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Abstract 

 

Differential Effects of Vitamin D Supplementation on 

Natural Killer Cell Activity in Normal and Obese Mice 

Ga Young Lee 

Department of Food and Nutrition 

The Graduate School 

Seoul National University 

 

Vitamin D has immunoregulatory effects on both innate and adaptive 

immunity. Vitamin D has been reported to induce differentiation of 

monocytes into macrophages, inhibit maturation and differentiation of 

dendritic cells, and suppress adaptive immunity. There have been in vitro 

studies showing contradictory results regarding the role of vitamin D on NK 

cell functions, but little is known about this in vivo. The present study 

investigated whether vitamin D supplementation (50, 1000, or 10000 IU/kg 

of diet: DD, DC, or DS) affects NK cell functions in mice fed a control or 

high fat diet (10% or 45% kcal fat: CD or HFD) for 12 weeks. NK cell 

activity was assessed using radioisotope 
51

Cr release assay against YAC-1 

target cells and splenocyte subpopulation was measured by FACS analysis. 

Intracellular expression of IFN-γ by NK cells, CD4
+
 T cells, and CD8

+
 T 
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cells, and surface expression of NKG2D and CD107a were determined by 

FACS analysis upon stimulation of splenocytes with PMA (50 

ng/mL)/ionomycin (0.5 μM) for 4 hours. The splenic NK cell activity was 

significantly higher in the CD-DS group than the HFD-DS group, and the 

CD-DS group showed significantly higher NK cell activity compared with 

the CD-DD and CD-DC groups, but no difference in NK cell activity was 

observed among the HFD groups fed different vitamin D levels. Of note, the 

splenic population of NK cells was significantly higher in the CD-DS group 

than the HFD-DS group. However, no significant differences were observed 

in the intracellular expression of IFN-γ and the surface expression of 

NKG2D and CD107a in NK cells by both dietary fat and vitamin D content. 

The splenic mRNA expression of Ifng and Ccl5 were significantly lower in 

the HFD groups compared with the CD groups, but there was no difference 

in the mRNA levels of Vdup1 and Vdr among the groups. Taken together, 

these results suggest that dietary vitamin D supplementation can modulate 

innate immunity by increasing NK cell activity in control mice but not in 

obese mice, which is presumably mediated through alternation of the splenic 

NK cell population. 

KEY WORDS: NK cell, vitamin D, obesity, IFN-γ, CD107a 
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Ⅰ. Introduction 

Natural killer (NK) cells are a subset of lymphocytes that are important in host 

defense during the early stage of cancer development, metastasis, or virus 

infection (Moretta et al. 1992; Lanier 1998; Vivier et al. 2008). Upon activation 

through surface receptors such as NKG2D, NK cells release cytotoxic granules 

and secrete cytokines such as Interferon-γ (IFN-γ) that can induce target cell 

death (Moretta et al. 2002; Vivier et al. 2011b; Vivier et al. 2012).  

Obesity is known to be associated with immune dysfunction (Krishnan et al. 

1982; Lamas et al. 2004), and impaired NK cell function with obesity has been 

reported in both animal and human (Jeffery et al. 1997; Smith et al. 2007; J. et al. 

2015). With obesity, decreased NK cell numbers and activity (O'Shea et al. 2010; 

Laue et al. 2015), and downregulation of the expression of activating receptors 

(Nave et al. 2008) have been reported. Although the exact mechanisms for the 

decline of NK cell functions remain unclear, it has been suggested that obesity-

induced alternation of circulating levels of adipokines such as leptin and 

adiponectin can affect NK cell functionality (Wrann et al. 2012; Hubner et al. 

2013). In obese individuals, plasma leptin concentration is higher than in control 

weight subjects (Caro et al. 1996). While leptin receptor Ob-Rb, which mediates 

the leptin signal pathway, is expressed by immune cells including NK cells, the 

expression of leptin receptors and Janus kinase (JAK) and signal transducer and 
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activator of transcription (STAT) post-receptor transduction has been found to be 

impaired in obese individuals (Nave et al. 2008), indicating NK cell dysfunction 

in obesity.  

Vitamin D has been shown to affect both adaptive and innate immunity (Mora 

et al. 2008). Mice lacking vitamin D3 upregulated protein 1 (VDUP1) showed 

reduced NK cytotoxicity and number of CD3
-
NK1.1

+
 cells (Lee et al. 2005), 

suggesting that vitamin D is critical for NK cell functions. However, the 

relationship between VDUP1 and NK cells has still not been completely 

uncovered. With in vitro treatment of 1,25-dihydroxyvitamin D [1,25-(OH)2D3], 

enhanced lytic activity of NK cells has been observed against target tumor cells 

(Al-Jaderi et al. 2013). Additionally, inhibitory effects of vitamin D on NK cell 

activity and lymphokine-activated killer (LAK) cellular differentiation have been 

reported as well (Leung 1989; Weeres et al. 2014). Overall, the effects of vitamin 

D on NK cell activity are not well characterized and still remain contradictory. 

While, most of the previous studies have focused on the effect of in vitro vitamin 

D treatment on the functions of NK cells derived from human peripheral blood, 

few studies have been conducted to examine the in vivo effect of vitamin D on 

NK cell function. 

Abnormality of serum vitamin D levels and dysfunction of vitamin D 

metabolism have been reported in obesity (Wortsman et al. 2000; Konradsen et al. 
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2008; Ding et al. 2012; Earthman et al. 2012; Clemente-Postigo et al. 2015). A 

number of clinical studies have shown that serum 25-hydroxyvitamin D [25-

(OH)D] concentration (the major circulating form of vitamin D) is lower in obese 

individuals (Earthman et al. 2012), and body mass index has an inverse 

correlation with serum 25-(OH)D concentration (Konradsen et al. 2008). It has 

been proposed that this is partially due to decreased bioavailability of vitamin D 

and greater sequestration in adipose tissue (Wortsman et al. 2000; Ding et al. 

2012). Both obesity and vitamin D can affect NK cell functions and vitamin D 

levels have been shown to be altered with obesity, therefore, there is a possibility 

that the differential impact of vitamin D on NK cell activity is observed with 

obesity. 

Given the immunomodulatory capacity of vitamin D, the present study 

investigated the effect of in vivo vitamin D supplementation on NK cell function 

by measuring NK cell activity as well as expression of cytokine and activating 

receptor, and degranulation capacity. Effects of dietary supplementation of 

vitamin D on NK functions was evaluated in both control and high-fat diet 

(HFD)-induced obese mice. 
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Ⅱ. Literature review 

1. NK cells 

Naturel killer (NK) cells are a subset of large granular lymphocyte that play a 

key role in innate immune system by exerting effector functions against various 

tumors and virus infections (Vivier et al. 2008). NK cells recognize infected cells 

which have altered or absent MHC class I molecules and directly induce killing 

of transformed cells such as tumor cells or virus-infected cells without antigen-

specific immunization (Vivier et al. 2011a). This suggest the importance of NK 

cells in the host’s immune system in the early stage of cancer development and 

metastasis or virus infection (Moretta et al. 1992; Lanier 1998). 

1-1. NK cell development 

NK cell development occurs mainly in the BM from the common lymphoid 

progenitor cells with T cells and B cells (Lumeng 2012; Murphy 2012). NK cell 

commitment takes place through upregulation of CD122 and NK1.1 in B6 mice 

(Kim et al. 2002) and interactions with stromal cells situated in the BM regulate 

gene expression of surface molecules such as cytokine receptors, integrins, and a 

family of NK cell receptors (Chiossone et al. 2009).  

NK cell maturation can be determined by surface phenotype as well as 

functional capacity (Clinthorne et al. 2013). Following acquisition of CD49 (DX5) 

in the early maturation, NK cells express CD11b and CD43, which are strongly 
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associated with the capacity to secrete IFN-γ (Effros et al. 1991). After 

maturation, NK cells emigrate from BM to peripheral tissues via the blood and 

are distributed to various lymphoid organs, such as spleen and LN, and non-

lymphoid organs, including liver and lung, and peripheral blood (Hayakawa et al. 

2006b). In the peripheral tissues, NK cells continue maturation to adapt the 

environment by upregulating killer cell lectin-like receptor G1 (KLRG1) and 

downregulating CD27 and TRAIL (Hayakawa et al. 2006b). By applying the 

marker CD27, NK cells can be further divided into 3 subsets in mice from early 

mature NK cells CD27
+
CD11b

-
 NK cells to CD27

+
CD11b

+
 NK cells, followed by 

CD27
-
CD11b

+
 NK cells (Clinthorne et al. 2013).  

1-2. NK cell receptors 

NK cells have two distinct kinds of receptors, activating and inhibitory 

receptors, which engage in regulation of NK cell effector functions (Vivier et al. 

2008). NK cell activating and inhibitory receptors and their ligands present in 

mice and humans are shown in the Table 1. By integrating the signals from the 

activating and inhibitory receptors, NK cells regulate their functions against 

target cells.  

NK cell activation takes places after recognition of alternations in glycoprotein 

compositions from the cell surface (Murphy 2012). The triggering of activating 

receptors is accompanied by reduced signaling through inhibitory receptors and 
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this induces target cell death making it vulnerable to attack by NK cells (Smyth et 

al. 2005). The typical activation receptor is NKG2D that is overexpressed upon 

cellular stress or infection status, while expression is remained at low levels in 

normal conditions (Vivier et al. 2008; Raulet et al. 2009). 

On the contrary, after identification of ‘self’, bearing normal levels of MHC 

class I molecules, NK cell activation is inhibited following recognition of 

negative signals through protein tyrosine phosphatases (Murphy 2012). 

  



 

7 

  

Table 1. Activating and inhibitory NK cell receptors, and their ligands in mice and 

human (Vivier et al. 2008)  

 Human Mouse 

 Receptors Ligands Receptors Ligands 

Activating 

receptors 

CS1 (CRACC, CD319) CD1 (CRACC, CD319) CS1 (CRACC, CD319) CS1 (CRACC,CD319) 

α4β1 integrin VCAM-1 (CD106) α4β1 integrin VCAM-1 (CD106) 

β2 integrins 

(CD11a-CD18, 

CD11b-CD18, 
CD11c-CD18) 

ICAM-1 (CD54) 

ICAM-2 (CD102) 

CD23 
iC3b… 

β2 integrins 

(CD11a-CD18, 

CD11b-CD18, 
CD11c-CD18) 

ICAM-1 (CD54) 

ICAM-2 (CD102) 

CD23 
iC3b… 

CD226 (DNAM-1) 
CD112 (Nectin-2), 

CD155 (Necl-5) 
CD226 (DNAM-1) 

CD112 (Nectin-2), 
CD155 (Necl-5) 

CRTAM Necl2 CRTAM Necl-2 

CD27 CD70 CD27 CD70 

CD16 Immunoglobulin G CD16 Immunoglobulin G 

NKP46 Viral hemagglutinins, ? NKp46 (NCR, MAR1) Viral hemagglutinins.? 

