creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

An algorithm for Finding a Relationship Between Entities :

Semi-Automated Schema Integration Approach

Yongchan Kim

College of Business Administration

Seoul National University

ABSTRACT

Database schema integration is a very important issue in information systems. Since schema integration
is a time-consuming and labor-intensive task, many studies have attempted to automate this task. In the
meantime, the researchers used xml as the source schema and still left much of the work to be done
through DBA intervention. For example, there are various naming conflicts related to relationship names
in schema integration. In the past, the DBA had to intervene to resolve the naming conflict name. In this
paper, we introduce an algorithm that automatically generates relationship names to resolve relationship
names conflicts that occur during schema integration. This algorithm is based on Internet collocation
dictionary and english sentence example dictionary. The relationship between the two entities is
generated by analyzing examples extracted based on dictionary data through natural language processing.
By building a semi-automated schema integration system and testing this algorithm, we found that it
showed about 90% accuracy. Using this algorithm, we can resolve the problems related to naming
conflicts that occur at schema integration automatically without DBA intervention.

Keywords: Schema Integration, Naming Conflicts, Natural Language Processing, XML, Entity
Relationship Diagram (ERD)

Student Number: 2015-20590

TABLE OF CONTENTS

O U413 (04 L To15 o) o OO TP OR PSP PUPRRPPO 5
2. Methodologies for semi-automated schema INtegrationcccveeereiuieeerriiieeeeriireeeerreeeeseeeeeenns 7
3. An algorithm for finding a relationship between entitiesccoecueeeriieriieeniieiniee e, 18
4. Semi-Automated Schema INteEration............eeerriiiriiriiiieeeeiieeeeriieeeesiteeesrreeeetreeeseeraeeesnnnneess 24
T 2z 1 101510 o H PRSP S U PRPPPRPI 27
(T 1401 L 1510 o PRSP SRPPPRPI 28
A €)1 To] 1313 U) s W PO PPPRP 29
RETETEICE ...ttt ettt ettt e a e e bt e et e e bt e s bt e e enteeebteesateeenneeas 30
2
] © 1 &

LIST OF TABLES

Table 1. Similarity measure used for each schema element............ccccveuveureereeincineineineniecrereeseieee e 14
Table 2. Formulas for entities and relationShipsc.oceceeeeeeineinieneeeineineineinieeiereiseiseiseie e ssessese e ssesseseens 14
Table 3. FOrmulars fOr atffiDULESc.eceueueureeriieieicineireieeieeeeiseisetseie ettt sese et bbb sseas 14
Table 4. Result of entity SImilarity COMPATISOM.......c.ccueueeeemeieeneireireieieireireiseiseieeessessesseesese et ssessesessesessessessens 15
Table 5. Result of relationship similarity COMPATISON.......c..covueureureueieireireireireieieireireeseeseieeessessesseseese e ssessessens 16
Table 6. Results of schema similarity COMPATISONc.vuevueueueireereeeieireircireiseieiereiseeseeseae et ssessese s asessessees 28
LIST OF FIGURES

Figure 1. Mapping Rules for ER 10 XIMLc.ocoiiiiiririeeicireiseieeee et ssessessese et ssessessese e ssessessesnes 9
Figure 2. "Order Management" SChEemMa 1 ..ottt ssessssssessesssssssssessesens 10
Figure 3. "Order Management" SChEMA 2ocvirieniueereieneineieiesiseeseesessesssessessessesssssss e sssssssssessesssssssssssesans 10
Figure 4. XML document 0f SChEMA 1 ..ot sssesse e sssssssssessesssssssssessesans 11
Figure 5. XML document 0f SChEMA 2ccvvuviuirieniineieiecineineieieciseiseeesseessessease st ssessssssessessssssssssssesans 12
Figure 6. XML Schema of XIML DOCUMENL..........cceueriuririemeeieireieiseniseessiesseessessessessessssssesessesssssssssessssssssssesans 13
Figure 7. Transformation of an entity type attribute A into an entity type EA......cccoooevenenenenecneencnennes 17
Figure 8. An example of relationship Name CONTIICT.........cuvieriieierriireireiesreiee e 18
Figure 9. Another example of relationship name CONTICTE ... 18
Figure 10. Comparison of Various QiCtIONATIESc..ewueueumererererersersneeeesesseessessessessessssssessessesssssssssessessssssssesaes 19
Figure 11, ALOTTERIM 1 ..ottt sttt 20
Figure 12, AIOTIERIM 2 ..ottt 20
Figure 13. Search results for car in collocation diCtiONATYc.cc.eceueureureureereeeieeneireireieieieseiseesesesseeesesseseens 21
Figure 14. Search results for "person drive car" in Naver diCtionaryccccoeveveereereereeereenernerseseeesseesessesnens 22
Figure 15. The result of dependency analysis ..o ssessssssessesssssssssessesans 22
Figure 16. Occurrence of appropriate examples for "Person + collocation + Car".........cccocveveeeeererrcenennce 23
Figure 17. Result of "Person" and "Car’ ..o ssessessesssse e ssessessssesssssssssnens 24
Figure 18. Result 0f 19 entity NAIMNE PAILS....c.cc.ecueeuereureererreieimeieireisetseseeessessessessesessessessessesessessessessessesessessesessssees 24
Figure 19. Change the name of elements (SChemMa 2)cccvevrerieieineiniinireerereseese e ssesseeeene 25
Figure 20. Make “Supply_Code” into an entity (SChema 2)........c.cceeuveureureerieineineineireisieienesseeseseeseeesessesnens 25
Figure 21. Apply the algorithm to conflicting or newly created relationship name (Schema 2)................ 26
Figure 22. Integrated schema — generated by t00l (STE00L) ..o 26
Figure 23. Integrated SChema — EXPEIT L.....ccovuviueiiiiiiireiiieicieircireisciee ettt seb st eeee 27
Figure 24. Integrated SChema — EXPEIT 2.......ouuvveeueieieiireieiseeineiseiesseessesesessesssessessessesssssse e sssssssssessessesssssssssesans 28

3

An algorithm for Finding a Relationship Between Entities :

Semi-Automated Schema Integration Approach

1. Introduction

Conceptual modeling has assumed a relevant role in the development of information systems and of
software applications. In fact, conceptual modeling is an essential phase in database design [Castano
1991]. conceptual modeling of data is a part of most applied system development methods [Jacobson
1992; Yourdon 1989]; and enterprise modeling has emerged as a preliminary design phase in software
systems development to capture the most important aspects in an organization. The increase in the
number of databases has entailed the management of related data in different formats across these
databases. In order for organizations to use other organizations’ data for better decision-making and
success, they need to understand the semantics and retrieve from these other distributed and
heterogeneous data sources [Unal 2010]. Moreover, "even a single enterprise may have heterogeneous
information bases for reasons of history or departmental autonomy" [Kaul, 1990]. As a result,
Interoperability is becoming one of the most critical issues for medium to large size enterprises
[Spaccapietra,1992].

