistical model 

validation framework for a computational model that can estimate the surface 

temperature of OLEDs, and the related process of statistical model calibration. 

Finally, Chapter 7 summarizes the contribution of this research and provides insight 

on future work.  
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Chapter 2.  Literature Review 

This chapter provides a review of the state-of-art knowledge for OLED reliability 

that is within the scope of the research described in this thesis, including: (1) 

accelerated testing, (2) luminance degradation models for OLEDs, (3) color shift of 

OLED, and (4) verification and validation methodologies. 

2.1 Accelerated Testing 

Numerous experimental studies have been conducted to date to assess the 

reliability of solid-state lighting, mostly through accelerated testing (ALT) [3-5]. 

Many researchers have studied traditional destructive life testing, which records 

failure data [6, 7]. The goal of accelerated testing is to estimate the nominal lifetime 

of OLEDs when subjected to normal usage conditions that would be expected in 

service [8]. The steps for accelerated testing include (1) testing samples under 

accelerated loading conditions, (2) estimating the lifetime distribution and 

determining an acceleration factor (AF), and (3) calculating lifetime distributions 

under normal usage conditions. The second step is regarded as the most critical to 

enable prediction of an accurate lifetime distribution [9, 10]. 

Previously, both parametric and non-parametric approaches have been used to 

estimate lifetime distributions. The parametric approach involves a selection process 

for choosing a set of distribution parameters that gives the largest correlation for the 
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given experimental data. For example, Zhang et al. [7, 11] showed that the lifespan 

of a white OLED under current loading conditions meets lognormal and Weibull 

distributions. Wang et al. [12] presented a general procedure for the parametric 

approach to lifespan prediction. The non-parametric approach involves estimating 

the lifetime without relying on a closed-form expression for the statistical 

distributions. The non-parametric approach can be implemented for any type of 

experimental data. However, one of the challenges of this approach is to calculate 

second-order derivatives of the performance degradation equation. For example, 

Park [13] compared the performance of conventional lifetime distribution-based 

approaches (such as Weibull and lognormal distributions) with that of the non-

parametric method. Park’s work showed that the non-parametric method for OLED 

degradation determination gives a comparable result to parametric methods, when 

the proper lifetime distribution is unknown. In contrast, the parametric approach 

provides more accurate estimates in terms of the percentile lifetime. 

As the expected lifetime of OLEDs and LEDs lengthens due to high-fidelity 

materials and the compensation algorithm, it has become prohibitively expensive for 

quality engineers to estimate lifetime via traditional destructive life testing. In order 

to overcome this challenge, researchers have sought ways to predict the remaining 

useful life (RUL) of displays without a significant number of samples and at earlier 

testing times. Both deterministic and statistical approaches have been used to 

estimate RUL. Deterministic approaches involve the least square regression (LSR) 
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for parameter estimation in a lumen degradation model. Park [13] presented a bi-

exponential model and Zhang et al. [4] utilized a stretched decay model to describe 

the relationship between an OLED’s luminance degradation and time.  

When degradation data are fragmented or sparsely observed, nonparametric 

degradation models may be used because one cannot clearly trace how a degradation 

path progresses over time from incomplete observations [14]. Two common classes 

of stochastic process are the gamma [15-17] and the Weiner [18, 19] processes. 

Wang and Xu [20] showed that the inverse gamma Gaussian (IG) process has been 

reported as an attractive and flexible model for degradation modeling. Chen [21] 

justified the physical meaning of the IG process by exploring the inherent relations 

between the IG process and the compound Poisson process. By linking the Weiner 

process, he investigated different options to incorporate random effects in the IG 

process model.  

The LSR method has many weaknesses in terms of guaranteeing prediction 

accuracy, because it does not consider the uncertainties. To improve the accuracy of 

lifetime prediction and reduce the test time, the technique of prognostics and health 

management (PHM) has been adopted in light displays, such as plasma display 

panels (PDPs), and organic light emitting displays (OLEDs).  

In general, prognostic approaches can be categorized into model-based 

approaches [22-24], data-driven approaches [25, 26], and hybrid approaches [27]. 
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The application of general model-based approaches relies on the understanding of 

system physics-of-failure and underlying system degradation models. As high-risk 

engineered systems generally consist of multiple components with multiple failure 

modes, for complex systems, it is almost impossible to understand all potential 

physics-of-failures and their interactions. Fan et al. [28, 29] presented a nonlinear, 

filter-based prognostic approach to improve the prediction accuracy of luminance 

for high-power, white light emitting diodes based on short-term observed data. In 

particular, a reasonable initialization process for the parameters based on historical 

databases or calibration testing is needed to guarantee the advantages of the particle 

filter (PF) method. 

With the advance of modern sensor systems, data storage and processing 

technologies, data-driven approaches for system health prognostics have become 

popular; these are mainly based on massive sensory data with reduced requirements 

for knowing inherent system failure mechanisms. Data-driven prognostic 

approaches generally require sensory data fusion and feature extraction, statistical 

pattern recognition, and for life prediction, the interpolation, extrapolation, or 

machine learning. Due to the long testing times and expensive test samples, there are 

few examples of data-driven prognostics approaches.  
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2.2 Luminance Degradation Model for OLEDs 

Extensive prior studies have been conducted to find a relevant acceleration model 

that represents the effect of operational loading conditions on the degradation of 

OLEDs. First, it has been shown that the acceleration of degradation due to 

luminance intensity is governed by the inverse power relationship [11]. Second, the 

acceleration of degradation due to temperature is dictated by the Arrhenius equation. 

It was shown that localized Joule heating significantly reduces the operational 

lifetime of OLEDs [30]. Several studies in the literature [7, 11, 13, 31] employed a 

single AF to build an acceleration model. However, OLED panels in real-world 

applications (e.g., TV sets) are subjected to a combination of AFs. It is commonly 

observed that a different amount of heat is dissipated by conduction and natural 

convection form individual electric components. Moreover, the luminance intensity 

produced by the driving current nonlinearly increases with respect to the operating 

temperature [32]. To the best of our knowledge, no study to date has incorporated 

multiple AFs. 

In real-world applications, individual OLED pixels in a panel are subjected to 

various physical and operating uncertainties [33-35]. For example, in the process of 

plasma-enhanced chemical vapor deposition, the TFT in an OLED panel does not 

crystallize in a perfectly uniform manner. Thus, the current consumed by each 

individual pixel of the TFT varies [36]. Numerous studies have suggested advanced 

TFT fabrication processes and developed new compensation methods for 
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minimizing this uncertainty; however, it still remains as an issue [36, 37]. Another 

example of uncertainty is the large spatial deviation in temperature that occurs due 

to local heat sources and natural convection in the slim design of a large display [34, 

38]. 

In general, the decrease of OLED luminance over time proceeds through three 

independent and visually distinct degradation modes: (1) dark-spot degradation, (2) 

catastrophic failure, and (3) intrinsic degradation.  

While the first two modes of degradation can be effectively controlled by means 

of proper device encapsulation and adequate control over device fabrication 

conditions, the intrinsic degradation mode has been far more challenging and 

continues to be an issue for OLED commercialization. 

One widespread approach is to describe the performance degradation of OLEDs’ 

luminance degradation over time using a combination of exponential decays, 

commonly using two terms. The first term accounts for the rapid initial decay, the 

second term accounts for the long-term degradation [39]. Howard [40] & Ishii [41, 

42] reported that a far better way is to use a stretched exponential decay (SED). 

Summary and Discussion 

Although numerous mature technologies that were developed for LCDs are being 

incorporated into OLED displays [5, 43, 44], it is still challenging to address these 
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uncertainties in large OLED panels. Thus, to date, no statistical analysis procedures 

have been developed that incorporate manufacturing and operational uncertainties to 

accurately estimate the lifetime distribution of large OLED panels. 

 

2.3 Color Shift of OLEDs 

Besides luminance degradation, another reliability issue of the tandem OLED 

structure is color shift over operating time. Digital TV manufacturers strive to meet 

Advanced Television Systems Committee (ATSC) standards. ATSC is an 

international, non-profit organization that develops voluntary standards for digital 

television. Also, IEC 62341 [45] describes the measuring methods for visual quality 

and ambient performance of displays. To date, there is little practical guidance on 

reliability criteria based on color shift in display devices. Sugimoto et al [46] 

suggested an accelerated method for evaluating color shift of white OLED panels. 

Chen et al. [47] proposed an evaluation method for OLEDs as light sources. However, 

no standards or research have yet suggested criteria for color shift over time due to 

the lack of information about the mechanism of color shift and test results for large-

sized displays. Accordingly, here, we suggest a novel bivariate lifetime model for 

color shift in OLED displays. 

In real-world applications, individual OLED pixels in a panel are subjected to 

various manufacturing and operating uncertainties. In particular, the large spatial 
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deviation in temperature due to local heat sources and natural convection in the slim 

design of a large display accelerates reliability issues, such as color shift and image 

sticking [48]. 

Because reliability issues are related to thermal conditions, many researchers 

have used simple thermal models to study estimation methods for thermal behavior 

in the OLED structure during transient current conditions [35, 49]. Pang suggested 

an indirect method to accurately calculate the lifetime of large-sized OLED panels, 

without testing the panels directly [3]. Slawinski et al. characterized the 

electrothermal behavior of large-area OLEDs by employing finite-element 

simulation and considering natural convection with vertical position [33]. Despite 

these efforts, it is still challenging to exactly estimate junction temperature in large-

sized commercial OLED displays due to their complicated structure and individual 

electric components. 

Summary and Discussion 

This study aims to develop a lifetime model for color shift that (1) accurately 

predicts the lifetime of large OLED panels under actual usage conditions, and (2) 

estimates color shift reliability through surface temperature data that is acquired from 

a computational heat dissipation model with high fidelity throughout a model 

validation framework. 
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2.4 Verification and Validation Methodology 

As the role of computational models has increased, the accuracy of the 

computational results has become important to analysts who make decisions based 

on these predicted results. Among various works on model verification and 

validation (V&V), survey articles have been introduced by various engineering 

groups, including the American Institute of Aeronautics and Astronautics (AIAA) 

[50], the American Society of Mechanical Engineers (ASME) [51], the Department 

of Energy Laboratories (Sandia [52], Loss Alamos [53], and Lawrence Livermore 

[54]), and Institute for Computational Engineering and Sciences (ICES) [55]; these 

articles explain the state-of-the-art concepts, terminology, processes, and model 

techniques in detail. In these works, verification is briefly defined as the assessment 

of the accuracy of a computational model implementation; validation is defined as 

the assessment of the accuracy of computational results by comparison with 

experimental data [52]. The important concepts for model V&V addressed in those 

references are summarized below. 

Model Verification 

In the ASME guidelines, model verification is defined as “the purpose of 

determining that a computational model accurately represents the underlying 

mathematical model and its solution.” Verification deals with the relationship 

between a mathematical model and its programmed implementation in the code (the 
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computational model). Verification is mainly conducted by comparing numerical 

solutions of the computational model to highly accurate benchmarking solutions. 

The use of benchmarking solutions in verification is called “testing” in the software 

engineering community [56]. Verification generally is divided into two activities: (1) 

code verification and (2) calculation verification [52, 57]. The major goal of code 

verification is to confirm that the mathematical model (computer software) is 

working as intended. Calculation verification is performed to evaluate the accuracy 

of the discrete solution of the mathematical model by estimating the numerical errors 

that arise due to discretization approximations. Insufficient spatial or temporal 

discretization, insufficient convergence tolerance, incorrect input options, and/or 

finite precision arithmetic can be identified using calculation verification. It is 

relatively popular to perform code-to-code comparisons as a means of calculation 

verification in the absence of sufficient verification evidence from other sources. 

Model Validation 

As shown in Figure 2-1, model validation deals with the relationship between the 

computational results from a computational model and reality, i.e., the experimental 

results. Model validation is defined as the process of determining the degree to which 

a model is an accurate representation of the real world from the perspective of the 

intended uses of the model [51, 52]. The phrase “process of determining” emphasizes 
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that model validation is an ongoing activity that concludes only when acceptable 

agreement is achieved between experiment and simulation. The phrase “degree to 

which” emphasizes that the simulation and the experimental results are uncertain. 

Finally, the phrase “intended uses of the model” emphasizes that the validity of a 

model is defined over the domain of model form, input variables, and predictive 

responses. In order to quantitatively determine the degree of validity, a comparison 

between the experimental and computational results has to be performed using a 

validity check metric; several metrics are available. Oberkampf et al. [58] developed 

a validity check metric based on the concept of statistical confidence intervals. 

Ferson et al. [59] used the integrated area between the cumulative distribution 

 

Figure 2-1  Simplified view of the model verification and validation process. 
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functions (CDFs) of experimental and computational results as a validation measure. 

Rebba et al. [60] used the distance metric based on the Anderson-Darling statistics. 

