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Abstract

In dentistry, quantitative cephalometry plays an essential role in the practice

of medical care for patients. In this thesis, an automated landmark detection

model is proposed using FCN (fully convolutional networks) with internally

residual connections. The FCN model was trained to output an archery target

shape heatmap when an image patch near the landmark was input. The image

patches used for training were positioned and sized based on training data,

and augmentation was performed. The cephalogram were used for training

and testing used a publicly available datasets. SDR(Success detection rate)

was used to evaluate the results. The trained models were evaluated using

a test set and compared with previous studies. As a result, landmarks were

detected with better accuracy than previous studies. The FCN model showed

the potential for accurate landmark detection.

Key words: supervised learning, fully convolutional networks, residual net-

works, cephalometric landmarks, dental X-ray images
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i



Contents

Abstract i

1 Introduction 1

2 Methodology 4

2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 4

2.1.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Fully Convolutional Networks . . . . . . . . . . . . . . 6

2.1.3 Residual Networks . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Batch Normalization . . . . . . . . . . . . . . . . . . . 7

2.2 Cephalometric Landmark Detection . . . . . . . . . . . . . . . 8

3 Experiment 10

3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Description of Datasets . . . . . . . . . . . . . . . . . . 10

3.1.2 Image Cropping . . . . . . . . . . . . . . . . . . . . . . 12

3.1.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . 13

3.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Evaluation Approaches . . . . . . . . . . . . . . . . . . 17

3.5.2 Landmarks Detection Results . . . . . . . . . . . . . . 18

4 Conclusion 23

ii



Bibliography 23

Abstract (in Korean) 28

iii



List of Figures

1.1 Example of cephalogram with 19 cephalometric landmarks po-

sitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The architecture of the LeNet-5 network for digits recognition. 5

2.2 Residual building block F . Left: normal structure, Right: bot-

tleneck structure . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Left: Cropped image, Right: Corresponding landmark heatmap 9

3.1 Distribution of training set(150 patients) . . . . . . . . . . . . 11

3.2 Left: Minimal rectangle containing landmarks in training dataset,

Right: Expanded rectangle for cropping . . . . . . . . . . . . 12

3.3 Augmentation example(Landmark 2) Left: Original image, Right:

Artificial image . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 The structure of the proposed model (for Landmark 1) . . . . 14

3.5 The structure of “[02]:Res Down” in figure 3.4 . . . . . . . . . 15

3.6 The structure of “[04]:Res” in figure 3.4 . . . . . . . . . . . . 15

3.7 Results of landmarks detection at L2,L4,L17. Left: Input im-

age, ground truth(blue), predicted(red), Center: Resulting heatmap

at epoch 5, Right: Average of heatmap from 2 to 5 epoch . . 19

3.8 Success detection rates comparisons were made for the pro-

posed model and the benchmark model. The test set is IEEE

ISBI 2015 Challenge Datasets. . . . . . . . . . . . . . . . . . . 22

iv



Chapter 1

Introduction

One of the major goals of dentistry is to resolve craniofacial discrepancies

and functional and aesthetic complete tooth alignment. To achieve this, a

detailed analysis should be done using a high resolution two-dimensional x-

ray image of the head bone taken from the side. This analysis is called a

lateral cephalometric analysis [1, 2, 3, 4, 5]. The information to be obtained

from the analysis is anatomically defined landmarks and the angles and dis-

tances between them. However, manual analysis of the dentist requires a lot

of time and can cause intra-observer variability [2]. Therefore, a stable and

consistently automated end-to-end analysis model is needed.

There have been various studies for lateral cephalometric analysis. In

particular, the International Symposium on Biomedical Imaging (ISBI) held

in 2014 and 2015 challenged this problem [2, 3] and several approaches were

published. Ibragimov et al. used Haar-like features to express the intensity of

the landmark and to link it to a point detector using a random forest, the

landmark is found by using random forest regression [6]. In the second stage,

the landmark is modified by sparse shape composition model. The model of

Chen et al. learned the visual characteristics of the image patches and the

distance from the landmarks, and made a prediction model by voting the

landmarks obtained from each patch [7]. Vandaele et al. solved this problem

with each of the 19 landmark binary classification problems [8]. They used

extremely randomized trees as pixel classifiers. Despite the wide variety of

studies, no accurate model has yet been developed for use in clinics with an

1



Figure 1.1: Example of cephalogram with 19 cephalometric landmarks posi-

tions

error of less than 2 mm [3].

