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Abstract 

 

A Machine Learning Approach for Freeway Speed Prediction 

 

Choi, Yoon-Young 

Department of Civil and Environmental Engineering 

The Graduate School 

Seoul National University 

 

Prediction of freeway traffic speed can be used for predictive traffic 

management to improve the quality of the intelligent transportation system. The 

data-driven prediction is widely used due to its predictive capability. Recently, 

the non - parametric method using machine learning shows excellent predictive 

capability. In these methods, the feature extraction or selection is used to 

mitigate the overfitting and reflect the congestion mechanism. Although this 

nonparametric approach can be used as advanced traveler information system 

due to its excellent capability, it cannot provide any information on the 

congestion mechanism. Lack of information makes it difficult to establish a 

strategy for use in operational management. This study proposes a highway 

speed prediction model based on machine learning approach with a feature 

selection that provides both high predictive performance and interpretation of 

traffic flow characteristics. To do this, a supervised feature selection is applied 

using principal component analysis (PCA) based variable grouping and 

ordering and support vector machine (SVM) based variable selection. Varimax 

rotation is also applied to obtain the simple structure. In the variable ranking, 

the variables in the PC are ranked by using the nonlinear correlation coefficient 
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which implies the predictive capability in the machine learning model. The 

cross-correlation coefficients were used in this study. With this grouped and 

ranked variables, the variables are selected by the forward selection method. 

The machine learning regression model in this study is SVM regression which 

has excellent generalization performance and low computational cost.  

Empirical data evaluation was implemented based on the several month's data 

of Kyungbu freeway in Korea and the interstate (I-880) freeway in the United 

States. Comparing other approaches, the proposed feature selection approach 

well captured the characteristics of traffic flow among spatiotemporal variables. 

In particular, the feature selection performance is somewhat better than that of 

the artificial neural network feature extraction model, stacked auto-encoder, 

and the ensemble learning model, random forest. The vector space of the PCA 

is transformed into the traffic phase diagram between two spatiotemporal 

variables to obtain the implication of proposed approach in traffic engineering 

area. Based on the traffic phase interpretation, principal components with some 

loading of dependent variable can explain the propagation of traffic state. The 

proposed approach captures the propagation of traffic state well according to 

prediction step. The proposed approach would be used to establish strategies 

for avoiding congestion or preventing rear-end accidents because it has 

advantages in the multi-step prediction on congested areas and in identifying 

the congestion mechanism.  

Keywords: Freeway Speed Prediction, Support Vector Machine, Principal 

Component Analysis, Feature Selection, Propagation of 

traffic state     

Student Number: 2013-30982 
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Chapter 1. Introduction 
 

1.1 Background 

Intelligent transportation systems (ITS) are widely used around the world and 

contributing to traffic management and comprehensive traveler information 

service. The traffic speed prediction of the freeway can be used to manage 

congestion or crash in the congested area. The key to ITS services is to provide 

accurate, timely and useful information to travelers and transportation 

professionals. To this end, the capability of traffic prediction under dynamic 

and complex traffic condition is most important and it enables proactive 

management or changes of traveler's decision based on the predictive 

information. It can be implemented by using advanced traveler information 

system (ATIS) or by performing an advanced traffic management system 

(AMTS) strategy.  

Traffic speed can be predicted based on the theoretical model such as 

simulation. The simulation-based approach has the advantage of being able to 

explain the causal relationship, but it requires a lot of effort to make accurate 

predictions, and there are limitations to the accuracy due to the limitations of 

the simplified input parameters. The parametric or nonparametric data-driven 

approach has the advantage of accuracy. Especially the nonparametric based 

prediction technique shows high prediction performance due to the rapid 

advancement of traffic detection and machine learning technology.  
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The nonparametric based speed prediction method requires mitigating the 

over-fitting and capturing the appropriate traffic flow characteristics to achieve 

high prediction performance. A problem of the curse of dimensionality may 

arise where the dimension of the input data is high in the machine learning 

model. This indicates that the volume of space increases very quickly due to 

the increase in dimension, which makes the available data thinner. This 

adversely affects the algorithm, induces overfitting, and dramatically increases 

memory storage requirements and computational expense. Dimensionality 

reduction is required to solve this problem, and it is classified into feature 

extraction and feature selection. Feature extraction projects the original higher 

dimensional feature space into a new lower feature space. Feature selection, on 

the other hand, directly selects a subset of the relevant features for use in model 

construction. In feature extraction, additional analysis is difficult because the 

physical meaning of the original feature cannot be obtained in the transformed 

space. In contrast, feature selection preserves the physical meaning and 

provides better readability and interpretability, making it more useful for 

practical analysis. (Li et al., 2016). Because of the limitation of feature 

extraction, nonparametric based traffic speed prediction can be utilized only 

providing information and is difficult to use it in transportation management 

strategy. Therefore, it is necessary to capture the feature and interpret it as 

traffic flow characteristics. Traffic characteristics information from captured 

feature can contribute to establishing a traffic management strategy.  
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The variable selection can be implemented by the various theoretical 

methods, but there is a limit to providing integrated output due to individual 

evaluation of variables. For example, similar variables are evaluated identically 

and it causes the redundancy. On the other hand, there may be a significant 

variable when used with other information. A ranking method that takes into 

account the mutual relationships between variables is needed (Guyon et al., 

2003).  
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1.2 Objectives and Scope 

The objectives of this study are to propose a supervised feature selection 

approach that can provide both high predictive performance and interpretations 

of traffic flow characteristics and to derive the implication in the highway speed 

prediction by using it. The proposed approach consists of two steps, the first 

step makes a ranking of variables including mutual relationship among them 

and the second step selects the variables with support vector regression (SVR) 

based forward selection method.  

 The first step is principal component analysis (PCA) based variables 

ranking. The PCA is performed including dependent variable, the prediction 

target. Varimax rotation is also applied to obtain the simple structure that can 

easily interpret the variables space. The variables are assigned to the principal 

components (PCs) by using the maximum loading of each variable. The 

variables are divided into groups that are related to statistically independent 

PCs. The loading is the linear correlation between PC and a variable. Then, the 

ranking is determined in two ways, i.e., ranking between PC groups and ranking 

between variables in the same PC. The loading of the dependent variables is 

used to rank the PCs. This ranking criterion reflects the strength of the link 

between dependent variable and PC and can indicate the contribution of PCs in 

prediction. Next, the ranking of variables in PC is determined by using the 

auxiliary criterion of non-linear correlation. This auxiliary criterion is 

employed for overcoming the linear manner of PCA because the machine 
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learning based regression finds the non-linear structure. This study employed 

cross-correlation coefficients as a criterion of ranking of variables in each PCs.  

 The second step is Support vector machine (SVM) based variable 

selection and the forward selection is employed. The forward selection is a kind 

of wrapper method in supervised feature selection. The variables are 

progressively incorporated into larger and larger subsets. The selected feature 

subset is evaluated by predictive performance. Then, a new selected variable 

included or not according to the evaluation result. The wrapper method works 

iteratively until some stopping criteria are satisfied or the desired learning 

performance is obtained. This study employed performance measure as the root 

mean squared error (RMSE) and cross-validation evaluation which splits the 

data set into the training set and validation set. The SVR is employed for this 

forward selection because it has excellent generalization performance and low 

computational cost among machine learning based regression model.  

 The artificial neural network model is the most popular nonlinear 

model, but it has three major drawbacks: overfitting, local minima, and heavy 

computational cost (Vapink, 1995; Cristianini and Shawe-Taylor, 2000). An 

SVM is a machine learning method that can overcome the shortcomings of 

artificial neural networks. Compared to traditional artificial neural networks, 

SVM has the advantage of generalizing ability and having the global optimal 

solution (Vapnik, 1995; Vapnik et al., 1999). This is because SVM uses the 

principle of minimizing structural risk, unlike the neural network which adopts 
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the empirical risk minimization principle. Unlike the minimization of empirical 

risk which minimizes the training error and finds the local optimum, the 

principle of minimizing the structural risk is to minimize the upper bound of 

the generalization error. SVM is also suitable for complex systems and has 

robust performance when processing corrupted data (Müller et al., 1997; Gunn, 

1998; Müller et al., 1999). Besides, the SVM model is suitable for real-time use 

and periodic model re-estimation due to its low computational cost and is easily 

deployed by users. 

 To find out the physical meaning of selected feature in terms of traffic 

flow, the vector space of PCA and result of selected variables were explored. 

The vector space of the PCA is transformed into the traffic diagram between 

two spatiotemporal variables. The traffic phase diagram by the proposed 

approach was discussed in terms of traffic flow characteristics. The result of 

variables selection was compared with other selection methods to find out the 

consistency of the discussed implication.  

 The remaining part of this study consists of literature review, 

methodology, empirical data evaluation, implication for traffic analysis, and 

conclusion. In the literature review, a simulation-based model and a data-driven 

model for traffic speed prediction were reviewed. Additionally, feature 

extraction and selection techniques in predicting traffic information were 

extensively reviewed. The methodology section introduced proposed approach 

including the theoretical description of PCA, Varimax rotation, SVM model 
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and variable selection technique. Also, random forest (RF), artificial neural 

network (ANN), and stacked auto-encoder (SAE) were briefly described for 

comparison and evaluation. In Empirical data evaluation, case studies of Korea 

highway and US highway were described. The proposed approach evaluated in 

terms of predictive performance, and computation cost by comparing with other 

approaches. In the implication for traffic analysis, traffic phase analysis was 

carried out to interpret the traffic flow characteristics from the PC used, and the 

consistency was examined using selected variables. Lastly, conclusions and 

limitations of the study were presented.  
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Chapter 2. Literature Review 
 

2.1 Traffic Flow Based Model  

The simulation-based model uses some traffic flow theory models and focuses 

on reproducing the traffic situation in the future time interval and measuring 

the traffic speed from the predicted state. It has the advantage of representing 

and applying important components in traffic modeling including geometric 

features and traffic signal. Although the traffic conditions and the traffic flow 

should be very similar, the simulation model uses a limited number of variables 

to simplify the actual situation. As a result, it is difficult to reproduce the actual 

traffic flow phenomenon.  

 Macroscopic models use equations from fluid flow theory to simulate 

the flow, density and mean speed for the future times. The simulation results 

come from the mathematical relations between traffic variables including traffic 

speed. METANET (Papageorgiou et al., 2010) is a representative example. 

However, it is not useful to predict urban area. 

 In the microscopic model, the behavior of an individual vehicle is 

simulated considering factors such as inter-vehicle interaction, driver behavior, 

and lane change. It uses car-following models and cellular automaton models. 

The Car-following model is time continuous ordinary differential equations that 

indicate the position and trajectory of the following vehicle according to the 

preceding vehicle. The cellular automaton is a simple model that separates 
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roads into small cells and moves the vehicles by cell according to predefined 

rules such as lane changing and acceleration. There is additional work to predict 

the OD matrix or intersection turn traffic. Examples are CORSIM (Halati et al., 

1997), PARAMICS (Cameron and Duncan, 1996), INTEGRATION (van Aerde 

and Rakha, 2010). 

Mesoscopic models combine the functions of macroscopic and 

microscopic models. It simulates individual vehicles but explains behavior and 

interactions based on general macro relationships. It is mostly used in large 

networks where it is infeasible to model microscopic models. DynaMIT (Ben-

Akiva et al., 1998), the vehicle is shown individually, DynaSMART 

(Jayakrishnan et al., 1994) is determined the link speed by the speed-density 

relationship. Mesoscopic models are primarily used for assessment and traffic 

management, but may also be useful for ATIS. 
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Table 2.1 Literature review of traffic flow based model  

Category  Pros and cons Simulation 

Macroscopic Good for large network, cannot 

directly calculate, ignore detailed 

behavior 

METANET  

Microscopic  Details available, 

OD prediction is necessary, 

calculation cost is large 

CORSIM  

PARAMICS  

INTEGRATION  

Mesoscopic  More detailed than Macro, 

faster than Micro, 

disadvantages of both Macro and 

Micro 

DynaMIT  

DynaSMART  
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2.2 Data Based Model  

The data-driven model does not use the traffic flow theory, but rather it is 

determined from the data using statistical and machine learning techniques. The 

disadvantages are that large amounts of data are needed and the results are 

strongly linked to specific learning areas. As a result, there is a limit to 

transferability. 

