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Abstract

Robust Visual Odometry via Rigid Motion Segmentation

for Dynamic Environments

Sangil Lee

Department of Mechanical & Aerospace Engineering

The Graduate School

Seoul National University

In the paper, we propose a robust visual odometry algorithm for dynamic environments via rigid

motion segmentation using a grid-based optical flow. The algorithm first divides image frame by a

fixed-size grid, then calculates the three-dimensional motion of grids for light computational load

and uniformly distributed optical flow vectors. Next, it selects several adjacent points among grid-

based optical flow vectors based on a so-called entropy and generates motion hypotheses formed

by three-dimensional rigid transformation. These processes for a spatial motion segmentation

utilizes the principle of randomized hypothesis generation and the existing clustering algorithm,

thus separating objects that move independently of each other. Moreover, we use a dual-mode

simple Gaussian model in order to differentiate static and dynamic parts persistently. The model

measures the output of the spatial motion segmentation algorithm and updates a probability vec-

tor consisting of the likelihood of representing specific label. For the evaluation of the proposed

algorithm, we use a self-made dataset captured by ASUS Xtion Pro live RGB-D camera and

Vicon motion capture system. We compare our algorithm with the existing motion segmentation

algorithm and the current state-of-the-art visual odometry algorithm respectively, and the pro-

posed algorithm estimates the ego-motion robustly and accurately in dynamic environments while

showing the competitive performance of the motion segmentation.

Keyword : Visual odometry, Dynamic environments, Motion segmentation, Grid-based optical

flow, RGB-D camera.
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1
Introduction

Visual odometry is an essential computer vision technology to recognize the ego-motion of the

camera itself using video input [1,2]. Various visual odometry algorithms have been successful in

well-defined datasets such as TUM [3] and KITTI [4], and well-conditioned environments. Most of

existing visual odometry methods assume stationary environments so that it could estimate the

position of the camera through the motion of the image taken. However, most real environments

involve dynamic situations including moving objects such as residential road or crowded hallway

as shown in Fig. 1.1. Although some of existing visual odometry methods can exclude a distinct

motion or pixels by calculating ego-motion with RANSAC, they are restricted only to the non-

stationary object that occupies small areas in the image. Therefore, in order to implement a robust

visual odometry algorithm, it is required to separate non-stationary objects from the stationary

background.

To distinguish between the static and dynamic elements, we use temporary motions distributed

uniformly in the image since these motions could also be used to estimate the position of the

camera. For calculating the motion of pixels, we utilize optical flow methods because optical

flow calculates the temporary motion even when it is difficult to extract particular pixels by

the feature-based method. There are roughly two types of optical flow: sparse and dense. Both

methods show the remarkable difference in computational time and performance. A dense three-

1



Figure 1.1: Examples of dynamic environments: TUM fr3/walking xyz, KITTI 2011 10 03/47, and service

robot in the hallway (clockwise).

dimensional optical flow, also known as dense scene flow [5, 6], has heavy computational load

for high performance, whereas a sparse flow has a drawback similar to feature-based method

as mentioned before. In order to implement a computationally-light application with a proper

performance, therefore, we use grid-based optical flow taking advantage of both methods. After

applying optical flow, motion segmentation is performed to distinguish between dynamic objects

and stationary background with grid-based temporary motions and then motion estimation of the

camera is executed using static elements.

In this paper, our approach focuses on the robustness of the performance for the fast visual

odometry techniques. Fig. 1.2 shows the pipeline of our algorithm. The algorithm executes stages

step by step as it satisfies heuristic criteria. Our proposed algorithm only uses three-dimensional

motions of grid-based pixel points to separate dynamic objects from the stationary background

without any restriction on the movement of objects and enables to estimate the ego-motion while

classifying the moving object in the video sequence data.

1.1 Literature review

Most existing visual odometry algorithms [7–10] deal with the ego-motion in stationary environ-

ments. However, a number of non-stationary objects exist in a real environment such as crowded

corridor or pavement. To deal with such dynamic environments, a few recent research attempt to
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Figure 1.2: The pipeline of the proposed algorithm. It fetches RGB-D images, calculates grid-based optical

flow vectors, segments motions, and estimates ego-motion sequentially. When it fails at some stage, it jumps

to the next iteration by ignoring the current RGB-D image which caused failure.

improve robustness against moving objects.

Kitt et al. [11] utilizes support vector machine for distinguishing between stable features and

unstable features which cause position estimate error. However, it has to learn features in advance,

thus it is difficult to show reliable performance in an arbitrary situation.

To distinguish the stationary background from dynamic environments, some research uses

the property that an independent object shows a different motion which is distinct from the

movement of the stationary background. One of these studies applies existing structure from

motion technique to separation of distinct motions [12,13]. By doing so, the algorithm distinguishes

between ego-motion and so-called eoru-motion. In their paper, eoru is coined to describe the

movement of a dynamic object. Their algorithm generates over 100 hypotheses within a specified

number of frames to estimate ego-motion or eoru-motion. Although it separates independent

motion trajectories without prior information about the number of objects, its computational

time takes too long for real-time applications and longer when it generates more hypotheses for

accuracy.
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Background model-based RGB-D dense visual odometry (BaMVO) [14] estimates background

by choosing pixels whose depth does not change significantly during a specified number of frames.

In their experiment, a dynamic object like pedestrian moves in parallel with the camera direction

so that its depth value changes drastically. Its performance can become degenerated if the dynamic

object moves perpendicular to the camera direction reducing the depth transition.