The objective of this study is automatically detecting the cephalometric

landmarks from lateral cephalogram using Convolutional Neural Networks [9].

In recent years, deep learning has outperformed existing algorithms in various

areas. Especially since the Alexnet in ILSVRC in 2012 [10], CNN has been

developed rapidly in image processing. CNN is a multi-layered perceptron

model inspired by animal visual systems [9]. The color images given as input

to the image processing problem are represented in a three-dimensional array

inside the computer. For high-resolution images, one image is represented by

many numbers. CNN has the characteristics of local connections and shared

variables. This property allows spatial properties from images with few pa-
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rameters. Therefore, CNN enables us to get specific information efficiently

from images.

CNN has been widely applied to medical imaging [11], segmentation

[12, 13], object/lesion detection [14, 15], image/exam classification [16], reg-

istration [17]. There are some papers that find landmarks in medical images.

Payer et al. used CNN to find multiple landmark points. They first defined

the location of the landmark as a heatmap using Gaussian [18]. Then, in the

learning process, the landmark was estimated by learning the heatmap from

the input image. Arık et al. solved the problem of cephalometric landmarks

detection using CNN. Their idea is to find intensity appearance patterns for

each landmark [19]. This method showed that the CNN-based method is bet-

ter than random forest based methods.

In a similar vein, this paper trains the heatmap around the landmark

using fully convolutional neural networks. The shape of the heatmap consisted

of archery target, used to refer to a particular landmark while simultaneously

learning the surrounding area. To objectively evaluate the performance of the

proposed model, results were obtained using 400 publicly available images and

well-defined landmarks by the dentist and compared with other state-of-the-

art approaches.
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Chapter 2

Methodology

2.1 Convolutional Neural Networks

2.1.1 Basic Model

Convolutional Neural Network (CNN) is a deep learning model inspired by the

animal visual system [20]. CNN has been widely used in image analysis and

various models have been developed [21]. LeNet-5 is the well-known model

that solves real-world problems using CNN for the first time [22]. This model

consists of multi-layer artificial neural networks and consists of three types of

layers. The three are the convolution layer, the pooling layer, and the fully

connected layer. When an image comes in from the input layer, it passes

through the convolution layer and the pooling layer repeatedly, and finally,

through the fully connection layer, the result comes out. CNN is trained by the

backpropagation algorithm. This algorithm updates parameters using chain

rules and gradient descents [23].

Passing through the convolution layer in the equation:

zli,j,k = wlk
T
xli,j + blk

Where wlk and blk are the weight vector and bias term of the k-th filter of the

l-th layer respectively, and xli,j is the input patch centered at location (i, j)

of the l-th layer. The weight filter is shared while sliding the image. This
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has the advantage of using a smaller weight when compared to a multi-layer

perceptron, and is efficient in locating a particular feature across an image.

The pooling layer reduces the number of parameters by downsampling.

It also has the invariance to local translation property. This means that even

if the input changes slightly, the pooled result will not change. The methods

of pooling include average pooling and max pooling.

Figure 2.1: The architecture of the LeNet-5 network for digits recognition.

