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Abstract
Parameter Change Test for Time Series of Counts

Youngmi Lee
The Department of Statistics
The Graduate School

Seoul National University

In this thesis, we consider parameter change test for time series of counts. First
we consider the problem of testing for parameter change in zero-inflated generalized
Poisson (ZIGP) autoregressive models. We verify that the ZIGP process is station-
ary and ergodic and that the conditional maximum likelihood estimator (CMLE)
is strongly consistent and asymptotically normal. Then, based on these results,
we construct CMLE- and residual-based cumulative sum tests and show that their
limiting null distributions are a function of independent Brownian bridges. Simu-
lation results are provided for illustration and a real data analysis is performed on
data of crimes in Australia. Second we consider bivariate Poisson integer-valued
GARCH(1,1) models, constructed via a trivariate reduction method of independent
Poisson variables. We verify that the CMLE of the model parameters is asymptoti-
cally normal. Then, based on these results, we construct CMLE- and residual-based
CUSUM tests and derive that their limiting null distributions are a function of in-
dependent Brownian bridges. A simulation study are conducted for illustration.
We analyze two daily data sets of car accidents that occurred in Sungdong and
Seocho counties in Seoul, Korea. Finally, we consider the problem of testing for a
parameter change in general nonlinear integer-valued time series models where the

conditional distribution of current observations is assumed to follow a one-parameter



exponential family. We consider score-, (standardized) residual-, and estimate-based
CUSUM tests, and show that their limiting null distributions take the form of the
functions of Brownian bridges. Based on the obtained results, we then conduct a
comparison study of the performance of CUSUM tests, through the use of Monte
Carlo simulations. Our findings demonstrate that the standardized residual-based

CUSUM test largely outperforms the others.

Keywords : Time series of counts; zero-inflated generalized Poisson autoregressive
model; integer-valued GARCH model; test for parameter change; CUSUM test; weak
convergence to a Brownian bridge; bivariate Poisson INGARCH model; exponential

family; comparison of tests.

Student number : 2003-20356
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Chapter 1

Introduction

In recent years, integer-valued time series have attracted much attention from re-
searchers because count data sets are frequently encountered in practice. Time
series models of counts can be classified into two categories, that is, one using a
thinning approach and the other using a generalized linear model (GLM) approach.
The former includes the autoregressive moving average (ARMA )-type models based
on a binomial thinning, referred to as integer-valued ARMA models; for example,
see Alzaid and Al-Osh (1990), Jin-Guan and Yuan (1991),A1-Osh and Aly (1992),
McKenzie (2003),and Weifl (2008). The latter is considered by Zeger and Qaqish
(1988), Li (1994), Davis et al. (2000), Fahrmeir and Tutz (2001) and Jung et al.
(2006). Further, regression models with an intensity process are considered by Fer-
land et al. (2006) and Fokianos et al. (2009). Sequences of counts appear in many
other application fields such as statistical quality control (Weifl (2009)) and insur-
ance (Zhu and Joe (2006)). See also Winkelmann (2008), who provides a survey of
statistical and econometric techniques for count data based on conditional distri-

bution models, and Jung and Tremayne (2011), who provide an overview of some
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recent developments in the analysis of time series of counts.

Time series of counts data are often overdispersed; that is, the variance is bigger
than the mean of data. In this case, apparently, the Poisson distribution is not suit-
able for practical purposes. An alternative approach to modeling overdispersed count
data is to employ integer-valued GARCH (INGARCH) models (cf. Ferland et al.
(2006)). On the other hand, the generalized Poisson (GP) distribution introduced by
Consul and Jain (1973) is a natural extension of the Poisson distribution when the
data are overdispersed or even underdispersed. It is this flexibility that led many
authors to study GP regression models (cf. Consul and Famoye (1992), Famoye
(1993), and Famoye et al. (2004)). Recently, Zhu (2012a) studied the stationarity
and ergodicity of the GP-INGARCH process and demonstrated the consistency and
asymptotic normality of the conditional maximum likelihood estimator (CMLE);
see also Jung and Tremayne (2011). On the other hand, the zero-inflated Poisson
distribution is considered suitable for data with excess zeros: see Lambert (1992)
and Gupta et al. (1995, 1996). Later, Zhu (2012b) studied zero-inflated (ZI) IN-
GARCH models and investigated their model properties. In this study, we combine
the GP-INGARCH and ZI-INGARCH models into one model.

For marginal distributions, some researchers also consider the use of distribu-
tions other than the Poisson distribution. For example, Davis and Wu (2009), Zhu
(2011), and Christou and Fokianos (2014) consider negative binomial INGARCH
(NB-INGARCH) models, Zhu (2012c) considers ConwayMaxwell Poisson distribu-
tion and Hudecova (2013) and Fokianos et al. (2014) consider the binary time series
model. Davis and Liu (2016) recently extended the Poisson AR model to one-
parameter exponential distribution AR models—called general nonlinear INGARCH

(GN-INGARCH) models—thus establishing its stationarity and ergodicity, as well as



CHAPTER 1. INTRODUCTION

the asymptotic properties of the conditional maximum likelihood estimator (CMLE)

under some regularity conditions.

Compared to the univariate model, only a few consider bivariate (multivariate)
integer-valued time series models. We can refer to Quoreshi (2006) and Pedeli and
Karlis (2011, 2013a,b) who introduce the INAR type models, and Heinen (2003),
Liu (2012) and Andreassen (2013) who investigate the INGARCH type models.
Heinen and Rengifo (2003) suggest the multivariate AR conditional Poisson models
based on a double Poisson distribution of Efron (1986). Liu (2012) consider bi-
variate Poisson INGARCH(p, ¢) models constructed via the trivariate reduction and
prove the stationarity and ergodicity under certain conditions. Andreassen (2013)
verifies the consistency of the conditional maximum-likelihood estimation (CMLE)
of bivariate Poisson INGARCH(1,1) models. The Poisson INGARCH-type model
has a limitation since it can only accommodate the non-negative dependence be-
tween two time series. To overcome this drawback, Heinen and Rengifo (2007) and
Andreassen (2013) consider a copula approach. Heinen and Rengifo (2007) use the
continued extension argument proposed by Denuit and Lambert (2005) to guarantee
the uniqueness of the copula distribution. We focus on the bivariate Poisson IN-
GARCH model of Liu (2012) in Chapter because the model is much more tractable
in developing the CUSUM test.

Integer-valued time series in epidemiology are well-known to often undergo a
change as the result of variations in quality of health care and state of patients’
health. In general, inferences that ignore a parameter change can lead to a false
conclusion, and thus, the detection of a parameter change is an important issue in
practice. The problem of change point detection has been investigated by many

authors: see Csorgod and Horvath (1997) for a general review. Among the existing



change point tests, the cumulative sum (CUSUM) test has long been popular since it
is easy to understand and implement in practice. The change point test for integer-
valued time series has been studied by several authors: see Fokianos and Fried (2010,
2012), Hudecova (2013), and Fokianos et al. (2014). Further, Kang and Lee (2009)
proposed a CUSUM test for detecting change points in random coefficient integer-
valued autoregressive models with Poisson innovations and used it to analyze polio
data. Franke et al. (2012) investigated a CUSUM test based on estimated residuals
from Poisson autoregressive models with intensity A\, = f(Y;_1) for some real-valued
function f. Doukhan et al. (2013) proposed the Poisson autoregressive models with
intensity A\; = f(Y;—1,Y;—2,...) and a change point test based on the likelihood
of observations. See also Liu (2012) for a relevant reference. Recently, Kang and
Lee (2014) investigated the change point test for Poisson autoregressive models
with Ay = fo(Yi1, i—1) (cf. Fokianos et al. (2009)) that include INGARCH(1,1)
models. They suggested two types of CUSUM tests: an estimates-based test using
the CMLE, and a residual-based test. In this study, we aim to extend their method
to zero-inflated generalized Poisson autoregressive (ZIGP AR) models, the bivariate
Poisson AR models and GN-INGARCH models. Compared to the previous study
of Kang and Lee (2014), a more careful analysis is needed to obtain the asymptotic

results owing to model complexity.

Although the estimates-based CUSUM test generally performs well, the estimates-
based test occasionally suffers from severe size distortions; for this reason, it cannot
be completely trusted (Kang and Lee (2014), Lee et al. (2016a,b)). In contrast,
the residual-based test performs much more stably and produces reasonably good
powers (Lee et al. (2004), Lee and Lee (2015)). However, its performance power is

not always satisfactory, and a great power loss can occur, particularly when deal-
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CHAPTER 1. INTRODUCTION

ing with a parameter change in conditional locations (Oh and Lee (2017b)). As an
alternative, one can use the score vector-based CUSUM test (Berkes et al. (2004),
Oh and Lee (2017a)), because it might outperform the residual-based CUSUM test
in terms of power. This study, inspired by the work of Oh and Lee (2017b), addi-
tionally considers the residual-based CUSUM test using the standardized residuals,
as doing so can to a great extent enhance test performance in terms of power; this
is seen in the results of their and our simulation studies.

This thesis is organized as followed. In Chapter 2, we review the results relevant
to our subject handled in this thesis. In Chapter 3, we consider the zero-inflated
generalized Poisson AR models. We establish the asymptotic results for CMLE,
introduce the CUSUM tests based on estimates and residuals and derive their lim-
iting null distributions. A simulation study and a real data analysis are presented
fo illustration. In Chap 4, we introduces the bivariate Poisson INGARCH model
and shows the asymptotic normality of CMLE. Further, we introduce the CUSUM
test based on the estimates and residuals and derives their limiting null distribu-
tions. A simulation study and a real data analysis are conducted for illustration.
In Chapter 5, we introduces the one-parameter exponential family AR models and
establishes the asymptotic results for the CMLE. Further we introduces the CUSUM
tests based on score vectors, (standardized) residuals, and estimates. After verifying
their limiting null distributions, we implement a simulation study for comparison

and illustrate a real data example.



Chapter 2

Literature Review

2.1 CUSUM test

Lee et al. (2003) proposed the Cusum test for detecting a parameter change. Their
Cusum test turned out to be widely applicable to various time series models. Let
{x; : t € Z} be the stationary time series, and let 8 = (61, ...,0;)T be the parameter

vector. We wish to test the following hypotheses based on the estimators 0,:

Hy : 0 does not change over x1,...,z, vs.

H1 : not Ho.
Let ) be the estimator of 6 based on x1,...,2. They investigate the differences
0, — 9n, k=1,...,n for constructing a Cusum test. Suppose that

k
N 1
VEO,—0)= —S 1, + Ay,

where l; := 1,(0) forms stationary martingale differences and Ay, = (A, .. ., Aj,k)T.

Let I' = Var(l;) be the covariance matrix of l;. Assuming that I" is nonsingular, we
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get

[ns]

> TV W(s)

t=1

1

WG
in the D7[0,1] space, where W ;(s) = (Wy(s), ... W;(s))T denotes a J—dimensional

standard Brownian motion. Now, suppose that for each j =1,...,J,

Vk

max

e %‘A%H = Op(l).

Then,

[n_\/j—L]F_lﬂ (éns - 0)

[ns]

1 V[ns] w

= = TV 4T P A ) 5 Wy (s),
Vn = vn

and consequently,
[12s]

ST Y20y — 0,) — WH(s),

n

where W9(s) = (W7,...W9(s))T is a J—dimensional Brownian bridge. Therefore,

under Hy, the test statistic

satisfies

We can obtain the critical region {7}, > c,} given a nominal level «, where ¢,

is the empirical (1 — a) quantile values for supyc,<; [[WY5(s)||>. The critical values
are provided in Table 1 of Lee et al. (2003). When H is rejected, we estimate the

location of the change point as k= arg maxj<g<n %(ék — 9n)TF*1(9k — én)



2.2. THE POISSON AR MODELS

2.2 The Poisson AR models

The Poisson autoregressive model is defined by
Yi|Fio1 ~ Poisson(Ny), A = fo(Mo1,Yi1), VEETZ (2.1)

where fj is some known positive function depending on the parameter § € © C RY.

The contraction condition is as follows : for all § € O,

|fo(Ay) = fo(N )| S wi|]A = N[+ waly — /],

for all A\, \ > 0 and v,y € Ny, where wy,ws > 0 and w; + wy < 1. Under the
contraction condition, there exists a unique strictly stationary ergodic solution for
(2.1) (cf. Neumann (2011)) which has finite moments of any order (cf. Fokianos
et al. (2009)). Fokianos and Tjgstheim (2012) proved that the weak consistency
and the asymptotic normality of the CMLE for Poisson AR model. The strong
consistency of the CMLE is given by Kang and Lee (2014).

In particular, Poisson INGARCH (1,1) model is defined by

Yi|Fio1 ~ Poisson(N\;), M =w+al_1+ Y1, VEEZ

where w > 0, « > 0,8 > 0 and F;_1 = 0(Y;_1, Yi_2,...). This models well describes

the overdispersion, since

—w —62 = ar
(0t p) <“(” 1—(a+ﬁ)2> = Var(%).

Further, it has a strictly stationary ergodic solution and all moments of Y; and A,

EY) =p=

are finite when o + 8 < 1 which satisfies the contraction condition.



Chapter 3

Parameter Change Test for
Zero-Inflated Generalized Poisson

Autoregressive Models

3.1 Introduction

In this Chapter, we consider zero-inflated generalized Poisson autoregressive (ZIGP
AR) models. We show that the ZIGP AR model is ergodic and stationary and
that the CMLE is strongly consistent and asymptotically normal. Further, based
on these, we drive the limiting distribution of the CUSUM test.

This Chapter is organized as follows. In Section 3.2, we introduce the ZIGP AR
model and establish the asymptotic results for CMLE. In Section 3.3, we introduce
the CUSUM tests based on estimates and residuals and derive their limiting null
distributions. In Section 3.4, we present a simulation study for illustration. In

Section 3.3.2, we apply our tests to a real data set and demonstrate the existence
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of a parameter change. In Section 3.6, concluding remarks are provided. All the

related proofs are provided in the Appendix and the supplementary material.

3.2 Zero-inflated generalized Poisson AR model

A random variable Y has a ZIGP distribution with parameter A, x and p if

p+(1—ple? r=0
PY =y)=q (1=p)AA+ry)" e O /yl 4y =1,2,...
0 fory>mitk <0

(cf. Gupta et al. (1995, 1996)), where A > 0,0 < p < 1,max(—1,—A\/m) < k < 1,
and m(> 4) is the largest positive integer for which A + km > 0. The above
distribution reduces to a generalized Poisson distribution when p = 0 and to the
ordinary Poisson distribution with mean A when p =0 and x = 0.

Using (2.5) of Zhu (2012b), we obtain the moments of Y as
E(Y*) =) aq\, s=12.., (3.1)
i=0

where ag; is not related to A and ass = (1 — p)/(1 — k)®. In particular, we have

E(Y) =

1-— A2 A
1_ZA and VGLT(Y):(1—p){(1p_ﬁ)2 + (1—/4;)3}'

The variance of Y is greater than or equal to the mean depending on whether
0 <k <1ork =0, respectively. When s < 0, the variance is less than the mean,
provided p = 0.

Let {Y;} be a time series of counts with the conditional distribution following a

ZIGP distribution; that is,
AL

Yi|Fior ~ ZIGP(X, K, p), (1= P)l .

= M(07) = for (Ao, Yirn), (3.2)

10
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GENERALIZED POISSON AUTOREGRESSIVE MODELS

where 0 < p < 1,max(—1,—A/m) < k < 1,F;_; is the o—field generated by
Yi1,..., Y, Ao and fp« is a positive function on [0, 00) x Ny, Ny = NU{0}, depending

on the parameter §* € ©* C R? and irrespective of p and x. Let

0=(p,¢,0")"

where ¢ = 1/(1 — k). Note that the poisson parameter in the conditional mean
equation is expressed as A\f(6) = %)\t(ﬁ*) wherein the p and k are assumed to be

constant in the same spirit as in Zhu (2012a,b). The true value of # is denoted by
0o = (po, ¢0,07)"

In what follows, we assume that

(A1) For all A, N >0 and vy, € Ny,

Sup | for (N y) = for (NS )] S wi|A = N+ waly — /],
*E *

where wy,wy > 0 satisfying wy; + wy < 1.

Based on the results of Neumann (2011), one can show the stationarity and
ergodicity of the process under assumption (A1). More precisely, we can obtain the

following (see the Appendix for its proof).

Theorem 3.1. Suppose that the bivariate chain (Y, \)),c i model (3.2) satisfies
(A1). Then, it holds that

(i) There exists a unique stationary distribution.
(ii) The process ((Yi, At))ien 18 ergodic.

(iii) The process ((Yi, A));en belongs to L° for each s > 0.

11
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The result of Theorem 3.1 plays an important role in establishing the asymptotic

results addressed below.
The conditional likelihood function of model (3.2) is given by

£(0) =[] [Zoa®) 1035 = 0) + Lus(0)1(v, > 1)]

t=1

Loo(0) = p+(L—=ple™ =p+(1—p)exp {_é?i(ﬁ*)p) } 7

- (O \AYGE —(Aj+KY?)
L11(0> — (1_,0) t( i TR ;/t' e
~ ~ Yi—1
MOV + A= p) o -1V} (1= p) Mg

Y

cexp | {0 + (1= o - 0} |

and the )\, are defined recursively by
M(O7) = for (Moa (67),Yi0), t>2,
with an arbitrarily chosen initial random variable A\;. The CMLE of 6, is defined as
0, = argmax L(0) = arg max L, (0),
EC) 0cO

where

and

lo(0) = log p+(1—p)exp{—%}],
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(n(0) = log A (67) + (Y; — 1) log {W*) +(1—=p)(¢— 1>Yt} ~ Y, log¢

~(Y; — L)log (1 - p) — N(O%) + (1= p)(6 = D)Y; | — log il

=k
o(1—p)
To ensure the strong consistency and asymptotic normality of én, we assume the

following conditions:

(A2) 6y € © and O is compact. In addition, there exist 0 < §;, < §y < oo such that
0<idp<p<l—idp<l 0<dp<¢p<iy <o,
fg*()\,{L‘)Z(SL>0, Vo* € ©, A >0, x € Ng.