Dib et al. [15] uses RANSAC for direct visual odometry while considering the dynamic envi-

ronment. In their research, hypothesis generation and evaluation functions are the same as näıve

direct visual odometry. However, the algorithm they proposed uses the photometric optimization

using six patches, not all of the image. If any one of six image patches belongs to the dynamic

object, its photometric error could not be smaller than the heuristic threshold. However, if all

of these patches belong to the stationary background, then all patches become inliers, i.e. back-

ground. By repeating this process, their algorithm subtracts a moving object from the stationary

background. In a similar study, Jung et al. [16] rejects a dynamic object by choosing a patch

which has quite different motion with majority movement of the camera. The algorithm classifies

image patches by categorizing according to depth value in advance. Then it rejects a class which

has a disparate motion by comparing standard deviation of whole motion vectors including or

excluding that class. Both methods still assume that the stationary background occupies a large

part of the image so that it builds majority movement.

Among the motion segmentation methods, randomized voting (RV) [17] is one of the algorithms

that could be extended to the visual odometry. Their algorithm utilizes epi-polar constraints to

extract a motion using randomized voting algorithm they proposed. Although they claim that

their algorithm is much faster and more efficient than the other state-of-the-art algorithms such

as the principal angles configuration (PAC) [18] and sparse subspace clustering (SSC) [19], it also

does not fulfil a real-time visual odometry application because of the computational time of 300

milliseconds per frame for executing motion segmentation only.

MCD5.8ms [20] has an advantage in that it detects a moving object with a low computational

load while showing the execution time per frame of 5.8ms. It first divides an image by a fixed-size

grid which has mean, variance, and age as model parameters. These parameters of each grid are

compensated and updated using feature-based homography and pixel’s intensities, respectively.

Since it uses a traditional visual odometry technique for calculating homography, its performance

4



can degenerate severely when a moving object occupies more than half of image. Besides, it

chooses pixels whose intensity value differs from a mean of the grid model, thus it is difficult to

distinguish objects in the situation where the color of a dynamic object is similar to one of a static

background.

1.2 Thesis contribution

Our main contributions can be summarized as follows:

1. We propose a visual odometry algorithm which is robust in dynamic environments. It es-

timates the motion of stationary scene (equal to background) and non-stationary objects

separately using the designed motion segmentation algorithm, thus it calculates position

and orientation of the camera itself versus the stationary background.

2. We design a rigid motion segmentation algorithm, which distinguishes between the back-

ground or moving objects. It calculates x, y-flows from RGB images and z-flows from depth

images via optical flow. Then, it generates a specified number of motion hypotheses, and

clusters them so that the algorithm separates distinct motions.

3. Our method separates independent rigid motions with no prior information such as shapes

or the number of objects using three-dimensional optical flow, thus dynamic objects can be

extracted robustly.

1.3 Thesis outline

The rest of this paper is organized as follows: In Chapter 2, we describe the basic calculation of rigid

transformation for estimating the relationship between two views of the camera, and a grid-based

optical flow algorithm for the RGB-D camera. Next, the motion spatial segmentation and motion

temporal segmentation algorithms are explained in Chapter 3 and Chapter 4, respectively. Chapter

5 provides off-line experimental results and comparisons with state-of-the-art motion segmentation

and visual odometry algorithms, and then discussions follow. Chapter 6 summarizes the issues of

our topic covered in the paper.
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2
Background Knowledge

In this section, we first provide the basic notations for visual odometry algorithms and explain

how to calculate rigid transformation for describing the translational and rotational relationship

between two different views. Then, the process of optical flow based on the Lucas-Kanade method

[21] follows in the next section.

2.1 Rigid transformation

The proposed algorithm is based upon the property that the three-dimensional velocities of the

three-dimensional points which belong to the same rigid object spatially have the same rigid

motion, H, temporally.

Definition 1 Let Xj and Xk denote the corresponding m-points set of the j-th and k-th images,

respectively, where Xl =
[
x

(l)
1 ,x

(l)
2 , . . . ,x

(l)
m

]
∈ R3×m is a three-dimensional point set, and x

(l)
∗ =

[x, y, z]T ∈ R3×1 is a three-dimensional point in the l-th frame represented by the Cartesian

coordinates. Then, the rigid rotation and translation matrix from the j-th coordinates to the k-th

coordinates are defined as follows:

R = M(MTM)−1/2 (2.1)

t = −RPj + Pk, (2.2)

6



(𝐑, 𝐭)

Figure 2.1: The Euclidean transformation in the three-dimensional space. It preserves distances between

every pair of points allowing only rotation and translation.

where

Pj =
1

m

m∑
i=1

x
(j)
i and Pk =

1

m

m∑
i=1

x
(k)
i

M = (Xk −Pk) (Xj −Pj)
T .

Consequently, the rigid transformation matrix is defined as follows:

H =

 R t

0T 1

 ∈ R4×4 (2.3)

which satisfies

H ·

Xj

1T

 =

Xk

1T

 , (2.4)

where 0 = [0, . . . , 0]T ∈ Rm×1 and 1 = [1, . . . , 1]T ∈ Rm×1.

