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Abstract

 We prepared dye-sensitized solar cells (DSSCs) with enhanced energy 

conversion efficiency using open-ended TiO2 nanotube arrays with a 

TiO2 scattering layer. As compared to closed-ended TiO2 nanotube 

arrays, the energy conversion efficiency of the open-ended TiO2 

nanotube arrays was increased from 5.63% to 5.92%, which is an 

enhancement of 5.15%. With the TiO2 scattering layer, the energy 

conversion efficiency was increased from 5.92% to 6.53%, which is an 

enhancement of 10.30%. After treating the open-ended TiO2 nanotube 

arrays with TiCl4, the energy conversion efficiency was increased from 

5.92% to 6.89%, a 16.38% enhancement, which is attributed to 

improved light harvesting and increased dye adsorption.

Dye-sensitized solar cells (DSSCs) were fabricated using open-ended 

freestanding TiO2 nanotube arrays functionalized with Ag nanoparticles 

(NPs) in the channel to create a plasmonic effect, and then coated 

with large TiO2 NPs to create a scattering effect in order to improve 

energy conversion efficiency. Compared to closed-ended freestandung 

TiO2 nanotube array-based DSSCs without Ag or large TiO2 NPs, the 

energy conversion efficiency of closed-ended DSSCs improved by 

9.21%(actual efficiency, from 5.86% to 6.40%) with Ag NPs, 

6.48%(actual efficiency, from 5.86% to 6.24%) with TiO2 NPs, and 
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14.50%(actual efficiency, from 5.86% to 6.71%) with both Ag NPs and 

TiO2 NPs. By introducing Ag NPs and/or large TiO2 NPs to 

open-ended freestanding TiO2 nanotube array-based DSSCs, the energy 

conversion efficiency was improved by 9.15%(actual efficiency, from 

6.12% to 6.68%) with Ag NPs and 8.17%(actual efficiency, from 

6.12% to 6.62%) with TiO2 NPs, and by 15.20%(actual efficiency, 

from 6.12% to 7.05%) with both Ag NPs and TiO2 NPs. Moreover, 

compared to closed-ended freestanding TiO2 nanotube arrays, the energy 

conversion efficiency of open-ended freestanding TiO2 nanotube arrays 

increased from 6.71% to 7.05%. We demonstrate that each component

—Ag NPs, TiO2 NPs and open-ended freestanding TiO2 nanotube 

arrays—enhanced the energy conversion efficiency, and the use of a 

combination of all components in DSSCs resulted in the highest energy 

conversion efficiency.

Keywords: open-ended freestanding TiO2 nanotube arrays; dye-sensitized 

solar cells; plasmonic; scattering; anodization

Student Number : 2002-30153
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1. 1. Anodization 

 Anodization of metal oxide has applications to prevent corrosion, to 

form capacitor dielectrics [1], to template nanomaterials [2-7], and to 

apply to catalysis, optics, and electronics [8-10]. Anodic aluminum 

oxide (AAO), known as porous anodic oxide, was first reported 

[11-14] and is now commercially available because its pores can be 

used as template for preparing nanostructures. Additionally, anodic 

metal oxide has been achieved on surface of many other metals such 

as tungsten [15], zirconium [16], titanium [17-19], tantalum [20], 

hafnium [21], niobium [22], and vanadium [23]. 

 The formation of anodic metal oxides is based on two continuous 

processes, one is oxide dissolution at the electrolyte/oxide interface and 

the other is oxidation of metal at the oxide/metal interface. To 

optimize the anodization condition for pore ordering and pore size, the 

electrochemical process and chemical reagents are more investigated 

[24, 25]. 

1. 1. 1. Titanium (Ti) anodization - Anodic titanium oxide (ATO) 

Anodic titanium oxide, TiO2 nanotubes, has better properties compared 

to many other forms of TiO2 for application in photocatalysis [26, 27], 
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gas sensors [28-31], photoelectrolysis [10, 32, 33], and photovoltaics 

[34, 36]. Since Zwilling reported the TiO2 nanotubes in chromic acid 

and hydrofluoric acid in 1999 [37], TiO2 nanotubes have been made in 

the fabrication, characterization, application, and formation mechanism 

[38]. 

 Gong reported TiO2 nanotubes in a 0.5 wt% HF aqueous solution at 

room temperature using different anodizing voltages as shown in Figure 

1. 1. [17]. 

Figure 1. 1. FE-SEM cross-sectional images of titanium oxide 

nanotubes. The sample was anodized in 0.5 wt% HF solution at 20 V 

for 20 min  [17].

 The film thickness could not be increased further from 400-500 nm 

using HF-based electrolyte. Fluoride solution dissolves the TiO2 by 

forming TiF6
2- anions. Too strong acidity of HF electrolyte results in a 

too fast dissolution of the TiO2. To overcome this problem, Mor 
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reported that addition of acetic acid to a 0.5 wt% HF electrolyte in a 

1:7 ratio was resulted in more mechanically robust TiO2 nanotubes 

without changing their shape and size [29, 39]. The surface 

morphology of TiO2 nanotubes are anodized in an electrolyte containing 

2.5 % HNO3 and 1 % HF at 20 V for 4 h showed a uniform, clean, 

regular TiO2 nanotube structure with a length about 400 nm that was 

reported by Ruan. An electrolyte of 0.5 M H3BO3, 2.5 % HNO3, and 

1 % HF in anodization at 20 V for 4 h led to irregular pore of TiO2 

nanotubes but long length of TiO2 nanotubes about 560 nm [40]. To 

increase the length of TiO2 nanotubes, Ti was anodized with KF or 

NaF in electrolyte [41]. The acidity of electrolyte might be controlled 

by adding HF, H2SO4 or Na2SO4 to adjust the balance of dissociation 

of TiO2 at the electrolyte/oxide interface and oxidation of TiO2 at the 

oxide/metal interface [42, 43].

Grimes and co-workers obtained TiO2 nanotubes up to approximately 

1000 mm using a variety of organic electrolytes such as dimethyl 

sulfoxide, formamide, ethylene glycol, and N-methylformamide as 

shown in Figure 1. 2. [19, 44, 45].
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Figure 1. 2. TiO2 nanotubes over 2 mm in thickness. (a) 

Cross-sectional view of self-standing TiO2 nanotubes, (b) top side of 

nanotube array film, (c) back side or barrier layer side of nanotube 

array film, and (d, e) cross sectional image of mechanically fractured 

nanotube array film showing its tubular nature [45].

The key of long length of TiO2 nanotubes is to minimize water 

content in the anodization bath to less than 5 %. In organic 

electrolytes, a little water content reduces the dissociation of the oxide 

in the fluorine containing electrolytes.

 Tahya reported that water content affect the morphology of titanium 
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oxide array films. [46]

Figure 1. 3. SEM images of TiO2 NTs grown by electrochemical 

anodization in NH4F + H2O + glycerol electrolyte at different H2O 

concentrations: (a) 0% H2O, (b) 20%, (c) 50%, and (d) 70%. The 

same NH4F concentration 0.5% was used in these experiments. [46]

1. 1. 2. Chemical reaction of Titanium anodization 

 The chemical reaction of titanium anodization should be the same as 

that of aluminum anodization [19, 38, 47, 48]. 
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 The anodization process begins with an initial oxide layer formed by 

interaction of the surface Ti4+ ions with oxygen ions in the electrolyte. 

In the initial stages of the anodization process, field-assisted dissolution 

dominates the chemical dissolution due to the relatively large electric 

field across the thin oxide layer. Further oxide growth is controlled by 

field-assisted ion transport (O2− and Ti4+ ions) through the growing 

oxide. The anode oxidation of titanium is shown in Figure 1. 4.

Figure 1. 4. Schematic drawing of adonization process. [49]

Anode: 

2H2O → O2 + 4e− + 4H+    
 = 6577.22 kJ

Ti(s)  +  O2 → TiO2     
  = −901.61 kj
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The overall anode reaction for anodic oxidation of titanium is 

represented as

Ti(s)  +  2H2O(l)  →  TiO2(s)  +  4H+  +  4e−   
 =   348 kJ

Meanwhile, hydrogen gas is released at the cathode that causes the 

flotation. The electrode reaction is described as follows:

Cathode:

4H+  +   4e−  → 2H2(g)

So the overall electrode reaction at this stage can be described as

Ti(s)  +  2H2O(l)  →  2H2(g)  +  TiO2(s)    
 = 439.98 kJ

After the formation of the oxide layer, the TiO2−Ti interface is locally 

activated, and the chemical and physical diffusions occur in the 

meantime. Small pores are formed first due to the localized dissolution 

of the oxide. Then, these pits are converted into bigger pores, and the 

pore density increases as governed by both electrochemical etching and 

chemical dissolution. Fluoride ions in the electrolyte have the ability to 

form water-soluble TiF6
2−, and their small ionic radius makes them 
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suitable to enter the growing TiO2 lattice and to be transported through 

the oxide by the applied electric field. After a while, the individual 

pores will interfere with each other, balance the available current, and 

finally reach a steady state condition, which results in a growth of the 

self-ordered nanotube structure. The nanotubes will grow steadily when 

the rate of TiO2 formation equals the rate of TiF6
2− formation and 

dissolution. The chemical dissolution process of the oxide is described 

as a chemical reaction

TiO2(s)  +  6F− +  4H+  →  TiF6
2−  +  2H2O    

 =  348 kJ

 The basic premise of electrochemical anodization is the competition 

between the formation of the compact TiO2 layer and the 

formation/dissolution of Ti4+ in the nanotube TiO2 layer. After the 

formation of the compact TiO2 oxide layer, Ti4+ ions at the metal−

oxide interface will move toward the oxide−electrolyte interface under 

the applied electric field, as illustrated in Figure 1. 5. [50]
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Figure 1. 5. Growth of regular TiO2 nanotubes: (a) cathodic reaction, 

(b) anodic reaction,(c) transition state of TiO2 layer, (d) starting of 

nanotube formation and (e) TiO2 nanotubes [51].

1. 1. 3. Formation of TiO2 nanotubes 

The pores are developed from pits on the Ti plate surface and a 

schematic diagram for the equifield strength model as shown in Figure 

1. 6.
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Figure 1. 6. Schematic diagram of the evolution of titania nanotubes in 

anodization as follows: (a) oxide layer formation; (b) pore formation 

on the oxide layer; (c) chimbs formation between pores; (d) growth of 

the pores and the chimbs; (e) fully developed of the titania nanotube 

arrays. [52]

 The initiation and growth of pores are associated with accelerated 

dissolution of TiO2 with an influence of electric field. Many defects 

like impurities, dislocation, grain boundaries, or nonmetallic inclusions 

could cause a faster dissolution rate and lead to a pit growth [53, 54]. 

When Ti4+ cations are gotten out from the oxide surface that are 

caused by an applied field, Ti4+ cation vacancies can arise and 

accumulate to form high density voids in the oxide layer, which can 

help the propagation of pits [55, 56]. The pores are developed from 
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pits after dissolution, oxide at the electrolyte/oxide interface, and 

oxidation, titanium metal at the oxide/metal interface, are stable.  

1. 1. 4  Anodization condition and annealing

 For good appearance of titanium oxide array, anodization voltage is 

somewhat important. In Yahya’s report, titanium oxide suitably evolute 

to anatase at 500℃ in regular Voltage of 60s. 

 After anodization period, array was dealt in high temperature 

annealing. Through annealing process, titanium oxide expand its 

crystallography and strength. In Figure 1. 7, recommended anodization 

condition is 60V anodization and about 500℃ annealing temperature. 
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              (a)                                (b)

Figure 1. 7. (a) GAXRD spectra of TiO2 NTs grown at 0.7% acid 

concentration as a function of annealing temperature. Samples were 

annealed in temperature range of 300–800℃ with 100℃ step. A, R, and T 

refer to anatase, rutile, and titanium, respectively. (b) (101) anatase XRD 

diffraction peak of TiO2 NTs as a function of anodization voltage. [46]
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1. 2. Dye Sensitized Solar Cell

1.2.1. Overview

The first embodiment of modern day Dye-sensitized Solar Cell (DSC) 

dates back to late 1980s. [57] However, not until the fundamental 

work of Grätzel and O’Regan in 1991, [58]  it was proven that DSCs 

can be a feasible alternative energy source. They built the first DSSCs 

which showed 7.1% energy conversion efficiency. [58] After that work, 

numerous studies had been reported. [60-68] 

 Although the power conversion efficiency of DSSCs is not as good 

as compared to other inorganic 1st and 2nd generation solar cells, it 

has an edge over them at some points.

 In the normal operating temperature range of 25–65⁰C, DSSCs 

efficiency is nearly temperature-independent. In diffuse sunlight or 

cloudy conditions, DSSCs shows even better efficiency than 

polycrystalline Si solar cell. Performance is less sensitive to the 

incident angle of the light radiation. Although a mass commercial 

production of DSSCs is still not available, it can be expected that it 

has a cost advantage over all thin film devices. Only low cost and 

abundantly available materials are needed. DSSCs materials are 

biocompatible and abundantly available.
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  Figure 1. 8. Cross section of dye-sensitized solar cell [62, 67]

1. 2. 2. Components of DSSCs

 DSSCs has four components, semiconductor, sensitizer(dye), 

electrolyte, counter electrode.