Model Calibration 

While model validation primarily assesses the confidence of computational 

results, model calibration is different in that it is a process of maximizing the 

agreement of predicted results with respect to a set of experimental data through the 

adjustment of a set of physical input variables. In the computational engineering field, 

model validation sometimes includes a model calibration activity, which involves 

the estimation or optimization of model input variables using experimental data from 

a system [61, 62]. For successful calibration, the distinction between the calibration 

variable and the tuning variable must be clearly understood. The calibration variables 

have a physically interpretable meaning; however, the tuning variable may be 

notional and may have little or no meaning in the physical system. 

To improve the predictive capability of a computational model, model calibration 

techniques have been developed in recent years. Model calibration adjusts a set of 

unknown model input variables associated with a computational model so that the 

agreement is maximized between the predicted (or simulated) and observed (or 

experimental) responses (or outputs). In a deterministic sense, model calibration is 

thought of as the adjustment of a few model input variables to minimize the 

discrepancy between the predicted and observed results. However, the deterministic 
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approach is not appropriate because various uncertainties exist in the material 

properties, loading condition, boundary condition, etc. Statistical model calibration, 

on the other hand, means refining the probability distributions of unknown input 

variables through comparison of the predicted and observed outputs [63]. Current 

statistical model calibration is mainly based on methods of moments [64], Bayesian 

statistics [65-67], and maximum likelihood estimation [68]. Statistical model 

calibration with Bayesian statics mainly focuses on the surrogate model (also called 

the metamodel [69]), which replaces expensive computational models of engineered 

systems. In computational engineering, it is common for computational models to 

take hours or days to run. Because it is, in general, impossible to conduct enough 

simulation runs to thoroughly cover the entire input variable space for design 

purposes, surrogate models – such as polynomial function and kriging model [44] –

have been developed with design of experiment techniques [70]. The drawback of 

simply using a fitted metamodel is that it may ignore metamodel uncertainty, i.e., the 

uncertainty that results from not knowing the output of the expensive computational 

model, except at a finite set of sampling points. 

Uncertainty Propagation 

Uncertainty propagation (UP) analysis is an essential part of statistical model 

calibration. UP analysis refers to the determination of the uncertainty in analysis 

results that is propagated from uncertainties in the input variables of a computational 

model that arise because of the inherent randomness in physical systems (material 
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properties, boundary condition, etc.), modeling idealizations, experimental 

variability, measurement inaccuracy and manufacturing tolerance. Existing UP 

analysis methods can be grouped into four categories: (1) the sampling method, (2) 

the expansion method, (3) the metamodeling method, and (4) the approximate 

integration method. 

(1) The sampling method: The sampling method is the most comprehensive, but 

most expensive method, for estimating moments and the reliability of system 

responses. Sampling methods draw samples from the input parameter populations, 

evaluate the deterministic model using these samples, and then build a probability 

density function (PDF) of the responses. Monte Carlo Simulation (MCS) [71, 72] is 

the most widely used sampling method; however, MCS demands thousands of 

computational analyses. To relieve the computational burden, other sampling 

methods have been developed, such as quasi-MCS [73], important sampling [74], 

and directional sampling [75]. 

(2) The expansion method: The expansion method estimates statistical moments 

of system responses using a small perturbation to simulate input uncertainty. 

Expansion methods include Taylor expansion [76], the perturbation method [77], the 

Neumann expansion method [78], etc. Overall, all expansion methods can become 

computationally inefficient or inaccurate when the amount or the degree of input 

uncertainty is high. Moreover, since it requires high-order partial sensitivities of 

system responses, it may not be practical for large-scale engineering applications. 
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(3) The metamodeling method: There currently exist a number of metamodeling 

techniques, such as polynomial response surface model (PRSM), multivariate 

adaptive regression spline (MARS), radial basis function (RBF), kriging, neural 

networks, and support vector regression (SVR). Each technique has its own fitting 

method. For example, PRSM is usually fitted with the (moving) least squares method 

[79]; the kriging method is fitted with a search for the best linear unbiased predictor 

[79]. In general, kriging models can produce accurate results for nonlinear problems; 

however, they are difficult to obtain and use because a global optimization process 

must be applied to identify the maximum likelihood estimators [80]. Although neural 

networks are able to accurately approximate very complex models, they have two 

disadvantages: (1) they are a “black box” approach, and (2) the have a 

computationally expensive training process [81].  

(4) The approximate integration method: The approximate integration method is 

a direct approach to estimate the probability density function (PDF) or statistical 

moments through numerical integration. Numerical integration can be done in the 

input uncertainty domain [82] or in the output uncertainty domain [83]. In the 

univariate dimension reduction method, this method uses an additive decomposition 

of the responses that simplifies one multi-dimensional integration to multiple one-

dimensional integrations. Generally, the method can provide accurate lower moment 

of system responses, such as mean. However, it may produce a relatively large error 

for second-order or higher moments of nonlinear system responses. In the general 
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dimension reduction method [84], the theoretical error of the univariate dimension 

reduction method can be reduced by considering multi-dimensional integrations.  

However, the computational effort increases exponentially to achieve this error 

reduction.   

A Hierarchical Framework for Statistical Model Validation 

Increased customer expectations have resulted in new product developments at 

an ever-increasing pace. The product development process is traditionally conceived 

of as a cost-intensive and time-consuming process because it requires repeated 

product prototyping and testing to improve product performance and reliability. Jung 

et al. suggested a framework of model validation and virtual product testing [61, 85], 

 

Figure 2-2  A framework for statistical model validation in the product 

development process. 
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as shown in Figure 2-2. They proposed a framework of virtual testing based on 

statistical inference for new product development comprised of three successive 

steps: (1) statistical model calibration, (2) a hypothesis test for validity checking and 

(3) virtual qualification. Statistical model calibration first improves the predictive 

capability of a computational model in a calibration domain. Next, a hypothesis test 

is performed using limited observed data to see if the calibrated model is sufficiently 

productive for virtual testing of a new product design. An area metric and the u-

pooling method [59] are employed for the hypothesis test to measure the degree of 

mismatch between predicted and observed results. 

The u-pooling method is beneficial because it allows integration of all 

experimental data from various experimental settings (e.g., environmental 

temperature, loading) into a single aggregate metric. In the u-pooling method, the 

cumulative density, 𝑢𝑖, should be first obtained by transforming every experimental 

datum (𝑦𝑖) according to its corresponding predictive CDF (𝐹𝑦𝑖) of the calibrated 

model as: 

 
𝑢𝑖 = 𝐹𝑦𝑖(𝑦𝑖) (2.1) 

where i is the number of experimental data. Under the assumption that the 

experimental data, 𝑦𝑖, truly come from the mother distribution (or mother function), 

the 𝑢𝑖  values corresponding to all experimental data will follow a uniform 

distribution [0.1]. The CDF of the uniform distribution (𝐹uni) indicates the line of 
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perfect agreement between the experimental data and perfect results of the calibrated 

model. Therefore, any mismatch between the dispersion of experimental data and 

the predicted results can be determined by calculating the area (i.e., the area metric 

(U𝑚)) between the CDF of the uniform distribution (𝐹uni) and the empirical CDF 

of 𝑢𝑖 values (𝐹𝑢) as: 

 
U𝑚 = 𝑎𝑟𝑒𝑎(𝐹𝑢, 𝐹uni) = ∫ |𝐹𝑢(𝑢) − 𝐹uni(𝑢)|𝑑𝑢

1

0
, 0 < 𝑢 < 1, 0 < 𝑈𝑚 < 0.5 (2.2) 

If experimental data are comprehensively collected for the validity check, there 

is no sampling uncertainty in the Um and it is definite that the null hypothesis can be 

rejected unless the Um is zero. In real-world settings, experimental data are limited, 

thus, the Um has uncertainty, although the mother distributions of predicted and 

experimental results are identical (i.e., the model is valid). The uncertainty in our 

metric is characterized using a virtual sampling technique with the following three 

steps. 

Step 1: Assume that the mother distributions of the predicted and experimental 

results are identical (i.e., the model well-represents the physical responses, in 

other words, model is valid).  

Step 2: The i number of experimental data are virtually sampled from the mother 

distribution, and the u values and the corresponding Um are calculated using 

Equation (2.2). 
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Step 3: Step 2 is repeated several thousand times and a statistical distribution (i.e., 

PDF) of the Um (fu,i) is constructed with Um values using a Pearson system [86]. 

A Pearson system can appropriately represent the uncertainty in Um. 

The hypothesis test uses the PDF of the area metric (fu,i). Because the fu,i indicates 

plausible values of Um in case the mother distributions of the predicted and 

experimental results are identical, an upper-tailed test can be employed after 

deciding a rejection region as: 

 
U𝑚 > 𝐷𝑖(𝛼) (2.3) 

where Di(α) indicates a critical value of the area metric; α is a significance level. The 

null hypothesis will be rejected if and only if Um falls in the rejection region. In the 

absence of such evidence, H0 should not be rejected, because it is still plausible. 

 

Summary and Discussion 

Most OLED TV manufacturers continuously work to reduce the product design 

period and manufacturing cost. In support of this goal, manufacturers have focused 

on reducing the time needed for analyzing OLED reliability. The key to success in 

this effort is to verify how quickly the various reliability criteria of the product are 

met when innovative materials and manufacturing processes are applied. 
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Considerable attention has been paid to developing verification and validation (V&V) 

methodologies that improve and assess the predictive capability of computational 

models [85]. Statistical model calibration requires uncertainty propagation (UP) 

analysis, such as the eigenvector dimension reduction (EDR) method, to develop the 

statistical responses of a computational model [87]. 
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Chapter 3. OLED Degradation 

The invention of organic light-emitting diodes (OLEDs) has opened a way toward 

next-generation informational displays and solid-state lighting sources. Currently, 

small-sized, full-color OLED displays are in mass production on Gen. 5.5 glass for 

portable electronic devices. Three colors of RGB sub-pixels can be patterned through 

the evaporation process through fine patterns of sub-pixel size that are formed on the 

fine metal mask (FMM) [88, 89]. However, this method is not suitable for large-

sized OLED displays due to the defects and color mixing that are caused by sagging 

and misalignment of the FMM. Therefore, large-sized displays (e.g., TV applications) 

require a new color patterning method in order to avoid these problems. For large-

sized OLED TV and lighting, white organic light-emitting diode (WOLED) 

technology has been developed [90-93]. Figure 3-1 shows the pixel structure of 

        

(a) RGB pixel structure of a smartphone    (b) WRGB pixel structure 

Figure 3-1  Comparison of pixel structure: (a) sub-pixel of a smartphone and (b) 

sub-pixel of a large OLED TV. 
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small-sized and large-sized displays. WOLED overcomes various limitations 

otherwise found in the mass production of OLEDs, such as sagging and 

misalignment of the FMM. Therefore, WOLED has great potential for mass-market 

products.  

OLED has many merits, such as its simple fabrication process, thin structure, and 

display qualities that include a wide viewing angle and high contrast ratio; however, 

there remain some challenges to overcome with this technology. The primary issue 

is that OLED luminance degrades over time. This degradation not only reduces the 

display luminance, but also shifts its emission color. In addition, the degradation rate 

is accelerated by temperature.  

As shown in Figure 3-2, it is commonly observed that a different amount of heat 

is dissipated by conduction and natural convection from individual electric 

   

(a) The measured temperature results  (b) Color shift results after accelerated test 

Figure 3-2  Defining reliability issues of OLED displays through a non-uniform 

temperature profile and examining the color shift phenomenon. 
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components. Different thermal conditions cause different accelerating conditions. 

Eventually, this affects both luminance lifetime and color shift. 

 

3.1 Chromaticity and the Definition of Color Shift Lifetime 

Color is the brain’s reaction to a specific visual stimulus. Because the eye’s retina 

samples color using only three broad bands, humans are limited in their ability to 

discriminate different spectral power intensities of visible electro-magnetic radiation. 

The signals from these color-sensitive cells are combined in the brain to give several 

different sensations of color. Color shift is defined as the change in chromaticity of 

a light source with respect to the chromaticity at the beginning of the device’s 

lifetime. Color shift is typically measured as ∆𝑥𝑦 or as ∆𝑢′𝑣′ in the Commission 

Internationale de l’Eclairage (CIE) color coordinate systems. The chromaticity 

coordinates of a source provide a numerical representation of the color of the light. 

The three common chromaticity diagrams are the CIE 1931 (x, y), the CIE 1960 (u, 

v), and the CIE 1976 (𝑢′, 𝑣′). Every color is represented by unique (x, y) coordinates. 

