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Abstract

Background: Gene-gene interactions (GGIs) are a known cause of missing heritability. Multifactor dimensionality
reduction (MDR) is one of most commonly used methods for GGI detection. The generalized multifactor
dimensionality reduction (GMDR) method is an extension of MDR method that is applicable to various types of
traits, and allows covariate adjustments. Our previous Fuzzy MDR (FMDR) is another extension for overcoming
simple binary classification. FMDR uses continuous member-ship values instead of binary membership values 0 and
1, improving power for detecting causal SNPs and more intuitive interpretations in real data analysis. Here, we
propose the fuzzy generalized multifactor dimensionality reduction (FGMDR) method, as a combined analysis of
fuzzy set-based analysis and GMDR method, to detect GGIs associated with diseases using fuzzy set theory.

Results: Through simulation studies for different types of traits, the proposed FGMDR showed a higher detection
ratio of causal SNPs, compared to GMDR. We then applied FGMDR to two real data: Crohn’s disease (CD) data from
the Wellcome Trust Case Control Consortium (WTCCC) with a binary phenotype and the Homeostasis Model
Assessment of Insulin Resistance (HOMA-IR) data from Korean population with a continuous phenotype. The
interactions derived by our method include the pre-reported interactions associated with phenotypes.

Conclusions: The proposed FGMDR performs well for GGI detection with covariate adjustments. The program
written in R for FGMDR is available at http://statgen.snu.ac.kr/software/FGMDR.
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Background
In many genetic association studies, despite successful
identification of genetic factors that govern various phe-
notypes, parts of heritability remained unexplained as
the ‘missing heritability’ [1]. For example, heritability of
height is assessed 55–81% [2, 3] and about 40 SNPs are
discovered by their association with the height. However,
these genetic variations explain only 5% of height vari-
ation [4]. To explain missing heritability, many studies
have been proposed and performed, including large

sample-size studies to detect weak effect SNPs [5], next-
generation sequencing techniques have been used to
overcome design flaws of SNP chips, such as rare variant
detections [6]. Epigenetic factors and population stratifi-
cation can be other sources of missing heritability [7].
Among efforts to explain the missing heritability, the

analysis of gene-gene interactions (GGIs) has been stud-
ied to understand the etiology of common complex
traits using statistics and machine learning [8]. Among
the many different machine learning approaches for de-
tecting GGIs, multifactor dimensionality reduction
(MDR), proposed by Ritchie et al. [9] has received much
interest, and numerous extensions of MDR have been
now developed, including quantitative MDR, for quanti-
tative traits [10]; generalized MDR (GMDR), for both

* Correspondence: tspark@stats.snu.ac.kr
†Equal contributors
2Department of Statistics, Seoul National University, Seoul 08826, South
Korea
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Jung et al. BMC Medical Genomics 2018, 11(Suppl 2):32
https://doi.org/10.1186/s12920-018-0343-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SNU Open Repository and Archive

https://core.ac.uk/display/300161845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-018-0343-0&domain=pdf
http://statgen.snu.ac.kr/software/FGMDR
mailto:tspark@stats.snu.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


quantitative and binary traits [11]; MB-MDR, based on
statistical testing [12], Surv/Cox-MDR, for survival data
[13, 14]; FAM-MDR, for family data [15], GEE/Multi-
MDR, for multivariate traits [16, 17], etc.
Among the many extensions of MDR, GMDR tests

GGIs using residuals of a generalized linear model as
score statistics. This idea permits adjustment of covari-
ates, addressing both binary and continuous phenotypes
[11]. In many genome-wide association studies
(GWASs), data consists of thousands or more samples,
and information on each sample consists not only of
genetic information, but also non-genetic information,
such as age, sex, and weight. In these cases, the signifi-
cances of SNPs can be different whether or not non-
genetic information is used as covariates. In other words,
some phenotype associated SNPs can be hidden, and
some non-causal SNPs can be discovered in analysis,
without covariate adjustments. Additionally, recent gen-
etic association studies [18] consist of multiple ethnic
groups. In these cases, analysis without concerning
about population stratification, produces misleading re-
sults [19] and principle components can be used as co-
variates for adjusting of the population stratification
[20]. Therefore, covariate adjustment is essential for ana-
lysis, in genetic association studies.
Including GMDR, MDR-based methods reduce a di-