(A3) E (suppece- AM(0%)) < oo and E (SUpe*e@* 5\1(6’*)> < 00.

(A4) \(60%) = \(65) a.s. implies 6% = 6.

(A5) 6§ is an interior point of ©*.

(A6) A\ (6*) is twice continuously differentiable with respect to 6 and satisfies

4 2
E(sup D <ooandE(sup > < 00
6+ co*

0*€0*
(A7) Let V stand for a generic integrable random variable and 0 < n < 1 be a

92\, (6%)
00-90*T

O\ (6%)
0~

generic constant. Then, for all ¢, a.s.

ON(0)  ON(67)
0" 90"

P07 PN(6")
00*06*T  9p*0p* "

t

< V77t and sup
0*cO*

sup
9*cO*

(A8) l/Ta)‘(,;e(fS) = 0 implies v = 0.

(A9) There exists 07 > 0 such that for all V;, a.s.,

M(07) + (1= p)(6— DY 2 85 > 0, A (0) + (1= p)(¢ — )Y; 2 5} > 0.

& =
L |  §

13 1] O 1_]| =]
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Remark 3.1. (A9) is necessary to define the log-likelihood function 4 (6). If ¢ > 1
(over-dispersion) and (A2) holds, (A9) is automatically satisfied. In the case of 0 <
¢ < 1 (under-dispersion), owing to the parameter restriction in ZIGP distribution,
that is, max(—1,—\/m) < k < 1, where m is the largest positive integer for which
A+rm >0, \(0F)+(1—p)(¢—1)m > 0 is implicitly assumed, which also guarantees
G = MO0)+(1=p)(0p—1)Y; > 0 for all t. In implementation, given Y1,...,Y,, one
may take 0] = minj<;<,, ¢; > 0. Concerning these assumptions, though, a careful

treatment might be needed when dealing with the under-dispersion case in practice.

Then, we can obtain Theorems 3.2 and 3.3 below the proofs of which are pre-

sented in the Appendix.

Theorem 3.2. Under (A1l)-(A4) and (A9), as n — oo
én — 0y a.s..
Theorem 3.3. Under (A1)-(A9), as n — oo

Vi, — 0y) = N (0,1(65)7"),

where

o = (L2) __p (2]

6(0) = Lo(0)I(Y; =0)+u(0)I(Y: > 1),

lo(0) = log {p+(1—p)eXp{—%H’

(a(6) = logA(0°) + (Y — 1) log {A(0) + (1= p)(6 — )Y} — (¥, — 1) log (1 - p)

Y, logé ﬁ M) + (1= p)(6 — ¥} — log Vil

14 I 3 11 &1
_‘~|-1__]| o
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Remark 3.2. When fop«(\, ) = w+aX+ Bz, model (3.2) becomes an integer-valued
GARCH (1,1) model. In this case, the results in Theorems 3.2 and 3.3 hold when
a+ B < 1. The detailed proof is omitted for brevity.

Remark 3.3. Ferland et al. (2006) investigated the properties of Poisson-INGARCH
(p,q) models; Doukhan and Kengne (2015) considered the change point test prob-
lem for the model with \y = fo(Yi_1,...); Zhu (2012a,b) verified the stationarity
of ZIP-INGARCH(p,q) and GP-INGARCH(p,q) models. In view of these articles,

naturally, one may consider extending our method to model (3.2) with
/\t = f9<)\t—1a s 7/\t—p7 Y;—la s 7}/:‘,—q)-

Since this issue s somewhat beyond the scope of this paper, it is a topic of a different

research project.

3.3 Change point test

In this section, we propose estimates- and residual-based CUSUM tests for detecting
a parameter change in ZIGP AR models. We would also like to test the null and

alternative hypotheses:

Hy : 0 does not change over Yi,...,Y, vs. Hy: not Hy.

3.3.1 Estimates-based CUSUM test

To implement our test, we employ the test statistic

2

T — max ™ (G — 6,07 16k — 6,). (3.3)

1<k<n n

15 x:x_'i O 1]
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where ék is the CMLE of 6, based on Y7, ...,Y) and

-1 S
B aaaeT
By using Taylor’s theorem, provided * ‘“8+0§) is nonsingular, we can show that
- ~1 -
. 19%L,(6)) 1 OL,(6p)
O, —60) =— | ——=7+= — ,
Vil 0) <n 90007 ) Jn 00

where the 6] is between én and 6y and subsequently,

. T 27 / 27 / -1 7
1(60)- (0~ ) = =) - {I(Go) + 22 Lol } (;%I;g;i“) 2,

Therefore, for 0 < s < 1,

100 2 Gy - ) = L2 (5

1PLO) | (1922600 T 1L 9Li(60) 102200\ T s
- {I (60) + % 5957 } (E 0067 T i i aelg)eT exists

{1(90) %%ggée{;) } \/E(ék — ), otherwise.

where

Ay =

According to the Proposition 3.6 in the Appendix , {00;(6y)/00; F;} forms a martin-
gale difference sequence under Hy. Thus, using the functional central limit theorem

for martingales, we can show that

19 1 OLpg(0o) w
1/2%—[6]9< 0) — Bd+2(3)a

where {Bgi2(s),0 <s <1} is a (d + 2)-dimensional standard Brownian motion.

I(6)

From Proposition 3.4 in the Appendix, we can see that

16 pa e

1_'_] |
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Further, using Egorov’s theorem and Proposition 5 in the Appendix (cf. Lemma 9

of Kang and Lee (2014)), we obtain

[
max \/jHAkH = op(1).
1<k<n V' n

[ns] 1(‘3f1[ns](00) [ns] « w
[(90)%(9@3] — 90) = E 90 + 0 A[ns] — Bd+2(8),

and, subsequently,

Then, we have

[ns]
NG

Therefore, we obtain the following.

]<90)1/2 (é[ns] - én) i> BSH—Q(S)‘

Theorem 3.4. Suppose that Hy and (A1)-(A9) hold. Then,

f<eo>1/2%<éms] 0, BSy(s),

where {Bg,,(s),0 < s <1} is a (d + 2)-dimensional Brownian bridge. Further, I,

in (3.3) is a consistent estimator of I(6y), and thus,
T3 — sup By ,(s)l”.
0<s<1

Remark 3.4. Recently, Doukhan and Kengne (2015) suggested a cusum test, say
C,, that measures the discrepancy between the parameter estimates based on the first
k and remaining n—k observations. This approach has merit in that their estimator
of 1(6y) is easily proven to converge to a positive definite matriz both under the
null and alternative hypotheses, and as such, the CUSUM test can be shown to be
consistent. The test C, is also applicable to our model and its limiting distribution

can be obtained similarly to T¢'. To compare C, and T, some simulation study

17 y > 11 &1
_‘~|-1__]| o
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is conducted in Section 3.4: see Tables 3.5 and 3.6. As seen therein, C,, does
not outperform T in our set-up. However, it could interesting to compare its
performance with the estimates- and residual-based tests in other situations based

on different models.

3.3.2 Residual-based CUSUM test

One can test for a change based on the residuals defined by ¢, = Y; — A\;(6p), as in

Franke et al. (2012) and Kang and Lee (2014). In this case, we use a test such as

S ()5

t=1 t=1

1
T = max
" 1<k<n \/nT,

9

where & = Y, — )\, with )\, = fos (5\,5_1,Yt_1), an arbitrarily chosen initial random
variable \; and 72 = L3 01 €. Then, one can see that the following result holds

(cf. the proof of Theorem 6 of Kang and Lee (2014)).

Theorem 3.5. Under (A1)-(A9) and Hy, we have

17 — sup |Bj(s)].
0<s<1

Remark 3.5. As seen in the simulation study below, the residual-based test tends to
be more stable than the estimates-based test. However, the latter merits to produce
better powers than the former in many situations. For the residual-based CUSUM
test for GARCH type models, see De Pooter and van Dik (2004) and Lee et al.
(2016a). Recently, Fokianos and Fried (2012), Hudecovd (2013) and Kirch and
Tadjuidje Kamgaing (2014) proposed residual-based score type tests for their own
purposes. All these tests are worth further investigation in our set-up as well for
a comparison study. Due to its importance, this issue is left as our future research

project.

18 J'A! _CI:I ; 1_-_]
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3.4 Simulation results

In this section, we report simulation results to evaluate the performance of T and

T7s. We consider the INGARCH(1,1) model:

*

A
Yi|lFoor ~ ZIGP(A] 5, p), (1= p)5—— = M(07) = w+ aX (07) + BYiy,

11—k

where A\ is assumed be 0. In this simulation study, we set the nominal level as
0.05, the repetition number as 1,000, and the sample size as n = 300, 500, 1000.
The critical values for 72" and T"°* are 3.899 and 1.353, respectively, which are the
ones obtained through a Monte Carlo simulation of the limiting null distribution,
sUPg<,<1 [|BS[|* (cf. Lee et al. (2003)). Since 0y, for small k could be inaccurate,

instead of (3.3), we use the test statistic:

2
Tneﬁz = max k—(gkz = 0n)" L (0 — On),

kr<k<n M

which has the same asymptotic properties as (3.3). In our simulation study, we use
kr = 20.

To calculate the empirical size, we consider the INGARCH(1,1) model with p =
0,0.1,0.3, ¢ = 1.2, 1.5 (i.e., kK =1/6,1/3, respectively), and

0" = (w, o, B) = (1,0.1,0.2), (1,0.1,0.5), (1,0.1,0.8).

The empirical sizes are illustrated in Table 3.1. One can see that 77“° has no severe
size distortions. On the other hand, T exhibits some size distortions either when
a+pB =~ 1or(p,¢)# (0,1), namely, the case other than the pure Poisson AR model.
However, the size gets closer to the nominal level as the sample size increases. This
shows that a fairly large sample size is needed to achieve the stability of the test. In

our past experience (cf. Kang and Lee (2014), Na et al. (2012) and Song (2008)),

3 y 1 | s
19 "':I'H-_E L '|_i | -"_l |-
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this phenomenon has been frequently observed when performing the CUSUM test
for GARCH-type models.
In order to examine the power, we consider the case in which parameter 6 changes

to 0’ at the middle point:

e Case 1: 6* changes to 6*" and (p, ) = (0,1),(0.1,1), (0,1.2), (0.1,1.2) does not

change.

e Case 2: (p,¢) changes to (p/,¢') and (w,a, f) = (1,0.1,0.2) does not change.

Tables 3.2-3.4 exhibit the empirical powers, wherein we can see that T pro-
duces good powers in many cases while 77 produces small powers in Case 1 when
n= 300, 500 (see Tables 3.2, 3.3) and in Case 2 (see Table 3.4). In Case 1, the
power of 17 gets closer to 1 as the sample size increases. Meanwhile, in Case 2,
the power is small since the estimated residuals are less affected by the change of
(p, ¢). Figure 3.1 shows the time plots of the estimated studentized residuals of simu-
lated data when 6 = (0,1,1,0.1,0.2) changes to (0.3,1.2,1,0.1,0.2),(0,1,1,0.5,0.2)
and (0.3,1.2,1,0.5,0.2) at the middle point, respectively. This indicates that the
residuals tend to have more stable movements only when (p, ¢) changes, which sub-
sequently results in producing small values of 77¢°, and thus 77 is not favored
when we conduct a test for a change in (p, ¢).

Tables 3.5 and 3.6 show the sizes and powers of the test C,, with v, = u, =
(logn)>? and ¢(-) = 1 (see Doukhan and Kengne (2015) for v,,u, and ¢) and
compare its performance with 72!, Here, we only report a few cases since the other
cases show a similar pattern: the symbol * in Tables 3.1-3.4 denotes the cases chosen
for the comparison. As mentioned in Remark 3.4, it is seen that C), has severer size

distortions and produces no better powers than the estimates-based test in our set-

20 I _k':l_ 1_]| .__;J‘_
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up. In fact, it can be checked that C),, does not completely outperform 77 in power

as well excepting the case that the change only occurs in p and ¢.

3.5 Real data analysis

In this section, we illustrate our method through a real data analysis. We analyze
two monthly data of counts of robbery with firearms and assault police in Inner
Sydney during the period January, 1995 to December, 2013 (the sample size = 228),
recorded by the New South Wales (NSW) Police Force.

3.5.1 Number of robbery with firearms in Inner Sydney

First, we consider the data of counts of robbery with firearm. The empirical mean
and variance of the data are 1.013 and 1.493, respectively. The time plot and
histogram of the data are given in Figure 3.2. There are 99 zeros (43.42%) in series.
The zero-inflates index defined in Puig and Valero (2006) is 0.2682, indicating that
the series is zero inflated. Moreover, the data exhibit serial dependency; see the
autocorrelation and partial autocorrelation samples shown in Figure 3.3. Thus,
we fit a ZIGP-INGARCH(1,1) model to the data. Applying the change point test
in Section 3.3, we obtain T =17.388 (see the vertical line in Figure 3.4), which
suggests the rejection of the null hypothesis at the nominal level 0.05, that is, a
parameter change occurs. On the other hand, we have 7% = 1.242, which is less
than the critical value 1.353 at the nominal level 0.05 but is greater than the critical
value 1.219 at the nominal level 0.1. Hence, it can be reasoned that a parameter
change exists with a high possibility. The estimated parameters are summarized in

Table 3.7. It can be seen that the number of zeros is 33(34.02%) in the first period

21 "':lﬂ_-i O
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and 66(50.38%) in the second period. Further, the zero-inflates index is -0.0162 for
the first period and 0.2983 for the second period, indicating that only the data in
the second period are zero-inflated. This evidence strongly advocates the existence

of a parameter change.

3.5.2 Number of assault police in Inner Sydney

Next, we analyze the data of counts of assault police. The empirical mean and
variance of the data are 22.877 and 46.751, respectively, which indicates that the
time series is over-dispersed. The time plot of the data, the sample autocorrelation
and the partial autocorrelation functions are shown in Figures 3.5 and 3.6. Since
there are no zero observations, we only fit the GP-INGARCH(1,1) model to the
data. In fact, the likelihood ratio test as in Zhu (2012a) indicates that a GP-
INGARCH(1,1) model is favored, that is, ¢ > 1 (overdispersed).

Applying the change point test in Section 3.3, we obtain T¢* = 5.004 and T/*5 =
1.566, and thus conclude that a parameter change exists. Further, 7" is maximized
at k = 106 (see the vertical line in Figure 3.7), which suggests that the change occurs
in October 2003. The estimated parameters for the subseries before/after the change

point are summarized in Table 3.8.

3.6 Concluding remarks

In this study, we carried out estimates- and residual-based CUSUM tests for ZIGP
AR models and derived their limiting null distribution under regularity conditions.
Compared to ordinary Poisson AR models, the ZIGP AR model has greater flexi-

bility and is thus more suitable for analyzing a wider class of time series of counts.

22 1] &1
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We showed the stationarity and ergodicity of the ZIGP AR model and verified the
strong consistency and asymptotic normality of the CMLE. Through a simulation
study and real data analysis, we demonstrated that our test performs adequately
and provides a functional tool to analyze a crime data set. The simulation result
shows that a fairly large sample size is required to ensure the stability of the test,
which is rather conventional according to our past experience in analyzing GARCH-
type models. This shortcoming may be overcome by using a bootstrap method, but
a careful analysis is required to justify its usage. Due to its importance, we leave

this topic as a task of our future study.

3.7 Appendix

In this Appendix, we prove the theorems in the previous sections. The proofs of the

propositions below are found in the supplementary material.

Proposition 3.1. For arbitrary A\, Ao > 0, we can construct on an appropriate

probability space Y; ~ ZIGP(\!, k,p), \i = (1 — p)Ai/(1 — k) fori=1,2, such that
EYi = Ya| = |\ — Ao| and P(Yi # Y3) < [A1 — Dol

Proof of Theorem 1 Points (i) and (ii) in Theorem 3.1 can be easily proved by
Proposition 3.1 in the Appendix and Theorems 2.1 and 3.1 of Neumann (2011).
Meanwhile, point (iii) can be verified by (3.1) and Theorem 2.1 of Doukhan et al.
(2012). We omit the details for brevity. O

Proposition 3.2. Under (A1)-(A3) and (A9), we have

bco |1 °—

sup lzgt(ﬁ) - %Z&(Q) —0 a.s.
t=1 t=1
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Proposition 3.3. Under (A1)-(A3) and (A9), we have

(a) E (supft(9)> < oo and (b) 0 # 6y = El(0) < El(0).
EC)
Proof of Theorem 2. We express

1 n
nZa —ﬁ;@(e) nZ:: — E4,(0

By Proposition 3.2, the first term of the RHS of the above inequality converges to 0

n

S5 - Bus)|.

t=1

sup
0co

< sup
USE)

)|+sup
0cO

a.s.. Since ¢;(0) is the stationary and ergodic and E(suppee ¢+(6)) < oo, the second
term also converges to 0 a.s.. Therefore, the strong consistency can be asserted by
Proposition 3.3. O

Note that the first derivatives are as follows:

00,(0)  0lw(®) . 9ln(0)
g~ op =0+ =g Iz 1),
with
Dl(0) 1 —exp{—Aw(0)} — 355 exp{—Aw(0)}
o p+ (1= p)exp{—Ap} ’
Ol(6) M (67) exp {— A (6)}
d¢ ¢*[p+ (1 — p)exp {—Aw(0)}] ’
M) exp {—Ap} O\ (6%)
00 dlp+(1—plexp{—An(0)} 90
where A;o(0) = M (0%)/{o(1 — p)}, and
own@) (- DM -1V i—1  A(9)
dp M)+ A -plo—1)Y. 1-p o(1-p)?’
0ln(0) _ A-pF-bY, Y AE) Y
00  MOV+(I-p-1Y, ¢ ¢P*1-p ¢’

24 S B8 i)



CHAPTER 3. PARAMETER CHANGE TEST FOR ZERO-INFLATED
GENERALIZED POISSON AUTOREGRESSIVE MODELS

0l (0) B { 1 N Y, -1 B 1 } O (67)
06 A(07) M0+ (A =p)(@—1)Y, o(1—p) )] 00 °
The second derivatives are also obtained as follows:
O20(0)  0*y(0) %041 (0)
— 1Y, = (Y, >1
o606 ~ aeaer |1 =0+ gger 112 1)
with
Plole) | 1 {2+240(0) + DL A0 — (14 24,(0)) o240
o [p+ (1= p)e o)’ |

Plo(0) _ 1—p {ARO) —240(0)} pe~ @ — 2(1 — p) A (0)e 4@

o F [p+ (1= p)e=An ]’ ’
0*l(0) pe Al CON(07) ON(67)
00°00°T  2(1—p)[p+ (1 — ple—An@]* 00" 00T
e~ At (0) 92\ (6%)

oo+ (1— p)eAn®]  96+00*T"

82&0(9) —pA?O(Q)e_AtO(G) _ (1 _ P)Ato(e) {e—Ato(9) _ 6_2At0(0)}

2 ¢ [p+ (1~ p)e-An®) |

a2€t0(9) pAtO(g)efAtO(e) + (1 _ p) {B*Ato(e) _ 6*2At0(9)} 8)\t(9*)

0p06T (1= p)[p+ (1= p)e-4n®] 06T

0%Ly(0) {1 = Aw(0)} pe 0@ + (1 — p)e>40®@ ) (6)

dpo*T ¢ [p+ (1 — p)e—Anw®]? 00T
and
) (e 1PV - 1YP Yi—1  2M(09
o )+ -po-1Y T (=02 6l —p)
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Pn®) _ _ (1=pP(-DY? Yo o 2n(0) | 2y
07 (M) +A-p-DY @ -p) ¢
Plad) A (09)Yi(Y; — 1) L)
00 (M) + (1= p)(o— 1Y} (1 —p)?
20,00) [ (06— DYi(Yi—1) 1 }mt(e*)
06— L0 + (L= p)(o - 1)Yi}*  S(1—pP] 06"
Plu(0) [ (1-p)Yi(Y; — 1) L1 ]0&(9*)
00007 | INO) +(1L—p)p— 1Y} 2(1—p)] 00
820n(0) _{ Y1 L1 ]mt(e*)wt(e*)
06+06*T (0 + (1 —p)(6— 1Y} A(O9)] 00 00T
1 Y, — 1 1 O? N (0%)
{Atw DM+ A=p@ 1Y (1 >} 00+-00+T"

Proposition 3.4. Under (A1)-(A7) and (A9), fori=0,1,

1 0&5@ aftz
EORCCER SRS

Proposition 3.5. Under (A1)-(A7) and (A9), we have

op(1).