Proof 1 The above problem is equivalent to finding the optimal R ∈ R3×3 and t ∈ R3 that

minimize the following:

f(R, t) =
m∑
i=1

∥∥∥Rx
(j)
i + t− x

(k)
i

∥∥∥2
(2.5)

subject to

RTR = I, (2.6)

where ‖·‖ represents the 2-norm. For simplicity, as mentioned previously, we denote
[
x

(j)
1 ,x

(j)
2 , . . . ,x

(j)
m

]
as Xj, and

[
x

(k)
1 ,x

(k)
2 , . . . ,x

(k)
m

]
as Xk. With a Lagrange multiplier symmetric matrix Λ ∈ R3×3

and 1 := [1, . . . , 1]T ∈ Rm×1, augmented cost J is

J = trace
(
(RXj + t · 1T −Xk)T (RXj + t · 1T −Xk) + Λ(RTR− I)

)
. (2.7)

7



Then, necessary conditions for optimality are

∂J

∂R
= 2XjX

T
j RT + 2Xj · 1 · tT − 2XjX

T
k + 2ΛRT = 0 (2.8)

∂J

∂t
= 2 · 1TXT

j RT + 2 · 1T1 · tT − 2 · 1T ·XT
k = 0 (2.9)

∂J

∂Λ
= RTR− I = 0. (2.10)

Note that

Xj · 1 = mPj and Xk · 1 = mPk, (2.11)

where

Pj =
1

m

m∑
i=1

x
(j)
i and Pk =

1

m

m∑
i=1

x
(k)
i . (2.12)

By substitution Eq. (2.9) into Eq. (2.8) eliminating t , we obtain

XjX
T
j RT + Xj · 1 ·

(
1TXT

k − 1TXT
j RT

) 1

m
−XjX

T
k + ΛRT = 0. (2.13)

Then, we can solve the rotation matrix by

R =

(
XkX

T
j −Xk ·

1 · 1T

m
·XT

j

)(
XjX

T
j −Xj ·

1 · 1T

m
·XT

j + Λ

)−1

. (2.14)

From Eq. (2.10), we have(
XjX

T
j −Xj ·

1 · 1T

m
·XT

j + Λ

)
= (2.15)((

XkX
T
j −Xk ·

1 · 1T

m
·XT

j

)T (
XkX

T
j −Xk ·

1 · 1T

m
·XT

j

))1/2

.

Therefore, from Eqs. (2.9), (2.14) and (2.15)

R = M(MTM)−1/2 (2.16)

t =
1

m
· (Xk · 1−R ·Xj · 1) = Pk −RPj , (2.17)

where

M =

(
XkX

T
j −Xk ·

1 · 1T

m
·XT

j

)
= (Xk −Pk) (Xj −Pj)

T . (2.18)

�
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Moreover, for the evaluation of the generated motion hypothesis, we define the rigid transfor-

mation error as below:

E(H, X̃j , X̃k) := diag

((
HX̃j − X̃k

)T (
HX̃j − X̃k

))
∈ R1×n, (2.19)

where X̃l =
[
x̃

(l)
1 , x̃

(l)
2 , . . . , x̃

(l)
n

]
∈ R4×n is a three-dimensional point set, and x̃

(l)
∗ = [x, y, z, 1]T ∈

R4×1 is a three-dimensional point in the l-th frame represented by homogeneous coordinates. Note

that sum of elements in Eq. (2.19) is equal to Eq. (2.5).

2.2 Grid-based optical flow

We utilize the näıve Lucas-Kanade optical flow method implemented in mexopencv [22] to extract

a three-dimensional motion of specific pixels basically. However, there are some issues for using

the näıve optical flow method as it is. Under the situations such as the appearance of motion

blur and the existence of repetitive or texture-less patterns, the performance of optical flow tends

to degenerate. To resolve these issues, we check the validity of optical flow by calculating a bi-

directional error and a similarity. The bi-directional error is the distance from the original point

to forward-backward tracked point, and the similarity is calculated from the two-dimensional

correlation coefficient between image patches surrounding original and point tracked by optical

flow. Both validations are effective methods to eliminate unreliable optical flow vectors.

For estimating the depth direction of a velocity, we refine the quality of the depth image in

advance. A pixel whose depth value is invalid is filled with a similar value in the vicinity, and a

pixel whose depth value shows abnormally large change is eliminated. After refining the depth

image, we utilize the two-dimensional interpolation to obtain the depth of tracked points.

9



3
Motion Spatial Segmentation

Algorithm 1 shows a pseudocode which explains the motion spatial segmentation procedure.

A total of n grid-based optical flow vectors is fetched to the algorithm, and segmented label

and motion are derived. Some of parameters used are the number of hypothesis generations,

H, the number of points, m, to estimate motion hypothesis, i.e., position variation of m-points,

and the threshold value to decide whether m-points belong to the same object. Motion spatial

segmentation procedure is roughly divided into three kinds of processes: motion hypothesis search,

refinement, and clustering.

3.1 Motion hypothesis search

The algorithm consists of searching rigid motion hypotheses, refining hypotheses, and clustering

hypotheses. The first two processes, i.e., searching and refining hypotheses, are executed iteratively

until it finds a total of H hypotheses. First, it chooses 1-point randomly with regarding an entropy,

S, as a sampling weight. As will be explained in details in the next section, the entropy is a measure

of how well the estimate of a hypothesis is done in the corresponding pixels. As a result, a point

of which entropy is high has a high probability to be chosen. Then it selects (m−1)-points within

the radius of the specified size around the chosen 1-point so that the probability of choosing m-

points which belong to the same object is high. By using the selected m-points, it is possible to

10



Algorithm 1 Motion Spatial Segmentation

Input: {Vi}; i = 1, . . . , n . n Grid-based points

Output: G . Group label-indexed data

1: G ← ∅

2: h← 0 . Where h is the number of hypotheses

3: while h < H and mean(S) > Smin do

4: Select 1-point in {Vi} randomly with regarding entropy, S, as a weight

5: Select (m− 1)-points randomly near to the 1-point

6: Estimate H using the selected m-points

7: Evaluate H within m-points (see Section 3.2)

8: if m-points belong to the same motion then

9: Nmax ← m

10: repeat

11: N ← Evaluate H for all n-points . Where N is the number of inliers

12: if N > Nmax then

13: Nmax ← N

14: Estimate H using the inliered N -points

15: end if

16: until N = Nmax

17: Hh ← H

18: Evaluate Hh for all n-points

19: Calculate S using evaluation error

20: h← h+ 1

21: end if

22: end while

23: G← Cluster {Hh=1,...,H} (see Section 3.3)

estimate the rigid motion hypothesis, H. In this process, we can choose high values of m or the

radius size for robustness to the noise of optical flow vector. On the other hand, we can increase

the resolution for detecting the small rigid object by decreasing the searching radius for m-points
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or the number of points, m.