mensionality of genetic information of multiple SNPs to
one dimension with binary values (high-risk: H or low-
risk: L). This basic idea of MDR, makes all binary inter-
action models detectable and potentially extending to
numerous types of data and methods. However, these
extensions, like MDR frameworks, are based on trad-
itional classifications that allow each genotype combin-
ation to belong to only one of high/low risk groups. In
traditional classification, the class membership value is
binary, and an object is a member of a class or not. Such
traditional classification may not reflect real phenomena
in biological and medical studies, because traditional
classification approach can imply the following short-
comings. On one hand, genetic variants with similar
characteristics can be classified into different risk
groups. On the other hand, genetic variants with differ-
ent characteristics can be classified into the same risk
groups. For example, in GMDR [11], each cell is
assigned as H or L based on whether its score is higher
or lower than a threshold. Thus, some cells near the
threshold are classified into different groups, despite
similar scores. Additionally, cells in the same group (H
or L) are considered the same, despite having different
scores. Unlike GMDR, QMDR [10] tests the significance
of a cell using quantitative trait differences between
cases and controls. This concept resembles MB- MDR
[12] using ternary classification. However, although bin-
ary classification extends to ternary classification, its

sufficiency is still a question. In other words, the short-
comings of traditional classification methods, mentioned
above, still remain.
The fuzzy set, introduced by Zadeh [21], handles these

shortcomings, caused by traditional classification,
through allowing partial membership of H and L groups.
In the example mentioned above, membership values of
a cell near a threshold can be 0.6 for H group and 0.4
for L group. Likewise, membership values of two cells,
having different scores in the H group can be different
as follows: one can be 0.2 for H group (0.8 for L group)
and the other can be 0.8 for H (0.2 for L group), respect-
ively. Fuzzy clustering and fuzzy neural network as ma-
chine learning approaches, are well known, with many
successful applications in medicine [22], finance [23],
image processing and engineering [24]. In bioinformat-
ics, some studies based on fuzzy set theory, have been
introduced, but not actively studied, until now [25, 26].
In our previous study [27], we were the first to

propose Fuzzy MDR (FMDR) framework to detect GGIs
in the context of binary trait, and demonstrated that
FMDR has a higher power than the original MDR.
FMDR based on fuzzy classification, allows the partial
membership of high and low risk groups, and as such
can overcome drawbacks due to traditional classification
which are not well explained thoroughly by using ori-
ginal MDR. Through real application to bipolar disorder
(BD) data of Wellcome Trust Case Control Consortium
(WTCCC) [28], we identified two-loci SNP combina-
tions associated with BD [27]. Since Fuzzy MDR analysis
based on fuzzy classification provides different levels of
membership degrees of H/L for each cell, more flexible
interpretations for results are possible. To that end, we
showed that simple pattern analysis allowed us to match
FMDR results to well-known biological epistasis models
[27]. However, FMDR, like MDR, can only deal with bin-
ary traits, and does not allow covariate adjustment.
In this paper, we propose fuzzy set-based generalized

multifactor dimensionality reduction (FGMDR) to detect
GGIs while allowing for covariate adjustment. Since
FGMDR is based on the generalized linear models, it
can be applied to both quantitative and binary traits.
FGMDR serves as a generalized MDR framework, in-
cluding Fuzzy MDR, MDR, and GMDR. Through simu-
lation studies with different epitasis models, as listed by
Velez et al. [29], we compare the power of FGMDR to
that of GMDR and MDR.
The remainder of this paper is organized as follows:

the GMDR framework is briefly reviewed, and the algo-
rithm of FGMDR is proposed. The power of the pro-
posed FGMDR, using several simulations under different
epitasis models, is presented. We then present the re-
sults of FGMDR applied to Crohn’s disease (CD) dataset
and a homeostatic model assessment of insulin
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resistance (HOMA-IR) dataset. Finally, the results are
discussed and put into logical context.