The LeNet-5 model does not have an activation function. However, in

another paper, Lecun et al. wrote that the activation function was introduced

to add nonlinearity to CNN [24]. Adding the nonlinear activation function a(·)
to the output Z of the convolution layer is expressed as:

ali,j,k = a(zli,j,k)

Commonly used nonlinear activations are sigmoid(f(x) = 1/(1 + e−x))

[24], and hyperbolic tangent(f(x) = ((e2x − 1)/(e2x + 1)) [24], ReLU(f(x) =

max(x, 0)) [25], and so on.
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2.1.2 Fully Convolutional Networks

Fully Convolutional Networks(FCN) was developed to solve segmentation

problems [26]. The output of the FCN is densely label maps. In the conven-

tional CNN model, the back side is a fully connected layer. When connected

to a fully connected layer, information about location or space is lost. The

FCN consists of only the convolution layer and the pooling layer from the

beginning to the end, so that the spatial information is not lost. In a FCN,

the structure corresponding to a fully connected layer can be a 1x1 convo-

lution layer. Also, since the fully connected layer has a fixed input size, the

input image must have a fixed size. However, 1x1 convolution layer operate

on arbitrary sized images.

When an image passes through several stages of convolution and pooling

layer, the size of the feature map is reduced. In order to do pixel-by-pixel

prediction, it is necessary to raise the reduced feature map again. The authors

of the FCN paper train upsampling using deconvolution and skip connection.

There is a model called U-net which is well known for the segmentation

problem of medical images [12].

2.1.3 Residual Networks

Let H(x) be the specific stacked layers of a deep learning model, and let x

be the given input. Suppose that H(x) can represent a complicated function

that we are trying to obtain. If so, then H(x) − x can also represent the

complicated function we want to obtain. If we add the input x to H(x) in

the network structure, the function we need to train is the residual function

F (x) = H(x)−x. At this time, the expression power of F and H is the same

by assumption, and it is generally easier to train F . With some additions,

more stable training is possible.

The residual block is expressed as follows:

y = F(x, {Wi}) + x

Where x and y are the input and output of the layer, respectively. F(x, {Wi})
means a residual mapping to train.
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Author of the Resnet paper proposed using a deeper bottleneck architec-

tures in their paper [27]. The bottleneck design consists of three convolution

layers with a kernel size of 1x1, 3x3, 1x1. The 1x1 layer serves to reduce or

increase the number of filters and the 3x3 layer is the part that learns for

the overall goal. This network configuration allows for efficient use of identity

shortcuts while reducing the number of parameters needed to connect layers.

Figure 2.2: Residual building block F . Left: normal structure, Right: bot-

tleneck structure

2.1.4 Batch Normalization

When the problem is that the scale of the data itself is not important, we

usually use it to normalize the data. Normalizing means changing the distri-

bution of the data to mean zero and variance to one. However, even if the

data is well preprocessed,in the learning process, the distribution of the data

changes after the data passes through the artificial neural network. This prob-

lem is called covariate shift [28]. This loses the information that the original

data has, which loses the accuracy of the model. Batch normalization(BN) is

suggested as a way to solve this problem [29]. The BN process is to put the

normalizing step after the layer. The statistics for normalization use average

and variance of mini-batch when training, and moving average and moving

variance when testing

7



The Batch Normalizing Transform is expressed as:

µβ ← 1
m

∑m
i=1 xi

σ2
β ← 1

m

∑m
i=1(xi − µβ)2

x̂i ← xi−µβ√
σ2
β+ε

yi ← γx̂i + β ≡ BNγ,β(xi)

Where µβ is the mini-batch mean and σ2
β is the mini-batch variance. The

third is normalizing and the fourth is the scaling and shifting. γ and β are

learnable parameters.

The BN has several advantages that affect the learning process. Firstly,

it reduces internal covariant shift. Secondly, it enables higher learning rates

because it prevents exploding or vanishing gredient phenomena. Thirdly, it

does not need a dropout process because it normalizes the model. Fourthly,

it prevents saturating, so it allows you to use saturating nonlinear functions.

2.2 Cephalometric Landmark Detection

The problem of finding landmarks in a cephalogram is to find 19 anatomically

important points in a given profile of facial bones. To automate this with a

computer program, we need to create a generalized algorithm to find land-

marks. The medical image given as input consists of a large number of pixel

values and the output is to get 19 coordinates. Our problem can be regarded

as a function estimation problem connecting these inputs and outputs.