3.2 Motion hypothesis refinement

In the process of refining motion hypotheses, the proposed algorithm calculates rigid transfor-

mation error of the m-points in order to check whether they constitute one rigid object. If they

belong to the same object, the algorithm evaluates the hypothesis for all n grid-based points.

This procedure is designed with consideration for situations where a rigid object could appear in

multiple parts on the image, so we regard multiple distinct areas that have the same motion as

the same object. If the number of inliers whose motions are almost the same, N , is larger than m

or the maximum number of inliers, Nmax, in the previous iteration, the algorithm sets the value

of Nmax as N , and recalculate hypothesis of the inliers for the better preciseness.

When it converges, this hypothesis becomes an element of the motion hypothesis set. At the

same time, the algorithm calculates an entropy by evaluating rigid transformation error for all n

grid-based points and elements of the hypothesis set. The entropy, S, for all n grid-based points

is defined as follows:

Si = 1−min
h

exp(−λEi − δ), i = 1 . . . n, (3.1)

where

Ei =
[
E(i)

(
H1, X̃j , X̃k

)
, . . . ,E(i)

(
Hh, X̃j , X̃k

)]
∈ R1×h. (3.2)

In the above equations, X̃l ∈ R4×n is a three-dimensional point set of n grid-based points in the

l-th frame represented by homogeneous coordinates, and E(i) (·) is the i-th element in the output

of the E (·) function. h is the number of elements in the hypothesis set and λ, δ are parameters

for adjusting the characteristics of the entropy. For the moderate increase of the entropy, we can

choose a small value of λ. Also, small δ results in decreasing the difference between the maximum

and minimum of the entropy. In the implemented algorithm, we choose 103 as the value of λ, and

10−2 as the value of δ.
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Algorithm 2 Motion hypotheses clustering

Input: {Hh};h = 1, . . . ,H . Hypothesis set

Output: G . Group label-indexed data

1: G ← ∅

2: {Hh=1,...,g} ← Cluster motion hypotheses, {Hh=1,...,H}

3: for each hypothesis, H ∈ {Hh=1,...,g} do

4: Nmax ← 0

5: repeat

6: N ← Evaluate H for all n-points . Where N is the number of inliers

7: if N > Nmax then

8: Nmax ← N

9: Estimate H using the inliered N -points

10: end if

11: until N = Nmax

12: if Nmax > Nthreshold then

13: Insert H into G

14: end if

15: end for

3.3 Motion hypothesis clustering

In order to find several distinct motions among the H hypotheses, we make use of an existing

clustering algorithm, in our case, density-based spatial clustering of applications with noise (DB-

SCAN) [23]. Hypotheses are refined as the algorithm divides H hypotheses into g distinct motions.

As shown in the Algorithm 2, clustering algorithm fetches H hypotheses into DBSCAN in ad-

vance. Then it refines the clusters in the same way as explained at the line 9-15 in the Algorithm 1.

The process repeats clustering and refining until the number of clusters converges.
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4
Motion Temporal Segmentation

In addition to distinguishing objects that move independently from each other in a frame, we

propose an algorithm to track the object. Since the proposed motion spatial segmentation algo-

rithm executes in a similar way as two-frame based segmentation, it has no idea which is which.

Thus, we implement motion temporal segmentation following the motion spatial segmentation.

It provides label matching algorithm and probabilistic approach based on the dual-mode simple

Gaussian model [20].

4.1 Label matching

The label matching algorithm simply calculates a so-called correlation coefficient between seg-

ments and finds label pairs whose correlation is the maximum along the column standing for the

current segment. The correlation coefficient between two segments is defined as follows:

C
(k,l)
ij =

N
(k,l)
i,j√

N
(k)
i N

(l)
j

, (4.1)

where N
(k)
i is the number of grid-based points which belong to the i-th segment in the k-th frame,

and N
(k,l)
i,j is the number of grid-based points which belong to both the i-th and j-th segments

in the k-th and l-th frame, respectively. Also, a correlation score between the (k, l)-th frames is
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defined as follows:

score =

∑g
i=1

([
C

(k,l)
ii

]
i=1...g

◦
[
N

(k)
i

]
i=1...g

)
∑g

i=1N
(k)
i

, (4.2)

where ◦ operator is the Hadamard product, g is the number of observed label, and

[Ni]i=1...g = [N1, . . . , Ng] . (4.3)

Through the above equation, the algorithm tracks the object that appeared previously, and puts

a new label on the unmatched pairs of the current segments. The pseudocode is shown in the

Algorithm 3.

Algorithm 3 Motion Temporal Segmentation

Input: G(l); l = j, . . . , k . Group label-indexed array

Output: G(k) . The current k-th groups

1: M ← ∅ . Where M is matching pairs for temporal grouping

2: l = 1 . Where l is a frame index for iteration

3: maxCorr = 0

4: for l < min {tMinSize, k} do . Where tMinSize is pre-defined constant for window size

5: M(k,l) ← Match pairs between G(k),G(l)

6: R(k) ← Unmatched pairs of G(k)

7: corr ← Calculate correlation score of M(k,l)

8: if corr > maxCorr then

9: maxCorr ← corr

10: M←M(k,l)

11: R← R(k)

12: end if

13: l← l + 1

14: end for

15: G(k) ← Rearrange group label, G(k) with M and R

16: Compensate dual-mode Gaussian models

17: Update models with G(k) as measure
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In the algorithm, we set the maximum number of identified objects in one frame as m for

reducing computational load and not assigning numerous identifier to erroneous label, i.e. noise.