Methods
Review of GMDR
Lou et al. [11] proposed a GMDR framework, based on
the score of a generalized linear model, as follows. Let
yidenote the phenotype of individual i with expectation
E(yi) = μi. In general, this can be represented by the fol-
lowing generalized linear model (GLM): lðμiÞ ¼ αþ xTi β
þzTi γ where l(μi) is the link function, α is the intercept,
and xi is a vector that expresses possible genotype com-
binations of interest. The variable zi is a vector repre-
senting environmental factors, and β and γ are
coefficient vectors. In the first step, the residual based
on GLM, is calculated from the null model β = 0. At the
second step, the average value of residuals is calculated
within each multifactor cell of contingency table to clas-
sify each SNP combination. Cells are then classified ei-
ther as “high risk group H”, if the average value is
nonnegative (or meets or exceeds a preassigned thresh-
old T) or as “low risk group L”, if the average value is
negative (or does not exceed threshold T). At the third
step, the balanced accuracy (BA) is calculated using the
sum of residuals. Through a 10-fold cross-validation, the
best k-way model having the minimum prediction error
and maximum cross-validation consistency is selected.
GMDR framework is based on traditional classifica-

tion, allowing each genotype combination to belong to
only one of H/L groups. However, this classification may
not reflect characteristics of genotype combinations cor-
responding to “tied” cells. To overcome this drawback,
fuzzy set allows for partial membership for H/L groups,
in the GMDR framework.

The proposed FGMDR
The fuzzy set proposed by Zadeh has been employed to
handle the concept of partial membership of elements in
a set [21]. The only difference between a classical set
and a fuzzy set is the range of the membership values. A
classical set has its membership value in the set [22]
while a fuzzy set has its membership value in the inter-
val [0,1]. Since each genotype combination cannot be di-
vided sharply into H/L groups, a fuzzy set which sees
the world in shades of gray may be more appropriate to
represent the real biological phenomena. A fuzzy set A
in the universal space X is a set of ordered pairs {(x,
μA(x)) | x ∈ X }, where μA(x) on [0,1] represents the “de-
gree of membership” of x in the fuzzy set A. When A is
a classical set, its membership value is to be 1 or 0, as to
whether or not an element is a member of a set. Thus, a
classical set is considered a special case of a fuzzy set.
GMDR, therefore, uses the traditional classification

based on classical set, to reduce the dimensionality of
genotype combinations, by grouping cells into H/L
groups. By adopting the fuzzy set theory, we propose an
FGMDR representing H/L groups by two fuzzy sets,
which are identified by the membership functions μH
and μL, respectively. By introducing these membership
functions, FGMDR allows each genotype combination to
partially belong to both H/L groups, while GMDR re-
stricts each genotype combination to belong to only one
of H and L groups.
For the phenotype yi for individual i, GMDR uses a

studentized (standardized by a sample-based estimate of
a population standard deviation) residual based on GLM

as a score for GMDR, as follows: Si=
ðyi−μ̂iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðyi−μ̂iÞ

q where

μ̂i is the estimated expectation and dVarðyi−μ̂iÞ is the es-
timated variance of residual.
For a dataset having p SNPs, let S j

∙ be the average
value of scores within the j-th multifactor cell, where j
= {1,⋯, 3k}, k is a number of SNPs in an interaction
model (interaction order). Since GMDR uses balanced
accuracy based on classical sets of H/L groups having
membership values 0 and 1, the magnitude of the value
S j
∙ within the j-th multifactor, is ignored. This is a motiv-

ation of the proposed FGMDR. In FGMDR, we consider
a sigmoid membership function with respect to S j

∙ given
by

μH S j
∙
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In the above membership functions (1), the two thresh-
old values tl, th (tl ≤ th) need to be determined a priori.
From fuzzy set theory, the following measures can be

computed:
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X
j

S j
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j
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where S j
þ0 is the sum of negative score values within the

j-th multifactor cell, and S j
þ1 is the sum of nonnegative

score values within the j-th multifactor cell. Then, the
balanced accuracy (BA) using the membership func-
tion, BAFUZZY, is defined as the arithmetic mean of SEN-
FUZZY and SPEFUZZY introduced in [27]. In the proposed
FGMDR, we use BAFUZZY as an evaluation measure to
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detect the best interaction model. Note that BAFUZZY re-
duces to the BA value used in the GMDR, when an indi-
cator function is used as the membership function.
Thus, the FGMDR method shares the same framework
as FMDR [27], except for replacing the case-control ra-
tios by the sum of residuals in each cell.