KIR-S HLA-C, ? Act KLRA (Act Ly49) 
MCMV m157 (Ly49H), 

H2-Dd (Ly49D) 

CD94-NKG2C HLA-E 
KLRD1-KLRC2 
(CD94-NKG2C) 

Qa-1? 

CD94-NKG2E HLA-E 
KLRD1-KLRC3 
(CD94-NKG2E) 

Qa-1? 

NKG2D 
ULBP (RAET), MICA, 

MICB 
KLRK1 (NKG2D) H60, Rae1, MULT-1 

NTB-A NTB-A PILR-β CD99 

PEN-5 L-selectin LAG-3 
MHC class Ⅱ 

molecules 

CD96 (Tacile) CD155 (Necl5) NKRP-1C ? 

NkP80 ALCL NKRP-1A ? 

CD100 CD72 NKRP-1F CLr-g 

NKp30 Pp65, BAT-3, ? 

  
NKp44 Viral hemagglutinins, ? 

CEACAM1 (CD66) CEACAM1 (CD66) 

CD160 (BY55) HLA-C 

Inhibitory 

receptors 

KIR-L HLA-C,B and A Inh. KLRA (Inh. Ly49) H-2 

LAIR-1 Collagen LAIR-1 Collagen 

CD94-NKG2A HLA-E 
KLRD1-KLRC1 

(CD94-NKG2A) 
Qa-1 

SIGLEC 3,7,9 Sialic acid SIGLEC-E Sialic acid 

KLRG1 Cadherins KLRG1 Cadherins 

NKR-P1A LLT-1 NKRP1-B, -D Clr-b (OCIL) 

LILRB1 (CD85j, ILT2) HLA classⅠ KLRE-1 (NKG2I) ? 

CD244 (2B4) CD48 PILR-α CD99 

  2B4 (CD244) CD48 
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1-3. Cytokine-induced activation and cytokine production by NK cells  

Cytokines play crucial roles in NK cell activation. Interferons or cytokines 

derived from macrophages are released upon viral infection and tumor cells and 

function as activator of NK cells (Murphy 2012). It is shown that cytolytic 

activity and IFN-γ production of NK cells are affected by a variety of cytokines 

and chemokines (Vivier et al. 2012). Cytokines related with NK cell activation 

are IL-2, IL-12, IL-15, IL-18, IFN-α, IFN-β and CCL-5 (Biron et al. 1999; Smyth 

et al. 2005).   

Conversely, activated NK cells produce various cytokines, including IFN-γ, 

tumor necrosis factor (TNF)-α, IL-13, and IL-10 in response to stimulation 

(Hayakawa et al. 2006a). In addition, chemokines such as CCL2, CCL3, CCL4, 

CCL5 are known to be secreted by NK cells (Walzer et al. 2005), which can 

influence cytolytic activity of NK cells (Robertson 2002). 
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1-4. NK cell-mediated killing mechanisms 

There are diverse mechanisms that NK cells induce target cells death. Upon 

activation through the integration of signals from activating and inhibitory 

receptors, NK cells kill targets by releasing cytotoxic granules and by interacting 

between Fas and Fas ligand (Arase et al. 1995; Lee et al. 1996; Moretta et al. 

2002). 

1) Cell apoptosis mediated by secretion of cytotoxic granules 

The major NK cell-mediated killing mechanism is by exocytosis of cytotoxic 

granules containing perforin, granzymes, and granulysin (Okada et al. 2003; Li et 

al. 2008). After target cell recognition, NK cells bound via surface receptors, and 

their contents penetrate the cell membrane of target cells to induce programmed 

cell apoptosis (Murphy 2012).  

The representative cytotoxic effector proteins are perforin and granzyme. 

Perforin creates pore in target cells to disturb endosomal trafficking (Smyth et al. 

2005) and assist penetration of cytotoxic granules such as granzyme B into the 

cytoplasm of target cells (Murphy 2012). Granzymes are a kind of serine 

proteases that trigger target cell apoptosis (Murphy 2012). Once they enter into 

the cytoplasm of the targets, target cell death is induced by the release of 

cytochrome c from disturbed mitochondria, DNA degradation following 

activation of caspase 3, and by caspase independent pathway (Smyth et al. 2005; 
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Vivier et al. 2011a; Murphy 2012).  

When lytic granules including granzymes and perforins are released from 

effector cells, a degranulation marker CD107a appears on the cell surface (Bae et 

al. 2013), indicating that increased expression of CD107a reflects secretion of 

granzyme and perforin (Diefenbach et al. 2000). 

CD107a is a surface marker of degranulation of NK cells as well as cytotoxic T 

cells, and is significantly up-regulated on the surface following stimulation with 

MHC-deprived target cells and with PMA/Ionomycin (Alter et al. 2004). There 

are some studies which presented that CD107a is a functional marker of NK cell 

activity, but the precise role of CD107a in NK cell biology still remains unclear, 

suggesting the need for further studies.  

2) Fas/Fas ligand-mediated apoptosis  

Another well-known mechanism of target cell death by NK cells is through cell 

membrane-associated Fas (CD95)-FasL (CD178) interaction (Arase et al. 1995). 

Fas is a member of TNF superfamily that is expressed in a surface membrane of 

cytotoxic lymphocytes including NK cells and cytotoxic T cells (Suds et al. 1993). 

FAS ligands are expressed by NK cells in response to tumor target cells and 

binding of FAS ligand (CD178) to FAS (CD95) creates signal which induces 

death of target cells (Smyth et al. 2005). After binding of Fas ligand to the death 

receptor Fas, caspases activation is induced, which initiates apoptotic 
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mechanisms in CD95-expressing target cell (Okamoto et al. 2000; Scott et al. 

2009).  
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1-5. NK cells and adaptive immunity 

NK cell functions are not confined to cytolytic effector capacity, but they also 

act as regulatory cells interacting with other innate immune cells, including DC, 

macrophage, and neutrophils (Moretta et al. 2005). IFN-γ and TNF produced by 

NK cells are shown to promote maturation of DCs and their production of IL-12, 

which in turn activates NK cells (Walzer et al. 2005). 

NK cells are also act as an important connection between innate and adaptive 

immune responses. Interaction between NK cells and antigen-presenting cells, 

particularly DCs, regulates adaptive immune responses (Moretta 2002) by 

enhancing antigen presentation to cytotoxic T cells. In addition, a large amount of 

cytokines and chemokines secreted by NK cells in response to target cells can 

form and induce adaptive immune response (Moretta 2002). Priming of CD4
+
 T 

helper type 1 cells also can be induced by IFN-γ, a representative cytokine 

produced by activated NK cells (Krebs et al. 2009). Above this, NK cell-mediated 

killing impacts T cell responses by reducing antigenic load, whereas target cell 

debris produced by NK cell-mediated killing might promote antigen cross-

presentation to cytotoxic T cells (Robbins et al. 2007). 
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2. Obesity and NK cells  

A number of studies have shown that immune dysfunction is observed in 

obesity (Lamas et al. 2004; Mancuso et al. 2006). A decreased circulating number 

of NK cells and impairment of their function have been reported in obese subjects 

(Lynch et al. 2008).  

Obesity with excessive body fat mass is known to lead to an elevation of serum 

adipokines, such as leptin and adiponectin (Krishnan et al. 1982; Hubner et al. 

2013). The alternation of adipokine levels can modulate NK cell function 

including NK cell activity (Hubner et al. 2013; Sabrina Wilk et al. 2013). It is 

suggested that the alternation of adipokine levels might be due to decreased 

activation of post-receptor signaling components such as JAK-2 (Nave et al. 2008; 

Laue et al. 2015). Since obesity is related with immune dysfunction, it is 

convincing that obese individuals are susceptible to infection of pathogens. This 

suggest the importance of NK cells in obesity in consideration that NK cells are 

the first-line in immune defensive system mobilized during an infection and 

tumor genesis (Smith et al. 2007). 

Decreased NK cell activity and intracellular expression of IFN-γ in NK cells of 

obese human were significantly improved after body fat mass reduction by 

decreasing daily energy intake and adjusting appropriate exercise program (J. et 

al. 2015). In addition, reversibility of NK cell activity was observed after body 
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weight and fat mass reduction through bariatric surgery (Moulin et al. 2011).  

Nevertheless, studies on the change of NK cell function in obesity have been 

reported to be contradictory and tissue dependent. NK cell numbers in visceral fat 

are shown to be decreased or unchanged with obesity (S. Caspar-Bauguila et al. 

2005; Carine Duffaut et al. 2009). However, the cytotoxicity of NK cells in the 

splenocytes was decreased but the difference were not significant (Zhigang Tian 

et al. 2002).  
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3. Vitamin D and NK cells 

Vitamin D performs its function by the interaction with vitamin D receptor 

(VDR) acting as a transcription factor in many target cells (Ding et al. 2012). 

Since VDR is found in variety of cells including immune systems, there have 

been efforts to examine the biological role of vitamin D on the immune system. It 

was demonstrated that vitamin D has an impact on both innate and adaptive 

immunity (Mora et al. 2008). 1,25(OH)2D3 has been shown to have an inhibitory 

effect in the maturation and differentiation of DC (Etten et al. 2005) and a 

regulating effect in adaptive immunity by suppressing induction of Th1 cytokine 

from T cells, particularly IFN-γ, while promoting Th2 immune responses by 

downregulating expression of IFN-γ expression through increasing IL-4 

production (Mora et al. 2008). 

However, despite the importance of NK cells as the first-line of defense cells, 

effects of vitamin D on NK cells have not been studied well and conflicting 

reports are found.  