Thus, we count the number of the labels being observed during execution time. Then, we choose

the identifier which is less observed among the unobserved identifiers in the m stacks. Moreover,

for the robustness, we define a constant, which denotes how long grid retains its identifier. Even

though the grid loses the object temporarily, the corresponding identifier is not assigned to a

newly observed object. Naturally the region which occupies over half of the image is registered

as low identifier preferentially, for this reason, static background should cover a larger area than

dynamic objects in the first frame thereby being assigned as “identifier 1”. For reference, our

algorithm regards “identifier 1” as static background, and others as dynamic objects.

4.2 Dual-mode simple Gaussian model

Since the RGB-D camera has a minimum distance of range, it can fail to measure a depth.

Moreover, it is reasonable to assume that the static and dynamic elements do not appear or

disappear abruptly on a frame by frame basis. Thus, in order to track the static and dynamic

parts in the image sequence consistently, we use a simple Gaussian model which has a probability

vector and an age as properties. Fig. 4.1 shows a framework of the dual-mode simple Gaussian

model. It, first, compensates two models through the previously estimated ego-motion for updating

the model with the measurement corresponding to the identical three-dimensional point. Then, we

update the probability vector and age of both models based on certain criteria. For instance, when

candidate model is updated more frequently than its apparent model, both models are swapped

with each other. Finally, temporal labels can be selected as indices which indicate the maximum

value in each probability vector.

As mentioned before, the designed simple Gaussian model has the probability vector as a prop-

erty. The i-th element of a probability vector means the likelihood of corresponding pixel belonging

to the i-th label. The probability vector has a size of m which means the maximum number of

identified objects in a frame as introduced in Section 4.1. Fig. 4.2 describes the probability vector.

In the figure, top-left grid denotes the measured label, and bottom-left one represents updated

label as distinct colors. By utilizing the Gaussian model with probability vector, our algorithm
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Figure 4.1: The framework of the dual-mode simple Gaussian model. Both apparent and candidate label

models (“dual-mode”) are compensated and updated, iteratively.

detects label with robustness to the erroneous label.

4.2.1 Update model

In the designed dual-mode simple Gaussian model, n grid have its own models, i.e., both apparent

and candidate label model. We denote the probability vector of a grid i as P
(k)
i in the k-th frame,

and the age of the pixel in the k-th frame as α
(k)
i . Then, the probability vector and age are updated

as follows:

P
(k)
i =

α̃
(k−1)
i

α̃
(k−1)
i + 1

P̃
(k−1)
i +

1

α̃
(k−1)
i + 1

G
(k)
i (4.4)

α
(k)
i = α̃

(k−1)
i + 1, (4.5)

where G
(k)
i is the measured label of grid i after label matching algorithm in the k-th frame,

and P̃
(k)
i , α̃

(k)
i are compensated parameters of dual-mode simple Gaussian model which will be

discussed in Section 4.2.2.

Contrary to the K. Yi et al.’s algorithm [20] which measures pixel intensity to update models,

our algorithm takes temporarily coupled label as measurements. This label might be invalid if its

properly matched pair could not be found by optical flow or its flow considered too fast to be

an appropriate result. Thus, we build some criteria for updating both models. First, both models

are initialized with measurements directly if each age is zero. Second, an apparent label model

will be updated in the case where the age is not zero and the label detected from its probability

vector is equal to the measured label. In addition, a candidate label model will be updated when

the age is not zero and the corresponding apparent label model is not updated. Each time model
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Figure 4.2: The procedure of updating a probability vector in the corresponding grid. Different labels are

denoted as different colors. The probability vector makes the algorithm robust to an erroneous result of

spatial segmentation based on the statistical approach.

is updated, the age increases by one until the specified maximum value. By setting the maximum

value for the age of the model, we prevent the model from being insensitive to the appearance of

dynamic objects because of an excessive ageing.

The proposed algorithm treats a foreground object like a static element when the object stops.

This perception can be achieved by adopting a candidate model and a swapping function. For

example, we could consider the case where one object with “identifier 2” moves around in the static

background with “identifier 1” and after a while, the object stops. Since then, the grid belonging

to the object is measured as a static element with “identifier 1”, not “identifier 2”. Thus, the

corresponding apparent model is not updated whereas the candidate model be. Consequently,

only the age of the candidate model increases so both models are swapped with each other when

the age of the candidate model is saturated (maximum age) or larger than the one of the apparent

model.

A temporal label which is the output of the temporal segmentation is obtained from the

probability vector of the apparent label model with several criteria. The temporal label is updated
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when the corresponding apparent label model is initialized or updated at that time. By doing so,

we prevent the algorithm from prejudging the identifier of the unobserved or unmeasured grid

while maintaining the previous identifier of the grid. Finally, the temporal label is extracted from

the indices which indicates the maximum value in the probability vector.

4.2.2 Compensate model

In the previous section, we used probability vector as a property of the grid to update and classify

a label of the corresponding grid. These processes for the grid model assume that each grid

represents the specified point in world coordinates consistently. However, in the case of the non-

stationary camera, a result of the label matching following the spatial segmentation cannot be

used directly for updating the model. Thus, in order to update the grid model, we need a model

compensation.