Results
First, we compared MDR, FMDR, GMDR, and FGMDR
in terms of their success rates (power) for causal SNPs
detection, using various simulation data consisting of a
continuous phenotype category and two case-control
categories. In simulation data experiments, the FGMDR
showed higher power than the others; consequently, we
applied FGMDR to two real datasets for illustrations.

Simulation study
Simulation data consists of three categories of data, one
continuous phenotype and two case-control categories.
In the continuous phenotype categories (scenario 1), a
phenotype variable is calculated by a linear sum of gen-
etic effects, covariates, and error terms, to simulate a
continuous phenotype such as blood pressure. In the
first case-control category (scenario 2), a binary variable
is 1 or 0, depending on whether or not a continuous
value exceeds a certain threshold value. This type of data
is generated for simulation of diseases whose status is
determined by continuous variables, such as obesity. In
the second case-control category (scenario 3), a binary
variable is determined as a probability, based on a logit
model with genetic effects, covariates, and error terms,
for simulation of binary type diseases such as cancer.
Common to all three scenarios, genetic effects are

based on 70 penetrance models (7 heritability values:
0.01~ 0.4, 2 minor allele frequency values: 0.2, 0.4 and 5
interaction models), without marginal effect [29], and
power is defined as a proportion of how many times the
true causal SNPs were selected as the model with the
highest BAs (BA for MDR and GMDR, BAFUZZY for

FMDR and FGMDR) among 100 replicates for a given
model. Each replicate consists of 2000 samples (1000
cases and 1000 controls for case-control types), with
genotype information for 100 SNPs, a covariate, and a
phenotype. Genotype values of two causal SNPs are then
determined by the minor allele frequency (MAF: 0.2,
0.4) of the penetrance models, and genotype values of
non-causal SNPs, are randomly selected from a Hardy-
Weinberg equilibrium, based on MAF values in [0.05,
0.5]. We tested various coefficients of disease models. In
the results from tests, consistent patterns were seen.
Therefore, in each scenario, coefficients of disease
models are adjusted to about a 50~ 60% average success
rate for all the methods.

Scenario 1
Since scenario 1 simulates a continuous phenotype, we
used the following model with an identity link function
Yi = α + Xi

Tβ + Zi
Tγ + εi, where Yi represents a phenotype

value, Xi represents a genetic effect, Zi represents covari-
ates of the ith individual, and εi represents the error. Xi

is randomly selected based on normal distribution of the
mean: a penetrance value corresponding to the genotype
value of the ith individual and standard deviation 0.1. Zi

is randomly selected on a normal distribution of mean 0,
and standard deviation 0.7. εi is randomly selected on a
normal distribution of mean 0, and standard deviation 1.
All values of coefficients (β, γ) are the same as one.
Simulation results of scenario 1 are summarized in
Fig. 1.
In Fig. 1, the powers of MDR and FMDR are lower

than that of others, because they cannot use information
in covariates. In other words, covariates are useful for
causal SNP detections in genetic association studies.
Then, FGMDR shows higher power than that of GMDR,
in some penetrance models, or similar power. In terms
of the average power, MDR was 0.427, FMDR was 0.433,
GMDR was 0.611 and FGMDR was 0.621. Additionally,
we performed significance testing of power comparisons,

Fig. 1 Power comparison of scenario 1 data for a continuous phenotype. The powers of MDR and FMDR are lower than that of others, because
they cannot use information in covariates. FGMDR shows higher power than that of GMDR, in some penetrance models, or similar power. In
terms of the average power, MDR was 0.427, FMDR was 0.433, GMDR was 0.611 and FGMDR was 0.621
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using the Wilcoxon signed-rank test. The power of
FGMDR is significantly higher than that of MDR (p-
value: 2.82e-10), FMDR (p-value: 5.99e-11 and GMDR
(p-value: 2.59e-02).