 

2.2.1 Parametric model  

In the parametric method, the relationship between the parameters is set in 

advance in the model and the coefficient of the parameter is determined from 

the data. Overall, the parametric model is easy to understand but has a limit of 

low prediction performance. 

 Time series models including ARMA, ARIMA, and SARIMA have 

been studied from earlier days (Ahmed and Cook, 1979; Davis et al., 1990; 

Hamed et al., 1995). There is a limitation in that it is vulnerable to a state change 

due to mainly using single detection information. When linearity and normality 

conditions are met or assumed, they can be solved using a Kalman filter. 

(Okutani and Stephanedes, 1984; Whittaker et al., 1997; Stathopoulos and 

Karlaftis, 2003). There is an advantage to reflect the multivariate nature, but the 

normality assumption can be a disadvantage. 
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2.2.2 Non-parametric model   

The nonparametric model is a technique for finding empirically suitable 

parameters and structures from infinite types without a predefined model 

structure. There is a disadvantage in that it has excellent predictive power but 

requires more data and is difficult to interpret. The nonparametric prediction of 

traffic speed attracted little attention although most of non-parametric traffic 

flow prediction focused on the travel time or traffic volume prediction.    

 Dougherty and Cobbett (1997) performed prediction of flow, speed 

and occupancy in the region of the Netherlands using back-propagation neural 

networks. Flow and occupancy predictions were effective, but speed prediction 

was not as good as performance and it was claimed to be due to low-speed 

vehicles in low traffic volume. It is also claimed to be impractical for 

implementation due to the vastness of the input data. Ishak and Alecsandru 

(2004) proposed an approach to optimize predictive performance using 

multiple artificial neural network topologies in different networks and traffic 

conditions. They evaluated the short-term speed prediction performance of the 

mix of neural network topologies according to different input settings and 

various prediction horizons (from 5 to 20 minutes). Optimal settings were 

determined regarding observed traffic conditions at upstream and downstream 

locations. The proposed approach showed better prediction performance than 

naive and heuristic approaches. Long-term predictions have also more 

dependent on the configuration of the long-term memory. 
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 Ma et al. (2015) used the long short-term neural network to estimate 

the speed of the Beijing area. Long short-term neural network can overcome 

the problem of back-propagating error decay through memory blocks, and thus 

exhibits superior temporal prediction with long temporal dependency. The 

proposed model has better performance and stability than other dynamic neural 

networks. 

 Sun et al. (2003) proposed the local linear regression using the 32-day 

traffic-speed data in Houston, at 5-min intervals. The proposed model showed 

better performance than the k-nearest neighbor and kernel smoothing methods.  

 Yildirim and Ç ataltepe (2008) predicted the speed of remote traffic 

microwave sensors at different locations in Istanbul. From 5 minutes to 1 hour, 

the SVM model and k-nearest neighbor method were compared. Variable 

selection was used to improve the model. In particular, it was suggested that it 

would be advantageous to use sensors with high correlation. In this study, SVM 

produced better results than the k- nearest neighbor. Yao et al. (2017) proposed 

SVM model composed of spatial and temporal parameters. The SVM model 

using spatiotemporal parameters showed better performance than the historical 

model, the k-nn model, and the ANN model by using GPS data of Foshan city 

taxi in China. It was also advantageous for relatively multi-step prediction.  
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Table 2.2 Literature review of data-driven model  

Category  Method Authors and year 

Parametric ARMA, ARIMA, 

SARIMA 

 

Ahmed and Cook (1979),  

Davis et al. (1990), 

Hamed et al. (1995) 

Kalman filter 

 

Okutani and Stephanedes (1984),  

Whittaker et al. (1997), 

Stathopoulos and Karlaftis (2003) 

Nonparametric ANN Dougherty and Cobbett (1997),  

Ishak and Alecsandru (2004),  

Ma et al. (2015) 

Local regression Sun et al. (2003)  

SVM Yildirim and Ç ataltepe (2008),  

Yao et al. (2017) 
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2.2.3 Feature selection or extraction in non-parametric 

In the nonparametric model, review of feature selection or extraction was 

extended to the general traffic prediction due to the scarcity of related literature 

on traffic speed prediction. 

 Dia (2001) used PCA for unsupervised linear feature extraction and 

performed dimensional reduction by performing supervised non-linear 

classification on features. A time-lag recurrent network model was used to 

improve the prediction performance of traffic speed in Australia. Yildirimoglu 

and Geroliminis (2013) were used PCA to remove noise and to cluster the 

similar traffic patterns. They used Gaussian Mixture Model to predict the travel 

time in Californian freeway.  

 Abdulhai et al. (1999) used the time delay neural network to predict 

the flow and occupancy of California roads. The genetic algorithm (GA) was 

used to optimize the spatial and temporal input space, prediction horizon and 

data resolution. Zhong et al. (2005) applied GA to select the input variable. 

They designed both time delay neural network models as well as locally 

weighted regression models to predict short-term traffic for two rural roads in 

Alberta, Canada. They claimed that locally weighted regression models are 

faster and perform better. Vlahogianni et al. (2007) used GA for the temporal 

optimization of the input windows in each time delay neural network to 

overcome the problem of having a fixed line memory. They forecasted the 

short-term traffic volume in multiple locations of an urban signalized arterial 
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focusing on incorporating temporal and spatial volume characteristics. 

 Lv et al. (2015) performed unsupervised feature extraction using a 

stacked auto-encoder, and the importance of the variables was determined using 

the sparsity term. They concluded that the proposed model helped to capture 

generic traffic flow features and characterize spatial-temporal correlations in 

traffic flow prediction. However, as the hidden layer increases, the performance 

is not improved.  

 Li and Chen (2014) used the classification and regression tree to select 

the variables of travel time prediction and predict Taiwan's freeway travel time 

using ANN. The random forest is an ensemble learning method that uses a lot 

of decision trees using bagging (bootstrap aggregating) to extract multiple 

subsamples from a raw sample. The final result is to use the average for 

regression, or vote for classification. In variable selection, the variable 

importance is provided based on the reduction of the average accuracy of the 

variables through inclusion and omission processes during the bagging process. 

It was used to predict the real-time crash risk (Xu et al., 2013; Yu and Abdel-

Aty, 2013; Shi and Abdel-Aty, 2015). 

 The grouping can remove variables that are less similar. Lee (2009) 

applied the ANN model for travel time prediction by reducing the dimension of 

input variables through k-mean clustering. Chen et al. (2010) used the fuzzy 

clustering technique, rough set, to reduce the dimension of the input variables 

and predict the urban travel time using the SVM model.  
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Table 2.3 Literature review of dimensionality reduction model 

Concept Method Authors and year 

Dimensionality  

reduction  

PCA (Component) Dia (2001), 

Yildirimoglu and Geroliminis (2013) 

Genetic Algorithm 

(GA) 

Abdulhai et al. (1999), 

Zhong et al. (2005), 

Vlahogianni et al. (2007) 

Sparsity and auto-

encoder 

Lv et al. (2015) 

Decision tree  Classification and regression tree  

(Li and Chen, 2014), 

Random forest  

(Xu et al., 2013; Yu and Abdel-Aty, 

2013; Shi and Abdel-Aty, 2015) 

Clustering  K-mean (Lee, 2009), 

Rough set (Chen et al., 2010) 
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2.3 Review Result and Study Direction   

Most studies claimed that their machine learning model and efforts related to 

the improvement of the model was effective, but the strict comparison is 

difficult. This is because they contain a limitation of a specific concept in a 

specific area and not compare all of the different methods, and does do not use 

the same comparison criterion (Vlahogianni et al., 2004). Additionally, the 

model optimization was only implemented on their model, but the comparison 

model was a general model.  

 The ANN based models are the most popular nonlinear models, but 

they have three major drawbacks: overfitting, local minima, and heavy 

computational cost. An SVM method is a machine learning method that 

overcomes the shortcomings of artificial neural networks. Compared to 

traditional artificial neural networks, SVM has the advantage of excellent 

generalization ability and global optimal solution. This is because SVM uses 

the principle of minimizing structural risk, unlike neural network which adopts 

the principle of minimizing empirical risk. Unlike minimizing training errors 

and minimizing the empirical risk of finding local optima, the principle of 

minimizing the structural risk minimizes the generalization error. The results of 

SVM guarantee the global minima. SVM is also suitable for complex systems 

and has robust performance when processing corrupted data. Also, the SVM 

model is suitable for real-time use and capability test for prediction due to its 
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low computational cost and is easily deployable for users. 

 There are some limitations of feature selection or extraction 

approaches. The use of principal component has limitations in that it is difficult 

to interpret the features used because the component is the linear combinations 

of variables. The GA based research has a characteristic of probabilistic 

convergence and there are limitations in expecting consistent results and it is 

difficult to link them to interpretation. Sparsity, which uses a penalty term for 

the weight of a variable, is mainly used for the deep neural network technique 

of traffic volume prediction, but there are limitations in interpretation due to 

stochastic convergence and weight of variable. In the case of random forests 

that provide an importance for variable selection, variables with similar roles 

are likely to be similarly selected even if the importance is high since the 

relationship between variables is not considered. The clustering has the 

limitation in considering only similarities while the influence of variables 

contained in other clusters is also significant. In this study, the interpretations 

of selected PC or variables is the key for contribution and it is achieved by 

describing the process of approach, evaluating based on empirical data and 

finding the implications for traffic analysis. Also, the proposed approach is 

deterministic and considering the relationship between the variables. 
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Chapter 3. Method 

 

3.1 Principal Component Analysis (PCA) 

3.1.1 Basics of PCA     

 

(1) Introduction   

The PCA is a method of factor analysis. Factor analysis is a multivariate 

analysis technique that explains how various variables are connected to each 

other and explains it using common factors. The PCA is a technique that uses 

mathematical orthogonal transformation by the spectral decomposition of 

covariance matrices or correlation matrices using total variance (systematic 

variance). It is aimed to simplify the dimension and summarize 

multidimensional variables and to analyze the complex structure among the 

variables. The PCA derive independent, artificial variables called PC that is a 

linear transformation of variables. The importance of a PC is determined by the 

magnitude of its total variance.  If a large part of the total variance is included 

by using some principal components, it is possible to reduce the size to 

minimize the loss of information.  

 In the 1930s, Hotelling (1933, 1936) named low-level independent 

factors as components and named PCA because it is sequentially maximizing 

the contribution of each component to the variance of the original variables. 

The PCA is a multivariate technique that transforms correlated variables that is 
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hard to interpret the structure into a few independent and conceptually 

meaningful principal components. It can be used for exploratory studies of 

multivariate data, structural simplification or summarization of data by 

dimensional reduction, sequential construction of independent components, 

identification of variables of dependent relation, evaluation or comparison of 

distribution types, a search of singular values or clusters, data fitting and model 

construction. The systematic variance is divided into common factor variance 

and specific variance, and on the other hand, common-factor methods only use 

the common variance. It is only possible if the column or row is a population. 

 When the overall average of the data set is 0, the first principal 

component 𝑤1 of the data set 𝑋 is defined as follows. 

𝑤1 = arg max
‖𝑤‖=1

𝐸{(𝑤𝑇𝑋)2} 

 

 To find the 𝑘-th principal component, use 𝑋�̂� that eliminated 𝑘 − 1 

principal components in 𝑋. 

𝑋�̂� = 𝑋 − ∑ 𝑤𝑖𝑤𝑖
𝑇𝑋

𝑘−1

𝑖=1

 

𝑤𝑘 = arg max
‖𝑤‖=1

𝐸{(𝑤𝑇𝑋�̂�)2} 

 

 In the PCA, samples of higher dimensional space transform into 

samples of lower dimensional space (principal component) without linear 
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correlation by using orthogonal transformation. The PCA linearly transforms 

the data into a new coordinate system so that the data is mapped onto one axis. 

This transformation is defined by the fact that the first principal component has 

the greatest variance and the subsequent principal components have the greatest 

variance under the constraint that they are orthogonal to the previous principal 

components. The axis with the largest variance is the first principal component 

and the axis with the second largest is the second principal component. Thus, 

various applications are possible by decomposing into the components that best 

represent the sample differences. Important components are orthogonal because 

they are eigenvectors of the symmetric (covariance or correlation) matrix. 