It is reported that NK cell functions are shown to be impaired by in vitro 

treatment of vitamin D. NK cell activity from CD16
+
 peripheral blood NK cells 

are reported to be inhibited in a time- and dose-dependent manner by 

1,25(OH)2D3 (Merino et al. 1989). In addition, there was a report that 

1,25(OH)2D3 inhibited NK cell activity and both IFN-γ and IL-2 activation of NK 
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cell activity (Leung 1989). 1,25(OH)2D3 also showed a decrease in cytotoxicity 

of NK cells derived from purified hematopoietic stem cells and in LAK cellular 

differentiation (Leung 1989; Weeres et al. 2014). 

 On the other hand, there are observations which report stimulatory effect of in 

vitro-treated vitamin D on NK cells. It was reported that NK cell-mediated 

cytotoxicity was enhanced by 1,25(OH)2D3 treatment from control subjects 

(Quesada et al. 1995). There was a study that the cytotoxicity of lymphokine-

activated killer (LAK) cells was increased by 1,25(OH)2D3 (Ravid et al. 1993). 

Moreover, patients with chronic renal failure accompanied by defective NK cell-

mediated activity was corrected by 1,25(OH)2D3 administration (Quesada et al. 

1995).  

Overall, the relationship between NK cells and vitamin D still remains 

inconclusive, suggesting the need for further investigation.  
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Ⅲ. Materials and methods 

1. Animals 

Five week-old male C57BL/6 mice (Central Animal Laboratory, Seoul, Korea) 

were housed in an specific pathogen free room under controlled temperature (23 

± 1°C), relative humidity (50 ± 10%), and light/dark cycle (12-h dark/12-h light 

6:00AM-6:00PM). After 5 days of acclimation on the control diet, mice were 

randomly divided into 6 groups and fed diets differing in fat amount and vitamin 

D content for 12 weeks.  

The experimental design and breeding process were shown briefly in Figure 1. 

Dietary intake was measured 4 times per week and body weight was measured 

once a week. At the end of the experimental period, mice were fasted for 12 h and 

euthanized by CO2 asphyxiation. All experimental procedures were conducted 

according to the protocols approved by the Institutional Animal Care and Use 

Committee of Seoul National University (approval No. SNU-160329-1). 
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Figure 1. The experimental design
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2. Diets 

There were six types of experimental diets differing in fat amount (10% 

or 45% kcal fat, CD or HFD) and vitamin D content (50, 1000, or 10000 

IU/kg of diet, DD, DC, or DS, respectively) (CD-DD, #119320; CD-DC, 

#103816; CD-DS, #119334; HFD-DD, #119318; HFD-DC, #103818; HFD-

DS, #119333; Dyets, Inc., Bethlehem, PA, USA). The specific composition 

of diets is shown in Table 2. All diets were stored at 4ºC and provided as 

solid pellet form. Animals were fed experimental diets ad libitum for 12 

weeks and were allowed free access to distilled water.  
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Table 2. Composition of the experimental diets
a 

 

CD-DD 

(10% kcal 

fat + 50 

IU/kg of 

diet) 

CD-DC 

(10% kcal 

fat + 1000 

IU/kg of 

diet) 

CD-DS 

(10% kcal 

fat + 10000 

IU/kg of 

diet) 

HFD-DD 

(45% kcal 

fat + 50 

IU/kg of 

diet) 

HFD-DC 

(45% kcal 

fat + 1000 

IU/kg of 

diet) 

HFD-DS 

(45% kcal 

fat + 10000 

IU/kg of 

diet) 

Casein (g) 200 200 200 200 200 200 

L-Cystine (g) 3 3 3 3 3 3 

Sucrose (g) 350 350 350 172.8 172.8 172.8 

Cornstarch (g) 315 315 315 72.8 72.8 72.8 

Dyetrose (g) 35 35 35 100 100 100 

Soybean Oil (g) 45 45 45 45 45 45 

t-BHQ (g) 0.009 0.009 0.009 0.009 0.009 0.009 

Lard (g) - - - 157.5 157.5 157.5 

Cellulose (g) 50 50 50 50 50 50 

Mineral Mix (g)
b
 35 35 35 35 35 35 

Vitamin Mix (g) 

(No vit D) 
10 - 10 10 - 10 

Vitamin Mix
c 
(g) - 10 - - 10 - 

Vit D3 Premix 

(100IU/g) 
0.5 - - 0.5 - - 

Vit D3 

(400,000IU/g) 
- - 0.025 - - 0.025 

Choline 

Bitartrate (g) 
2 2 2 2 2 2 

Total (g) 1045.5 1045 1045 848.6 848.1 848.1 

Kcal/g of diet 3.86 3.86 3.86 3.94 3.94 3.94 
 

a
Resource: Dyets, Inc., Bethlehem, PA, USA 

b
35 g of mineral mix (Dyets, #200000) provides 5.2 g calcium, 4 g phosphorus, 3.6 g 

potassium, 1 g sodium, 1.6 g chloride, 0.3 g sulfur, 0.5 g magnesium, 35 mg iron, 6 mg 

copper, 54 mg manganese, 30 mg zinc, 2 mg chromium, 0.2 mg iodine, 0.1 mg selenium, 

and 4.2 g sucrose. 
c
10 g of vitamin mix (Dyets, #300050) provides 4000 IU vitamin A, 1000 IU vitamin D3, 

50 IU vitamin E, 30 mg niacin, 16 mg pantothenic acid, 7 mg vitamin B6, 6 mg vitamin 

B1, 6 mg vitamin B2, 2mg folic acid, 0.8 mg menadione, 0.2 mg biotin, 10 μg vitamin 

B12, and 9.8 g sucrose.  
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3. Methods 
 

3-1. Tissue collection 

After euthanizing mice by CO2 asphyxiation, blood samples were 

collected by cardiac puncture and serum was isolated by centrifugation at 

2000 rpm for 20 min, after which serum was stored at –80°C following 

coagulation at room temperature for 2 hrs. White adipose tissue (WAT), 

including perirenal, intraperitoneal, epididymal, and subcutaneous fat were 

collected, weighed, and stored at –80°C. Spleen was dissected out and 

splenocytes were isolated.   
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3-2. Splenocyte isolation 

After aseptic removal, spleen was put into sterile RPMI 1640 (Lonza, 

walkersvile, MD, USA) medium supplemented with 100,000 U/L of 

penicillin (GibcoBRL, Grand Island, NY, USA), 100 mg/L of streptomycin 

(GibcoBRL), 25 mmol/L of HEPES (Sigma Aldrich, St. Louis, MO, USA) 

and 2 mmol/L of L-glutamin (GibcoBRL) (complete RPMI). A single-cell 

suspension of splenocytes was prepared by homogenization of the spleen 

with sterile frosted glass slides. Splenocytes were separated via 

centrifugation (700 rpm) to remove tissue debris, and red blood cells were 

lysed using Gey’s solution. Isolated splenocytes were washed twice and 

their viability was determined by the trypan blue exclusion test, after which 

they were suspended in complete RPMI medium supplemented with 10% 

FBS at 1ⅹ10
7
 cells/mL for further analysis. 
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3-3. NK cell activity assay 

  NK cell activity was measured using the radioisotope 
51

Cr release assay 

against YAC-1 target cells. YAC-1 cells (a molony leukemia virus-induced 

murine lymphoma cell line) were purchased from the Korean Cell Line 

Bank (Seoul, Korea). The cells were incubated with 
51

Cr (Perkin Elmer Life 

and Analytical Sciences, Boston, MA, USA) (25 μCi /10
6
 cells) for 90 min 

at 37°C and 5% CO2 by gently swirling every 15 min, and were washed 

twice and incubated for 30 min at 37°C. The labeled YAC-1 cells were 

added to diluted splenocytes in a 96-well round bottom plate to make final 

effector cell:target cell (E:T) ratios of 100:1, 50:1, 25:1, and 12.5:1. 

Spontaneous release (SR) was measured by the amount of 
51

Cr released 

from the target cells alone and maximum release (MR) was measured as the 

amount of 
51

Cr after incubation with 5% Triton-X solution. 100 μL of cell 

supernatant was collected and radioactivity was measured with an automatic 

gamma counter (2470 WIZARD 2, Perkin Elmer, Shelton, CT, USA). NK 

cell activity was shown as lysis percentage: percent specific release = 

(experimental release – spontaneous release) / (maximum release – 

spontaneous release)ⅹ100. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa  
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3-4. Serum leptin measurement 

Serum leptin concentrations were measured by enzyme linked 

immunosorbent assay (Quantikine ELISA kit; R&D Systems, Minneapolis, 

MN, USA) according to the manufacturer’s instructions. 
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3-5. FACS analysis of subpopulation of splenocytes 

For the analysis of the splenocyte subpopulations, isolated splenocytes 

were resuspended in fluorescence-activated cell sorting (FACS)-staining 

buffer (0.09% sodium azide, 1% FBS, 1ⅹPBS based) at a concentration of 

1ⅹ10
7
 cells/mL. A total of 2ⅹ10

6
 cells/sample were stained with 

antibodies (Abs) against cell-surface markers for 30 min at 4°C. The Abs 

used for staining the subpopulations were as follows: FITC-conjugated anti-

mouse CD3 Molecular Complex, PE-conjugated anti-mouse NK-1.1, APC-

conjugated anti-mouse CD11b, APC-conjugated anti-mouse CD4, PE-

conjugated anti-mouse CD8, PE-conjugated anti-mouse CD19, and PE-

conjugated anti-mouse F4/80, all from BD Pharmingen, San Diego, CA, 

USA. After incubation, cells were washed and resuspended in FACS-

staining buffer and then analyzed using FACSCalibur II (BD Biosciences, 

SA, USA) and FlowJo software version 10 (Tree Star Inc., Ashland, OR).  
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3-6. Surface expressions of NKG2D and CD107a, and intracellular 

expression of IFN-γ 

To analyze the surface expression of NKG2D and CD107a and the 

intracellular expression of IFN-γ, splenocytes were stimulated in complete 

medium with 50 ng/mL of PMA (Sigma Aldrich) and 0.5 μM of ionomycin 

(Sigma Aldrich) for 4 h in the presence of BD GolgiStop™ protein transport 

inhibitor containing monensin (BD Biosciences). Cells were harvested and 

resuspended in FACS-staining buffer, and a total of 2ⅹ10
6
 cells/sample 

were labeled with surface-staining Abs, which were as follows: FITC-

conjugated anti-mouse CD3 Molecular complex, APC-conjugated anti-

mouse NK-1.1, APC-conjugated anti-mouse CD4, and PE-conjugated anti-

mouse CD8a, all from BD Pharmingen. Cells were incubated at 4°C for 30 

min with the surface-staining Abs, fixed, then permeabilized with BD 

Cytofix/Cytoperm™ Plus Fixation/Permeabilization Kit. Cells were stained 

with Abs or corresponding isotype-matched Abs, which were as follows: 