18%L.(0,)

50007 — 1(6y) a.s.

where 0, is an intermediate point between 0y and 0.

Proposition 3.6. Assume that (A1)-(A3) and (A6) hold. Then, {0¢,(0y)/00; F;}

forms a stationary ergodic martingale difference sequence.

Proof of Theorem 3. Since {0¢;(6y)/00; F;} forms a martingale difference se-

quence according to Proposition 3.6, we can show that \/Lﬁ Y i, 04(60)/00 converges
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weakly to N (0, 1(6)) by using a martingale central limit theorem and the Cramér-
Wold device. Then, using Taylor’s theorem and Propositions 3.4 and 3.5, we can

assert the theorem. O

3.8 Supplementary Material

In this supplementary material, we provide the proofs of the propositions in the
Appendix.
Proof of Propositon 3.1 Let

Xy =BY +(1-B)N;, X;=BY +(1—B)(N +2),

where B ~ Bin(1,p),P(Y = 0) = 1,N; ~ GP(\},k),Z ~ GP(\5 — A}, k) and
B,Y, 7, and N; are independent r.v.s. Then, X; and X5 have a ZIGP distribution,

and thus, we have

E|Xo — X4|=E(1 - B)Z = |\y — M\,

PX,1#X2)=P(1-B)Z#0)=P(1—-B#0,Z#0)<|\— A\].
This completes the proof. U
Lemma 3.1. Under (A1)-(A3), we have
A(B7) = Mi(6)

sup <Vn' as.

0*co*

Proof. From (A1), we have

M(07) — At(e*)‘ < w1 A (6) = A1 (69)

< Wil ‘Xl(e*) WS

This completes the proof. 0
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3.8. SUPPLEMENTARY MATERIAL

Proof of Propositon 3.2 It suffices to show that for ¢ = 0,1,

sup |€(0) — Eti(G)‘ — 0 a.s., as t — oc.

0eO
Since |0y;(0) — £y (0)] = (€1 (0) — €.(0))" + (€u(9) — £(9))T for i = 0,1, we first

show that for ¢ = 0,1, as t — oo,

sup {ém(e) - ﬁti(G)}+ — 0 as.. (3.4)

0cO

By the mean value theorem and using the fact that logz < x — 1, we have

{(6) - ew(e>}+ < {io(6) ~ Lo(®)} v 0

1—p o 5\t<0*) —ex - )\t(e*)
=7, eXp{ gb(l—p)} p{ ¢(1—p)}‘

1—p POI-AO] ey e
=7 ¢(1—p) eXp{ ¢(1—p)} < gp M) = ME)

for some intermediate points A; (%) between X\, (6*) and A\,(6*). Thus, by Lemma
3.1,

. -
sup {ﬁw(@) — Kto(ﬁ)} —0 as. as t — 00
0€6

Meanwhile, by (A2) and Lemma 1, we have

{ia(6) - eﬂ(e)}+ < {la(®) ~ ta(®)} v 0
L Y, — 1 1
M(0%) A0+ (T —=p)(o—-1)Y,  o(1—p)

V,+1 2

< — o V.
<t

To show (3.4), it suffices to show that Y;n' — 0 a.s. as t — co. By using the Markov

< S\t(e*) — Ae(67)

inequality and the stationarity of {Y;}, we have

o0 o0 t\s
SIS P
t=1 t=1
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for some s in Theorem 3.1. Hence, by the Borel-Cantelli lemma, we obtain Y;n' — 0

a.s.. Similarly, it can be seen that for ¢ =0, 1,

sup {&Z(ﬁ) — eti(e)}_ — 0 as. as t — oo.
)
This validates the lemma. O

Proof of Propositon 3.3 To prove (a), it suffices to show that for i = 0, 1,

E (sup |€ti(9)|> < 00.
9€6
From (A3) and the stationarity of A\;(6*), we have

E (ﬁggp* At(e*)) < o0. (3.5)

Further, from (A2), we have

E (sup Mto(ﬁ)\) < —logd; < 0.
0€6

Note that
E <Sup |€t1(9)|> <FE ( sup |log )\t(G*)|) (3.6)
0O 0*cO*
+8 1Y = 1lsup log {007 + (1= p)o — DY
+E|Y; — 1]sup [log (1 — p)| + E|Yi|sup [log ¢|
rsup{ S LB fsup () + (1= )0 - )} + B (log 2.

0cO

By using the fact that logz < x — 1, it can be seen that
sup [log A (0)| < —logdorI(6p < 1)+ sup \(07). (3.7)
G

Therefore, from (A2), (3.5), (3.7) and (iii) in Theorem 1, we can verify that the
LHS of (3.6) is finite, except for the second term. We can show that the second term
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of the LHS (3.6) is finite by using the same method as in Zhu and Wang (2011).
Note that

2 |[¥; ~ 1] suplog {M(6) + (1= )(6 ~ 1) (3.8)
< B|Y; — 1fsup {~I(4a(6) < 1)log A (6)}]
FE[Y; — 1sup {I(1 < An(0) < ¢)log 41 (6))]
+E[JY; - 1sup {I(e < An(8)) log An(0)}].

where Au(0) = M(0%) + (1 — p)(¢ — 1)Y:. Since logd; < log A (f) < 1 when
A (0) < e, the first and second terms of LHS in (3.8) is finite. Meanwhile, using

the Cauchy-Schwarz inequality, Jenson’s inequality and (3.5), we get

E||Y; — 1] zug {I(e < An(0)) logAﬂ(G)}}
€
1/2

<{B(Y, -1} |E {itelgf(Aﬂ(Q) > e) logAtl(Q)}

1/2

< {E0i- 0} | B {1 (sup 40(6) > ¢ ) 10g (s0p 40) ) }]

< (B0 - 17} [tog? B {sup 4a 01 (sup 40(0) > ) | "

0cO 0cO

- 1/2
<{E(Y; - 1)2}1/2 log® E {sup Aﬂ(e)}] < 00.
L 0cO

This asserts (a).

For (b), we use logz <z — 1 to get

Ean {6:(0) — G(60)} = Ea {logg(¥: : 6) — logg(Vi : 60)}
L 20550
- E9°{1gg<Y:eo>}
g(Y1:0)

< Fal gy !

30 'y ui 1_]| =]



CHAPTER 3. PARAMETER CHANGE TEST FOR ZERO-INFLATED
GENERALIZED POISSON AUTOREGRESSIVE MODELS

Z 96 :0) (- b0)dy — 1

= Zg(yr9)dy—1:0

Y

where g(y : 0) is the probability density function of Y;. This completes the proof.[]

Note that the first derivatives are as follows:

o0,(0)  0lw(®) . 0ly(0)
g~ op (im0 Iz ),
with
Dl(0) 1 —exp{—Awn(0)} — S5 exp{—Aw(0)}
aop p+ (1 —p)exp{—An} ’
Ol(6) M (67) exp {— A (6)}
9 ¢*[p+ (1 = p)exp {—Aw(0)}] ’
M) exp {—Ap} O (0%)
00 dlp+(1—plexp{—An(0)} 90
where A;o(0) = M (0%)/{o6(1 — p)}, and
wn(0)  (@-1DM-DY, Yi—1 = A\(9)
op A (0) l—p (1 —=p)?’
ou(®) _ (=p¥-D¥ Yo Me) Y
9o An(9) o P*(l—p) @’
a0a0) [ 1 v, —1 1) an(0")
o0 {At(9*) T Aa0) o - p)} o0+

where A4 (0) = M (6%) + (¢ — 1)(1 — p)Ys.
The second derivatives are also obtained as follows:

82£(9) azgto(e) 82€t1(8)
prm— — >
oooar ~ agopr L1 =0+ g (Y= 1)

with
0%040(0) -1+ {2 +2A40(0) + péto/(g) } e~ Aw(0) _ {14 2A,0(0)} o—240(0)
o [0+ (1 — p)e—An®)]

: ¢ 4208 3
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0%t (0) L—p {A3(0) — 2A10(0)} pe= 0@ — 2(1 — p) Ay (p)e~ 24 ®

09 ¢ [p+ (1= p)e-Ao®)* ’
Pll0) penl® oM () M)
06*06*T  $2(1 — p)[p+ (1 — ple—A@®]* 8O 96T
e~ Aw(0) 0?\(60%)

olp+ (1= p)eA®]  96*96*T"

Dlo(0) _ —pAR(0)e 0@ — (1 — p)Ay(0) {4l — e72A0 @}
22 ¢ [p+ (1= p)e—An®) |

62&0(9) B pAt0(9>e—At0(0) 4 (1 _ p) {e—Ato(G) _ 6—2At0(9)} a)\t(e*)

0p06"T $(1— p) [p+ (1 — p)e~Au(®)? 00T

Po(6)  {1— Aw(6)} pe 0O 4 (1= ple240®) 9x,(6")

0o~ 92 [p+ (1 — p)eAn®]” 0=t
and
Pa(0) (1M -DY? Vi1 2)(0)
o> An(0)? (1—p2 o(1—p)?*
Plu(0) _  (A-pPM-1Y? Y 2M(07) ngis
0¢? An(0)? ¢? B(l—p) ¢
Pln(d)  MNO)Y(Yi—-1) Ad(07)
opdd  Au(0)? ¢2(1 — p)?’
0%tu(0) [(cb— Nyv;-1) 1 ] O\ (0%)
dpoo=T Ay (0)? o(1—p)2| 00
0%tu(0) _ {_(1 —pY(Yi-1) 1 } O\ (0%)
DpO0*T A (0)? 2(1—p)| o0
Pla(6) _ lYt -1 1 } ON(67) 0N (67)
90 00+T 90 00T

An(0)*  AX(0%)
1

+{ -1 1 9n0)
Ae(0%) * An(0)  o(1 - p)} 00+00+T"
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Lemma 3.2. Under (A2), we have the followings :

e 0l — =400 < CIA(07) = M(07)],

o240 — =240 @ < 20|\, (6%) — M(07)],

| A (0)e =40 — Ay (0)e= 00| < {C + C2A(0") } IA(07) — M(07)],
L%@emw = Ap(@)e O] < {4 C2(0)  IN07) = M(0")],

)
)

| Ay (0)e2400) _ A,(0)e 2400 < {C+2C20,(07)} 1M (67) — Me(67)],
)

\A (6)e A (6) _ A?O(9>G*At0(9)‘
< [0 {n07) + 20" | + CONO)| IAu(8) = M07)],

|A?0(0)6_At0(9 Afo(e)@ Awo (0)|
< [e2{nE) + X0} + CR0)] I8) - 2(0)

where Aw(0) = X (6%)/d(1 — p) and C is a sufficiently large constant.
Proof. Use the mean value theorem.

Lemma 3.3. Let

exp {—A(0)}

¢lp+(1—p)exp{—Awn(0)}]
1 Y, —1 1

N0 T NE) -6 - DY S—p)
Then, under (A1)-(A3) and (A9), a.s

Z0(0)

Z11(0)

~ 1

sup | Zy(0)| < 57 sup Zto(e)‘ < =
9o 9o i

Yy > Y
sup | Zn(0)| < — + C, sup Zﬂ(@)‘ <140,
0c® o7 0O o5
sup | Zio(6) — Zto(ﬁ)‘ < V',
9o
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~ Y,
sup [Z;(0) — Ztl(Q)’ < ((5_:2 + C’) V'
0cO L

for some constant C' and

E ( sup Xt(e*)) < 0.

0*€o*

Proof. By (A2) and Lemma 3.1, we have

1 1 ~ 1
sup | Zp(0)| <sup— < —, sup|Z Q‘S—
Oeg| to( )’ Geg(W) 5% 068 tO() 5%
and
. 1 Y, -1 1 1 Yi+1 1
sup |Z 9‘ < — +sup|—= '—i—su —‘§—+ + —,
o S S S T = 4 P R R A T
1 Y, +1 1
sup |Z4(0) < — -,
LU A A

where Ay (6) = X — t(8*) 4+ (¢ — 1)(1 — p)Y;. Due to Lemma 3.2 and (A2), we get

1 i C
up |Zul®) - Zto(e)‘ < < supp {6‘&‘)(9) — e‘f“t‘)(e)} < Zv,

9o 0} peo -5
~ 1 3 * * |}/1-5 - 1‘ * 3 *
sup| Zu(0) = Zu(0)| < 55 sup [M(07) = M(0%)| + T sup |A(8°) = A(0")
0cO L 0*€O* L 0*cO*
(5 +0) v
<\ +C | Vn.
07
This completes the proof. 0
Lemma 3.4. Under (A1)-(A6) and (A9), we have
524,(0) 0,(60) 90,(0)
E d E —t )
(228 20007 ) = oo (228 90 00T ) =
Proof. 1t’s sufficient to show that for ¢« = 0,1,
0%04;(0) 00y (0) 004;(0)
E d F . .
(E‘QS 20007 ) oo (328 oo oot |) = B9
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First,by using (A2), Lemma 3.2 and Cauchy-Schwarz inequality, we have

820,0(0 1
sup |22 < o (430)/61 + 440(0) + 4}
820,00 1
sup aj;jﬁ ) ’ < %gggp{fl?ow) +4A,(0)},
|2 | - 4 PN(07) N0 || 1 92\, (6%)
bet || 00°00°T || = 62 gico- || 00 96T 57 pee || 00700 ||
9200(0)] 1
Tl L up T A2.(0) + 2A,0(6
o |ap00 | = o i WA (0) + 2@},
00(0)] 1 O\ (67)
AICPN | 21. gAY )
] o R AR 4 o |
(@) 1 O\ (67)
AICPN | 21. gAY )
B |[GsenT || = 57 e 0@ 2 mup | Tae |
and
P00 1 (b —12(Yi+ 1Y Vit 1l  2suppeo- M(67)
Sup 92 < 5_2+ 52 52 + d %CZ ,
IISC) 1Y L L L L
*n(0)] _ (i +1)Y?2 Y,  2suppeee- M(6F) 2V,
su < — + —
o | 02 | = o 5 ot 5
00,1 (6) {(Ytﬂ)y; 1}
LT 2 A (69,
e v vl e R S by Sl
%041 (0) {(%—DYt(Yﬁl) 1} oM (07)
< +_ 9
veo || 9p00T || = 572 5[ S |~ a0
50,,(6) {mml) 1} oM(0")
<ty ,
vew | 0000°T | = 072 Pl s ol | T
a%ﬂ(e)’ (Yt+1 1) ON(67) DN (67)
< + =
veo 007007 || =\ 52 T 5, ) en || 00~ 00T
Yi+1 P\(0)
n C .
( 5 )eélelg* 90-90-T

Therefore, the first part in (3.9) can be seen by using (A3) and (A6). Similarly, we

can show the second part in (3.9) from the followings.

