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Abstract

This thesis presents a wavelet-domain measure used in postfiltering applications.

Quality of HMM-based (hidden Markov model-based) parametric speech synthesis is

degraded due to the over-smoothing effect, where the trajectory of generated speech

parameters is smoothed out and lacks dynamics. The conventional method uses the

modulation spectrum (MS) to quantify the effect of over-smoothing by measuring

the spectral tilt in the MS. In order to enhance the performance, a modified version

of the MS called the scaled modulation spectrum (SMS), which essentially separates

the MS in different bands, is proposed and utilized in postfiltering. The performance

of two types of wavelets, the discrete wavelet transform (DWT) and the dual-tree

complex wavelet transform (DTCWT), are evaluated. We also extend the SMS into

a hidden Markov tree (HMT) model, which represents the interdependencies of the

coefficients. Experimental results show that the proposed method performs better.

Keywords: Postfiltering, Modulation spectrum (MS), Discrete wavelet transform

(DWT), Dual-tree complex wavelet transform (DTCWT), Hidden Markov tree

(HMT)
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Chapter 1

Introduction

Speech synthesis has gained popularity over the recent years due to the ever growing

demand for natural and convenient interaction between machines and users. Two

notable speech synthesis techniques, concatenative speech synthesis and parametric

speech synthesis, have been deployed for such purpose. Concatenative speech synthe-

sis, a technique where speech is synthesized by selecting instances of speech directly

from the database, has higher quality, but is seriously limited by the size of the data

and its intractability; the database has to be very large in order to generate high

quality speech, and an entirely new database has to be created in order to adapt to

various speaking styles and speaker voices [1]. On the other hand, parametric speech

synthesis generates speech parameters from an existing, compact model. Naturally,

parametric speech synthesis has gained popularity as sophisticated machine learning

techniques emerged, propelling research in novel techniques such as the HMM-based

and DNN-based methods [2], [3].

However, speech synthesized from conventional parametric speech synthesis tech-

niques, namely the HMM-based method, have unnatural qualities that is perceived
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to be artificial by listeners [4]. Although the quantity of the database has a direct

effect on the quality of synthesized speech, the primary cause of such degradation is

due to the oversmoothing effect, where speech parameter trajectories are smoothed

out [4]. Numerous methods have been proposed to alleviate the oversmoothing effect

such as employing the global variance or the dynamic features of speech parame-

ters [4], [5].

One measure in observing and analyzing the naturalness of speech is the modu-

lation spectrum (MS). The MS is an effective measure that has been used in various

applications such as speaker verification [6] and speech recognition [7]. Studies have

shown that the intelligibility of speech is mostly related to the lower modulation fre-

quencies whereas details of speaker dependent characteristics are within the higher

modulation frequencies [8], [9].

The degradation of MS in synthesized speech is shown to display a spectral tilt

where the modulation spectrum decreases at higher modulation frequency [10]. The

conventional postfiltering method mitigates this spectral tilt by directly enhancing

the MS through a postfilter which alters the MS of synthesized speech to resem-

ble that of natural speech [10]. Inspired from the MS-based postfiltering technique,

numerous other approaches have been proposed which attempt to enhance the mod-

ulation spectrum via various techniques such as using line spectral pairs as the

input [11] and utilizing DNN-based postfiltering techniques in the MS domain [12]

or similarly in the spectral domain [13]. However, there exist problems in directly

manipulating the MS, which yields clicking noises when using the MS to perform

postfiltering [10].

In this work, the modulation spectrum calculated in the wavelet domain called

the scaled modulation spectrum (SMS) is presented and evaluated in subsequent
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chapters. The SMS is further enhanced using the dual-tree complex wavelet trans-

form (DTCWT) which remedies the drawbacks inherent in discrete wavelet trans-

forms (DWTs). Moreover, an extension of the SMS to a hidden Markov model

(HMM) framework is proposed, where individual coefficients of the SMS is mod-

eled using nodes with two states that are connected to form a hidden Markov tree

(HMT) structure.

This work is organized as follows. The definition of modulation spectrum and

the conventional method is introduced in Chapter 2. In Chapter 3, postfiltering

using a simple DWT is described. Chapter 4 details a postfiltering method using

the DTCWT, a relatively recent advancement from DWTs. Chapter 5 describes the

extension of the studies in Chapter 4 to a HMT framework. Chapter 6 contains

the experimental results detailing the comparisons between the conventional and

proposed methods. Chapter 7 concludes this work with improvements and future

work.
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Chapter 2

Modulation Spectrum-based

Postfiltering

2.1 Modulation Spectrum

Studies of mammalian auditory systems have shown that they are highly sensitive

to modulation of signals due to the ability to perform a multiscale spectrotemporal

analysis of acoustic signals [14]. It also accounts for the psychoacoustic aspect of

speech such as masking effects. Low modulation frequency corresponds to intelligi-

bility whereas the higher modulation frequency contains speaker characteristics such

as the speaker’s gender [9].