1. 2. 2. 1 Semiconductor

 The semiconductor as a photoanode in DSSCs provides multi-function 

as supporter of sensitizer(dye) to load, and transporter of excited 

electrons from sensitizer to external circuit. 

 Among potential electron acceptors for DSSCs, TiO2 is the most 

versatile. It delivers the highest efficiencies, is chemically stable, 

non-toxic, and available in large quantities. Generally, TiO2 

nanoparticles (NPs) have several crystal phase, such as rutile, anatase, 

and brookite. Its anatase nanocrystalline form gives the most efficiency 
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with optimization of surface area, porosity, pore diameter, transparency 

and film thickness. TiO2 is the semiconductor of choice due to its 

wide bandgap, nanoporous structure with large surface area and, 

suitable HOMO and LUMO alignment with the electrolyte and dye 

respectively. The rutile phase has a bandgap of 3 eV, while 3.2 eV 

for anatase; corresponding to photon absorption edge of 413 and 388 

nm. [60, 69, 70]

1. 2. 2. 2 Dye

 The photo sensitizer dye is the heart of operation of DSSCs. The dye 

molecule commonly used in DSSCs are polypyridyl-type ruthenium 

(Ru) complexes such as namely N719 and N3 dye. [59, 60, 71, 72, 

73] Upon sensitization of the semiconductor film, the dyes form a 

monomolecular coating, with the stoichiometry of the anchored 

photosensitizer as high as ~1:100 (Ru per Ti). [74] Stringent 

engineering of the dye is necessary for efficient light absorption, 

charge injection and collection of the cell. It is well-known that the 

Ru complexes absorb the visible light due to a metal to ligand charge 

transfer (MLCT) process. Furthermore, it has a proper excited and 

ground state energy levels, relatively long excited-state lifetime, and 

high chemical stability. [71]
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1. 2. 2. 3 Electrolyte

 In DSSCs, electrolyte act as reductor to regenerate of the oxidized 

dye. [75] The iodide/triiodide electrolyte system is commonly used. It’s 

advantage is easy preparation, high conductivity, good permeability, and 

fast oxidation of I― at the photoanode/electrolyte interface. [76, 78]

 Incorporation of 4-tertbutylpyridine in the electrolyte increases the 

open-circuit voltage and fill factor by decreasing the dark current at 

the semiconductor-electrolyte junction.

The following relation holds for regenerative photo-electrochemical 

systems,

 Where Iinj is the charge flux from sensitizer injection, Ket is the rate 

constant for triiodide reduction and ncb is the electron concentration on 

the semiconductor surface. [60] Although the TiO2 surface is covered 

by a dye monolayer, the reduction of triiodide by conduction band 

electrons causes the dark current. Due to its relatively small size the 

triiodide ions either cross the monolayer or have entrance to 

nanometer-sized pores into which the dye molecules cannot enter. In 
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the latter case, the surface of TiO2 is exposed to redox mediator. 

4-tert-butylpyridine effectively decreases the rate of the reduction of 

triiodide, increasing the open-circuit voltage of the cell. [75-83]

1. 2. 2. 4 Counter Electrode

 Platinum coated FTO glass substrate is used to as the counter 

electrode for DSSCs. The counter electrode has a multiple role as a 

catalyst to regenerate the eletrolyte and electron collector from external 

circuit. [84] Thus, the counter electrode should have advantages of 

high catalytic activity and electrical conductivity. [85] Pt counter 

electrode fulfilled this purpose. 

 RF sputtered Pt layer showed a good performance, however, for a 

nanoporous titania film fully optimized for efficient light absorption, 

chemically deposited platinum from a solution of 0.05 M 

hexachloroplatinic acid can perform alike.

 The electrode substrate TCO affects the cell performance in 2 ways. 

The sheet resistance of the FTO influences the series resistance of the 

cell and the transmittance control the light absorption. Considering 

sheet resistance, the lower the better, but lower FTO sheet resistance 

require thicker FTO layer causing reduced light transmittance and 

efficiency. [95, 98-100]



- 37 -

1. 2. 3 Basic Operating Principle

 The DSSCs is the useful photovoltaic device that utilizes separate 

mediums for light absorption/carrier generation (dye) and carrier 

transport (TiO2 nano-particles). 

 Fig. 1. 9. Principle of operation of DSSCs. [86]

 DSSCs include a substrate of fluorine-doped SnO2 conducting glass 

(FTO), a porous nanocrystalline semiconductor oxide (the most 

employed is TiO2) film sensitized by a dye (typically bipyridine 

ruthenium complexes) for absorbing visible light, a redox electrolyte 

(usually an organic solvent containing a redox system, such as 

iodide/triiodide couple) layer for deoxidizing oxidized dye, and a 
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platinized cathode to collect electrons and catalyze the redox couple 

regeneration reaction [58, 62, 65]. 

 The light-to-electricity conversion in a DSSC is based on the injection 

of electron from the photoexcited state of the sensitized dye into the 

conduction band of TiO2. The dye is regenerated by electron donation 

from iodide in the electrolyte. The iodide is restored, in turn, by the 

reduction of triiodide at the cathode, with the circuit being completed 

via electron migration through the external load.

 The voltage generated under illumination corresponds to the difference 

between the Fermi level of the electron in the TiO2 and the redox 

potential of the electrolyte. Overall, the device generates electric power 

from light without suffering any permanent chemical transformation [58, 

62, 87, 88].

 The photoelectric chemical process in DSSC can be expressed as 

equations. (1)–(6). 

  TiO2|S + hv → TiO2|S*                            excitation (1)

  TiO2|S* → TiO2|S+ + e– (CB)                       injection (2)

  TiO2|2S+ + 3I– → TiO2|2S + I3–                 regeneration (3)

  I3– + 2e–(Pt) → 3I–                             reduction  (4)



- 39 -

  I3– + 2e–(CB) → 3I–                 recaption(dark reaction) (5)

  TiO2|S+ + e–(CB) → TiO2|S        recombination(dark reaction) (6)

 The photoexcited electron injects into the conduction band of TiO2. 

[71, 89-91] The dark reaction equation (5) and (6) also occur during 

the light-to-electricity conversion, but do not play a remarkable 

negative effect on photovoltaic performance of DSSCs owing to their 

slow reaction speed compared with that of equation (2) [92-94].

The operation steps are the following.

1. 2. 3. 1 Excitation

 The light is absorbed by a sensitizer dye molecule, it goes over an 

electronic state change from the ground (S) to the excited state (S*). 

The lifetime of the excited state is in the order of nanoseconds.

1. 2. 3. 2 Injection

 The sensitizing dye molecules are adsorbed on the surface of a wide 

band gap semiconductor (typically TiO2). Upon absorption of a photon 

(excitation), the dye gains the ability to transfer an electron to the 

conduction band of the semiconductor. The internal electric field of the 

nanoparticles causes the electron extraction and the dye becomes 
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oxidized (S+). The injection rate constant is in the femtosecond range 

for singlet state.

1. 2. 3. 3 Diffusion in TiO2

 The nonporous TiO2 film consists of spherical anatase particles of 

diameter ~20 nm. The presence of oxygen vacancies in the lattice 

makes it a weakly n-doped material. [71, 72] As the TiO2 particle 

diameter is too small for electric field to build up, the dominant 

electron transport mechanism is diffusion via trapping and de-trapping.

1. 2. 3. 4 Iodine Reduction

The electron travels through the outer circuit performing work, reaches 

the back FTO electrode, and reduces the iodine in the electrolyte. The 

platinum layer on the FTO acts as a catalyst for the reduction. The 

dark cathode reaction: 

 The iodine reduction can also occur at the excited dye molecules 

causing recombination of the photo-generated electrons. For efficient 

charge transfer, the rate of iodine reduction at the counter electrode 

has to be orders of magnitude faster than the recombination at the 

TiO2/electrolyte interface.
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1. 2. 3. 5 Dye Regeneration

The reduced iodide ion replenishes the highest occupied molecular 

orbital (HOMO) of the dye - regenerating its original form, and makes 

it ready for electron generation again. 

 

 The photoanode reaction:

                        

 This prevents buildup of S+, which could lead to the conduction band 

electrons going back to the dye molecules. The maximum output 

voltage equals to the difference between the Fermi level of the 

semiconductor and the redox potential of the mediator. [72]

 Thus, the device is can produce electricity from light without 

undergoing any permanent physical and chemical change.

Figure 1. 10. The overall catalytic cycle of the sensitizer during 

DSSCs operation [68]
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1. 2. 4 Solar Cell Terminologies

1. 2. 4. 1 Equivalent circuit of solar cells

 A current source in parallel with a forward biased diode expresses the 

equivalent circuit of an ideal solar cell. Series and parallel resistances 

are added to account for various loss mechanisms.

Figure 1. 11. Equivalent circuit of (a) an ideal solar cell and (b) a 

practical solar cell. [95]
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 Under illumination a solar cell works like a current source, providing 

a current density of Jph. A proportion of this current counteracts the 

junction current of the diode, and the residual current flows to the 

load. According to Shockley’s theory, the junction current density of 

the diode is presented by: 

Jd  =  J0[exp(qV/kBT) - 1]

(T : temperature, kB : Boltzmann constant, J0 : the reverse saturation 

current density (in a p–n junction solar cell, J0 represents the current 

density of minority carriers, which is a summation of the hole current 

in the n region and the electron current in the p region), V : the 

output voltage)

 Series resistance Rs and shunt resistance Rsh have to be taken into 

account in a practical solar cell, whose equivalent circuit is shown in 

Figure 1. 11(b). Rs is composed of the resistance of the bulk active 

layer, the resistance of electrodes and the contact resistance between 

the active layer and the electrodes, etc. 

 Rsh originates from various kinds of current leakage, such as current 

leakage in the p–n junction, current leakage from the edge of the cell, 

current leakage induced by impurities in the cell, etc.
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1. 2. 4. 2 Short-circuit Current

 In closed circuit, short-circuit Current is the current obtained from the 

cell when short-circuited or in other words when the load resistance is 

zero. Solar cell current is normally represented as current density, Jsc:

where A is the effective area of the solar cell. [69]

1. 2. 4. 3 Open-circuit Voltage

Open-circuit voltage is the maximum voltage available from a solar 

cell and is obtained when a load with infinite resistance is attached to 

its terminals. It is a function of the semiconductor bandgap and charge 

recombination in the cell. For DSC the Voc is given by:

where, n is the number of electron in TiO2 conduction band and NCB 

is the effective density of states. [96] The first two terms defines the 

quasi-fermi level of TiO2 and Eredox is the Nernst potential of the 

redox mediator.
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Light I-V response(below line) and dark I-V response(upper line).

Figure 1. 12. Typical current-voltage relationship of a solar cell. [95, 

97]

1. 2. 4. 4 Series Resistance

 Series resistance, RS in a solar cell is the result of contact resistance 

and charge transfer resistance in the semiconductor material. Series 

resistance reduces the fill factor affecting the maximum power output, 

while excessively high value of RS can also reduce the short-circuit 

current. The open-circuit voltage is not affected since, at VOC the total 
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current flow through cell itself and hence through the series resistance 

is zero. An approximation of the series resistance can be determined 

from the slope of the IV curve at the open-circuit voltage point. [98, 

99, 100]

Figure 1. 13. Current-voltage response of a solar cell with series and 

shunt resistance.
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1. 2. 4. 5 Shunt Resistance

 

 Low shunt resistance, Rsh provides an alternate current path for the 

photo-generated current causing significant power loss. The effect of 

low shunt resistance is reduced fill factor and lower open-circuit 

voltage affecting the maximum power output. The short-circuit voltage 

is not affected unless for a very low value, since at JSC the total 

current flows

through the outer path and hence through the shunt resistance is low. 