 

 

Figure 3.1 Concept of PCA  

(Source: https://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-

component-analysis-python/) 
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(2) Mathematical approach  

The vector ℎ𝑖 projecting the original data ((𝑧𝑖)) for the unit vector 𝑤 with 

size 1 in two dimensions is given by ℎ𝑖 = (𝑧𝑖 ∙ 𝑤)𝑤 = (𝑧𝑖
𝑇𝑤)𝑤. The direction 

of the axis to maximize the variance of projection ℎ𝑖  is equivalent to the 

problem of maximization of (𝑧𝑖 ∙ 𝑤) which is a variance of ℎ𝑖. If the values 

are centered, the variance of the projected value, 𝜎𝑤
2 , is as follow. 

𝜎𝑤
2 =

1

𝑛
∑(𝑧𝑖 ∙ 𝑤)2

𝑖

− (
1

𝑛
∑(𝑧𝑖 ∙ 𝑤)

𝑖

)2 

 

This is developed as follows using the covariance matrix 𝐶. 

1

𝑛
∑(𝑧𝑖 ∙ 𝑤)2

𝑖

=
1

𝑛
(𝑍𝑤)𝑇𝑍𝑤 =

1

𝑛
𝑤𝑇𝑍𝑇𝑍𝑤 =  𝑤𝑇

𝑍𝑇𝑍

𝑛
𝑤 

=  𝑤𝑇𝐶 𝑤 

 

This is a maximization problem in the unit vector 𝑤 with a constraint 

of 𝑤𝑇𝑤 = 1 .  When the problem is solved by the Lagrangian multiplier 

method, the objective function (𝑄) is as follow.  

𝑄 = 𝑤𝑇𝐶 𝑤 − 𝜆(𝑤𝑇𝑤 − 1) 
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 A point with 
∂Q

∂w
= 0 is as follow. 

∂Q

∂w
= 2𝐶𝑤 − 2𝜆𝑤 = 0, 𝐶𝑤 = 𝜆𝑤 

 

This is equivalent to finding eigenvalues 𝜆 and eigenvectors 𝑤 for the 

covariance matrix 𝐶. Since 𝜎𝑤
2 = 𝑤𝑇𝐶 𝑤 = 𝑤𝑇𝜆 𝑤 = 𝜆, it can be seen that 

the eigenvalue represents the magnitude of variance. 

 

(3) Eigenvalue decomposition  

The PCA is based on the eigenvalue decomposition. For the matrix 𝐴, the 

scalar 𝜆  and the column vector 𝑣  that satisfy the following equation are 

called eigenvalues and eigenvectors, respectively. 

𝐴𝑣 = 𝜆𝑣 

 

This equation is developed using the identity matrix, 𝐸.  

 (𝐴 − 𝜆𝐸)𝑣 = 0 

 

An eigenvector exists if there is no inverse matrix of 𝐴 − 𝜆𝐸. If there 

is an inverse matrix, 𝑣 = 0. The eigenvalue decomposition is a relationship 

using both the matrix 𝑃, which uses eigenvectors as column vectors and matrix 

Λ  that uses eigenvalues as diagonal components. The values are sorted in 

descending order of magnitude, 𝑣1  is the eigenvector of the first principal 
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component. 

𝐴𝑃 = Λ𝑃 

𝐴[𝑣1, 𝑣2, , … , 𝑣𝑛] = [
𝜆1 0 0
0 … 0
0 0 𝜆𝑛

] [𝑣1, 𝑣2, … , 𝑣𝑛] 

 

If the matrix is orthogonal matrix with 𝐴 = 𝑃Λ𝑃−1, 𝐴 = 𝑃Λ𝑃T. The 

symmetric matrix can always be applied the eigenvalue decomposition and 

diagonalized to an orthogonal matrix, orthogonally diagonalizable matrix. In 

general, orthogonal diagonalization is possible when a correlation matrix or a 

covariance matrix is used. 

The determinant, k-squared, and inverse of a matrix can be easily 

expressed using eigenvalue decomposition. 

det(𝐴) = det(𝑃Λ𝑃−1) = det (Λ)  

𝐴𝑘 = (𝑃Λ𝑃−1)𝑘 =  𝑃Λ𝑘𝑃−1 

𝐴−1 = (𝑃Λ𝑃−1)−1 =  𝑃Λ−1𝑃−1 

 

Eigenvalue decomposition enables when matrix A has a linearly 

independent eigenvector. Linearly independent means that it cannot be 

represented by a linear combination of other vectors. The eigenvalues are 

unique for a matrix, but since the eigenvector matrix is not unique, a change of 

basis is possible to facilitate the interpretation. 
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(4) Application  

The PCA can be applied using a covariance matrix, a scatterplot matrix, a 

variance-covariance matrix or a correlation matrix. Since the PCA is not scaled 

invariant, the scale can be unified when using the correlation matrix. The PCA 

can be defined as having a descending order of eigenvalues diagonal elements 

and non-negative eigenvalue since the covariance matrix 𝑋𝑇𝑋  is a non-

negative definite matrix. As a consequence, the first principal component 

obtained by the eigenvalue decomposition of the covariance matrix 𝑋𝑇𝑋 is the 

axis that maximizes the variance of the projected data. If 𝑘  principal 

components are selected from the 𝑝-dimensional eigenvalue decomposition, 

the data is projected into the 𝑘-dimensional subspace. The ratio of the sum of 

the eigenvalue of 𝑘 principal components and total eigenvalue represents the 

ratio of variance. The PCs can be selected to the point where the eigenvalue 

changes suddenly by using scree plot, or PCs with eigenvalues greater than 1, 

which is the variance of one variable, can be used. 

  

𝑅2 = ∑ 𝜆𝑖

𝑘

𝑖=1

/ ∑ 𝜆𝑗

𝑝

𝑖=𝑗

 

 

Factor loading shows a simple correlation between variables and factors in 

the un-rotated factor matrix. The variables that explained a component is 
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identified. The variables that have the greatest relationship with a component is 

determined by the factor loading. The squared sum of loadings of variables in 

a component indicates the variance of that factor explained by variables. The 

squared sum of loadings of variables in a rotated factor matrix cannot be 

interpreted in the same sense.  

 

3.1.2 Varimax Rotation     

The factor loading which indicates the variables contribute to the PC is used to 

interpret the PCA result. The sum of the squares of the loading of each variable 

in a PC is the eigenvalue of the PC. If the symmetric matrix, covariance matrix 

or the correlation matrix, is used for PCA, the variables can be grouped 

independently because the PCs are independent each other. However, since one 

variable is not loaded on one PC, the simple structure for easy handling can be 

obtained using the appropriate rotation. A simple structure means that each 

variable has a high loading on one factor and very low loadings on the other 

factor. The simple structure is an ideal state in which one variable can exert 

influence on only one factor. This is eligible because the eigenvectors of 

eigenvalue decomposition are not unique. There are rotation methods that 

maintain orthogonality such as Varimax or that does not maintain orthogonality 

such as Oblimin. The choice of the rotation method by their research purpose 

is recommended. 
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The Varimax is used an orthogonal basis to simplify the subspace 

without changing the actual coordinate system. It is the rotation used when the 

PCA is hard to analyze due to the dense result. By using Varimax rotation, the 

basis is transformed and the variables are assigned to a PC with the highest 

loading. It is eligible for grouping of variables based on independence. The 

Varimax uses the objective function that allows a given variable to be loaded 

heavily on a single PC and to maximize the overall variance. The objective 

function is as follows. 

𝑃 Varimax = arg max
𝑃

{
1

𝑝
∑ ∑ (Λ𝑃)𝑖𝑗

4
𝑝

𝑖=1

𝑘

𝑗=1
− ∑

1

𝑝

𝑘

𝑗=1

∑ (Λ𝑃)𝑖𝑗
2

𝑝

𝑖=1
}2 

 

 

Figure 3.2 Example of Varimax rotation  

(Source: https://www.mailman.columbia.edu/research/population-health-

methods/exploratory-factor-analysis) 
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3.2 PCA Based Supervised Feature Selection  

3.2.1 Variable Selection Procedure   

 

In mechanical learning, over-fitting is generated by over-learning the training 

data and the model captures the unnecessary noise. In mechanical learning, 

over-fitting is generated by over-learning the training data, and the model 

captures the unnecessary noise. When the training has more evolved, the error 

for the training data is more decrease, but the error for the test data for validation 

increases.  

 

 

 Figure3.3 Concept of overfitting  

(Source: https://en.wikipedia.org/wiki/Overfitting) 
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 In the machine learning, when the dimension of the input data is high, 

the curse of dimensionality arises, which is more important in the big data 

environment. When a curse of a dimension occurs, the amount of space 

increases very quickly due to the increase in dimensions, and it makes the 

available data thinner. This adversely affects the algorithm, induces overfitting, 

and greatly increases memory storage requirements and computational cost. 

 Dimensionality reduction is required to solve this problem, and it 

consists of feature extraction and feature selection. In the case of feature 

extraction, additional analysis is difficult because the physical meaning of the 

original feature cannot be obtained in the transformed space. In contrast, feature 

selection preserves physical meaning, providing better readability and 

interpretability, making it more useful for practical analysis. 

 In this study, two pieces of information are utilized for variable 

selection. First, variables including the dependent variables are grouped. The 

variable is assigned to the only one PC that has the most loading of the variable. 

The priorities are assigned in descending order of the loading of dependent 

variables in the PCs. Second, the variables in the same PC are prioritized using 

a cross-correlation coefficient (CCC), which indicates non-linear correlation 

with dependent variables. The use of non-linear correlation for priorities of 

variables in the same PC is to overcome the limitations of the linearity of the 

PCA. The loading is the linear correlation between the variables and PCs. 

 The CCC is a tool for measuring the nonlinear similarity between two 
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series from one point to another and used for signal processing, pattern 

cognition and so on. The coefficient is in the range -1 to 1 such as Pearson 

correlation. The larger the absolute value, the stronger the correlation strength. 

The CCC representing the nonlinear correlation implies the predictive strength 

in the nonlinear learning model. Therefore, in the group of the variables 

grouped by PC, Priority selection is possible. In a continuous function, if two 

series are 𝑓 and 𝑔, the cross-correlation function ⨂ is defined as follows. 

𝑓∗ is the conjugate prior, and 𝜏 is the time lag.  

(𝑓⨂𝑔)(𝜏) = ∫ 𝑓∗(𝑡)𝑔(𝑡 + 𝜏)𝑑𝑡
∞

−∞

 

 

 Using ranking of the PC and the variable ranking within the PC, the 

key variables are selected enhancing the generalization performance. The most 

widely used method for the variable selection in machine learning is the 

wrapper method which selects the variables that improve the regression 

performance. There are forward selection methods that add variables, backward 

elimination methods that remove variables and step-wide methods. This study 

used the forward selection and the search order according to ranking is 

performed first among the groups and within the group. It is aimed that secures 

independent PCs as much as possible, then insufficient explanatory power can 

be recovered by adding the variables in the selected PCs. 
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Figure3.4 Variable selection procedure  

 

 

The generalization performance and low cost of computation are 

required due to the use of the wrapper that needs to develop the model lots of 

times. The SVM model has these properties and employed for the predictive 

model. The stopping criterion of the forward selection is the case where there 
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are 𝑘-th improvement failures or no searchable variables. Use the parameter 

𝑘1 between the groups and the parameter 𝑘2 in the group. First, variables are 

selected by adding the PC using the representative variables for each PC, based 

on the dependent variable loading criteria identified by the PCA analysis. Then, 

for the selected PC only, test additional variables. In this way, it is possible to 

add spatiotemporal variables as much as possible and to improve prediction 

performance. 

 

 

Figure 3.5 Forward selection of proposed approach  

 

 

3.2.2 Support Vector Machine  

The SVM is a classifier that maximizes the margin, the distance between 

support vectors. A support vector is a data element closest to the hyperplane in 

multidimensional space. The SVM makes up a set of hyperplanes or 

hyperplanes in high density or infinite dimensional space that can be used for 

classification, regression, or other operations. The good separation is achieved 

by the hyperplane that is the longest distance from the closest training data point 
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of a class, since the larger the margin, the lower the generalization error of the 

classifier. 

Let 𝑤 be a normal vector, 𝑦𝑖 is a variable that indicates the group to 

which 𝑥 belongs by 1 and -1, and 𝑏 is the distance from the point where 𝑥 

is projected to 𝑤. In this case, the hyperplane satisfying ∙ 𝑥 − 𝑏 = 1 and 𝑤 ∙

𝑥 − 𝑏 = −1 is the line passing through the support vector. Since there is no 

other data between these distances (hard margin), the following constraints and 

object function are expressed. 