2
sup {8&0(6’) } < 3 sup A% (6),
0O 3p

” 5 48] 8w



3.8. SUPPLEMENTARY MATERIAL

Sup{agto(e)}Q ! sup A2 (6),

pco | 09 61 eo

. ‘azm(e).aew(e) 1 on () M) |

pco || 00* oo+ o pico- || 00 00T

r aeg];e) aetow)‘ < 51% sup {2.40(6) + 43(6)}

cup P&Op 0%2 * H 5% sup {2+At0(9)}6§1€18* a)\at—éf*) ;
il e o B AR

and

| /\

0ly (or — 1)2(Yt — 1)2Yt2 (Y, — 1)2 SUDp+co A (67)
%{w} 4 572 L A ’

Y, —1)%Y2 Y2 Y2 cco* *
Sup{%} §4{(t 2) +_+_+sup9€@ )\t(e)]’

0co or ) o7
3&1 Oty 3&1 3&1
eee 50 3¢ eee 5,0 9e® 3¢
90 (0)| ||06a(6%) 9,1 (6) 00,1 (6%)
o | ap 90- || = henl ap | | o0
{1, DN Vel s M6
5 5 5 57
ON(6%)
x sup |Z41(0)] - ,
up | 24001 |
el
beo o0~

Y

n Y)Y, Y suppeo M(0F) Y oM (6%)
<L~ 7 - 7
= { 5 “+3 5, 57 T 5 sl Za )l - =5

0O
A (0) 00, (0) ) ON(0%) DN (67)
. <supZ
0| Taer opT || S5 Zn(OF sup || e gt
Y, 2 N (67) DN (07)
{5* w} pen | o0 a0 T ||
The proof is completed. 0

-

m_-'
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CHAPTER 3. PARAMETER CHANGE TEST FOR ZERO-INFLATED
GENERALIZED POISSON AUTOREGRESSIVE MODELS

Proof of Propositon 3.4 First, we show that

%o Z 6«&0

By Lemma 3.2 and (A2), we get

1 8€t0 1 agto
Vi & Z dp Z dp \/_ Z

I 1 ¢ A i
o L ~Aw(0) _ fAto(m‘
< 5%;[\6 O]+

+(1 _ p)e_AtO( —Aso(0

|: o)

0li(Bo) 9l (6y)
dp dp

At()(e)e*AtO(e) _ Ato(e)e*AtO(B)‘

)| Aw(6) — Ar(0) H

n

1 1
< — 20 (600) =
NG 6%t1V17 {C+C+C°N(06;)+C} =o0p(1

Similarly, we can have

> el s ) < S v OMe) —orl),
Note that owing to Lemma 3.3 and (A7),
53 Z (%taoe ) \/_ Z aftaoe fo)
< % ; Zto(eo)ai;—éfg) - Zto(eg)agéfg)
< 03~ [z { 2t - 2l
Sl
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Next, note that

ol (%
11 ( \/_ Z 11 ( op(1).
Further,
RS i 00y1(6p) Z 001 (0 1 = 8&1 90 0l (6h)
Vn — ap 8p N4 — dp

(1 —po)(¢o — 1)Y; (1 — po)(po — 1)V,
X(05) + (1= po)(do — )Y:  M(65) + (1= po)(do — 1Y
1

A(05) = A(05)
+_

Vi do(l = po)?
L lo—1]\ -
S% o7 ;YE. <Z501—P0 Z

-1
¢ +11 1
- Ztvn+53

23

n

M (03) — N (62)] + A (02) — M (67)

\/1% > Vit =op(1)

7 L
Similarly,
1 a£t1 agtl
= op(1).
\/_Z o0 fz G| = o)
Since due to Lemma 3.3 and (A7),
1 8€t1 1 agtl
\/_Z 89* 89*
- O (6 o O (6
72 Za ) 52*0)—Zt1<00> n(%)
1 &= N (67) _On0
<
= nz; Z“%){ 96" 96" }H
ONe(
o 2 {7 -z} 252

=1
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< (o) v 2 (shee) v B~ ot

the lemma is established. O

Lemma 3.5. Under (A1)-(A7) and (A9), we have, as n — 0,

Proof. 1t’s sufficient to show that for i = 0,1, as t — oo,

020,(0)  9%,(0)
- .. ‘1
?elep 00007 9000T —0 as (3.10)
By Lemma 3.2, we have,
D*lo(0) 92l (0)
op? 0p?
1 - ! - A - A —
S E ’2p {6 At(g) —e AtO(Q)} + 2p2 {At0<9)6 At()(@) o At0(9>@ Ato(G)}
p3 i2 —Aw(0) _ A2 —Azo0(0) _ —2A,0(0) _ —2A40(0)
+1—p‘&ﬂme Ap(0)e +(1-2p)de .

~2p* { Ag(B)e~ 210 — Ap(9)e 2400}

e o020 [4p(1 — p) {An(0) ~ Au(0) |
+202(1 - p) { A3(60) - 43(0) }
_%1_m{g%mm_eﬁmm}
+2(1 - p)? {Aw(e)e—f‘ww) . Ato(e)e‘AtO(G)}
(1~ p) {A%w) ~Awl0) _ A?()(e)e-/iw(“}
“4p(1 — p) L Aw(@)e 0@ — A (8)e Aw(@)}] ]

<C {1 X (07) 4 M(07) + N2(07) + N2 (6 )} 2(0%) = M\ (67)] .
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Similarly, we obtain

l(0)  9%(0)
002 g2

< C {14+ M(0%) + (07) + A20%) + X(0") |

0%l (0)  Py(0)
0pd¢ 0pdo

< C {1+ 0(0%) + M(07) + A20%) + X2(0) |

A7) = Au(67)

Y

A(67) = M(6)

)

*lo(0)  0*0o(0) | _ Aw(®) +2 || 0X(67)  ON(67)
0p0d*T  0pdd*T || = ¢pp*(1 —p) || 06*T 00T
_ - - O\ (0
80*T
0*lo(0)  0*0o(0) | _ Aw(0) +2 || 0N(6%)  ON(6Y)
8¢80*T 8¢60*T ¢2p2 aQ*T 8(9*T
N - - O\ (0
O {1408+ 1(8) + 22007 + 320} (o) — ()] | 240
ag*T
And note that
0*lo(0)  *lw(0) | Pl Q)axt(e*) ON(6%)  ON(67)
90*06° T 90+96*T O 06+ 90T d0*T
N (67) DN (67)

99" o0~ (90T +{Yt°(9)_yt°<9)} o0 00T

_Za(t) {a%(e*) B am(e*)} {al0) — Zof)) ZMO)

Fl6) {6&(9*) B aAt(m} O\ (6%)

I

00007 00*00*T 00*00*T

where

pe—Aw(®)

Yio = R
¢*(1 = p) [p+ (1 — p)e=Aw®]

Then for Y;, we have

1
sup [Yio(0)] < 550 Sup
0co 7 6o

10 2 X 2-)| &y
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and
sup |Vio(6) — Yio(6)
0co
1 2 —As0(0)—As0(0) —A40(0) —Azo(0)
< sup —{p—i—l—pe t0 t0 }6 () _ po—Aw )
0€o LbQ (1—p) ( )

< C sup [A(67) — Mi(67)].
0*co*

Then by (A2), (A3), (A6), (A7) and Lemma 3.2, we can show that

0*lo(0)  0*i(6)
90007 00OHT

sup — 0 a.s. ast — oo.

0cO

By similar way, it can be seen that (3.10) holds when ¢ = 1 with followings:

Plu(6) _ Pla(®)| _ |(6= 1>2Y,;°’{Aﬂ4 (0)+ An(60)} 21 vy
op? op? )3 07
02011(0)  9%(0) Y3{Au(0) + Au(8)} 2
— <
96 o5z | = 5 T v
Pln(6)  Pa(®)| _ [An@ + MO Aa®) +An0)} | 1]
9p0¢  0pdg | = 53t e
0*0n(0)  9*n(0) _ |- 1)Yt(Yt —1) 1 ON(0")  ON(67)
0pod*T  0pod*T || — An (0 o(1—p)? 06+ 06+
N ‘8At9* H —1Yth—1> (¢ — DY (v, - 1)
06" An (6 An (0)? ’
0*0n(0)  Pla(0) (1—p)Yi( Yt —1) 1 ON(0)  ON(6Y)
N ‘c‘Mt (07) H (1-pYi(Yi=1) (1—p)Yt(Yt—1>‘
06" A ()2 An(0)? '

And note that

|a2zz1<e) _ Pald)

00*06*T  06*00*T

_ <Yt—1+ 1 )axt(e*) oN(0F) N
— [\An0)2  X2(6+)) 00* 96°T 90T

41 ; ﬂ“l”ﬁ
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v, —1 1 ON(O)  ON(67) ) DN(6%)
" (At1(9)2+X§(9*))< o6+ 00* ) 00+T

( -1 1 Yi-1 1 ) ON(07) ON(07)

+ S
An(0)2  N07) Ay 0)2  X2(6%) 90 90T

. 92\ 92\, (0 . 92\, (0
+ Ztl( - ! >> +<Zt1—Zt1> (&)

00+00*T  00*00*T 00*00*T
and
< Y, —1 . 1 _ Y, —1 B 1
oeo | Aa(07 T N0 T A0 A (6°)
su Yt_l—Y;_l + su ! — !
et | An (02 An(0)2| " bch | 22(0m) X7
i+1 | , -
< 2 qup 5 (07) - Atw)\- Aﬂ(a)+Aﬂ<9)‘
07 ¢eo
M (0%) + X (67) |+
+sup . )54 LS M (67) = Ai(67)
) L
The proof is completed. U

Proof of Propositon 3.5 According to Lemma 3.5, it suffices to show that

1= 0*(0,) a% 90
— 9000" aeaeT
Note that
a% 0) 8204(05)
aeaeT a (aeaw) (3:11)

1 Z 0%0,(0") 1 82€t o)
n ‘= 00007 n ‘= 00007

NE Z 0(00) . (0*(0y)
n 2= 00007 0007 ) |
Since {020,(0,)/00007} is a stationary and ergodic process with
E <sup > < 00,
0co
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the second term on the right hand side of (3.11) converges to 0 a.s.. To show that
the first term of the RHS of (3.11) converges to 0 a.s., we put h(6) = 9%4,(0) /0006
and 7, = [0, — 6o||. Then, we have

n

SIS sup [hel8) = ha(60)].

n t=1 16" =60 | <mn

1 PL6,) 1= 0%l

n 000607 n 0000T
t=1 t=1

Since 1, — 0 a.s., there exists an event F with P(F) = 1 such that n,(w) — 0
for all w € E. Let A, = (1, < 1/m for sufficiently large n) and A = N°_, A,,.
Assume that ||¢' — 6| < n,. For any w € A and m, there exists N(w, m) such that
10" — 6y|| < 1/m for n > N(w,m). Thus,
1 n
limsup—» " sup  [[h(¢/,w) = hy(6o,w)]|

n—oo T =110/ —00 ]| <nn (w)

N(w,m)
= lim sup — sup  ||he(0',w) — (6o, w)]|
nooo 1 ; 16 —60 <11 ()
1 n
+limsup— > sup  [[he(0,w) — hy(f0, w)]|
n—oo

" Ny 41 1000l ()

n

1
< limsup — Z sup  ||h(0', w) — hy(B,w)|

n /_
n—00 t=N (w,m)+1 |67 —60]|<1/m

n

1
= lim sup — Z sup  ||h(0',w) — hy(Bo,w)]| -
n—oo T i—1 1o"—6ol<1/m

Because P(A) = 1 and {h.(0)} is stationary and ergodic, we have that for all m > 1,

almost surely,

n

) 1
lim sup — sup  [|he(6") — he(Bo)| < B sup  [[he(0') — he(0)]
n—oo T T (16" —60|| <1 16"—60]|<1/m
which converges to 0 as m — oo by the dominated converge theorem. This indicates

that the first term of the RHS of (3.11) converges to 0 a.s. and the lemma is
established. O
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Proof of Propositon 3.6 Let {Y;} be a time series with the conditional distribution
following the GP distribution, i.e. p = 0, in (3.2). Then we have, almost surely,

5 [%( 0) e 1} _E {‘9&0(90) (Y; = 0) + MI(Y; >1) |ft—1}

00 00
Ol (0
_ fgé O)P(Y; = 0| F_1)
0l (00 Y; 001 (6y; 0
ra— ) [ {20000 5 L S0 iy oy 5,y
Since according to Zhu (2012a),
(Y =Y, ] Ad(65)
E F = ,
L\t(eé) + (1= po)(¢o — 1)Y; | P Go(1 — po)?
Y, — 1 } 1 1
E Fiil = — ,
L‘t(‘%‘) + (1 = po)(do — 1)V, | P do(L —po)  Me(65)
the lemma is established. O
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Table 3.1: Empirical sizes of T¢*" and T/'** at the nominal level 0.05.

est res
Tn Tn

(p, p,w,, ) n=300 n=500 n=1000| n=300 n=>500 n=1000

(0,1,1,0.1,0.2)* 0.072 0.052 0.042 0.032 0.037 0.043
(0,1,1,0.1,0.5) 0.091 0.063 0.040 0.044 0.048 0.047
(0,1,1,0.1,0.8) 0.377 0.288 0.170 0.027 0.037 0.039

(0.1,1,1,0.1,0.2)* | 0.097  0.085 0.066 0.027  0.030 0.038
(0.1,1,1,0.1,0.5 0.104  0.070 0.056 0.037  0.030 0.035

)
(0.3,1,1,0.1,0.2) 0.136 0.088 0.072 0.021 0.034 0.044
)

(0.3,1,1,0.1,0.5 0.118  0.072 0.058 0.040  0.038 0.045

(0,1.2,1,0.1,0.2)* 0.111 0.095 0.072 0.030 0.040 0.041

(0,1.2,1,0.1,0.5) 0.106 0.075 0.073 0.037 0.026 0.043
(0,1.5,1,0.1,0.2) 0.124 0.109 0.088 0.029 0.041 0.037
(0,1.5,1,0.1,0.5) 0.125 0.092 0.071 0.035 0.036 0.045

(0.1,1.2,1,0.1,0.2) | 0.126  0.115 0.100 0.033  0.036 0.045
(0.1,1.2,1,0.1,0.5) | 0.167  0.138 0.095 0.033  0.044 0.037

(0.1,1.5,1,0.1,0.2) | 0.129  0.121 0.091 0.031  0.031 0.037
(0.1,1.5,1,0.1,0.5) | 0.172  0.160 0.103 0.026  0.033 0.051
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Table 3.2: Empirical powers of T and T/** when w = 1 changes to «’ = 0.3 and

(p, ¢, a, B) does not change.

Test Tres
(p, ¢, B) n=300 n=500 n=1000 | n=300 n=>500 n=1000
(0,1,0.1,0.2)* 1 1 1 0.989 1 1
(0,1,0.1,0.5) 0.998 1 1 0.849 0.998 1
(0,1,0.1,0.8) 0.980 0.998 1 0.116 0.245 0.717
(0.1,1,0.1,0.2)* 1 1 1 0.984 1 1
(0.1,1,0.1,0.5) 1 1 1 0.747  0.985 1
(0,1.2,0.1,0.2)* 1 1 1 0.984 1 1
(0,1.2,0.1,0.5) | 0.998 1 1 0.747  0.985 1
(0,1.2,0.1,0.8) 0.986 0.996 1 0.066 0.143 0.519
(0.1,1.2,0.1,0.2)* 1 1 1 0.927  0.998 1
(0.1,1.2,0.1,0.5) 1 1 1 0.664  0.966 1
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Table 3.3: Empirical powers of T and T7* when (o, 8) = (0.1,0.2) changes to (o, 3")

and (p, ¢,w) does not change

est res
Tn Tn

(p, P, w, , B) n=300 n=500 n=1000 | n=300 n=500 n=1000

(0,1,1,0.3,0.2)* 0.636  0.844 0.98 0.479  0.753 0.987
(0,1,1,0.5,0.2) 1 1 1 0.607  0.996 1
(0,1,1,0.1,0.4) 0.596  0.840 0.978 0.470  0.771 0.980
(0,1,1,0.1,0.6) 1 1 1 0.984 1 1
(0.1,1,1,0.3,0.2)* | 0.662  0.854 0.978 0.466  0.763 0.983
(0.1,1,1,0.5,0.2) 1 1 1 0529  0.933 1
(0.1,1,1,0.1,0.4) | 0.682  0.854 1 0.402  0.626 0.967
(0.1,1,1,0.1,0.6) | 0.998 1 1 0.943  0.998 1

(0,1.2,1,0.3,0.2)* | 0.574  0.768 0.954 0.341  0.688 0.960

(0,1.2,1,0.5,0.2) 1 1 1 0.545  0.972 1

(0,1.2,1,0.1,0.4) | 0.570  0.766 0.988 0.306  0.583 0.928

(0,1.2,1,0.1,0.6) | 0.998 1 1 0.931  0.997 1
(0.1,1.2,1,0.3,0.2)* | 0.596  0.744 0.926 0.313  0.604 0.944
(0.1,1.2,1,0.5,0.2) | 0.998 1 1 0.543  0.912 1
(0.1,1.2,1,0.1,0.4) | 0.622  0.780 0.958 0.306  0.563 0.861
(0.1,1.2,1,0.1,0.6) | 0.998 1 1 0.931  0.991 1
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Table 3.4: Empirical powers of T¢*" and T7** when (p, ¢) = (0,1) changes to (p/,¢') and
(w,a, 8) = (1,0.1,0.2) does not change.

est res
Tn Tn

(p, p,w,, B) n=300 n=500 n=1000| n=300 n=500 n=1000

(0.3,1,1,0.1,0.2)* | 0.794  0.986 1 0.032  0.046 0.043
(0,1.5,1,0.1,0.2)* | 0.852  0.982 1 0.031  0.039 0.041
(0.1,1.2,1,0.1,0.2)* | 0.708  0.870 0.992 0.027  0.031 0.044

Table 3.5: Empirical sizes of T and C,, at the nominal level 0.05.

TSt Cn

(p,d,w,a, ) | n="500 n=1000|n=500 n=1000

(0,1,1,0.1,0.2) | 0.052 0.042 0.094 0.084
(0.1,1,1,0.1,0.2) | 0.085 0.066 0.118 0.102
(0,1.2,1,0.1,0.2) | 0.095 0.072 0.134 0.116
(1,1.2,1,0.1,0.2) | 0.115 0.100 0.134 0.150

3 o i
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Table 3.6: Empirical powers of T¢** and C,, when @ changes to ¢'.

