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Abstract

Due to the excellent mechanical properties and high transparency from
near-UV to mid-IR (190<A<6000nm), MgAl.O4 has been used for optical
engineering applications, such as armored window systems, high energy laser
windows and lightweight armor.

In order to fabricate high quality transparent ceramics, high quality
starting powder is necessary.

So we focused on the combustion synthesis method which has recently
drawn the attention of researchers due to multiply advantages. But the
combustion synthesis method still have some disadvantages need to be
overcome. Based on the mechanism of spinel formation, we decided to
introduce some additive to improve this method. After calculation, the
promising of LiF additive was certified.

With different amount of LiF, combustion synthesis of MgAI,04 (MAS)
was investigated in relation to the synthesis conditions, powder properties,
thermodynamic aspects and sinterability. Using citric acid as a single fuel,
only hard-agglomeration MAS was obtained with high carbon contamination
and poor sinterability which cannot be used as transparent ceramic raw
materials. However, by introducing LiF, good property MAS powder can be
synthesized. This is because LiF can effectively reduce the formation energy
of MAS, remove the residue carbon, reduce agglomeration degree and
promote the crystal growth during the combustion reaction. Through 2-steps
calcination, the as-obtain high purity powders have been consolidated into
transparent ceramics (T=81.0%) by SPS at T=1200°C for 20min holding
under P=80MPa

Key word: MgAl.0O., Nanocrystals, Combustion synthesis, LiF, transparency
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Chapter 1. Introduction

1.1. Study Background

Recent years, with the increasing demand for high-performance materials,
ceramic materials re-appeared in the public view. Various kinds of ceramics
have been researched, such as transparent ceramic materials. Transparent
polycrystalline ceramics are a new development that has engendered
considerable interest for optical applications that only few materials can
satisfy.[4]

As one of the transparent polycrystalline ceramics, magnesium aluminum
spinel (MgAIl204) possesses high optical transmission in the ultraviolet,
visible, and infrared spectral ranges(Fig.1-1) and excellent mechanical
properties®), which has become well-known optical materials for both
industrial and military applications (e.g., high-pressure arc lamps, optical heat
exchangers, transparent armor, missile domes, etc.)Bl. (Fig.1-2)
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Fig. 1-2 Select applications and transparent spinel components, reproduced
with permission.F!



1.2. Synthesis of MgAIl.O4 Powders

To fabricate high quality transparent windows, utmost care should be taken
throughout the process from the synthesis of high quality starting powder.

Fig.1-3 shows the procedures of solution-based methods: sol-gel, co-
precipitation, hydrothermal, and combustion methods, respectively.™ We
focused on the combustion synthesis method which has recently drawn the
attention of researcher due to the multiple advantages such as mass
production, high purity and high homogeneity. (Table 1-1)

For combustion synthesis method, an exothermic and oxidative reaction will
occurs at low temperature leading to a sudden temperature of more than 1200°C
within a short time, resulting in a powder as final product.

Because of this short time of reaction, nanocrystalline powders are produced,
but it is combined with some disadvantages such as hard agglomeration,
excessive residual carbon content and low sinerability. So we improved this
synthesis method by introducing the additives-LiF.



(a)

Precursors Citric acid,
(e.g. metai _ Ethylene glycol Annealing
nitrate) Polyethylene glycol Annealing in air 800-1200°C

" " 500-1000°C In Ha/N,

Water 80°C, 10 hr
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N
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Fig. 1-3 Schematic diagram of solution based synthesismethods:
(a) sol-gel, (b) co-precipitation, (c) hydrothermal, and (d) combustion.
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1.3. LiF Additive
1.3.1. Sintering Additive

As a commonly used sintering additive, LiF melts at ~850°C, wets spinel, !
spreads over surfaces by capillarity,’® and likely aids densification by particle
rearrangement and liquid-phase sintering.®> 71 In addition to forming a
transient liquid phase, LiF leads to the formation of oxygen vacancies that
promote late-stage sintering in MgAl,04."! (Fig.1-4)

1.3.2. Synthesis additive
LiF also can be used as the synthesis additive.

In a study, Balabanov, S.S. et al. B synthesized MgAl,O4 nanopowders by
hydrolysis of magnesium aluminum double isopropoxide MgAl2(OPr')g
followed by the low-temperature calcination.(Fig.1-5) It has been determined
that lithium fluoride sintering aid significantly enhances the crystallinity of
spinel particles and facilitates obtaining of highly-faceted spinel grains. The
average particle size increases from 30 nm for undoped spinel to 700—1000
nm for LiF-doped MgAl,O4 particles calcined at the same temperature of 900°C
due to formation of transient liquid phase during calcination of doped
powders.