𝑎𝑟𝑔 min
(𝑤,𝑏)

‖𝑤‖ 

subject to 𝑦𝑖(𝑤 ∙ 𝑥 − 𝑏) ≥ 1 

 

The objective function is a problem of finding the norm of the normal 

vector, which is a problem of the square root, which is difficult to calculate. If 

it is two-dimensional, it is solved as follows. 

‖𝑤‖2 = √∑|𝑥𝑖|2

𝑛

𝑖=1

 

 

By substituting 
1

2
‖𝑤‖2  for ‖𝑤‖  in the objective function, the 

problem is easily solved with quadratic programming. The solution of decision 

variable, 𝑤 and 𝑏, is not changed. The Lagrange multiplier can be used to 
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find the saddle point as follows. 

𝑎𝑟𝑔 min
(𝑤,𝑏)

max
𝛼≥0

{
1

2
‖𝑤‖2 − ∑ 𝛼𝑖[𝑦𝑖(𝑤 ∙ 𝑥 − 𝑏) − 1]}

𝑛

𝑖=1

 

 

This is solved by partial differential equations as follows. 

𝜕𝐿

𝜕𝑤
= 𝑤 − ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑖

 

𝜕𝐿

𝜕𝑏
= − ∑ 𝛼𝑖𝑦𝑖

𝑖

 

 

Since the partial derivative value becomes 0 at the optimum point, it 

is as follows.  

𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑖

 

∑ 𝛼𝑖𝑦𝑖

𝑖

= 0 

Substituting the partial differential results into the original problem 

changes the following.  

𝐿(𝑤, 𝑏, 𝛼𝑖) =
1

2
(∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑖

)

𝑇

(∑ 𝛼𝑗𝑦𝑗𝑥𝑗

𝑗

) − ∑ 𝛼𝑖𝑦𝑖

𝑖

(∑ 𝛼𝑗𝑦𝑗𝑥𝑗

𝑗

)

𝑇

𝑥𝑗

+ ∑ 𝛼𝑖

𝑖
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= −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗

𝑗

+

𝑖

∑ 𝛼𝑖

𝑖

 

If the second term of the negative sign in the original problem is the 

minimum, then 𝐿 becomes the maximization of quadratic problem. 

max −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗

𝑗

+

𝑖

∑ 𝛼𝑖

𝑖

 

subject to ∑ 𝛼𝑖𝑦𝑖

𝑖

= 0, 𝛼𝑖 ≥ 0 

 

 

 

Figure 3.6 Concept of maximum margin 

(Source: https://en.wikipedia.org/wiki/Support_vector_machine) 
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The SVM permits soft margins that allow some classification error to 

avoid overfitting. A misclassification tolerance term 𝜉𝑖  is added to the 

objective function. The 𝐶  is a regularization parameter. If it is small, the 

constraint is neglected. If it is large, the influence becomes large and a hard 

margin is obtained in infinite. 

min
(𝑤,𝑏)

‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 

subject to 𝑦𝑖(𝑤 ∙ 𝑥 − 𝑏) ≥ 1 − 𝜉𝑖 

 

 

 

Figure 3.7 Soft margin concept in SVM  

(Source: https://mubaris.com/2017/10/14/svm-python/) 
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The SVM uses a kernel trick that replaces the calculation of the inner 

product of the vector (𝑥𝑖
𝑇𝑥𝑗) with the kernel function to reflect the nonlinearity. 

Linear classification is performed at the modified high dimension, but nonlinear 

classification is performed in the original space. There are Linear, polynomial, 

and radial basis kernel function, and this study used radial basis function. 

 

Table 3.1 Kernel function in SVM  

Kernel  Function 

Linear 𝑥 ∗ y 

Polynomial [(x ∗ xi) + 1]𝑑 

Radial basis function exp (−Υ|x − xi|
2) 

 

 

 

Figure 3.8 Kernel trick in SVM  

(Source: https://en.wikipedia.org/wiki/Support_vector_machine) 
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The support vector regression (SVR), which is a regression model 

using SVM, can be expressed as below using the soft margin. Γ is the cost 

function. 

𝑓(𝑥) = 𝐶 ∑ Γ(𝑓(𝑥𝑖 − 𝑦𝑖)

𝑙

𝑖=0

+ 0.5‖𝑤‖2 

 

The partial differential is: 

𝑤 = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=0

Φ(𝑥𝑖) 

 

As a consequence, the f(x) is:   

𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=0

(𝛷(𝑥𝑖) ∙ 𝛷(𝑥)) + 𝑏 

 

The dot product of (𝛷(𝑥𝑖) ∙ 𝛷(𝑥)) can be replaced by the kernel 

function, and it is as follow.  

𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=0

𝑘(𝑥𝑖, 𝑥𝑖) + 𝑏 
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3.3 Comparison Models      

3.3.1 Random Forest    

Decision trees analyze data and represent patterns existing between data as a 

combination of predictable rules. The model is called a decision tree because it 

is similar to a tree. The distinction of variables is learned so that the increase of 

homogeneity, impurity or uncertainty is reduced as much as possible. Entropy, 

Gini coefficient, etc. are used as indicators.  

The random forest is an ensemble machine learning method that builds 

a lot of decision trees, and the final result is averaged in regression or voted in 

classification. The various sub-sampling with replacement is employed to build 

a lot of decision trees, called bagging (bootstrap aggregating). The random 

forest provides variable importance information based on the mean decrease 

accuracy in the process of bagging. The average accuracy is traced by inclusion 

or exclusion of a variable. This can be used as a source for selecting meaningful 

variables. 
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Figure 3.9 Concept of random forest  

(Source: Verikas et al. 2016) 

 

3.3.2 Artificial Neural Network    

The ANN method is the most widely used learning method, and it is a method 

which is inspired by neural network of the brain. The ANN can model the 

complex non-linear structure using the weights of individual nodes that can 

form multiple layers. It was used in cases such as image recognition and speech 

recognition, which are difficult to solve based on rules, and for speed prediction. 

The ANN can be defined by a connection pattern between neurons in different 

layers, a learning process for updating the weights of connections, and an 

activation function for changing the weight input of neurons to activation.  

In the feed forward neural network, which is the simplest neural 

network, information of the neural network is transmitted unidirectionally from 
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the input node to the output node through the hidden node, and there is no 

circulating path. It is learned by using backpropagation technique. The cost 

function is minimized and the activation function can be logistic, softmax, 

sigmoid, tanh, RELU, and so on. In ANN model, there is a limitation that it 

finds the local optimal solution. Also, the learning effect is not improved even 

if the layer is deepened, and the optimal performance is achieved in the first 

and second layers when the backpropagation technique is applied. The 

overfitting is more likely to occur than SVM for the purpose of minimizing the 

error. 

 

 

Figure 3.10 Concept of ANN  

(Source: https://en.wikipedia.org/wiki/Artificial_neural_network) 
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3.3.3 Stacked auto-encoder  

The auto-encoder is one of the deep learning methods to improve the ineffective 

limitation of ANN in multilayer. In contrast to ANN, the auto-encoder makes a 

structure that can be restored itself using encoding and decoding. To this end, 

the input variables are connected to the specific nodes and the results are 

obtained. This is an unsupervised learning method because the outputs are the 

same as the inputs. 

The SAE is a technique that stacks multiple layers in a model structure 

and continuously encodes and decodes them. The local learning is performed 

using the auto-encoder to find out the features, and then the deep learning ANN 

structure can be completed using fine-tuning that links the original input and 

output data again. 

The sparsity can be used to increase the efficiency of learning and 

mitigate the overfitting in SAE. This technique uses the weight matrix of the 

variable into the penalty term with the parameter in the objective function. The 

lasso (𝑙1 𝑛𝑜𝑟𝑚) uses the absolute value while the ridge (𝑙2 𝑛𝑜𝑟𝑚) uses the 

squared value as a penalty. 
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Figure 3.11 Concept of stacked auto-encoder  

(Source: https://wikidocs.net/3413) 

 

 

(a) Lasso                       (b) Ridge  

 

Figure 3.12 Concept of sparsity 

(Source: https://onlinecourses.science.psu.edu/stat857/node/158) 
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Chapter 4. Empirical Data Evaluation 

4.1 Evaluation Strategy       

This chapter described the evaluation of the proposed machine learning 

approach. It was evaluated whether the approach improves the prediction 

performance by selecting significant variables for prediction horizon in real 

data. To this end, the proposed machine learning approach was used to predict 

5-, 15-, and 30-minute of a Kyungbu freeway in Korea. Also, it was performed 

a 5-minute and 15-minute prediction of U.S. interstate freeway in California. 

The details of the process by which the proposed approach was applied to real 

data were also described. The performance measure used mean absolute error 

(MAE), root mean squared error (RMSE), and RMSE was used in the variable 

selection procedure. 

𝑀𝐴𝑃𝐸(%) =
100

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1

 

𝑀𝐴𝐸 =
∑ |𝐴𝑡 − 𝐹𝑡|𝑛

𝑡=1

𝑛
 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑡=1

𝑛
 

Where, 𝐴𝑡 : 𝑡-th observed value, 𝐹𝑡 : 𝑡-th predicted value 
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 The comparison models for performance evaluation were divided into 

variable selection group and the all variable group. The variable selection group 

consists of the case of using the single index of CCC, which is a nonlinear 

correlation coefficient, and the case of using the variable importance from the 

RF model as a single index, all using forward selection based on the SVM 

model. The number of the test for variable selection in comparison models was 

the same as the test number of the proposed model. In the all variable group, 

SVM model and RF model were developed using all variable. The overfitting 

can be identified by the predictive performance comparison with the all variable 

group. The overall improvement level of the ensemble learning can be 

compared with the variable selection. In the U.S. interstate freeway case, the 

ANN based models were further compared because the dimension of input 

space was relatively low. The performances were compared with basic ANN 

model and SAE model with the sparsity term. 
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4.2 Case 1: Korean Freeway         

4.2.1 Evaluation Site    

The study area has 30 loop detectors of vehicle detection system (VDS) and is 

in 37.1km section (Milepost (MP) 369.4 km - 406.5 km) from Anseong rest 

stop to the Seoul tollgate in northbound. Data were collected for six months 

from March to August 2016, and the 5-minute aggregation data of speed (𝜇), 

occupancy (𝑜) and traffic volume (𝑞) were obtained. The cases of continuous 

observation for 2 hours were selected and performed the prediction for 5-minute, 

15-minute and 30-minute using the 1-hour data as independent variables. The 

outliers were eliminated when the speed was 0 or more than 160 km/h. In the 

total 13,244 data sets, 9271 cases (70%, from March 19 19:15 to June 26 7:05) 

was used for training, and 3973 cases (30%, from June 26 7:10 to August 31 

19:10) was used for validation. The time information is based on past 5 minutes.  

 The total variable space consists of 1080 spatiotemporal variables 

because of the three variables of 𝜇, 𝑜, and 𝑞 from 30 detectors with 12 time-

steps. The time variable was added to reflect the effect of historical data and the 

variables space was finally 1081. The number of VDS and absolute and relative 

location and geometrical feature are shown in the following figure with the 

speed contour plot of March 10. The prediction targets were the 5-minute, 15-

minute and 30-minute future of the VDS 30100 (389 km) located midway in 

the queue on March 10. The evaluation site operates hard shoulder running. The 

notations are 𝜇  for speed, 𝑜  for occupancy, 𝑞  for traffic volume. The 
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superscript 𝑖  is relative MP, the negative is upstream, and the positive is 

downstream. The subscripts are in the order of time steps, -1t is 5 minutes ago, 

and -2t is 10 minutes ago and so on. For example, 𝝁𝒕=−𝟏𝒕
𝒊=−𝟏𝒌𝒎 indicates the speed 

5 minutes ago in the 1 km upstream.  

 

 

Figure 4.1 Basic information of evaluation site (Korean freeway)  

  



 

49 

 

4.2.2 Analysis      

(1) 15-minute prediction  

The prediction for 15-minute future at VDS 30100 (absolute MP 389 km, 

relative MP 0 km) was performed using the proposed approach. The one-hour 

data of 5 minute-aggregated 𝜇, 𝑜 and 𝑞 from 30 VDS (the upstream section 

-19.6 km to the downstream section 17.5 km) and time information were used 

as the independent variable.   