The chromaticity coordinates, x, y, and z, are the ratio of X, Y, and Z coordinates of 

the light to the sum of the three stimulus values. It is necessary only to consider the 

quantity of two of the reference stimuli in order to define a color, because the three 

quantities (x, y, z) always sum to 1. Thus, the (x, y) coordinates are commonly used 

to represent a color. 
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The MacAdam ellipse provides a guideline as to how accurate the average 

person’s color vision is, and how good a person is at distinguishing between similar 

colors [94]. The original ellipses are very small, thus, they are not typically published 

this way. Instead, most of the time, MacAdam ellipses are scaled up to a large size, 

perhaps 7× or 10× the original. In particular, a 7-step scale up is standard for color 

consistency used to describe compact fluorescent lamps (CFLs) and in 

ANSI/NEMI/ANSLG C78.3777-2008 American National Standards for 

Specification for the Chromaticity of Solid State Lighting (SSL) Products [95, 96]. 

Figure 3-3 shows the ellipses scaled up 7-steps. Because the initial white color 

coordinate in this study is located in the 13th ellipse, with a white color coordinate, a 

failure of color shift is defined as when the amount of color shift (∆𝑥𝑦) is greater 

than the distance of the major axis of the 13th ellipse of a 7-step MacAdam ellipse. A 

detailed dimensional description of the 13th 1-step MacAdam ellipse is described in 

Table 3-1. Accordingly, the time to failure of color shift (TTF, 𝑡𝑓𝑐) is defined as the 

time when the accumulated color shift (∆𝑥𝑦) from the initial time reaches 0.0322 (=

7 × 2𝑎). 

 

3.2 Degradation Mechanism 

A cross-sectional view of an OLED device is illustrated in Figure 3-4. Typically, 

an OLED panel in a large TV is composed of two structures: (1) a light-emitting 
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layer between two sandwiched electrodes and (2) a TFT backplane [97, 98]. The 

TFT controls the amount of current flow by adjusting the voltage potential in the 

gate of the TFT. If a critical amount of current flows through the electrode of the 

 

Figure 3-3  7-step MacAdam ellipse plotted on the 1931 CIE color space and the 

dimension description of the ellipse. 

Table 3-1  13th MacAdam ellipse parameters 

Center of ellipse Ellipse parameter 

x0 y0 a b φ 

0.305 0.323 2.30E-03 9.00E-04 58 
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organic layer, it generates light while it dissipates heat. The threshold voltage of the 

TFT is the minimum gate-to-source voltage gap required to create a conducting path. 

The conducting path is then used to deliver the driving current to the light-emitting 

layer. Tandem OLEDs have more than one electroluminance (EL) unit connected 

electrically in series, with intermediate connectors within each device [2, 99]. 

 

3.2.1 Luminance Degradation Mechanism 

Degradation of the light-emitting layer can be attributed to both intrinsic and 

extrinsic causes. Extrinsic degradation is caused by contamination and/or humidity 

during the fabrication process. Intrinsic degradation arises due to the electrochemical 

degradation that occurs in the material during the application of electric excitation; 

this leads to the formation of charge trapping and excited-state quenching defects 

 

Figure 3-4 Cross-sectional diagram of a sub-pixel (left) and a tandem OLED 

having two EL units (right). 
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[100]. While extrinsic degradation can be effectively controlled through proper 

device encapsulation and adequate fabrication process control, intrinsic degradation 

is more challenging. Thus, intrinsic degradation continues to be a problematic issue 

that prevents widespread OLED commercialization. 

As OLEDs degrade, the threshold voltage shifts over time under the elevated 

temperature conditions [101]. As a result, the luminance of OLEDs is also gradually 

reduced over time. It should be noted that the degradation of the two components – 

the light-emitting layer and the TFT backplane – is correlated. Thus, both failure 

mechanisms should be considered together for accurate OLED degradation 

modeling. 

 

3.2.2 Color Shift Mechanism 

White color is affected by the luminance balance between each EL unit. The main 

mechanism of color shift arises because the lifetime of the blue stack is shorter than 

that of the others [102]. Therefore, the performance degradation of color shift is not 

fully expressed by examining only the luminance balance between the two 

components. OLED TVs used in this study have the tandem WOLED structure 

which is composed with red/green and blue stack [99]. Therefore, white color 

coordinate of OLED panels shifts warm white on aging because the luminance of 

blue is lower than that of R/G emission.  
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Tandem OLEDs are OLEDs that have more than one electroluminescence unit 

(EL) connected electrically in series, with unique intermediate connectors within the 

device [2, 46]. A tandem OLED has several advantages over conventional ones [2, 

103, 104]: (1) the luminance efficiency of the tandem OLED is increased linearly 

with the number of EL units in the device, (2) the power efficiency of a tandem 

OLED is also increased with the number of EL units in the device, (3) the operational 

lifetime of a tandem OLED is dramatically increased. 

Figure 3-5 shows the decay speed of red, green, and blue color which were 

measured in each color pattern of OLED panels. The luminance of blue color was 

degraded faster than that of other color. The triangle marks (△) is the relative 

luminance in blue color pattern, the rectangular marks (□) in green color pattern, 

and diamond marks (◇) in red color pattern. The detailed experimental method will 

be in section 4.1. 

    

Figure 3-5  The comparison of decay speed in each color of OLED TV. 
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3.3 Performance Degradation Models 

3.3.1 Performance Degradation Model 

Several functional forms are used to describe the performance degradation of 

OLEDs. The double-exponential model was derived by incorporating energy transfer 

rates between the lowest unoccupied molecular orbit and the highest occupied 

molecular orbit [39]. Specifically: 

 
𝑙(𝑡) = 𝑏1𝑒

−𝛼1𝑡 + 𝑏2𝑒
−𝛼2𝑡 (3.1) 

where b1 and b2 are the constants determined by the initial conditions; α1 is the 

parameter that presents the initial decay; and α2 is the parameter that indicates the 

long-term degradation according to time (t). 

The stretched exponential decay (SED) model is defined as: 

 
𝑙(𝑡) = exp [− (

𝑡

𝜏0
)
𝛾

] (3.2) 

where τ0 is the characteristic time by which the performance degrades to 63.2% of 

the initial performance; γ is the parameter that characterizes the degradation rate.  

The SED model is useful to fit the lifetime of the OLED to the failure of the light-

emitting layer of the OLEDs [105]. For example, Zhang et al. [4] tested OLEDs 
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under different stress conditions and fit the degradation data to an exponential 

function.  

Degradation is largely a result of the evolution of nonemissive regions, or dark 

spots, which increase in both size and number with time [106, 107]. This is consistent 

with an increase in device resistance due to a loss of working device area. Fery [105] 

showed for the first time that the annihilation of the emissive centers (ECs) is the 

main mechanism responsible for the OLED degradation. This single mechanism is 

sufficient to account for both the initial rapid decay, as well as for the long term 

degradation. It was demonstrated that the numerical solution, which formulates the 

number of damaged EC at time t as function of total emissive centers, can be well 

fitted by using Equation (3.2) [108].  

    

(a) By the change of degradation rate     (b) By the characteristic time  

Figure 3-6  The characteristics of SED curve by each parameter. 
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Figure 3-6 shows well the characterization of SED curve. The degradation rate, 

γ, expresses the initial decay characteristics, and the characteristic time, τ0, represents 

63.2% of the initial performance; each curve with same the characteristic time passes 

through same point as shown in Figure 3-6(a).  

 

3.3.2 Performance Color Shift Model 

As discussed earlier, a performance color shift model for OLEDs has not 

previously been studied. We suggest a new empirical performance model for color 

shift below: 

 
𝑐(𝑡) = 𝜑1 ∙ 𝑡𝜑2 (3.3) 

where φ1 and φ2 are the parameters that present the performance color shift 

degradation according to time (t). The accuracy of the proposed model is addressed 

in section 5.2.2. 

 

3.4 Acceleration Model 

As discussed earlier, the AFs for degradation of OLEDs include the operating 

temperature and the driving current (or initial luminance intensity) [109, 110]. First, 
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the AF for initial luminance intensity has an inverse power relationship [3, 4, 31]. 

The acceleration factor (AFlum) for initial luminance intensity between the usage 

condition and the stress level is expressed by: 

 
𝐴𝐹lum =

𝐿n

𝐿a
= (

𝐼lumn

𝐼luma

)

−𝐵

 (3.4) 

where Ln and Ilumn are the lifespan and the initial luminance intensity under normal 

usage conditions, respectively; and La and Iluma are the lifetime and initial luminance 

intensity under accelerated loading conditions, respectively. 

The luminance degradation rate of each EL affects the color shift due to the 

structure of tandem OLEDs. Here, we propose that the acceleration factor for initial 

luminance intensity follows the BET (Brunauer, Emmett and Teller) equation for 

corrosion arising from moisture in plastic packaged electronics [111]. 

The acceleration factor (AFC) for initial luminance intensity between the usage 

condition and the stress level is expressed by: 

 
𝐴𝐹C =

𝐿Cn

𝐿Ca
= [

𝐼lumn

𝐼luma

∙ (
𝜗 − 𝐼luma

𝜗 − 𝐼lumn

)]

𝐵

 (3.5) 

where Lcn and Ilumn are the lifespan for color shift and the initial luminance intensity 

under normal usage conditions, respectively; Lca and Iluma are the life and initial 

luminance intensity under accelerated loading conditions, respectively; and 𝜗 is the 
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ideal limit of the luminance intensity. In this study, 𝜗 was set as 11. Equation (3.5) 

displays a singularity as Ilumn and Iluma reaches 𝜗 , which is dependent on OLED 

characteristics. This means that the acceleration factor has singularity when the 

OLED turns off (Iluma=0) or when the OLED is set to 11 times the initial luminance. 

Another acceleration factor for temperature (AFtemp) is expressed by [3]: 

 
𝐴𝐹temp = exp [

𝐸

𝑘
∙ (

1

𝑇𝑛
−

1

𝑇𝑎
)] (3.6) 

where E is the activation energy; k is the Boltzmann constant (=8.62×10-5); Tn is the 

temperature under a nominal loading condition; and Ta is the temperature under an 

accelerated loading condition. It is worth noting that the acceleration models for 

OLEDs in previous studies employed only a single AF. 

However, some accelerated tests involve more than one accelerating stress or an 

accelerating stress and other engineering variables. For example, many accelerated 

life tests of epoxy packaging for electronics employ high temperature and humidity; 

85℃ and 85% relative humidity (RH) are common test conditions. Peck [112] 

proposed such testing and proposed an Eyring relationship for lifetime, as defined 

below: 

 
𝑀𝑇𝑇𝐹 = 𝐴 ∙ (𝑅𝐻)−𝐵 ∙ 𝑒

(
𝐶
𝑘𝑇

)
 (3.7) 

Intel [113] used another Eyring relationship: 
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𝑀𝑇𝑇𝐹 = 𝐴 ∙ 𝑒(−𝐵∙𝑅𝐻) ∙ 𝑒

(
𝐶
𝑘𝑇

)
 (3.8) 

where A, B, and C are the model parameters; k is the Boltzmann constant (=8.62×10-

5) 

The Eyring equation is an equation used in chemical kinetics to describe the 

variance of the rate of a chemical reaction with temperature. Some semiconductor 

engineers implemented the Eyring equation in the accelerated life testing at 

multivariable condition [113, 114].   
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Chapter 4. Acceleration Degradation Testing (ADT) for 

OLEDs 

 

4.1 Experimental Setup 

Three OLED panels with the size of 1920 by 1080 pixels (See Figure 4-1) were 

used for a degradation test at room temperature; another three were degraded in a 

convection oven with a temperature of 40°C. All tested units featured a 55-inch 

display size, the number of pixels was 1920 by 1080, and the number of pixels in an 

individual pattern was 160 by 96. Four levels of luminance intensity were set for the 

individual OLED panels: an initial luminance intensity, and then twice, four times, 

and six times the initial luminance intensity (see Table 4-1). The current intensity 

 

(a) Snapshot of test sample           (b) Pattern identification 

Figure 4-1  The display pattern of OLED panels used for the accelerated 

degradation testing. 
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was internally maintained during the testing. White OLED panels have a WRGB 

sub-pixel structure. In order to emit a gray color, the initial luminance intensity of 

three components (i.e., red, green, and blue) in a single pixel must be identical [97]. 

The luminance and the color coordinates in the chromaticity diagram (x, y) were 

measured in each pattern at variable intervals between 24 hours and 180 hours. A 

Yokogawa multimedia display tester (Model 3298F) was used for luminance 

measurement. Measurements were conducted until the operating time reached 1,500 

hours. Simultaneously, the surface temperature of each OLED panel was measured 

at identical intervals.  