Schema integration is defined as the activity of integrating the schemas of existing or proposed
databases into a global, unified schema.[Batini 86] Two types of schema integration are defined: (1)
View Integration, which is performed during the database design process, for example at the conceptual
design phase, and (2) Database Integration, which produces the global schema of a number of
databases[Batini 86]. Schema integration has been a fundamental issue in data sharing among distributed,
heterogeneous, and autonomous databases. With the increasing number of databases, integration
problem has become more apparent. Schema integration aims at finding a unified representation of
schemas by merging them. In order to integrate schemas, syntactic, semantic, and structural relationships
among elements of these schemas need to be identified. [Unal 2010] There has been a large amount of
work in the integration area. Batini et al (1986) give a detailed survey of methodolo gies for view
integration and database integration. New contributions often appear in the literature (Motro, 1987,
Civelek et al, 1988; Diet and Lochovsky, 1989; Sheth and Gala, 1989; Siegel and Madnick, 1989; Hayne

and Ram, 1990; Kaul et al, 1990; Siegel and Madnick, 1991; Gotthard et al, 1992; Spaccapietra et al,

5

1992; Spaccapietra and Parent, 1994; Beeri and Milo, 1999; Kwan and Fong, 1999). Most of the work
has been performed in the context of the relational model, the functional model (Motro, 1987), and
semantic data models such as the object-oriented model, and the ER model (Spaccapietra and Parent,
1994). The majority of these approaches do not aim at developing semi-automated systems. What they
provide are general guidelines and concepts on different steps of the integration process. However, since
schema integration is a difficult and complex task, there is a need to help users with this complicated
task by providing some semi-automatic mechanisms. [unal 2010] A number of recent efforts focused on
semi-automatic schema integration or merging, including [Chiticariu et al. 2008], [Melnik et al. 2003],
[Pottinger and Bernstein 2003, 2008]. However, most of these studies used XML schemas as source
schemas and do not use ER models as source schemas. The ER model [Chen, 1976] has attracted
considerable attention in systems modeling and database design. [lee and ling 2003] The ER concepts
(entities and relationships) correspond to structures naturally occurring in information systems. This
enhances the ability of designers to describe accurately database applications. Furthermore, the schema
integration studies had to deal with the DBA's involvement in the new relationship names that occurred
during the process of resolving structural conflicts. Choosing one between two relationship names in a
synonym relationship or naming a newly created relationship is a very cumbersome task for the DBA.
Thus, automating the relationship name issues that occur during the schema integration process will
improve the efficiency of the overall schema integration process.

In this respect, this study focuses on the two problems found in previous studies. The first is to build a
semi-automated schema integrity system using the ER model as the source schema. Second, this study
suggests an algorithm that can automatically solve problems related to relationship names in the schema
integration process. We first describe the process of transforming the ER model into machine-
understandable XML to build a semi-automated schema integration system using the ER model as the
source schema. This process takes place during the pre-integration process and must be done manually
by the DBA. The next step is to find the identical elements among the schemas through schema

matching. Here we use Stanford core NLP to measure the similarity between each element name. After

that, we resolve the structural differences between the two schemas through algorithms that resolve
structural conflicts. In the process of resolving a structural conflict, if there is a relationship with a newly
created entity, we apply the algorithm we have developed to deal with this problem automatically. The
intermediate schema generated through this process is integrated to finally generate the integrated
schema. We also measured the quality of the final integrated schema by measuring completeness and
minimality by comparing the integration schema generated by the system with the integration schema
received from the experts.
To sum up, the main contributions of this study can be stated as follows:
* The ER model is used as the source schema to construct a semi-automated schema inte

gration system

* We automatically solve the problems related to relationship names in the schema integr

ation process through our algorithm.

The rest of the paper is organized as follows. Section 2 describes the methodologies used in the
schema integration system, such as conversion of ER to XML, schema matching, structural conflict
resolution. Section 3 briefly describes the algorithm for finding a relationship between entities we have
developed. In Section 4, we apply the methodologies described in Section 2 and our algorithm described

in Section 3 to implement semi-automated schema integration and we conclude in Section 5.

2. Methodologies for semi-automated schema integration

The Entity-Relationship (ER) model was originally proposed by Peter in 1976 as a way to unify the
network and relational database views. Simply stated, the ER model is a conceptual data model that
views the real world as entities and relationships. A basic component of the model is the Entity-
Relationship diagram, which is used to visually represent data objects. An E-R model gives graphical
and diagrammatical representation of various entities, its attributes and relationships between entities.

This is turn helps in the clear understanding of the data structure and in minimizing redundancy and

other problems. Nevertheless, the ER model is easy for humans to handle, but the machine cannot
understand and handle it. Therefore, in order to carry out automated schema integration on a machine, it
is necessary to process the ER model into another form.

The eXtensible Markup Language (XML) has emerged as a standard for information representation
and exchange on the Web as well as on the Intranet due to its self-describing data capability and
flexibility in organizing data [Abiteboul et al. 2000, Gou, and Chirkova 2007]. The XML tag names are
readable and convey the meaning of the data. The information structure is easily discerned by both
humans and computers as each XML tag immediately precedes the associated data. The data structure
follows a noticeable and useful pattern, making it easy to manipulate and exchange the data. [algergawy
et al. 2010]. Thus, We convert the ER model to XML so that the machine can understand it. Since the
majority of data in the world is stored in databases, the conversion of such data into XML documents is
indispensable for real world usage. In this conversion, rules and algorithms for preserving the
information of the database schema and generating XML documents based on such information are
necessary.

We adopted Jin and Kang[17]’s rules to convert the ER model to XML. They describe ER-to-XML
mapping rules at the schema level. Each entity type and relationship type in the ER diagram is mapped
into the top-level element in the XML document. There are 6 top level XML elements that represent
different entity types and relationship cardinalities: <entity>, <weak entity>, <unary-relationship>,
<binary-relationship>, <ternary-relationship>, and <n-ary relationship>. The content (i.e., data value)
of a top-level element is the same as the corresponding name of an entity type or a relationship type. For
example, an entity type STUDENT is represented in XML as <entity>STUDENT </entity>. The
attributes of an entity type in the ER diagram are mapped into the sub-element <attribute> of the
corresponding top-level element in XML. The ER model used in this study contains only entities and
binary relations. Entities and binary relations of the ER model, and how the attributes are converted to

XML, are as follows.