Huan Jiao et al.®! synthesized YAG: Ce phosphors by LiF assisted sol-gel
combustion method. YAG phase formed at 540°C and without the
intermediate phase appeared.(Fig.1-6) This was almost the lowest
temperature to synthesis YAG phase without appearance of any impurities. It
also reported that using of LiF can decrease the sintering temperature about
100-200°C.

Kostic et al.P’! studied the influence of fluorine ion (using AlFs or CaF2) on
the solid-state reaction synthesis of MgAIl»O4. According to the similar ionic
radii values between F ion and O% ion, F ion could be incorporated in the
anion sublattice, increases the cation vacancy concentration, which intensifies
the cation diffusion and completes spinel formation at a much lower
temperature.

In this connection, the use of LiF as a synthesis additive for obtaining high
quality MgAl,O4 nanopowder by combustion method is promising.

'7' -:l.-'i . - I.-



Fig. 1-4 Hot-pressed spinel/LiF/spinel sandwich structure and highly defected
grains revealed by etching.!

Fig. 1-5 SEM micrographs of MgAl.O4 (a) and MgAI.O4: LiF 3wt% powders
(b) calcined at 900°C for 2h



Fig. 1-6 SEM photograph of the as-prepared YAG: Ce powders calcined at 540
and 700°C with and without flux.

(a) Calcined at 540°C with flux; (b) Calcined at 700°C with flux;
(c) Calcined at 540°C without flux; (d) Calcined at 700°C without flux.

-9- s M2 gk



1.4. Objective of the Study

The objective of this dissertation is to improve the combustion synthesis
method, through

1. the reduction of powder agglomeration
2. the reduction of residual carbon content
3. the optimization of particle size

through the aid of LiF, so as to mass produce the high quality MgAIl2O4
powder, and fabricate the high transparency spinel in low sintering
temperature.

-10 - 1<



Chapter 2. Experimental Methods

2.1. Sample Preparation

Magnesium nitrate hexahydrate (Mg(NOz)2 - 6H.O -- sigma-aldrich),
Aluminum nitrate nonahydrate (AI(NOs)s - 9H20O -- sigma-aldrich), Citric
acid (CsHgO7 -- sigma-aldrich), Ammonium hydroxide solution (NHz H20 --
sigma-aldrich), Lithium Fluoride (LiF -- sigma-aldrich) were used as raw
materials for the preparation of MgAIl.Os powder. The experiment was
designed to produce 0.008mol MgAIl>O4. Based on Jain’s rule, stoichiometric
amount of magnesium nitrate, aluminum nitrate and fuel (citric acid) were
mixed in 50ml deionized water, in order to obtain CO2, H2O and N> as
reaction by-products. The pH of the solution was controlled to 7 by dropping
ammonia solution under magnetic stirring. After the addition of an
appropriate amount of LiF in the solution, the mixture was continue stirring
at 120°C. After evaporation, the resulting gel was taken as a precursor. The
precursors were calcined at 800/900/1000°C for 1h, respectively, under air
condition in order to obtain MgAI20s.

The washing treatment was carried out to the as-calcined powders by
Hydrochloric acid solution (HCI — Samchun). The washed powders were
filtered using vacuum filtration with distilled water and dried in a freeze dryer
for 20hr.

The powder which synthesized at 800°C was divided into two categories after
washing treatment, one without any treatment and the other one did the
calcination at 1000°C for 1h. And then did the sintering, respectively.

Sintering methods:

Air sintering: The powders were pressed by Cold Isostatic Pressing (CIP) at
200MPa and sintered at 1550°C for 2hr in air condition with heating rate of
10min/°C.

SPS sintering: The sintering was conducted in a SPS apparatus (SPS-1050,
Sumitomo). The powder was placed in a graphite die with a 10mm inner
diameter, in which the powder and the die were separated by carbon sheets.
Under vacuum (107 torr) conditions, the sintering schedule as shown below.
In order to optimize the sintering parameters, the sintering temperature was
varied from 1150°C — 1300°C.