Figure 4-2 briefly presents the direction of color shift in some patterns. As 

mentioned in section 3.3.2, a unique tandem structure of OLED panels white color 

coordinate of OLED panels shifts to warm white because the luminance of blue is 

Table 4-1  Description of the display pattern in each TV set 

Panel 
Temperature 

Condition 

Initial luminance intensity 

(The number of pattern) 

Total number 

of patterns 

×1 ×2 ×4 ×6 (128) 

#1 25℃ 7 7 6 8 28 

#2 25℃ 7 7 7 7 28 

#3 25℃ 7 7 7 7 28 

#4 40℃ 7 7 7 7 28 

#5 40℃ 7 7 7 7 28 

#6 40℃ 7 7 7 7 28 
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lower than that of R/G emission on aging. The bold line in right side of Figure 4-2 

is the Prankian locus; the dashed line is the 13th 1, 3, and 7-step MacAdam ellipse, 

as explained in Figure 3-3 and Table 3-1. The color shift of four patterns (7th , 8th , 

9th , and 12th pattern of each OLED panels) were displayed in Figure 4-2. 

As shown in Figure 4-3, the difference between the maximum and minimum 

surface temperatures in same oven temperature condition was 10°C or higher. In 

some cases, the difference was as high as 15°C. 

 

 
Figure 4-2  Test results of color shift in four patterns of OLED panels. 

 

Color Shift 
Direction
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(a) Temperature deviation according to pattern identification 

 
(b) Temperature deviation according to luminance intensity 

Figure 4-3  Temperature deviation in the OLED panel at each ambient temperature; 

Position 1 corresponds to the spot in the top-left corner of the panel, 

while Position 36 is the spot in the bottom-right of the panel. 
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4.2 Definition of the Time to Failure 

4.2.1 The Time to Failure of Luminance 

In this study, 50% or less than the initial luminance intensity was defined as 

failure of the OLEDs [7, 115, 116]. This type of failure is regarded as “soft failure” 

because the units are still working; however, they are unacceptable for users. Figure 

4-4 – which uses a normalized luminance for the ordinate – shows the test results 

with curve fitting obtained using the SED model in Equation (3.2). The solid line is 

    
(a) Initial luminance intensity (×1)    (b) Twice the initial luminance intensity (×2) 

    
(c) Four times the initial luminance intensity (×4)  (d) Six times the initial luminance intensity (×6) 

Figure 4-4  Luminance degradation test and curve fitting results. 
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the SED curve that is estimated from the data at room temperature, while the dashed 

line is that estimated using the data at 40°C. We found that R-square values were 

between 0.962 and 0.991. This indicates good agreement between the experimental 

data and the curve-fitting results. Using the individual SED curve, the time to failure 

(TTF, tf; time to 50% performance degradation) was calculated. 

4.2.2 The Time to Failure of Color Shift 

As described in Chapter 3.1, the time-to-failure of color shift (TTF, 𝑡𝑓𝑐)  

is defined as the time when the accumulated color shift (∆𝑥𝑦) reaches 0.0322. It 

is hard to exactly define accumulated color shift due to (1) unstable color 

perturbation at low luminance intensity and (2) measurement error. In this study, we 

suggest the projection of a color shift rate vector (𝑥𝑦𝑖⃗⃗ ⃗⃗  ⃗) onto a regression vector (𝐑) 

in xy chromaticity coordinates. Accordingly, the accumulated color shift is expressed: 

 
∆𝑥𝑦 = ∑

𝐑 ∙ 𝑥𝑦𝑖⃗⃗ ⃗⃗  ⃗

‖𝐑‖

𝑛−1

𝑖=1

 (4.1) 

where n is the number of measurements. The measured color shift results in the 7th 

pattern of Set ID 1 at a 40°C temperature condition, as shown in Figure 4-5. The red 

arrow represents the accumulated color shift at the first duration (∆𝑥𝑦1), and shows 

the projection of the color shift rate vector (𝑥𝑦1⃗⃗ ⃗⃗ ⃗⃗  ) onto the regression vector (𝐑).  
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Figure 4-5  Test results of color shift in the 7th pattern of Set ID #1 at a 40℃

temperature condition over time.  

    
(a) Initial luminance intensity (×1)    (b) Twice the initial luminance intensity (×2) 

    
(c) Four times the initial luminance intensity (×4)  (d) Six times the initial luminance intensity (×6) 

Figure 4-6  Test results of color coordinates in each accelerated condition.  
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Figure 4-6 shows the test results expressed in the CIE 1931 (x, y) coordinates. It 

is shown that the higher the initial luminance intensity and ambient temperature, the 

further the color coordinates were shifted from the initial point over the 1,500 hours. 

The gray color tended to shift in the yellow direction at each condition, due to the 

shorter lifetime of the blue EL unit than that of the R/G EL units. The bold line in 

Figure 4-6 is the Prankian locus, the triangle marks (▲) are each correlated color 

temperature (CCT), and the dashed blue line is the 13th 7-step MacAdam ellipse, as 

explained in Figure 3-3 and Table 3-1. 

 
(a) TTF data at 25°C condition 

 
(b) TTF data at 40°C condition 

Figure 4-7  Box plot of the time to failure (tf) estimated from the SED curve. 
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4.3 Lifespan Test Results 

TTF of Luminance (tf) 

A total of 168 TTFs (tf) – time to 50% performance degradation – were calculated 

using the estimated SED curve. The mean, along with the 1st, 25th (Q1), 75th (Q3), 

and 99th percentile TTFs, time to 50% luminance performance degradation are 

presented in the box plot shown in Figure 4-7. A visual inspection of the results 

shown in Figure 4-7 allowed qualitative confirmation of the validity of our 

assumption that the luminance intensity has a inverse relationship with the luminance 

lifetime. The bottom and top of the box are the first and third quartiles (Q1, Q3); the 

whiskers represent 1.5 times the interquartile range (1.5×IQR).  

TTF of Color Shift (tfc) 

Figure 4-8, which displays the accumulated color shift for the ordinate, shows the 

test results with curve fitting obtained by the Power model in Equation (3.3). The 

results in the figure show that the accumulated color shift rapidly increases in a 

shorter time as the initial luminance intensity and room temperature are higher. We 

found that R-square values were between 0.796 and 0.998. This indicates good 

agreement between the experimental data and the curve fitting results. Using the 

individual power curve, the failure time, tfc (i.e., time to color shift by 0.0322), was 

calculated. The mean, along with the 1st , 25th (Q1), 75th (Q3), and 99th percentile 



 

51 

 

failure times are presented in the box plot shown in Figure 4-9. The results show that 

the time to failure dramatically decreases as initial luminance intensity increases. 

Also, by visual inspection of the box width we can confirm that variation of the time 

to failure decreases as the acceleration factor increases. The bottom and top of the 

box are the first and third quartiles (Q1, Q3); the whiskers represent 1.5 times the 

interquartile range (1.5×IQR) and the ‘+’ symbol indicates outlier data. In this study, 

 
(a) Initial luminance intensity (×1)    (b) Twice the initial luminance intensity (×2) 

 
(c) Four times the initial luminance intensity (×4)  (d) Six times the initial luminance intensity (×6) 

Figure 4-8  Test and curve fitting result of color shift estimated from the Power 

curve. 
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we analyzed the entire data set without discarding outlier data because the outlier 

data did not have a dominant influence on the distribution type. 

 

 

 
(a) 

 
(b) 

Figure 4-9  Box plot of the time to failure (tfc) estimated from the Power curve. 
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Chapter 5. Bivariate Lifetime Model for OLEDs 

This chapter presents a novel bivariate lifetime model for OLEDs. TTF data at 

seven types of accelerated conditions, except data from real-world usage conditions, 

were utilized to build each bivariate lifetime model for luminance degradation and 

color shift. Later, data from real-world usage conditions was used for validation of 

the two bivariate lifetime models. 

5.1 Fitting TTF Data to the Statistical Distribution 

5.1.1 Estimation of Lifetime Distribution Parameters 

In order to determine the proper distribution type, three candidates were 

considered: normal, log-normal, and Weibull distributions. It was found that the 

Weibull distribution was most appropriate to represent the TTF data for OLEDs, 

based on chi-square (χ2) and Kolmogorov-Smirnov (K-S) goodness-of-fit (GoF) tests. 

Detailed GoF test results are shown in Table 5-1 and Table 5-2. The observed TTF 

data and the Weibull distribution of luminance degradation and color shift are shown 

in Figure 5-1 and Figure 5-2.  

The functional form of the Weibull distribution is expressed as: 

 
𝑓(𝑡|𝛽, 𝜂) = (𝛽/𝜂)(𝑡/𝜂)𝛽−1𝑒

−(𝑡 𝜂⁄ )
𝛽

 (5.1) 
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where β is the shape parameter that directly affects the shape of the failure density 

distribution curve of the Weibull distribution and η is the scale parameter. The 

parameters were estimated using the maximum likelihood estimator.  

   

(a) At room temperature (25℃) condition  (b) At 40℃ temperature condition 

Figure 5-1  The observed lifetime data and the Weibull distribution of luminance 

degradation. 

 

 

(a) At room temperature (25℃) condition  (b) At 40℃ temperature condition 

Figure 5-2  The observed lifetime data and the Weibull distribution of color shift. 
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Table 5-1  Goodness-of-fit test results of luminance TTFs 

Temperature 

Initial 

luminance 

intensity 

Type 

p-value 

Chi-square 
GoF test 

Kolmogorov-Smirnov 
GoF test 

25℃  Normal 0.204 0.746 

 ×2 Lognormal 0.250 0.360 

  Weibull 0.267 0.823 

  Normal 0.390 0.354 

 ×4 Lognormal 0.136 0.145 

  Weibull 0.500 0.506 

  Normal 0.204 0.281 

 ×6 Lognormal 0.147 0.088 

  Weibull 0.273 0.397 

40℃  Normal 0.535 0.508 

 ×1 Lognormal 0.073 0.207 

  Weibull 0.710 0.701 

  Normal 0.999 0.806 

 ×2 Lognormal 0.343 0.459 

  Weibull 0.785 0.962 

  Normal 0.839 0.999 

 ×4 Lognormal 0.338 0.890 

  Weibull 0.989 0.989 

  Normal 0.224 0.565 

 ×6 Lognormal 0.261 0.750 

  Weibull 0.189 0.512 

* Bold text indicates the maximum value among the three distributions. 
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Table 5-2  Goodness-of-fit test results of color shift TTFs 

Temperature 

Initial 

luminance 

intensity 

Type 

p-value 

Chi-square 
GoF test 

Kolmogorov-Smirnov 
GoF test 

25℃  Normal 0.333 0.458 

 ×2 Lognormal 0.829 0.938 

  Weibull 0.467 0.665 

  Normal 0.608 0.829 

 ×4 Lognormal 0.922 0.793 

  Weibull 0.627 0.879 

  Normal 0.698 0.822 

 ×6 Lognormal 0.851 0.941 

  Weibull 0.636 0.941 

40℃  Normal 0.338 0.397 

 ×1 Lognormal 0.873 0.887 

  Weibull 0.585 0.657 

  Normal 0.511 0.665 

 ×2 Lognormal 0.906 0.667 

  Weibull 0.590 0.688 

  Normal 0.568 0.597 

 ×4 Lognormal 0.578 0.976 

  Weibull 0.714 0.790 

  Normal 0.403 0.571 

 ×6 Lognormal 0.651 0.941 

  Weibull 0.992 0.942 

* Bold text indicates the maximum value among the three distributions. 



 

57 

 

As shown in Figure 5-3, the shape parameter corresponds to the slope of the 

Weibull probability paper with {ln 𝑡  &  ln[− ln(1 − 𝑝)]}. The scale parameter is 

the characteristic lifespan that represents the time for 63.2% failure to occur. In 

Figure 5-3, 21 data representing the usage condition are excluded from those used to 

build the accelerated model; the estimated usage lifetime is verified in a later step 

using these data. 

The likelihood function is the joint density function of n random variables, given 

unknown parameters (β, η): 

 
𝐿 = ∏𝑓(

𝑛

𝑖=1

𝑡𝑖|𝛽, 𝜂) (5.2) 

 

(a) Lifetime distribution of luminance   (b) Lifetime distribution of color shift 

Figure 5-3  Lifetime distribution plot drawn on Weibull probability paper. 
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Considering the Weibull parameters, namely the shape and scale parameters, the 

likelihood function is:  

 
𝐿(𝑡1, 𝑡2,⋯ , 𝑡𝑛|𝜂, 𝛽) = ∏

𝛽

𝜂
(
𝑡𝑖
𝜂
)
𝛽−1

𝑒
−(

𝑡𝑖
𝜂⁄ )

𝛽
𝑛

𝑖=1

 (5.3) 

 

5.1.2 Estimation of the Common Shape Parameter 

The slopes (i.e., shape parameter) in Figure 5-3 show variation. If OLEDs 

degrade with an identical failure mechanism, the shape parameters should 

theoretically be identical regardless of the loading conditions. In this study, we 

assumed that the failure mechanism did not shift, and thus a common shape 

parameter in the Weibull distribution can be calculated using the maximum 

likelihood estimator. The logarithm of Equation (5.3) was taken. 

 
ln 𝐿(𝜂, 𝛽) = ∑ln [

𝛽

𝜂
(
𝑡𝑗

𝜂
)
𝛽−1

𝑒
−(

𝑡𝑗
𝜂⁄ )

𝛽

]

𝑛

𝑗=1

   

 
= 𝑛 ln 𝛽 − 𝑛𝛽 ln 𝜂 + (𝛽 − 1)∑ln 𝑡𝑗

𝑛

𝑗=1

− ∑(
𝑡𝑗

𝜂
)
𝛽𝑛

𝑗=1

 (5.4) 

where tj is the failure time in the jth stress level and n is the number of samples. 