ER XML

Entity Book <entity>Book</entity>
. -Book Code <entity>Book
Key-AttrIbute Book <key-attribute>Book_Code</key-attribute>
</entity>
. -Title <entity>Book
Attribute Book <attribute>Title</attribute>
</entity>
<binary-relationship>publishes
; Publisher |1...n publishes <entity min-card="1" max-
Blnary R card="unbounded">Publisher</entity>
H i < >\ <entity min-card="0" max-
R9|at|0n5h|p 0..n Book card="unbounded">Book=/entity>
</binary-relationship>

Figure 1. Mapping Rules for ER to XML
The strong entity type S in the ER diagram is mapped to the <entify> element in the XML document.
The key attribute A of the entity E is mapped in a similar way to the simple attribute. In this case, the
<key-attribute> element is added as a sub-element of the top-level element EA simple attribute A of the
entity E in the ER diagram is represented in XML using the <attribute> element. The <attribute>
element is placed as a sub-element of the belonging top-level XML element. The binary relationship R
between two entity types S and T is mapped to the top-level element <binary-relationship>. In addition,
the two participating <entity> elements are also placed as sub-elements. In this case, for the associated
<entity> element, there are two required XML attributes to express the minimum and maximum

cardinality constraints (i.e., min-card and max-card, respectively).

fulfills receives
<> Supplier <>

-Supplier_Code

-Name
-Address
provides
refers has
Order {>; Supply {>; Payment
-Order_Code -Supply_Code -Payment_Code
-Priority -Quantity -Date
-Date -Amount
-Client_Code
-Name
-Address

places - -Payment_Status makes
<l Client <>

Figure 2. "Order Management' Schema 1

suggests receives
Supplier
-Supplier_Code
-Name
-Address
fulfills
refers has
Offer Order Invoice
-Offer_Code -Order_Code -Invoice_Code
-Deadline -Priority -Date
-Date -Date -Amount
-Supply_Code
-Customer_Code
-Name
-Address K
-Situation makes

takes
</ Customer

Figure 3. "Order Management'" Schema 2
Figure 2 and Figure 3 are the ER models we used for schema integration. The results of converting these
ER models into XML according to the conversion rules described above are as follows. Figure 4 and 5
are an ER model converted into a XML document, and Figure 6 is a XML schema of the corresponding

XML document.

10

TU

<erd>Order Management
<entity>Supplier
<key-attribute type="int">Supplier Code</key-attribute>
<attribute type="String">Name</attribute>
<attribute type="String">Address</attribute>

</entity>
<entity>Payment
<key-attribute type="int">Payment Code</key-attribute>
<attribute type="String">Date</attribute>
<attribute type="int">Amount</attribute>
</entity>
<entity>Order
<key-attribute type="int">Order Code</key-attribute>
<attribute type="String">Priority</attribute>
<attribute type="String">Date</attribute>
</entity>
<entity>Supply
<key-attribute type="int">Supply Code</key-attribute>
<attribute type="int">Quantity</attribute>
</entity>
<entity>Client
<key-attribute type="int">Client Code</key-attribute>
<attribute type="String">Name</attribute>
<attribute type="String">Address</attribute>
<attribute type="String">Payment_Status</attribute>
</entity>

<binary-relationship>receives
<entity min-card="1" max-card="unbounded">Supplier</entity>
<entity min-card="0" max-card="unbounded">Payment</entity>
</binary-relationship>
<binary-relationship>provides
<entity min-card="1" max-card="1">Supplier</entity>
<entity min-card="1" max-card="unbounded">Supply</entity>
</binary-relationship>
<binary-relationship>has
<entity min-card="1" max-card="1">Supply</entity>
<entity min-card="1" max-card="1">Payment</entity>
</binary-relationship>
<binary-relationship>makes
<entity min-card="1" max-card="unbounded">Client</entity>
<entity min-card="0" max-card="unbounded">Payment</entity>
</binary-relationship>

<binary-relationship>fulfills
<entity min-card="1" max-card="unbounded">Supplier</entity>
<entity min-card="0" max-card="unbounded">Order</entity>
</binary-relationship>
<binary-relationship>refers
<entity min-card="1" max-card="unbounded">Supply</entity>
<entity min-card="1" max-card="1">Order</entity>
</binary-relationship>
<binary-relationship>places
<entity min-card="1" max-card="unbounded">Client</entity>
<entity min-card="0" max-card="unbounded">Order</entity>
</binary-relationship>
</erd>

Figure 4. XML document of schema 1

11

<erd>Order Management
<entity>Supplier
<key-attribute type="int">Supplier Code</key-attribute>
<attribute type="String">Name</attribute>
<attribute type="String">Address</attribute>

</entity>
<entity>Invoice
<key-attribute type="int">Invoice Code</key-attribute>
<attribute type="String">Date</attribute>
<attribute type="int">Amount</attribute>
</entity>
<entity>Order
<key-attribute type="int">Order Code</key-attribute>
<attribute type="String">Priority</attribute>
<attribute type="String">Date</attribute>
<attribute type="int">Supply Code</attribute>
</entity>
<entity>Customer
<key-attribute type="int">Customer Code</key-attribute>
<attribute type="String">Name</attribute>
<attribute type="String">Address</attribute>
<attribute type="String">Situation</attribute>
</entity>
<entity>Offer
<key-attribute type="int">Offer Code</key-attribute>
<attribute type="String">Deadline</attribute>
<attribute type="String">Date</attribute>
</entity>

<binary-relationship>receives
<entity min-card="1" max-card="1">Supplier</entity>
<entity min-card="0" max-card="unbounded">Invoice</entity>
</binary-relationship>
<binary-relationship>has
<entity min-card="1" max-card="1">Order</entity>
<entity min-card="1" max-card="1">Invoice</entity>
</binary-relationship>
<binary-relationship>makes
<entity min-card="1" max-card="unbounded">Customer</entity>
<entity min-card="0" max-card="unbounded">Invoice</entity>
</binary-relationship>
<binary-relationship>fulfills
<entity min-card="1" max-card="unbounded">Supplier</entity>
<entity min-card="0" max-card="unbounded">Order</entity>
</binary-relationship>
<binary-relationship>refers
<entity min-card="1" max-card="1">Offer</entity>
<entity min-card="1" max-card="1">Order</entity>
</binary-relationship>

<binary-relationship>suggests
<entity min-card="1" max-card="unbounded">Supplier</entity>
<entity min-card="0" max-card="unbounded">Offer</entity>
</binary-relationship>
<binary-relationship>takes
<entity min-card="1" max-card="unbounded">Customer</entity>
<entity min-card="0" max-card="unbounded">Offer</entity>
</binary-relationship>
</erd>

Figure 5. XML document of schema 2

12

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="erd" type="erdType"/>

<xs:complexType name="erdType">
<xs:sequence>
<xs:element name="entity"
type="entity Type"
minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="binary-relationships"
type="binary-relationshipsType"
minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="entity Type">
<xs:sequence>
<xs:element name="key-attribute"
type="attribute Type"
minOccurs="1"
maxOccurs="unbounded"/>
<xs:element name="attributes"
type="attributeType"
minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="attribute Type">
<xs:sequence>
<xs:attribute type="xs:string"/>
</Xs:sequence>
</xs:complexType>

<xs:complexType name="binary-relationshipsType">
<xs:sequence>
<xs:element name="entity"
type="participating-entity"
minOccurs="2"
maxOccurs="2"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="participating-entity">
<xs:attribute name="min-card" type="xs:string" use="required"/>
<xs:attribute name="max-card" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>

Figure 6. XML Schema of XML Document
The next step is a schema matching process that finds the corresponding pair for each other with the
transformed XML. In this process, we adopted Algergawy et al[1]'s measurement method. They
categorize element similarity measures guided by the following observation: a number of similarity

measures make use of element internal features without considering its surrounds. On the other hand

13

several element similarity measures exploit element relationships making use of element surrounds. The

former is called Internal element similarity and the latter is called External element similarity. Once

obtained the internal and external element similarity values, a total similarity value between a pair of

elements can be determined. Table 1 shows the measurement methods applied to each schema element

in this study. Table 2 and 3 are formulas for each measurement method.