-11 - 1
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Mix & stirring in deionized water

|

Mixture

LiF

Evaporation of Water at 120°C
y

Precursor

Calcination

'

Powder

Compaction (CIP)

'

Pellet

Sintering at 1550°C for 2h

v

Bulk
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2.2. Characterization Methods

Crystal structure of MgAl>O4 measurement was performed on Laboratory X-
ray powder diffraction (XRD) with mono-chromatized CuKa radiation
equipped with Vantec-1 linear detector. Data was collected between 10<and
80° (20) at room temperature with a 0.0164° step size. The calculation of
crystallite sizes were performed based on Scherrer’s method.

TGA-DSC analyses of precursor were carried out by Simultaneous DTA/TGA
analyser at a heating rate of 10°C/min under a continuous air flow (50ml/min),
in Pt crucibles.

The residual carbon content was measured by the Elemental (C, N, S)
Analyzer (Flash EA 1112).

The morphology and size of powder samples were collected using Field
Emission Scanning Electron Microscopy (FE-SEM) data collected on
MERLIN Compact. The powder samples were placed on a carbon tape.

High Resolution Transmission Electron Microscopy (HRTEM) data was
collected on a JEM-2100F type microscope. The powder samples were
dispersed in actone and mixed by ultra-sonication, and few drops of the
solution with the small crystallites in suspension was deposited onto carbon-
coated copper grid.

Optical transmission spectra were recorded using a Cary 5000 UV-Vis-NIR
spectrophotometer in the 0.35—-1.6pum wavelength range.

- 14 - 2]



Chapter 3. Results and Discussion

3.1. Powder Synthesis

3.1.1 Reaction Equation & Thermodynamic Aspects

For combustion synthesis method, an exothermic reaction will occurs at low
temperature that becomes self-sustaining within a short time, resulting in a
powder as final product.

Reaction equation as shown below:

Mg(N03)2 . 6H20 ‘I’ ZAI(N03)3 " gHzo ‘I’ Z'ZZZCGHSO'?
= MgAlL, 0, + 13.33C0, + 32.89H,0 + 4N, (1)

Thermochemical data are taken from references ' 12, These data are shown
in Table 3.1. In Table 3.1, “Cp” is a heat capacity, “AH2g8k” is an enthalpy
of formation at 298K.

Heat of reaction at 298K for the equation (2) is calculated as AHzosx=-2267
kJ/mol, and the adiabatic temperature (the maximum temperature reached
under adiabatic conditions, with no energy loss)™* is calculated from the
following equation.

o

Tq
AyH, gy = fz%d Y (nCp,)dT (2)

Tad=1023°C.

However, since the synthesis is not carried out in adiabatic environment, the
actually achievable temperature is lower than the calculated value.



Table 3.1 Thermochemical properties of materials related in combustion

synthesis of magnesium aluminate spinel

Substances Cp208 [1'-mol-K1]
Co, 51.13+4.37-T3-1.47-105-T2
H,0 34.38+7.84:T3-0.42-105-T2
N, 30.42+2.51-T3-0.24-10%-T~2
MgAl, O, 146.36+0.04-T-3.63-10°-T2

Mg(NO;),-6H,0 -
Al(NO,);-9H,0 -
CeHgO, -

AH,gg [k)-mol?]

-393.51
-241.83
0
-2299.90
-2613.30
-3589.01
-1548.80

-16 -



3.1.2. TGA-DSC

TGA-DSC analysis for the precursors was carried out in order to investigate
the combustion reaction. (Fig. 3-1) And the XRD patterns of the precursor
and the calcined powders at different temperatures are shown in Fig.3-2.

According to the XRD results, the precursor is a mixture of NHsNOs and the
amorphous matrix. NHsNOs forms from the reaction of nitrates (NO3") and
the ammonium cations (NH4").

At about 254°C, DSC graph (Fig.3-1) shows a small endothermic peak
accounted for 20wt% weight loss in TGA, which is resulted from the
dehydration of the precursor.

The first exothermic peak at about 317°C with a 13wt% weight loss is due to
the combustion of ammonium nitrate and citrates.

Since the decomposition temperature of the ammonium nitrate is less than the
combustion temperature of citric acid, ammonium nitrate is preferentially
decomposed. At the same time, the heat released by the decomposition
reaction will result in a partial combustion reaction.

Some of the possible reactions of ammonium nitrate decomposition are listed
below!4!

169°C
NH,NO; — N30 + 2H50 @3)
>230°C
ANH,NO3 ~—5 2N, + 2N,0 + 0, + 8H,0 )
300°C

The second exothermic peak at about 485°C is caused by the combustion of
the remaining fuel.[*® Further heating causes a small exothermic peak at 800°C
without weight loss, according to the XRD pattern, which can be assigned to
the crystallization of MgAl204 spinel.