Then, it was differentiated with respect to η and β.  
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 𝜕 ln 𝐿

𝜕𝜂
= −

𝑛𝑗𝛽

𝜂
+ 𝛽 ∑𝑡𝑗𝑖

𝛽
𝜂−𝑚−1

𝑛𝑗

𝑗=1

 (5.5) 

 
𝜕 ln 𝐿

𝜕𝛽
=

1

𝛽
+ ∑

1

𝑛𝑗

𝐽

𝑗=1

∑ ln𝑡𝑗𝑖
𝑖∈𝐷𝑗

−
∑ ∑ 𝑡𝑗𝑖

𝛽̃
ln 𝑡𝑗𝑖

𝑛𝑗

𝑖=1
𝐽
𝑗=1

∑ ∑ 𝑡𝑗𝑖
𝛽𝑛𝑗

𝑖=1
𝐽
𝑗=1

 (5.6) 

where nj is the number of samples in each stress level (j = 1, 2, …, J); and tji is the 

failure time in the ith sample of the jth stress level. 

Equations (5.5) and (5.4) are equated to zero. See Equation (5.7) and (5.8):  

 ∑ ∑ 𝑡𝑗𝑖
𝛽̃
ln 𝑡𝑗𝑖

𝑛𝑗

𝑖=1
𝐽
𝑗=1

∑ ∑ 𝑡𝑗𝑖
𝛽𝑛𝑗

𝑖=1
𝐽
𝑗=1

− ∑
1

𝛽̃

𝐽

𝑗=1

− ∑
1

𝑛𝑗

𝐽

𝑗=1

∑ ln𝑡𝑗𝑖
𝑖∈𝐷𝑗

= 0 (5.7) 

 

𝜂𝑗̃ = (
1

𝑛𝑗
∑𝑡𝑗𝑖

𝛽̃

𝑛𝑗

𝑗=1

 )

1
𝛽̃⁄

 (5.8) 

 

By solving Equation (5.7) using numerical analysis (e.g., the Newton-Raphson 

method) a common shape parameter (𝛽̃) can be calculated. In this study, the number 

of stress levels is seven (J=7). For a more graphical understanding of the numerical 

analysis, Figure 5-4 shows the sum of Equation (5.7) in each stress level according 

to the common shape parameter. As shown in Table 5-3 and Table 5-4, the common 

shape parameter was estimated to be 4.67 in the case of luminance degradation and 
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2.22 in the case of color shift. The corresponding scale parameter was calculated 

using Equation (5.8). The visual inspection of the slopes shown in Figure 5-5 allowed 

 

(a) Log-likelihood function of luminance (b) Log-likelihood function of color shift 

Figure 5-4  The value of the log-likelihood function according to the common 

shape parameter (𝛽̃). 

 

Table 5-3  Parameter estimation result with maximum likelihood estimation (tf) 

T
em

p
er
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l 
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m

in
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ce
 Different shape parameter Common shape parameter 

Scale 

(η) 

Shape 

(𝛽̃) 

Negative-

log 

likelihood 

Scale 

(η) 

Shape 

(𝛽̃) 

Negative- 

log 

likelihood 

25℃ ×2 1871.86 4.37 143.50 1881.98  143.56 

 ×4 1669.20 4.91 139.24 1662.87  139.28 

 ×6 1243.52 4.41 156.99 1249.39  157.04 

40℃ ×1 1234.63 5.81 143.87 1216.90 4.6664 144.59 

 ×2 964.21 5.48 139.77 953.06  140.16 

 ×4 710.43 4.85 135.09 708.03  135.12 

 ×6 467.63 3.84 129.43 481.31  130.35 
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qualitative confirmation of the validity of our assumption, by which a common shape 

parameter is applied.  

 

Table 5-4  Parameter estimation result with maximum likelihood estimation (tfc) 

T
em

p
er

at
u
re

 

In
it

ia
l 

lu
m

in
an

ce
 Different shape parameter Common shape parameter 

Scale 

(η) 

Shape 

(𝛽̃) 

Negative-

log 

likelihood 

Scale 

(η) 

Shape 

(𝛽̃) 

Negative- 

log 

likelihood 

25℃ ×2 3558.78 2.30 164.068 3531.44  164.092 

 ×4 1609.80 3.24 151.859 1535.98  153.846 

 ×6 927.30 2.44 160.120 912.08  160.276 

40℃ ×1 2696.06 1.90 178.217 2818.99 2.2189 178.767 

 ×2 1018.53 2.78 152.756 985.72  153.522 

 ×4 425.95 2.43 136.320 418.85  136.334 

 ×6 182.17 1.60 124.539 202.95  126.981 

 

 

(a) Lifetime distribution of luminance   (b) Lifetime distribution of color shift 

Figure 5-5  Lifetime distribution plot drawn on Weibull probability paper. 
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5.1.3 Likelihood-Ratio Analysis 

The likelihood ratio test [117] was employed to quantitatively verify the 

assumption that lifetime distributions under different loading conditions have a 

common shape parameter for the accelerated degradation testing (ADT) of OLEDs. 

The null hypothesis is that Weibull distributions at different stress levels have a 

common shape parameter (𝛽̃):  

 
𝐻0 : 𝛽1  =  𝛽2 = ⋯  =  𝛽𝐽 = 𝛽̃ (5.9) 

The alternative hypothesis (H1) is that shape parameters at different stress levels 

are not the same. The function of test statistics (Λ) is defined as: 

 
Λ = 

= 

2(Λ̂1 + ⋯+ Λ̂𝐽 − Λ̂0) 

2 log 𝐿(𝜂̂1, 𝜂̂2,⋯ , 𝜂̂𝐽 , 𝛽̂1, 𝛽̂2 ⋯ , 𝛽̂𝐽) − 2 log 𝐿(𝜂̃1, 𝜂̃2,⋯ , 𝜂̃𝐽 , 𝛽̃) 

(5.10) 

where Λ̂1, …, and Λ̂𝐽 are the likelihood values obtained by fitting a distribution to 

the data from each test stress level; and Λ̂0 is obtained by fitting a model with the 

common shape parameter and a scale parameter for each stress level. The distribution 

of Λ follows a chi-square distribution with J-1 degrees of freedom (J: DOF of the 

alternative hypothesis, 1: DOF of the null hypothesis), where J is the number of 

stress levels. If Λ is equal to or less than χ2(1-α; J-1), H0 is accepted, where χ2(1-α; 

J-1) is the 100(1-α) percentile of the chi-square distribution with J-1 degrees of 
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freedom. Otherwise, H0 is rejected. Using the results in Table 5-3 and Table 5-4, Λ 

are calculated to be 4.43 in luminance and 12.13 in color shift, which are less than 

12.59 (= χ2(0.95; 6)). Because the calculated value is smaller than the criterion of the 

chi-squared statistics, it was concluded (with a significance level of 5%) that the 

shape parameter estimates are not significantly different. Therefore, through visual 

inspection of Figure 5-5 and the likelihood ratio test, the assumption that the lifetime 

distributions have a common shape parameter is valid. The results are summarized 

in Table 5-5 and Table 5-6. Consequently, the mean time to failure (MTTF) at each 

accelerated condition is obtained as: 

 
𝑀𝑇𝑇𝐹 = ∫𝑡𝑓(𝑡|𝛽̃, 𝜂𝑗̃) 𝑑𝑡 = 𝜂𝑗̃𝛤 (1 +

1

𝛽̃
) (5.11) 

 

Table 5-5  Results of goodness-of-fit test and estimated MTTF of luminance 

degradation using a common shape parameter 

Temperature 
Initial 

luminance 

p-value Estimated 

Mean time to 

failure (MTTF) 
Chi-square 

GoF test 
KS GOF test 

25℃ ×2 0.34 0.80 1721.07 

 ×4 0.44 0.42 1520.70 

 ×6 0.34 0.50 1142.57 

40℃ ×1 0.42 0.24 1112.85 

 ×2 0.93 0.69 871.57 

 ×4 0.92 0.99 647.50 

 ×6 0.06 0.16 440.16 
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5.2 Bivariate Lifetime Model 

5.2.1 Luminance Lifetime Model 

As presented in Section 3.2, the dominant AFs for OLEDs are temperature and 

luminance. Relevant lifetime models for the accelerated factors are the Arrhenius 

equation and the inverse power law, respectively. In this section, we propose a novel 

bivariate lifetime model for OLEDs by integrating the two lifetime models. The 

proposed model is:  

Table 5-6  Results of goodness-of-fit test and estimated MTTF of color shift using 

a common shape parameter 

Temperature 
Initial 

luminance 

p-value Estimated  

mean time to 

failure (MTTF) 
Chi-square 

GoF test 
KS GOF test 

25℃ ×2 0.53 0.76 3127.64 

 ×4 0.73 0.44 1360.35 

 ×6 0.84 0.98 807.79 

40℃ ×1 0.28 0.42 2496.65 

 ×2 0.99 0.77 873.01 

 ×4 0.89 0.96 370.95 

 ×6 0.24 0.27 179.74 
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𝑀𝑇𝑇𝐹(𝑇 ,  𝐼lum) =

𝐴

𝑇
∙ 𝑒

𝐵
𝑘𝑇 ∙ 𝑒

𝐼lum(𝐶+
𝐷
𝑘𝑇

)
 (5.12) 

where k is the Boltzmann constant (8.62×10-5); T is the ambient temperature (K); 

Ilum is the initial luminance intensity; and A, B, C, and D are the model parameters.  

By definition, the AF is: 

 
𝐴𝐹 =

𝑀𝑇𝑇𝐹n
𝑀𝑇𝑇𝐹a

 (5.13) 

where MTTFn is the mean time to failure under a normal usage condition; MTTFa is 

the mean time to failure under an accelerated condition. When Equation (5.12) is put 

into Equation (5.13), the AF for the proposed model becomes: 

 
𝐴𝐹 =

𝑇a

𝑇n
∙ exp [

𝐵

𝑘
(
1

𝑇n
−

1

𝑇a
)] ∙

exp [𝐼lumn
(𝐶 +

𝐷
𝑘𝑇n

)]

exp [𝐼luma
(𝐶 +

𝐷
𝑘𝑇a

)]
 (5.14) 

where Tn is the temperature under a normal usage condition; Ta is the temperature 

under an accelerated condition; Ilumd is the initial luminance intensity; and Iluma is the 

accelerated level of luminance intensity. 
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5.2.2 Color Shift Lifetime Model 

Relevant lifetime models for color shift are the Arrhenius equation and the BET 

equation, respectively. In this section, we propose a novel bivariate lifetime model 

for OLEDs’ color shift by integrating the two lifetime models. The proposed model 

is: 

 
𝑀𝑇𝑇𝐹(𝑇 ,  𝐼lum) = 𝐴 (

𝐼lum

𝜗 − 𝐼lum
)
−𝐵

exp
𝐶

𝑘𝑇
 (5.15) 

where k is the Boltzmann constant (8.62×10-5); T is the ambient temperature (K); 

𝐼lum is the luminance intensity; 𝜗 is the ideal limit of luminance intensity; and A, 

B, and C are the model parameters. 

When Equation (5.12) is put into Equation (5.15), the AF for the proposed model 

becomes: 

 
𝐴𝐹 = [

𝐼lumn

𝐼luma

∙ (
𝜗 − 𝐼luma

𝜗 − 𝐼lumn

)]

𝐵

∙  exp [
𝐸

𝑘
(
1

𝑇n
−

1

𝑇a
)] (5.16) 

where Tn is the temperature under a normal usage condition, Ta is the temperature 

under an accelerated loading condition, Ilumn is the initial luminance intensity, and 

Iluma is the accelerated level of luminance intensity. The first term of Equation (5.16) 

represents nonlinearity interaction and singularity when luminance reaches ϑ (=11). 
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5.3 Validation of the Lifetime Model 

Luminance Lifetime Model 

Least squares regression analysis was conducted to estimate the unknown model 

parameters of the proposed bivariate lifetime model. As shown in Figure 5-6, by 

visual inspection, the proposed model showed a good agreement with the 

experimental data. The proposed model (i.e., straight line) could explain the data 

Table 5-7  Least squares regression analysis  

Model parameters Goodness-of-fit 

A B C D SSE* R2 DOF* MSE* 

41.101 0.25 -1.72 0.04 0.0071 0.9948 3 0.0486 

* SSE: sum of square error; DOF: degree of freedom; MSE: mean square error 

 

 

(a) Comparison with each bivariate model (b) Contour plot of the proposed model 

Figure 5-6  Regression results of the bivariate luminance lifetime model 

estimated using MTTF. 
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sufficiently. Using a quantitative measure, the goodness-of-fit was also evaluated. 