Since each model has simple parameters such as probability vector and age, we use area-

weighted interpolation approach. The current grid model is proportionally compensated with

models around the previous corresponding grid, which is calculated previously by optical flow

in Section 2.2. For grid which has valid optical flow vector, these grid models are corrected

individually. We denote a set of grids overlapped with the current grid i in the k-th frame as S(k)
i ,

weights for interpolation as ωj , and a region of overlap between the current grid i and the previous

corresponding grid as Rj where j ∈ S(k)
i in the k-th frame. Then, the compensated probability

vector and age are obtained as follows:

P̃
(k−1)
i =

∑
j∈S(k)i

ωjP
(k−1)
j (4.6)

α̃
(k−1)
i =

∑
j∈S(k)i

ωjα
(k−1)
j , (4.7)

where

ωj ∝ Rj (4.8)

and ∑
j

ωj = 1. (4.9)
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5
Evaluation Results

For the evaluation of the proposed algorithm, we use the self-made dataset recorded by ASUS

Xtion RGB-D camera and Vicon motion capture system. Each dataset is composed of 16-bit

depth images and 8-bit RGB images with a size of 640×480. There are two kinds of datasets

which are captured from the stationary camera or non-stationary camera. In the case of datasets

using the stationary camera, we regard origin point in the world coordinates as a true location

of the camera. On the other hand, for the non-stationary camera, we validate the performance

of our visual odometry algorithm with measurements of Vicon system. The proposed algorithm

is implemented with unoptimized MATLAB code and runs on 64bit Windows with Intel Core

i7-3770@3.4GHz and 8GB memory. In this chapter, we validate the performance of our algorithm

by comparing with existing motion segmentation and visual odometry algorithms.

5.1 Dataset

In the experiment, we use the five kinds of datasets as described in Table 5.1. We describe datasets

in terms of travel distance, travel time, invalid depth ratio, camera position, and scene description.

The travel distance and time literally mean the distance the camera moved and the total time it

moved, respectively. Invalid depth ratio is the percentage of the invalid pixels among all pixels

of the whole depth frame. In the foregoing table, the former two datasets were recorded by the

20



Table 5.1: Description of datasets for evaluating visual odometry algorithm.

Environment Distance traveled [m] Time traveled [s] Invalid depth ratio [%] Camera position Description

Fixed Camera 1 0.0 14.00 11.38 Static One moving object

Fixed Camera 2 0.0 19.95 14.26 Static Two moving objects

Vicon Room 1 8.6648 26.43 10.86 Hand-held camera Fast movement

Vicon Room 2 8.0316 50.24 11.69 Hand-held camera Slow movement

Vicon Room 3 2.0339 23.43 23.11 Hand-held camera Closely approach

RGB-D camera which is fixed on a certain point, and one or two objects moved around in front

of the camera, respectively. On the other hand, the latter three datasets were recorded by the

non-stationary camera. By looking at the travel distance and time, we can easily figure out the

average speed of the camera during the period. Through the percentage of the invalid depth pixels,

we can predict how the object moves along the z-axis roughly since the depth measurement range

of the RGB-D camera is limited to 0.5m to 3m.

5.2 Motion segmentation

Fig. 5.1 shows some of internal parameters for one video sequence. In figures, different colors mean

that the algorithm recognizes them as different objects. By applying motion spatial and temporal

segmentation algorithm, the algorithm classifies objects which have different movement to each

other, recognizes the previously observed object, and tracks the object robustly.

Fig. 5.2 shows the qualitative comparison with existing motion segmentation algorithms,

MCD5.8ms [20] and randomized voting [17]. In Fig. 5.2 (a), MCD5.8ms detects moving object

properly except the second frame. However, in Fig. 5.2 (b), MCD5.8ms fails to detect objects

appropriately. Since MCD5.8ms algorithm uses pixel intensity to update the grid model, it is only

possible to distinguish the object whose dominant color differs from one of the static background.

Randomized voting can classify the object which moves independently when the object exists,

but it requires the number of objects in advance. In this respect, we have preset the number of

objects, 2 or 3, as a constant value in the randomized voting algorithm. As shown in both Fig. 5.2

(a) and Fig. 5.2 (b), the randomized voting algorithm always tries to divide the image into the

pre-defined number of objects, 2 or 3, respectively.
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Current RGB image Grid-based optical flow Hypotheses (total of 20) Segments (total of 2)

Model (total of 2)GroupZ-flowX,Y-flow

Figure 5.1: Internal parameters of the proposed motion segmentation algorithm. An object moves around

as shown in the figure entitled Current image. Grid-based optical flow figure shows how the previous grid-

based points move as denoted by white circle. Figure x, y-flow represents the magnitude and the direction

of optical flow vectors as saturation and hue, respectively, whereas z-flow map only shows the magnitude of

the z-directional flow, brighter as the object moves away from the camera. The figure entitled Hypotheses

shows the result of motion spatial segmentation just before clustering motion hypotheses, and Segments

shows the result after clustering motion hypotheses. Figure Group shows the result of the label matching

explained in Section 4.1. Finally, figure Model is the output of the grid model. Note that different objects

are denoted as different colors.

For the quantitative comparison, we measure recall and precision. Both measures are widely

used to quantify the performance of binary classification. Recall means a chance of deciding

positive among the true data, and precision means a chance of being true among the positive

decisions. Table 5.2 shows a definition of true positive, true negative, false positive, and false

negative. Using these definitions, recall and precision are defined as follows:

recall =
TP

TP + FN
(5.1)

precision =
TP

TP + FP
(5.2)

In addition, two measures are dependent on each other that means they are in inverse proportion

to each other. Thus, the performance of the motion segmentation algorithm cannot be evaluated

by only one measure of them, recall or precision. For this reason, F-measure [24] is a proper

measure that combines recall and precision, and can be calculated by harmonic mean as in the
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Table 5.2: Definition of true positive, true negative, false positive, and false negative.

HHH
HHH

HHH
Detect

Exist
yes no

yes True Positive (TP) False Positive (FP)

no False Negative (FN) True Negative (TN)

Table 5.3: Quantitative analysis of the proposed and existing motion segmentation algorithms.