2.2 Conventional Postfiltering

The MS of speech synthesized from parametric speech synthesis techniques exhibit a

spectral tilt due to the oversmoothing effect. This method attempts to remedy this
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spectral degradation by directly enhancing the MS of synthesized speech to resemble

the MS of natural speech. Conventional technique proposed by Takamichi et al. [10]

define the MS differently to that from traditional papers defined in acoustics. In [10],

speech synthesis applications are defined to be the log-spectral magnitude of the

parameter sequence

s(x) = [s(1)ᵀ, · · · , s(d)ᵀ, · · · , s(D)ᵀ]ᵀ, (2.1)

s(d) = [sd(0), · · · , sd(f), · · · , sd(Ds)]
ᵀ, (2.2)

sd(f) = log
(( T∑

t=1

yt(d) cosmt
)2

+
( T∑
t=1

yt(d) sinmt
)2)

(2.3)

where m = −πf/Ds and Ds is half of the discrete Fourier transform (DFT) length,

yt denotes the cepstral coefficient at index t, and d and f denote the order of the

cepstral coefficient and the modulation frequency, respectively. ᵀ denotes the vector

transpose. The phase of the DFT of the input signal is preserved and later retrieved

in the final synthesis stage.

MS-based postfiltering uses the mean and standard deviation trained from nat-

ural speech data to apply the following postfiltering algorithm

s′d(f) = (1− k)sd(f) + k
[σNd,f
σGd,f

(sd(f)− µGd,f ) + µNd,f

]
(2.4)

where µ and σ denote the mean and the standard deviation of the MS and su-

perscripts N and G denote values from natural speech and the generated speech.

The postfiltering coefficient k is a user-controlled parameter in which the degree of

postfiltering is applied with a value corresponding to 0 ≤ k ≤ 1.

This simple yet effective method greatly enhances the quality of synthesized

speech. However, a significant drawback of the MS-based postfiltering technique is

the audible clicks that is generated in the filtered sequence [10].
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Figure 2.1: Plots of MS of different cepstral orders. The solid line represents the MS

of real speech and the dotted line represents the MS of speech synthesized using

conventional HMM technique. The gray area represents the standard deviation.
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Chapter 3

Discrete Wavelet-based

Postfiltering

3.1 Discrete Wavelet Transform

The wavelet transform is an atomic decomposition of a one-dimensional signal by a

shifted and scaled versions of a prototype bandpass wavelet function ψ(t) and shifted

versions of a lowpass scaling function φ(t) [15], which is defined as

ψj,k(t) ≡ 2−j/2ψ(2−jt− k) (3.1)

φJ,k(t) ≡ 2−J/2φ(2−J t− k) (3.2)

where j denotes the scale factor or the level of decomposition and k denotes the

shift factor. Thus, a signal y(t) can be represented as

y(t) =
∑
k

ukφJ,k(t) +
J∑

j=−∞

∑
k

wj,kψj,k(t) (3.3)

where uk is the scaling coefficient and wj,k is the wavelet coefficient.
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ℎ0[𝑛𝑛] ↓ 2

ℎ1[𝑛𝑛] ↓ 2

ℎ0[𝑛𝑛] ↓ 2
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ℎ0[𝑛𝑛] ↓ 2

ℎ1[𝑛𝑛] ↓ 2

𝑥𝑥[𝑛𝑛]

Figure 3.1: Highpass analysis filterbank structure used in the experiment. h0 and h1

denote the lowpass and highpass filters, respectively.

While the type of wavelet filter used affects the frequency and temporal resolution

for each tile, the filterbank structure determines the tiling in the spectrotemporal

domain. Although DWT is flexible, there are severe issues with the DWT; because a

sequence is critically sampled, wavelet coefficients near singularities exhibit irregular

values. Moreover, filtering and downsampling through a series of nonideal filters

results in aliasing, and quantization inherent in digital systems yields artifacts in

the reconstructed signal [16]. These issues are addressed in the next chapter where

we replace DWT with a better performing counterpart.

3.2 Postfiltering in the Wavelet Domain

Since the MS-based postfiltering method utilizes the Fourier transform, temporal

information is not considered in the postfiltering process. Wavelet transforms are

more suitable for postfiltering applications because they are localized in both time

10
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Figure 3.2: Block diagram of postfiltering process using DWT. The dotted square

denote the process of calculating the MS.

and frequency. Since high modulation frequency exhibits higher degradation of the

modulation spectrum, a highpass analysis filterbank structure shown in Figure 3.1 is

used throughout this work. The filter coefficient used for the filterbank is from [17].