Test c,
0= (p,od,w,a,p) | 0= (p,¢,0,a/,8) | n=500 n=1000 | n=500 n = 1000

(0,1,1,0.1,0.2) (0,1,0.3,0.1,0.2) 1 1 1 1
(0,1,1,0.3,0.2) 0.844 0.98 0.750 0.968

(0.3,1,1,0.1,0.2) 0.986 1 0.952 1

(0,1.5,1,0.1,0.2) 0.982 1 0.988 1

(0.1,1,1,0.1,0.2) | (0.1,1,0.3,0.1,0.2) 1 1 1 1
(0.1,1,1,0.3,0.2) 0.854 0978 | 0.768  0.936

(0,1.2,1,0.1,0.2) | (0,1.2,0.3,0.1,0.2) 1 1 1 1
(0,1.2,1,0.3,0.2) 0.768 0954 | 0684 0912

(0.1,1.2,1,0.1,0.2) | (0.1,1.2,0.3,0.1,0.2) 1 1 1 1
(01,1.2,1,0.3,0.2) | 0.744 0926 | 0684  0.904

Table 3.7: Estimated parameters for the robbery with a firearm data in Inner Sydney
based on a ZIGP-INGARH(1,1) model. Standard errors are shown in parentheses.

~ ~

Model mean variance p 10) w Q B
Full data 1.013  1.493 0.182 1.000  0.256  0.483  0.267
(0.068) (0.071) (0.150) (0.199) (0.081)
First period 1.062  1.288 0.001 1.065  0.992  0.001 0.055
(Jan.1995-Jan.2003) (0.193) (0.126) (0.473) (0.509) (0.165)
Second period 0.977  1.653 0.239 1.000  0.100  0.642  0.242
(Feb.2003-Dec.2012) (0.101) (0.104) (0.072) (0.138) (0.085)
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Figure 3.1: Plots of the estimated studentized residuals of simulated data when
0 = (0,1,1,0.1,0.2) changes to ¢ = (0.3,1.2,1,0.1,0.2),(0,1,1,0.5,0.2) and
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Figure 3.2: Plot of counts series and the histogram of the robbery with a firearm in

Inner Sydney
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Figure 3.3: Plot of the sample autocorrealation and the sample partial autocorre-

alation from the robbery with a firearm data in Inner Sydney
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Figure 3.4: Plot of T from the robbery with a firearm data in Inner Sydney with
ZIGP-GARCH(1,1)

Table 3.8: Estimated parameters for the assault police data in Sydney based on a

GP-INGARH(1,1) model. Standard errors are shown in parentheses.

Model mean variance ¢ w & I53
Full data 22.877  46.751 1.341 9.572 0.238 0.334

(0.060) (0.828) (0.024) (0.028)
First period 20.409  44.456 1.349 11.763 0.001 0.420
(Jan.1995-Sep.2003) (0.088) (1.220) (0.036) (0.042)
Second period 24.984  39.377 1.248 0.100 0.994 0.001
(Oct.2003-Dec.2012) (0.082) (1.127) (0.033) (0.038)
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alation form the assault police data in Inner Sydney
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Chapter 4

Asymptotic Normality and
Parameter Change Test for
Bivariate Poisson INGARCH
Models

4.1 Introduction

In this Chapter, we consider the problem of testing for a parameter change in bi-
variate Poisson INGARCH model of Liu (2012).

This paper is organized as follow. Section 4.2 introduces the bivariate Poisson
INGARCH model and shows the asymptotic normality of CMLE. Section 4.3 in-
troduces the CUSUM test based on the estimates and residuals and derives their
limiting null distributions. Sections 4.4 and 4.5 conduct a simulation study and real

data analysis for illustration. Section 4.6 provides concluding remarks. Lastly, the
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proofs of the theorems in Sections 4.2 and 4.3 are provided in Section 4.7 and in

Supplementary material.

4.2 Bivariate Poisson INGARCH model

Let Y, = (Y1, thg)T be a two dimensional vector of counts at time ¢, where {Y; 1,¢ >
1} and {Y;2,t > 1} are the two time series of counts with the conditional distribution
following a Poisson distribution with conditional mean X;; and )2, respectively.

Suppose that {Y;} follows a bivariate Poisson INGARCH(1,1) model:
Y| Fi1 ~ BP(Ai1, A2, ©)s Ae= (Mg, M2) =8+ AN 1+ BY, 4, (4.1)

where F; is the o-field generated by A1, Yq,..., Y, 0 > 0,8 = (61,02)" € R3 and
A = {ajj}ij=12 and B = {f;;}ij=12 are 2 X 2 matrices with nonnegative entries.
Further, {Y;} has the conditional joint probability mass function (pmf) of the form:

Atg = 0)7 (A2 — 0)h
7L1! n2!

" mﬁ% (T) (Z)S! { B~ 09 }

with m An = min{ny,ny} and ¢ = Cov(Y; 1, Yia|Fi—1) € [0, A1 A A 2) deterministic

P(Yi1 =n1,Y 0 =no|Fq) = 6_(/\1’1““2_@)( (4.2)

and independent of ¢, obtained through a trivariate reduction method.
Let (9 = (51, 52, a1, 19, 21, (99, 511, 512, ﬁgl, 622, QO)T For estimating the true
parameter 0y, we recursively define A, t> 2, by using an arbitrarily chosen initial

value A; and the equations:
Xt - (S + Axt,1 -+ Bthla (43)

where 8, A and B are sometimes written as 6(0), A(f) and B(6) when the role of ¢

is emphasized. Then, constructing the conditional likelihood function based on the

56 .__:lx_-g: _'H.I: ok i



CHAPTER 4. ASYMPTOTIC NORMALITY AND PARAMETER CHANGE TEST
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observation Yq,...,Y,:
L() = Hpe(Yt R
t=1

where pg(Y; | A;) is the conditional probability mass function in (4.2), we obtain the
CMLE of 6, by

n

0, = argmax L(0) = arg max L, (f) = arg maxZ@(Q),
€O €O e T

where £,(6) = log ps(Y¢ | A¢). According to Andreassen (2013), the CMLE is strongly

consistent under the following regularity conditions:
(B1) 6y € © and O is compact.

(B2) 4(0), A(f) and B(#) have non-negative entries and B(0) is full rank for all
g €o.

(B3) () < min(ay, as) where (a1, az)” = (I — A(0))~16(0) for all § € ©.

(B4) There exists a p € [1,00] such that ||A(0)||, + 2'-0/P)||B(#)]|, < 1 for all
0 e 0o,

where ||Al|, = maxx.o{||Ax|,/|x], : x € C"} denotes the p-induced norm of
matrix A € C™*" for 1 < p < oo, and [|x||, is the p-norm. When p = 1 and
| Al = maxi<i<m Y5, |al, respectively.

According to Proposition 4.3.1 in Liu (2012), {(Y:, A¢)} is ergodic and strictly
stationary under the assumption (B2) and (B4): for example, ||A|; + [|B]: < 1,
corresponding to p = 1 in (B4), is used for the models in our simulation study.
For the univariate process, Doukhan and Kengne (2015) provided the ergodic and

stationary conditions in their Assumption Ap.
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Heinen (2003) suggest that either A or B is diagonal, since in practice, the

diagonal set-up of A is a useful device to reduce the number of model parameters.

Because this simplification makes the situation a lot more tractable and eases the

verification of the asymptotic normality of CMLE, we also focus on the situation

that A is diagonal.

In what follows, we set 0 = (07,01, )T, where 6; = (1, a1, Bi1, B12)T and 6, =

(52,042;521,522)T7 0 = (51752)T= A= diag(al,ag)T, and B = {/Bz'j}i,jzl,Q- In this

case, (B1) and (B3) are restated as follows:

(B1’) 0p1 € ©1,002 € Oa, o € O3, where y1, 0p2 and ¢ are the true parameters of

01,0, and o, respectively, and O, ©,, O3 are compact sets; © = O1 X Oy X O3.

(B3") ¢ <61/(1 — 1) Ada/(1 — ) for all 6 € O.
Below, we present the asymptotic normality of the CMLE.
Theorem 4.1. Under (B1)-(B4), as n — oo,

V0, — 00) = N(0,1(6p)7"),

where
o 0l:(0y) 04(6) B 020,(00)
[(8) = E ( o0 oo )~ P\ a0a0m
and
6(0) = —{A1(0) + Ai2(0) — o} + Yiilog{, 1(0) — v}
+Yi2log{A2(0) — ¢} — log ¥zl — log Y3 o!
Yi1AY: 2

+ log
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4.3 Change point test

In this section, we propose CUSUM tests for detecting a parameter change in bi-

variate Poisson AR models. We want to test the null and alternative hypotheses

Hy : 0 does not change over Yy, ---,Y, vs. H;: not Hy.

4.3.1 Estimate-based CUSUM test

The CUSUM test based on the estimates is given by

where ék is the CMLE of 6y based on Yq,...,Yy, and

It can be seen that I, is a consistent estimator of I(6y) under Hy. The following
shows that the CUSUM test has the supremum of independent Brownian bridges as

its limiting null distribution, the proof of which is presented in Section 4.7.

Theorem 4.2. Under the assumption (B1)-(B4) and Hy, we have
T — sup [|Bg(s)|,
0<s<1
where {B§(s),0 < s < 1} is a 9-dimensional Brownian bridge. Here, BY denotes
a d-dimensional vector process the components of which are independent Brownian

bridges.

As an alternative of ¢! one can consider

2 _ 2 R ~ A ~
T§St’2 _ max M(Qk — 8k>TIr,L(0k — 0]{;)7 (44)

v <k<n—uvy n3

3 ) 1 |
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(cf. Doukhan and Kengne (2015), where 6, are the CMLE of 6, based on Y1, ..., Yo,

N L1 a?ét(éun)+ 1 "L 0%,(0,,)
2 |u, &= 0000 n—u,, 000607 |’

=un+1

and {u, : n > 1} and {v, : n > 1} are two integer valued sequences satisfying
Up, Uy, — 00, Up /N, 0, /1 — 0 as n — co. Lee et al. (2016a) study (4.4) in univariate
zero-inflated generalized Poisson AR models. It can be shown that under (B1)-(B4)
and H,

Tt s sup By, (4.5

the proof of which is provided in Section 6.

4.3.2 Residual-based CUSUM test

In this subsection, we consider the CUSUM test based on the residuals. Let €, =
(€t71,€t’2)T = Yt - At(eo) with €ti = Y;g’i - )\t,i(ei()) for i = ].,2 Since €; are not

observable, we use the estimated residuals €;:
€ = (€11, ét,z)T =Y, — A, =0, +A N1+ BnYt—la t>2,

where Sn = (Sn,l>5n,2)T7An = di@g(@n,b@n,z),Bn = {Bn,ij}i,j:l,z and 5\1 Is an

arbitrarily chosen initial random variable. Then, we employ the test statistic:
1/2 F k —
r & —— ) &

where T is a consistent estimator of T' = Var(e;) = Ee el for example,

1
17 = max —

1<k<n \/n

—

f‘ _ VCU“(ELl) /(,5”\

Dn Var(e2)
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with Vaar(ey;) = 31, €;/n, i = 1,2, is a consistent estimator of I' owing to Lemma
11 of Kang and Lee (2014).
Since {€;} is a stationary and ergodic martingale difference sequence with respect
to a filtration {F;}, by a central limit theorem for martingales, we have, as n — oo,
. [ns]

—r2 Z € — By(s),
v o

where {Bj(s),0 < s < 1} is a 2-dimensional standard Brownian motion. Subse-

quently,

[ns]

1 ~1/2 [ns] - N =Y

where {B3(s),0 < s < 1} is a 2-dimensional Brownian bridge. From Lemma 10 of

Kang and Lee (2014), we can have

{iét,i — Siét,i} - % {i €t — %iﬁtz}‘ = 0P(1)-

t=1 t=1

1

max ——=
1<k<n /0

Thus,

which implies the following.

Theorem 4.3. Under the assumption (B1)-(B4) and Hy, we have

Ty — sup [By(s)].
0<s<1

4.4 Simulation results

In this section, we report simulation results to evaluate the performance of the

proposed test statistics, T50 Tt and T7%. We consider model (4.1) with the
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initial value of A; equal to (0,0)”. We employ the nominal level a = 0.05, sample
size n = 300, 500, 1000, and the number of realizations 500. The critical values for
Testl Test2 and Tre* are obtained as 5.632, 5.632 and 2.408, respectively, through a
Monte Carlo simulation as in Lee et al. (2003).

We consider the models:

Model 1: B is a diagonal matrix : (£, 32) = (0.1,0.2),

Model 2 : B is a non-diagonal matrix : (511, f12, b1, B22) = (0.1,0.2,0.1,0.2)

with (d1, aq, 02, a2) = (3,0.2,1,0.1),(3,0.4,1,0.3) and ¢ = 0,0.3,07. These settings
satisfy (B1)-(B4) (with p = 1) and particularly guarantee the ergodicity and sta-
tionarity of the bivariate Poisson INGARCH(1,1) model. From Table 4.1, we can
see that the sizes of 77 are close the nominal level, whereas T¢%! and T°%2 have
some size distortions: that is, the size has a tendency to increase as either a or ¢
increases.

To examine the power, we consider the parameter change from 6 to 6" at [n7]

with 7 =1/3, 1/2, 2/3:

Case 1: (01,02) = (3,1) changes to (07, 0d5) = (2.7,1.5),
Case 2 : (a1, a9) = (0.2,0.1) changes to (o], ag) = (0.3,0.2),

Case 3 : ¢ = 0 changes to ¢ = 0.3,0.7,

wherein the other parameters remain constant. From Tables 4.2 and 4.5, we can
see that 75! and T produce similar powers and 7"* produces slightly better
powers than these two. Also, the power gets closer to 1 as the sample size increase
in Cases 1 and 2, but becomes lessened in Case 3: particularly, 77 performs poorly.

As anticipated, all the tests appear to have the largest powers at 7 = 1/2.
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Overall, our finding show that the CUSUM test is a functional tool to detect a
parameter change for bivariate Poisson INGARCH models. Among the three tests,
17 seems to be the most recommendable, although not powerful at detecting a
change of . For this, one can still use the other two tests but needs to develop a

new method, which we leave as our future project.

4.5 Real data analysis

In this section, we give a real data example. We analyze two daily data sets of
car accidents that occurred in Seongdong (Y;) and Seocho (Y2) counties in Seoul,
Korea during the period from January 1, 2011 to December 31, 2012 (the sample
size is 731). The time plots for the two data are given in Figure 4.1. The mean
and variance are 2.927 and 3.574 for Y7, and 5.661 and 7.164 for Y5, indicating over-
dispersion. The autocorrelation and partial autocorrelation functions of each data
are given in Figure 4.2, indicating serial dependence. Because the covariance and
correlation of the two data sets are obtained as 0.6987 and 0.1381, respectively, a

bivariate Poisson INGARCH (1,1) model is fitted to the data.

The CUSUM test shows that T = 5.2481, T¢"? = 15.236 and T"* = 2.410.
Based on this result, the null hypothesis of no changes is rejected by T*%% and T/7**
at the nominal level 0.05, and T*%! at the nominal level 0.1. Since 7% and 77
are maximized at ¢ = 343 (see Figure 4.3), the change point can be estimated as
December 9, 2011. The parameter estimates for the full series and two subseries
before/after the change point are presented in Table 4.6. Particularly, it shows that
¢ increases from 0.489 to 0.638.
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4.6 Concluding remarks

In this study, we considered the problem of testing for a parameter change in bivari-
ate Poisson INGARCH(1,1) models, constructed via a trivariate reduction method
of independent Poisson variables. We verified that the conditional maximum like-
lihood estimator of the models parameters is asymptotically normal, and based on
this, we constructed the CMLE- and residual-based CUSUM tests and derived their
limiting null distributions. To evaluate the performance of the tests, we conducted
a simulation study and real data analysis using two daily data sets of car accidents
in Seoul, Korea during the period from January 1, 2011 to December 31, 2012. The
results demonstrated the validity of the CUSUM tests. Although this work yields
satisfactory results, there are some aspects that should be considered for its exten-
sion. First, the proposed bivariate Poisson INGARCH(1,1) model has a shortcoming
that it can only cover the process with a positive correlation. Second, there is a de-
mand to develop more general INGARCH type models, such as higher order Poisson
INGARCH(p, ¢) models and multivariate models, to improve the applicability of the
INGARCH models. At this moment, these issues are somewhat beyond the scope

of the current study, so are left as our future project.

4.7 Appendix

In this section, we verify the theorems in the previous sections. The proofs of the

lemmas below are provided in Supplementary material.

Lemma 4.1. Let V' stand for a generic positive integrable random wvariable and

0 < p <1 be a generic constant. Under (B1)-(B4), we have that fori=1,2,
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(i) B (supgee [M(O)]]) < 00 and E (supgeq [A(O)]]) < oo.
(i1) A¢(0) = Xe(00) a.s. implies 0; = 0.