The R-squared value was as high as 0.9948 (see Table 5-7). From visual inspection 

and quantitative evaluation, it was concluded that the proposed model was 

appropriate to describe the relationship between the MTTFs of OLEDs and initial 

luminance intensity. Figure 5-7 shows how well the two acceleration factors follow 

the proposed model.  

Table 5-8  Acceleration factor at six times the initial luminance intensity 

AF Term 1 Term 2 Term 3* 

5.91  1.05  1.59  3.53 

* Interaction term with temperature and initial luminance intensity 

 

 

(a)                            (b)  

Figure 5-7  Lifetime distribution calculated from the model and AF: (a) initial 

luminance intensity and (b) temperature. 
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The AF between normal usage conditions (i.e., 25°C and initial luminance 

intensity) and accelerated conditions (i.e., 40°C and six times the initial luminance 

intensity) was calculated to be 5.91. The details are shown in Table 5-8. The 

magnitude of the interaction term was largest among all terms, which indicates that 

a univariate lifetime model with a single AF may provide poor lifetime estimation 

due to its lack of consideration of the interaction between temperature and luminance.  

The accuracy of the proposed bivariate lifetime model was evaluated by 

comparing the experimental data with statistical distributions calculated by the 

regression model from seven MTTFs from accelerated conditions. The MTTF was 

used as a metric for comparison. The MTTF of the 21 failure samples was 1,876 

hours; whereas, the MTTF estimated from the proposed model was 1,959 hours. The 

error was only 4%, which is almost negligible. We also employed two GoF tests to 

evaluate the validity of the proposed model. Using the estimated MTTF for normal 

usage conditions and the common shape parameter from Equation (5.11), the scale 

parameter (𝜂𝐽̃) was calculated. The statistical distribution at normal usage conditions 

was estimated using the common shape parameter (𝛽̃) and the scale parameter (𝜂𝐽̃) 

of the Weibull distribution. The results from chi-square and Kolmogorov-Smirnov 

GoF tests showed that the statistical distribution predicted from the proposed model 

was not significantly different from the TTF data with a confidence level of 95%. 

Therefore, we concluded that the proposed model is valid. 
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The results from the proposed bivariate lifetime model were compared with those 

from other models available in the literature. It should be noted that, to the best of 

our knowledge, no bivariate lifetime model has previously been developed for 

OLEDs. Therefore, a comparison was conducted with a model used for LEDs and 

another model used for general applications. First, Han and Wang [6, 12] adopted 

Peck’s relationship [112] to describe the lifetime of LEDs. Second, Intel’s model 

[113] was used in various applications. The model parameters of Peck’s and Intel’s 

models were calculated using non-linear regression analysis. The MTTFs estimated 

using the two models were 2,607 and 2,277 hours, respectively. The errors were 39% 

and 21%, respectively. The GoF test results showed that the results obtained from 

the two models were significantly different from the TTF data, which is not 

acceptable. Consequently, we concluded that the model proposed in this study 

outperformed the existing models. A summary of the comparison is shown in Table 

5-9 

Figure 5-8 compares statistical distributions (i.e., probability density and 

cumulative distribution functions) of OLED lifetime under normal usage conditions. 

These distributions were obtained from the experimental data and the three models. 

The results show that the statistical distribution derived from the proposed model 

best describes the empirical distribution, as compared to other models. This is 

partially because the proposed model includes the interaction term and is thus more 

flexible. 
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Color Shift Model 

Least squares regression analysis, using Equation (5.15), was conducted to 

estimate the unknown model parameters of the proposed bivariate lifetime model. 

Table 5-9  Estimated lifetime and validity check 

Model 

Estimated lifetime Chi-square GoF test KS GoF test 

MTTFobs
*= 

1875 
Error* Hypothesis P-value Hypothesis P-value 

Proposed 1959 4% Accept 1.66×10-1 Accept 6.38×10-2 

Peck’s Model 2607 39% Reject 8.09×10-5 Reject 5.61×10-5 

Intel’s Model 2277 21% Reject 8.77×10-4 Reject 4.72×10-5 

 

   

(a) Probability density plot           (b) Cumulative distribution plot 

Figure 5-8  Comparison between testing and estimated results. 
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As shown in Figure 5-9, by visual inspection, the proposed model showed a good 

agreement with the experimental data—the proposed model sufficiently explains the 

data. The R squared value was as high as 0.9770 (see Table 5-10). From visual 

inspection and quantitative evaluation, it was concluded that the proposed model can 

appropriately describe the relationship between the MTTFs of OLEDs and initial 

luminance intensity or ambient temperature. Figure 5-10 shows how well the two 

acceleration factors follow the proposed model.  

Table 5-10  Least squares regression analysis  

Model parameters Goodness-of-fit 

A B C SSE* R2 
DOF

* 
MSE* 

5.54E-9 -0.8688 0.6622 0.14154 0.9970 4 0.16825 

* SSE: sum of square error; DOF: degree of freedom; MSE: mean square error 

 

 

(a) Comparison with each bivariate model (b) Contour plot of the proposed model 

Figure 5-9  Regression result of bivariate color shift lifetime model estimated 

using MTTF. 
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The AF between the normal usage (i.e., 25°C and initial luminance intensity) and 

accelerated (i.e., 40°C and six times the initial luminance intensity) conditions was 

calculated to be 29.76. The details are shown in Table 5-11. The magnitude of the 

AF of the color shift was much larger than that of luminance degradation found in 

the previous section.  

The accuracy of the proposed bivariate lifetime model was evaluated by 

comparing the experimental data with statistical distributions calculated by the 

 

(a)                            (b)  

Figure 5-10  Lifetime distribution calculated from the model and AF: (a) initial 

luminance intensity and (b) temperature. 

 

Table 5-11  Acceleration factor at six times the initial luminance intensity 

AF Term 1 Term 2 

29.76  8.66  3.44  
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model. The MTTF of the 21 failure samples was 6,450 hours; whereas, the MTTF 

estimated from the proposed model was 6,400 hours. The error of only 1% was 

almost negligible. We also employed two GoF tests to evaluate the validity of the 

proposed model. The statistical distribution for normal usage conditions was 

calculated using the common shape parameter (𝛽̃) of the Weibull distribution. The 

results from chi-square and Kolmogorov-Smirnov GoF tests showed that the 

statistical distribution predicted from the proposed model was not significantly 

different from the TTF data, with a confidence level of 95%. Therefore, we 

concluded that the proposed model is valid.  

The results from the proposed bivariate lifetime model were compared with those 

from other models available in the literature. It should be noted that, to the best of 

our knowledge, no bivariate lifetime model for color shift has previously been 

developed for OLEDs. Therefore, a comparison was conducted with a luminance 

lifetime model used for LEDs and OLEDs.  

The model parameters of Peck’s, Intel’s, and Kim’s models were calculated using 

non-linear regression analysis. The MTTFs estimated using the three models were 

8,692, 5,680, and 4,736 hours, respectively. The errors were 35%, 12% and 27%, 

respectively. The GoF test results showed that the results obtained from the two 

models were significantly different from the TTF data, which is not acceptable. 

Consequently, we concluded that the model proposed in this study outperformed the 

existing models. A summary of the comparison is shown in Table 5-12.  
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Figure 5-11 compares statistical distributions (i.e., probability density and 

cumulative distribution functions) of OLED lifetime for color shift under normal 

usage conditions. These distributions were obtained from the experimental data and 

the three models. The results show that the statistical distribution provided by the 

Table 5-12  Estimated lifetime and validity check 

Model 

Estimated lifetime Chi-square GoF test KS GoF test 

MTTFobs
*= 

6450 
Error* Hypothesis P-value Hypothesis P-value 

Proposed 6400 1% Accept 6.66×10-1 Accept 8.64×10-1 

Peck’s Model 4736 27% Accept 7.68×10-2 Reject 3.57×10-2 

Intel’s Model 5680 12% Accept 5.88×10-1 Accept 5.47×10-1 

Kim’s Model 8692 35% Reject 2.60×10-3 Reject 3.60×10-3 

 

   

(a) Probability density plot           (b) Cumulative distribution plot 

Figure 5-11  Comparison between testing and estimated results. 
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proposed model best described the empirical distribution. This is partially because 

the proposed model includes the highest nonlinearity interaction term. 
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Chapter 6. Statistical Model Validation of Heat Dissipation 

Analysis Model 

Ensuring the color shift lifetime for OLEDs is a great hurdle for timely product 

development. Nonetheless, to date, there has been no effective way to estimate the 

color shift lifetime at early stages of product development, while the product design 

is changing. Mechanical engineers and the reliability experts have to execute many 

tests to gather the best available lifetime estimates.  

To address this need, this research proposes a novel scheme for color shift 

lifetime analysis. The proposed technique consists of: (1) a finite element model for 

OLED thermal analysis that incorporates the uncertainty of the measured surface 

temperature, (2) statistical model validation, including model calibration to ensure 

agreement of the predicted results with respect to experimental data; the model is 

calibrated through adjustment of a set of physical input variables and a hypothesis-

test-based validity check to measure the degree of mismatch between predicted and 

observed results, and (3) a regression model that can predict the color shift lifetime 

using the surface temperature at an early stage of product development. It is expected 

that the regression model proposed here will shorten product development time 

substantially by predicting the color shift lifetime through OLED thermal analysis. 

TV manufacturers face a difficult task when attempting to analyze and design a 

thermal path or heat dissipation scheme for a TV set. First, they do not have exact 

information about the amount of thermal dissipation in the OLED microstructure, 
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nor do they understand the exact effect that temperature conditions have on time-

dependent OLED characteristics. Due to the material properties of each stacking 

layer in the microstructure and the size of the finite element model that would be 

required, it is virtually impossible to build a detailed thermal analysis model.   

 Second, test results show significant variability not only among TV samples, but 

also spatially in individual samples. As shown in Figure 4-3, test results show uneven 

luminance distribution and spatial temperature variations, even in the same 

temperature condition. The reason for this randomness is mainly due to the organic 

materials used and a result of the manufacturing process [118]. Threshold voltage 

and mobility are uncertain due to the manufacturing process. Localized 

crystallization on the panel during manufacturing of the low-temperature 

polycrystalline silicon (LTPS) TFT can easily result in non-uniformity of the OLED 

current [119-121]. Each pixel has a different threshold mobility value. Also, the 

reason for TFT degradation is due to characteristic decay of threshold voltage and 

mobility according to the driving voltage. In order to compensate for threshold 

voltage and mobility variations, and thereby enhance display uniformity, most 

commercial manufacturers utilize compensation algorithms and additional 

compensation circuits [122]. 
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6.1 Estimation Method for TTF using Surface Temperature 

Large OLED panels with a size of 55 inches or larger are subjected to physical 

uncertainty in real-world applications (e.g., spatial temperature variations in the 

OLED panel and inherent randomness in organic materials). In particular, the 

orientation, size, and non-uniform temperature profile impacts OLED operation, 

resulting in an uneven luminance distribution [33, 123, 124]. 

Some prior research about OLEDs’ picture quality has been focused on defining 

a relationship between temperature and luminance degradation [118, 125]. In this 

section, we propose an empirical relationship between surface temperature and the 

TTF from color shift through a regression method, as shown in Figure 6-1. This 

relationship between surface temperature and the TTF of color shift enables 

estimation of the TTF of color shift using only temperature data and at the early 

stages of development.  

The proposed model is: 

 
𝑡𝑓𝑐 = 𝑎0𝑒

𝑎1𝑇𝑗 (6.1) 

where Tj is temperature on the surface of the OLED panel and a0 and a1 are the model 

parameters. Detailed regression results are shown in Table 6-1. Equation (6.1) can 

be used to estimate the time to failure of color shift by using the junction temperature.  
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Figure 6-1  Test and regression results: The unfilled circle is the test result at room 

temperature (25℃); the solid circle is the test result at 40℃. The red 

line is estimated using the exponential regression model. 

 

Table 6-1  Least squares regression analysis 

Temperature 
Model parameters Goodness of test 

a0 a1 SSE* R2 DOF* MSE* 

25℃ 6.40E+05 -0.1675 4.32E+07 0.9235 79 739.79 

40℃ 3.51E+07 -0.2121 5.55E+06 0.9469 82 260.25 

* SSE: sum of square error; DOF: degree of freedom; MSE: mean square error 
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6.2 Thermal Analysis Model for OLED Displays 

Because thermal design has an effect on various reliability issues in large-sized 

displays, mechanical designers utilize a computational model in the early stages of 

   

Figure 6-2  Description of finite element model for thermal analysis. 