Formally, our goal is to find the following function:

g : [0, 255]H×W×3 ⇒ {(x1, y1), ..., (x19, y19)}

In the above equation [0,255] means the range of pixel values, H and W mean

the height and width of the image respectively, and 3 means RGB of color. It

is difficult to find landmarks because a given cephalogram is so large in image

size. It should solve the problem by cropping the image into a small area.

8



Assume that the data given in the training set has sufficient general

information. Since cephalograms are taken at a certain distance and at a

fixed angle, it is possible to assume that each landmark is within a certain

range, even when considering the diversity of human face bones. So we can

use the range of each landmark in the training set to determine the crop area

to find the landmark. In this way, the amount of computation for finding a

particular landmark can be reduced when compared to using the entire image.

The cropped area should be large enough to find landmarks, and smaller with

respect to computational cost. After cropping the image, the problem that

needs to be solved turns into finding a particular landmark in a small area.

Even if the model is created using CNN, it is difficult to find the landmark

coordinates directly from the input image. To indirectly solve this problem,

the model turned into a problem of obtaining an archery target heatmap

centered on a landmark.

Figure 2.3: Left: Cropped image, Right: Corresponding landmark heatmap
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Chapter 3

Experiment

3.1 Dataset

3.1.1 Description of Datasets

The data used in this experiment was provided in the Grand Challenges in

Dental X-ray Image Analysis of IEEE International Symposium on Biomed-

ical Imaging 2015. Cephalometric radiographs data were collected from 400

patients between the ages of 6 and 60 years. The cephalograms were acquired

in TIFF format with Soredex CRANEXr Excel Ceph machine (Tuusula, Fin-

land) and Soredex SorCom software (3.1.5, version 2.0), and the image reso-

lution was 1935 × 2400 pixels. Two experienced dentists manually obtained

cephalometric landmarks and averaged them to obtain ground truth data [3].

The distribution of the training set in Fig 3.1 shows that no landmark

is shown on the top and left side of the image. And we can see that each

landmark is scattered to some extent.

10



Figure 3.1: Distribution of training set(150 patients)
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3.1.2 Image Cropping

To execute the learning process, the entire image should be cropped into

areas around each landmark. The cropping range was obtained by finding

the minimum rectangular area containing each landmark in the training set

and enlarging it by 200 pixels on each side(up to the end of the whole im-

age). The reason why the surrounding area is large is because it is deter-

mined that the information is important for finding a specific landmark. And

considering that the landmark in the test set would be an exceptional dis-

tance from the existing distribution. In Fig 3.2, unlike Fig 3.1, only the area

with the landmark is visualized except the top and the left side (Horizontal

range=(400px,1850px),Vertical range = (600px,2400px)).

Figure 3.2: Left: Minimal rectangle containing landmarks in training dataset,

Right: Expanded rectangle for cropping
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3.1.3 Data Augmentation

Data augmentation is a method of artificially enlarging data by applying

label-preserving transformations based on collected data [10]. When compared

to other image processing problems using deep learning, the 150 training

sets are too small. Few datasets can easily overfit. It is known that data

augmentation can reduce overfitting [10].

Different data types (eg; text or voice data) are difficult to apply aug-

mentation, but various augmentation methods are available for images [30].

We need to create a dataset that is different from the original, without losing

the characteristics of the original dataset. In this paper, augmentation is per-

formed by using “Crop each side”, “Add pixel value”, “Multiply pixel value”

and “Rotation”. Each method was applied simultaneously in a random range.

The crop range is from 0 to 10 pixels, the add range is from -10 to 10, the

multiply range is from 0.9 to 1.1, and the rotation range is from −3◦ to 3◦.

It has increased the number of data by ten times.

Figure 3.3: Augmentation example(Landmark 2) Left: Original image,

Right: Artificial image
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3.2 Model Architecture

The input of the proposed model is the cropped image defined in section 3.1.2

and the output is the archery target shape heatmap image of the same size.

The overall model structure is FCN and goes through 14 convolution stages.

Fig.3.4 shows the overall structure. This image is visualized for the model

finding landmark 1, but all landmarks share the same structure.