PE-conjugated Rat IgG1, κ isotype control; PE-conjugated Rat IgG2a, κ 

isotype control; PE-conjugated anti-mouse IFN-γ; PE-conjugated anti-

mouse CD314 (NKG2D); and PE-conjugated anti-mouse CD107a; all from 

BD Pharmingen, San Diego, CA, USA. After incubation at 4°C for 30 min, 

cells were fixed with fixer containing 4 % formaldehyde and washed to 

preserve them until analysis with FACSCalibur II and FlowJo software 
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version 10 (Tree Star Inc). 
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3-7. Quantitative real-time PCR analysis 

Splenocytes were used to extract total RNA with RNAiso Plus (Takara, 

Otsu, Shiga, Japan) following stimulation with 50 ng/mL of PMA (Sigma 

Aldrich) and 0.5 μM of ionomycin (Sigma Aldrich) for 4 h. RNA sample 

quality was tested with a Gel Doc XR system (Bio-Rad Laboratories, 

Hercules, CA, USA) and concentration of the samples was determined using 

a spectrophotometer (DU530, BECKMAN, Fullerton, CA, USA) by 

measuring their absorbance at 260 and 280 nm. Isolated RNA was reverse 

transcribed into cDNA using PrimeScript™ 1st strand cDNA synthesis kit 

(Takara Bio Inc., Otsu, Shiga, Japan) and a 2720 thermal cycler (Applied 

Biosystems, Foster City, CA, USA). Quantitative RT-PCR was conducted 

with a StepOne™ Real-time PCR system (Applied Biosystems). Each PCR 

reaction mixture included reverse transcribed cDNA, SYBR Premix Ex Ta, 

ROX reference dye (Takara Bio Inc), and specific forward and reverse 

primers. Relative expression levels of the genes were calculated by the 2-

ΔCt method and adjusted with Gapdh used as a housekeeping gene. Primer 

sequences used for RT-PCR are shown in Table 3. 
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Table 3. Primer sequences used in real time PCR
a
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
Ifng, interferon gamma; Il12b interleukin 12p40; Il15, interleukin 15; Il18, interleukin 18; Ccl5, chemokine ligand 5;  

Vdr, vitamin D receptor; Vdup1, vitamin D3 up-regulated protein 1; Gapdh, glyceraldehyde 3-phosphate dehydrogenase. 

GENE Forward primer Reverse primer 

Ifng TGGACCTGTGGGTTGTTGAC GAACTGGCAAAAGGATGGTG 

Il12b CGGGTCTGGTTTGATGATGT AGCAGTAGCAGTTCCCCTGA 

Il15 GAAGGGCAACTGAGAGCAGA TCTATGGGGAAGCCAAACTG 

Il18 TGGAAATACAGGCGAGGTCA TGCCAAAAGGAAGATGATGC 

Ccl5  CTTGAACCCACTTCTTCTCTGG TGCTGCTTTGCCTACCTCTC 

Vdr ATGTCCAGTGAGGGGGTGTA TGTCTGAGGAGCAACAGCAC 

Vdup1 TACTGATTGCCACCCATCTTG CCCACCCACTTACACTGAGG 

Gapdh GGAGAAACCTGCCAAGTA AAGAGTGGGAGTTGCTGTTG 
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4. Statistical analysis 

All statistical analyses were carried out using SPSS statistical software 

version 21.0 (IBM SPSS Statistics, Chicago, IL, USA). All data were 

represented as means ± SEM. Significant differences (P < 0.05) were 

determined using a two-way ANOVA test to evaluate the overall effect of 

vitamin D and fat amount, followed by Fisher’s least significant difference 

(LSD) post-hoc test to compare differences between the individual groups. 

Pearson’s correlation test was performed to analyze any correlations 

between the variables. 
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Ⅳ. Results 

1. Body weight, weight change, body fat, and dietary intake  

After 12 weeks of feeding, body weight (P < 0.001), weight change (P < 

0.001), and WAT weights (P < 0.001) were significantly higher in HFD 

groups compared with CD groups, but there was no significant effect of 

vitamin D. The average dietary intake for 12 weeks (g/day) was 

significantly lower in the HFD groups (P < 0.001), whereas the average 

energy intake was significantly higher in the HFD groups compared with the 

CD groups (P < 0.001) because of a higher percentage of fat amount in the 

high fat diet. However, no significant differences in food intake were 

observed regarding vitamin D levels (Table 4). 
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Table 4. Body weight, weight change, body fat, and dietary intake of the mice 
a,b

 

 

a
Values are means ± SEM, n = 6 to 8 per group (n = 47) 

b
Two-way ANOVA was used to determine the effect of fat and vitamin D intake.  

Different superscripts indicate significant difference (P <.0.05) by Fisher's LSD multiple comparison test. 
c
WAT includes perirenal, intraperitoneal, epididymal, and subcutaneous fat. 

CD-DD, 10% kcal fat + 50 IU/kg of diet; CD-DC, 10% kcal fat + 1000 IU/kg of diet; CD-DS, 10% kcal fat + 10000 IU/kg of diet;  

HFD-DD, 45% kcal fat + 50 IU/kg of diet; HFD-DC, 45% kcal fat + 1000 IU/kg of diet; HFD-DS, 45% kcal fat + 10000 IU/kg of diet.

 CD HFD P-value 

 

DD 

(n=8) 

DC 

(n=8) 

DS 

(n=7) 

DD 

(n=8) 

DC 

(n=8) 

DS 

(n=8) 

Fat 

amount 

Vit D 

amount 
Interaction 

Body weight at week 0 (g) 21.0 ± 0.3 21.1 ± 0.5 20.6 ± 0.3 20.5 ± 0.3 20.31± 0.3 20.6 ± 0.3 0.16 0.93 0.46 

Body weight at week 12 (g) 30.3 ± 0.9b 31.0 ± 0.7 b 31.5 ± 0.6b 37.7 ± 1.1a 37.1 ± 2.0a 37.2 ± 1.9a < 0.001 0.95 0.79 

weight change (g) 9.3 ± 1.0b 9.9 ± 0.8b 11.0 ± 0.5b 17.2 ± 1.0a 16.8 ± 1.7a 16.6 ± 2.0a < 0.001 0.91 0.69 

Average dietary intake for 

12 week (g/d) 
2.94 ± 0.04ab 2.96 ± 0.05ab 3.11 ± 0.14a 2.85 ± 0.07b 2.61 ± 0.06c 2.63 ± 0.05c < 0.001 0.27 0.03 

Average energy intake for 

12 week (kcal/d) 
10.9 ± 0.2c 10.9 ± 0.2c 11.5 ± 0.5bc 13.2 ± 0.3a 12.1 ± 0.3b 12.2 ± 0.2b < 0.001 0.19 0.02 

WAT (g)
c
 2.37 ± 0.20 b 2.36 ± 0.31b 2.36 ± 0.34b 4.83 ± 0.71a 5.03 ± 0.59a 4.68 ± 0.47a < 0.001 0.94 0.93 
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2. Effects of vitamin D and obesity on NK cell activity 

There was an interaction between fat amount and vitamin D levels regarding 

NK cell activity at E:T ratios of 100:1 (P = 0.006) and 50:1 (P = 0.033). NK cell 

activity was significantly enhanced by vitamin D supplementation in the CD 

groups at E:T ratios of 100:1 (P = 0.006) and 50:1 (P = 0.042). However, these 

differences were not found in mice fed the HFD. The CD-DS group showed 

significantly higher NK cell activity compared with the HFD-DS group at E:T 

ratios of 100:1 (P < 0.001), 50:1 (P < 0.001), and 12.5:1 (P = 0.036), and tended 

to be higher at E:T ratios of 25:1 compared with the HFD-DS group (P = 0.053) 

(Figure 2).  
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Figure 2. Effects of vitamin D and obesity on NK cell activity 

Values are means ± SEM, n = 6 to 8 per group. Means with different letters indicate 

significant differences (P < 0.05) by Fisher's LSD multiple comparison test. 

CD-DD, 10% kcal fat + 50 IU/kg of diet; CD-DC, 10% kcal fat + 1000 IU/kg of diet;  

CD-DS, 10% kcal fat + 10000 IU/kg of diet; HFD-DD, 45% kcal fat + 50 IU/kg of diet; 

HFD-DC, 45% kcal fat + 1000 IU/kg of diet; HFD-DS, 45% kcal fat + 10000 IU/kg of diet. 
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3. Effects of vitamin D and obesity on the splenocyte 

subpopulations  

Percentages of total splenic NK cells (CD3
-
NK1.1

+
), immature NK cells (CD3

-

NK1.1
+
CD11b

-
), and mature NK cells (CD3

-
NK1.1

+
CD11b

+
) were significantly 

lower in the HFD groups compared with the CD groups (P = 0.017, P = 0.001 

and P = 0.001, respectively), whereas there was no statistical difference regarding 

vitamin D levels. Mice in the CD-DS group had significantly higher percentages 

of CD11b
-
 NK cells, CD11b

+
 NK cells, and total NK cells compared to mice in 

the HFD-DS group (P = 0.006, P = 0.001, P < 0.001, respectively) (Figure 3-A, 

C).  

The percentages of other immune cells including NKT cells, CD4
+
 T cells, 

CD8
+
 T cells, and B cells were significantly different among the groups (Figure 

3-A, B). There was an interaction between fat amount and vitamin D levels in the 

percentage of splenic NKT cells (P = 0.045) and the percentage of NKT cells in 

the spleen was significantly lower in the HFD groups compared with the CD 

groups. Furthermore, mice in the CD-DS group had a significantly higher 

percentage of NKT cells compared to mice in the HFD-DS group (P = 0.002). 