Environment
Recall [%] Precision [%] F-measure

Proposed MCD5.8ms RV Proposed MCD5.8ms RV Proposed MCD5.8ms RV

Fixed Camera 1 92.15 91.32 31.41 95.30 88.05 100.0 0.9370 0.8966 0.4780

Fixed Camera 2 93.15 45.24 65.18 96.90 72.04 99.10 0.9499 0.5558 0.7864

Vicon Room 1 86.68 47.18 39.34 99.46 72.53 94.72 0.9263 0.5717 0.5559

Vicon Room 2 39.17 43.15 31.18 100.0 88.23 95.82 0.5629 0.5795 0.4704

Vicon Room 3 44.91 53.50 48.61 96.11 80.17 96.06 0.6121 0.6418 0.6455

following:

F -measure = 2 · recall · precision
recall + precision

(5.3)

Above recall and precision are calculated in an entire video sequence.

Table 5.3 shows the quantitative results of motion segmentation algorithms. Because our

algorithm and randomized voting separate out objects from the static background based on the

temporary movement, they judge a static object that moved before to be static parts. In the

evaluation, we regard this result as true positive. Additionally, in the case of randomized voting,

it fails to segment image for lack of existing objects as mentioned before. Nevertheless, we count

the 1st to 3rd frames of 4th row in Fig. 5.2 (a) as the true positive, still regarding 5th frame

of 4th row in Fig. 5.2 (b) as the false negative. The proposed algorithm shows relatively high

recall values in the Fixed Camera datasets and is second place for the precision test. For the

F-measure combined recall and precision, our algorithm shows outstanding results compared to

other algorithms. For the Vicon Room datasets, whereas, the first remarkable thing is that the

precision is improved slightly as the moving object in the Vicon Room repeats appearing and

disappearing less than one of Fixed Camera. Also, we can notice that the performance of the

motion segmentation algorithms deteriorates when the speed of the camera and the object are
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slow, or the object approaches the camera closely.

With regard to implementation details, we use consistent value of parameters to retain objec-

tivity. Especially, the number of hypotheses H is 20, and the size of the grid is 16× 16 in pixels;

and these are critical parameters which improve the performance or increase the computational

load.
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(a) Fixed camera 1

(b) Fixed camera 2

Figure 5.2: Qualitative analysis of motion segmentation algorithms. From top to bottom: original image,

our segmentation, MCD5.8ms, and randomized voting. The proposed algorithm shows different motions in

different colors, and MCD5.8ms detects dynamic pixels. On the other hand, randomized voting algorithm

only divides into several parts which have different motions to each other, so label of the grid can be easily

changed.
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5.3 Visual odometry

For the quantitative comparison between the proposed algorithm and the current state-of-the-

art visual odometry algorithms, we use relative pose error (RPE) and absolute trajectory error

(ATE) [3]. RPE and ATE mean how exact the estimated motion is and how exact the trajectory

is, respectively. For a sequence of n camera poses, we denote time interval as ∆, the ground

truth pose as Q1, . . . ,Qn ∈ SE(3), and the estimated pose as P1, . . . ,Pn ∈ SE(3). Then, RPE

is defined as follows:

RPE :=

(
1

m

m∑
i=1

‖trans(Ei)‖2
) 1

2

, (5.4)

where m = n−∆, ‖·‖ represents the 2-norm, trans(Ei) is the translational components of Ei, and

Ei := (Q−1
i Qi+∆)−1(P−1

i Pi+∆). (5.5)

Similarly, ATE is defined as follows:

ATE :=

(
1

n

n∑
i=1

‖trans(Fi)‖2
) 1

2

, (5.6)

where

Fi := Q−1
i SPi (5.7)

and S is rigid transformation matrix from the camera coordinates to the world coordinates.

Therefore, for the precisely estimated pose Pi, the below equation is satisfied:

SPi ≈ Qi. (5.8)

Figs. 5.3 to 5.7 show the evaluation results for each sequence in datasets. The proposed algo-

rithm is compared with the current state-of-the-art visual odometry algorithms, which are DVO

(direct dense method) [7], ORB-SLAM2 (indirect sparse method) [9], and DSO (direct sparse

method) [10]. In order to verify the performance as a visual odometry, we further test modified

version of ORB-SLAM, which is unable to detect and correct loop closure. We refer to this mod-

ified ORB-SLAM as ORB-VO. In Fig. 5.3, algorithms show outstanding performance except for

DVO. Because DVO is based on direct dense method, it performs optimization process across

all pixels, thereby it is seriously influenced by dynamic elements even if small object. Especially,
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Table 5.4: Evaluation of visual odometry algorithms.

Environment
Relative Pose Error [m] Absolute Trajectory Error [m]

Proposed DVO ORB-SLAM2 ORB-VO DSO Proposed DVO ORB-SLAM2 ORB-VO DSO

Fixed Camera 1 0.00156 0.60026 0.00055 0.00082 0.00166 0.00525 0.67494 0.00050 0.00060 0.00117

Fixed Camera 2 0.01384 0.16728 0.05664 0.07248 0.15687 0.04269 0.46060 0.04666 0.20831 0.45773

Vicon Room 1 0.04941 0.61796 0.53376 0.52792 0.22635 0.11287 0.85412 0.93911 0.94335 0.27141

Vicon Room 2 0.09008 0.30968 0.23901 0.23811 0.10167 0.37233 0.77860 0.73921 0.64159 0.45613

Vicon Room 3 0.03852 0.31036 0.11864 0.15391 0.11581 0.06791 0.70322 0.17707 0.31355 0.48000

ORB-SLAM shows the best performance among the comparative group in virtue of loop closure.