Internal

External

Entity - Entity

Name Similarity

Leaf Context Similarity

Attribute -
Attribute

Name Similarity,
Constraint Similarity,
Data Type Similarity

Ancestor Similarity

Relationship -
Relationship

Name Similarity

Leaf Context Similarity

Table 1. Similarity measure used for each schema element

Measuring Similarities between Entities / Relationships

Internal similarity measures

External similarity measures

Name similarity

Leaf context similarity

2XN3
N1+N2+2XN3

SiquPalmer(tl s tZ)

V‘l—‘\
Lui=1

Sim(E,., E0)

j=K G :
max InterSim(Ety;. Ety5)

Jj=i

max(|k|. |K'|)

Table 2. Formulas for entities and relationships

Measuring Similarities between Attributes

Internal similarity measures

External similarity measures

Name similarity

Constraint similarity

Data type similarity

Ancestor context similarity

SiquPalmer(tl .02)
2 X N3
N] + Nz +2 X N3

* 2

- . none

110907 07

F 109 1 [07] 07 |

7 10707 1 | 08

none | 0.7 | 0.7 | 0.8 1

Typel Type2 Tsim
string string 1.0
string decimal 0.2
decimal float 0.8

float float 1.0

float integer 0.8
integer short 0.8

PSim(P,. P 1-
1.12) max(|Pq|,|P2|)

Table 3. Formulars for attributes

14

Since In the XML document that transformed the ER model, the internal information about the entity
and relationship is only the name, we used the name similarity only as a measure of the internal
similarity of the entities and relationships. For measuring external similarity between
entities(relationships), we used Leaf context similarity to measure the similarity of the attributes of each
entity(relationship). For attribute internal similarity measure, name, constraint, and data type were
measured. As an external similarity measurement method, we use the ancestor context similarity. The

table 4 and 5 show the results from the similarity measure.

Internal | External
Similarity | Similarity
Supplier 1 1 1
Invoice 0.125 0.603 0.46
Supplier | Order 0.133 0.422 0.336
Customer 06 0.71 0.676
Offer 0.14 0.56 0.434
Supplier | 0.133 0.56 0.432
Invoice 0.235 0.925 0.718
Payment | Order 0.25 0.553 0.462
Customer| 0.133 0.426 0.338
Offer 0.266 0.724 0.587
Supplier | 0.133 0.535 0.415
Payment 0.25 0.74 0.593

Entity1 | Entity2 Similarity

Order Order 1 0.75 0.825
Customer| 0.133 0.479 0.375
Offer 08 0.7955 0.796

Supplier | 0.166 0.401 0.33
Payment | 0.307 0.482 0.43
Supply Order 0.307 0.425 0.39
Customer | 0.166 0.308 0.265

Offer 0.333 0.488 0.442
Supplier 0.631 0.844 0.78
Payment | 0.142 0.584 0.451
Client Order 0.142 0.602 0.464
Customer | 0.631 0.89 0.812

Offer 0.153 0.544 0.427

Table 4. Result of entity similarity comparison

15

s - i)

Relationship1 | Relationship2 é?rﬁlr::tly gi):tn?lgn:tly Similarity
receives 1 0.973 0.984
has 0.125 0.7 0.473
makes 0.25 0.817 0.59
receives fulfills 0.25 0.73 0.538
refers 0.25 0.511 0.406
suggests 0.25 0.793 0.576
takes 0.25 0.636 0.482
receives 0.285 0.715 0.543 receives 0.25 0.796 0.578
has 0.125 0.446 0.317 has 0.125 0.643 0.436
makes 0.25 0.558 0.434 makes 0.125 0.639 0.433
provides fulfills 0.222 0.695 0.506 fulfills fulfills 1 0.912 0.947
refers 0.222 0.438 0.352 refers 0.2 0.629 0.457
suggests 0.222 0.721 0.521 suggests 0.2 0.898 0.619
takes 0.25 0.564 0.438 takes 0.125 0.741 0.495
receives 0.125 0.688 0.463 receives 0.25 0.511 0.407
has 1 0.688 0.813 has 0.166 0.627 0.443
makes 0.21 0.688 0.497 makes 0.333 0.511 0.44
has fulfills 0.125 0.426 0.305 refers fulfills 0.2 0.607 0.444
refers 0.166 0.514 0.375 refers 1 0.633 0.78
suggests 0.125 0.514 0.358 suggests 0.2 0.619 0.451
takes 0.21 0.514 0.393 takes 0.333 0.619 0.505
receives 0.25 0.864 0.618 receives 0.25 0.687 0.512
has 0.21 0.706 0.507 has 0.571 0.644 0.615
makes 1 0.935 0.961 makes 0.125 0.758 0.505
makes fulfills 0.125 0.621 0.422 places fulfills 0.25 0.802 0.581
refers 0.333 0.525 0.448 refers 0.166 0.644 0.453
suggests 0.25 0.683 0.51 suggests 0.25 0.788 0.573
takes 0.2 0.755 0.533 takes 0.125 0.86 0.566

Table 5. Result of relationship similarity comparison

As a result of measuring the similarity between the entities of Schema 1 and 2, the following results
were obtained.

S1.Supplier = S2.Supplier

S1.Payment = S2.Invoice

S1.0rder = S2.0Order

S1.Client = S2.Customer
The threshold is 0.7, and if two or more entities are above the threshold, the entity having the highest
value is adopted. S1.Supplier and S2.Supplier were found to be completely identical and S1.Payment and
S2.Invoice were found to be quite similar. Entities similar to S7.Order have S2.Order and S2. Offer, but
the highest value of S2. Order is most similar to SI.Order. As a result of the similarity measurement of
relationships, the following results were obtained.