The percentages of CD4
+
 T (P = 0.042) and CD8

+
 T cells (P = 0.001) in the 

spleen were significantly lower in the HFD groups compared with the CD groups, 

while the percentage of B cells (P < 0.001) was significantly higher in HFD 
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groups compared with CD groups. There were no significant differences in 

percentages of splenic CD4
+
 T, CD8

+
 T, and B cells according to different vitamin 

D levels, and no significant difference in the percentage of splenic macrophages 

was observed regardless of different dietary treatments. 

Positive correlations were observed between the percentage of total splenic NK 

cells and NK cell activity at E:T ratios of 100:1 (r = 0.457, P = 0.002) and 50:1 (r 

= 0.417, P = 0.004). The percentages of splenic CD11b
+
 NK cells and NK cell 

activity at E:T ratios of 100:1 (r = 0.514, P < 0.001) and 50:1 (r = 0.496, P = 

0.001) showed significantly positive correlations. In addition, the percentage of 

splenic CD11b
-
 NK cells correlated positively with NK cell activity at E:T ratios 

of 100:1 (r = 0.300, P = 0.045) (Figure 4).  
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C 

 

 
 

Figure 3. The subpopulation of splenocytes of mice fed with 6 different diets: (A) 

splenic subpopulations of CD11b
-
/CD11b

+
 NK cells (CD3

-
NK1.1

+
CD11b

-
/CD3

-

NK1.1
+
CD11b

+
), total NK cells (sum of CD11b

-
 and CD11b

+
 NK cells), NKT cells 

(CD3
+
NK1.1

+
), and macrophage (F4/80

+
CD11b

+
) from C57BL6 mice fed with 6 different 

diets regarding fat amount and vitamin D content; (B) splenic subpopulations of CD4
+
 T cells 

(CD3
+
CD4

+
), CD8

+
 T cells (CD3

+
CD8

+
), and B cells(CD3

-
CD19

+
) from C57BL6 mice fed 

with 6 different diets according to fat amount and vitamin D content; (C) splenic 

subpopulations of CD11b
+
 NK cells and CD11b

-
 NK cells presented as dot plots of the 

FlowJo analyses. 

Values are means ± SEM, n = 6 to 8 per group. Means with different letters indicate 

significant differences (P < 0.05) by Fisher's LSD multiple comparison test. 

CD-DD, 10% kcal fat + 50 IU/kg of diet; CD-DC, 10% kcal fat + 1000 IU/kg of diet;  

CD-DS, 10% kcal fat + 10000 IU/kg of diet; HFD-DD, 45% kcal fat + 50 IU/kg of diet; 

HFD-DC, 45% kcal fat + 1000 IU/kg of diet; HFD-DS, 45% kcal fat + 10000 IU/kg of diet.  
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A 

  

B 

  

C 

 

 

 

Figure 4. Correlations between NK activities and spelnic NK cell populations 

Correlations between NK acitivities at E:T ratios of 100:1 and 50:1 and splenic percentage of 

total NK cells (A) and CD11b
+
 NK cells (B); corelation between NK activities at E:T ratio of 

100:1 and CD11b- NK cells (C).  

Pearson’s correlation coefficient (r) and P-value are indicated for each region. 

CD-DD, 10% kcal fat + 50 IU/kg of diet; CD-DC, 10% kcal fat + 1000 IU/kg of diet;  

CD-DS, 10% kcal fat + 10000 IU/kg of diet; HFD-DD, 45% kcal fat + 50 IU/kg of diet; 

HFD-DC, 45% kcal fat + 1000 IU/kg of diet; HFD-DS, 45% kcal fat + 10000 IU/kg of diet.   



 

40 

  

4. Effects of vitamin D and obesity on serum leptin levels 

Serum leptin concentrations were significantly higher in mice fed the HFD 

compared with those fed with control diets (P < 0.001). The level of vitamin D in 

the diet did not have a significant effect on leptin levels (Figure 5). Serum leptin 

level showed significant positive correlations with weight change (r = 0.887, P < 

0.001) and WAT weight (r = 0.939, P < 0.001) (data not shown). 
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Figure 5. Effects of vitamin D and obesity on serum leptin concentrations  

Values are means ± SEM, n = 6 per group. Means with different letters indicate significant 

differences (P < 0.05) by Fisher's LSD multiple comparison test. 

CD-DD, 10% kcal fat + 50 IU/kg of diet; CD-DC, 10% kcal fat + 1000 IU/kg of diet;  

CD-DS, 10% kcal fat + 10000 IU/kg of diet; HFD-DD, 45% kcal fat + 50 IU/kg of diet; 

HFD-DC, 45% kcal fat + 1000 IU/kg of diet; HFD-DS, 45% kcal fat + 10000 IU/kg of diet. 
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5. Effects of vitamin D and obesity on the surface expression of 

NKG2D and CD107a, and intracellular expression of IFN-γ by 

NK cells 

To investigate the effect of obesity and vitamin D on NK cell functions, the 

surface expression levels of NKG2D and CD107a (a degranulation marker), and 

the intracellular expression level of IFN-γ by NK cells were determined. Neither 

fat amount nor vitamin D levels had a significant impact on the intracellular 

expression of IFN-γ and the surface expression of NKG2D and CD107a in NK 

cells (Figure 6).  
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Figure 6. Effects of vitamin D and obesity on the intracellular expression of IFN-γ, 

and extracellular expression of NKG2D and CD107a by NK cells  

Values are means ± SEM, n = 6 to 8 per group.  

CD-DD, 10% kcal fat + 50IU/kg of diet; CD-DC, 10% kcal fat + 1000 IU/kg of diet;  

CD-DS, 10% kcal fat + 10000 IU/kg of diet; HFD-DD, 45% kcal fat + 50 IU/kg of diet; 

HFD-DC, 45% kcal fat + 1000 IU/kg of diet; HFD-DS, 45% kcal fat + 10000 IU/kg of diet. 
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6. Effects of vitamin D and obesity on the surface expression of 

NKG2D and CD107a, and intracellular expression of IFN-γ by 

T cells  

The intracellular expression of IFN-γ and extracellular expression of NKG2D 

and CD107a were determined to examine the effect of HFD-induced obesity and 

vitamin D on the cytolytic function of T cells. The surface expression of CD107a 

by CD8
+
 T cells was significantly lowered by vitamin D (P = 0.023). The surface 

expression of CD107a by CD8
+
 T cells was significantly higher in CD-DD group 

compared with CD-DS group. In addition, the surface expression of CD107a 

tended to be lower in HFD groups compared with CD groups (P = 0.057) (Figure 

7-A). However, the intracellular expression of IFN-γ by CD4
+
 T cells, CD8

+
 T 

cells, and NKT cells and the surface expression of NKG2D by CD4
+
 T cells, 

CD8
+
 T cells, and NKT cells were not significantly different among the groups 

(Figure 7-A, B).  
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A 

 
B 

 
 

Figure 7. Effects of vitamin D and obesity on the intracellular expression of IFN-γ, 

and extracellular expression of NKG2D and CD107a by T cells: (A) intracellular 

expression of IFN-γ by CD4
+
 T cells, CD8

+
 T cells, and NKT cells, and surface expression of 

CD107a by NKT cells and (B) surface expression of NKG2D by CD4 T
+
 cells, CD8

+
 T cells, 

and NKT cells. 

Values are means ± SEM, n = 4 to 6 per group. Means with different letters indicate 

significant differences (P < 0.05) by Fisher's LSD multiple comparison test.  

CD-DD, 10% kcal fat + 50 IU/kg of diet; CD-DC, 10% kcal fat + 1000 IU/kg of diet;  

CD-DS, 10% kcal fat + 10000 IU/kg of diet; HFD-DD, 45% kcal fat + 50 IU/kg of diet; 

HFD-DC, 45% kcal fat + 1000 IU/kg of diet; HFD-DS, 45% kcal fat + 10000 IU/kg of diet.   
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7. Effects of vitamin D and obesity on the expression of genes 

involved in NK cell functions  

In order to examine the effect of obesity and vitamin D on cytokines and 

chemokines involved with the functions of NK cells, expression of Ifng, Il12b, 

Il15, Il18, and Ccl5 genes were determined from PMA/Ionomycin-stimulated 

splenocytes. The HFD groups had lower mRNA levels of Ifng (P = 0.030) and 

Ccl5 (P = 0.017) compared with the CD groups, whereas there was no significant 

difference in terms of vitamin D levels. The CD-DS group had significantly 

higher mRNA expression of Ccl5 compared with the HFD-DS group. However, 

the mRNA levels of Il12b, Il15, and Il18 were not significantly different among 

the groups (Figure 8).   
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Figure 8. Effects of vitamin D and obesity on mRNA levels of NK cell-related 

markers (Ifng, Il12b, Il15, Il18, Ccl5)  

Values are means ± SEM, n = 5 to 8 per group. Means with different letters indicate 

significant differences (P < 0.05) by Fisher's LSD multiple comparison test.  

CDDD, 10% kcal fat + 50 IU/kg of diet; CDDC, 10% kcal fat + 1000 IU/kg of diet;  

CDDS, 10% kcal fat + 10000 IU/kg of diet; HFDDD, 45% kcal fat + 50 IU/kg of diet; 

HFDDC, 45% kcal fat + 1000 IU/kg of diet; HFDDS, 45% kcal fat + 10000 IU/kg of diet. 

  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 CD    HFD  CD    HFD  CD    HFD  CD    HFD  CD    HFD

R
e

la
ti
v
e
 m

R
N

A
 le

v
e

l 

Ifng           Il12b          Il15            Il18           Ccl5    

DD

DC

DS

ab 

a 
ab 

ab 

ab 
b 

a 

ab 
ab 

ab 

ab 

b 



 

48 

  

8. Effects of vitamin D and obesity on the expression of genes 

involved in vitamin D metabolism   

To determine whether the expression of vitamin D-related genes were affected 

by vitamin D and obesity, splenic mRNA levels of Vdr and Vdup1 were 

determined from splenocytes following stimulation with PMA/Ionomycin. Gene 

expression of Vdr and Vdup1 were not affected by obesity or vitamin D (Figure 

9).  
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Figure 9. Effects of vitamin D and obesity on mRNA level of vitamin D-related 

markers (Vdr, Vdup1)  

Values are means ± SEM, n = 5 to 8 per group.  