 

 

Figure 6-3  Resultant temperature contour of simulation. 
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product development. Unfortunately, there is a practical obstacle to building a 

computational model for large-sized OLED TVs due to their complicated micro 

structure temperature limits. Thus, no model is available to guarantee the various 

reliability factors related to picture quality.  

Computational fluid dynamics analysis of an OLED TV takes 0.5 day with 8 CPU 

parallel processing to solve the fundamental nonlinear differential equations. Thus, 

we suggest a simple finite element model for steady-state analysis, as shown in 

Figure 6-2. The heat transfer coefficient (h) can be scaled as 𝐿𝑐
−1/4

, (the 

characteristic length of the display in the gravity direction), using a natural 

convection correlation the Nusselt number has been experimentally fit to the 

Rayleigh number in the case of the isothermal vertical plate [38]. The convection 

coefficient was assigned differently according to the vertical location in a 

commercial FEA package, ANSYS. A simulated temperature result contour is shown 

in Figure 6-3.  

 

6.3 Statistical Calibration using the EDR Method 

The uncertainty of unknown model variable vector (𝛉) can be represented by 

statistical parameters of a suitable distribution. The hyper-parameter vector (𝚯) is 

defined as 𝚯 = log𝑁{𝜇𝛉, 𝜎𝛉}, which includes the logarithmic mean and standard 
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deviation of θ. The calibration parameter vector ( 𝚯 ) will be determined by 

maximizing the agreement between the predicted and observed results as: 

 
maximize 𝐿(𝚯|𝐲) = ∑log10⌊𝑓(𝑦𝑖|𝚯)⌋

𝑛

𝑖=1

 (6.2) 

where 𝑦𝑖 is a component of the random response; n is the number of observed data; 

𝑓(𝑦𝑖|𝚯) is the PDF of 𝑦𝑖 for a given value of 𝚯; and L is a likelihood function, 

which is used as the calibration metric to measure the degree of agreement between 

the predicted and observed data.  

After building the PDF of a predicted response using uncertainty propagation (UP) 

analysis, the likelihood function is calculated by integrating probability densities 

over experimental data. Among many UP analysis approaches, the eigenvector 

dimension reduction (EDR) method was utilized in the research outlined in this 

thesis due to its relatively low computational cost. The EDR method is an 

enhancement of the univariate dimension reduction method that calculates the 

statistical moments of the response. The statistical moments of the response, 𝑌̂, can 

be calculated as: 

 
𝐄[𝑌̂𝑚(𝐙)] = ∫ ∫ 𝑌̂𝑚(𝐳) ∙ 𝑓𝐳(𝐳)

∞

−∞

∙ 𝑑𝐳
∞

−∞

, 𝑚 = 0,1,2,⋯ (6.3) 

where, Z is an augmented variable vector, E[∙] indicates the expectation operator, 

and 𝑓𝐳(𝐳) is the joint probability density function (PDF) of Z. Multi-dimensional 
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integration in Equation (6.3) can be converted into multiple one-dimensional 

integrations using additive decomposition. The additive decomposition, 𝑌̂𝑎 , is 

defined as:  

 

𝑌̂(𝑍1, ⋯ , 𝑍𝑁) ≅ 𝑌̂𝑎(𝑍1,⋯ , 𝑍𝑁) 

= ∑𝑌̂(𝜇1,⋯ , 𝜇𝑗−1, 𝑍𝑗 , 𝜇𝑗+1,⋯ , 𝜇𝑁)

𝑁

𝑗=1

− (𝑁 − 1)𝑌̂(𝜇1, ⋯ , 𝜇𝑁) 
(6.4) 

Although the additive decomposition ( 𝑌̂𝑎 ) ignores all the interactive terms, the 

produced error is less than that of a second-order Taylor expansion method for 

probability analysis. Two reasons can explain this observation: (1) the additive 

decomposition (𝑌̂𝑎) preserves the accuracy of all uni-variable terms; (2) after the 

expansion of the true response (𝑌̂) using Taylor expansion at the mean value μi, the 

integration of the interactive variable terms in Equation (6.4) becomes zero, as long 

as one of the variables is odd-order, provided that all variables are independent and 

the integration domain is symmetric. The symmetry of the integration domain, 

namely the symmetric PDF of the variable, ensures that all odd-order central 

moments are zeros. For that reason, any asymmetric distribution must be transformed 

to a symmetric distribution. Therefore, the largest error incurred due to the additive 

decomposition is at the fourth even-order term, producing a negligible error. In aid 

of the additive decomposition, the probability analysis of the response becomes 

much simpler. For reliability and quality assessment, the mth statistical moments for 

the response can be approximately obtained as: 
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𝐄[𝑌̂𝑎

𝑚(𝐙)] = 𝐄 {[∑ 𝑌̂(𝜇1, ⋯ , 𝑍𝑗, ⋯ , 𝜇𝑁)
𝑁

𝑗=1
− (𝑁 − 1) ∙ Z(𝜇1, ⋯ , 𝜇𝑁)]

𝑚

} (6.5) 

Using a binomial formula, Equation (6.5) can be evaluated by executing one-

dimensional integration recursively. To enhance both accuracy and efficiency in 

probability analysis, three technical elements are considered: (1) the eigenvector 

sampling method to handle correlated and asymmetric random input variables, (2) 

the stepwise moving least squares method for one dimensional response 

approximation, and (3) a stabilized Pearson system for generating a PDF of a 

response. Thus, for N number of random variables, the EDR method only demands 

2N+1 or 4N+1 eigenvector samples to obtain a PDF of a response. 

In this thesis, n is 84 (3 sets and twenty-eight patterns per set), because we utilized 

three OLED panels tested at 25℃ ambient temperature for the statistical calibration 

procedure. We used a gradient-based optimizer in MATLAB software to solve the 

calibration problem. Uncertainty propagation (UP) analysis using the approximate 

integration method was achieved by: (1) calculating the statistical moments of the 

system response, and (2) constructing the statistical distributions of the system 

response. We applied the eigenvector dimension reduction (EDR) approximate 

integration technique, which required only 4N+1 runs for a single iteration [87, 126]. 

The Pearson system was implemented for construction of the statistical distribution 

[85, 87, 127]. The statistical calibration procedure is drawn in Figure 6-4. 
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Statistical calibration begins with the selection of unknown variables. The 

selection of an appropriate set of unknown variables is critical to the successful 

implementation of model calibration. We defined three unknown variable candidates 

(N=3) based on both expert opinions and historic development data. Each of them is 

assumed to follow a specific statistical distribution with two parameters. 

The first unknown variable, the amount of driving current (𝑗1) that generates light 

while it dissipates heat, is known to have a liner relationship with luminance intensity. 

Figure 4-3 shows both the variance of luminance and surface temperature in the same 

condition, according to pattern location. In this study, we assumed that the driving 

 

Figure 6-4  The statistical calibration procedure. 
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current has uncertainty that was modeled by a log-normal distribution with two 

parameters (𝜃1 = 𝑗1~log𝑁(𝜇𝜃1
, 𝜎𝜃1

)). 

The second unknown variable is the amount of heat dissipation (𝑞pcb) from the 

printed circuit board (PCB) that is attached to the back side of the OLED panel (𝜃2 =

𝑞pcb~log𝑁(𝜇𝜃2
, 𝜎𝜃2

)). 

The last variable is the deviation of the equivalent thermal conductivity (𝑘eq) of 

the overall OLED panel. Based on thermal designers’ experience and the literature, 

the mean of the equivalent thermal conductivity was set as 4.78 W/℃/m2 (see 

reference [33]). Because individual OLED pixels in a panel are subjected to various 

physical and operating uncertainties, the distribution of conductivity was assumed to 

be a log-normal distribution (𝜃3 = 𝑘𝑒𝑞~ log(4.78, 𝜎𝜃3
)). 

 

6.4 Validity Check 

A validity check of a statistically calibrated model requires experimental data 

under different operating conditions. The experiments required for a validity check 

are normally conducted under various operating conditions in a validation domain. 

Given limited experimental data for the validity check, it is beneficial to integrate 

evidence from all observation data over the entire validation domain into a single 

measure of overall mismatch. The U-pooling method allows integration of the 
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evidence from all experimental data under various experimental settings [85, 128]. 

The cumulative density, 𝑢𝑖, can be obtained through the transformation of every 

experimental datum (𝑦𝑖) described in Section 2.4. The 𝑢𝑖 values obtained using (1) 

all experimental data and (2) the predicted results of the computational model follow 

a uniform distribution of [0,1]. Figure 6-5 shows an example of the experimental 

datum (𝑦𝑖) in the 8th pattern and the cumulative density (𝑢𝑖) calculated from the 

predicted PDF. A total of 84 temperature data (3 OLED sets and twenty-eight 

patterns per set) at an ambient temperature condition, were utilized for the calibration 

domain.  

We can quantify the degree of mismatch between the dispersion of experimental 

data and the distribution of the predicted result by calculating the area (𝑈𝑚) between 

 

Figure 6-5  The transformation of experimental temperature (yi) from the predicted 

PDF estimated by the simulation result. 
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the CDF of the uniform distribution (𝐹uni) and the empirical CDF (𝐹𝑢) of the 𝑢𝑖 

values corresponding (𝑦𝑖) to the experimental data. In the research outlined in this 

thesis, there are eighty-four experimental data; the predicted PDFs under different 

conditions (different positions in the three different OLEDs) are shown in Figure 

6-6(a). The 𝑢𝑖 of each experimental datum was calculated and its empirical CDF is 

drawn in Figure 6-6(b). The calculated area of the shaded region in Figure 6-6(b) 

indicates the 𝑈𝑚. The smaller the calculated the 𝑈𝑚, the closer the predicted PDF 

is to the actual distribution of experimental data. For example, if the model well 

represents the physical responses (i.e., the model is valid) the 𝑈𝑚 will be zero when 

enough experimental data exists. Otherwise, (i.e., when the model is not valid), the 

𝑈𝑚  will be a positive value. An area metric enables us to verify whether the 

predicted temperature at each pattern of the OLED panel under the 40℃ condition, 

using the calibrated parameters at the 25℃ condition, is valid.  

  

(a) Predicted and experimental results      (b) Area metric (=Um) 

Figure 6-6  Calculation of area metric. 
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6.5 Results and Discussion 

Figure 6-7 compares the initial PDFs of surface temperature with the calibrated 

PDFs that are acquired through uncertainty propagation analysis using the EDR 

method. The calibrated vector of the unknown variables and the value of likelihood 

are listed in Table 6-2. Using the calibrated vector under a 25℃ temperature 

condition, we performed a validity check of 84 observed data in the validation 

domain under a 40℃ temperature condition. Eighty-four U-pooling and area 

metrics, both in the calibration and the validation domains, were individually plotted 

 

Figure 6-7  Initial guess and calibrated values for surface temperature at the 27th, 

28th, 29th, and 31st pattern of three OLED panels under a 25℃

temperature condition.  
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in Figure 6-8. The values of the area metric in each validation (𝑈𝑚𝑣
) and calibration 

domain (𝑈𝑚𝑐
) were 0.06096 and 0.03943.  

A hypothesis test for the validity check proposed by Jung et al. [85] was 

implemented using the empirical probability distribution of area metric ( 𝑓𝑢,𝑖 ). 

Table 6-2  The calibrated vector of the unknown variables 

Variables 
Random 

Parameter 

Initial 

vector 

Calibrated 

vector 

The amount of Mean 9 8.33 

driving current (j1) Std. 0.9 1.5 

The amount Mean 2.5 2.73 

heat dissipation (qPCB) Std. 0.25 1.5 

Equivalent conductivity (keq) Mean 0.48 1.2 

Negative log-likelihood 126.67 70.74 

 

 

  

Figure 6-8  Area metric and hypothesis results obtained with 84 test results in the 

calibration and validation domains. 
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Results show (1) it asymptotically converges to zero as the size of the experimental 

data increases, and (2) it is identically determined irrespective of the shape of the 

true distribution because a set of 𝑢𝑖 values always follows a uniform distribution 

regardless of the true distribution shape. Both area metrics are less than 0.0613 

(𝐷84(0.05) = 𝑓𝑢,84). Since the calculated values are smaller than the criterion of the 

area metric (𝑈𝑚𝑣
 and 𝑈𝑚𝑐

< 𝐷84(0.05) = 0.0613), it was concluded that the 

calibrated model is valid even in the validation domain.  
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Chapter 7. Case Study 

For the demonstration of reliability estimation at an early stage of product 

development, this chapter employs a case study about thermal heat dissipation 

analysis. 