To exploit the wavelet transforms for postfiltering applications, we define a new

modulation spectrum measure called the scaled modulation spectrum (SMS). This

is defined as the MS calculated from the wavelet transform of the speech parameter

sd,j(f) = MS{wd,j(k)} (3.4)

where MS{·} denotes the calculation of MS defined in Equation (2.3). Essentially,

the SMS shown in Figure 3.3 is the MS calculated at different temporal and spectral

resolution which gives a desired property for postfiltering.

The equation for postfiltering is similar to Equation (2.4)

s′d(j, f) = (1− k)sd(j, f) + k
[σNd,j,f
σGd,j,f

(sd(j, f)− µGd,j,f ) + µNd,j,f

]
(3.5)

where the subscript j indicates the scale of the value. Figure 3.2 shows the overall

block diagram of postfiltering in the wavelet domain.
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synthesized speech. The gray area represents the variance.

12



Chapter 4

Postfiltering Using Dual-tree

Complex Wavelet Transforms

4.1 Dual-tree Complex Wavelet Transform

The DTCWT is a fairly recent enhancement to the standard DWT. The DTCWT

overcomes the issues of the DWT mentioned in the previous chapter with a 2N

redundancy [16]. The wavelet function and the scaling function are represented with

complex signals such that

ψc(t) = ψr(t) + jψi(t) (4.1)

φc(t) = φr(t) + jφi(t) (4.2)

where the subscript c, r, and i indicate the complex, real, and imaginary parts.

If these two functions form a Hilbert transform pair (90◦ out of phase) between

the real part and the imaginary part, then ψc(t) and φc(t) become analytic signals.

Projecting these two functions into the standard wavelet decomposition defined in

13
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Figure 4.1: Highpass analysis filterbank structure used in the experiment.

Equation (3.3) yields the complex wavelet coefficient

wc(j, k) = wr(j, k) + jwi(j, k). (4.3)

4.2 Postfiltering Using the DTCWT

SMS using DTCWT is derived using the magnitude of the complex wavelet coeffi-

cient, such that

sd,j(f) = MS{|wd,j(k)|} (4.4)

14
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Figure 4.2: Block diagram of postfiltering process using DTCWT. The dotted square

denotes the process of calculating the MS.

where wd,j(k) denotes the complex wavelet coefficient of the d-th order at scale j.

The phase information, ∠wd,j(k), is stored separately and later used in the synthesis

stage. Figure4.2 shows the block diagram of the process.
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Chapter 5

Postfiltering Using Hidden

Markov Tree Models

5.1 Statistical Signal Processing Using Hidden Markov

Trees

Wavelet coefficients of real-world signals exhibit certain interdependencies between

their coefficients that can be modeled using different modeling techniques. These

interdependencies, namely the clustering and persistence properties of wavelet co-

efficients, are salient characteristics which can be modeled using a HMM frame-

work [18]. The clustering property states that small or large values of wavelet co-

efficients are likely to propagate to adjacent coefficients [19], and the persistence

property states that small or large values of wavelet coefficients tend to propagate

across scales [20], [21]. Clustering property of wavelet coefficients can be modeled

using a Markov chain by sequentially linking the states at the same level, whereas

the persistence property can be simply modeled by extending the HMM framework

17



Figure 5.1: A trained HMT model.

into a HMT, where the scaling coefficient is represented with the root node and the

wavelet coefficients are represented using subsequent child nodes [18]. Models utiliz-

ing these properties have been developed and used in the field of image processing

for classification, restoration, and denoising with great success [22], [23].

5.2 Modeling SMS with HMT

By applying the previously mentioned concepts, a HMT model similar to the one

described in [23] that exploits the persistence property can be developed for the SMS.

This model, depicted in Figure 5.1, contains nodes with states that are classified

into “high’’ and “low’’ states (denoted as H and L for the 2-state model used in

the experiment). The state of child nodes are solely dependent on and are highly

likely to inherit the state of the parent node. This is evident in the result of the

18
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d = 15, j = 3, and f = 4.
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trained transition matrix being close to the identity matrix. The histogram of SMS

coefficients and the trained 2-state Gaussian model are shown in Figure 5, and the

resulting Gaussian model closely resembles the distribution of SMS coefficients of

natural speech.

Postfiltering in HMT is an extension of Equation (2.4) that accounts for the

different states of the HMT nodes

s′d(f) = (1− k)sd(f) + k
∑
q∈Q

αq∑
q∈Q αq

[σNq

d,f

σ
Gq

d,f

(sd(f)− µGq

d,f ) + µ
Nq

d,f

]
(5.1)

where q and Q denote the state and the number of states, respectively, and α denotes

the forward variable. Note that the scale j has been omitted for readability.