16

= A 2-tf] &

& =

Sl.receives = S2.receives
S1.has = S2.has
S1.makes = S2.makes
S1.fulfills = S2.fulfills
Sl.refers = S2.refers

For schema integration, it is necessary to find corresponding pairs between schemas through schema
matching, and to resolve naming conflicts or structural conflicts among the corresponding elements. In
order to resolve the naming conflict, the name of the entity in Schema 1 was adopted. We adopted Lee
and Ling[20]’s study to solve structural conflicts. They present a schema integration methodology with
particular focus on the resolution of structural conflicts. They find that if the individual schemas have
been designed properly and the semantic equivalences among the schemas identified correctly, then the
key structural conflict is that between an entity type and an attribute. In their work they insist that
resolving all structural conflicts between entities and attributes will solve all sorts of structural conflicts.
Structural conflicts between entities and attributes occur when an object exists as an entity in one

schema and an attribute exists in the other.

o o o Ais not part of.a key and not part of a
(8] @ s composite attribute.
(:) | n E,4 is connected to E by a new relationship
o [E 0 LA setR.

Figure 7. Transformation of an entity type attribute A into an entity type E4
To check if there is a structural conflict, we need to make sure that the entity that exists as an entity in
one schema exists as an attribute in the other. One way to confirm this is that if the key attribute of one
schema entity exists as a simple attribute of the entity in the other schema, then the simple attribute is an
entity type. Another case is that an entity name in one schema is included in an attribute in the other
schema. In our example schema, we can see that Supply Code is the key attribute of the SI.Supply entity

in Schema 1, and is the simple attribute of S2. Order in the schema 2. In this case, because of the

17

structural conflict, we transformed the S2.Order.Supply Code attribute into an entity by applying the

above transformation.
3. An algorithm for finding a relationship between entities

In this paper, conflicts deal only with naming conflicts and structural conflicts .The process of conflict
resolution in schema integration is divided into naming conflict and structural conflict. During the

resolving naming conflicts, the following relationship naming conflict may occur.

| makes Pays,
Customer —<> Payment Customer O— Payment
A portion of Schema 1 A portion of Schema 2

Figure 8. An example of relationship name conflict
This is a very common case where different relationship names are assigned to identical entities. In this
case, DBA must select manually one of the two relationship names. Another case is when a new entity is
created in the process of resolving a structural conflict. The relationship between the newly created
entity and the existing entity has not yet been given a name. In the existing research, it was necessary to
manually specify the relationship name through the intervention of the DBA.

During the resolving structural conflicts process, the following may occur.

I
Order Supply —:<>7|— Order
I

-Order_Code -Supply Code -Order_Code
-Priority -Priority
:D_a_tel _____ -Date
\-Supply_Code

Figure 9. Another example of relationship name conflict
Figure 9 shows a case where a space occurs in the relationship name when an attribute Supply Code is
transformed into an entity. In this case, the DBA must also choose one of the two relationship names.
DBA intervention in this schema integration process makes it difficult to automate schema integration

and is very time consuming and labor intensive.

18

This algorithm automatically generate relationship names in these case. Briefly, our algorithm first
searches the internet collocation dictionary for a specific entity name's collocation. In the generated
collocation set, a combination of each element and entity name is searched in the dictionary to find the
collocation where the most examples are present.

According to Chen[7]'s research, nouns in English sentences appear as entities in the ER model, and
verbs appear in the form of relationships. Thus, we have found that the more similar sentences including
the entities (noun) and the relation (verb) exist, can infer the relationship between entities.

In computational linguistics, a wide variety of lexical association measures have been employed for
the task of (semi-)automatic collocation identification and extraction.

= frequency-based measures (e.g., based on absolute and relative co-occurrence frequencies)
» information-theoretic measures (e.g., mutual information, entropy)
= statistical measures (e.g., chi-square, t-test, log-likelihood, Dice’s coefficient)

We adopt the frequency-based measurement method and adopt the most frequent verb as the relationship
between two entities.

We compared various dictionaries to select dictionaries from which to extract example sentence set.
The comparison criterion was how many examples were searched and whether they supported complex

search.

Number of
Examples

S :

Dictionary Complex Search

Collins 19 X
DICTIONARY 5 X
|0t FOJARH (0]
C——m 122,809 (person car : 5,102)

Figure 10. Comparison of various dictionaries

19

As a result, it was confirmed that Naver English dictionary was overwhelmingly used in the number
of example sentences and also supports the complex search function. Therefore, we selected the Naver

English dictionary as an example extract dictionary.

Algorithm 1

Algorithm 2

Input : Entity Namel, Entity Name2,
Relationship Namel, Relationship

Name2

Output : Relationship name between

Entityl and Entity2

Input : Entity Namel, Entity Name2
Output : Relationship name between Entityl and
Entity2

Step 1. Search “Entity Namel + Relationship
Namel + Entity Name2” in dictionary and
collect the example sentences, repeat for
relationship name 2

Step 2. Processing Part-of-Speech(POS) and
dependency analysis for each sentence

Step 3. Counting the occurrence of appropriate
examples for each collocation verb

Step 4. The most frequently used verb is
adopted as the final relationship name.

Step 1. Search collocations of entity names (Input :
Person, Car)

Step 2. Search “Entity Namel + A verb extracted from
the collocation set + Entity Name2” in dictionary and
collect the example sentences

Step 3. Processing Part-of-Speech(POS) and
dependency analysis for each sentence

Step 4. Counting the occurrence of appropriate examples
for each collocation verb

Step 5. The most frequently used verb is adopted as the
final relationship name.

Figure 11. Algorithm 1

Figure 12. Algorithm 2

In case of Figure 8, since two relation names have already been given, the step for searching the
collocations of entities is skipped. Figure 9, the relationship name does not exist at all, and thus includes
a process of searching for collocations of entities. Thus, the rules for applying our algorithm are as
follows.

Rulel. If the name of 1 and the name of 2 conflict with each other, the Algorithm 1 selects one of
them.

Rule2. If a new relationship is created in the process of resolving the structural conflict, the
relationship name is created through Algorithm 2.

Since algorithm 1 only omits the step of searching for a collocation in Algorithm 2, the description is

based on Algorithm 2 here.

Step 1. Search collocations of entity names

20

Online OXFORD Collocation Dictionary

Icar

car noun

fast | new | second-hand, used a used car salesman | veteran, vintage | private The
government wants more people to use public transport instead of private cars. | diesel, electric,
motor, petrol | estate, hatchback, saloon, sports | armoured, Panda, patrol, police, squad,
unmarked Police in an unmarked car had been following the stolen vehicle for several minutes. |
racing, rally, stock | company, hire | getaway The robbers abandoned their getaway car in
Sealand Road. | parked There was a line of parked cars in front of the building.