Figure 3.4: The structure of the proposed model (for Landmark 1)

There are four types of convolution connections that construct the pro-

posed model. The four types are “Conv”, “Res Down”, “Res”, “Deconv”. The

“Conv” is the basic convolution layer. It is located at the beginning and end

of the proposed model. The initial conv layer has a filter size of 25x25, which

is good for experimentally large filter sizes. The last conv layer has a 1x1

filter and gives the result. The “Res Down” is the residual down block. It has

four convolution layers internally. It is basically a bottleneck structure [27].

The feature map that comes into the input passes through the three conv

layers, and passes a single conv layer at the same time. The three conv layers

have filter sizes of 1x1, 5x5, and 1x1, respectively. The first 1x1 layer works

to reduce the number of filters. The 5x5 conv layer has a stride of 2, which

reduces the size of the feature map in half. The last 1x1 layer again increases

the number of filters. In the conv layer only, the filter size is 1x1 and the

stride is 2 so that the size of feature map is halved without greatly deforming

14



the previous stage feature.

Figure 3.5: The structure of “[02]:Res Down” in figure 3.4

The “Res” is a residual block. Like “Res Down”, it has a bottleneck

structure and passes through conv layers with 1x1, 5x5, and 1x1 filters. The

difference with “Res Down” is that the size of the feature map does not

change, so we use identity mapping for the residual structure.

Figure 3.6: The structure of “[04]:Res” in figure 3.4

The “Deconv” is the deconvolution layer. It makes the reduced feature

map size larger again. With the conv layer at the beginning of the model, the

filter size was experimentally determined to be 25. All conv layers used in the

model have Batch Normalization layer attached, and the ReLU function is

used for activation. Also, zero padding is performed so that the conv operation

does not change the feature map size.

15



3.3 Cost Function

The commonly used cost function is the following L1,L2 loss :

LL1 = 1
m

∑m
i=1 |y − ŷ|

LL2 = 1
m

∑m
i=1(y − ŷ)2

In order to learn the network that outputs the heatmap, the cost function

was not enough for such loss. In the heatmap image, there is a value only in

the landmark and its vicinity, and the rests are all zero. Therefore, when

learning by only L2 loss, all values of the output image are often estimated

to be zero. In order for the model to learn the heatmap well, we need to

add a term to the cost function that is only affected by the heatmap. The

product of the heatmap image and the predicted image is regarded as a loss

function, and the objective is achieved by maximizing the product. When the

ground truth heatmap image is Ĥ and the prediction image is H, this cost is

expressed as follows.

Lprod = 1
MN

∑M
i=1

∑N
j=1(Hi,j × Ĥi,j)

Since −Lprod was effective in initial training(minimization process), the

first epoch only used product loss function. Then LL1 term was added to

the −Lprod, and a normalization term was added to prevent overfitting. The

following Cost function was used.

L = −Lprod + λL1LL1 + λreg||w||2
In the above loss function, λ is the weight of each term. In the experiment,

λL1 is 2× 10−2 and λreg is 10−7.

3.4 Training

For given 150 training dataset, augmentation was performed using the method

given in Section 3.1.3 to create 1500 dataset, which were used for training. In

the training process, some landmarks resulted in models being over-fitting to

training sets easily, and learning at some landmarks was slow. The solution of

this problem is to apply the model to the testset at the end of each epoch, and

then averaging the resulting heatmap to obtain the final heatmap. Averages

16



the output heatmap from epoch 2. Since then, training accuracy were good

at 87%. The reason for this is that every time the epoch ends, the model

changes slightly. Therefore, it is anticipated that using the average of the

heatmap will produce an ensemble effect. Training was performed up to 5

epochs, with a training accuracy of 97%. In the learning process, testset1 was

used as a validation set to select the model. The optimization algorithm uses

ADAM [31] and the initial learning rate is 10−3.

3.5 Result

3.5.1 Evaluation Approaches

In order to measure the performance of the landmark detection model, there

are measurement methods. The radial error R is the Euclidian distance, the

distance between the predicted and actual coordinates. Using this, the mean

and standard deviation of the error are calculated as follows.