The forward algorithm from [24] is used to calculate the state likelihood at each

node

α1(q) = πqbq(s1) (5.2)

αj+1(p) =
[∑
q∈Q

αj(q)aqp

]
bp(sj+1) (5.3)

where π indicates the intial state probability distribution, b(s) indicates the obser-

vation probability distribution, and aqp denotes the state transition probability from

state q to state p. In the experimental setup, each frame of SMS is modeled with

four separate HMTs that are concatenated. The overall block diagram of the process

is depicted in Figure 5.3.

20



DTCWT DFT𝑦𝑦𝑡𝑡[𝑑𝑑]
𝑠𝑠𝑑𝑑,𝑗𝑗(𝑓𝑓)

∠

log | � | Postfiltering 𝑠𝑠𝑠𝑑𝑑,𝑗𝑗(𝑓𝑓)

∠

|𝑤𝑤𝑑𝑑,𝑗𝑗|
| � |

Trained 
HMT model

Figure 5.3: Block diagram of postfiltering process using HMT model. The dotted

square denote the process of calculating the MS.
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Chapter 6

Experimental Results

6.1 Experimental Setup

The frame length and frame shift throughout all of the experiments is set to 32

and 16, respectively. The length of DFT for calculating the MS is set to 64. The

length of DFT for calculating the SMS is set to the twice of length of the number of

wavelet coefficients in the corresponding scale. The postfiltering coefficient is set to

k = 1 throughout the experiments. The order of MGC is set to 35. The number of

scales for all wavelet transforms is set to J = 3. The filter coefficients are from [17]

and [25].

Speech samples are retrieved from the CMU ARCTIC US slt set. 593 sentences

are used in training. Subjective evaluation is performed on samples randomly se-

lected from 40 synthesized speech. The HMT model is trained using the Contourlet

Toolbox with a parameter of 0.0001 for the convergence value, 2 states, and 3 levels.

For the mean opinion score (MOS) test, 10 listeners were asked to score a sample

from a range of 1 to 5. 10 samples from each of the 5 different speech samples (HMM,
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HMM+MS, HMM+DWT, HMM+DTCWT, HMM+HMT) were tested.

6.2 Results

Figure 6.2 depicts the MS of natural and synthesized speech, as well as the results

from different postfiltering methods. The difference between the MS of natural and

synthesized speech as well as the MS of the postfiltered speech samples indicate

that higher MS, as achieved by the conventional method, does not necessarily mean

that the MS is closer to that of natural speech. Hence, subjective measurement

is used to evaluate the enhancement in quality. The results of MOS test indicate

that postfiltering in the wavelet domain improves the quality synthesized speech.

Moreover, although the mean score of HMT is lower than the conventional MS-

based method, the standard deviation is significantly higher, indicating that it is

inclined to the preference of the listener.
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Figure 6.1: Mean opinion score of the different samples.
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Figure 6.2: MS calculated from different methods. Order of 30. Results indicate that

higher modulation spectrum does not necessarily yield better quality.
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(a) Spectrogram of natural speech sample.

(b) Waveform of natural speech sample.
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(a) Spectrogram of synthesized speech sample.

(b) Waveform of synthesized speech sample.
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(a) Spectrogram of HMM+MS.

(b) Waveform of HMM+MS.
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(a) Spectrogram of HMM+DWT.

(b) Waveform of HMM+DWT.
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(a) Spectrogram of HMM+DTCWT.

(b) Waveform of HMM+DTCWT.
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(a) Spectrogram of HMM+HMT.

(b) Waveform of HMM+HMT.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this work, an improvement to the conventional MS-based postfiltering technique

by processing in the wavelet domain was proposed. Because there exists inherent

limitations for the conventional framework, namely the issue with spectral resolution

in higher frequencies, postfiltering in the wavelet domain has shown to perform

better. SMS proved to be a reliable representation of modulation, and is a small

step in the direction for further improvements.

Since the MS is not an absolute measure of the naturalness and quality of syn-

thesized speech, high values of MS does not necessarily mean that the postfiltering

is more successful. Results from the MOS test corroborate this observation, which

shows that listeners prefer postfiltering performed in the wavelet domain.
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7.2 Future Work

Further improvements can be made for the current HMT scheme. Namely, the clus-

tering property of wavelet coefficients can be accounted for by linking the nodes at

the same level across the trees to create a hidden Markov chain model. Incorporating

context dependency can also improve performance, since it yields additional models

for specific cases [10]. However, part of this step has to be performed in the synthesis

stage which is out of the scope of this study.

Additional transforms can be tested for better performance. The modulated com-

plex lapped transform can be used to calculate a similar form of SMS with a single

transformation stage. Additionally, DTCWT with other filterbank structures can be

explored.

Finally, employing neural networks to model the SMS coefficients can improve the

performance, since DNNs can inherently model both the persistence and clustering

properties of the SMS coefficients and other nonlinear properties.
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