@ ICONIC RANGES 474 gtL|ct

82 Ka?|

go/travel by | drive | have, own, run Jt’s very expensive to run a car these days. |
take It’s too far to walk. I'll take the car. | get in/into, pile into He got in the car and they drove off.
The kids all piled into the car. | get out of | get out You lock up the house and I'll get the car out. |
stop | back, reverse | overtake, pass | lose control of / lost control of the car and it spun off the
road. | leave, park | abandon, dump | build, make, manufacture, produce | repair, service,
work on | take in I've got 1o take the car in for service. | wash | hire | break into, steal

start Despite the cold, the car started first time. | run on sth cars that run on diesel |
do sth The car does 55 miles per gallon. The car was doing over 100 miles an hour. | pull out, turn
out What cheek! That car pulled out right in front of me! | drive off, pull away | overtake sb/sth,
pass sb/sth | accelerate | slow down | come to a halt, draw up, pull up, stop | skid, spin Her car
skidded on a patch of ice. | break down, stall | collide with sth, crash, hit sth, leave the road His
car hit a van coming in the opposite direction.

boot, door, engine, horn, key, phone, tyre, window a car boot sale (= an outdoor
sale where people sell things from the backs of their cars) | park, parking There's not enough car
parking in the town centre. | driver | dealer, salesman, showroom | accident, crash | wash | tax |
ferry

by ~ They take the children to school by car. | in a/the ~ I'll wait for you in the car.
cars on the roads The number of cars on the roads is increasing all the time. | a

make/model of car

Figure 13. Search results for car in collocation dictionary

When a specific word is searched in the collation dictionary, a list of verbs used with the word appears.
We collect these and store them in the collocation set. This process is performed twice for the first entity
name and the second entity name. The list of collocations generated from the entity name “Person” and
“Car” is as follows.

go by, travel by, drive, have, own, run, get in, get into, pile into, get out of, get out, stop, back, reverse,

overtake, pass, lose control of, leave, park, abandon, dump, build, make, manufacture, produce, repair,

service, work on, take in, wash, hire, break into, steal, start, run on, do, pull out, turn out, drive off,
pull away, accelerate, slow down...

Step 2. Search “Entity Namel + A verb extracted from the collocation set + Entity Name2” in

dictionary

and collect the example sentences

21

S B8 i)

HOARA | e - person drive car I TR

O Omo/sd O=E ©WE O=0/#el0 -]

person drive car 0f| CHEH 24 ZDpLIC

GIl2 (16.11421) # HAZoB7| | B 08 Ao| k|
EE] =1 = B (]
LEEL = 0z oz ES) P
EER] 201 23 ES) =3 s
2o E 13 i
] £ i
20SHE0 @
A EARDA (NHBTA | HIASIA | BoSEA & du g7
]They say you can leam a lot about a person from the car they drive. ¢ A
FEH (oK 10 SRGHE RHSSE BEAS U £ 0D 2ok | Bo B[
[2E11tis obvious to me that most "poor” people drive cars registered before 2001. 4 A
[EEEERIEEE]
(%4 The majority of people drive a car every day. « = -vou Al
[HS22] MEHS0| Y XS STeHE,
[0/2101 1 They're all CGL, people driving cars into helicopters. 4 Al
[EEEERIEEEE]

iay, they are concerned only about people driving cars and lorries. « Al

Figure 14. Search results for "person drive car' in Naver dictionary
Extracts the collocation one by one from the collocation set, and searches the combination of the
collocation and entity names from the dictionary. The example sentences that are searched are stored as
a list of example sentences of the corresponding collocations.
Step 3. Processing Part-of-Speech(POS) and Dependency analysis for each example sentence
Take an example sentence from the example sentence list and process Part-of-Speech and Dependency

analyze for each example sentence.

drives
root
man
: car
/ nsubj MJ_
th
edet a blue
det amod

Figure 15. The result of dependency analysis
POS tagging is the process of marking up a word in a text (corpus) as corresponding to a particular part

of speech, based on both its definition and its context. For example, POS tagging analysis for a sample

22

2 A28k

o

sentence “The man drives a blue car” is as follows.

“The man drives a blue car”

-> drives-VBZ (root)
-> man-NN (nsubj)
-> the-DT (det)
-> car-NN (dobj)
-> a-DT (det)
-> blue-JJ (amod)
Next to the POS tag is a dependency for each term, which has the structure as the Figure 15. The
dependency “root” is grammatical relation that points the root of the sentence. We proceeded with the
above analysis for each example, and when the relationship name is located in the root part and both
entity names exist in the example sentence, the example sentence is meaningful.

Step 4. Counting the occurrence of appropriate examples for each collocation verb

drive is : 150 build is : 20 meet is : 7

have is : 103 start is : 18 repair is : 5

make is : 70 produce is : 17 dump is : 5

leave is : 65 abandon is : 16 service is : 3

take is : 62 pass is : 13 reverse is : 2

stop is : 47 wash is : 10 accelerate is : 1
own is : 45 represent is : 10 stall is : 1

park is : 37 hire is : 9 manufacture is : 1
run is : 30 attractis : 9 skid is : 0

steal is : 26 crash is : 7 back is : 0

Figure 16. Occurrence of appropriate examples for "Person + collocation + Car"
Figure 16 shows how many appropriate examples exist for each word based on the collation list of entity
names “Person” and “Car”. According to the above results, the most appropriate relationship between

“Person” and “Car” is “drive”.

23

Step 5. The most frequently used verb is adopted as the final relationship name.

drives

Person —<>— Car

Figure 17. Result of "Person'" and "Car"

We have tested the algorithm with 19 entity name pairs and the result is shown in the figure 18.

Bank Car Customer Member Publisher Student Book Client Player Department

-Branch -Person -Order -Book -Book -Course -Topic -Account -Team -Project

open drive make write publish take cover open make fund

Student Nurse Doctor Member Employee Physician Order Employee Supplier

-Staff -Patient -Nurse -Librarian -Supervisor -Patient -Payment -Department -Order

have see get NONE NONE treat make have make

Figure 18. Result of 19 entity name pairs

4. Semi-Automated Schema Integration

In this section, we will proceed with the actual semi-automated schema integration by applying the
methodologies outlined above and the algorithms we have developed. The schemas used are shown in
Figures 2 and 3, and the schemas were preprocessed to convert them into XML document format. First,
in Figure 19, name conflicts are resolved. In this paper, only the relationship names are considered.

Therefore, the entity name is assumed to follow schema 1.