TGA-DSC curves obtained from the precursor added with 1wt% LiF are
shown in Fig.3-3. According to the result of the XRD patterns from different
temperatures (Fig. 3-4), the spinel forms when the calcination temperature is
higher than 340°C. It can be infer that the spinel formation temperature is
reduced from 800°C to 290°C.



The first exothermic peak is higher and sharper than the control group, which
means that the combustion reaction is more intense after introducing LiF
additive.

Referring to the previous report, the primary carbonaceous material left in the
batch is a source of heat sink, which will slow down the reaction.®! However,
the F can react with the C and formed CF4 gas phase, remove the heat sink
(Equation 6 & 7, Table 3.2 & 3.3). The Elemental analysis was carried out in
order to detect the carbon contamination in the powders (Fig.3-5). Through
the result, we found that the carbon concentration was significantly reduced
by the aid of LiF additive.

2F, + C > CF, (6)
4HF + C + 0, - CF, + 2H,0 @)

The similar phenomenon was also reported by the other researchers, when the
LiF was used as the sintering additive.[*"]

But the introduction of the LiF will lead to the formation of impurities. By
comparing the XRD patterns before and after 659°C, it is found that the
exothermic reaction at 689°C corresponds to the formation of impurities

(Equation 8 & 9).
Li,0 + MgAl,0, - 2LiAlO, + MgO (8)
2LiF + MgAl,0, - 2LiAlO, + MgF, 9)
Due to no more weight loose after 800°C. So, we chose 800 900 1000°C as
the calcination temperature to synthesis MAS.



T T T T T T T T T T T
Weight 4
100 — —— Heat Flow |
\
\\ | a
80 o \ 4852(<
Lo D
S s
— 604
£ by &
% T
= B
40 -0
- -1
20
802°C - -2
0 T T

¥ ¥ T ¥ T y T y T
0 200 400 600 800 1000
Temperature (°C)
Fig. 3-1 TGA/DSC curves of MgAl,O4 spinel precursor (without LiF additive).

" MgAl204
®* MgO

|
4 NH4NOs3

G
3_ 800TC

S /L__/L/

>

D 600TC °
c P

[0)

o

E 340°C

Precursora

10 20 30 40 50 60 70 80
Degree(20)

Fig. 3-2 XRD patterns of the dried and calcined precursor at different

temperatures (without LiF additive).

-19- ; ,ﬂ 2 1_'.” 'ﬂ} U



1 1 1 1 1 1
-4
100 ~ o T 298°C
] \ 419C -
-3
80
] g &
S 2
=~ 60+
S Ly &
R o
(0] -
= w0 3
= _0 I
L -1
20 4
=
0 T

L 1 ) I > I . 1 L 1
0 200 400 600 800 1000
Temperature (°C)
Fig. 3-3 TGA/DSC curves of MgAI.O4 spinel precursor (with 1wt% LiF

additive).
= MgAl204
J - e LiAIO2
"t x * MgO:F
‘,',,..‘»-.fv'wm"’“ ,": "\ v Li2O
N, 4 NH4NO3
| it i Y VP OY I \ [}
N l ]
= : .
>
. 900°C
8 A Le o A ﬁJL' % ST RTRTR S
= fEod it L | K
7] AR b . : : : b
S |soc } oo /k i 1 i 1] L .
g A AL
600°C . : - . ! ! P
i ! /\1'__"/\ : ' . o L.___l_._: — L
482°C Tl i ; : ; ;
L " : et £ R
340°C : | E |
s—_;_/\ : ]
precursora Al :
JLE & A A A 9
T o T 1
40

50 60 70 80
Degree(20)
Fig. 3-4 XRD patterns of the dried and calcined precursor at different
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Fig. 3-5 Carbon concentration of the powders synthesized at different
temperature with different amounts of LiF(Element Analyzer)

Table 3.2 The change AG in Gibbs Free Energy of reaction 6

T(K) | AG=AH - TAS |
298 -888.5
300 -888.2
400 -873.1
500 -857.8
600 -842.5
700 -827.1
800 -811.8
900 -796.5

Table 3.3 The change AG in Gibbs Free Energy of reaction 7

T(K) | AG=AH - TaS
298 -247.2

300 2467

400 -219.6

500 1921

600 -164.4

700 -136.5

800 -108.6

900 -80.8
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3.2. Material characterization of as-obtained MgAIl,O4

3.2.1. Particle Morphology

Through the FE-SEM results (Fig.3-6), we can see that the introduction of
LiF significantly change the particle morphology.