Scenario 2
Since scenario 2 simulates a binary phenotype determined
by a continuous value, we calculated a continuous value,
and discretized as 1 for higher than a specific threshold (a
median of the continuous values), or 0 for the others. For
a continuous value calculation, we used the same identity
link function in GLM as scenario 1. All other parameter
values, except the standard deviation of error (0.5), are the
same as in scenario 1. The simulation results of scenario 2
are summarized in Fig. 2.
In Fig. 2, similar patterns as in Fig. 1, are shown. The

powers of the MDR and FMDR, for scenario 2, are lower
than that of others in many penetrance models, and it
means importance of covariates in case-control associ-
ation studies. Among the other two methods, the
FGMDR showed higher than that of GMDR, in some
penetrance models. In terms of the average power, MDR
was 0.545, FMDR was 0.555, GMDR was 0.606 and
FGMDR was 0.616. Wilcoxon signed-rank tests showed
that the mean power of FGMDR was significantly higher
than that of MDR (p-value: 1.35e-07), FMDR (p-value:
2.26e-06) and also higher than that of GMDR, but not
significantly (p-value: 5.15e-02).

Scenario 3
Since scenario 3 simulates a binary phenotype with a
probability using a logit model given below:

ln
p Y i ¼ 1ð Þ

1−p Y i ¼ 1ð Þ
� �

¼ αþ Xi
Tβþ Zi

Tγ þ εi:

In this scenario, the value of β is reduced to 0.5, and
the standard deviation of the error increased to 2. The

simulation results of scenario 3 are summarized in
Fig. 3.
The simulation results of scenario 3 in Fig. 3 show

some interesting patterns, compared to the previous re-
sults. Here, the order of power (MDR < FMDR < GMDR
< FGMDR) was consistently similar with previous re-
sults, and the power of all the methods increased in both
the heritability and MAF values. In terms of the average
power, MDR was 0.473, FMDR was 0.487, GMDR was
0.519, and FGMDR was 0.533. In the Wilcoxon signed-
rank tests, the power of FGMDR was significantly higher
than that of MDR (p-value: 1.31e-07), FMDR (1.36e-07)
and GMDR (p-value: 1.94e-03).

Real data experiments
Crohn’s disease (CD)
The CD data in Wellcome Trust Case Control Consor-
tium [28] dataset, consists of 1949 cases and 3004 con-
trols. For each individual, genetic information for about
500,000 SNPs, age information (in decades), and sex
were provided. However, all values of the age informa-
tion in the case samples, were the same value. Therefore,
we used only sex as a covariate. For adapting our
FGMDR method to analyze CD data, residuals were cal-
culated, using the logistic regression model, with sex as
a covariate and odds ratio of sex is 1.47 (95% confidence
interval: 1.31–1.65, p-value of likelihood ratio test:
6.93E-11). Among SNPs, we selected 30 SNPs reported
to associate with the CD phenotype [28, 30, 31] for illus-
tration, and the basic characteristics of those SNPs, are
summarized in Table 1. P-values and their rank of Table
1 were calculated by likelihood ratio test, under a co-
dominant model with two degrees of freedom.
We next performed FGMDRs with/without covariate

adjustment, with 10-fold cross validation, from two to
five-locus SNP combinations, as summarized in Table 2.
FGMDR without covariate adjustment is performed to
investigate the effect of covariate adjustment. SNP5 was

Fig. 2 Power comparison of scenario 2 data for a binary phenotype derived from a continuous value. The powers of the MDR and FMDR, for
scenario 2, are lower than that of others in many penetrance models, and it means importance of covariates in case-control association studies.
Among the other two methods, the FGMDR showed higher than that of GMDR, in some penetrance models. In terms of the average power,
MDR was 0.545, FMDR was 0.555, GMDR was 0.606 and FGMDR was 0.616
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consistently included the best SNP combinations from
two to five-locus SNP combinations in the results of
FGMDR with covariate adjustment, while SNP5 was in-
cluded only for three and four-locus SNP combinations
in the results of FGMDR without covariate adjustment.
SNP combinations in three and four-locus models are
the same in results of FGMDR with/without covariate
adjustment but they are different in two and five-
locus models. CVC values in the FGMDR with covari-
ate adjustment are higher than or similar to that of
FGMDR without covariate adjustment. BA values are
similar in FGMDR with covariate adjustment and
FGMDR without covariate adjustment regardless of
training or testing data.
Among these results, we selected a four-locus

(order: 4) SNP combination as the best SNP combin-
ation, based on the best BAFUZZY in testing data, and
its relatively high cross-validation consistency (CVC)
value. Interaction of this SNP combination is repre-
sented in Fig. 4.