An approximation of the shunt resistance can be calculated from the 

slope of the I-V curve at the short circuit current point. [95]

1. 2. 4. 6 Fill Factor

The fill factor (FF) is a measure of the maximum power output from 

a solar cell. It represents the squareness of the I-V curve and is 

defined as the ratio of the maximum power to the product of VOC and 

ISC for the solar cell:

 Where, Vm and Im are the voltage and current at maximum power 

point. Fill factor, being a ratio of the same physical parameters, has no 

unit. Fill factor is a function of the series and shunt resistance of the 

solar cell. For DSC, it reflects the extent of electrical and 
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electrochemical losses during cell operation. To obtain higher fill factor 

improvement of the shunt resistance and decrement of the series 

resistance, with reduction of the overvoltage for diffusion and charge 

transfer is required. [101]

1. 2. 4. 7. Efficiency

The efficiency of a solar cell is defined as the ratio of maximum 

electrical energy output to the energy input from the sun. Thus the 

mathematical definition of Efficiency:

where, Pin is the power input from the sunlight. Efficiency is generally 

expressed in percentage. [89]

1. 2. 4. 8. Quantum Efficiency

 Quantum efficiency (QE) or ‘External Quantum Efficiency (EQE)’, 

sometimes also referred to as Incident Photon to Charge Carrier 

Efficiency (IPCE) is a measure of how efficient a solar cell is in 

producing photo-generated charge at a given frequency. It is defined as 
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the photocurrent density produced in the external circuit under 

illumination condition, divided by the photon flux of excitation 

wavelength. [71]

 For DSSCs, the term is defined as:

IPCE wavelengh × photon f lux

photocurrentdensity

Where, LHE(λ) is the light-harvesting efficiency at excitation 

wavelength λ, Φ(inj) is the electron injection quantum yield for the 

excited sensitizer to the semiconductor oxide conduction band and η

(coll) is the efficiency for the collection of electrons. [71, 102]
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1. 3 Additional strategies to enhance the efficiency of DSSCs

1. 3. 1 Blocking Layer

 Charge recombination is one of the main reasons of lower current for 

DSC. Recombination occurs at both Electrode/Electrolyte and 

TiO2/Electrolyte interface. A compact blocking layer of TiO2 by RF 

sputtering [103] or spray pyrolysis [104] between the conducting 

electrode and the nanocrystalline TiO2 layer can effectively prevent the 

recombination at electrode/electrolyte interface. Introduction of this layer 

prevents electrolyte from reaching the electrode (increases JSC) and also 

enhance electron transport from nanocrystalline titania to the electrode 

(increases VOC). This blocking layer is absolutely necessary for planar 

organic dyes, while ruthenium based sensitizers can perform this anode 

insulation themselves against recombination losses. [105, 106]

A rather cost effective and easier way of incorporating this blocking 

layer is through hydrolysis of TiCl4. TiCl4 treatment on FTO substrate 

is found to suppress the dark current, shifting its commencement by 

some hundred millivolts. This is due to a positive shift in the 

conduction band edge of highly doped SnO2 by about 0.5 V which 

results in a higher electron density in the FTO substrate. [107] 
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1. 3. 2 TiCl4 Treatment

To reduce charge recombination at TiO2/electrolyte interface, another 

blocking layer of TiO2 is implemented via TiCl4 treatment with 

subsequent annealing. The average pore diameter and specific surface 

area decreases with the TiCl4 treatment, because of the surface 

epitaxial growth of TiO2, resulting in particle-necking and a new TiO2 

layer. The increase of the inter-particle necking will reduce the 

resistance in electron transport through the nanoparticles reducing the 

recombination probability. At the same time, it improves the surface 

roughness factor and light absorbance. [107] These lead to a decrease 

in the dark current and an increase of the photocurrent. [108] 

 Hydrolysis from the acidic TiCl4 solution prevents deposition of 

impurities in the TiCl4, such as Fe3+, because of the higher solubility 

of iron oxide compared to TiO2. The P25 powder, which is the most 

common source of producing nanocrystalline Titania, contains as far as 

100 ppm of Fe2O3, which is known for causing interference with 

electron injection from the excited state of the dye. The TiCl4 

treatment covers this relatively impure semiconductor core with a TiO2 

thin layer of ultra-high purity. This improves the injection efficiency 

and the blocking character of the semiconductor-electrolyte junction. 

[60, 83]
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 Theoretically, this overlayer can be formed of other metal–oxide films 

(examples include MgO, ZnO, Al2O3, and Nb2O5) which have 

conduction band edges higher than TiO2. [109]

 The performance of these oxides depends on their protonation / 

deprotonation capability of the TiO2 surface, which enhances dye 

adsorption and a positive shift of the TiO2 flat band. [110] For 

example, Al2O3 being basic, will tend to deprotonate the TiO2 film, 

resulting in the improvement in cell performance.

1. 3. 3 Light Scattering Layer

 One limitation of the sensitizing dyes is their poor performance in the 

near infra-red spectrum of light. A way of improving this is - by 

introducing an additional light scattering layer of larger titania particles. 

These can be mixed with or screen-printed on top of the film of 

15-30nm sized TiO2 particles. This allows the scattered photons to be 

contained in the film by means of multiple reflections, increasing their 

optical path length substantially beyond the film thickness. 

Consequently, the solar light absorption is enhanced, especially in the 

red to near-IR regions. With the use of 200-400nm sized anatase 

particles as light-scattering centers, an increment of the JSC by 3-4 
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mA/cm2 was observed for N719-based DSCs because of the enhanced 

light absorption.

 Moreover, approximately 4% loss occurs because of the reflection of 

incident light on the glass substrate. This can be partially overcome by 

introducing an anti-reflecting film, which can also act as a UV cut-off 

filter. [107, 111-131]

1. 4 Plasmonic DSSCs

1. 4. 1. Surface plasmon resonance for solar cells 

 Plasmonic solar cells are photovoltaic devices that are used the noble 

metal surface plasmons. Surface plasmons are the collective oscillation 

of excited free electrons.

  Most of solar cells have a weak absorber. To trap the more 

absorption and long wavelength of light, the morphology of substrate is 

etched like pyramids with a size of 2-10 mm that is about 

wavelength-scale texture. This structure not only increases the light 

trapping to solar cell, but also increases the surface recombination and 

low material quality. [132, 133]

 Another is to use the noble metal nanoparticles in the solar cells. The 
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light is absorbed and scattered from noble metal nanoparticles that is 

excited at the surface plasmon resonance. It has been based on Raman 

scattering that can be increased by order of magnitude when the metal 

nanoparticles are used [134, 135].

 Surface plasmon resonance (SPRs) are coherent oscillations of free 

electrons at the boundaries between metal and dielectric which are 

often categorized into two classes: (1) propagating surface plasmons 

(PSPs), which generate at the metal film and (2) localized surface 

plasmons (LSPs), which generate at the metal NPs. [136-139]

  In the case the case of PSPs, surface electromagnetic field 

propagates along the dielectric interface of metal in the x-/y-directions, 

but decays exponentially in the z-direction [137, 140, 141]

 Whereas in LSPs, metallic NPs interact with light when they are 

much smaller than the incident wavelength, leading to a polarization at 

the surface of metal NPs. Consequently, induce a strong enhancement 

of electromagnetic filed in the near-field region (resonance 

amplification), polarization make oscillate electrons locally at the 

surface of metal NPs. Therefore, light absorption can be enhanced 

strongly, as depicted in figure [137, 140, 141]
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Figura 1. 14. Schematic diagrams illustrating (a) a surface plasmon 

polariton (or propagating plasmon) and (b) a localized surface plasmon. 

[140]
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1. 4. 2 Localized surface plasmon resonance

 Localized surface plasmons (LSPs) are associated with the collective 

oscillations of electrons confined locally by metal nanostructures. The 

most representative examples of LSPs are metal NPs. The particle 

plasmons are excited when the frequency of the incident photons 

matches the resonance frequency of the NPs. Their resonance 

wavelength depends on the particle shape, size, and the dielectric 

parameters of the surrounding environment. From the quasistatic 

approximation, the polarizability (P) of a spherical NP can be 

expressed as:

P = 
  

  
  [142]

Where  is the diameter of the NP and  and  are the dielectric 

constants of the surrounding dielectric medium and of the metal NP 

itself, respectively. [142] From equation, we conclude that the value of 

P reaches its maximum when  is equal to –2, resulting in a 

resonance condition. Because the excited plasmons are localized and 

cannot propagate within the nanostructure, this process is known as 

localized surface plasmon resonance (LSPR).
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1. 4. 3. Plasmonic effects in solar cells 

 Proposal mechanism of plasmonic solar cells is to explain 

photocurrent improvement by metal nanoparticles that are incorporated 

into or on solar cells as shown in Figure 1. 15. One is scattering from 

the metal nanoparticles. The role of metal nanoparticles is used as 

subwavelength scattering elements to couple and trap propagating plane 

waves from the Sun into semiconductor thin film, by folding the light 

into a thin absorber layer as shown in Figure 1. 15. (a). In inorganic 

plasmonic solar cells, the photocurrent improvement is increased by 

scattering from metal nanoparticles. Another is near-field enhancement 

from metal nanoparticles. Metal nanoparticles are used as 

subwavelength antennas in which the plasmonic near field is coupled 

to the semiconductor, increasing its effective absorption cross-section as 

shown in Figure 1. 15. (b). In organic plasmonic solar cells, the 

photocurrent improvement is increased by near-field enhancement. The 

other is direct generation of charge carriers in the semiconductor 

substrate. A corrugated metallic film on the back surface of a thin 

photovoltaic absorber layer can couple sunlight into surface plasmon 

polaritons (SPP) modes. Surface plasmon polaritons are supported at 

the metal/semiconductor interface as well as guided modes in the 

semiconductor slab. Accordingly, the light is converted to photocarriers 

in the semiconductor as shown in Figure 1. 15. (c). [143].
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Figure 1. 15. Plasmonic light-trapping geometries for thin-film solar 

cells. (a) Light trapping by scattering from metal nanoparticles at the 

surface of the solar cell. Light is preferentially scattered and trapped 

into the semiconductor thin film by multiple and high-angle scattering, 

causing an increase in the effective optical path length in the cell. (b) 

Light trapping by the excitation of localized surface plasmons in metal 

nanoparticles is embedded in the semiconductor. The excited particles’ 

near-field causes the creation of electron–hole pairs in the 

semiconductor. (c) Light trapping by the excitation of surface plasmon 

polaritons at the metal/semiconductor interface. A corrugated metal back 

surface couples light to surface plasmon polariton or photonic modes 

that propagate in the plane of the semiconductor layer [143].





Chapter 2 Experimental Section
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2. 1. Preparation of TiO2 nanotubes arrays

2. 1. 1. Materials

Titanium plate (Alfa aesar, 99.7% purity, 0.25 mm thickness), 

ammonium fluoride (NH4F, Showa Chemical Co., 97.0%), ethylene 

glycol (Daejung chemical, 99%), hydrogen peroxide (H2O2, Daejung 

chemical, 30%), fluorine-doped tin oxide(FTO) glass (Pilkington, 

TEC-A7), Titanium diisopropoxide bis(acetylacetonate) solution (Aldrich, 

75 wt% in isopropanol), n-butanol (Daejung chemical, 99%), TiO2 

paste (Ti-Nanoxide T/SP, solaronix), scattering TiO2 paste (18NR-AO, 

Dyesol), silver nitrate (AgNO3, Aldrich, 99%) titanium chloride (TiCl4, 

Aldrich, 0.09 M in 20% HCl), Dye (cis-diisothiocyanato-bis 

(2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium(II) bis(tetrabutylammonium), 

N719, Solaronix), chloroplatinic acid hexahydrate(H2PtCl6·6H2O, 

Aldrich), 1-butyl-3-methyl-imidazolium iodide (BMII, Aldrich, 99%), 

iodine (I2, Aldrich, 99%), guanidium thiocyanate (GSCN, Aldrich, 

99%), 4-tertbutylpyridine (TBP, Aldrich, 96%), acetonitrile (CH3CN, 

Aldrich, 99.8%), valeronitrile (CH3(CH2)3CN, Aldrich, 99.5%)
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2. 1. 2. Titanium (Ti) Anodization 

 TiO2 nanotubes were fabricated by anodizing thin Ti plates (99.7 % 

purity, Alpha, 2.5 cm x 4.0 cm x 200 m) in an electrolyte composed 

of 0.8 wt% of NH4F and 2 vol% of H2O in ethylene glycol at 25℃ 

and at a constant applied voltage of 60 V DC for 2 h as shown in 

Figure 2. 1. [45, 144, 145]. 

Figure 2. 1. Schematic diagram of titanium (Ti) anodization. 
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2. 1. 3. Preparation of free-standing crystallized TiO2 nanotubes 

The Ti plate-formed TiO2 nanotubes arrays were annealed at 450℃ for 

1 h under an ambient atmosphere to improve their crystallinity. To 

detach the free-standing TiO2 nanotube arrays from the Ti plate, a 

second anodization was done at a constant applied voltage of 30 V 

DC for 10 min, and then the plate was immersed in the 10 % of 

H2O2 for 24 h [146]. 

2. 1. 4. Preparation of free-standing crystallized TiO2 nanotube arrays

To prepare TiO2 nanotube arrays, the barrier layer of TiO2 nanotubes 

was etched. However, free-standing crystallized TiO2 nanotubes was 

very stable in chemicals. So the barrier layer was not etched by acidic 

or basic condition. 

The barrier layer of TiO2 nanotubes was removed by ion milling with 

Ar+ bombardment for several minutes to prepare open-ended 

freestanding TiO2 nanotube arrays. [146, 147]. 
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2. 2. Fabrication of dye-sensitized solar cells based on TiO2 nanotubes 

array with scattering layer

2. 2. 1. Overview of DSSCs manufacturing

Figure 2. 2. Configuration of the dye sensitized solar cells. [107]
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2. 2. 2. Preparation of blocking layer 

A TiO2 blocking layer was formed on fluorine-doped tin oxide (FTO) 

glass by spin-coating with 5 wt% of titanium di-isopropoxide 

bis(acetylacetonate) in butanol and then by heating at 450℃ for 30 

min under ambient conditions. [106]. 