Mean Radial Error(MRE) =
∑N
i=1Ri
N

Standard Deviation (SD) =

√∑N
i=1(Ri−MRE)2

N−1

An important measure for this problem is the success detection rate. The

ground truth is not the range of the landmark, but the landmark coordinates

taken by the medical doctor. Thus, if the error between the estimated co-

ordinate and the correct position is below a certain distance, the estimated

coordinates are correct.

The success detection rate is defined as follows:

pz =
#{j:||Lpred(j)−Lgt(j)||<z}

#Ω
× 100%

In the above equation, Lpred and Lgt mean predicted landmark and ground

truth landmark, respectively. z means the precision range for the evaluation.

j ∈ Ω, and #Ω means the number of data [2, 3].

17



3.5.2 Landmarks Detection Results

After training the proposed model with the given 150 dataset, the learned

model was tested with 250 data. The output from the proposed CNN model

is a heatmap. However, in the given problem, what we really need to obtain

is the coordinates of the landmark, not the heatmap, so we must get the

landmark from the heatmap.

In this experiment, coordinates were obtained using a weighted average

for coordinates greater than 90% of the highest value in the heatmap. Figure

3.7 shows the input image and the predicted heatmap image. It is observed

that the heatmap predicted according to the landmark shows a different form.

Landmark 2,17 was predicted to be a narrow region, while landmark 4 was

predicted to be a relatively wide region. We can also see the benefits of aver-

aging heatmaps. In the first line of the picture, the mispredicted bright blue

part of the heatmap shows dimmedness in the averaged heatmap. The result-

ing heatmap of the fifth epoch in the picture for landmark 4 on the second

line of the figure makes an incorrect guess, but the average of the heatmap

makes the correct guess.
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Figure 3.7: Results of landmarks detection at L2,L4,L17. Left: Input image,

ground truth(blue), predicted(red), Center: Resulting heatmap at epoch 5,

Right: Average of heatmap from 2 to 5 epoch
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Table 3.1: Landmarks detection result for testset1

Landmarks SDR(2.0mm) SDR(2.5mm) SDR(3.0mm) SDR(4.0mm) MRE SD

1 98.00% 98.00% 98.00% 98.00% 10.81 42.64

2 72.67% 74.00% 78.00% 89.33% 18.85 22.14

3 62.00% 70.67% 82.00% 90.67% 19.84 14.40

4 52.00% 56.00% 58.00% 66.00% 34.90 36.22

5 54.67% 64.67% 75.33% 87.33% 21.88 15.54

6 66.00% 78.00% 84.00% 90.00% 21.22 29.02

7 91.33% 94.67% 96.66% 99.33% 9.24 8.10

8 89.33% 94.00% 98.00% 98.67% 10.58 9.67

9 92.67% 97.33% 98.00% 98.67% 8.49 8.82

10 31.33% 42.67% 49.33% 66.67% 36.54 34.27

11 86.67% 90.67% 95.33% 96.00% 10.89 13.87

12 94.67% 96.00% 96.66% 97.33% 10.18 49.94

13 95.33% 96.67% 98.67% 99.33% 8.61 8.21

14 96.00% 98.67% 100.00% 100.00% 7.50 5.14

15 90.67% 94.00% 96.67% 98.00% 13.09 32.57

16 60.67% 68.67% 78.00% 86.67% 20.35 15.15

17 90.00% 93.33% 96.67% 100.00% 10.79 7.60

18 68.00% 79.33% 83.33% 90.00% 21.37 43.26

19 55.33% 59.33% 67.33% 79.33% 26.19 29.25

Average 76.18% 81.40% 85.79% 91.12% 16.91 22.41

In the result of table 3.1, the SDR of the landmark 1 is as high as 98%,

and the standard deviation value is considerably large. This is because there

are few cases where forecasts are very wrong.
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Table 3.2: Landmarks detection result for testset2