Next, when there appear two moving objects, the performance of our algorithm is superior to one

of other algorithms in terms of RPE and ATE as shown in Fig. 5.4 and Table 5.4. At around

10 seconds, two objects appear and occupy more than half of the image, and this causes other

algorithms except ours to lose their pose.

In Figs. 5.5 to 5.7, a measurement of Vicon system is denoted as black solid line. Each of the

three sequences was recorded in situations of fast movement and slow movement of the camera, and

closely approach of the dynamic object as depicted in Table 5.1. Our algorithm shows superior

performance compared to other algorithms. For your information, ORB-SLAM and ORB-VO

show a tendency to track features of a dynamic object and DSO undergoes a scale-drift problem

frequently if the dynamic object is observed for a long time.

Since the motion segmentation and the estimation parts of our algorithm are not strongly

coupled with each other, it is possible for existing visual odometry algorithm to combine with the

proposed motion segmentation to improve their robustness in dynamic environments. As shown in

Fig. 5.8, we test the combination of existing visual odometry and our motion segmentation. We can

see that all three modified algorithms, Proposed×{DVO, ORB-SLAM2, ORB-VO}, show much

better performance compared to the original versions by combining with our motion segmentation.
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Figure 5.3: Absolute trajectory error and XYZ positions for Fixed Camera 1 dataset. Absolute trajectory

error is defined in Eq. (5.6). XYZ positions denotes the estimated position of the fixed camera in each

x, y, z−axis, and true positions of the camera are consistently zeros.
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Figure 5.4: Absolute trajectory error and XYZ positions for Fixed Camera 2 dataset. Please be informed

that two objects appear around 10 seconds.
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Figure 5.5: XYZ position errors and XYZ positions for Vicon Room 1 dataset. XYZ errors mean the

difference between the estimated position and the true in each x, y, z−axis, and true values are denoted as

black solid line.
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Figure 5.6: XYZ position errors and XYZ positions for Vicon Room 2 dataset.
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Figure 5.7: XYZ position errors and XYZ positions for Vicon Room 3 dataset.
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Figure 5.8: XYZ position errors and XYZ positions for Vicon Room 1 dataset. Proposed×{DVO, ORB-

SLAM2, and ORB-VO} estimate the ego-motion with notable accuracy through combining with the pro-

posed motion segmentation. For algorithms which are based on the same visual odometry technique, they

denoted as the same line style.
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6
Conclusion

In this paper, we proposed a robust visual odometry algorithm via rigid motion segmentation using

grid-based optical flow. The proposed algorithm is considerably more robust than the current

state-of-the-art visual odometry algorithms while showing high accuracy. For robustness, the

proposed spatial motion segmentation uses the three-dimensional optical flow vectors to generate

and search distinct motions with no prior information such as the shape of the number of objects.

Besides, temporal segmentation initializes and updates a dual-mode simple Gaussian model of

the grid so that our algorithm differentiates the static background and dynamic objects robustly.

Finally, the ego-motion is estimated by the use of optical flows belonging to the static background

segment. The additional benefit of the proposed algorithm is that it can be combined with existing

visual odometry algorithms to improve their robustness in dynamic environments. Further, it can

be used as a part of an efficient dynamic obstacle avoidance algorithm by using the kinematic

information of moving objects.
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국 문 초 록

기존 대다수의 영상 항법 알고리즘은 정적인 환경을 가정하여 개발되어 왔으며, 잘 정의된 데이터

셋에서 성능이 검증되어 왔다. 하지만 무인 로봇이 영상 항법을 활용하여 임무를 수행하여야 하는

장소는, 실제 사람이나 차량이 왕래하는 등 동적인 환경일 가능성이 크다. 비록 RANSAC을 활용하

여 영상 항법을 수행하는 일부 알고리즘들은 프레임 내의 비정상적인 움직임을 위치 추정 과정에서

배제할수있지만,이는동적물체가영상프레임의작은부분을차지하는경우에만적용이가능하다.

따라서 불확실성이 존재하는 동적 환경에서 자기 위치를 강인하게 추정하기 위해, 본 논문에서는

동적 환경에 강인한 영상 기반 주행 기록계 알고리즘을 제안한다. 제안한 알고리즘은 원활한 수행

속도와 이미지 내에 균일하게 분포된 모션을 계산하기 위해, 격자 기반 옵티컬 플로우를 이용한다.

그리고 격자 단위 그리드의 모션을 통해 단일 프레임 내에서 3차원 공간 모션 분할을 수행하고, 다수

의 동적 물체 및 정적 요소를 지속적으로 구분 및 구별하기 위해 시간적 모션 분할을 수행한다. 특히

지속적으로 동적 및 정적 요소를 구별하기 위해, 우리는 이미지 내의 각 그리드에 이중 모드 가우시

안 모델을 적용하여 알고리즘이 공간적 모션 분할의 일시적 노이즈에 강인하게 하고, 확률 벡터를

구성하여 그리드가 서로 구별되는 각각의 요소로 발현할 확률을 계산하게 한다. 개발한 알고리즘의

성능 검증을 위해 ASUS Xtion RGB-D 카메라와 Vicon 모션 캡쳐 시스템을 통해 구성한 데이터셋을

이용하였으며, 기존 모션 분할 알고리즘과의 재현율 (recall), 정밀도 (precision) 비교 및 기존 영상

기반 주행 기록계 알고리즘과의 추정 오차 비교를 통해 타 알고리즘 대비 우수한 모션 검출 및 위치

추정 성능을 확인하였다.

주요어 : 영상 항법, 동적 환경, 모션 분할, 격자 기반 옵티컬 플로우, 깊이 카메라.

학번 : 2015-20784
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