CD-DD, 10% kcal fat + 50 IU/kg of diet; CD-DC, 10% kcal fat + 1000 IU/kg of diet;  

CD-DS, 10% kcal fat + 10000 IU/kg of diet; HFD-DD, 45% kcal fat + 50 IU/kg of diet; 

HFD-DC, 45% kcal fat + 1000 IU/kg of diet; HFD-DS, 45% kcal fat + 10000 IU/kg of diet. 
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Ⅴ. Discussion 

This study demonstrates that vitamin D supplementation has differential effects 

on NK cell activity depending on the adiposity. Vitamin D supplementation 

enhanced splenic NK cell activity in the control mice but not in the HFD-induced 

obese mice. This enhancement of NK cell activity might have been caused by the 

increased percentages of the splenocyte subpopulations of total NK cells, CD11b
+
 

NK cells, and CD11b
-
 NK cells in control mice supplemented with vitamin D. 

The effects of vitamin D regarding NK cell function has been investigated by 

other researchers, but contradictory results have been reported. In some in vivo 

studies, NK cell cytotoxicity and IFN-γ secretion by NK cells derived from 

hematopoietic stem cells and peripheral blood mononuclear cells (PBMCs) were 

inhibited by 1,25-(OH)2D3 in a dose-dependent manner (Leung 1989; Weeres et 

al. 2014). On the other hand, 1,25-(OH)2D3 has been shown to increase the 

activity of NK cells derived from PBMCs, LAK cells, and NK YT cells (Ravid et 

al. 1993; Balogh et al. 1999; Al-Jaderi et al. 2013). Different types of NK cells 

such as primary NK cells and an NK cell-line were used in the studies, which 

might explain the conflicting reports among the studies. Only few studies have 

examined the in vivo effect of vitamin D on NK cell activity. NK cells undergo 

maturation in the developmental stage from immature (CD11b
-
) to mature 

(CD11b
+
) NK cells (Clinthorne et al. 2013), and the present study showed that the 
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splenic population of CD11b
-
 as well as CD11b

+
 NK cells was significantly 

higher in the CD-DS group compared with the HFD-DS group. This result 

suggests that alternation in percentage of the NK cell subpopulation possibly 

contributed to the increased NK cell activity with vitamin D supplementation in 

lean mice. While vitamin D enhanced NK cell activity in the control mice, there 

was no significant effect of vitamin D supplementation on NK cell activity in the 

HFD-induced obese mice, and in line with previous studies, it has been reported 

that serum leptin levels were significantly higher in the obese mice compared to 

the control mice (Nave et al. 2008; Park et al. 2013; Bahr et al. 2017). NK cells 

incubated with leptin for a short time (18 h) has been reported to show increased 

NK cell activity, but a relatively long incubation period of over 72 h resulted in 

impaired NK cell proliferation and cytotoxicity through down-regulation of the 

JAK-STAT signaling pathway (Wrann et al. 2012; Naylor et al. 2016). Chronic 

exposure to higher leptin levels in obese mice could have contributed to the 

decreased percentage of splenic NK cells as well as NK cell reactiveness to 

vitamin D supplementation, resulting in different responses to vitamin D 

supplementation between the CD and HFD groups.  

In this study, no significant differences were observed in the surface expression 

of NKG2D and CD107a, or the intracellular expression of IFN-γ by NK cells 

after vitamin D supplementation. Not many studies have been performed to 



 

52 

  

elucidate the relationship between vitamin D and the expression of IFN-γ, 

NKG2D, and CD107a by NK cells. Nevertheless, it has been proposed that the 

expression of IFN-γ by human NK cells is suppressed by 1,25-(OH)2D3 in a dose-

dependent manner (Leung 1989). The surface expression of NKp30, NKp46, and 

NKG2D by NK cells have been reported to be unaffected by supplementation 

with in vitro 1,25-(OH)2D3 (Weeres et al. 2014). In one clinical study, the 

expression of CD107a in NK cells from the PBMCs in women was 

downregulated by 1,25-(OH)2D3 when co-cultured with K562 cells (Merino et al. 

1989). However, these studies are different from the present study due to the in 

vitro treatment of vitamin D. 

Furthermore, the present study showed that the surface expression of CD107a 

by CD8
+
 T cells was significantly lowered by vitamin D. Since CD107a is a 

surface marker for the degranulation of cytotoxic T cells as well as NK cells 

(Alter et al. 2004), its decreased surface expression suggests impaired cytotoxic 

activity of CD8
+
 T cells against target cells. Alterations in adaptive immune 

responses by vitamin D treatment have been reported which is in line with 

findings from this study. It has been demonstrated that 1,25-(OH)2D3 suppresses 

granzyme A expression via suppression of the Th1 cytokine response (Vidyarani 

et al. 2009). In a VDR knockout mouse model, CD8
+
 cytotoxic T cells produced 

less granzyme B (Yuzefpolskiy et al. 2014), suggesting decrease in degranulation 
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and consequential release of the cytotoxic granules by CD8 T cells in the absence 

of vitamin D signal.  

IFN-γ is known to be produced by both NK and T cells (Balogh et al. 1999), 

and CCL-5, which is known to increase the cytolytic activity of NK cell, is 

produced by activated NK cells (Robertson 2002), T cells, and endothelium 

platelets (Muthian et al. 2006). The results from the present study showed that the 

mRNA levels of Ifng and Ccl5 in splenocytes were significantly lower in HFD-

induced obese mice. However, this result doesn’t represent the mRNA expression 

exclusively by NK cells since the population of NK cells was about 4.8% of the 

total splenocytes, and T cells (31.2%) and B cells (56.7%) comprise the major 

population. Rather, it can be explained that the difference in the mRNA 

expression level of Ifng with obesity was due to the impact of obesity on T cells. 

The sum of CD4
+
 and CD8

+
 T cell population in the spleen was 6.9 % lower in 

the HFD group than the CD group. Since both CD4
+
 T cells and CD8

+
 T cells 

express IFN-γ, lower splenic subpopulation of these cells in the HFD group could 

influence mRNA expression of Ifng in the obese mice resulting in lower Ifng 

expression. 

The expression levels of Ifng and Ccl5 in visceral adipose tissue have been 

reported to be higher in obese mice compared with control mice (Sell et al. 2012). 

However, the expression of IFN-γ in splenic NK cells did not show any 
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significant differences between obese and lean mice (Lee et al. 2016). In the 

initial obesity-induced inflammatory phase, chemokines such as Ccl5 recruits T 

and B lymphocytes to sites of inflammation, and following the local 

inflammatory responses, proinflammatory Th1 cytokines such as Ifng are 

produced for M1 macrophage recruitment (Kintscher et al. 2008; Rocha et al. 

2008; Winer et al. 2011). Therefore, the expression of Ifng and Ccl5 can be up-

regulated through this lymphocyte infiltration. The expression of Ifng and Ccl5 in 

the immune cells might be different from the expression of these in response to 

the inflammatory reactions within and immune cell infiltration into adipose tissue. 

There were no significant effects of vitamin D or fat amount on mRNA levels 

of Vdr and Vdup1. 1,25-(OH)2D3 acts on immune cells to exert its effect by 

binding to VDRs (Haussler et al. 2011). It was demonstrated that the expression 

of Vdrs was higher in the WAT from obese patients compared to control subjects 

following the supplementation of vitamin D (Clemente-Postigo et al. 2015; Lee et 

al. 2016), but few studies have focused on Vdr expression in the splenocytes after 

supplementation of vitamin D. It has been suggested that the expression of Vdrs is 

induced by 1,25-(OH)2D3 treatment of monocytes and macrophages (Mora et al. 

2008), but there have been conflicting reports concerning whether it has a direct 

effect on the Vdr expression by T and B cells (Veldman et al. 2000; Chen et al. 

2007; Mora et al. 2008). In regard to VDUP-1, reduced NK cell activity, number 
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of CD3-NK1.1
+
 cells, and IFN-γ expression of NK cells have been reported in 

VDUP-1 knock out mice (Lee et al. 2005), suggesting that vitamin D can affect 

NK cell functions. However, little is known and further investigation still needed 

into the effect of in vivo supplementation of VDUP-1 and NK cell functions.    

Taken together, vitamin D supplementation exhibited an increase in NK cell 

activity in control mice but there was no effect of vitamin D in obese mice. This 

enhancement in NK cell activity might be due to the higher splenic subpopulation 

of NK cells in control mice than obese mice when vitamin D was supplemented 

(Figure 10). Results from this study suggest that dietary vitamin D 

supplementation acts as a stimulator of NK cell functions contributing to the 

enhancement of innate immunity.  
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Figure 10. Differential effects of vitamin D supplementation on NK cell activity in control and obese mice
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VI. SUMMARY 

The present study investigated the effect of vitamin D and obesity on NK 

cell functions. After feeding mice for 12 weeks with diets differed in fat 

amount (10% or 45% kcal fat, CD or HFD) and vitamin D content (50, 1000, 

10000 IU/kg of diet, DD, DC, or DS), body weight, weight change, WAT 

weights, and serum leptin level were measured. In addition, NK cell activity, 

subpopulation of splenocytes, surface expression of NKG2D, CD107a, 

intracellular expression of IFN-γ by NK cells and T cells, and markers 

involved in NK cell function and vitamin D metabolism were analyzed. The 

results of the study were as follows. 

1) The HFD groups had significantly higher body weight, weight gain, and 

WAT weights compared with the CD groups. In addition, the HFD 

groups had significantly higher serum leptin level compared to the CD 

groups. 

2) NK cell activity was significantly higher in the CD-DS group than the 

HFD-DS group, and the CD-DS group showed significantly higher NK 

cell activity compared with the CD-DD and CD-DC groups, but no 

difference in NK cell activity was observed among the HFD groups fed 

different vitamin D levels.  

3) Splenic percentages of total NK cells, CD11b
-
 NK cells, and CD11b

+
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NK cells were significantly lower in HFD groups compared with the CD 

groups. Total NK cells and CD11b
+
 NK cells showed higher splenic NK 

cell percentages in the CD-DS group compared to the CD-DD group. 

Positive correlations were observed between splenic percentage of NK 

cells and NK cell activity.  