Landmarks SDR(2.0mm) SDR(2.5mm) SDR(3.0mm) SDR(4.0mm) MRE SD

1 98.00% 98.00% 98.00% 98.00% 13.65 55.97

2 85.00% 91.00% 95.00% 97.00% 12.01 13.65

3 4.00% 8.00% 15.00% 30.00% 48.35 24.92

4 58.00% 69.00% 76.00% 83.00% 31.73 49.79

5 52.00% 65.00% 69.00% 84.00% 23.95 17.07

6 7.00% 8.00% 15.00% 36.00% 52.96 32.11

7 100.00% 100.00% 100.00% 100.00% 6.81 4.20

8 97.00% 99.00% 100.00% 100.00% 7.61 4.62

9 100.00% 100.00% 100.00% 100.00% 5.60 3.81

10 46.00% 55.00% 64.00% 81.00% 27.62 25.50

11 87.00% 91.00% 96.00% 97.00% 10.13 11.14

12 97.00% 97.00% 98.00% 98.00% 7.02 11.90

13 16.00% 35.00% 65.00% 93.00% 27.38 7.69

14 51.00% 64.00% 81.00% 94.00% 21.57 10.59

15 89.00% 95.00% 99.00% 100.00% 11.35 6.94

16 74.00% 80.00% 85.00% 92.00% 17.37 21.08

17 83.00% 88.00% 93.00% 99.00% 16.13 30.54

18 80.00% 86.00% 92.00% 96.00% 14.69 11.38

19 67.00% 80.00% 82.00% 88.00% 35.07 81.01

Average 67.95% 74.16% 80.16% 87.68% 20.58 22.31

Unusually, Table 3.2 shows that the mean error is large at landmarks

13, but the standard deviation is quite small. This means that there is some

consistent deviation between the data and the forecast. Since the SDR value

in test1 is 95%, the characteristics of the data may be different. Also in

landmark 3 and 6, the results of testset1 and testset2 are different, which is

not clear because of differences in datasets or lack of versatility of models.
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Figure 3.8: Success detection rates comparisons were made for the proposed

model and the benchmark model. The test set is IEEE ISBI 2015 Challenge

Datasets.
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Chapter 4

Conclusion

The purpose of this thesis is to construct fully automated quantitative cephalom-

etry as FCN model. The proposed model is trained to generate an archery

target shape at the location of anatomical landmarks. The image patch, which

is the input of the model, has a patch size based on the data for each land-

mark. Experiments were conducted to find landmarks by applying the pro-

posed model to the published data. SDR of a medically available 2mm range

is better than previous studies. However, some parts of the wrong prediction

caused a considerable error. It would be better to add constraints that take

into account biological characteristics. Also, given enough data, the model

is expected to perform better. Since the proposed model is generic enough

not to depend on this problem, it can be used for other anatomical landmark

detection problems.
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국문초록

치의학에서 계량적인 두부계측은 환자를 진단하거나 치료 하는데 필수적인

역할을 한다. 본 학위논문에서는 내부적으로 레지듀얼 연결을 가지고 있는

FCN(fully convolutional networks)모델을 이용해 자동화된 랜드마크 탐색모

델을 제안한다. 제안된 FCN 모델은 랜드마크 근처의 이미지 패치가 입력되면,

양궁 과녘 모양의 히트맵을 출력 하도록 학습되었다. 학습과 테스트에 사용된

측면두부영상은공개적으로이용가능한데이터셋을이용했다.학습에사용된

이미지패치는트레이닝데이터에기반해위치와크기가정해졌고,인공적으로

데이터를증가시켰다.결과를평가하는방법으로 SDR(Success detection rate)

을 사용했다. 테스트 셋을 이용해 학습된 모델을 평가하고 기존연구와 비교

했다. 결과적으로 랜드마크가 기존의 연구보다 더 좋은 정확도로 탐지되었다.

FCN모델이 정확하게 랜드마크 탐지하는데 가능성이 있음을 보였다.

주요어휘: 지도학습, 완전 컨볼루션 네트워크, 레지듀얼 네트워크, 두부 계측

지표, 치과 엑스레이 영상

학번: 2015-22686
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