 First, PCA analysis was performed. Since the time variable is not a 

variable representing the current state, it is excluded from the PCA analysis, 

and the variable selection is applied at first, and this indicates adding the 

reflection of the current state in the empirical prediction. In the first trial of PCA 

with Varimax rotation, the dependent variable was loaded on a PC with some 

independent variables which have maximum loading on the same PC. In this 

case, the PCA was re-performed using the dependent variable and the 

surrounding variables until the dependent variables were loaded alone in a PC. 

A total of four times PCAs were performed to find a PC loaded only dependent 

variable. The following table lists the PCs in the order of loading dependent 

variables. The cumulative 95% of the dependent variables were loaded in 18 

PCs. 
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Table 4.1 PCA result for 15-minute prediction of Korean freeway 

Trial 

number 

of  

PCA 

PC 

number 

Loading of 

dependent 

variable 

Cumulative 

loading of 

dependent 

variable  

Number of 

maximum 

loaded 

variables  

4 2 0.735 24.7% 1 

3 7 0.352 36.5% - 

2 26 0.314 47.1% - 

1 211 0.283 56.6% - 

2 2 0.253 65.1% 29 

3 1 0.201 71.9% 10 

4 3 0.135 76.4% 2 

1 1 0.129 80.7% 367 

4 5 0.126 85.0% 2 

1 15 0.075 87.5% 3 

3 2 0.069 89.8% 14 

2 3 0.031 90.9% 23 

2 4 0.030 91.9% 13 

2 1 0.027 92.8% 36 

… 
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 In the order of dependent variable loading, PCs are ranked. The 

independent variables are assigned to the PCs that have the maximum loading 

of the variables for grouping. In the group, the variables were ranked using the 

nonlinear correlation coefficient CCC. The result of ranking is shown in Figure 

4.2. 

 In the ranking result, the first PC consists of the speed and the 

occupancy of 5 to 30 minutes ago in the upstream of -1 km, -2 km. The second 

PC includes variables of the speed and occupancy of 5 to 15 minutes ago in the 

1.5 km downstream and 2.4 km downstream. The third PC includes the speed 

and the occupancy of the target point (VDS 30100) at five minutes ago. The 

fourth PC includes the speed and occupancy of 5 to 45 minutes ago in the 

bottleneck point, 4.2 km downstream and 3.6 km downstream. In addition, 

traffic volume between -17.8 km and -11.1 km, which is a section of hard 

shoulder running, and traffic volume information, about -5 km section, which 

is near Dongtan JC, are included. Then, the PCs were selected spatiotemporal 

variables in such a way from the nearby target point to far away. In the selected 

time range, upstream of 5 to 30 minutes ago is in a PC, but downstream of 5 to 

15 minutes ago is in a PC because traffic flow from the downstream effects 

more rapidly to a predictive area than it from the upstream. 

 The variables were selected using the forward selection method with 

SVM and variable ranking. The stopping criteria were 𝑘1 = 3 between PCs 
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and 𝑘2 = 1 in the PC. The 18 tests were performed and took 169.6 seconds, 

and the test results are shown in Table 4.2. The RMSE of the optimal model is 

12.788 in the validation data. The MAE was 7.521 and the average speed is 

84.3 km/h. 

 The selected variables are shown in Figure 4.3. The bottleneck head 

of the queue, 4.2 km and the tail of the queue, -2 km were included. In the 

downstream, the speed of 4.2 km and the speed of 1.5 km were included. Target 

points included the speed of 5, 10, and 15 minutes ago. In the case of the 

upstream, the speed of 5 minutes ago and the occupancy of 10 minutes ago in 

the -2 km point were included, and the speeds of 5 minutes and 10 minutes ago 

in the -1 km point were included. 

 

 

Figure 4.2 Variable ranking for 15-minute prediction of Korean freeway 
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Table 4.2 Result of forward selection for 15-minute prediction of Korean 

freeway   

Number 

of 

trial 

Tested 

variable 

RMSE of 

validation data 

Calculation time 

(sec) 

Selection 

result 

1 Time 24.333 11.5 O 

2 μt=−1t
i=−1km 16.614 9.6 O 

3 μt=−1t
i=1.5km 14.510 8.8 O 

4 μt=−1t
i=0km 14.002 8.5 O 

5 μt=−1t
i=4.2km 13.811 8.5 O 

6 μt=−1t
i=0km 13.555 8.7 O 

7 μt=−1t
i=−2km 12.984 8.9 O 

8 μt=−3t
i=1.5km 13.084 9.2 X 

9 μt=−7t
i=−1km 13.078 9.3 X 

10 μt=−7t
i=4.2km 13.094 9.3 X 

11 μt=−2t
i=−1km 12.942 9.5 O 

12 ot=−1t
i=1.5km 12.952 9.5 X 

13 ot=−1t
i=okm 12.968 9.4 X 

14 qt=−1t
i=−16.8km 12.993 9.6 X 

15 μt=−1t
i=0km 12.900 9.6 O 

16 ot=−1t
i=−2km 12.827 10.0 O 

17 ot=−2t
i=0km 12.871 9.9 X 

18 ot=−2t
i=−2km 12.778 10.0 O 
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Figure 4.3 Result of variable selection for 15-minute prediction of 

Korean freeway 
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(2) 30-minute prediction  

The prediction for 30-minute future at VDS 30100 (absolute MP 389 km, 

relative MP 0 km) was performed using the proposed approach. The 

independent variable space is the same as the 15-minute prediction. The same 

procedure of 15-minute prediction was applied for 30-minute prediction. PCA 

for 30-minute prediction was performed once and PC with only dependent 

variable was obtained. In the order of dependent variable loading, PCs that 

grouped the independent variables are ranked. In the group (PC), the variables 

were ranked using the nonlinear correlation coefficient, CCC. Variable ranking 

results were similar to the 15-minute prediction but somewhat changed. In the 

variable selection by SVM, the stopping criteria were 𝑘1 = 3 between PCs 

and 𝑘2 = 1 in the PC. The total RMSE of the optimal prediction model is 

17.282 and the MAE is 10.74. The average speed was 84.3 km/h. 

 The result of variable selection is shown in Figure 4.4. In contrast to 

the 15-minute prediction, it can be seen that the spatiotemporal range is 

expanded by adding the speed and occupancy of -17.8 km point which is the 

starting point of hard shoulder running and immediately downstream of 

Dongtan JC, -6 km and -5 km point. The target information was reduced to only 

five minutes ago, and the head and tail information of the queue is used similar 

to the 15-minute prediction. 
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Figure 4.4 Result of variable selection for 30-minute prediction of 

Korean freeway 
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(3) 5-minute prediction  

The prediction for 5-minute future at VDS 30100 (absolute MP 389 km, relative 

MP 0 km) was performed using the proposed approach. The independent 

variable space is the same as the 15-minute prediction. The same procedure of 

15-minute prediction was applied for 30-minute prediction. A total of five times 

PCAs were performed to find a PC loaded only dependent variable. In the order 

of dependent variable loading, PCs that grouped the independent variables are 

ranked. In the group (PC), the variables were ranked using the nonlinear 

correlation coefficient, CCC. In the variable selection by SVM, the stopping 

criteria were 𝑘1 = 3 between PCs and 𝑘2 = 1 in the PC. The total RMSE of 

the optimal prediction model is 8.121 and the MAE is 4.628. The average speed 

was 84.3 km/h. 

 The result of variable selection is shown in Figure 4.5. In contrast to 

the 15-minute prediction, it can be seen that the spatiotemporal range is 

shortened. The information of -2 km and 4.2 km was eliminated while the 

information of -1 km and 1.5 km was added.  
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Figure 4.5 Result of variable selection for 5-minute prediction of 

Korean freeway 
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4.3 Case 2: Interstate Freeway          

4.3.1 Evaluation Site         

For the second case study, the data of interstate freeway I-880 in California was 

selected. Eight consecutive detectors, VDS 401611 - 400030, in 5.81 km (3.64 

miles) section in the area near the San Jose area on the California Highway I-

880 road were selected. The average length of detectors is 0.83km. The data of 

𝜇, 𝑜 and 𝑞 were collected, and the 30 seconds aggregated raw data was re-

aggregated for 5-minutes. Data were collected for three months, February, 

March, and April 2016. 

 A total of 9713 samples are collected eliminating the outliers, and 

prediction is possible up to 15-minutes based on data up to 20 minutes ago. The 

training data and the validation data were divided into 70% and 30%. Since 

there are three pieces of information (μ, o, and q) in 8 detectors at four-time 

steps, there are 97 spatiotemporal variables as independent variables. Except 

for the weekends and night time and missing data, the data was fully observed 

over 40 minutes in all detectors.  

 The filtered samples were relatively similar in time to frequency 

distribution, and the influence on the specific time was leveled. The geometrical 

property, number of VDS in order from upstream to downstream and the speed 

contour plot of 1st February is shown in Table 4.3 and Figure 4.6. The 

congestion occurred in the VDS 1, and it is mitigated at VDS 3. The congestion 

cleared at VDS 5 but it occurs again at VDS 6. The VDS 3 was selected as 
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target variable for prediction. The average speed of target variable is 65.795 

miles/h, and the standard deviation of speed was 13.22 miles/h. 

 

 

Table 4.3 Evaluation site of interstate freeway   

VDS 

number 

VDS ID Postmile 

(absolute) 

Postmile 

(relative, km) 

Interval 

(km) 

8 401611 0.03 4.38 
 

7 408911 0.54 3.56 0.82 

6 400514 1.28 2.37 1.19 

5 400709 1.94 1.30 1.06 

4 400508 2.55 0.2 0.98 

3 403225 2.75 0.0 0.32 

2 401440 3.44 -1.11 1.11 

1 400030 3.64 -1.43 0.32 
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Figure 4.6 Characteristics of study area in interstate freeway    
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4.3.2 Analysis        

(1) 5-minute prediction  

The PCA was conducted using training data with dependent variables, and the 

Varimax rotation was performed. The PCA was performed using the correlation 

matrix because the scale of the information was different such as time, speed, 

traffic volume, and occupancy. The data decomposed into 97 PCs with the same 

number of variables. Dependent variables were loaded at the 57th PC, and the 

loading of dependent variables loaded in 14 PCs was 98%. Variables were 

assigned to PCs that were the maximum loading of each variable, grouped by 

PC, and prioritized by dependent variable loading ranking. 

 The variables were grouped by assigning it to the maximum loaded 

PC. The variable ranking was determined, the between PCs by the loading of 

the dependent variable, and the within PC by the CCC. The variables were 

selected in the forward selection manner using the variables rankings by 

proposed approach and SVM model. In the variable selection by SVM, the 

stopping criteria were 𝑘1 = 3 between PCs and 𝑘2 = 1 in the PC. As a result 

of the variable selection, the total execution time is 95.7 seconds and the RMSE 

of validation data of final model is 6.961, MAE is 5.003.  

In addition to the time variable, seven variables of the current state 

were selected and the result of variable selection is shown in Figure 4.7. The 

speed and the occupancy of 5 minutes ago at the 1.3 km downstream, and the 

speed of 5 minutes ago at the point of 0.2 km were selected. In the upstream, 
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speed and occupancy of 5 minutes, ago and the occupancy of 10 minutes ago 

at the -1.11 km point were selected. The target point was selected only at the 

speed of 5 minutes ago. 