(i) Ag;(6;) is twice continuously differentiable with respect to 0; and satisfies

4 2
E | sup < oo and E | sup < 0.
0,€0; P 0,€0; P

(iv) For allt, a.s.,

O (6;)
00,

O? M (65)
96,00,T

ONi(0;)  ONi(6;) . N (0;)  OPNii(6:) .
il%i) O, <Vp and Vi) T, <V
oo | o0, o6, || =7 M wc | ononT ~ onoe | =7
(v) VT—a’\tgg(in) =0 implies v = 0.
(vi) supgeo ‘ A (0) — )\t(H)H <Vp' a.s. forall t.
Note that the first derivatives of ¢,(0) are expressed as
0l (6
) (Da(O)(0)7. Dea(O)sa(6)" Dy3(6))”
Di1(0)Iy  Ogx4 04x1 s1(601)
= 0454 Dt,2(9)I4 0451 S2(02) = Dy(0)A(0),
01><4 01><4 Dt,S(‘g) 1

where 1 denotes the 4x4 identity matrix and 0,,, denotes the m x n matrix with

all elements equal to 0,

RYRICH)

Sz(ez) 09 ) 1= 1727
Y;i g<Yta)‘t7907 ]-) 1 .
D)= ——>——1-— . , t=1,2,
14(6) Aei(6:) — ¢ I, A, 0,0) Ai(0:) —
g(Yt,)\t,go,l) 1
D;30)=——""=-——1—D,;1(0) — D;»(0),
t73( ) Q(Yt,)\ta%o) 2 t’l( ) t72( )
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Yi1AYy 2

— (Y Y,
g(Yt7 At7 QD,T’) = < t71> ( t72>8!87’f(At7 QD)Sv r= Oa ]-7 27
0

S S

s=

B v
f ) = (Ae1(61) — @) (Ae2(Ba) — )

Further, the second derivatives are given by

where

O* N (0:)

“ov.00r TP

5ii<9i) =
g<Yt7>‘tv(pa 1)} 1 .
9(Y, A, 0,0) (At,i(ei) - 90)27

1<i#j<2,

ﬂawz—{nf4mm—

_ hy(0)
— (Aa(61) — @) (M2(82) — )’

FMW)Eﬁ@z—wwﬁglwy—ﬂﬂm—EQWLiZLZ
(0 (1 1 1
Fiml®) ==, { a0 — ¢ Nalf) - }

Y7A7 9 1
e 0 sl
g(YtaAhSO?Q) g(Y A157(:07 )
(

h(0) =
t( ) Q(Yn)\ta%o) g(Yi, A, 0, )
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Lemma 4.2. Fori,j = 1,2,3, let D,;(0) and F;;(0) be the same as D,;(f) and
F,4;(0) with X, replaced by A,. Then, under (B1)-(B4),

sup | Dei(0)] < C|Ye|| +1, sup|Dyi(0)] < CO|Ye|| + 1,
0cO 0cO

sup |[Fyi:(0)| < C|[Y4|*, sup|Fq(0) < C[|Y,|
0cO 0co
for some positive constant C'. Further, ast — o0,

sup | Dy ;(0) — Dm(@)‘ —0 a.s. and  sup
SS) 0ce

Ft?ij(e) — Ft,ij(9>‘ — 0 a.s..

Lemma 4.3. Under the assumption (B1)-(B4),

914(6) 4:(9)
00 00T

< Q.
P

< oo and Esup
0co

Lemma 4.4. Under assumption (B1)-(B4),

@ft Z 8&

Lemma 4.5. Under assumption (B1)-(B4),

"LP0(0) 1 = 0%4(0)

- 50007 - 50007 — 0 a.s..
t=1 t=1

sup
0cO

p

Lemma 4.6. Under (B1)-(B4),

19°L,(6%)

~ 000" — I(6y) a.s.,

where 07 is any intermediate point between 0,, and 0.

Lemma 4.7. Under (B1)-(B4), {00:(6y)/00; F.} forms a stationary ergodic mar-

tingale difference sequence.
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Proof of Theorem 4.1. In view of Lemma 4.1 and 4.3, we have that () exists
and is positive definite. According to Lemma 4.7, by using a martingale central
limit theorem and the Cramér-Wold device, we can show that \/Lﬁ S 00(6y) /06
converges weakly to N (0, 1(6p)). By using Taylor’ theorem, we have

~Vn 00 n 00 n 90007

where ¢/ is an intermediate point between 6, and f,. Then using by Lemma 4.4

1 OLa(0,) 1 OL.(6y) <1 0L <9’>> iy —0),  (4.6)

and 4.6, we can assert the theorem. O

Proof of Theorem 4.2. From (4.6), we have that for 0 < s < 1,

1 0Ly, (6o) [ns]
100) 7o Oy = 00) = =55+ "B (4.7)
where
27 Y\ —1 7 27 "\ —1
A o] {0+ () R i () exiss
{](90) %Ba];g((ﬁ) } VE(6), — 6y, otherwise.

By Lemma 4.7, using the functional central limit theorem for martingales, we can

get

where {By(s),0 < s < 1} is a 9-dimensional standard Brownian motion. Then, from

Lemma 4.4, we have

e 1 0L (60) w
172+ Y&ms]\Y0 B
\/ﬁ 90 — 9(5).

Further, in a similar way to prove Lemma 9 of Kang and Lee (2014), we can show

k-
ma /51300 = o01)
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Thus, (4.7) converges weakly to Bg(s), which establishes the theorem. O

Proof of (4.5). From (4.7), we can express

1ai’“<90)+ 1
k00 VE O ©

1 ai;(90)+ 1
n—k 00 vn—k

1(60)v/n(0x — 6) =

1(00)v/n(B), — ) = A;,

where Li(0) = S0, 4,(9) and

1020200 ) (10200 \ "' 1 8Lx60) .. (102Lr0)\ " .
_{](90)"‘% 20607 }(E 3959%“) i i (E aegeTk> exists

Aj = 2N i
{1(90) %angéeTn) } \/E(Gk — ), otherwise.

Subsequently, we have

%I(QO)@: —0r)

1 [ 0Ly(0y) Kk OL,(6) VEMm =) . n—kx,
:%{ 06 n_ o6 }+ n (\/;A”\/ n A’“)’

since Lt (0) = L,(A) — Li(#). Then, (4.5) can be verified in a similar fashion to the
proof of Theorem 4.2. 0

4.8 Supplementary Material
In this Supplement we provide the proofs of Lemmas 4.1-4.7.

Proof of Lemma 4.1 By iterating (4.3) in Section 4.2, we have

t—1
A=I+A+ - +A)5+ AN +) AY'BY, . (4.8)

k=1
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Therefore, for i = 1, 2,
1—at™t i
Ai(0;) = 1_—(;1@' + 042_5\1,1 + ; af ! (BirYi—k—11 + Bi2Yi—k—12) -
Then, (i)-(v) can be obtained by using the arguments in the proof of Theorem 3 of

Kang and Lee (2014). Meanwhile, from (4.8), we have
sup [ A;(8) — Au(0)]| = sup A (A = Ayl < Ve
60 90

where p = suppee || All, and V = |[A; — Ay||/p. This establishes (vi). O

Proof of Lemma 4.2. By our assumption, we have

g(thAhSO?T) g(Yt,At,(,O,O)

sup V———"—""=< (Y, 1 A Y:o) - < Y4||", 4.9
Heg g(Yt,)\ta%O) _( s t72) 9<Yt,)\t;%0) N H tH ( )
sup |he(0)] < Y4l + 1Y < 20 (4.10)
c

Furthermore, according to (B3’), we can take e such that
0<e< gné {min(d; /(1 — 1), 02/(1 — ag)) — ¢}, (4.11)
€
which can lead to supycg{A:i(0;) — ¢} > €. Then, using (4.9)-(4.11), we have that
fori,j =1,2,3,
sup [Dyi(0)] < CIIYl[ + 1, sup|Dii(0)] < O[] + 1,
S S) SC]

sup |[Fii(0)] < CIIY[°,  sup |Fya(0)] < ClY1%.
=) =)
Next, we show that
sup | Dy 1(0) — Dtﬁl(G)‘ —0 a.s. (4.12)
00
Note that
1 1

Ma®) —¢  Aa(0) —¢ (4.13)

sup ‘ﬁt,l(e) — D;1(0)| <Yi1-sup
) 0co
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g(Yt,S\t,gp,l) . 1 g(Yb)‘t?(pal) 1

9o A 0,00 Xa(0) —p  9(Ye, A 0,0) Aa(0) — |

+ sup

By Lemma 4.1, we have

IXe(6) = X))

1 1
3 2

/\tjl(é’l) — @ - )\t,l(el) — @
The second term of of the RHS of (4.13) is bounded by I + IT with

< sup

sup
0cO €

0cO

I . g(Yt,Xt,QD,].) 1 1
= sup = = - )
CSC) Q(Yt, At 0, O) )\t,1(91) - /\t,l(el) - ¥
II:SUp g(Yt;%‘tv(;@l) . g(Yta)‘tﬂDvl) ]- .
0co | | g(Yi, A, 0,0)  9(Y5, A,0,0) [ Ae1(01) —

Note that I < ||Y,||Vp'/€* owing to (4.9) and (4.14). Further, provided f(X;, ) >
f(AlH Qp), we have

|g(Yt7 Ata ®, T) - g<Yt7 Xta ¥, T)|

Y 1AYt 2

> () () sy - e

s=0

IN

Yi1AY: 2

B Yir (Yiz) . o O 0)?
L () (F5 )
Yi1AY: 2

< Z (Y;l) (Y:) s"slf (A, @)° (exp (25‘/7’016) — 1)

2|Y
exp (Mpt) - 1‘ : (4.15)

< 9<Yt;)\t79077’) c

Then, due to (4.9) and (4.15), we get

g(YhXh(p?T‘) _ g(Yt7At7§D7T)
g(Yt,)\t,gp,O) g(YtJAtﬂOuO)
g(Yt7 Xh @, 7") g(Yt) At7 P, 0) - g(Yt7 ih P, 0)
< =
g(Yta )‘ta 2 O) ’ g(Yt7 At> P, 0)
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‘Q(ij\n%r) - Q(Yt,)\t, ‘;077")
g(Yta Ata @, O)

2'Y
exp <wpt> - 1‘ : (4.16)

If f( A, ) < f( A, @), the inequality in (4.15) holds with g(Yy, A, @, 7) replaced by
9(Y;, A, @, 1), and henceforth, (4.16) still holds for this case. Therefore,

21Y
exp (Mvpt) _ 1‘,

€

+

<2[Y.|"

2|[Y:l
€

17 <

and as such, the RHS of (4.13) is bounded by

2|1Y4||V 2|Y 2|Y
YAV oy 2o, (A ) ) i
€ €

€2

Since [|[Y¢||[Vp! — 0 a.s. as t — oo, the first term of the above equation goes to 0

a.s. as t — oo. The mean value theorem shows that

> 2(Y 20 (2]Y |2V ot 2(Y
€ € €
t=1 t=1

< exp (2 sup Yl ) L 2ANIPVA/E (019

t=1

Further, E (supys, [[Yellp') < 302, p'E||Y,|| < oo, which implies sup s [[Y¢][p" <
oo a.s.. Therefore, (4.18) is a.s. finite, so that the second term of (4.17) also goes

to 0 a.s. as t — oco. This implies (4.12). Similarly, it can be shown that for i = 2, 3,
sup |Dys(0) — Dy4(0)] — 0 a.s. as t — oco.
)
Now, we show that as t — oo,

?Ug |Ft,11(9) —Fi11(0)] >0 as.. (4.19)
€
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We express

F,11(0) — Fy11(0)

:{Ytl—ht(‘g)_w}.{~ 1 _ 1 }
| 9(Ye, 2,0,0) [ | Qua(01) =92 (ar) — )

(Yta it790a 1) o g(Yh)‘t;SO? 1) } X 1

~ B 9
+{ht(e) O N A 00) 9 rn2.0) [ Cua() — o

From (4.9) and (4.16), we have

sup [hu(8) — he(6)
0€0
\ \ 2 2
< sup Q(Yt,%\t,% 2)  9(Ye, A 9,2) + sup Q(Yt%\m%l) _ g(Yt7>\t>9071)2
o€ g(Yt,At,(,0,0) g(YtaAtﬂDaO) 0cO g(Yt,At,QO,O)2 g(Yt>At>S07O)
< sup g(Ytaé‘tagpa 2) _ 9(Ye, A, 0,2)
0cO g(Yt,At,(,0,0) g(YtaAt790aO)
+sup Q(thj\u%l) _ 9(Ye, A 0,1) 9<Yt,5\ta%1) 9(Ye, A, 0, 1)
0O g(Yt,At,QD,(D g(YhAt;@?O) g(Yt,At,SO70) g(YtaAtagp?O)

21Y ||V
< 2NV + A Y0lP) [exp (@pv B 1‘ |

Thus, using (4.9), (4.10) and Lemma 4.1, we can have

Fon(6) = Fin(0)]

Y.+ 20 Y 2+ Y ~
S || t|| || 4t|| || t” Sup{At,l(el)—i_)\t,l(el) _280} vpt
€ 0cO
6|Y.]? +2||Y 21Y |V
VS 20 o (XY |
€

€

sup
0eco

Then, Lemma 4.1 and (4.18) asserts (4.19).

Next, we show that

sup | F} 12(0) — Ft,lg(Q)‘ — 0 as. as t = 00. (4.20)

0co
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Due to (4.14), we can see that

1 1
sup |— - —
0€0 ()\t,l(91) - 90)()\7;2(92) - 90) (/\t,l(el) - 90)(/\t,2(92) - SD)
< 1 1 1
< sup | = = -
0coO )\t,1<91) — @ )\t,2(0) — @ )\t,2(02) - ¥
e 1 1 1 2V,
u N - “a M
vt | Ma(02) — @ [ 3ea(0) — 9 daO) —|| = @7
which in turn implies
sup ﬁt,12<9) - Ft,lQ(‘g)‘
0c0
. hu(6) . hu(6)
0c0 | (M1 (01) — @) (Nia(0) — ) (Aa(01) — @) (Ae2(0) — @)
- 1 1
=sup |h(0)| | = = -
e O S 00 = 2 0ua(@) ~ Coa @) — 9)(hea(8))
. 1
+sup [h(60) — h(6
sup [e0) = 10| Gy = B =9
2 2
ANV 5 S (AVAV 5y
€ € €

This asserts (4.20). Since it can be similarly shown that as t — oo,
sup |Fi;(0) — Fri;()] = 0 as. fori,j=1,2,3,
e

the lemma is validated. O

Proof of Lemma 4.3 Since

920,(0)
20007

IN(6)
00

)
p

E sup

< Bsup |Fu(6)], + Esup [ D(0)]),- H
06 » 00 00

to prove the first inequality in the lemma, it suffices to show that for 7,7 =1, 2,

OAi(0:) OM;(05) )

Fuan®) =3y, 00T 00,007

Dt,i(g) < Q.

p

< oo and FEsup
0cO

E sup
0co
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which, however, can be readily shown by using the Cauchy-Schwarz inequality and

Lemmas 4.1 and 4.2, that is,

i (6;) DN (6;) i (6;) DN (6;)
Esup ||F,,;;(0)=2% I < Esup |Fil - : ANl
P 7 (I T
1/2
<C(E|Y ||4)1/2- E sup ONiil0:) O (6;) 2 < 00
t veo || 06 96 ||
and
X (0;) X (0;)
Esup || Dy (0) =220 N < Esup | Dy ()] - 2ot
S0 || P gp00r ||, = Fonp 1Pl -sup || g a7 |
1/2
2N (0) 7
<{EC|[Y:| +1)2}"* | BEsup || .
<A{E(C|IY.[| +1)*} | Fgaer | ] <
The second inequality of the lemma is similarly proved. 0

Proof of Lemma 4.4 Note that

00(6)  OL(Bo)|| | = A
5 g p_||Dt(90)At(90)—Dt(QO)At(HO)HP

< 1 D1(00) 151 Ac(60) — Ae(Bo)lp + A:(B0) 1| De(00) — De(B0)ll-

Further, from Lemma 4.1 and (4.9),

oM (6) O (6))
00, 96,

ONa(09)  ONe2(69)

— <2V pt
96, 96, <2V,

p

1A¢(60) = Ae(Bo)ll, <

p

1D4(60) = Dy(00)ll, < D [Dri(0) — Dii(60)]

=1
Y 21'Y 1 Y
< O o (26 ) _1‘+0< LA

€ €2

(4.21)

for some positive constant C'. Then, we have
1 (%t 6) 0l:(0y) 8& 90 8&(90)
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1 < C(L+[IYq)
Z2HDt (Oo) I,V o' + \/ﬁZHAtwo)Hp(E—QtV t
-1 t=1

CIIY| 2 YV,
+%;||At(90)||p6—2 exp | ————r — 1.