Without the additive, the morphology of powder consists of hard
agglomeration of round shaped particles. The average particle size didn’t
changed a lot with the calcination temperature.

However, with the aid of LiF, the faceted spinel grain appeared due to the
liquid phase formation when the calcination temperature was higher than
900°C, taking into account that the melting point of LiF is about 845°C. And
also, it has been report that MgAl.O4 crystallites grown in the melt have
octahedral habit, which is an equilibrium form of spinel crystals.[*®! Through
the FE-SEM result, the octahedrons are mainly faceted by (111) planes.

Meanwhile, the quantity of the highly faceted grain increased with the
concentration of LiF.

Through the TEM result (Fig. 3-7), it can be seen that the introduction of
additive reduces the particle agglomeration degree.
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Fig. 3-7 TEM micrograph of MgAl,O. prepared at same temperature (800°C-
1h) with different amount of LiF (a) 0wt%; (b) 1.0wt%
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3.2.2. Different Additives

The experiment was repeated by the different additives LiCl & AlFs,
respectively, in order to find out how the LiF contribute to the combustion
synthesis method.

As the typical molten salt additive, the melting temperature of LiCl is ~600°C.
For the sample heated at 1000°C with the LiCl additive, as shown in Fig.3-8-
(c), the particles were combined by the soft agglomeration. Some highly-facet
grains occurs due to a liquid phase formation. In contrast, the particle size is
much smaller than the one synthesized by the LiF additive. The particles size
was in range of 55~110 nm with regular shape. It’s believed that LiCl can
reduce the particle agglomeration degree and doesn’t coarsen the particles.

However, for another additive AlFs, the carrier of F, has a melting point of
1040°C which is higher than the adiabatic temperature (Tag) and the
calcination temperature (1000°C). It’s difficult to form a liquid phase during
the synthesis process. The FE-SEM graph (Fig.3-8-(d)) shows that, the
introduction of AlFs could significantly increase the particle size. But the
particles still combined with the hard agglomeration.

Therefore, it can be infer that LiF as molten salt can reduce the agglomeration
degree, and the F ion can coarsen the particle size.
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(a) without additive; (b) 1wt% LiF ; (c) 1wt% LiCl; (d) 1wt% AlF3
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3.2.3. Impurity

The XRD pattern at the high calcination temperature indicate that the
introduction of LiF also leads to the formation of secondary phases.

And these impurities can be removed through the washing treatment by HCI.

The reactions between impurities and HCI are shown below:

LiAlO, + 4HCL - LiCl + AICls + 2H,0 (10)
MgO + 2HCl - MgCl, + H,0 (11)
MgF, + 2HCl > MgCl, + 2HF (12)

Combine the result of XRD pattern (Fig.3-9) and FE-SEM graph (Fig.3-10).
It can be inferred that the impurity exist in the surface of high crystallinity
particles. Without any post-treatment, these impurities will react with each
other at 1300°C formed MAS and other gas phase (Equation 13 & 14). "]

1300

MgO + 2LiAl0, — MgAl,0, + Li,0(g) (13)
1300

MgF, + 2LiAl0, — MgAl,0, + 2LiF(g) (14)

The gas phase generated during the sintering process results in the formation
of the porous structure as shown in Fig.3-10. These pores can be treated as
scattering sources that reduce the transparency of the ceramic. Which means
the washing process is necessary
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Fig. 3-9 XRD pattern of MgAl,O. powder prepared by combustion synthesis
at 800°C (A) before and (B) after washing treatment, and by post-calcination

at 1300°C with 1wt% LiF additive
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Fig. 3-10 FE-SEM micrograph of MgAl,O. prepared by combustion synthesis
method with 1wt% LiF additive at 800°C-1h (A) before and (B) after washing
treatment. And the surface morphology of sintered samples (1550°C-2h).

% N )8



3.2.4. 2-steps calcination

However, the size of impurities increased with the calcination temperature.
After washing treatment, several holes appear on the surface of the particles,
resulting in the irregular shapes of particles. (Fig.3-11 &Fig.3-12) This
irregularity may lead to the low sinterability of particles.