 

Table 4.4 PCA result for 5-minute prediction of interstate freeway  

Number of 

PC 

Loading of dependent 

variable 

Cumulative loading of 

dependent variable 

57 0.30047 30.0% 

60 0.28346 58.4% 

3 0.20044 78.4% 

2 0.14542 93.0% 

4 0.01520 94.5% 

1 0.00821 95.3% 

5 0.00738 96.1% 

41 0.00504 96.6% 

47 0.00298 96.9% 

13 0.00266 97.1% 

14 0.00201 97.3% 

26 0.00190 97.5% 

11 0.00185 97.7% 

38 0.00180 97.9% 

15 0.00166 98.0% 
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Table 4.5 Variable selection of 5-minute prediction of interstate freeway  

Trial Variable RMSE 

Test 

Calculation 

time(sec) 

Selection 

result 

1 𝑻 10.388 6.75 O 

2 𝝁𝒕=−𝟏𝒕
𝒊=𝟎𝒌𝒎 7.637 6.46 O 

3 𝒐𝒕=−𝟏𝒕
𝒊=−𝟏.𝟏𝟏𝒌𝒎 7.499 6.34 O 

4 𝝁𝒕=−𝟏𝒕
𝒊=𝟏.𝟑𝟎𝒌𝒎 7.173 6.42 O 

5 𝒒𝒕=−𝟏𝒕
𝒊=𝟒.𝟑𝟖𝒌𝒎 7.240 6.40 X 

6 𝒐𝒕=−𝟏𝒕
𝒊=𝟐.𝟑𝟕𝒌𝒎 7.217 6.47 X 

7 𝝁𝒕=−𝟏𝒕
𝒊=𝟎.𝟐𝒌𝒎 7.094 6.67 O 

8 𝒐𝒕=−𝟏𝒕
𝒊=𝟏.𝟑𝟎𝒌𝒎 6.968 6.88 O 

9 𝝁𝒕=−𝟐𝒕
𝒊=𝟑.𝟓𝟔𝒌𝒎 7.031 7.24 X 

10 𝝁𝒕=−𝟐𝒕
𝒊=𝟎𝒌𝒎 6.999 7.20 X 

11 𝒐𝒕=−𝟐𝒕
𝒊=−𝟏.𝟏𝟏𝒌𝒎 6.967 7.18 O 

12 𝝁𝒕=−𝟐𝒕
𝒊=𝟏.𝟑𝟎𝒌𝒎 6.978 7.14 X 

13 𝝁𝒕=−𝟏𝒕
𝒊=−𝟏.𝟏𝟏𝒌𝒎 6.961 7.09 O 

14 𝒐𝒕=−𝟏𝒕
𝒊=−𝟏.𝟒𝟑𝒌𝒎 6.990 7.47 X 
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Figure 4.7 Variable selection for 5-minute prediction in interstate 

freeway 
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(2) 15-minute prediction  

The PCA was conducted for 15-minute prediction using training data with 

dependent variables, and the Varimax rotation was performed. The data 

decomposed into 97 PCs with the same number of variables. Dependent 

variables were loaded at the 50th PC. Variables were assigned to PCs that were 

the maximum loading of each variable, grouped by PC, and prioritized by 

dependent variable loading ranking.  

 The variables were grouped by assigning it to the maximum loaded 

PC. The variable ranking was determined, the between PCs by the loading of 

the dependent variable, and the within PC by the CCC. The variables were 

selected in forward selection manner using the variables rankings by proposed 

approach and SVM model. In the variable selection by SVM, the stopping 

criteria were 𝑘1 = 3 between PCs and 𝑘2 = 1 in the PC. As a result of the 

variable selection, the total execution time is 150.0 seconds for 21 of trials. The 

RMSE of validation data of final model is 8.046, MAE is 5.665. 

In addition to the time variable, 12 variables of the current state were 

selected and the result of variable selection is shown in Figure 4.8. A 

spatiotemporal wider range of variables was used compared to the 5-minute 

prediction. It was used from the traffic volume of 20 minutes ago at the 8th 

detector to the speed of 5 minutes ago at the target point. In particular, various 

information at the downstream was selected. 
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Figure 4.8 Variable selection for 15-minute prediction in interstate 

freeway 
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4.4 Comparison of Predictive Capability  

4.4.1 Case 1: Korean freeway         

The predictive performance 15-minute prediction model was compared with 

the models of the variable selection group. The proposed model compared with 

the CCC based SVM model and RF based SVM model. The average RMSE of 

the proposed model was the best at 12.778, and the RF based variable selection 

model was second-ranked at 12.822. Based on the comparison result, the 

proposed model showed the best prediction capability and better efficiency of 

computational cost. In the model using all variables, the RMSE of the SVM 

model is 15.725 and it is confirmed that the overfitting phenomenon arises 

significantly in the case study. In the case of RF model with all variable, the 

RMSE is 13.778, which indicates that mitigation of overfitting by ensemble 

learning is lower than the effect of the proposed variable selection model. 

In the case of the 30-minute prediction, the RMSE of the proposed 

model was the best as 17.282 and the RF based SVM model was the second 

best as 17.623. The RMSE difference between the two models was larger than 

the 15-minute prediction. The ability to mitigate the overfitting of the proposed 

model is better than RF based model when the prediction step is increased. 

Similar to 15-minute prediction, the computational cost of the proposed model 

is one-third of that of the RF based model. The overfitting phenomenon was 

confirmed compared to the SVM model that using all variable. It was also 
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confirmed that ensemble learning, RF, did not improve the predictive 

performance as much as the proposed model. 

In the case of the 5-minute prediction, the RMSE of the proposed model 

was the best as 8.121 and the CCC based SVM model was the second best as 

8.144. The RMSE difference between the two models was smaller than the 15-

minute prediction. Similar to 15-minute prediction, the computational cost of 

the proposed model is one-third of that of the RF based model. The overfitting 

phenomenon was confirmed compared to the SVM model that using all variable. 

It was confirmed the difference in predictive performance between the RF 

model and the proposed model was smaller than the 15- and 30-minutes 

prediction.  

 

Table 4.6 Performance comparison for 15-minute prediction of Korean 

freeway 

Category Model  RMSE of 

validation data 

Computational 

cost (sec) 

Variable 

selection 

Proposed model 12.778 1040.3 

CCC based model 12.941 194.0 

RF based model 12.822 3343.0 

All variable SVM  15.725 710.2 

RF 13.778 3167.2 
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Table 4.7 Performance comparison for 30-minute prediction of Korean 

freeway 

Category Model  RMSE of 

validation data 

Computational 

cost (sec) 

Variable 

selection 

Proposed model 17.282 949.5 

CCC based model 17.788 246.0 

RF based model 17.623 3478.2 

All variable SVM  19.237 686.3 

RF 18.581 3252.2 

           

Table 4.8 Performance comparison for 5-minute prediction of Korean 

freeway 

Category Model  RMSE of 

validation data 

Computational 

cost (sec) 

Variable 

selection 

Proposed model 8.121 1056.5 

CCC based model 8.144 185.3 

RF based model 8.177 3628.5 

All variable SVM  11.824 626.9 

RF 8.413 3474.5 
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4.4.2 Case 2: Interstate freeway         

In the case of the 5-minute prediction, the RMSE of the proposed model was 

the best as 6.961 and the RF based SVM model was the second-ranked as 6.986. 

Other results of performance comparison were similar to the comparison of 

Korean freeway. In the case 5-minute prediction of interstate freeway, three 

comparison models were added, i.e., unsupervised PCA based variable 

selection model, ANN, and SAE, for performance comparison because of this 

case lower dimension of variable space than the case of Korean freeway.  

The unsupervised PCA base variable selection model showed the 

RMSE of 8.377 and it was higher than the RMSE of the proposed model. In the 

case of ANN and SAE models, parameter optimization should be performed, 

but this was not possible for a limited time and only a few cases were performed. 

The node and layer of ANN performed only 4 cases of (3,2), (8,2), (5,5), (5,3,2), 

and (3,2) showed the best predictive performance. In the case of the SAE model, 

five nodes and layers of (3,2), (5,5), (15,5), (25,5), and (15,10,5) were 

performed with 5 cases of sparsity parameter. The best predictive performance 

was shown in (5,5) with sparsity parameters as lambda 0.002, beta 0.1, rho 

0.005, epsilon 0.001. The best result of the ANN model is 9.809, which is the 

worst performance. The SAE model with sparsity term showed the RMSE of 

7.162 and it was slightly higher than the RMSE of the proposed model. For the 

calculation cost, the proposed model took 1.6 minutes, but the RF took 2.9 

minutes. The SAE model had an average of 273.5 minutes and the ANN had an 
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average of 437.7 minutes. 

 

Table 4.9 Performance comparison for 5-minute prediction of interstate 

freeway 

Category Model  RMSE of 

validation data 

Computational 

cost (sec) 

Variable 

selection 

Proposed model 6.691 97.1 

CCC based model 7.414 98.8 

RF based model 6.986 266.2 

Unsupervised PCA 

base model 

8.377 95.9 

All variable SVM  7.458 26.6 

RF 7.002 175.3 

ANN 9.809 26,259.5 

(average) 

SAE 7.162 16,790.6 

(average) 
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In the case of the 15-minute prediction, the performance comparison was 

conducted as same as the case of Korean freeway. The RMSE of the proposed 

model was the best as 8.406 and the RF based SVM model was the second-

ranked as 8.566. Other results of performance comparison were similar to the 

comparison of Korean freeway.  

 

Table 4.10 Performance comparison for 15-minute prediction of 

interstate freeway 

Category Model  RMSE of 

validation data 

Computational 

cost (sec) 

Variable 

selection 

Proposed model 8.406 153.0 

CCC based model 9.021 143.6 

RF based model 8.566 331.7 

All variable SVM  8.573 24.9 

RF 8.590 182.8 
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Chapter 5. Implication for Traffic Analysis  

5.1 Traffic Phase of Principal Components  

This chapter describes the implication of the proposed machine learning 

approach for traffic analysis. First of all, the terms were defined and explained. 

The traffic state is a homogeneous condition that is distinguished from other 

states by a traffic condition at a single point. The propagation of a traffic state 

indicates a phenomenon in which the traffic state of a single point evolves to 

another time-space. Kerner (2009) defined the traffic phase as a state of time 

and space that possess some unique feature. In this study, the definition of 

traffic phase by Kerner is used, but it is specifically defined as some unique 

state defined by the relationship of two spatiotemporal variables. 

Some shock waves were used as the example of the propagation of 

traffic states in this study. The shock wave can be defined as the boundary 

condition of the time-space domain which shows discontinuity of traffic 

volume-density state (May, 1990). Typical congestion on the freeway is 

backward forming and forward recovery as shown in Figure 5.1. Backward 

forming is a phenomenon in which congestion expands in the upstream 

direction as it exists when congestion occurs in the bottleneck section. Forward 

recovery is the second most commonly occurring, with demand falling below 

capacity and the length of congestion decreasing to the downstream direction. 
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Figure 5.1 Shock wave phenomena at a freeway bottleneck  

(Source: Traffic flow fundamentals (May, 1990, p.209)) 
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(1) Numerical example setting  

Numerical examples are introduced to analyze shock wave data. The example 

is simplified from the empirical analysis result that clearly shows the shock 

wave. The empirical analysis in Zheng et al. (2011) were used. The analysis 

area is the point where noise is low and shock waves of backward forming and 

forward recovery are observed at relatively uniform intervals. 

 

 

Figure 5.2 Basic source for the numerical example  

  (Source: Zheng et al., 2011) 
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To simplify the numerical example, the detector interval is made equal 

to 1.67km. All have the same shape of speed profile. The wave speed of the 

backward forming is 20km/h that moves the detector interval at every 5 minutes 

and the wave speed of the forward recovery is 10 km/h that moves the detector 

interval at every 10 minutes. The generated daily data that shown in Figure 5.2 

was repeated for 30 days, and the noise of the standard normal distribution with 

the standard deviation of three was combined.   

 

 

Figure 5.3 Basic speed profile of numerical example  
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(2) Traffic phase diagram of numerical example  

The two of speed variables of the numerical example were bi-plotted in the 

vector space, which is the concept of the space in which the PCA is performed. 

The bi-plot of the downstream congestion area and predicted target speed as 

shown in Figure 5.4 (a). The lower left corner of the graph is the congested 

traffic phase of both variables and the upper right corner is the phase where 

both variables are in free flow. The data point of shock waves appear at the 

upper left of both backward forming and forward recovery, and the bottleneck 

point shows a clearer difference than the midpoint. 

In the bi-plot of the upstream, Figure 5.4 (b), it is different from the 

case of downstream that the data point of the shock wave appears in the lower 

right corner. Similar to the downstream, the tail region of the queue where shock 

waves occur is plotted more clearly than the midpoint.  

On the other hand, if it is not related to the shock wave, the bi-plot 

appears with only the state change of the target variable, Figure 5.4 (c). 
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(a) Downstream  

 

(b) Upstream 

 

(c) Not in the queue 

    

Figure 5.4 Speed bi-plot of numerical example (a) downstream,  

(b) upstream, (c) not in the queue   
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The results of the PCA on the bi-plot of the speed of prediction target 

and the speed of upstream or downstream are shown in Figure 5.5. In the case 

of downstream, since the condition of both variables are free flow or congested 

were the longest of the time, the PC connecting the two conditions is created 

first and this explains maximum of the variance of data in one axis. Next, a 

second PC is created, pointing to the data point generated by the upper left 

shock wave. In the upstream case, the first PC is the same as the downstream 

but the direction of the second PC, which is associated with the shock wave, is 

opposite to the case of downstream.  