In Fig. 4, upper case letters denote major alleles, while
and lower case letters denote minor alleles. ‘A’ or ‘a’ rep-
resent the genotypes of the first SNP in the SNP com-
bination; ‘B’ and ‘b’ represent the genotypes of the
second SNP, and so on. The left bar-labeled value repre-
sents the sum of the positive residuals, while the right
bar-labeled value represents sum of the negative resid-
uals. The green background colored cells mean the
membership value that cells are close to 0, and the red
background colored cells mean the membership value
that cell are close to 1. The dark background color
means the value is far from 0.5 (i.e., closer to 1 or 0),
while the white background color denotes a 0.5 mem-
bership value.
Figure 4 shows some interesting patterns for interpret-

ation of the interaction. First, with respect to the diag-
onal line, most of the cells in the right top quadrant had
red background, while most of the cells in the lower-left
quadrant cells were green background. Based on these
observations, it seems that an additive risk pattern

Fig. 3 Power comparison of scenario 3 data for a binary phenotype generated from a logit model. The order of power (MDR < FMDR < GMDR <
FGMDR) was consistently similar with previous results, and the power of all the methods increased in both the heritability and MAF values. In
terms of the average power, MDR was 0.473, FMDR was 0.487, GMDR was 0.519, and FGMDR was 0.533

Table 1 Basic characteristics of each SNPs for CD

Index rs number MAF Chromosome (gene) p-value (rank) Index rs number MAF Chromosome (gene) p-value (rank)

1 rs11805303 0.347 1 (IL23R) 1.41E-12 (2) 16 rs1456893 0.304 7 2.54E-05 (18)

2 rs12035082 0.410 1 4.34E-07 (9) 17 rs4263839 0.313 9 (NFSF15) 1.53E-05 (17)

3 rs10801047 0.079 1 7.31E-06 (15) 18 rs17582416 0.363 10 (OC105376492) 1.28E-03 (23)

4 rs11584383 0.297 1 (MROH3P) 3.71E-05 (20) 19 rs10995271 0.413 10 1.28E-05 (16)

5 rs3828309 0.453 2 (ATG16L1) 7.57E-14 (1) 20 rs10883365 0.498 10 (INC01475) 2.56E-06 (12)

6 rs9858542 0.299 3 (BSN) 2.50E-07 (8) 21 rs7927894 0.408 11 1.50E-02 (28)

7 rs17234657 0.146 5 4.90E-12 (3) 22 rs11175593 0.017 12 (OC105369735) 5.71E-02 (30)

8 rs9292777 0.367 5 2.02E-11 (4) 23 rs3764147 0.222 13 (LACC1) 3.78E-06 (13)

9 rs10077785 0.220 5 (C5orf56) 5.00E-05 (22) 24 rs17221417 0.310 16 (NOD2) 5.44E-10 (5)

10 rs13361189 0.084 5 5.96E-08 (6) 25 rs2872507 0.491 17 1.36E-03 (24)

11 rs4958847 0.130 5 (IRGM) 9.19E-07 (10) 26 rs744166 0.422 17 (STAT3) 4.99E-05 (21)

12 rs11747270 0.099 5 (IRGM) 2.54E-05 (19) 27 rs2542151 0.181 18 2.04E-07 (7)

13 rs6887695 0.329 5 6.86E-03 (27) 28 rs1736135 0.412 21 (LOC101927745) 2.98E-02 (29)

14 rs6908425 0.214 6 (CDKAL1) 1.01E-06 (11) 29 rs2836754 0.374 21 (LOC400867) 6.03E-06 (14)

15 rs7746082 0.293 6 4.13E-03 (26) 30 rs762421 0.408 21 (LOC105377139) 3.46E-03 (25)