In order to improve the sinterability, surface regularity is required. So, in this
process, 2-steps calcination was carried out at low temperature and relatively
high temperature. In the low temperature of 800°C, the particles are prevented
from coarsening and the impurities are readily removed by washing treatment.
Hence, the particles can retain relatively small average size and low residue
carbon concentration after calcined at high temperature of 1000°C. (Fig.3-13)

Fig.3-14 illustrates the influence of different amounts of LiF on the
morphology of 2-steps calcined MgAl>O4 powders. Introduction of 0.5wt%
LiF, led to a high purity of powder (Fig.3-14-(a)) with small particle size and
narrow particle size distribution. However as the LiF concentration increased
to 1wt%, the powders (Fig.3-14-(b)) possess polydisperse particle size
distribution having two fractions with particle size of 600-1100nm and
~160nm.

Denoted the powder synthesized by 2-steps calcination with 0.5wt% LiF as
‘MgAI-2steps-0.5wt%’, and the powder synthesized with 1.0wt% LiF as
‘MgAl-2steps-1.0wt%’.

The binary mixture of nonspherical particles of different sizes is beneficial
for achieving a high packing density during compaction.[ I
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1000-1h-1wt%-washed [ /

Fig. 3-11 FE-SEM micrograph of MgAl.O, prepared by combustion synthesis
method at 1000°Cwith 1wt% LiF additive after washing treatment
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Calcme . washmg
1000°c .

Fig. 3-12 Schematic diagram of the washing treatment and the TEM
micrograph of the MgAl.O, particle prepared by combustion synthesis method
after washing treatment

Calcine ... washing .. Calcine .‘

@
800°C . HCl . 1000°C .

Fig. 3-13 Schematic diagram of the 2-steps calcination and the TEM
micrograph of the MgAI,O,; particle synthesized by 2-steps calcination
combustion method after washing treatment
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Fig. 3-14 FE-SEM micrograph of MgAl,O, prepared by 2-steps calcination
combustion synthesis method with (a) 0.5wt% LiF & (b) 1.0wt% LiF additive.
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Fig. 3-15 XRD pattern of MgAI204 powder prepared by 2-steps calcination
combustion synthesis method with different amounts of LiF additive
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3.3. Sintering
3.3.1. Air Sintering

The relative density of sintered samples for different calcination temperature
and LiF concentration could be seen from Table 3.4 and Fig.3-16. Samples
sintered by 2-step calcined powders exhibited higher relative densities, 94.2%
and 93.8%, respectively, than samples sintered by 1-step calcined powders.
The results indicate that the two-step calcination method can improve the
powder sinterability.

It has been reported that transparent spinel is difficult to fabricate directly
from high purity precursor powders by using the conventional pressureless
sintering techniques.’?*-2% In order to obtain a transparent spinel, SPS method
was used.
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Table 3.4 Relative density of bulk samples sintered at 1550°C for 2h.

Calcin. Temp. (°C)

Relative density(%)

LiF content(wt%)

1 0wt% 73.8
2 800-1h 0.5wt% 82.1
3 1.0wt% 762
4 0wt% 64.8
5 1000-1h 0.5Wt% 92.5
6 1.0Wt% 87.2
7 0wt% 734
8 Soo'll()%'o“ff;hed 0.5wt% 94.2
9 LOWt% 93.8
100
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Fig. 3-16 Relative density of bulk samples sintered at 1550°C for 2h.
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3.3.2. SPS

Fig.3-17 shows the appearance of the samples SPSed under various sintering
temperature. The transparency apparently depends on the sintering
temperature.

The powder, MgAIl-2steps-0.5wt%, show the best performance in
transparency when the sintering temperature is 1200°C. However, for the
powder MgAl-2steps-1.0wt%o, the best performance sintering temperature is
1300°C.

The total forward transmission spectrum of the best performance samples for
each powders are shown in Fig.3-18. The total-forward transmission of
0.3mm thick MgAl-2steps-0.5wt% and 1.1mm thick MgAl-2steps-1.0wt%
transparent ceramics reaches 81% and 75% at the wavelength of 1600nm,
respectively.

Further studies are needed to analyze the micromorphology of sintered
samples and the optimum sintering condition.
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Fig. 3-17 The appearance of the specimens fabricated by SPS with the powder
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Chapter 4. Conclusions

In conclusion, combustion synthesis method was improved by the LiF
additive and the 2-steps calcination. It has been determined that LiF sintering
aid significantly lower the spinel formation temperature from 800°C to 290°C.
As the result, the synthesized powder

1.
2.
3.
4.

have the low carbon contamination of about 0.09wt%.
have the low agglomeration degree
have the good sinterability.

have the low sintering temperature of about 1200°C.

Transparent MgAI-2steps-0.5wt% ceramic possessing total-forward
transmission of 81% at A=1600nm was obtained by SPS sintering at 1200°C
for 20min holding.
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