 

 

Figure 5.5 PCA result of numerical example 
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Based on the vector space of bi-plot, the traffic state of each of two 

speed variables is divided into the free flow (F) and the congested traffic (C), 

as shown in Figure 5.6. The traffic state of the two variables is composed of 

both free flow states (F, F), both the congested traffic (C, C), congested traffic 

only on the y-axis (F, C), and congested traffic on the only x-axis (C, F). The 

PCA results in the case of not in the queue showed the PCs are pointed their 

own variance, no effect each other. As shown in Figure 5.7, the overall vector 

space is represented by the traffic phase diagram, and the PCA results can be 

interpreted regarding traffic analysis. If there is a shock wave, both variables 

can be classified into both free flow phase (BF), both congestion traffic phase 

(BC), propagation of traffic state associated with the downstream (PD), and 

propagation traffic state associated with the upstream. 

 

(a) In the queue 
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(b) Not in the queue 

 

Figure 5.6 Overall vector space and PCs (a) in the queue, (b) not in the 

queue 

 

 

Figure 5.7 Spatiotemporal traffic phase diagram 
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(3) Identifying the PCs and its related variables   

This sub-sections discussed two points. One is to identify the PCs representing 

the propagation of traffic state from the PCA results, and the other is to identify 

the spatiotemporal variables that describe the identified PC. The PCA generally 

used in machine learning as a feature extraction method in which the specific 

PCs are selected based on the PC's eigenvalue value and the entire data is 

projected to the corresponding space. However, this method is not easy to 

interpret in terms of variables because the original variables are transformed. In 

the proposed approach, the PCs which represents the propagation of traffic state 

are identified, and then the original variables identified that explains the 

identified PC for interpretation for traffic analysis. 

To identify the PCs associated with the propagation of traffic state, the 

loading factor, which is the linear correlation coefficient between the original 

variables and the PC is used. However, since the result of initial PCA is not a 

simple structure, both propagations of traffic state related variables and 

dependent variables have maximum loading on the same largest PC. The result 

of PCA is changed when using the Varimax rotation that maintains 

orthogonality to make a simple structure, Figure 5.8. If there is the propagation 

of traffic state, the PC connecting the BF and the BC show the maximum 

loading of the dependent variable while the PC representing the propagation of 

traffic state show the maximum loading of the related independent variables. In 

this process, the dependent variable leaves some loading on the PC describing 
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the propagation of traffic state. 

On the other hand, PCA result with variables that not in the queue are 

parallel to each variable, and the dependent variable has the loading of almost 

0 in PC representing state change of other variables. Thus, a PC that is 

maximum loaded with dependent variable is PC that connects BF and BC, PCs 

with some loading of the dependent variable are PCs that describe the 

propagation of traffic state, and PCs with loading of dependent variables close 

to 0 can be identified as PCs that are not related to the propagation of traffic 

state. In addition, since independent variables that can explain each PC have 

max loading on each PC, spatiotemporal variables with max loading can be 

matched and identified and grouped. The change of loadings is represented in 

Table 5.1.   
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(a) In the queue (downstream) 
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(b) Not in the queue 

 

 

Figure 5.8 Change of loadings after Varimax rotation (a) in the queue 

(downstream), (b) not in the queue 
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Table 5.1 Loadings after Varimax rotation 

 

(a) In the queue (before Varimax) 

PC Dependent variable Independent variable 

PC1 maximum maximum 

PC2 some some 

 

(b) In the queue (after Varimax) 

PC Dependent variable Independent variable 

PC1 maximum some 

PC2 some maximum 

 

(c) Not in the queue (after Varimax) 

PC Dependent variable Independent variable 

PC1 maximum ≒0 

PC2 ≒0 maximum 
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(4) Identifying PCs and variables in numerical example 

In the two dimension, PCs are identified as described in subsection (3). It is 

necessary to examine whether the identification of the PCs and the variables 

related to the propagation of traffic state in two dimensions are the same manner 

in higher dimensions that is combined of upstream, downstream and not in the 

queue. Because it is difficult to explain in the high-dimensional case by using 

figure, it is explained by confirming PCA result of the numerical example.  

Table 5.2 (a) shows the results of PCA using the 5-minute ago speed 

of all six detectors in the numerical example and the 15-minute future speed of 

MP 25.00 as a dependent variable. As a result, only the speed at MP20.00, 

which is not present in the queue, is loaded to PC 2 before the Varimax rotation, 

but all variables including dependent variable have maximum loading in PC 1 

as described in subsection (3).  

Table 5.2 (b) shows PCA loading values after the Varimax rotation. 

First, the maximum loading of the dependent variable is 0.440 in PC 4 and no 

other maximum loaded variables in the PC 4. The variables related to the 

propagation of the traffic state were loaded in PC 1 and PC 3 and the loadings 

of the dependent variable were 0.261 for PC 1 and the 0.289 for PC 3. 

Dependent variable loading on PC 2 is almost 0 and the speed at the MP 20.00 

not in the queue was maximum loaded at PC 2. Taken together, it can be seen 

that interpretation of PCs for traffic analysis works at higher levels. 
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Table 5.2 Loadings in high dimensional PCA 

 

(a) before Varimax 

Variables PC1 PC2 PC3 … 

MP 20.00, -5min 
 

1.000 
  

MP 21.67, -5min 0.905 
 

0.079 
 

MP 23.33, -5min 0.951 
   

MP 25.00, -5min 0.968 
   

MP 26.67, -5min 0.954 
   

MP 28.33, -5min 0.907 
 

0.072 
 

MP 25.00, +15min 0.915 0.000 0.003 
 

Note: The loadings of the independent variable is shown only over than 0.05  

 

(b) after Varimax 

Variables PC1 PC3 PC2 PC4 

MP 20.00, -5min 
  

1.000 
 

MP 21.67, -5min 0.696 
   

MP 23.33, -5min 0.590 
   

MP 25.00, -5min 0.411 
   

MP 26.67, -5min 
 

0.550 
  

MP 28.33, -5min 
 

0.669 
  

MP 25.00, +15min 0.261 0.289 0.000 0.440 

Note: The loadings of the independent variable is shown only maximum value 
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The PCA has conducted again with higher dimension by extending the 

independent variable up to 10 minutes ago, to make sure that the proposed 

approach can identify the PCs and variables related to the propagation of the 

traffic state. Table 5.3 shows that the approach described in the subsection (3) 

works consistently, even if the dimensions are enlarged. 

 

Table 5.3 Loadings in higher dimensional PCA 

 

(a) before Varimax 

Variables PC1 PC2 PC5 … 

MP 20.00, -5min 
 

0.509 
  

MP 20.00, -10min 
 

0.502 
  

MP 21.67, -5min 0.905 
   

MP 21.67, -10min 0.890 
   

MP 23.33, -5min 0.949 
   

MP 23.33, -10min 0.936 
   

MP 25.00, -5min 0.965 
   

MP 25.00, -10min 0.954 
   

MP 26.67, -5min 0.950 
   

MP 26.67, -10min 0.942 
   

MP 28.33, -5min 0.905 
   

MP 28.33, -10min 0.902 
   

MP 25.00, +15min 0.863 
 

0.109 
 

Note: The loadings of the independent variable is shown only over than 0.05  
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(b) after Varimax 

Variables PC1 PC4 PC5 PC2 PC3 

MP 20.00, -5min 
   

1.000  

MP 20.00, -10min 
    

1.000 

MP 21.67, -5min 0.596 
   

 

MP 21.67, -10min 0.689 
   

 

MP 23.33, -5min 0.494 
   

 

MP 23.33, -10min 0.595 
   

 

MP 25.00, -5min 0.368 
   

 

MP 25.00, -10min 0.449 
   

 

MP 26.67, -5min 
 

0.458 
  

 

MP 26.67, -10min 
 

0.547 
  

 

MP 28.33, -5min 
 

0.547 
  

 

MP 28.33, -10min 
 

0.640 
  

 

MP 25.00, +15min 0.201 0.245 0.552 0.000 0.000 

Note: The loadings of the independent variable is shown only maximum value 
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(5) Occupancy and traffic volume data  

Occupancy information is opposite in direction to speed information, but 

characteristics are quite similar. Plotting the speed of the dependent variable 

and the occupancy of the independent variable yields the same traffic phase 

diagram as reversing left to right of the speed-speed plot. Plotting the speed of 

the dependent variable and the occupancy of the independent variable yields 

the same traffic phase diagram as reversing left to right of the speed-speed plot. 

The traffic phase diagram looks different in Figure 5.9, but the PC that occurs 

in the space is the same as the speed case. Therefore, the speed and the 

occupancy of the same spatiotemporal data are likely to be loaded on the same 

PC. 

In the case of traffic volume, there is a limit to explain the 

phenomenon of the propagation of the traffic state considering speed flow 

relation, because their relationship has the dual state. However, if there is a 

sudden change in traffic volume related to the propagation of the traffic state, 

it may be separated into some related PCs of the propagation of the traffic state. 
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Figure 5.9 Spatiotemporal traffic phase diagram of speed-occupancy 
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5.2 Comparison of Selected Variables      

Table 5.4 shows the results of the variable selection by the proposed approach 

and the other variable selection model. In the case of 15-minute prediction, 

Table 5.4. (a), the proposed model contains the information of the target point, 

the immediately upstream, the immediate downstream, and the information of 

the tale and the head of the queue. On the other hand, the RF based model also 

included both information of the tale and the head of the queue. The RF based 

model included more information about the near point and especially 

occupancy information of -17.8 km. The CCC based model did not include the 

information at the head of the queue and included the more information of the 

near points.  

The comparison was conducted in the same manner for the 30-minute 

prediction and it is shown in Table 5.4 (b). The proposed model contains the 

information of the target point, the immediately upstream, the immediate 

downstream, and the information of the tale and the head of the queue. 

Compared to the 15-minute prediction, the upstream information was more 

added, including the traffic information at the point near Dongtan JC and 

especially at the starting point of hard shoulder running, -17.8 km. This can be 

regarded as a reflection of the fact that the propagation of the traffic state of the 

upstream evolves more slowly than the downstream. 

The case of 5-minute prediction is shown in Table 5.4 (c). The result 

of the variable selection among models is not easy due to its similarity but the 
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proposed approach is the union of other models. The proposed model can 

capture the relevant feature variable than comparison models. 

 

Table 5.4 Comparison of selected variable in Korean freeway (a) 15-

minute (b) 30-minute, and (c) 5-minute prediction  

(a) 15-minute prediction 

Relative  

mile post 

Proposed 

approach 

RF based SVM CCC based 

SVM 

𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 

4.2 km −1𝑡 
  

−1𝑡 
     

2.4 km 
   

−1𝑡 −1𝑡 
 

−1𝑡 −1𝑡 
 

1.5 km −1𝑡 
  

−1𝑡 

−2𝑡 

−1𝑡 
 

−1𝑡 

−2𝑡 

−3𝑡 

−1𝑡 

−2𝑡 

 

0 km −1𝑡 

−2𝑡 

−3𝑡 

  
−1𝑡 

−2𝑡 

−3𝑡 

−1𝑡 
 

−1𝑡 

−2𝑡 

−3𝑡 

−1𝑡 
 

-1 km −1𝑡 

−2𝑡 

  
−1𝑡 

−2𝑡 

−1𝑡 
 

−1𝑡 

−2𝑡 

−3𝑡 

−1𝑡 
 

-2 km −1𝑡 −1𝑡 

−2𝑡 

 
−1𝑡 −1𝑡 

 
−1𝑡 

−2𝑡 

  

-5 km 
         

-6.6 km 
         

-8.9 km 
    

−1𝑡 
    

-17.8 km 
    

−1𝑡 
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(b) 30-minute prediction 

Relative  

mile post 

Proposed 

approach 

RF based SVM CCC based 

SVM 

𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 

4.2 km −1𝑡 
−2𝑡 

        

2.4 km 
    

−1𝑡 
    

1.5 km −1𝑡 
  

−1𝑡 −1𝑡 
 

−1𝑡 −2𝑡 
 

0 km −1𝑡 
  

−1𝑡 
  

−1𝑡 
−2𝑡 

  

-1 km −1𝑡 
  

−1𝑡 
  

−1𝑡 
−3𝑡 

−2𝑡 
 

-2 km −1𝑡 
  

−1𝑡 −1𝑡 
−2𝑡 

 
−1𝑡 
−2𝑡 

−1𝑡 
 

-5 km 
 

−1𝑡 
       

-6.6 km 
 

−1𝑡 
−2𝑡 

       

-8.9 km 
    

−1𝑡 
    

-17.8 km 
  

−1𝑡 
−2𝑡 

      

 

  



 

97 

 

(c) 5-minute prediction  

Relative  

mile post 

Proposed 

approach 

RF based SVM CCC based 

SVM 

𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 

4.2 km          

2.4 km          

1.5 km -1t 

-2t 

-1t  -1t -1t  -1t 

-2t 

-1t  

0 km -1t 

-2t 

-1t  -1t 

-2t 

-1t  -1t 

-2t 

-1t  

-1 km -1t 

-2t 

-1t  -1t 

-2t 

  -1t 

-2t 

-1t  

-2 km -1t -1t  -1t -1t  -1t   

-5 km          

-6.6 km          

-8.9 km          

-17.8 km          
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The -17.8 km point is the starting point of the hard shoulder running. 