2. 2. 3. Introduction to TiO2 nanotubes arrays on FTO glass 

TiO2 nanotubes or nanomembranes were attached on the fluorine-doped 

thin oxide (FTO) glass formed a TiO2 blocking layer on its surface by 

using TiO2 nanoparticles viscous paste. The viscous TiO2 paste (from 

Solaronix) was printed onto FTO glass by the doctor blade technique 

and the closed- and open-ended TiO2 nanotube arrays were introduced 

on the paste. The substrate was then sintered at 450℃ for 1 h under 

ambient conditions.
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2. 2. 4 Adapting scattering layer

The TiO2 scattering layer (~400nm-diameter particles) was coated onto 

the closed- and open-ended TiO2 nanotube arrays using a doctor blade 

and sintered at 450℃ for 30 min under ambient conditions.

2. 2. 5. TiCl4 treatment 

 TiO2 nanotubes arrays on FTO glass were treated with TiCl4 by 

dipping the plate in a 0.1 M TiCl4 aqueous solution for 30 min and 

then sintered at 450℃ for 30 min. By the sintering process, the crystal 

structure of TiO2 nanoparticles was changed to anatase. 

2. 2. 6. Dye absorption 

 Dye molecules were absorbed by immersing the nanotube 

film-attached FTO glass plate in an ethanol solution of 0.5 mM 

cis-diisothiocyanato-bis(2,2’-bipyridyl-4,4’dicarboxylato) ruthenium(II) bis 

(tetrabutylammonium), (N719, Solaronix), at 50℃ over 8 h. 
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2. 2. 7. Electrolyte 

The composition of the electrolyte was as follows: 0.7 M 

1-butyl-3-methyl-imidazolium iodide (BMII), 0.03 M I2, 0.1 M 

guanidium thiocyanate (GSCN), and 0.5 M 4-tertbutylpyridine (TBP) in 

a mixture of acetonitrile and valeronitrile (85:15 v/v). 

2. 2. 8. Counter electrode 

The counter-electrode was prepared by sputtering Pt on FTO glass or 

prepared by spin-coating the H2PtCl6 in isopropanol on FTO glass and 

then sintering at 400℃ for 20 min [106]. 

2. 2. 9. Fabrication of DSSCs 

The working electrode was further sandwiched with the Pt-coated FTO 

glass, separated by a 60-μm-thick hot-melt spacer. 
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2. 3. Fabrication of DSSCs with freestanding TiO2 nanotube arrays 

with channels containing Ag NPs 

2. 3. 1. Same the former process of free standing TiO2 nanotube 

arrays with scattering layer

 Former process of free standing TiO2 nanotube arrays with scattering 

layer, preparation of blocking layer and introduction to TiO2 nanotube 

arrays on FTO glass, are same.

2. 3. 2. Ag nanoparticle formation 

 The substrate was dipped in 0.3 mM AgNO3 aqueous solution and 

exposed to 254 nm UV irradiation for reduction of Ag cations. 

2. 3. 3. Same the latter process of free standing TiO2 nanotube arrays 

with scattering layer

 Latter process of free standing TiO2 nanotube arrays with scattering 

layer, adapting scattering layer, TiCl4 treatment, dye absorption, 
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electrolyte filling, preparation of counter electrode and fabrication of 

DSSCs, are same.

2. 4. Characterization  

2. 4. 1. FE-SEM 

The morphology and thickness of the free-standing TiO2 nanotube 

arrays,  which were TiO2 nanotube arrays after detachment from the Ti 

plate, were analyzed using a field emission scanning electron 

microscope (FE-SEM, JSM-6330F, JEOL Inc.). 

2. 4. 2. TEM

The morphology, thickness, size, and presence of Ag NPs in the 

channel of freestanding TiO2 nanotube arrays were confirmed using a 

field emission scanning electron microscope (FE-SEM, JSM-6330F, 

JEOL Inc.) and the high angular annular dark field (HAADF) 

technique with a scanning transmission electron microscope (TEM) 

(JEM-2200FS, JEOL).
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2. 4. 3. Solar simulator 

The current density−voltage (I−V) characteristics of the DSSCs were 

measured using an electrometer (KEITHLEY 2400) under AM 1.5 

illumination (100 mW/cm2) provided by a solar simulator (1 kW 

xenon with AM 1.5 filter, PEC-L01, Peccel Technologies). 

2. 4. 4. Incident photon-to-current conversion efficiency (IPCE) 

The incident photon-to-current conversion efficiency (IPCE) was 

measured using McScience (model K3100) with reference to the 

calibrated diode. A 300 W xenon lamp was used as light source for 

generation of a monochromatic beam. The bias light was supplied by a 

150 W halogen lamp. 





Chapter 3

Improved energy conversion 

efficiency of dye-sensitized solar 

cells fabricated using open-ended 

TiO2 nanotube arrays with 

scattering layer
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3. 1 Overall view of free standing TiO2 nanotube arrays DSSCs

 Dye-sensitized solar cells (DSSCs) have attracted immense interest due 

to their high energy conversion efficiency and low cost [58, 62, 107]. 

However, the energy conversion efficiency of DSSCs still needs to be 

improved so that it compares favorably with conventional photovoltaic 

devices [148]. There are several parameters that can be investigated, 

including the dimensionality of TiO2 for electron transport [149, 150], 

light-harvesting capability [151, 152], molar absorption coefficiency 

[153], energetically suitable HOMO−LUMO levels [154], available 

surface area for dyes [155], transport kinetics of the electrons [156], 

regeneration by a redox couple [157], and losses due to recombination 

and back reactions [158].

 TiO2 nanotubes can enhance electron transport and charge separation 

by creating direct pathways and accelerating the charge transfer 

between interfaces [144-146, 159-163]. These properties make them an 

attractive candidate for DSSC applications. TiO2 nanotube arrays that 

are prepared by electrochemical anodization have a highly oriented and 

vertically aligned tubular structure [155, 156]. Thus, the arrays have a 

high degree of electron transport and minor charge recombination in 

comparison to TiO2 nanoparticle films [164]. Hence, although current 

DSSCs fabricated using TiO2 nanotube arrays have a low energy 

conversion efficiency as compared to DSSCs fabricated using TiO2 
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nanoparticle films, they have immense potential. Recently, we prepared 

DSSCs using open-ended TiO2 nanotube arrays and demonstrated that 

nanotube arrays whose barrier layers were removed by ion milling 

have 24% higher energy conversion efficiency as compared with 

DSSCs fabricated using TiO2 nanoparticle films [163]. 

 Introducing a scattering layer such as TiO2, ZrO2, or SiO2 can 

increase the total energy conversion efficiency of DSSCs [165]. TiO2 is 

a good material to use for a scattering layer due to its chemical 

stability and dye adsorption capability; hence, several DSSCs fabricated 

using TiO2 nanoparticle films use a TiO2 scattering layer on the active 

layer. 

 To the best of our knowledge, TiO2 nanotube arrays have not been 

combined with scattering layers. In this paper, we report the improved 

energy conversion efficiency of DSSCs using open-ended TiO2 

nanotube arrays with a TiO2 scattering layer. In this study, we 

compared the energy conversion efficiency of 1) closed- and 

open-ended TiO2 nanotube arrays 2) with and without a TiO2 scattering 

layer. In addition, we compared the energy conversion efficiency of 

fabricated DSSCs treated with TiCl4 to untreated DSSCs.
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3. 2. Characteristics of closed- and open-ended TiO2 nanotube arrays  

Figure 3. 1. Overall scheme of fabrication of DSSCs using the closed- 

or open-ended TiO2 nanotube arrays. (a) Elimination of the bottom 

layer of closed-ended TiO2 nanotube arrays by ion milling, (b) 

introduction of the closed- or open-ended TiO2 nanotube arrays on 

FTO glass with TiO2 paste, (c) coating the TiO2 scattering layer on 

closed-ended or open-ended TiO2 nanotube arrays by doctor blade, and 

(d) fabrication of DSSCs.
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 Figure 3. 1. shows the fabrication flow of the DSSCs using the 

closed- and open-ended TiO2 nanotube arrays with the TiO2 scattering 

layer for improved energy conversion efficiency. After sintering at 45

0℃ for 1 h under ambient conditions, the TiO2 nanotube arrays have a 

crystalline form similar to anatase. 
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Figure 3. 2. FE-SEM images of (a) side view of TiO2 nanotube arrays, 

(b) top view of TiO2 nanotube arrays, (c) bottom view of the 

closed-ended TiO2 nanotube arrays, (d) bottom view of open-ended 

TiO2 nanotube arrays after ion milling, and (e) side view of TiO2 

nanotube arrays on FTO glass with TiO2 nanoparticles and TiO2 

scattering layer.
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 SEM images of the side, top, and bottom of the free-standing TiO2 

nanotube arrays are shown in Figures 3. 2a, b, and c, respectively. The 

length of the free-standing TiO2 nanotube arrays was approximately 18 

m, as shown in Figure 3. 2a. The upper pores were well ordered 

and their diameter was ca. 100 nm. The morphology of the bottom 

layer under the closed-ended TiO2 nanotube array was very rough due 

to chemical etching with the H2O2 solution after secondary anodization, 

as shown in Figure 2c. 

  To prepare the open-ended TiO2 nanotube arrays, the bottom layer of 

the closed-ended TiO2 nanotube array was eliminated by ion milling to 

remove the barrier layer. Most of the bottom tips were opened after 

ion milling for 90 min and they had an approximate diameter of 20 

nm, as shown in Figure 3. 2d. Figure 3. 2e shows the closed- and 

open-ended TiO2 nanotube arrays on FTO glass after attachment using 

a TiO2 paste and sintering at 450℃ for 1 h under ambient conditions. 

The TiO2 scattering layer was coated onto the closed- and open-ended 

TiO2 nanotube arrays using a doctor blade and then the dye (N719) 

was adsorbed. DSSCs were fabricated by assembling the working 

electrode (the closed- and open-ended TiO2 nanotube arrays with TiO2 

scattering layer) and the counter electrode (Pt). 
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3. 3 Performance Measurements of the DSSCs which have closed- 

/open-ended TiO2 nanotube arrays with the TiO2 scattering layer

Figure 3. 3. I–V curves of DSSCs fabricated using (a) the 

closed-ended TiO2 nanotube arrays, (b) the closed-ended TiO2 nanotube 

arrays with the TiO2 scattering layer, and (c) the closed-ended TiO2 

nanotube arrays with the TiO2 scattering layer treated with TiCl4.
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Figure 3. 3. presents the current density–voltage curves of three 

different DSSCs fabricated using the closed-ended TiO2 nanotube arrays 

attached to the FTO glass using TiO2 paste. The measurements were 

taken using AM 1.5-simulated sunlight. 

Table 3. 1. Photovoltaic properties of DSSCs fabricated using the 

closed-ended TiO2 nanotube arrays

Jsc 
(mA/cm2)

Voc 

(V)
ff h (%)

Closed-ended 
TiO2 nanotube 

arrays
9.44 0.82 0.73 5.63± 0.14

Closed-ended 
TiO2 nanotube 

arrays with TiO2 
scattering layer

10.24 0.81 0.74 6.17± 0.18

Closed-ended 
TiO2 nanotube 

arrays with TiO2 
scattering layer 

treated with 
TiCl4.

10.96 0.81 0.74 6.54± 0.20

 The values of the open-circuit voltage (Voc), short-circuit current 

(Jsc), fill factor (ff), and energy conversion efficiency (h) are 

summarized in Table 3. 1. For the DSSC fabricated using just the 
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closed-ended TiO2 nanotube arrays, the energy conversion efficiency 

was 5.63 ± 0.14%. For the DSSC fabricated using the closed-ended 

TiO2 nanotube arrays and the TiO2 scattering layer, the energy 

conversion efficiency was 6.17 ± 0.18%.

 

 By introducing the TiO2 scattering layer on the closed-ended TiO2 

nanotube arrays, the energy conversion efficiency improved 

significantly, with a 9.59% enhancement. When the closed-ended TiO2 

nanotube arrays with the TiO2 scattering layer were treated with TiCl4, 

the energy conversion efficiency increased from 5.63 ± 0.14% to 6.54 

± 0.20%, corresponding to a 16.2% enhancement due to increasing dye 

adsorption on the surface of the TiO2 nanotube arrays [146]. 

 By introducing the TiO2 scattering layer on the closed-ended TiO2 

nanotube arrays, the energy conversion efficiency was improved due to 

increased light harvesting by the scattering layer. 
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Figure 3. 4. I–V curves of DSSCs fabricated using (a) the open-ended 

TiO2 nanotube arrays, (b) the open-ended TiO2 nanotube arrays with 

the TiO2 scattering layer, and (c) the open-ended TiO2 nanotube arrays 

with the TiO2 scattering layer treated with TiCl4.

Figure 3. 4. presents the current density–voltage curves of three 

different DSSCs fabricated using the open-ended TiO2 nanotube arrays 

attached to the FTO glass using TiO2 paste. 