4) The percentage of NKT cells in the spleen was significantly higher in 

the CD-DS group than the HFD-DS group, and the CD-DS group 

showed significantly higher splenic percentages compared with the CD-

DD and CD-DC groups. The percentages of CD4
+
 T cells and CD8

+
 T 

cells in the spleen were significantly lower in the HFD groups compared 

with the CD groups, while the percentage of B cells was significantly 

higher in the HFD groups compared with the CD groups. No significant 

differences were shown in splenic percentages of CD4
+
 T cells, CD8

+
 T 

cells, and B cells according to different vitamin D levels.  

5) Intracellular expression of IFN-γ and surface expressions of NKG2D 

and CD107a in NK cells were not influenced by different fat amount 

and vitamin D levels. 

6) The surface expression of CD107a by CD8
+
 T cells was significantly 

lowered by vitamin D, and tended to have lower surface expression of 

CD107a in the HFD groups compared with CD groups.  
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7) The HFD groups had lower mRNA levels of Ifng and Ccl5 compared 

with the CD groups, whereas there was no significant difference in 

terms of vitamin D levels. However, mRNA levels of Il12b, Il15, and 

Il18 were not significantly different among groups. Gene expression of 

Vdr and Vdup1 were also not influenced by obesity or vitamin D.  

These results suggest that vitamin D supplementation increased NK cell 

activity in control mice but not in obese mice. This enhancement of NK cell 

activity might be mediated through alternation of the splenic NK cell 

population. 

  



 

60 

  

Ⅶ. References 

Al-Jaderi Z and Maghazachi AA. "Effects of vitamin D3, calcipotriol and 

FTY720 on the expression of surface molecules and cytolytic activities 

of human natural killer cells and dendritic cells." Toxins (Basel) 2013, 

5(11): 1932-1947. 

Alter G, Malenfant JM, and Altfeld M. "CD107a as a functional marker for 

the identification of natural killer cell activity." J Immunol Methods 

2004, 294(1-2): 15-22. 

Arase H, Arase N, and Saito T. "Fas-mediated Cytotoxicity by Freshly 

Isolated Natural Killer Cells." J Exp Med 1995, 181: 1235-1238. 

Bae S, Oh K, Kim H, Kim HR, Hwang YI, Lee DS, Kang JS, and Lee WJ. 

"The effect of alloferon on the enhancement of NK cell cytotoxicity 

against cancer via the up-regulation of perforin/granzyme B secretion." 

Immunobiol 2013, 218(8): 1026-1033. 

Bahr I, Goritz V, Doberstein H, Hiller GG, Rosenstock P, Jahn J, Portner O, 

Berreis T, Mueller T, Spielmann J, and Kielstein H. "Diet-induced 

Obesity Is Associated with an Impaired NK Cell Function and an 

Increased Colon Cancer Incidence." J Nutr Metab 2017, 2017: 4297025. 

Balogh G, B. ARd, Boland R, and Barja P. "Effect of 1,25(OH)2-Vitamin 

D3 on the Activation of Natural Killer Cells, Role of Protein Kinase C 

and Extracellular Calcium." Exp Mol Pathol 1999, 67: 63-74. 



 

61 

  

Biron CA, Nguyen KB, Pien GC, Cousens LP, and Salazar-Mather TP. 

"Natural killer cells in antiviral defense: Function and Regulation by 

Innate Cytokines." Annu Rev Immunol 1999, 17: 189-220. 

Carine Duffaut, Jean Galitzky, Max Lafontan, and Bouloumié A. 

"Unexpected trafficking of immune cells within the adipose tissue 

during the onset of obesity." Biochem Biophys Res Commun 2009, 

384(4): 482-485. 

Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, 

Goldman WH, Lynn RB, Zhang P-L, Sinha MK, and Considine RV. 

"Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible 

mechanism for leptin resistance." The Lancet 1996, 348(9021): 159-161. 

Chen S, Sims GP, Chen XX, Gu YY, and Lipsky PE. "Modulatory effects of 

1,25-dihydroxyvitamin D3 on Human B Cell Differentiation." J 

Immunol 2007, 179(3): 1634-1647. 

Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, and Walzer T. 

"Maturation of mouse NK cells is a 4-stage developmental program." 

Blood 2009, 113: 5488-5496. 

Clemente-Postigo M, Munoz-Garach A, Serrano M, Garrido-Sanchez L, 

Bernal-Lopez MR, Fernandez-Garcia D, Moreno-Santos I, Garriga N, 

Castellano-Castillo D, Camargo A, Fernandez-Real JM, Cardona F, 

Tinahones FJ, and Macias-Gonzalez M. "Serum 25-hydroxyvitamin D 



 

62 

  

and adipose tissue vitamin D receptor gene expression: relationship 

with obesity and type 2 diabetes." J Clin Endocrinol Metab 2015, 

100(4): E591-595. 

Clinthorne JF, Beli E, Duriancik DM, and Gardner EM. "NK cell maturation 

and function in C57BL/6 mice are altered by caloric restriction." J 

Immunol 2013, 190(2): 712-722. 

Diefenbach A, Jamieson AM, Liu SD, Shastri N, and Raulet DH. "Ligands 

for the murine NKG2D receptor: expression by tumor cells and 

activation of NK cells and macrophages." Nat Immunol 2000, 1(2). 

Ding C, Gao D, Wilding J, Trayhurn P, and Bing C. "Vitamin D signalling in 

adipose tissue." Br J Nutr 2012, 108(11): 1915-1923. 

Earthman CP, Beckman LM, Masodkar K, and Sibley SD. "The link 

between obesity and low circulating 25-hydroxyvitamin D 

concentrations: Considerations and implications." Int J Obes (Lond) 

2012, 36(3): 387-396. 

Effros RB, Walford RL, Weindruch R, and Mitcheltree C. "Influences of 

Dietary Restriction on Immunity to Influenza in Aged Mice." J Gerontol 

1991, 46(4): B142-147. 

Etten EV and Mathieu C. "Immunoregulation by 1,25-dihydroxyvitamin D3: 

Basic concepts." J Steroid Biochem Mol Biol 2005, 97: 93-101. 

Haussler MR, Jurutka PW, Mizwicki M, and Norman AW. "Vitamin D 



 

63 

  

receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): 

Genomic and non-genomic mechanisms." Best Pract Res Clin 

Endocrinol Metab 2011, 25(4): 543-559. 

Hayakawa Y, Huntington ND, Nutt SL, and Smyth MJ. "Functional subsets 

of mouse natural killer cells." Immunol Rev 2006a, 214: 47-55. 

Hayakawa Y and Smyth MJ. "CD27 Dissects Mature NK Cells into Two 

Subsets with Distinct Responsiveness and Migratory Capacity." J 

Immunol 2006b, 176(3): 1517-1524. 

Hubner L, Engeli S, Weann C, Goudeva L, Laue T, and Kielstein H. 

"Human NK cell subset functions are differentially affected by 

adipokines." PLoS One 2013, 8(9): e75703. 

Jahn J, Spielau M, Brandsch C, Stangl GI,Delank KS, Bähr I, Berreis T, 

Wrann CD, and Kielstein H. "Decreased NK cell function in obesity 

can be reactivated by fat mass reduction." Obesity 2015, 23: 2233-2241. 

Jeffery NM, Sanderson P, Newsholme EA, and Calder PC. "Effects of 

varying the type of saturated fatty acid in the rat diet upon serum lipid 

levels and spleen lymphocyte functions." Biochim Biophys Acta 1997, 

1345: 223-236. 

Kim S, Lizuka K, Kang HSP, Dokun A, Fench AR, Greco S, and Yokoyama 

WM. "In vivo developmental stages in murine natural killer cell 

maturation." Nat Immunol 2002, 3(6). 



 

64 

  

Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, 

Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Bluher 

M, Unger T, Wolf AM, Knippschild U, Hombach V, and Marx N. "T-

lymphocyte infiltration in visceral adipose tissue: a primary event in 

adipose tissue inflammation and the development of obesity-mediated 

insulin resistance." Arterioscler Thromb Vasc Biol 2008, 28(7): 1304-

1310. 

Konradsen S, Ag H, Lindberg F, Hexeberg S, and Jorde R. "Serum 1,25-

dihydroxy vitamin D is inversely associated with body mass index." Eur 

J Nutr 2008, 47(2): 87-91. 

Krebs P, Barnes JJ, Lampe K, Whitley K, Bahjat KS, Beutler B, Janssen E, 

and Hoebe K. "NK cell–mediated killing of target cells triggers robust 

antigen-specific T cell–mediated and humoral responses." Blood 2009, 

113. 

Krishnan EC, Trost L, Aarons S, and Jewell WR. "Study of function and 

maturation of monocytes in morbidly obese individuals." J Surg Res 

1982, 33: 87-97. 

Lamas O, Martinez JA, and Marti A. "Energy restriction resores the 

impaired immune response in overnight (cafeteria) rats." J Nutr 

Biochem 2004, 15: 418-425. 

Lanier LL. "Follow the Leader: NK Cell Receptors for Classical and 



 

65 

  

Nonclassical MHC Class I." Cell 1998, 92: 705-707. 

Laue T, Wrann CD, Hoffmann-Castendiek B, Pietsch D, Hubner L, and 

Kielstein H. "Altered NK cell function in obese healthy humans." BMC 

Obes 2015, 2: 1. 

Lee BC, Kim MS, Pae M, Yamamoto Y, Eberle D, Shimada T, Kamei N, 

Park HS, Sasorith S, Woo JR, You J, Mosher W, Brady HJ, Shoelson SE, 

and Lee J. "Adipose Natural Killer Cells Regulate Adipose Tissue 

Macrophages to Promote Insulin Resistance in Obesity." Cell Metab 

2016, 23(4): 685-698. 

Lee KN, Kang HS, Jeon JH, Kim EM, Yoon SR, Song H, Lyu CY, Piao ZH, 

Kim SU, Han YH, Song SS, Lee YH, Song KS, Kim YM, Yu DY, and 

Choi I. "VDUP1 is required for the development of natural killer cells." 

Immunity 2005, 22(2): 195-208. 

Lee RK, Spielman J, Zhao DY, Olsen KJ, and Podack ER. "Perforin, Fas 

ligand, and tumor necrosis factor are the major cytotoxic molecules 

used by lymphokine-activated killer cells." J Immunol 1996, 157: 1919-

1925. 

Leung KH. "Inhibition of Human Natural Killer Cell andLymphokine-

Activated Killer Cell Cytotoxicityand Differentiation by Vitamin D3." 