The first and second terms of the above second inequality are negligible owing to

Lemma 4.1 since |D;(6p)|l, < C(|[Y¢]| +1). On the other hand, using the mean

value theorem, we have

ClIY:| 20XV o\ 20XV
<%;||At(90)\|p o P . P P

€

~en
Since B [IA60) [[Y4l120) < o0, we have S35, [A6o) [[Yil20 < o0 as.
Furthermore, exp(2V sup,s; [[Y¢|[p'/€) is a.s. finite (See (4.18).). Therefore, the

20V 1% >
<2V (—sup ||Yt||,o) S A 60) 1Y 20
t=1

lemma is validated. O

Proof of Lemma 4.5. It suffices to show that as t — oo,
0*0(0)  0*0(0)

b | apoer ~ aeoer || 70
p
Note that
0*0,(0)  9*,(0) ;
_ _ 4.22
SUb | g0eT ~ dpoeT | = ilelé’HFt(e) F(0)], 422)
p
_9AL(0) OA(0)
D —
Since
_ ONe1(01) ON1(67) OXe1(01) ONe1(61)
B ) _F 9 > 2 42
) =30 a1 A TR T 423)
P
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ONe1(61) ONe1(6))

< |F,11(0) — F,11(0
_| t,ll( ) t711( )| 891 89{‘

p
ON1(61) ONa(61)  ONa(61) DN (6:)

Fin(0
FE O =5 =507 06, 007

Y

p

using Lemmas 4.1 and 4.2, we can show that the supremum over 6 of (4.23) goes
to 0 a.s. as t — oo. Similarly, we can show that all components of supyeg ||F(0) —
F(0)], go to 0 a.s. as t — oo. This implies supyeq ||Fi(0) — Fi(0)], — 0 as..
Meanwhile, the second term of the RHS of (4.22) is bounded by

O (0)
0

OA.(0) _ OAL(0)
00 00

sup || Dy(6) — D(6),
0c®

Y

+sup | D ()],
0c®

p p

which goes to 0 a.s. as t — oo by Lemmas 4.1 and 4.2 and (4.21), and therefore,
the lemma is established. U

Proof of Lemma 4.6. See the proof of Proposition 5 of Lee et al. (2016a). O
Proof of Lemma 4.7 Since
E{00:(00)/00|Fi—1} = E{D:(0)|Fi—1}A:(0) a.s.,

to verify E{00;(0y)/00|F;_1} = 0 a.s., it suffices to show that F{D.(0)|F;_1} =0

a.s.. We claim that

E{Dal(e)‘ﬂfl} =0 a.s.. (424)
Since
E{Dt1(8)|ft 1} _ )\t,l(el) —1-E {Q(Ytakt#ﬁ,l) -E 1:| . 1
’ - /\t,l(gl) — ¥ g(Yt7 Aty 0, 0) - )\t,1(91> - <P7
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we only have to show that

g(YtaAt7§0>1)‘ :|
EF|l=—————"|Fi_1| = ¢ as..
|:g(Yt7At7§070) o 90

Here, for notational simplicity, we set A\;; = Ay ;(6;) for ¢ = 1,2. Then, we have

g(Yt?At:(P?l)) g((n1>n2>Ta)‘t>§0> 1)
Jof EASSUAGRALZA ) Ny ST VN (T b
|:g(Yt7At7S070) - 7;;2 ( ol " b2 n2| ! 1)g(<nlan2)T7At7¢70)
ni1Ang
_ i tna—g) A1 = @)™ (Mg — )™ ny\ [ne
=2 - i D DN ) | G EEEWD
nl:”QZO s=0
—(At t,2— ()\ 1 @)nl ()\ 2 90)712 REi n1 2 s
— Z o~ Oa+diz—p) WA = ¢ - 2 ) ) slsf( e, @)
ni,nz>1 5=

= ) pe Qo) A =) (M2 — )"}
(=11 (ny— 1)

ni,ng>1

C)

s=1

where we have used the fact that (Z) = (Z:ll) 2. Therefore, putting ny = n; —1,n5 =

no—1land s =s— 1, we get

Y, A 1
E |:g( ty Nty P, )‘El]
g(Yh)‘ta(p?O)
/7 12 n’/\n’
- Loy A1 =) Mg — )™ <~ (1) (1 s
= Z e (A, 14+Ae,2—p) \ M - t - /1 /2 S/!f(At7(,0)
>0 ny: ngy: =0 S S
=¥,

which implies (4.24). Since the same can be proven similarly for D; o and D, 3, the

lemma is established. O
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Table 4.1: Empirical sizes of T, Tres and T2 at the nominal level 0.05.

n = 300 n = 500 n = 1000

est,1 res est,2 est,1 res est,2 est,1 res est,2
12 Tn ’ Tn Tn Tn ’ Tn Tn ’ Tn Tn Tn ’

6 = (3,0.2,0.1,0,1,0.1,0,0.2, )

0 0.084 0.036 0.044 0.092 0.046 0.044 0.050 0.030 0.062
0.3 0.092 0.030 0.108 0.084 0.036 0.066 0.084 0.048 0.072
0.7 0.122 0.044 0.292 0.094 0.034 0.190 0.036 0.060 0.172

6 = (3,0.4,0.1,0,1,0.3,0,0.2, )

0 0.128 0.036  0.066 0.146  0.050 0.066 0.100 0.052 0.064
0.3 0.148 0.040 0.120 0.144 0.038 0.080 0.138 0.054 0.082
0.7 0.158 0.032 0.132 0.132 0.054 0.100 0.122 0.044 0.080

6 =(3,0.2,0.1,0.2,1,0.1,0.1,0.2, )

0 0.098 0.036 0.076 0.086 0.042 0.074 0.068 0.050 0.076
0.3 0.116 0.024 0.088 0.094 0.042 0.078 0.084 0.062 0.098
0.7 0.138 0.052 0.214 0.116 0.044 0.160 0.104 0.040 0.178

6 =(3,0.4,0.1,0.2,1,0.3,0.1,0.2, )

0 0.188 0.048 0.092 0.176  0.040 0.092 0.168 0.054 0.098
0.3 0.170 0.044 0.088 0.178 0.042 0.100 0.164 0.044 0.114
0.7 0.192 0.022 0.082 0.196 0.060 0.140 0.166 0.048 0.112
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Table 4.2: Empirical powers of T, T7¢s and T5*? at the nominal level 0.05 when B

is a diagonal matrix and 6y = (3,0.2,0.1,0,1,0.1,0,0.2, ¢) changes to ' at t = [n7].

n = 300 n = 500 n = 1000

est,1 res est,2 est,1 res est,2 est,1 res est,2
T 14 Tn Tn Tn Tn Tn Tn Tn Tn Tn

(61,02) = (3,1) — (8,85 = (2.7,1.5)

0 0.664 0.762 0.690 0.850 0.970 0.882 0.994 1 1
1/3 0.3 0.704 0.782 0.730 0.874 0.976 0.926 0.994 1 1
0.7 0.782 0.878 0.852 0.950 0.992 0.976 1 1 1
0 0.794 0.892 0.798 0.988 0.998 0.992 1 1 1
1/2 0.3 0.814 0.904 0.848 0.994 1 1 1 1 1
0.7 0.924 0.948 0.912 0.994 1 0.998 1 1 1
0 0.706 0.812 0.716 0.876 0.966 0.884 0.998 1 1
2/3 0.3 0.760 0.824 0.748 0.932 0.986 0.948 0.996 1 0.998
0.7 0.830 0.890 0.840 0.968 0.996 0.956 1 1 1

(a1,a2) = (0.2,0.1) — (o, ab) = (0.3,0.2)

0 0.434 0.348 0.304 0.614 0.648 0.526 0.830 0.950 0.860
1/3 0.3 0.450 0.304 0.356 0.544 0.602 0.564 0.854 0.920 0.862
0.7 0.418 0.266 0.470 0.576 0.562 0.592 0.824 0.930 0.842

0 0.466 0.456 0.390 0.702  0.778 0.618 0.934 0984 0.936
1/2 0.3 0.502 0434 0.444 0.652 0.712 0.604 0.914 0.974 0.920
0.7 0.542 0.424 0.524 0.656 0.674 0.654 0.912  0.908 0.920

0 0.440 0.378 0.316 0.558 0.664 0.526 0.880 0.980 0.848
2/3 0.3 0.404 0.330 0.340 0.554 0.644 0.542 0.878 0.958 0.830
0.7 0.430 0.366 0.470 0.564 0.570 0.612 0.868 0.936 0.832
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Table 4.3: Empirical powers of T¢*"!, T7¢ and T5*"* at the nominal level 0.05 when B

is a diagonal matrix and 6y = (3,0.2,0.1,0,1,0.1,0,0.2, ) changes to 8" at t = [nT].

n = 300 n = 500 n = 1000

T 7 TﬁSt’l Tges T:St’Q Tsst,l Trfl'es T;St’2 T;st,l T;L'es TﬁSt’g
p=0—=¢" =03
1/3 0.100 0.034 0.074 0.080 0.046 0.046 0.086 0.056 0.056
1/2 0.088 0.034 0.050 0.084 0.036 0.056 0.082 0.030 0.078
2/3 0.112 0.036 0.056 0.088 0.050 0.048 0.072 0.044 0.054
p=0—=¢ =07
1/3 0.166 0.052 0.148 0.288 0.044 0.210 0.664 0.046 0.626
1/2 0.120 0.030 0.100 0.234 0.030 0.240 0.734 0.046 0.774
2/3 0.150 0.038 0.118 0.154 0.058 0.188 0.388 0.028 0.480
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Table 4.4: Empirical powers of T5"!, T7¢s and Te*"* at the nominal level 0.05 when B is

a non-diagonal matrix and 6y = (3,0.2,0.1,0.2,1,0.1,0.2,0.1, ) changes to 8’ at t = [n7].

n = 300 n = 500 n = 1000

est,1 res est,2 est,1 res est,2 est,1 res est,2
T 14 Tn Tn Tn Tn Tn Tn Tn Tn Tn

(61,02) = (3,1) — (8,85 = (2.7,1.5)

0 0.488 0.596 0.530 0.710 0.874 0.754 0.968 1 0.984
1/3 0.3 0.552 0.682 0.582 0.760 0.906 0.804 0.976 1 0.992
0.7 0.566 0.692 0.658 0.790 0.934 0.858 0.986 1 1
0 0.610 0.740 0.632 0.818 0.950 0.884 0.992 1 0.994
1/2 0.3 0.634 0.784 0.672 0.840 0.950 0.878 0.994 1 1
0.7 0.662 0.822 0.770 0.890 0.996 0.928 0.998 1 1
0 0.532 0.620 0.546 0.738 0.898 0.804 0.976 1 0.976
2/3 0.3 0.574 0.648 0.602 0.786 0.914 0.806 0.990 1 0.996
0.7 0.646 0.718 0.616 0.820 0.946 0.858 1 1 0.998

(a1,a2) = (0.2,0.1) — (o, ab) = (0.3,0.2)

0 0.520 0.346 0.460 0.750 0.722  0.692 0.956 0.992 0.952
1/3 0.3 0.598 0.358 0.526 0.756 0.686 0.714 0.948 0.974 0.944
0.7 0.516 0.348 0.516 0.698 0.662 0.712 0.940 0.960 0.930

0 0.652 0.508 0.570 0.832 0.838 0.784 0.990 0.998 0.992
1/2 0.3 0.638 0.518 0.580 0.848 0.848 0.808 0.984 0.996 0.982
0.7 0.606 0.464 0.584 0.830 0.816 0.830 0.978 0.992 0.978

0 0.554 0.428 0.450 0.778 0.772 0.676 0.970 0.996 0.954
1/3 0.3 0.570  0.460 0.536 0.744 0.758 0.716 0.968 0.990 0.944
0.7 0.520 0.402 0.566 0.730 0.702 0.676 0.948 0.978 0.930
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Table 4.5: Empirical powers of T5*, T and T¢*"? at the nominal level 0.05 when B is

a non-diagonal matrix and 6y = (3,0.2,0.1,0.2,1,0.1,0.2,0.1, ) changes to 8’ at t = [n7].

n = 300 n = 500 n = 1000

T © TﬁSt’l T’;es T55t72 Tsst,l T:Z‘es Tsst,Q TﬁSt’l Tr'ges TﬁSt’2
p=0—¢ =0.3
1/3 0.096 0.036 0.068 0.116 0.032 0.074 0.106 0.036 0.102
1/2 0.096 0.040 0.052 0.090 0.030 0.052 0.106  0.062 0.106
2/3 0.096 0.026 0.060 0.102 0.040 0.066 0.074 0.052 0.106
p=0—¢ =07
1/3 0.148 0.038 0.116 0.200 0.052 0.154 0.404 0.056 0.408
1/2 0.170 0.058 0.116 0.196 0.036 0.178 0.420 0.046 0.483
2/3 0.116 0.052 0.074 0.170 0.048 0.128 0.242 0.028 0.306

83 ] _©_ 1]



4.8. SUPPLEMENTARY MATERIAL
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Table 4.6: Estimated parameters for the counts of traffic accidents of Seongdong (Y1) and
Seocho (Y32) counties in Seoul, Korea, based on a Bivariate Poisson INGARH(1,1) model.

Standard errors are shown in parentheses.

(ST

(o}
=
[
=
N
>

Mean Variance

Full Data

Yy 2927 3574 2117 0181  0.095  0.001  0.529
(0.629) (0.212) (0.034) (0.023) (0.126)

Y, 5.661  7.164 4704  0.001  0.001  0.167
(0.993) (0.176) (0.048) (0.035)

First period : Jan.01.2011-Dec.08.2011

Y 3164 3645 2843 0.009  0.092  0.001  0.489
(0.928) (0.281) (0.052) (0.037) (0.192)

Y, 5594 7164 4501  0.008  0.001  0.186
(2.494)  (0.454) (0.070) (0.052)

Second period : Dec.09.2011 - Dec.31.2012

Yy 2720 3429 1556 0329  0.062 0.017  0.638
(0.935) (0.364) (0.046) (0.028) (0.168)

Y, 5720 7.399 4882  0.001  0.035  0.143
(1.169) (0.203) (0.068) (0.048)
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Chapter 5

Comparison Study on CUSUM
Tests for General Nonlinear

Integer-valued GARCH Models

5.1 Introduction

In this study, special attention is paid to comparing the performance of the score
vector- and (standardized) residual-, and estimates-based CUSUM tests empirically
for GN-INGARCH models. For this task, however, we make an effort to derive
their limiting null distributions to obtain the critical values, used for Monte Carlo
simulations. Our findings show that the standardized residual-based test performs
the best among the CUSUM tests under consideration.

This paper is organized as follows. Section 5.2 introduces the one-parameter
exponential family AR models and establishes the asymptotic results for the CMLE.
Section 5.3 introduces the CUSUM tests based on score vectors, (standardized)
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residuals, and estimates, and then derives their limiting null distributions. Sections
5.4 implements a simulation study for comparison and we analyze real data in Section
5.5. Section 5.6 provides concluding remarks. Finally, all the proofs are provided in

Section 5.7.

5.2 Models and likelihood inferences

5.2.1 Basic set-up and asymptotics

Let {Y;,t > 1} be the GN-INGARCH time series of counts with the conditional

distribution of the one-parameter exponential family:
YilFior ~ pylme), Xi:=E(Y|Fi1) = fo(Xio1, Y1), (5.1)

where F; is the o-field generated by n1,Y7,...,Y;, and fa(z,y) is a nonnegative
bivariate function defined [0,00) x Ny, Ny = N U {0}, depending on the parameter
6 € © C R% Here, p(+|-) is a probability mass function given by

p(yln) = exp{ny — A(n)}h(y), y >0,

where 7 is the natural parameter and A(n) and h(y) are known functions. If B(n) =
A'(n), B(n:(6p)) and B'(n:(0y)) are, then, the conditional mean and variance of Y;,
respectively.

In what follows, we assume

(CO0) For all z,2" > 0 and y,y € Ny where wy, ws > 0 satisfying wy + wy < 1,

sup |fo(z,y) — fo(2',y)| < wilz — 2’| + waly — ¥/
S
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Davis and Liu (2016) shows that this assumption ensures the strict stationarity and
ergodicity of {(X;,Y;)}. The conditional likelihood function of model (5.1), based

on the observation Y7,...,Y,, is given by
5(9!3”1, e Yo, in) = Hexp{ﬁt(ﬁ)Y} — A(m(0)) }h(Y2),
t=1
where 7,() = B~1(X,(6)) is recursively updated through the equations:

Xi(0) = fo(Xio1(6), Yin),

with an arbitrarily chosen initial random variable X;. In what follows, 6y denotes

the true value of 8. We obtain the CMLE of 6, by

~

0, = argmax £(0) = arg max L, (0) = arg maxz 0,(6),
00 9o bco =

where 7,(0) = log p(Ylii(6)) = (0)Y; — A((0)).

To ensure the strong consistency and asymptotic normality of the CMLE, we
impose some regularity conditions, wherein V' and p € (0,1) stand for a generic
integrable random variable and constant, respectively; symbol || - || denotes the L!
norm for matrices and vectors; and E(-) is taken under ). Further, we use the

notation 7, = n,(0) and 7, = 7,(9) for simplicity.
(C1) 6, is an interior point in the compact parameter space © € R4

(C2) For any § € O, f% > x}, € R(B), where R(B) is the range of B(n). Moreover,
xy > x* € R(B) for all 6.

(C3) For any y € [0,00)>® or IN$°, the mapping 0 — f9 (y) is continuous.

(C4) f(x,y) is increasing in (x,y) if Y; given F;_; has a continuous distribution.
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(C5) E{Yisupgee B~ (f5% (Yo, Yor,..))} < 00
(C6) If there exists a t > 1 such that X;(0) = X;(6y) a.s., then 6 = 6.
(C7) B (suppee Xi1(0)) < 0o and E <sup9€@ 5(1(9)) < .

(C8) The mapping 0 — f% is twice continuously differentiable with respect to 6

2
><oo.

and satisfies

0 2
E <sup afOO(Yt_gQYt_z’ ) H) <oo, F (sup

ango(}/;f—h }/;—27 .. ) '

0€O 9co 00007
(C9) For all t,
, oy 8?%)“ { Ony
E |sup || B — == < oo, F|sup||(Y; — B ——||| < o0.
LGS 0 (69 00" oo ||t = Bl 5g0m
(C10) For all t, a.s.,
aXt(ﬁ) aXt(Q) t 827715(0) 827715 4
_ < — <
oo || o0 o || = VP and supmaser — geaer| =V

(C11) For some constant ¢ > 0, supyece SUPy>s>1 B'((1 — 0)my + 07) > ¢, for all ¢.
(C12) For all ¢, a.s., supgee |B'(7:) — B'(n:)| < Vp'.
(C13) For some constant K > 0, supgeg B'(n;)™%/2B"(n;) < K, for all t.

Conditions (C1)-(C9) can be found in Davis and Liu (2016). They also derive
the asymptotic properties of the CMLE. The proposition below can be proven using
Lemma 5.2 in Section 5.7, in a manner similar to that seen with their Theorems 1
and 2. Although the definition of our CMLE is similar to theirs, a subtle difference
exists in the condition and proof, because we are taking the approach of Francq and

Zakolan (2004).
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Proposition 5.1. Suppose that conditions (C0)—(C13) hold. Then, as n — oo,

A

0, — b6y a.s.,

and

VB, — 60) =% N(0,1(6,)71),

where

1(6y) = E (8%_(600)8%30)) =k <a;£z‘9(99;))

and £,(0y) = ne(00)Yy — A(n:(0)).

5.2.2 INGARCH(1,1) models
In this subsection, we focus on the INGARCH(1,1) model:
Yi|Fior ~p(ylm), Xi =w+aX,1+ BYiq, (5.2)

where X; = B(n) = E(Y3|Fi—1) and 0 = (w, o, ) satisfy w > 0, > 0,5 > 0 and
a+ 8 < 1. The process {(X,Y;);t > 1} has then a strictly stationary and ergodic
solution. To ensure Proposition 5.1 in this case, (C1) can be replaced with the

following:

(CY1’) The true parameter  lies in a compact neighborhood © € R? of 6, where

Oc{f=(w,0,8)" €R::0<w, <w<uwp,e<a+f < 1—¢} for somee > 0.

Note that, by iterating (5.2),

W W

Xt(e) =

C1l-a

- + 5;akﬁ—k—1, X(0)

t—2
+ /6 Z ak}/;f—k;—la
k=0

3 y ey =
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where the initial value is taken as X;(0) = w/(1 — a). Hence, (C2) is satisfied,
because X;(0) > w/(1 —a) > o* = wr/(1 — €). Below, we summarize some of the
most typical examples wherein Conditions (C11)-(C13) are found to hold—namely,
Poisson, negative binomial, and binomial distributions. For (C3)—(C10), see Kang

and Lee (2014), Davis and Liu (2016), and Diop and Kengne (2017).