- 83 -

Table 3. 2. Photovoltaic properties of DSSCs fabricated using 

open-ended TiO2 nanotube arrays

Jsc (mA/cm2) Voc (V) ff h (%)

Open-ended TiO2 
nanotube arrays 9.99 0.82 0.73 5.92±0.19

Open-ended TiO2 
nanotube arrays 

with TiO2 
scattering layer

10.92 0.81 0.74 6.53±0.13

Open-ended TiO2 
nanotube arrays 

with TiO2 
scattering layer 

treated with TiCl4

11.63 0.81 0.73 6.89±0.16

The values of Voc, Jsc, ff, and h are summarized in Table 3. 2. For 

the DSSC fabricated using just the open-ended TiO2 nanotube arrays, 

the energy conversion efficiency was 5.92 ± 0.19%. For the DSSC 

fabricated using the open-ended TiO2 nanotube arrays with the TiO2 

scattering layer, the energy conversion efficiency was 6.53 ± 0.13%, a 

10.30% enhancement. When the open-ended TiO2 nanotube arrays with 

the TiO2 scattering layer were treated with TiCl4, the energy 
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conversion efficiency improved from 5.92 ± 0.19% to 6.89 ± 0.16%, 

corresponding to a 16.38% enhancement. 

 The energy conversion efficiency increased from 5.63 ± 0.14% for the 

DSSCs with the closed-ended TiO2 nanotube arrays to 5.92 ± 0.19% 

for the DSSCs with open-ended TiO2 nanotube arrays, a 5.15% 

enhancement. With the introduction of the scattering layer, the 

efficiency increased from 6.17 ± 0.18% for the DSSCs with the 

closed-ended TiO2 nanotube arrays to 6.53 ± 0.13% for the DSSCs 

with open-ended TiO2 nanotube arrays, an improvement of 5.83%. 

 

 Upon treatment with TiCl4, the enhancement was 5.35%, from 6.54 ± 

0.20% for the DSSCs with the closed-ended TiO2 nanotube arrays to 

6.89 ± 0.16% for the DSSCs with open-ended TiO2 nanotube arrays. 

 In previous our works, the barrier layer in the closed-ended TiO2 

nanotube arrays affected the electron transport in the DSSCs, so the 

barrier layer was removed by ion milling in order to prepare the 

open-ended TiO2 nanotube arrays [163]. 
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Figure 3. 5. IPCE spectra of DSSCs fabricated using (a) the 

open-ended TiO2 nanotube arrays and (b) the open-ended TiO2 

nanotube arrays with the TiO2 scattering layer.

 The IPCE spectra of the DSSCs fabricated using the open-ended TiO2 

nanotube arrays and open-ended TiO2 nanotube arrays with the TiO2 

scattering layer are shown in Figure 3. 5. The IPCE spectra are similar 

but the DSSC with the TiO2 scattering layer had a higher intensity.
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3. 4. Conclusions

 We prepared dye-sensitized solar cells (DSSCs) with enhanced energy 

conversion efficiency using open-ended TiO2 nanotube arrays with a 

TiO2 scattering layer. 

 As compared to closed-ended TiO2 nanotube arrays, the energy 

conversion efficiency of the open-ended TiO2 nanotube arrays was 

increased from 5.63% to 5.92%, which is an enhancement of 5.15%. 

Due to the removal of the barrier layer, which was present in the 

closed-ended TiO2 nanotube arrays, causing an improvement in electron 

transport. 

 By introducing the TiO2 scattering layer on the open-ended TiO2 

nanotube arrays, the energy conversion efficiency was increased from 

5.92% to 6.53%, which is an enhancement of 10.30%. 

 After treating the open-ended TiO2 nanotube arrays with TiCl4, the 

energy conversion efficiency was increased from 5.92% to 6.89%, a 

16.38% enhancement, which is attributed to improved light harvesting 

and increased dye adsorption.





Chapter  4

Ag nanoparticle-functionalized 

open-ended freestanding TiO2 

nanotube arrays with scattering 

layer for improved energy 

conversion efficiency in 

dye-sensitized solar cells
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4. 1. Overall view of Ag nanoparticle-functionalized open-ended 

freestanding TiO2 nanotube arrays with scattering layer for improved 

energy conversion efficiency in dye-sensitized solar cells

 Since the original work by O’Regan and Grätzel in 1991 [58], 

dye-sensitized solar cells (DSSCs) have been investigated extensively 

because of their high energy conversion efficiency and low 

cost.[168-175] Generally, mesoporous TiO2 nanoparticle (NP) films and 

ruthenium sensitizers are used for DSSCs. [64, 168-181] However, the 

efficiency of mesoporous TiO2 NP film-based DSSC is limited by 

grain boundaries, defects, and numerous trapping sites. Moreover, 

mesoporous TiO2 NP films can cause charge recombination and 

mobility. [82, 182]

 TiO2 nanotubes, which enhance electron transport and charge 

separation by creating direct pathways and accelerating charge transfer 

between interfaces, have great potential to overcome the problems of 

mesoporous TiO2 NP films. [183-186] TiO2 nanotubes can be prepared 

by a hydrothermal method [187] or an electrochemical method [18], 

known as anodization. TiO2 nanotube arrays prepared by anodization 

have a well-ordered and vertically oriented-tubular structure that 

facilitates a high degree of electron transport and less charge 

recombination than mesoporous TiO2 NP films. [38, 149, 164] There is 

much room for improvement in the energy conversion efficiency of 
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current DSSCs based on TiO2 nanotube arrays compared to the 

relatively extensively researched mesoporous TiO2 NP film-based 

DSSCs. [188] 

 To date, several approaches for improving the energy conversion 

efficiency of TiO2 nanotube array-based DSSCs have been reported. 

Metal NPs, which can harvest light via surface plasmon resonance 

(SPR), have been used to enhance the energy conversion efficiency of 

DSSCs by introducing Au or Ag NPs into TiO2 nanotube arrays. [143, 

189-191] Barrier layers remove TiO2 nanotube arrays, so open-ended 

TiO2 nanotube arrays, which can also be classified as arrays of 

columnar nanopores, have been used for DSSCs to provide increased 

energy conversion efficiency.[163] Moreover, the energy conversion 

efficiency of TiO2 nanotube array-based DSSCs can be further 

increased by introducing a scattering layer to the active layer.[192]

 So far, TiO2 nanotubes that make use of a scattering layer[192] or 

plasmonic materials [179] have been reported, but a scattering layer 

with plasmonic materials has not been used in TiO2 nanotube-based 

DSSCs. In this study, we report the development of freestanding TiO2 

nanotube arrays filled with Ag NPs and large TiO2 NPs, which 

improve the energy conversion efficiency of DSSCs. Furthermore, we 

compare the effects of Ag NPs and large TiO2 NPs in open- and 

close-ended freestanding TiO2 nanotube arrays in DSSCs. The energy 
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conversion efficiencies of the following eight types of DSSC were 

compared: closed-ended freestanding TiO2 nanotube arrays with/without 

Ag NPs and/or TiO2 scattering layer and open-ended freestanding TiO2 

nanotube arrays with/without Ag NPs and/or a TiO2 scattering layer.
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4. 2. Results and discussion

4. 2. 1 Overall scheme of DSSCs with freestanding TiO2 nanotube 

arrays with channels containing Ag NPs

Figure 4. 1. Overall scheme of DSSCs with open-ended freestanding 

TiO2 nanotube arrays with Ag NPs and large TiO2 NPs. (A) (a) Ti 

anodization for TiO2 nanotube arrays, (b) freestanding TiO2 nanotube 

arrays and etching by ion milling, (c) transference of open-ended 

freestanding TiO2 nanotube arrays on FTO glass, (d) formation of Ag 

NPs by UV irradiation, and (e) introducing large TiO2 NPs. (B) 

Structure of DSSC with freestanding TiO2 nanotube arrays and large 

TiO2 NPs.
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 Figure 4. 1. illustrates the fabrication of DSSCs with Ag NPs and 

large TiO2 NPs to enable  plasmonic and scattering effect in 

open-ended freestanding TiO2 nanotube array-based DSSCs. Ti plates 

were anodized and then annealed at 500C for 1 h to prepare anatase 

TiO2 nanotube arrays. After carrying out secondary anodization, the 

TiO2 nanotube arrays were easily detached from the Ti plate. TiO2 

nanotube arrays, once separated from the Ti plate, are termed 

“closed-ended freestanding TiO2 nanotube arrays”. Freestanding TiO2 

nanotube arrays have a barrier layer at the bottom that disturbs 

electron transport and electrolyte diffusion.

 This barrier layer was removed using the ion-milling method with 

several minutes of Ar+ bombardment to yield “open-ended freestanding 

TiO2 nanotube arrays”. The closed- and open-ended freestanding TiO2 

nanotube arrays were transferred to fluorine-doped tin oxide(FTO) glass 

using TiO2 paste and annealed to enhance the adhesion between the 

closed- and open-ended freestanding TiO2 nanotube arrays and the 

fluorine-doped tin oxide(FTO) glass. 

 To improve the energy conversion efficiency by the plasmonic effect, 

Ag NPs were embedded in the channel of freestanding TiO2 nanotube 

arrays using 254 nm ultraviolet(UV) irradiation with aqueous silver 

nitrate. To further enhance the energy conversion efficiency, large TiO2 

NPs (400 nm) as a scattering layer were coated onto the active layer 

by the doctor blade method. This substrate was sandwiched with the 
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counter electrode and filled with electrolyte. The active area of the 

DSSCs was ~0.25 cm2.

4. 2. 2 Characterization of freestanding TiO2 nanotube arrays with 

channels containing Ag NPs
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Figure 4. 2. FE-SEM images of the (a) top, (b) bottom, (c) bottom of 

post-ion milling freestanding TiO2 nanotube arrays, (d) a high-angle 

annular dark-field (HAADF) image of Ag NPs in the channel of TiO2 

nanotube arrays, and (e) a side view of the active layer with 

freestanding TiO2 nanotube arrays and the scattering layer.
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 FE-SEM images of freestanding TiO2 nanotube arrays are shown in 

Figure 4. 2. The top side of the freestanding TiO2 nanotube arrays had 

100-nm-diameter pores, as shown in Figure 4. 2(a). The bottom layer 

of closed-ended freestanding TiO2 nanotube arrays before ion milling 

lacked pores, as shown in Figure 4. 2(b). 

 However, after ion milling, 20-nm-diameter pores were evident on the 

bottom layer of open-ended freestanding TiO2 nanotube arrays, as 

shown in Figure 4. 2(c). Open ended TNT arrays can be prepared by 

the chemical etching [161] and physical etching method. [162, 163] In 

the chemical etching method, the bottom layer of TNT arrays were 

easily removed by etchant. However, the surface morphology and 

length of TNT arrays were also dissolved in etchant and TNT arrays 

are easily fragile when they are attached on substrate due to their 

amorphous crystallinity. In the physical etching method, the bottom 

layer of TNT arrays were removed by the plasma or ion milling 

process, which is not simple. However, the surface morphology and 

length of TNT arrays were not damaged and they are very stable 

when they are attached on substrate because TNT arrays have the 

annealing process to change the crystallinity from the amorphous to 

anatase phase. After UV irradiation using a silver source, ~30 nm Ag 

NP were found in the channels of freestanding TiO2 nanotubes in 

high-angle-annular dark-field (HAADF) images, as shown in Figure 4. 

2(d). The length of TiO2 nanotubes was ~22 m and the length of the 
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scattering layer, which consisted of 400 nm TiO2 NPs, was ~10 nm. 

 The UV-Vis spectrum of Ag NPs in the channels of freestanding 

TiO2 nanotubes was shown in Figure 4. 3. A broad absorption peak 

centered at 402 nm was observed, which indicates the presence of Ag 

NPs.[193, 194] The absorption band of Ag NPs is matched with dye, 

N719 has two visible absorption bands; 390 nm 531 nm, [195] that 

was affected by the plasmon band. Moreover, the shell of Ag NPs was 

prepared by TiCl4 to prevent the trapping electron by Ag NPs that will 

be better to electron transport in the channel of TiO2 nanotube arrays.

Figure 4. 3. UV-vis spectrum of Ag NP-functionalized TiO2 nanotubes
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4. 2. 3. DSSCs with closed-ended freestanding TiO2 nanotube arrays 

with channels containing Ag NPs and large TiO2 NPs

 The photocurrent-voltage curves of DSSCs fabricated using 

closed-ended freestanding TiO2 nanotube arrays measured under air 

mass 1.5 illumination (100 mW/cm2) are shown in Figure 4. 4. and 

Table 4. 1. 

 Four types of closed-ended freestanding TiO2 nanotube array-based 

DSSCs were fabricated to assess the effect of each component on the 

energy conversion efficiency: closed-ended freestanding TiO2 nanotube 

array based DSSCs without Ag or large TiO2 NPs (a), with Ag NPs 

(b), with large TiO2 NPs (c), and with Ag NPs and large TiO2 NPs 

(d). The open-circuit voltage (Voc), short-circuit current (Jsc), fill factor 

(ff), and energy conversion efficiency values are shown in Table 4. 1. 

The energy conversion efficiency of DSSCs based on closed-ended 

freestanding TiO2 nanotube arrays lacking NPs was 5.86%. The energy 

conversion efficiency of the DSSCs based on closed-ended freestanding 

TiO2 nanotube arrays with Ag NPs, with large TiO2 NPs, and with Ag 

NPs and large TiO2 NPs was 6.40%, 6.24%, and 6.71%, respectively. 

 Introduction of Ag NPs increased the energy conversion efficiency 

significantly, by 9.21% comparing to closed-ended freestanding TiO2 

nanotube array-based DSSCs without Ag and large TiO2 NPs (actual 

efficiency; 6.40%), due to increased light harvesting by the plasmonic 
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effect. 