The traffic volume of this point was selected in the 30-minute prediction of the 

proposed model. From now on, it is discussed whether the operation of the hard 

shoulder running can affect the prediction of the target point and whether the 

traffic volume change at this point is significant in the 30-minute prediction. 

The bi-plots between the 30-minute future of target point and the 

traffic volume at -17.8 km of 5 minute ago or at -13.8 km of 5 minute ago, or 

at -19.6 km of 5 minute ago are shown in Figure 5.9. The -19.6 km upstream 

from the -17.8 km point was not operating the hard shoulder running, there is 

no data point on the upper right-hand side of the bi-plot in Figure 5.10 because 

the traffic flow during the 5 minutes did not exceed 400. However, -17.8 km 

and its downstream point of -13.8 km, they were operating the hard shoulder 

running, they had a data point at the upper right corner in bi-plot as seen in 

Figure 5.10. The first PCs of each case were connected the BF and BC phase 

as same as in the speed-occupancy bi-plot. Then, the second PC directed the 

data point made when the hard shoulder running was operated. The second PC 

is at the right side of the first PC and it is the same as PD in the case of speed or 

occupancy. This interpretation supports that the traffic volume related to the 

hard shoulder running was included in the PC such as the speed of 4.2 km 

downstream that showed the propagation of the traffic state.  
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Figure 5.10 Bi-plot between 𝝁𝒕=−6𝑡
𝒊=0𝑘𝑚 and 𝒒𝒕=−1𝑡

𝒊=−13.8𝑘𝑚, 𝒒𝒕=−1𝑡
𝒊=−17.8𝑘𝑚, and 

𝒒𝒕=−1𝑡
𝒊=−19.6𝑘𝑚 
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In the case of the Interstate freeway, the proposed model showed the 

best predictive performance simply using -1.1 km upstream and 1.3 km 

downstream and the target point, but the other model predicted performance 

was lower even they selected the variables from the wide range. In the 5-minute 

prediction, the feature selection of the proposed approach can be interpreted as 

mitigating overfitting and capturing traffic flow characteristics well. 

In the case of 15-minute prediction, the proposed model expanded the 

spatiotemporal range as the prediction step became larger. On the other hand, 

the RF-based model and the CCC-based model are interpreted as the fact that 

the spatiotemporal range was rather reduced and the traffic flow characteristics 

are not properly reflected. In particular, the CCC-based model did not use 

upstream information at all. 
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Table 5.5 Comparison of selected variable in interstate freeway (a) 5-

minute (b) 15-minute prediction  

(a) 5-minute prediction 

Relative  

mile post 

(mile) 

Proposed 

approach 

RF based SVM CCC based SVM 

𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 

4.38          

3.56 

   -1t   -1t 

-2t 

  

2.37    -1t    -3t -4t 

1.30 -1t -2t   -1t  -2t   

0.2    -1t     -1t 

0.0 

-1t 

-4t 

   -2t   -2t  

-1.11 

-1t -1t 

-2t 

       

-1.43        -2t  
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(b) 15-minute prediction 

Relative  

mile post 

(mile) 

Proposed 

approach 

RF based SVM CCC based SVM 

𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 𝝁 𝒐 𝒒 

4.38 

  -1t 

-4t 

      

3.56   -4t       

2.37 

-1t -2t  -1t 

-2t 

-1t  -1t 

-2t 

-3t 

  

1.30 

-1t   -1t -1t   -1t 

-2t 

 

0.2 -1t   -2t -2t   -2t  

0.0 

-1t   -1t 

-3t 

-1t  -1t -1t  

-1.11 

-1t -1t 

-2t 

 -1t -1t     

-1.43  -1t        
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Chapter 6. Conclusions  

This study proposed a machine learning approach for the freeway traffic speed 

prediction. The proposed machine learning approach is a prediction model that 

includes a variable selection that mitigates overfitting and captures traffic 

characteristics well. The objective of the proposed approach is to provide 

interpretation of what traffic phenomena are important for prediction from 

variable selection process and result.  

In the proposed machine learning approach, variables are grouped 

using supervised PCA, and variable ranking of within the group is determined 

using CCC, which is a nonlinear correlation coefficient. Then the variables are 

selected using variable ranking and SVM model in the forward selection 

manner which adds the variables that improve the predictive performance. The 

empirical data evaluation for Korean freeway and U.S.A. interstate freeway 

were conducted. The proposed approach showed better performance than other 

variable selection models using variable ranking from the ensemble learning 

and the nonlinear correlation coefficient alone. Also, the proposed approach 

showed better predictive performance than the models using all variables, the 

RF model and the SAE model which is an unsupervised feature extraction 

model. Although the SAE model is not an optimal model, the proposed research 

technique is a dimensional reduction technique that very well describes the 

traffic characteristics. The computational cost of the proposed approach was 
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also more efficient than the ensemble learning and unsupervised feature 

extraction methods. 

The implications of the proposed method were explored for the traffic 

analysis. The PC loading using dependent variables can reflect the phenomenon 

of propagation of the traffic state and it can be interpreted that it is important 

for speed prediction to reflect statistically different propagation properly. This 

indicates that predictive capability can be improved if the rapid changes in the 

traffic state, switch between the free flow and the congested traffic, can be 

predicted by reflecting the propagation of the traffic state from other time-space. 

The proposed method selected the appropriate variables according to the 

horizon step of the prediction and showed great predictive capability. Therefore, 

it is concluded that reflecting the wide range of propagation of the traffic state 

is an important factor to improve the predictive ability of the learning-based 

multi-step prediction model.  

Unlike other machine learning models, the proposed model can 

provide information about the spatiotemporal congestion mechanism. The 

proposed approach can be used not only to provide information but also to 

establish an operation strategy for managing congestion and congestion-related 

crashes. 

The proposed approach has a limitation of the data-driven approach. 

It can greatly be influenced by the data quality, Missing values, outliers, noise, 

and so on. In addition, the proposed method provides an interpretation of the 
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features that were limited in the machine learning approach, but it has a 

limitation that it cannot identify the microscopic mechanism. The information 

of the congestion mechanism obtained by the proposed approach can be used 

to determine the analysis focus in advance when the microscopic analysis is 

used to interpret the details of the congestion mechanism. 

For the future research, the detailed mechanism can be identified 

through microscopic analysis using the congestion mechanism analyzed by the 

proposed approach. It is possible to investigate the common characteristics of 

the traffic flow from the spatiotemporal variables in the same PC. The impact 

of the data quality must be evaluated. Statistical simulation analysis can be used 

to assess the impact of noise on the proposed approach. The PCA and the CCC 

in the proposed approach can be substituted by similar methods. The PCA can 

be substituted for nonlinear PCA, and Granger causality can be applied instead 

of the CCC. Further research is needed to confirm the applicability to urban 

roads with signalized intersections or to use for non-recurrent congestion by the 

incident. 
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국문초록 
 

통행 속도 예측은 예측 기반 교통운영관리에 활용되어 지능형 교통

체계의 서비스를 개선할 수 있다. 시뮬레이션 기반 속도 예측은 인

과관계를 설명할 수 있으나 정확성에 한계를 갖고 있는 반면, 자료

기반 기법은 인과관계를 설명할 수 없으나 우수한 예측성능을 갖고 

있다. 특히 기계학습 기법을 이용하는 비모수적 기법의 성능이 우수

한데, 과적합을 완화하고 교통혼잡 특성을 반영하기 위한 특징 추출

이나 선택을 이용하여 예측성능을 높이고 있다. 이러한 비모수 기반 

속도 예측은 높은 성능으로 인해 정보시스템으로는 활용이 가능하

지만, 혼잡 매커니즘에 대한 정보를 제공하지 못해 교통운영관리에 

사용하기 위한 전략 수립에 어려움이 있다.  

본 연구는 혼잡 매커니즘에 대한 정보를 제공하면서 예측성능이 우

수한 특징 선택기법을 이용한 기계학습기반의 고속도로 속도 예측 

모델을 제안하고자 한다. 이를 위해 주성분 분석과 지지벡터머신을 

이용한 지도(supervised) 특징선택을 이용한다. 예측 목표인 종속

변수를 포함한 주성분 분석을 수행하고, 단순구조를 얻기 위한 

Varimax 회전을 사용한다. 최대 적재(loading)를 이용하여 각 변수

를 주성분에 할당하여 그룹화 한 뒤, 종속변수의 분산인 적재값을 

이용하여 순위화하면, 종속변수의 변량을 설명할 가능성이 높은 순

서대로 주성분 및 주성분에 포함된 변수를 식별할 수 있게 된다. 이

어서, 주성분 내 변수들 간에는 기계학습 모형에서의 예측성능을 순

위화 하기 위해 비선형 성관계수를 사용하여 순위화한다. 본 연구에

서는 교차상관(cross-correlation)계수를 사용하였다. 변수를 그룹

화하고, 그룹 간/그룹 내 우선순위를 이용하여 변수를 순차적으로 

투입해 나가는 전향선택(forward selection) 방식의 변수선택 기법

을 사용한다. 기계학습 회귀모델로는 일반화 성능이 우수하며, 계산

비용도 낮은 지지벡터머신의 회귀모델을 이용한다.  

제안된 특징선택 기법은 한국의 경부고속도로 일부 구간과 미국의 
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interstate (I-880)고속도로에서 경험자료를 통해 평가하였다. 그 

결과 특징을 잘 선택해 내었으며, 특히 경험적 연구에서 앙상블학습

기법인 random forest, 비지도 특징추출기법인 stacked auto-

encoder 기반의 인공신경망 기법보다 다소 우수한 차원감소 성능을 

보이고, 계산 비용에서도 상당히 효율적이었다.   

제안된 특징선택 기법의 교통공학적 함의를 도출하기 위해 주성분

분석의 벡터공간(vector space)을 두 시공간 변수간의 traffic 

phase diagram으로 변환하여 해석해 보았다. 그 결과 종속변수 적

재가 있는 주성분들은 한 시공간의 교통상태가 다른 시공간으로 전

이(propagation)되는 현상을 설명할 수 있으며, 통계적으로 서로 

다른 상태전이를 구별할 수 있다. 또한 제안된 기법을 사용한 모델

의 선택변수와 다른 기법(random forest, cross-correlation 계수)

을 이용한 선택 변수와 비교 결과, 제안된 모델이 가장 시공간적으

로 폭넓게 변수를 선택하였으며 혼잡 대기행렬의 head, tail, 가변차

로 운영 시점부 등을 prediction step에 따라 적절하게 반영하는 것

으로 나타났다. 제안된 특징선택 기법은 속도예측을 위한 교통상태 

변화를 적절히 선정해내어, 혼잡 매커니즘에 대한 정보를 제공할 수 

있는 고속도로 속도 예측을 구현하였다. 또한 다른 차원축소 기법에 

비해서도 평가된 경험적 분석에서 가장 우수한 예측 성능을 보이는 

것으로 나타났다. 특히, prediction step에 따라 적절한 특징을 선택

하여 multi-step prediction에 우수한 성능을 보였다. 따라서 본 연

구가 제안한 기계학습 접근법은 고속도로 혼잡관리 및 혼잡에 의한 

추돌사고 관리를 위한 교통운영 전략수립에 활용될 수 있을 것으로 

기대된다.   

 

주요어: 고속도로 속도 예측, 지지벡터머신, 주성분 분석, 특징 선택,

교통상태 전이 
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