 

7.1 Computational Modeling  

Computational fluid dynamics (CFD) uses numerical method to solve the 

fundamental nonlinear differential equations that describe fluid flow. This enables 

accurate prediction of temperature as it considers all modes of heat transfer. Figure 

 

Figure 7-1  Top view of simulation domain (left) and side view (right)  
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7-1 shows the simulation domain of CFD analysis of OLED panels. A 55-inch OLED 

panel employing WOLED and oxide TFT was implemented inside of the simulation 

domain. The size of OLED panel is 1.2m × 0.68m with 10mm thickness, and the 

simulation domain is 3.2m × 2m × 3m. CFD analysis was performed in the 

commercial CFD package, ICEPAK. In order to natural convection phenomenon, 

  
(a) Velocity result of fluid domain   (b) Temperature result of fluid domain 

 
(c) Temperature result in OLED panel 

Figure 7-2  Simulation results: (a) Velocity of fluid domain, (b) Temperature of fluid 

domain, and (c) Temperature of OLED panel. 
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both of the momentum term and the energy term was solved together. The radiation 

effect was neglected because temperature change is not high. As shown in Figure 

7-2(c), the maximum temperature of panel reaches on the top of the panel. 

In order to validate the heat transfer coefficient (h) calculated from theorical value, 

the heat transfer coefficient in each surface node was extracted from CFD result. 

Figure 7-3 shows the comparison of the heat transfer coefficient (h) along to virtical 

direction. The theoritcal value of the heat transfer coefficient fit approximately well, 

even though there is mismatch in bottom area of OLED panel. 

 

7.2 Estimation of Color Shift 

In this section, the color shift lifetime will be estimated, using the heat distribution 

result in section 7.1 and the regression model, which was established in Table 6-1. 

      

Figure 7-3  The comparison between the heat transfer coefficient from CFD result, 

and from theoretical value. 
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For easy manipulation of numerical calculation, the temperature result of OLED 

panel calculated from the CFD analysis was transformed with matrix format of 

MATLAB program. Figure 7-4 shows that the color shift lifetime calculated with 

Equation (6.1) is 818.62 hours. In base of current thermal design and the reliability 

characteristics of OLED panel, the reliability of OLED display can be estimated at 

an early stage of product development.  

 

7.3 Estimation of Luminance Degradation  

Unlike the color shift lifetime, the regression model that enables the 

establishment of the relationship between the surface temperature of OLED panel 

and the performance of the luminance degradation was not clearly developed in this 

study. However, the acceleration factor of the luminance lifetime model was 

suggested in Equation (5.16) of section 5.1.1. Assuming that there is no acceleration 

condition about the initial luminance intensity, and the temperature under an 

      

Figure 7-4  The estimated color shift lifetime. 



 

97 

 

accelerated condition, Ta, is directly related with the surface temperature of OLED 

panels, the relative luminance degradation is calculated as shown in Figure 7-5. 

Because the SED curve enables the estimation of luminance decay trend in the 

minimum temperature location, the luminance degradation at other location can be 

derived with the AF model by the temperature. As shown in Figure 7-5(d), the 50% 

degradation of the luminance appears after 1,850 hours. The time to failure of 

luminance was calculated as 1,823 hours by the linear interpolation of the relative 

luminance at 1,850 hours and at 1,800 hours. 

 

(a) Luminance distribution after 500 hours   (b) Luminance distribution after 1,400 hours 

 

(c) Luminance distribution after 1,600 hours   (d) Luminance distribution after 1,850 hours 

Figure 7-5  The estimated luminance degradation from SED curve and AF by 

surface temperature. 
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Chapter 8. Contributions and Future Work 

 

8.1 Contributions and Impacts 

Large OLED panels with a size of 55 inches or larger are subjected to physical 

uncertainty in real-world applications (e.g., spatial temperature variations in the 

OLED panel and inherent randomness in organic materials). Estimation of the 

nominal lifetime of OLED panels is important for quality and reliability assurance 

during the design stage. Nevertheless, previous studies for OLEDs have not fully 

addressed these physical uncertainties to enable accurate lifespan estimation for 

large OLED panels. To fill this gap, in this research, we proposed (1) design of 

accelerated degradation tests (ADTs) for OLED panels, (2) development of two 

bivariate lifetime models for OLED panels, (3) a systematic scheme to build 

bivariate lifetime models for OLED panels, and (4) statistical model validation of 

the OLED surface temperature prediction model for OLED TV design using V&V 

methodology. 

Contribution 1: Design of accelerated degradation tests for OLED panels 

The display pattern in each TV set was suggested to predict two kinds of 

reliability issues – luminance degradation and color shift – for normal usage 

conditions and with results available within a short test period. An optimal design of 
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experiment was proposed by executing various accelerated conditions in each OLED 

panel. Six OLED panels proved to be enough to predict the lifetime during normal 

usage conditions. 

Contribution 2: A novel bivariate lifetime model for luminance degradation  

A novel bivariate lifetime model was proposed to analyze the lifespan testing data 

for OLEDs. The time to failure and time to 50% luminance degradation were 

calculated from the stretched exponential decay curve. The nominal life estimated 

using the bivariate lifetime model showed only a 4% error compared to the 

experimental data. The proposed bivariate lifetime model with the interaction term 

between the ambient temperature and the luminance intensity outperformed existing 

models. Thus, quality and reliability engineers are encouraged to use the bivariate 

lifetime model proposed in this study for OLEDs. Using the proposed model, the 

lifetime of large OLED panels subjected to normal usage conditions can be predicted 

by extrapolating accelerated life testing results from a manufacturer’s own 

experiments. 

Contribution 3: A novel bivariate lifetime model for color shift 

In this work, a novel lifetime model was developed for large OLED panels that 

are subject to inherent randomness that includes variations in temperature and 

manufacturing tolerances. By estimating the parameters of the performance 

degradation curve, the time to 0.0322 color shift in the CIE 1931 coordinates was 
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calculated. A novel bivariate acceleration model was proposed to analyze the 

lifespan testing data for OLEDs. This model, combined with the BET model for 

initial luminance intensity and the Arrhenius relationship for ambient temperature, 

outperformed the previously published Intel and Peck models. The nominal life 

estimated using the proposed bivariate lifetime model showed only a 1% error 

compared to the experimental data.   

Contribution 4: A systematic scheme to build bivariate lifetime models 

A statistical approach was proposed to develop a lifetime model that considers 

the manufacturing and operational uncertainty sources in OLED panels. The 

proposed statistical analysis consists of: (1) estimation of the time to failure (TTF) 

using accelerated degradation data and the stretched exponential decay model, (2) 

inference of a common shape parameter for the lifetime distributions, (3) evaluation 

of validity through likelihood ratio analysis, and (4) prediction of lifetime 

distributions of OLED panels using the proposed bivariate AF model. This statistical 

approach will help predict an accurate lifetime distribution for large OLED panels 

subjected to various uncertainties, and will give guidance to OLED manufacturers 

for development of the lifetime model. 

Contribution 5: Statistical validation of the bivariate lifetime models for 

OLED panels 
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A likelihood-ratio-based validation method was proposed to determine whether 

the common distribution parameter was significantly different from the individual 

distribution parameters estimated from lifespan testing data under the different 

acceleration levels. We demonstrated the applicability of the validation method using 

data from lifespan testing of OLEDs. 

The goodness-of-fit test was utilized to evaluate the performance of the lifetime 

models. The proposed lifetime models were proven to estimate well the MTTFs of 

OLEDs in normal usage conditions. 

Contribution 6: An analysis process for prediction of the color shift lifetime 

at an early stage of product development 

The immature technology for the reliability estimation is a great hurdle for timely 

product development of OLEDs. Because there has been no way to estimate the color 

shift lifetime at an early stage of product development, while design changes are 

ongoing, mechanical engineers and reliability experts have traditionally had to 

execute many tests. To overcome this, a novel analysis process was suggested in this 

research. 

The analysis process consists of: (1) a simple finite element model that enables 

incorporation of the uncertainty of the measured surface temperature, (2) statistical 

model validation that includes model calibration to demonstrate the agreement 

between the predicted results and a set of experimental data through the adjustment 
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of a set of physical input variables and a hypothesis test for validity checking to 

measure the degree of mismatch between the predicted and observed results, and (3) 

a regression model that can predict the color shift lifetime using the surface 

temperature calculated from the calibrated FE model. 

In the early stages of product development, this process is expected to shorten the 

period of the product development, by predicting the color shift lifetime through  

simple heat dissipation analysis.  

Based on these six achievements, we expect that the development period of both 

OLED panels and OLED TVs will be shortened. In addition, the research in this 

study can be utilized by manufacturers to find optimal designs to meet the criteria of 

the color shift lifetime at early stages of product development. The process during 

the product development will be innovated, as shown in Figure 8-1. 

 

Figure 8-1  An improved design process by enabling concurrent engineering and 

reliability estimation. 
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8.2 Suggestions for Future Research 

Future studies are needed to develop an advanced method that estimates multiple 

performance factors of OLED TVs using only temperature data at the early stages of 

development, not with respect to only a single performance measure. In addition, 

sensitivity analysis of various design parameters in OLED TVs must be studied to 

consider installation and dynamic operation conditions. Because OLED devices have 

only recently been commercialized, various acceleration factors related to 

installation locations and consumer’s watching habits should be studied. 

If necessary, prognostics-based qualification techniques for short qualification 

test times for highly reliable OLED devices can be employed to reduce the prediction 

errors and uncertainties. Ultimately, this research will provide design guidance that 

will enable designers and quality engineers to optimize the design of flexible and 

transparent OLED TVs. 
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Abstract (Korean) 

유기 발광 디스플레이 수명 모델 제안 및 모

델 검증 체계 연구 
 

김 대 환 

서울대학교 대학원 

기계항공공학부 

 

액정 디스플레이에 비해 OLED 디스플레이의 여러 장점에도 불구하고 

휘도 열화나 색좌표 변경과 같은 디스플레이 신뢰성에 대한 우려가 있다. 

특히 대형 OLED 디스플레이 (55 인치 혹은 그 이상의 디스플레이)의 

수명을 정확히 추정하기 위한 시험 기술이 정립되어 있지 않다. 제한된 

시편수와 성숙하지 못한 기술력은 적기의 제품개발에 많은 장애 요소가 

되고 있다. 

본 연구에서는 대형 OLED 디스플레이의 불확실성을 잘 반영하고 

실사용 조건의 수명을 정확히 예측할 수 있는 통계적인 접근방법을 

제시하고자 한다. 제안하고 있는 통계적인 해석 절차는 (1) 가속 열화 

시험법의 설계, (2) OLED 패널의 이항 수명모델을 개발할 수 있는 

체계적인 절차, (3) OLED 패널의 이항 수명식의 개발, (4) OLED TV 설계를 

위한 OLED 표면 온도예측 모델의 통계적인 모델 검정으로 구성되어 

있다. 이런 통계적인 접근은 다양한 불확실성을 가진 대형 OLED 패널의 

정확한 수명 분포를 예측하고 요구 수명을 만족할 수 있는 OLED TV 

설계에 활용가능 하리라고 본다.   

앞서 언급한 두개의 이항 수명모델은 제조공정이나 동작 중의 다양한 

불확실성을 감안하여 실사용 조건의 대형 OLED 패널의 수명을 
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정확하게 예측하기위해 제안하고자 한다. 이항 가속모델은 두개의 주요 

인자인 주위 온도와 초기 휘도값을 고려하고 있다. 첫번째는 제품 

휘도의 열화 특성을 예측하는 모델이고, 다른 하나는 색좌표의 열화 

특성을 예측하는 모델로써 예측된 수명값과 실제 수명 시험결과가 잘 

일치하고 있음을 근거로 수명 모델의 성능을 제시한다. 

색좌표 수명을 보증하는 일은 적기의 제품개발에 있어서 가장 큰 

걸림돌이다. 하지만 제품개발 초기에 설계 변경에 따른 색좌표 수명을 

예측할 수 있는 효과적인 방법이 현존하지 않다. 본 연구에서는 색좌표 

수명 분석을 위한 새로운 방법을 제시하였다. 이는 (1) 측정된 

표면온도의 불확실성을 잘 표현할 수 있는 유한요소 모델, (2) 일련의 

물리적 입력 변수의 조절을 통해 실험 결과와 예측 결과를 잘 

일치시켜주는 모델 보정 기법과 예측 결과와 측정된 결과와의 차이 

정도를 유의한지 판단하는 가설검정, (3) 제품개발 초기에 표면온도를 

활용하여 색좌표 수명을 예측할 수 있는 회귀모델로 구성되어 있다. 

이는 제품개발 초기에 방열해석을 통해 색좌표 수명을 예측함으로써 

제품개발 기간을 단축시킬 것으로 기대 된다. 

 

주제어 :  유기발광소자 

가속 열화 시험 

수명 모델 

색좌표 변화 

통계적 모델 보정 
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