Scand J Immunol 1989, 30: 199-208. 

Li Q, Kobayashi M, and Kawada T. "DDVP markedly decreases the 



 

66 

  

expression of granzyme B and granzyme 3/K in human NK cells." 

Toxicology 2008, 243: 294-302. 

Lumeng CN. "Innate immune activation in obesity." Mol Aspects Med 2012, 

34(2013): 12-29. 

Lynch LA, O’Connell JM, Kwasnik AK, Cawood1 TJ, O’Farrelly C, and 

O’Shea DB. "Are Natural Killer Cells Protecting the Metabolically 

Healthy Obese Patient?" Obesity 2008, 17: 601-605. 

Mancuso P, Huffnagle GB, Olszewski MA, Phipps J, and Peters-Golden M. 

"Leptin Corrects Host Defense Defects after Acute Starvation in Murine 

Pneumococcal Pneumonia." Am J Respir Crit Care Med 2006, 173: 

212-218. 

Merino F, Alvarez-Mon M, Hera. ADL, Ales JE, Bonilla F, and Durantez A. 

"Regulation of natural killer cytotoxicity by 1,25-dihydroxyvitamin 

D3." Cell Immunol 1989, 118: 328-336. 

Mora JR, Iwata M, and von Andrian UH. "Vitamin effects on the immune 

system: vitamins A and D take centre stage." Nat Rev Immunol 2008, 

8(9): 685-698. 

Moretta A. "Natural killer cells and dendritic cells: rendezvous in abused 

tissues." Nat Rev 2002, 2. 

Moretta A, Bottino C, Mingari MC, Biassoni R, and Moretta L. "What is a 

natural killer cell?" Nat Immunol 2002, 3; 6-8. 



 

67 

  

Moretta A, Marcenaro E, Sivori S, Chiesa MD, Vitale M, and Moretta L. 

"Early liaisons between cells of the innate immune system in inflamed 

peripheral tissues." Trends Immunol 2005, 26(12). 

Moretta L, Ciccone E, Moretta A, Hoglund P, Ohlen C, and Karre K. 

"Allorecognition by NK cells, nonself or no self." Immunol Today 1992, 

13(8). 

Moulin CM, Marguti I, Peron JPS, Halpern A, and Rizzo LV. "Bariatric 

Surgery Reverses Natural Killer (NK) Cell Activity and NK-Related 

Cytokine Synthesis Impairment Induced by Morbid Obesity." Obesity 

Surgery 2011, 21(1): 112-118. 

Murphy K, Travers T, and Walport M. Janeway's immunobiology: New York: 

Garland Science, Taylor & Francis Group; 2012. 

Muthian G, Raikwar HP, Rajasingh J, and Bright JJ. "1,25 

Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-

12/IFNgamma axis leading to Th1 response in experimental allergic 

encephalomyelitis." J Neurosci Res 2006, 83(7): 1299-1309. 

Nave H, Mueller G, Siegmund B, Jacobs R, Stroh T, Schueler U, Hopfe M, 

Behrendt P, Buchenauer T, Pabst R, and Brabant G. "Resistance of 

Janus kinase-2 dependent leptin signaling in natural killer (NK) cells: A 

novel mechanism of NK cell dysfunction in diet-induced obesity." 

Endocrinology 2008, 149(7): 3370-3378. 



 

68 

  

Naylor C and Petri WA, Jr. "Leptin Regulation of Immune Responses." 

Trends Mol Med 2016, 22(2): 88-98. 

O'Shea D, Cawood TJ, O'Farrelly C, and Lynch L. "Natural killer cells in 

obesity: impaired function and increased susceptibility to the effects of 

cigarette smoke." PLoS One 2010, 5(1): e8660. 

Okada S, Li Q, Whitin JC, Clayberger C, and Krensky AM. "Intracellular 

Mediators of Granulysin-Induced Cell Death." J Immunol 2003, 171: 

2556-2562. 

Okamoto K, Kobayashi T, Kobata T, Hasunuma T, Kato T, Sumida T, and 

Nishioka K. "Fas-associtaed death domain protein is a Fas-mediated 

apoptosis modulator in synoviocytes." Rheumatology 2000, 39: 471-

480. 

Park S, Lim Y, Shin S, and Han SN. "Impact of Korean pine nut oil on 

weight gain and immune responses in high-fat diet-induced obese 

mice." Nutr Res Pract 2013, 7(5): 352-358. 

Quesada JM, Serrano I, Borrego F, Martin A, Peña J, and Solana R. 

"Calcitriol effect on natural killer cells from hemodialyzed and normal 

subjects." Calcified Tissue International 1995, 56(2): 113-117. 

Raulet DH and Guerra N. "Oncogenic stress sensed by the immune system: 

role of natural killer cell receptors." Nat rev 2009, 9. 

Ravid A, Koren R, Maron L, and Liberman UA. "1,25( OH),D, increases 



 

69 

  

cytoxicity and exocytosis in lyphokine-activated killer cells." Mol Cell 

Endocrinol 1993, 96: 133-139. 

Robbins SH, Bessou G, Cornillon A, Zucchini N, Rupp B, Ruzsics Z, 

Sacher T, Tomasello E, Vivier E, Koszinowski UH, and Dalod M. 

"Natural Killer Cells Promote Early CD8 T Cell Responses against 

Cytomegalovirus." PLoS Pathog 2007, 3(8): e123. 

Robertson MJ. "Role of chemokines in the biology of natural killer cells." J 

of Leukoc Biol 2002, 71. 

Rocha VZ, Folco EJ, Sukhova G, Shimizu L, Gotsman I, Vernon AH, and 

Libby P. "Interferon-, a Th1 Cytokine, Regulates Fat Inflammation : A 

Role for Adaptive Immunity in Obesity." Mol Med 2008, 103: 467-476. 

S. Caspar-Bauguila, B. Cousina, A. Galiniera, C. Segafredob, and M. 
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국문초록 

 

비타민 D의 보충이 자연살해세포의 기능에 

미치는 영향: 비만 여부에 따른 차별적 효과 
 

서울대학교 대학원 식품영양학과 

이가영 

 

비타민 D는 면역 조절 효과가 있으며 적응면역뿐만 아니라 내재면역

의 기능에도 관여한다는 것이 알려져 있다. 비타민 D는 적응면역의 작

용은 억제하며, 내재면역의 경우 단핵구가 대식세포로 분화하는 것을 촉

진하고, 수지상세포의 성숙과 분화는 억제하는 것으로 보고되었다. 그러

나 비타민 D가 자연살해세포의 기능에 미치는 영향에 관한 연구는 부족

한 실정이고, 선행된 연구의 대부분이 비타민 D가 자연살해세포의 기능

에 미치는 영향을 세포에 직접 비타민 D를 처리하여 효과를 살펴본 연

구이며 상반된 결과를 보여주고 있다. 따라서, 본 연구에서는 식이를 통

한 비타민 D의 보충에 따른 자연살해세포의 기능 변화를 살펴보고자 하

였고, 비만이 자연살해세포의 살해능력에 미치는 영향을 확인하고자 하

였다. 5주령의 C5BL/6 마우스를 지방의 함량 (10% 또는 45%의 총 지

방 함량; CD, HFD)과 비타민 D의 수준 (식이 kg당 50, 1000, 10000 
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IU; DD, DC, DS)에 따라 6 그룹으로 구분하여 12주 동안 식이를 공급

하였다. 자연살해세포의 살해능력, 사이토카인 분비, 활성 수용체의 발현, 

탈과립성을 측정하였다. 체중, 식이 섭취량, 백색지방량, 혈중 렙틴 농도, 

자연살해세포의 살해능력, 비장면역세포의 비율, 자연살해세포 및 T 세

포로부터 세포 내 IFN-γ의 발현 및 세포 표면 NKG2D와 CD107a의 

발현을 측정하였고, 비장면역세포에서 자연살해세포의 기능 및 비타민 

D의 대사와 관련된 지표를 확인하였다. 그 결과, 12주 후의 체중 및 체

중 변화, 백색지방 무게는 고지방 식이 섭취군에서 높았고, 혈중 렙틴 

농도도 고지방 섭취군에서 대조군 보다 더 높음을 확인하였다. 자연살해

세포의 살해능력은 대조군에서는 비타민 D의 보충군에서 높았으나 고지

방 섭취군에서는 비타민 D의 보충 효과가 관찰되지 않았다. 비장면역세

포의 비율을 분석한 결과, 성숙한 자연살해세포 (CD11b+)와 미성숙한 

자연살해세포 (CD11b-)의 비율이 고지방 섭취군에서 대조군에 비해 낮

았고, 대조군에서는 비타민 D 보충군이 비타민 D 결핍군보다 더 높은 

비율을 나타냈다. 비장면역세포에서 자연살해 T 세포의 비율은 대조군

에서는 비타민 D에 의해 비중이 증가되었으나, 고지방 섭취군에서는 유

의적인 차이가 없었다. PMA (50 ng/mL)/Ionomycin (0.5μM)으로 4시

간 동안 자극한 자연살해세포에서 발현된 세포 내 IFN-γ 및 세포표면 

NKG2D와 CD107a 수준은 비만이나 비타민 D의 섭취 수준에 의한 영

향이 없었으나, CD8+ T cell에서의 CD107a 발현은 비타민 D 보충군에

서 낮게 나타났다. 또한, 비장면역세포에서 발현되는 Ifng와 Ccl5의 수
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준은 대조군에 비해 고지방 섭취군에서 유의적으로 낮았으나, Vdr과 

Vdup1의 발현은 비타민 D나 비만에 의한 영향이 없었다. 결론적으로, 

본 연구에서는 비타민 D을 경구 보충하였을 때 대조군에서 자연살해세

포의 살해능력을 상승시켰으나 고지방 섭취군에서는 영향을 주지 못함을 

확인하였고, 이러한 대조군에서의 효과는 자연살해세포의 비율 변화가 

영향을 주었을 것으로 생각된다. 본 연구는 비타민 D가 자연살해세포를 

자극하는 요인으로 작용함으로써 선천면역 반응의 향상에 기여할 수 있

다는 것을 확인한 점에서 의의가 있다고 사료된다. 

 

주요어: 자연살해세포, 비타민 D, 비만, 인터페론 감마, CD107a  

학번: 2015-21706 
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