 Introduction of large TiO2 NPs increased the energy conversion 

efficiency significantly, by 6.48% (actual efficiency; 6.40%), due to 

increased light harvesting by the scattering effect. Moreover, 

introduction of both Ag NPs and large TiO2 NPs increased the energy 

conversion efficiency significantly, by 14.50% (actual efficiency; 

6.71%), due to increased light harvesting by both the plasmonic and 

scattering effects.

Figure 4. 4. I-V curves of DSSC-based closed-ended freestanding TiO2 

nanotube arrays fabricated without NPs (a), with Ag NPs (b), with 

large TiO2 NPs (c), and with Ag NPs and large TiO2 NPs (d).



- 100 -

Table 4. 1. Photovoltaic properties of DSSCs based on closed-ended 

freestanding TiO2 nanotube arrays

DSSCs
Jsc

(mA/cm2)

Voc

(V)

ff h

(%)

a
Closed-ended freestanding 

TiO2 nanotube arrays 
without any NPs

11.05 0.78 0.68 5.86

b
Closed-ended freestanding 
TiO2 nanotube arrays with 

Ag NPs 
12.22 0.77 0.68 6.40

c
Closed-ended freestanding 
TiO2 nanotube arrays with 

large TiO2 NPs 
11.90 0.76 0.69 6.24

d
Closed-ended freestanding 
TiO2 nanotube arrays with 

Ag NPs and large TiO2 
NPs

12.63 0.77 0.69 6.71
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4. 2. 4. DSSCs with open-ended freestanding TiO2 nanotube arrays 

with channels containing Ag NPs and large TiO2 NPs

Figure 4. 5. I-V curves of DSSCs based open-ended freestanding TiO2 

nanotube arrays fabricated without NPs (a), with Ag NPs (b), with 

large TiO2 NPs (c), and with Ag NPs and large TiO2 NPs (d).
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Table 4. 2. Photovoltaic properties of DSSCs based on open-ended 

freestanding TiO2 nanotube arrays

DSSCs
Jsc

(mA/cm2)

Voc

(V)

ff h

(%)

a
Open-ended freestanding 

TiO2 nanotube arrays

without any NPs
11.56 0.79 0.67 6.12

b
Open-ended freestanding 

TiO2 nanotube arrays

with Ag NPs 
12.45 0.79 0.68 6.68

c
Open-ended freestanding 

TiO2 nanotube arrays

with large TiO2 NPs 
12.33 0.79 0.68 6.62

d

Open-ended freestanding 
TiO2 nanotube arrays

with Ag NPs and large 
TiO2 NPs

12.74 0.78 0.71 7.05

 The photocurrent-voltage curves of DSSCs fabricated using open-ended 

freestanding TiO2 nanotube arrays are shown in Figure 4. 5. and Table 

4. 2. to assess the effect of each component on the energy conversion 

efficiency. 
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  Four types of DSSC-based open-ended freestanding TiO2 nanotube 

array were fabricated: open-ended freestanding TiO2 nanotube array 

based DSSCs without Ag or large TiO2 NPs, (a), with Ag NPs (b), 

with large TiO2 NPs (c), and with Ag NPs and large TiO2 NPs (d). 

The Voc, Jsc, ff, and  values are summarized in Table 4. 2. 

 The energy conversion efficiency of DSSCs based on open-ended 

freestanding TiO2 nanotube arrays lacking NPs was 6.12%. The energy 

conversion efficiency of DSSCs based on open-ended freestanding TiO2 

nanotube arrays with Ag NPs, with large TiO2 NPs, and with Ag NPs 

and large TiO2 NPs was 6.68%, 6.62%, and 7.05%, respectively. 

 The introduction of Ag NPs and/or large TiO2 NPs increased the 

energy conversion efficiency by 9.15%, 8.17%, and 15.20%, 

respectively. Compared to closed-ended freestanding TiO2 nanotube 

arrays, the energy conversion efficiency of DSSCs based on open-ended 

freestanding TiO2 nanotube arrays was 5.07% (6.71–7.05%) higher due 

to enhanced electron transport and electrolyte diffusion. [163]

 Although TiO2 nanotube arrays based DSSCs have great potential, as 

best we know, the theoretical maximum improvement by Ag NPs or 

TiO2 scattering layer of TiO2 nanotube based DSSCs were not reported 

yet. However, the opened-end TiO2 nanotube-based device exhibited an 

increase in one-sun efficiency from 5.3% to 9.1%, corresponding to 

70% which is a much higher increase compared to our results. [161] 

We believe that there is lots of room to improve the efficiency by 
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combining each parameter with an optimal condition based on 

theoretical studies.

4. 3. Conclusions

 In this study, we compared the natural consequence of several 

parameters such as the plasmonic effect, the scattering effect and 

open-closed ended freestanding TiO2 nanotube as basic experiments for 

better efficiency. 

 We demonstrated that the plasmonic and scattering effects enhanced 

the energy conversion efficiency of freestanding TiO2 nanotube arrays 

in DSSCs. Ag NPs were added to the channels of TiO2 nanotube 

arrays by UV irradiation to induce a plasmonic effect, and large TiO2 

NPs were introduced to TiO2 nanotube arrays to induce a scattering 

effect. 

 The energy conversion efficiency of DSSCs with both Ag NPs and 

large TiO2 NPs was higher than that of DSSCs without Ag NPs due 

to the plasmonic effect, and was higher than that of DSSCs without 

large TiO2 NPs due to the scattering effect. Compared to closed-ended 

freestanding TiO2 nanotube arrays, open-ended freestanding TiO2 
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nanotube arrays exhibited enhanced energy conversion efficiency. 

 We demonstrate that Ag NPs, TiO2 NPs and open-ended freestanding 

TiO2 nanotube arrays, enhanced the energy conversion efficiency; 

furthermore, the combination of all components exhibited the highest 

energy conversion efficiency. Our research suggests that the energy 

conversion efficiency of DSSCs is improved by both the plasmonic and 

scattering effects and have applications in organic solar cells, hybrid 

solar cells, and perovskite solar cells.





Chapter  5

Dual Functionalized Freestanding 

TiO2 Nanotube Arrays Coated with 

Ag Nanoparticles and Carbon 

Materials for Dye-Sensitized Solar 

Cells
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5.1. Overall view of dual Functionalized Freestanding TiO2 Nanotube 

Arrays Coated with Ag Nanoparticles and Carbon Materials for 

Dye-Sensitized Solar Cells

 Highly ordered, freestanding TiO2 nanotube arrays (TiO2 NTAs) were 

prepared using an electrochemical method. The barrier layer was etched 

to open the bottom of each array, aptly named “open-ended TiO2 

NTAs”. These arrays were coated with silver nanoparticles (Ag NPs) 

and/or carbon materials to enhance electron generation and transport. 

The energy conversion efficiency of the resulting dye-sensitized solar 

cells (DSSCs) with open-ended freestanding TiO2 NTAs increased from 

5.32% to 6.14% (by 15%) when coated with Ag NPs due to 

plasmonic interactions. Meanwhile, coating the open-ended freestanding 

TiO2 NTAs with carbon materials increased the energy conversion 

efficiency from 5.32% to 6.07% (by 14%) due to π-π conjugation. 

When the Ag NPs and carbon materials were simultaneously applied to 

the open-ended freestanding TiO2 NTAs, the energy conversion 

efficiency increased to 6.91% an enhancement of 30% due to the 

additive effects of plasmonics and π-π conjugation.

 Global research of dye-sensitized solar cells (DSSCs) has continued 

since their initial development in 1991 by the Grätzel group [58], due 

to their low cost, ease of fabrication, and high power conversion 

efficiency [64,197]. Titanium dioxide nanoparticles (TiO2 NPs) are 
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typically used as the photoanode in DSSCs, because they have a 

desirable direct band gap (3.2 eV) and a large surface area for 

adsorbing dyes, both helping to generate electrons [198-201]. However, 

TiO2 NPs are randomly networked, and the countless grain boundaries 

within them lead to material defects and charge recombinations that 

inhibit the smooth electron transport [62,202,203]. 

 For the last few years, TiO2 nanotube arrays (NTAs) have been 

explored as an alternative to TiO2 NPs [204-206]. The TiO2 NTAs 

could be fabricated using an electrochemical method (i.e., anodization) 

[204,207], and they have a well-ordered and vertically aligned tubular 

structure that serves as direct electron pathways to enhance not only 

electron transport, but also charge separation [208,209]. Despite their 

merits, however, the barrier layer at the bottom of the TiO2 NTAs 

could impede charge transfer and electrolyte diffusion. To overcome 

this problem, we recently removed the bottom layer of TiO2 NTAs 

using argon ion (Ar+) milling, resulting in improved electron transport 

and electrolyte diffusion [210]. 

 There have been an increasing number of studies that add carbon to 

TiO2 NTAs in order to improve the charge separation and transfer of 

electrons, due to the superior electrical properties of the π-π 

conjugation [211-213]. Many researchers have explored the application 

of carbon materials in solar cell technologies. Carbon 60 (C60 or 

“fullerene”) and carbon nanotubes (CNTs) are well known for their 
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roles as electron acceptors and charge separators in organic solar cells 

[214,215]. When incorporated in organic solar cells, CNTs act as 

exciton dissociation sites and hopping centers for hole transport [216], 

and graphene mixed with TiO2 NPs in DSSCs plays a role in 

promoting charge separation and movement [217]. As mentioned, TiO2 

NTAs were developed as alternatives to TiO2 NPs. While it is not 

simple to blend carbon materials with TiO2 NTAs, we recently reported 

a method for enriching freestanding TiO2 NTAs with carbon for use in 

DSSCs. When a small amount of carbon was deposited on TiO2 

NTAs, the energy conversion efficiency increased by approximately 

22.4% compared to those without carbon enrichment [218]. We 

tentatively attributed this to the π-π  conjugation introduced by carbon 

enrichment that improved the efficiency of electron transport.

 A plasmonic effect triggered by metal NPs such as silver and gold 

can be used to enhance photoabsorption in solar cells [219-221]. When 

incident photons pass by Ag NPs, they cause electron vibration and 

photo scattering of the nanoparticles, which facilitate more efficient 

photon control [222]. The metal NPs were incorporated by mixing with 

TiO2 sol in the DSSCs or with precursors of the active layer in 

organic solar cells. In the fabrication of DSSCs based on TiO2 NTAs, 

however, it is difficult to insert metal NPs into the channels of TiO2 

NTAs. We recently devised a simple method for the complete 

formation of Ag NPs in the channels of TiO2 NTAs using UV 
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irradiation [223-225]. These NPs helped the dyes generate electrons, as 

demonstrated by a high current density in the DSSCs. 

 To date, we have confirmed the separate effects of carbon enrichment 

and the incorporation of Ag NPs in previous studies. However, the 

effects of adding both carbon and Ag NPs remain unknown. Here, we 

report the effects of enriching freestanding TiO2 NTAs with one or 

both materials on the performance of DSSCs, in terms of enhanced 

electron transport and plasmonic effects. Carbon materials were 

synthesized by chemical vapor deposition (CVD) and deposited on the 

wall of TiO2 NTAs. The Ag NPs were formed using UV irradiation 

within the channels of TiO2 NTAs.
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5.2. Materials and Methods 

5.2.1 Preparation of closed- and open-ended TiO2 NTAs

 Titanium foils (Alfa Aesar, 99.7% purity, 2.5 cm × 4.0 cm × 320 μ

m) were prepared and anodized using an electrochemical method to 

fabricate TiO2 NTAs. The electrolyte was composed of 0.8 wt.% NH4F 

and 2 vol.% H2O in ethylene glycol. Carbon rods served as the 

cathode material. A 60 V DC potential was supplied to the titanium 

foils at 25 °C for 2 h. Later, the anodized titanium foils were 

annealed in a tube furnace at 450 °C for 1 h, and a second 

anodization process was then conducted on the samples at 30 V for 10 

min. To detach the TiO2 NTAs from the titanium foils, the sample 

after the second anodization was immersed in 10% H2O2 for 24 h. Ion 

milling with argon (Ar+) bombardment was used to remove the bottom 

of the TiO2 NTAs to make open-ended tips [218].

5.2.2 Preparation of photoanodes for DSSCs based on the TiO2 NTAs

 Fluorine-doped tin oxide (FTO) glass was washed and sonicated in 

ethanol and acetone to remove impurities. Titanium diisopropoxide 

bis(acetylacetonate) (5 wt.% in n-butanol) was spin-coated on the clean 

FTO glass to form a compact TiO2 blocking layer after annealing at 
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450 °C for 1 h. A TiO2 paste (Solaronix, T/SP) was applied to the 

FTO glass using a doctor blade method, in order to attach the closed- 

or open-ended TiO2 NTAs. Finally, the samples were annealed in a 

furnace at 450 °C for 30 min.

5.2.3 Synthesis of Ag NPs on the TiO2 NTAs by UV irradiation

 The samples were placed in a 0.3 mM AgNO3 aqueous solution. Ag 

NPs were synthesized in the channels of closed- or open-ended TiO2 

NTAs using a 254 nm UV lamp for 3 min. 