24

el e T

suggests receives
- Supplier <<~
-Supplier_Code
-Name
-Address
fulfills
refers has
Offer Order —% Payment
-Offer_Code -Order_Code -Invoice_Code
-Deadline -Priority -Date
-Date -Date -Amount
-Supply_Code
-Customer_Code
-Name
-Address
takes -Situation pays
<> Client <>

Figure 19. Change the name of elements (Schema 2)

suggests receives
- Supplier <
-Supplier_Code
-Name
-Address
fulfills
refers has
Offer Order —% Payment
-Offer_Code -Order_Code -Invoice_Code
-Deadline -Priority -Date
-Date -Date -Amount
Supply —O—
-Supply_Code -Customer_Code
-Name
-Address
pays
takes -Situation _~

Y

Client

Figure 20. Make “Supply_Code” into an entity (Schema 2)

25

Ty
o
sy
i
=
LY
-

Suggests receives
e Supplier <>
-Supplier_Code
-Name
< >—Address
fulfills
refers has
Offer Order —<% Payment
-Offer_Code -Order_Code -Invoice_Code
-Deadline -Priority -Date
-Date -Date -Amount
Supply —O—
-Supply_Code -Customer_Code
-Name
-Address
makes
akes -Situation _~

<>

Client

Figure 21. Apply the algorithm to conflicting or newly created relationship name (Schema 2)

suggests receives
e Supplier <~
-Supplier_Code
-Name
fulfils -Address
maintains
refers provides has
Offer —<>— Order —<>— Supply —<>— Payment
-Offer_Code -Order_Code -Supply_Code -Payment_Code
-Deadline -Priority -Quantity -Date
-Date -Date -Amount
has
—<> -Client_Code
-Name
places -Address makes
\takes -Payment_Status -
</ Client

Figure 22. Integrated schema — generated by tool (Si;,,;)

26

Ty
o
sy
i
=
LY
-

5. Evaluation

Now we have an integrated schema produced by a matching tool, named Si;,,;, and an expert

integrated schema Si,,,. Recall that this expert integrated schema is ideal. |S iexp| stands for the

number of elements in schema Si,y,. Thus, completeness, given by formula 1, represents the proportion

of elements in the tool integrated schema which are common with the expert integrated schema.

Minimality is computed thanks to formula 2, and it is the percentage of extra elements in the tool

integrated schema w.r.t. expert integrated schema. Both metrics are in the range [0; 1], with a 1 value

meaning that the tool integrated schema is totally complete (respectively minimal) related to expert

integrated schema.

B |Sttoot N Stexp|

comp(Sitools Stexp) = (1)
Stezp
o s Stisarl— |Stesar M Stos
min(Steool, Stezp) =1 — [Sitoo | 2o = (2)
|Stexp
The schema used for the evaluation was given from two experts.
suggests receives
> Supplier N
-Supplier_Code
-Name
fulfils -Address
maintains
refers follows has
Offer —<>— Order —<>— Supply —<>— Payment
-Offer_Code -Order_Code -Supply_Code -Payment_Code
-Deadline -Priority -Quantity -Date
-Date -Date -Amount
—<>— -Client_Code
places -Name
tak -Address makes
akes
<> . -Payment_Status _~
Client
Figure 23. Integrated schema — expert 1
27

suggests receives
Supplier
- -Supplier_Code
-Name maintains
-Address
fulfills
Supply -Supply_Code
-Quantity
supplies
Offer | : Payment
refers has
-Offer_Code < > -Payment_Code
— Order
-Deadline ~— -Date
-Date -Order_Code -Amount
-Priority
_Date places
-Client_Code
-Name
-Address
k
takes -Payment_Status makes
</ Client \>
Figure 24. Integrated schema — expert 2
comp (Sitool, Siexp) min (Sitool, Siexp) prox(Sitool, Siexp)
Siexp1 93.75% 87.5% 90.63%
Siexpz 87.5% 81.25% 84.38%

6. Limitations

Table 6. Results of schema similarity comparison

This algorithm selects and creates relationship names, but has the following limitations. First, this

algorithm deals only with binary relationships. No unary relationships or ternary relationships were

considered. Binary relationships can not be selected because two entity names are not given as input

values required. Ternary relations can not be applied to this algorithm because proper example sentences

can not be retrieved due to limitations of dictionary search function. Second, the algorithm generates a

relationship name based on a simple frequency only. For example, in the case of a relationship between

a person and a car, a relationship name "driving" through this algorithm is generated, but this may not be

appropriate for some domain. In the case of an insurance company database, the relationship name

between people and cars will be “insure”. On the other hand, in the case of a car sales company database,

28

the relationship between people and cars would be “purchase” or “buy”. To solve this problem, you first
need to know the domain of the target schema. However, even if you know the domain of the target
schema, it is not easy to know which verb is appropriate for that domain. The entity name, that is, the
noun, some method, such as TF-IDF, can be used to extract nouns that are often used in a particular
domain, but in verbs there is a variety of meanings in one verb, It is not easy to specify the domain of the
verb. Finally, if both entities are human, this algorithm can not extract a relationship name. This is
because the relationship between people and people can be very diverse. In the case of human nouns,

collocation dictionaries often do not search for collocations.

7. Conclusion

In the meantime, much research has been done on schema integration, and in recent decades efforts have
been made to build an automated schema integration system. However, most of the automated schema
integration studies in the past have used XML as the source schema and still require some intervention
by the DBA. The ER schema integration, which is difficult to be automatically performed, can be
automatically done by converting the ER model to xml on the system. Problems related to relationship
names that occur during the schema integration process entail more work than necessary for the DBA.

Using the relationship name generation algorithm can dramatically shorten this process.

29

Reference

1. Algergawy, Alsayed, Richi Nayak, and Gunter Saake. "Element similarity measures in X

ML schema matching." Information Sciences 180.24 (2010): 4975-4998.

2. Batini, Carlo, and Maurizio Lenzerini. "A methodology for data schema integration in th
e entity relationship model." IEEE Transactions on Software Engineering 6 (1984): 650-

664.

3. Batini, Carlo, Maurizio Lenzerini, and Shamkant B. Navathe. "A comparative analysis of
methodologies for database schema integration." ACM computing surveys (CSUR) 18.4

(1986): 323-364.

4. Beeri, Catriel, and Tova Milo. "Schemas for integration and translation of structured and
semi-structured data." International conference on database theory. Springer Berlin Heid

elberg, 1999.

5. Castano, Silvana, et al. "Conceptual schema analysis: techniques and applications." ACM

Transactions on Database Systems (TODS) 23.3 (1998): 286-333.

6. Chaffin, Roger, Douglas J. Herrmann, and Morton Winston. "An empirical taxonomy of
part-whole relations: Effects of part-whole relation type on relation identification." Lang

uage and Cognitive processes 3.1 (1988): 17-48.

7. Chen, Peter Pin-Shan. "English sentence structure and entity-relationship diagrams." Infor

mation Sciences 29.2 (1983): 127-149.

8. Chen, Peter Pin-Shan. "The entity-relationship model—toward a unified view of data." A

CM Transactions on Database Systems (TODS) 1.1 (1976): 9-36.

9. Chiticariu, Laura, Phokion G. Kolaitis, and Lucian Popa. "Interactive generation of integr
ated schemas." Proceedings of the 2008 ACM SIGMOD international conference on Ma

nagement of data. ACM, 2008.
30

10.

11.

12.

13.

14.

15.

16.

17.

Civelek, Ferda N., Asuman Dogac, and Stefano Spaccapietra. "An expert system approac
h to view definition and integration." Proceedings of the Seventh International Conferenc
e on Enity-Relationship Approach: A Bridge to the User. North-Holland Publishing Co.,

1988.