Jung et al. BMC Medical Genomics 2018, 11(Suppl 2):32 Page 16 of 116



increased from left to right, and from top to bottom.
However, genotype patterns represent combinations of
two SNPs with vertical and horizontal genotypes. For ex-
ample, in vertical genotypes, there are genotype combi-
nations of SNP1 and SNP2. However, note that the
order of the SNP combination is important for interpret-
ation. For example, (SNP1, SNP2) seemed to be additive
in effect, while (SNP2, SNP1) didn’t suggest an additive
effect. A possible interpretation of interaction between
SNP1 and SNP2 is that the risk of CD is dominated by
SNP1 minor allele at first and SNP2 then affects CD risk
for each genotype sample of SNP1. Second, interaction
patterns of SNP2 and SNP8 are not consistent for each
genotype combination of SNP1 and SNP 5. The inter-
action patterns of SNP2 and SNP8 are represented by
separated blocks, consisting of 3 × 3 cells. For example,

the color pattern of the top left block (SNP1, SNP5)
= (AA, CC) is different from all other blocks.
Additionally, the interaction between IR23R (SNP1)

and ATG16L1 (SNP5) for CD, was reported and in a
case-control study within a cohort study [32], and
reviewed for explanation of CD mechanism [33]. How-
ever, we cannot find direct evidence of interactions of
these particular SNPs in the four-SNP combination.

Homeostatic model assessment of insulin resistance
(HOMA-IR)
We next analyzed HOMA-IR data from the Korea Asso-
ciation REsource project (KARE) to illustrate FGMDR in
the context of quantitative traits. A total of 8577 samples
are available, after removing subjects with at least one
missing phenotype value. The genomic DNAs were

Table 2 Results of CD data analysis

order FGMDR (with covariate adjustment) FGMDR (without covariate adjustment)

SNP
combination

CVC BAFUZZY SNP
combination

CVC BAFUZZY

training testing training testing

2 5, 7 6 0.545 0.544 1, 8 5 0.545 0.542

3 1, 5, 7 6 0.561 0.554 1, 5, 7 4 0.561 0.554

4 1, 2, 5, 8 5 0.581 0.561 1, 2, 5, 8 3 0.581 0.561

5 5, 18, 19, 24, 28 3 0.612 0.560 1, 2, 3, 4, 19 2 0.612 0.560

CVC cross-validation consistency

Fig. 4 Interpretation of the 4-locus SNP interaction in the result of CD
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genotyped using Affymetrix Genome-Wide Human SNP
Array 5.0. For GGI analysis using our FGMDR, we used
only 10 candidate SNPs identified in earlier studies [34–
36] from the single SNP GWAS analysis. The basic char-
acteristics of these SNPs are summarized in Table 3. P-
values and their rank in Table 3, were calculated by like-
lihood ratio test, under a codominant model with two
degrees of freedom. Since the distribution of HOMA-IR
is skewed, many researchers perform a log-
transformation before applying the regression analysis
[34], and we did likewise. Sex, age, area, and BMI were
used as environmental covariates. Then, the regression
model for FGMDR is given by

log HOMA−IRð Þ ¼ β0 þ β1Sexi þ β2Agei þ β3Areai

þβ4BMIi þ εi:

ð2Þ
Using the residuals calculated from (2), FGMDR was

then performed.
We performed FGMDRs with/without covariate ad-

justment, with 10-fold cross validation from two to five-
locus SNP combinations and summarized the results of
HOMA-IR in Table 4. All best SNP combinations in-
cluded SNP 5 except 5 locus SNP combination with co-
variate adjustment, consistent with its p-value in Table 3
(the lowest p-value and rank: 1). In the results of
FGMDR without covariate adjustment, SNPs in lower
order SNP combination models are included in higher
order SNP combination models. In addition, BA values
of FGMDR with covariate adjustment are higher than
those of FGMDR without covariate adjustment in both
training and testing data. These differences may be
caused by covariate adjustment. Similar to the results of
CD data analysis, SNP combinations identified by
FGMDR with covariate adjustment are different from
those by FGMDR without covariate adjustment. While a
further biological investigation is required, we expect
that the covariate adjustment makes not only a perform-
ance improvement but also a more accurate identifica-
tion of true causal SNP interactions.
Among the results of FGMDR, we selected the four-