5.2.4 Synthesis of carbon materials by CVD on TiO2 NTAs 

The samples were placed in a quartz tube furnace filled with nitrogen 

(200 standard cubic centimeter per minute [sccm]). Hydrogen gas (30 

sccm) and ethylene gas (40 sccm) were flowed into the tube furnace 

at 450 °C for 30 s. 

5.2.5 Fabrication of dye-sensitized solar cells

 All DSSC samples were post-treated with 10 mM TiCl4 solution at 

50 °C for 30 min, and then annealed at 450 °C for 1 h. These steps 

not only enhanced the photocurrent but also prevented the Ag NPs 

from dissolution upon contacting the iodine-iodide electrolyte. Each 
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treated sample was stained using dye molecules (0.5 mM solutions of 

N719 ((Bu4N)2Ru(dobpyH)2(NCS)2, Solaronix) in ethanol at 50 °C for 

8 h. Following this treatment, samples were washed with ethanol to 

eliminate physisorbed dye molecules. To fabricate counter electrodes, 

chloroplatinic acid (H2PtCl6) in ethanol was drop-casted onto clean 

FTO glass and annealed in a tube furnace at 400 °C for 1 h.

 The electrolyte used to separate the electrodes contained 0.7 M 

1-butyl-3-methyl-imidazolium iodide (BMII), 0.03 M I2, 0.1 M 

guanidium thiocyanate (GSCN), and 0.5 M 4-tert-butyl pyridine (TBP) 

in a mixture of acetonitrile and valeronitrile (85:15 v/v). A 60-μm 

thick hot-melt Surlyn spacer (Solaronix) was put between the 

photoanode and counter electrode. The electrolyte was injected into the 

space provided by the Surlyn spacer.

5.2.6 Characterization of dye-sensitized solar cells

 The structures of TiO2 NTAs on FTO glass were confirmed using a 

field emission scanning electron microscope (FE-SEM, JSM-6330F, 

JEOL Inc.). The existence of Ag NPs in the channels of TiO2 NTAs 

was verified by the high-angle annular dark-field (HAADF) imaging 

technique using a scanning transmission electron microscope (TEM, 

JEM-2200FS, JEOL Inc.). Raman spectra were measured with a Raman 

spectrometer (LabRAM HV Evolution spectrometer, HORIBA). The 
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UV-Vis spectra were recorded using a UV-Vis spectrophotometer 

(NEOSYS-2000, SCINCO). Current density-voltage measurements were 

carried out using an electrometer (Keithley 2400) and a solar simulator 

(1 kW xenon with AM 1.5 filter, PEC-L01, Peccel Technologies). 

Electrochemical impedance spectroscopy (EIS) data were collected using 

a potentiostat (Solartron 1287) equipped with a frequency response 

analyzer (Solartron 1260) between 10-2 and 106 Hz under AM 1.5 light 

illumination, and analyzed using Z-View software (Solartron Analytical). 

The applied bias voltage and AC amplitude were set at the open 

circuit voltage (Voc) of the DSSCs and 10 mV, respectively.
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5.3. Results and Discussion

Figure 5.1. Overall scheme of the fabrication of DSSCs based on 

freestanding TiO2 NTAs coated with Ag NPs and carbon materials. (a) 

Synthesis of Ag NPs in the channel of TiO2 NTAs, (b) deposition of 

carbon materials, (c) dye adsorption, and (d) fabrication of the DSSC.

 The fabrication of DSSCs based on freestanding TiO2 NTAs is shown 

in Figure 5.1. The bottom layer was present in the closed-ended 

freestanding TiO2 NTAs, but removed by ion milling in the open-ended 

ones. The DSSCs were fabricated from both types of freestanding TiO2 

NTAs to compare their energy conversion efficiency. In both cases, the 

freestanding TiO2 NTAs were attached to the FTO glass with TiO2 

paste, and Ag NPs were synthesized using UV irradiation as shown in 

Figure 5.1(a). Carbon materials were synthesized using CVD as shown 

in Figure 5.1(b). By using the UV irradiation and CVD, Ag NPs and 



- 117 -

carbon materials were deposited in the channel of highly ordered TiO2 

NTAs without any distortion. The dye (N719) was adsorbed onto both 

types of freestanding TiO2 NTAs, as shown in Figure 5.1(c). Finally, 

DSSCs were fabricated by assembling the working electrode 

(freestanding TiO2 NTAs on FTO glass) and the counter electrode (Pt 

on FTO glass) as shown in Figure 5.1(d).
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Figure 5.2. FE-SEM images of TiO2 NTAs: (a) top view, (b) bottom 

view, and (c) bottom view after ion milling. (d) HAADF image of Ag 

NPs in the channel of TiO2 NTAs. (e) Side view of TiO2 NTAs on FTO 

glass.
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 FE-SEM images of TiO2 NTAs are shown in Figure 5.2. The top 

view in Figure 5.2(a) shows a pore size of approximately 100 nm after 

applying the electrochemical method. The bottom of the TiO2 NTAs 

before ion milling (the “closed-ended TiO2 NTA”) is shown in Figure 

5.2(b), with a total bottom pore size of approximately 100 nm 

including that of the wall thickness. However, when the bottom was 

removed by ion milling to produce the “open-ended TiO2 NTAs” 

(Figure 5.2(c)), the bottom pore was reduced to 30 nm in size, and 

the wall thickness was approximately 35 nm. An HAADF image of Ag 

NPs in the channels of TiO2 NTAs is shown in Figure 5.2(d), and the 

diameter of Ag NPs was approximately 30 nm. This allowed the Ag 

NPs to be successfully immobilized inside the channel of TiO2 NTAs 

by UV irradiation, and the resulting plasmonic interactions may have 

affected all the surface areas. A side view of TiO2 NTAs attached to 

the FTO glass by TiO2 paste after being sintered at 450 °C is shown 

in Figure 5.2(e). The main role of the TiO2 paste is to connect the 

TiO2 NTAs with the FTO glass surface. The thickness of the TiO2 

film layer was 3 μm, and the length of TiO2 NTAs was approximately 

18 μm.
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Figure 5.3. Raman spectra of TiO2 NTAs (a) without and (b) with 

carbon materials.

 Carbon materials on the TiO2 NTAs were synthesized by CVD, and 

their structure was confirmed by Raman spectroscopy, as shown in 

Figure 5.3. In a previous publication, we reported the optimization of 
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TiO2 NTAs for DSSCs using carbon materials [218]. The B1g (397 

cm-1), A1g (518 cm-1), and Eg (641 cm-1) peaks indicated that the 

TiO2 NTAs were in the form of anatase TiO2, as shown in Figure 

5.3(a) [225]. When carbon materials were synthesized on the TiO2 

NTAs using CVD, the G band at 1600 cm-1 represented graphite, 

while the D band at 1384 cm-1 was due to the disorderly network of 

sp2 and sp3 sites in the carbon materials, as shown in Figure 5.3(b). 

The sp2 sites of carbon materials resulted in a π-π conjugation that 

improved the efficiency of electron transport across the TiO2 NTAs.

Figure 5.4. UV-Vis spectrum of Ag NPs on the TiO2 NTAs. 
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 Ag NPs were synthesized on the TiO2 NTAs using UV irradiation, 

and this was confirmed by the ultraviolet-visible (UV-Vis) spectrum. 

The size of Ag NPs was confirmed as approximately 30 nm, using the 

HAADF image shown in Figure 5.2(d). An absorption peak centered at 

405 nm was observed, as shown in Figure 5.4. Our previous paper 

[218] reported on the optimization of TiO2 NTAs using Ag NPs. Other 

researchers have reported that Ag NPs with sizes of approximately 30 

nm had UV-Vis absorption peaks at 420 nm. However, in this case, 

the Ag NPs were synthesized using UV irradiation (at 254 nm) 

without the addition of any stabilizing or reducing agents. As such, the 

Ag NPs were immobilized in the TiO2 NTAs, which would affect 

absorption in the UV-Vis spectrum. The absorption band of Ag NPs is 

within the same range as that of the dye N719 (cis-diisothiocyanato-bis 

(2,2’-bityridyl-4,4’-dicarboxylato) ruthenium(II) bis(tetrabutylammonium), 

390–530 nm, leading to enhanced electron generation from the dye by 

means of plasmonic interactions.
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Figure 5.5. Current density-voltage curves of DSSCs based on (a) 

unmodified closed-ended TiO2 NTAs, (b) with embedded Ag NPs, (c) 

with applied carbon materials, and (d) with both Ag NPs and carbon 

materials.

 The current density-voltage curves of DSSCs using closed-ended TiO2 

NTAs with or without modification were measured under air-mass 

(AM) 1.5 sunlight, and the results are presented in Figure 5.5. The 

Voc, short-circuit current density (Jsc), fill factor (ff), and energy 

conversion efficiency (h) of the DSSCs are summarized in Table 5.1. 

For the DSSCs without any treatment, the energy conversion efficiency 
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was 4.10%, which increased to 5.73% when Ag NPs were embedded 

via UV irradiation, corresponding to an overall increase of 40%. When 

carbon materials were added to the closed-ended TiO2 NTAs via CVD, 

the energy conversion efficiency improved to 5.69%, corresponding to 

a 39% increase. With both Ag NPs and carbon materials, the energy 

conversion efficiency improved even further to 6.36%, corresponding to 

an overall increase of 55%. Note that when Ag NPs were treated with 

TiCl4, the core-shell type Ag@TiO2 nanoparticles were formed. Because 

the dye are adsorbed on Ag@TiO2, the amount of dye loading might 

not be significantly reduced as shown table 5.1. As previously reported 

[218], a large amount of carbon doping materials could lower the 

conversion efficiency by decreasing of dye loading. However, in this 

case only a trace amount of carbon material was deposited, which did 

not decrease the dye loading significantly.
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Table 5.1. Photovoltaic properties of DSSCs based on closed-ended 

TiO2 NTAs with Ag NPs and/or carbon materials.

DSSCs based on 
closed-ended TiO2 
NTAs decorated 

Jsc 

(mA/cm2) 
Voc  
(V) 

ff 
 h
(%) 

Dye 
loading 

(nmol/cm2) 
without Ag NPs 

and carbon materials 
7.02 0.81 0.72 

4.10 
±0.28 

144 

with Ag NPs 9.92 0.81 0.72 
5.73 

±0.31 
142 

with carbon 
materials 

10.03 0.80 0.71 
5.69 

±0.26 
139 

with Ag NPs and 
carbon materials 

11.25 0.80 0.71 
6.36 

±0.34 
141 
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Figure 5.6. Current density-voltage curves of DSSCs based on (a) 

unmodified open-ended TiO2 NTAs, (b) embedded with Ag NPs, (c) 

applied with carbon materials, and (d) with both Ag NPs and carbon 

materials. 
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Table 5.2. Photovoltaic properties of DSSCs based on open-ended TiO2 

NTAs with Ag NPs and/or carbon materials.

DSSCs based on 
open-ended TiO2 
NTAs decorated 

Jsc 

(mA/cm2) 
Voc  
(V) 

ff 
 h
(%) 

Dye 
loading 

(nmol/cm2) 
without Ag NPs 

and carbon 
materials 

9.12 0.81 0.72 
5.32 

±0.36 
153 

with Ag NPs 10.61 0.81 0.71 
6.14 

±0.46 
151 

with carbon 
materials 

10.73 0.80 0.71 
6.07 

±0.30 
147 

with Ag NPs 
and carbon 
materials 

12.41 0.80 0.69 
6.91 

±0.41 
149 

 The current density-voltage curves for DSSCs based on open-ended 

TiO2 NTAs with or without modification were also measured under 

AM 1.5 sunlight, and the results are presented in Figure 5.6. The Voc, 

Jsc, ff,  values of these DSSCs are summarized in Table 5.2. When 

using unmodified TiO2 NTAs, DSSCs based on open-ended TiO2 NTAs 

had higher energy conversion efficiency (5.32%) compare to those 

based on closed-ended ones (4.10%). The closed-end barrier of the 

TiO2 NTA disturbs electron transport between the TiO2 layer and the 

electrode [210,218]. 
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 When Ag NPs were embedded in the open-ended TiO2 NTAs, the 

energy conversion efficiency improved from 5.32% to 6.14%, 

corresponding to a 15% enhancement. In this case, electron generation 

in the DSSCs was enhanced by the plasmonics from the NPs, despite 

the slightly diminished dye loading (from 153 to 151 nmol/cm2). When 

carbon materials alone were applied to TiO2 NTAs, the energy 

conversion efficiency improved to 6.07%, a 14% increase. In this case, 

the carbon materials improved electron transport due to the π-π 

conjugation across the small quantity of carbon materials, in spite of a 

diminished dye load (153 to 147 nmol/cm2, which is even less than 

that with Ag NPs). The reason is that the carbon materials were 

distributed to interact between the TiO2 and the dye, making up for 

the loss of dye loading in term of the energy conversion efficiency. 