Diet, Jiirgen, and Frederick H. Lochovsky. "Interactive specification and integration of u
ser views using forms." Proceedings of the Eight International Conference on Enity-Relat

ionship Approach to Database Design and Querying. North-Holland Publishing Co., 1989.

Duchateau, Fabien, and Zohra Bellahsene. "Measuring the quality of an integrated schem

a." International Conference on Conceptual Modeling. Springer Berlin Heidelberg, 2010.

Gotthard, Willi, Peter C. Lockemann, and Andrea Neufeld. "System-guided view integrati
on for object-oriented databases." IEEE Transactions on knowledge and Data Engineering

4.1 (1992): 1-22.

Hakimpour, Farshad, and Andreas Geppert. "Resolving semantic heterogeneity in schema
integration." Proceedings of the international conference on Formal Ontology in Informa

tion Systems-Volume 2001. ACM, 2001.

Halevy, Alon, Anand Rajaraman, and Joann Ordille. "Data integration: the teenage years.
" Proceedings of the 32nd international conference on Very large data bases. VLDB En

dowment, 2006.

Hayne, Stephen, and Sudha Ram. "Multi-user view integration system (MUVIS): An exp
ert system for view integration." Data Engineering, 1990. Proceedings. Sixth International

Conference on. IEEE, 1990.

Jin, Sung, and Woohyun Kang. "Mapping Rules for ER to XML Using XML schema."
Proc. 10th Southern Association for Information Systems Conference. Jacksonville, Florid

a, USA. 2007.

31

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Kaul, Manfred, Klaus Drosten, and Erich J. Neuhold. "Viewsystem: Integrating heterogen
eous information bases by object-oriented views." Data Engineering, 1990. Proceedings.

Sixth International Conference on. IEEE, 1990.

Kwan, Irene, and Joseph Fong. "Schema integration methodology and its verification by

use of information capacity." Information Systems 24.5 (1999): 355-376.

Lee, MongLi, and TokWang Ling. "A methodology for structural conflict resolution in t
he integration of entity-relationship schemas." Knowledge and Information Systems 5.2

(2003): 225-247.

Madria, Sanjay, Kalpdrum Passi, and Sourav Bhowmick. "An XML Schema integration

and query mechanism system." Data & Knowledge Engineering 65.2 (2008): 266-303.

Melnik, Sergey, Erhard Rahm, and Philip A. Bernstein. "Rondo: A programming platfor
m for generic model management." Proceedings of the 2003 ACM SIGMOD internationa

| conference on Management of data. ACM, 2003.

Motro, Amihai. "Superviews: Virtual integration of multiple databases." IEEE Transaction

s on Software Engineering 7 (1987): 785-798.

Omar, Nazlia, J. R. P. Hanna, and Paul McKevitt. "Heuristic-based entity-relationship m
odelling through natural language processing." Artificial Intelligence and Cognitive Scien

ce Conference (AICS). Artificial Intelligence Association of Ireland (AIAI), 2004.

Passi, Kalpdrum, et al. "A model for XML Schema integration." International Conferenc

e on Electronic Commerce and Web Technologies. Springer Berlin Heidelberg, 2002.

Pottinger, Rachel A., and Philip A. Bernstein. "Merging models based on given correspo
ndences." Proceedings of the 29th international conference on Very large data bases-Vol
ume 29. VLDB Endowment, 2003.

Pottinger, Rachel, and Philip A. Bernstein. "Schema merging and mapping creation for r

32

28.

29.

30.

31.

32.

33.

34.

35.

36.

elational sources." Proceedings of the 11th international conference on Extending databas

e technology: Advances in database technology. ACM, 2008.

Rahm, Erhard, and Philip A. Bernstein. "A survey of approaches to automatic schema

matching." the VLDB Journal 10.4 (2001): 334-350.

Sheth, Amit P., and Sunit K. Gala. "Attribute relationships: An impediment in automatin

g schema integration." (1989).

Siegel, Michael, and Stuart E. Madnick. "Context interchange: sharing the meaning of d

ata." ACM SIGMOD Record 20.4 (1991): 77-78.

Spaccapietra, Stefano, and Christine Parent. "View integration: A step forward in solving
structural conflicts." IEEE transactions on Knowledge and data Engineering 6.2 (1994):

258-274.

Spaccapietra, Stefano, Christine Parent, and Yann Dupont. "Model independent assertions
for integration of heterogeneous schemas." The VLDB Journal—The International Journ

al on Very Large Data Bases 1.1 (1992): 81-126.

Storey, Veda C. "Understanding semantic relationships." The VLDB Journal—The Intern

ational Journal on Very Large Data Bases 2.4 (1993): 455-488.

Unal, Ozgul, and Hamideh Afsarmanesh. "Semi-automated schema integration with SAS

MINT." Knowledge and information systems 23.1 (2010): 99-128.

Wang, Stuart E. Madnick Y. Richard, et al. "CISL: composing answers from disparate i

nformation systems." (1989).

Wermter, Joachim, and Udo Hahn. "You can't beat frequency (unless you use linguistic
knowledge): a qualitative evaluation of association measures for collocation and term ext
raction." Proceedings of the 21st International Conference on Computational Linguistics a

nd the 44th annual meeting of the Association for Computational Linguistics, 2006.
33

Hl
i
P
Jfu

dojE ol ~A7|mf

AzEe 5] A8 Ak AR AR

R
Aedeti Ae

TS AR A2 0§ Fed olgolth Avlvt BEe

Qa7 WRe] 1EQ BE ATES AuiE 2w £

re
1
o
2

Ir
>
=
—
[>
[
N
E)
Fu

Abgata ofds] @ R ol o]~ wEAe Yol HesteF AT

sk AAE WA TEY 22 A= oy Hoj~

AT & ANk o] =oAL vk B A A

gAY HF sEe dAAds] ds dAEE Asor AT dudess o

ol & 7[Wte g sto] F53 dEss AdelAz s T8 &4 F F <dEE

HAEsEor 7 Ay o 90%° AgdEE Yebdd. o] duglss A&shd A7|vt

P ALl dlolg lol~ #ejake AdE A2t = e ol Agstd A7|vh T
AAEE FHShe el 2 &%l d Jlolth

IR = 271vk S5, Aol Ae, 83 $E, HASAREE, XML

gk 2015-20590

34

	1. Introduction
	2. Methodologies for semi-automated schema integration
	3. An algorithm for finding a relationship between entities
	4. Semi-Automated Schema Integration
	5. Evaluation
	6. Limitations
	7. Conclusion
	Reference

<startpage>6
1. Introduction 1
2. Methodologies for semi-automated schema integration 3
3. An algorithm for finding a relationship between entities 14
4. Semi-Automated Schema Integration 20
5. Evaluation 23
6. Limitations 24
7. Conclusion 25
Reference 26
</body>