locus SNP combination as the best SNP combination
based on BAFUZZY in testing data and CVC. Three SNPs
in the selected SNP combinations except SNP10 are

located in ROR1, JAK1, and nearby SOCS5 (about 19.8 k
BP). For these three genes, several biological evidences
of interactions are pre-reported: 1) ‘Jak1 has previously
been implicated in adipocyte insulin resistance.’ [37], 2)
‘Most of the known SOCS proteins are involved in the
modulation of the development of insulin resistance.’
[38], 3) ‘When JAK1 and SOCS5 are co-expressed in
cells, JAK1 is continually being phosphorylated and de-
phosphorylated during the course of the transfection,
and SOCS5 presumably interacts with active (phosphor-
ylated) JAK1 to inhibit further enzymatic activity’ [39],
4) ‘ROR1 was shown to interact with and be inhibited by
resistin.’ [40], 5) ‘Resistin is also correlated with insulin
resistance.’ [41].
CVCs decreased by increase of order, in both Tables 2

and 4. This is a general phenomenon in multi-locus as-
sociation tests. For example, among 30 SNPs, there are
435 possible two-locus SNP combinations and 2610 pos-
sible three-locus SNP combinations. An interesting point
is relatively low BAFUZZY in testing. These BAFUZZY

values are not directly comparable to ordinary BA be-
cause the Fuzzy set theory has been implemented.
BAFUZZY is more concentrated near 0.5, compared to or-
dinary BA. Nevertheless, BAFUZZY values in testing
HOMA-IR data were lower than those of CD. This
seems to be caused by heritability differences. The herit-
ability of CD is 53% [42] but the heritability of HOMA-
IR is 8% in black and Spanish populations [43], and 22%
in Asian Indian families [44].

Discussion and Conclusion
In this study, we proposed a FGMDR, a fuzzy extension
of GMDR to detect GGIs. FGMDR can handle both bin-
ary and quantitative traits, and allows adjustment for co-
variates. Thus, FGMDR is a method to overcome
shortcomings due to the traditional classification com-
monly used in MDR-based frameworks by allowing par-
tial membership degrees of high and low risk groups for
each cell, and provides more flexible interpretations for
results. Our proposed FGMDR is based in the general-
ized linear models (GLMs), it can handle any distribu-
tions of phenotypes from the exponential family
including normal, binomial, Poisson and gamma distri-
butions. Further, our FGMDR does not require any bal-
ancing of H/L risk groups. Three simulation scenarios

Table 3 Basic characteristics of each SNPs for HOMA-IR

Index rs number MAF Chromosome (gene) p-value (rank) Index rs number MAF Chromosome (gene) p-value (rank)

1 rs4915657 0.405 1(ROR1) 2.12E-3(6) 6 rs702634 0.109 5(ARL15) 3.40E-1(10)

2 rs576563 0.338 1(JAK1) 9.85E-4(3) 7 rs7754840 0.476 6(CDKAL1) 1.80E-1(9)

3 rs693 0.056 2(APOB) 5.45E-3(7) 8 rs9353581 0.455 6 1.90E-3(5)

4 rs780094 0.463 2(GCKR) 1.60E-2(8) 9 rs2920792 0.417 10 5.44E-4(2)

5 rs11125090 0.273 2 1.12E-5(1) 10 rs7500315 0.416 16 1.20E-3(4)
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for power comparison were made under one continuous
phenotype, and two binary phenotypes with adjustment
for covariates. Simulation studies showed that FGMDR
outperformed MDR and GMDR in most scenarios.
Through two real applications to CD and HOMA-IR data,
we identified the best SNP combinations associated with
two diseases. In our applications, we found several bio-
logical evidences of two-order interactions included high-
order interactions identified by FGMDR (four-way inter-
action for CD and four-way interaction for HOMA-IR).
The existing MDR extensions using classical sets as

groups for classification, can be extended to any fuzzy
set-based MDR methods. These fuzzy set-based MDR
methods may contribute to identify important interac-
tions in the biological systems, through reflecting the
vagueness of classification due to objects that can sel-
dom be classified uniquely.
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