When Ag NPs and carbon materials were both applied to the 

open-ended TiO2 NTAs, the energy conversion efficiency improved to 

6.91%, corresponding to a 30% enhancement compared to the 

unmodified open-ended TiO2 NTAs. In this case, the Ag NPs and 

carbon materials produced additive effects with their respective 

plasmonics and π-π conjugations, in spite of a slightly reduced dye 

loading of 149 nmol/cm2. Comparing the performance parameters in 

Table 5.2, the Voc and ff decreased with treatment; the conduction 

band of the TiO2 NTAs shifted down, which in turn affected the Voc 

and the charge recombination through electron density that suppressed 
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the ff. However, the Jsc was increased by the plasmonic activity in 

conjunction with π-π conjugation, which improved the energy 

conversion efficiency of DSSCs.

Figure 5.7. EIS data of DSSCs based on (a) unmodified open-ended 

TiO2 NTAs, (b) embedded with Ag NPs, (c) applied with carbon 

materials, and (d) with both Ag NPs and carbon materials.
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Table 5.3. EIS fitting results for DSSCs with open-ended TiO2 NTAs.

DSSCs based on 
open- ended TiO2 

NTAsdecorated 

Rs 

(Ω) 

R1 

(Ω) 

CPE1 

(F) 

R2 

(Ω) 

CPE2 

(F) 

without Ag NPs 
and carbon 

materials 
15.50 5.58 6.91×10-6 61.12 1.99×10-3 

with Ag NPs 15.52 5.54 8.65×10-6 36.90 2.10×10-3 

with carbon 
materials 

15.56 5.07 1.62×10-5 36.40 2.03×10-3 

with Ag NPs and 
carbon materials 

14.99 4.88 1.16×10-6 24.55 2.99×10-3 

 The DSSCs based on open-ended TiO2 NTAs were characterized by 

EIS across the frequency range from 10-2 to 106 Hz, as shown in 

Figure 5.7. The applied bias voltage was set at the Voc with 10 mV 

of AC amplitude. The data were analyzed using an equivalent circuit 

(inset of Figure 5.7), and the fit parameters are listed in Table 5.3. 

The ohmic series resistance (Rs) is due to the sheet resistance that 

corresponds to the x-axis value where the first semicircle begins on the 

left-hand side in Figure 5.7. The value of Rs is similar with or 

without Ag NPs or carbon materials, meaning that the additional 

deposits did not affect the sheet’s resistance to FTO or the current 

collector. The R1 value is given by the sum of the small semicircle at 
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high frequency that is assigned to the parallel combination of 

resistances, and the capacitances at the Pt-FTO/electrolyte and the 

FTO/TiO2 interfaces. The R2 value is given by the sum of the large 

semicircle at low frequency that is associated with the resistance, and 

the capacitance at the dye-adsorbed TiO2/electrolyte interface, plus the 

transport resistance. The value of R1 without and with Ag NPs was 

approximately 5.58 and 5.54 Ω, respectively. However, the value of R2 

with Ag NPs (36.90 Ω) is much lower than that without Ag NPs 

(61.12 Ω). More electrons were generated by plasmonic activities than 

produced at the dye-adsorbed TiO2/electrolyte interface. As a result, the 

R2 value was reduced in the presence of Ag NPs. The value of R1 

with carbon materials (5.07 Ω) was less than those without or with 

Ag NPs (5.58 and 5.54 Ω, respectively), whereas the value of R2 

(36.40 Ω) was less than that without Ag NPs (61.12 Ω). Electrons 

are better transported by π-π conjugation that is affected by the 

FTO/TiO2 and dye-adsorbed TiO2/electrolyte interfaces. Hence, the 

values of both R1 and R2 decreased in the presence of carbon 

materials. In the presence of both Ag NPs and carbon materials, the 

values of R1 (4.88 Ω) and R2 (24.55 Ω) were the lowest. More 

electrons were generated and better transported in this case, by a 

combination of plasmonics and the π-π  conjugation that affected the 

FTO/TiO2 and dye-adsorbed TiO2/electrolyte interfaces. Therefore, the 

values of R1 and R2 were reduced.
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Figure 5.8. IPCE of DSSCs based on (a) unmodified open-ended TiO2 

NTAs, (b) embedded with Ag NPs, (c) applied with carbon materials, 

and (d) with both Ag NPs and carbon materials.

 The incident photon-to-electron conversion efficiency (IPCE) of DSSCs 

based on the open-ended TiO2 NTAs is shown in Figure 5.8. Plasmon 

is a kind of quasiparticle consisting of free electrons collectively 

vibrating within the metal. At the interface between a metal with 

negative dielectric constant and a medium having positive dielectric 

constant, surface plasmon resonance (SPR) combines a spreading 

electromagnetic wave on this interface (from visible to near-infrared 
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frequency) and the plasmon. This combination generates plasmon- 

polariton, which leads to optical absorption, and strong electric field is 

generated in some parts. During SPR, the light energy accumulates on 

the metal nanoparticle surface, and optical control is possible in the 

frequency range below the optical diffraction limit. Therefore, the 

intensity of DSSC based on open-ended TiO2 NTAs embedded with 

Ag NPs is higher than that without. This may mean that more 

electrons were generated by the plasmonic activities, which increased 

the short circuit current. The current intensity in the DSSCs based on 

open-ended TiO2 NTAs with carbon materials is also higher than that 

without. This may mean that electrons were better transported by π-π 

conjugation, which also increased the short circuit current. Moreover, 

the current intensity is the strongest in the presence of both Ag NPs 

and carbon materials. In this case, electrons are generated in large 

quantities and are better transported by plasmonic activities and  π-π 

conjugation.
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4. Conclusions

 We deposited Ag NPs and carbon materials in the channels of closed- 

and open-ended TiO2 NTAs using UV irradiation and CVD, 

respectively. These modifications improved the energy conversion 

efficiency of the corresponding DSSCs: the electron generation is 

enhanced by plasmonics from the Ag NPs, while the resistance of 

TiO2 NTAs is suppressed via the π-π conjugation from the carbon 

materials. DSSCs made of freestanding TiO2 NTAs coated with both 

Ag NPs and carbon materials had the best energy conversion 

efficiency, due to the combination of these two factors. Between the 

open-ended and closed-ended TiO2 NTAs (both with Ag NPs and 

carbon materials), the energy conversion efficiency of the DSSCs was 

higher for the former.
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국 문 초 록

 매우 규칙적인 구조를 가지는 이산화티타늄 나노튜브 수직 배열층을 

전기화학적 방법으로 제조하였다. 이 수직 배열층의 바닥면은 벌집통

의 바닥처럼 막혀있다. 이런 형태를 ‘끝이 닫힌 이산화티타늄 나노튜

브 수직 배열층’이라고 하고, 이 배열층 바닥면을 이온밀링의 방법으

로 깎아내면 위 아래가 완전히 관통된 ‘끝이 열린 이산화티타늄 나노

튜브 수직 배열층’이 만들어진다.

 제조된 이산화티타늄 나노튜브 수직 배열층을 염료감응형 태양전지

에 도입하여 기능성을 강화하였다. 이어지는 연구는 이 구조에 여러 

가지 변인들의 효과를 알아보는 과정이다.

 첫 번째 연구는 염료감응형 태양전지에 이산화티타늄 나노튜브 수직 

배열층을 도입하는 것이다. 수직으로 배열된 이산화티타늄들에 보다 

많은 염료가 부착되고 나노입자일 때보다 grain boundary 손실을 줄이

고 전자의 재결합을 줄여서 태양전지의 에너지 전환 효율을 증대시킬 

수 있다.

 이를 위해 ‘끝이 닫힌 이산화티타늄 나노튜브 수직 배열층’과 ‘끝이 

열린 이산화티타늄 나노튜브 수직 배열층’을 도입한 결과를 각각 비

교하였다.
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 ‘끝이 닫힌 이산화티타늄 나노튜브 수직 배열층’보다 ‘끝이 열린 이

산화티타늄 나노튜브 수직 배열층’을 도입할 때 에너지 변환 효율이 

5.15% 더 많이 증가되었다(5.92% 대 5.92%). 여기에 비교적 입자의 

크기가 큰 이산화티타늄 나노입자로 부가적인 산란층을 더 만들어준 

경우 에너지 전환 효율은 10.30%가 더 증가되었다(5.92% 대 6.53%). 

 추가적으로 ‘끝이 열린 이산화티타늄 나노튜브 수직 배열층’에 사염

화티타늄 용액 처리를 해주었더니 에너지 전환 효율이 16.38% 더 증

가하였다(5.92%에서 6.89%로). 이것은 염료의 빛 흡수율 증가와 빛 

수확 비율이 개선된 결과이다.

 두 번째 연구는 ‘끝이 열린 이산화티타늄 나노튜브 수직 배열층’을 

산란층으로 염료감응 태양전지에 도입하고 여기에 은 나노입자들을 

수직배열층 채널들 사이사이에 생성시키는 것이다. 이 은 나노입자들

은 태양전지가 작동할 때 플라즈몬 효과를 나타내게 되어 빛의 흡수

율을 높이고, 아울러 추가적으로 도입된 비교적 입자의 크기가 큰 이

산화티타늄 나노입자들에 의한 산란효과가 추가되어 결국 전체 에너

지 전환 효율이 높아진다.

 비교실험으로 먼저 ‘끝이 닫힌 이산화티타늄 나노튜브 수직 배열층’

이 도입된 염료감응 태양전지를 만들어 에너지 전환 효율을 측정하였

다. 그 후에 비교적 입자의 크기가 큰 이산화티타늄 나노입자를 산란

층으로 추가 도입하였더니 6.48%(5.86%에서 6.24%로)의 효율 증가가 

나타났다.
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 한편, 은 나노입자를 추가 도입하였더니 9.21%(5.86%에서 6.40%로)

의 효율 증가가 나타나서 이산화티타늄 나노입자에 의한 추가적인 산

란층 도입 효과보다는 은 나노입자를 생성시켜서 얻는 플라즈몬 효과

가 더 큰 것을 확인하였다. 

 두 가지 변인 즉, 은 나노입자에 의한 플라즈몬 효과와 이산화티타

늄 나노입자에 의한 추가적 산란 효과를 ‘끝이 닫힌 이산화티타늄 나

노튜브 수직배열층’이 도입된 염료감응 태양전지에 함께 적용한 결과  

14.50%(5.86%에서 6.71%로)의 에너지 효율증가를 확인하였다.

 이번에는 ‘끝이 열린 이산화티타늄 나노튜브 수직배열층’이 도입된 

염료감응 태양전지에 동일한 변인들의 효과를 조사하였다. 그 결과 

비교적 큰 이산화티타늄 나노입자층을 산란층으로 추가 도입하여 

8.17% (6.12%에서 6.62%로)의 에너지 전환 효율 증가를, 은 나노입자

의 도입을 통한 플라즈몬 효과로 9.15%(6.12에서 6.68%로)의 에너지 

전환 효율 증가를 확인하였고, 두 변인을 모두 적용하면 15.20% 

(6.12%에서 7.05%로)의 에너지 전환 효율 증가를 나타내었다.

 이산화티타늄 나노튜브 수직 배열층의 바닥이 열려있는지 여부가 에

너지 전환 효율과 얼마나 관련이 있는지를 비교하면 끝이 닫힌 수직 

배열층보다 열린 경우에 더 에너지 전환 효율이 높았다(6.71% 대 

7.05%).

 결론으로 ‘끝이 열린 이산화티타늄 나노튜브 수직배열층’을 염료감

응형 태양전지에 도입하고, 은 나노입자를 채널 속에 고르게 생성시

켰으며, 여기에 더해 비교적 입자의 크기가 큰 이산화티타늄 나노입

자를 추가 산란층으로 도입하였을 때, 산란효과와 플라즈몬 효과가 
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함께 증대되어 에너지 전환 효율이 증가된다.

 세 번째 연구는 이산화티타늄 나노튜브 수직 배열층에 은 나노입자

와 함께 탄소 물질을 도입하는 것이다. 먼저 선행 연구와 같이 ‘끝이 

열린 이산화티타늄 나노튜브 수직 배열층’을 염료감응 태양전지에 도

입하고 은 나노입자들을 채널들 사이사이에 생성시키고 에너지 전환 

효율을 측정하여 15%(5.32%에서 6.14%로)의 증가를 확인하였다. 이

것은 플라즈몬 효과에 기인한다. 이번에는 ‘끝이 열린 이산화티타늄 

나노튜브 수직 배열층’이 도입된 염료감응 태양전지에 (고온의 탄화

수소를 산화시키는 방법으로) 탄소물질을 생성시켜 만든 태양전지는 

에너지 전환 효율이 14%(5.32%에서 6.07%로) 증가하였다. 이것은 파

이-파이 공액(공명, 결합)의 결과이다.

 ‘끝이 열린 이산화티타늄 나노튜브 수직 배열층’이 도입된 염료감응 

태양전지에 은 나노입자와 탄소물질이 모두 생성된 경우, 그렇지 않

은 경우에 비해 30%(5.32%에서 6.91%로)의 에너지 전환 효율 증가를 

나타내었다. 이것은 플라즈몬 효과와 파이-파이 공액(공명, 결합)의 

효과가 함께 작용한 결과이다.

Keywords: open-ended freestanding TiO2 nanotube arrays, 

dye-sensitized solar cells, plasmonic, scattering, anodization
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