Example 5.1 (Poisson INGARCH(1,1) model). The Poisson INGARCH(1,1) model
is given by
Yi|Fio1 ~ Poisson(\y), A\ =w + al—1 + 5Y;_1.

In this model, 7, = log(X,(#)) and A(n,) = ™. Since X,(0) > wy, X,(0) > wy,
and B’'(n) = e is increasing, (C11) holds. Moreover, since B'(n;) = X;(0), (C12)
is satisfied. Finally, (C13) holds, due to (C11) and the fact that B'(n) = B"(n).

Example 5.2 (NB-INGARCH(1,1) model). The NB-INGARCH(1,1) model is de-
fined as

r(1— p)

Y;5|JT_;€—1 ~ NB(rvpt)v Xt = D
t

=w+aX; 1+ BY 4,

where r € N and Y ~ NB(r, p) denotes the negative binomial distribution, with the

probability mass function given by

k+r—1 .
PY,=k) = (1—p)*p", k=0,1,2,....
r—1
Here, r is assumed to be known. In this model, n;, = log(X,(0)/(X:(0) + r) and
Almy) = —rlog(r/(1—e™)). Since X,(6) > wy. X4(6) > wy. and B/(y) = re"(1—e7)?

is increasing, (C11) holds. Next, since B'(n;) = X,(0)(X¢(0) + 1) /r,

[B() = B'(n)| < (Xu(6) + X:(0) + 1) [ X6) = Xu(0)|/r < V',
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owing to (C7) and Lemma 5.1 in Section 5.7, which in turn implies (C12). Finally,
(C13) is established, owing to the fact that logwy/(wy +7) < < 1 and B"(n) =
re’(1+e")/(1 — en)3.

Example 5.3 (Binomial INGARCH(1,1) model). The binomial INGARCH(1,1)

model is given by
Yi|Fior ~ B(m,py), Xi=mp; =w+aX, 1+ BY;,

where w > 0, > 0,5 > 0 and w + am + fm < m are assumed to ensure p; € (0, 1).
When m = 1, the model is considered a Bernoulli INGARCH(1,1) model. In this

case, since p; € (0, 1), the parameter space becomes
O = {(w,a,ﬁ)T:O<wL <w<wy, e<a+p< 1—6} for some € > wy /m.
In particular, for the Bernoulli INGARCH(1,1) model,
@:{0:(w,a,ﬁ)TE]Ri’r:egija—l—ﬁgl—e} for some 0 < e < 1.

Note that 1, = log (X4(0)/(m — X;(0))) and A(n) = mlog(1+ e?). Since p; € (0, 1),
(C11) and (C13) hold; furthermore, given the fact that B’'(n;) = X;(0) (1 — Xy(0)/m),
it can be shown that (C12) holds, similar to the case with the NB-INGARCH(1,1)

model.

5.3 Change point test

In this section, we introduce the score vector-, residual-, standardized residual-, and

estimates-based CUSUM tests used to assess the hypotheses:
Hy : 0 does not change over Yi,--- .Y, vs. Hy: not Hy.

The asymptotic results of these CUSUM test are proved in Section 5.7.

3 y ey =
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5.3.1 Score vector-based CUSUM test

The score vector-based CUSUM test is given by:

PN & E e
score __ 1 aet(en) r—1 0 t(en)
T _1%?3%5( 0 ) L\ 2= )

t=1

where

is a consistent estimator of I(y). Then, we obtain the following: see the proof in

Section 5.7.

Theorem 5.1. Suppose that conditions (C0)—(C13) hold. Then, under Hy, as
n — oo,

Tyere — sup |[By(s)||”, (5.3)
0<s<1

where {B§(s),0 < s < 1} is a d—dimensional Brownian bridge.

5.3.2 Residual-based CUSUM test

We consider the two types of residuals:

€1 = Yt — Xt(eo) and €2 = (Yt — Xt<90))/\/ B’(m(@o))

The former is considered by Franke et al. (2012), Kang and Lee (2014), and Lee
et al. (2016a,b) in some Poisson AR models, whereas the latter is newly considered
here. Since {e;, F;}, i = 1,2, are stationary ergodic martingale difference sequences,
using a functional central limit theorem, we can derive

[ns] n

1 k w o
sup Z€t,z‘— —ZQ,i — sup |B{(s)], (5.4)

0<s<1 \/NT; — ni= 0<s<1

3 y 1 | s
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where 72 = Var(e;;) (actually 77 = 1). However, since €;; is not observable, we

consider the tests:
k n

. k .
g €ti — — g €t
— n

t=1

1
T?"GS Z — max

n 1<k<n \/_Tm

where, for t > 2, ¢, =Y, — Xy; € €o= (Y, — Xt )/ B'(); Xt fo ( Xt 1, Y1),

77 = B7Y(X,); X; is an arbitrarily chosen initial variable; and 7 T2 =230 €, and

)

A

=1 =3 i1 €. Then, we can obtain the following, the proof of which is similar

to that of Kang and Lee (2014) and is omitted for brevity.

Theorem 5.2. Suppose that conditions (C0)—(C13) hold. Then, under Hy, as
n — 0o,

Tyt = sup [BI(s)].
0<s<1

Moreover, using (5.4), we can obtain the following: see the proof in Section 5.7.

Theorem 5.3. Suppose that conditions (CO)—(C13) hold. Then, under Hy, as
n — oo,

T — sup [BI(s)]l.

0<s<1

In our simulations study, the two following estimates-based CUSUM tests are

compared to score vector- and (standardized) residual-based CUSUM tests:

2 ~

Test,l — max k_(ék — gn)Tjn(ék - én), (55)

" 1<k<n M
where 0y is the CMLE of 6, based on Yi,..., Y, and

kf2 —k 2 - A ~
Tsst,Q — max M(@k — ek)TI;L(Qk - 0k>7

v <k<n—uvn n3
where ék are the CMLE of 6, based on the observations Yy 1,..., Y,

i LR PL0L) 1§ PL()
"2 ey 00007 -y 90067 |

t=un+1
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and {u, : n > 1} and {v, : n > 1} are sequences of integers diverging to oo, such
that u,/n,v,/n — 0 as n — oco. Then, under (C0)-(C13) and Hy, T converges

weakly to supg<,<; |Bg(s)||; for the latter, see Diop and Kengne (2017).

5.4 Simulation study

In this section, we report our simulation results and evaluate the performance of
the tests proposed in Section 5.3. We consider the INGARCH(1,1) model in Sec-
tion 5.2.2. In this simulation study, we employ the nominal level of 0.05, n =
300, 500, 1000, and 1,000 as the number of repetitions. The critical value for this
nominal level is obtained through Monte Carlo simulations (cf. Lee et al. (2003)):
for Testt Test2 Tscore it is 3.004; for Trest Tres2 it is 1.353. The T4 is calculated
with ¢ = 1 and u, = v, = [(logn)?]. Since 6, is inaccurate for small k values, we

use the test statistic:

2
Tetl — max k_(ek —0,)" 1, (6 — 0,,),

kr<k<n m

with kz = 20, instead of (5.5).

5.4.1 Test for Poisson INGARCH(1,1) models

We consider the Poisson INGARCH(1,1) model:
Y;|Fi_1 ~ Poisson(X;), X; =w+ aX; 1+ 8Y, 1,

where X is set to be 0. To calculate empirical size, we consider the parameters
w = 1,03 and («, 5) = (0.1,0.3),(0.1,0.5), (0.1,0.8),(0.3,0.2), (0.3,0.4), (0.4, 0.5).
The empirical sizes are listed in Table 5.1. As pointed out in Kang and Lee (2014),

9 5 .__:lx_-g: L I: T
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Test! exhibits severe size distortions when « + 3 ~ 1 and T¢*%? behave similarly.
On the contrary, T Tre! and Tr** have no severe size distortions.
To examine power, we consider the case that § = (w,a, ) changes to ¢ =

(W, o, p') at [n7] with 7 =1/3,1/2,2/3:

Case 1 : w =1 changes to w’' = 0.3 and («, ) does not change.

Case 2 : (a, 8) = (0.1,0.5) changes to (¢, 3'), and w = 1 does not change.

We compare only the results of the score vector- and residual-based tests (see
Tables 5.2 and 5.3), because the estimates-based tests have severe size distortions.
Therein, we can see that the sizes are smaller in Case 1 than in Case 2, and that
the powers in many cases are close to 1, but the power becomes smaller when
a+ [~ 1—that is, (0.1,0.8) and (0.4,0,5). In most cases, among the CUSUM tests,

Tres2 appears to produce the largest powers.

5.4.2 Test for NB-INGARCH(1,1) models

We consider the NB-INGARCH(1,1) model:

r(1— p)

Y;5|JT_;€—1 ~ NB(rvpt)v Xt - D
t

=w+aX; 1+ BY 4,

where X is set to be 0. We assume that r is known. However, in practice, r
is unknown and should be estimated—using, for example, an information criterion
such as the Akaike information criterion (AIC) or the Bayesian information criterion
(BIC) Davis and Wu (2009).

To examine empirical size and power, we use the same settings as in the previous
case, except that we deal only with 7 = 1/2. In particular, we consider the cases of

r=1and r = 8. As seen in the Poisson INGARCH(1,1) model case, our findings

T 1 y
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show that the estimates-based tests give rise to severe size distortions, while the oth-
ers produce no size distortions; furthermore, 7"**? produces the largest powers (see
Tables 5.4-5.6). Overall, our simulation results confirm the validity of score vector-
and residual-based CUSUM tests in terms of stability and power. In particular,
these results advocate the superiority of the standardized residual-based CUSUM

test over the other tests.

5.4.3 Test for binomial INGARCH(1,1) models

We consider the binomial INGARCH(1,1) model:
Yi|Fier ~ B(m,py), Xe =mp, = w+aXy1 + BY;1,

where X is set to be 0 and m is known. We consider the cases of m = 1,5, 10 and
the parameters (o, 5) = (0.1,0.2), (0.1,0.4), (0.2,0.1), (0.3,0.2), with w = 0.1, 0.3 for
m=1,w=0.5,1form =5, and w =1, 3 for m = 10. Tables 5.7-5.9 shows the sizes
derived from the tests. As with the two aforementioned cases, the results of the
estimates-based tests exhibit severe size distortions. 7,7°"¢ has a somewhat larger
size whenever the («, ) is small or the sample size is small, whereas residual-based
tests produce no severe size distortion.

To examine empirical power, we consider the case that § = (w, «, 5) changes to

0 = (W, a,p) at [n7] with 7 =1/3,1/2,2/3:

Case 1 : w changes to w' and (a, ) does not change.

Case 2 : (a, 8) = (0.1,0.2) changes to (¢, 3'), and w does not change.

It appears that the powers of T5re Tres! and TT**? are similar (see Tables 5.10-

5.14). In Case 1, the powers are close to 1, except when m = 1 and the sample size
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is small, regardless of 7. In Case 2, the powers are small when m = 1 and w is small,
but close to 1 in the other, remaining cases. Overall, among the tests studied, the

standardized residual-based CUSUM test appears to perform best.

5.5 Real data analysis

In this section, we provide a real data example. We analyze daily data set of car
accidents that occurred in Seondong county in Seoul, Korea during the period from
January 1, 2011 to December 31, 2012 (the sample size = 731). The time series
plot, the autocorrelation and partial autocorrelation functions are given in Figure
5.1. The mean and variance are 2.927 and 3.574, indicating over-dispersion.

We perform the CUSUM test and obtain that 75! = 5.008, T<? = 35.870,
Tseore = 2,542, Trest = 1.502 and T7°%? = 1.497, which reject the null hypothesis,
Hy, except T, The results are presented in Figure 5.2. T¢1 Test2 and Tres:?
are maximized at ¢ = 349, and T:“" and T'°*! are maximized at ¢t = 363. Since
Tres! has the second highest value, 1.499, at ¢ = 349, we can assume that the change
occurs at t = 349, December 15, 2011. The parameter estimates are summarized in
Table 5.15 for the full data under the null hypothesis and two sub-data before/after

the change under the alternative hypothesis.

5.6 Concluding remarks

In this study, we considered CUSUM tests based on score vectors and residu-
als, and compared their performance for general integer-valued time series models.

We derived their limiting null distributions under certain conditions and demon-
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strated their validity through a simulation study. Our findings show that score
vector- and residual-based CUSUM tests can serve as promising alternative meth-
ods to estimates-based CUSUM tests; in particular, the standardized residual-based
CUSUM mostly outperforms the other tests. Practitioners are therefore urged to

use this test, unless they are planning a special mission.

5.7 Proofs

In this section, we provide the proofs of the theorems stated in the previous sections.

In what follows, we use notation 1 = ,(6,) and 7 = 17,(6,,).
Lemma 5.1. Supponse that conditions (C0), (C7) and (C11) hold. Then, we have
[Xu(0) = X, (O)] < V' i —ml <V
Proof. Note that
1Xu(0) = Xe(0)] = |fo(Xe-1(0), Y1) — fo(Xs-1(0), Yi1)
< @il X (0) = X ()] < Wi Xy = X0 (6).

Then, using the mean value theorem and (C11), we have

t—1
Wy

B'(n;)
where nf = B~'(X}) and X} is an intermediate point between X,(f) and X,(6).

e —m| = [B7H(Xu(0)) — B~H(X.(6))] =

X1 — X1(0)]

Hence, using by (C7), the proof is completed. O

Lemma 5.2. Suppose that (C0)-(C13) hold. Then, under Hy, we have that as

n — oo,

(i) sup|— Z@t —%Z&(@) — 0 a.s;
t=1

fco | N

3 y 1 | s
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1 Zaet 1 9%

NP N2 3ar op(1);

0°6(0)  0*u(6) .
(iii) 21618 50007 90007 — 0 a.s;
, 10°L

(iv) - 8989(T) — 1(0y) a.s..

Proof. (i) Tt suffices to show that

sup [6;(0) — €,(0)] — 0 a.s. as t — oo.
e

Note that, by the mean value theorem, (C11) and Lemma 5.1,

{Zt(e) - Et(e)}Jr = {gt(e) - ft(Q)} V0
< |7 — nel Ve + [A(7) — A(me)|

=|B71(Xu(0)) — B™H(Xu(0)Y: + |A(B™H(Xu(0))) — A(B~H(X.(6)))]

< Y”(Xf (6) — X,(0)] < “QX;‘

for some intermediate points X;* between X;(6) and X;(6) and n} = B

V'

Y+ X7 <Y+ X,(0) + | X (0) — X,(0)| <Yy + X4(0) + Vpt,

“1(X}). Since

according to (C7), supyee{li(0) — £,(A)}T = 0, a.s. as t — oo. Similarly, it can be

seen that supgeg{f;(0) — £:(0)}~ — 0 a.s. as t — oo, which yields (5.6).

(ii) Note that

04:(0) _ aﬁt o 3m
Hence, we have
1 8& 1 8&5(00)
Vi & Z V&= 06 |
100
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(Ut (00) — Ui60)) 2 ‘

oL
From (C7),(C10) and Lemma 5.1 | it can be seen that the first term of (5.7) is

op(1), since
T(0)] = Y — X,(0)| < [V — Xo(O)] + [ Xe(6) — Xe(O)] < Yy — Xu(6)] + V5.

Since the second term of (5.7) is bounded by

oy oy
<Xt 60 Xt(eo ) Un \/_Z H Un
it becomes op(1) owing to Lemma 5.1 and (C8).
(iii) Note that
82£t<9) _ ' Oy O azm
aoort — 2 1) 5g ggr U0 ggagr

Therefore, we have

0*0(0)  9*0(0)
90007 9HHT

/ 87715 577t aﬁt
< Zt__Ziry
s || B (ae ae) Y,

vz ()l

* ’ Ui(#) (aizé% - aeam) H

Since B'(n)0n: /00 = 0X.(6)/06, the first and second term of the RHS of (5.8)

s Ony One

+ {Xt(m - X.(0)} aing

converge to 0 a.s. as n — oo because of (C8) and (C10). On the other hand,
the forth and fifth terms converge to 0 a.s. owing to (C7), (C10) and Lemma 5.1,

respectively. Due to (C12), we have

|60 - 500} G e

B'(n)? 00 00T

H 1 8Xt(9)8Xt(9)H.th'

101 J'A! _CI:I ; 1_-_] |

el



5.7. PROOFS

Henceforth, the third term converges to 0 a.s. owing to (C8) and (C11).
(iv) This can be proven similarly to the proof of Proposition 5 of Lee et al.

(2016a). 0

Lemma 5.3. Suppose that conditions (C0)-(C13) hold. Then, under Hy, as n —

00,

1
—= max

= 510 - { e - £3,000} | = ontt)

where Si(0) = S5, 04,(6)/08.

Proof. As 0, is the CMLE of 0y, we show that

k

! S(Bn) = Si(60) = ~ {Sn(m — 5*,1(90)}H — op(1).

—= max

/N 1<k<n

By Taylor’s theorem, we have

where 6,,% is an intermediate point between 6y and én Thus we have

L 36, - 5o - & {Sn@n) - 5.0}
1) 355253? T aézﬁl b=t
*%m P n 8553(3?@”—90”“”0)(@”‘90)

< il 15 ] -
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k

+ max —
1<k<n M

~ 0°4(6;)
n 2= gpopr 1)

/|6, — 6| = I, + 11,

Note that, by Proposition 5.1 and (iv) in Lemma 5.2,

"~ 97046y,
n 2= gpopr 1)

11, < Vil — bl = 0p(1) - Op(1) = 0p(1).

Meanwhile, due to (C8), for some 0 < vy < 1/2,

k = n? e
kf 82£t(9*) n? 82€t(9*) n”
- n < —__n/ — =
B |7 2 anos + 1| = 2| et | MO0 = erlD)
Furthermore, since
wekenn |k & 96067 V" w5

owing to (iv) in Lemma 5.2, we can show that I, = op(1). This asserts the lemma.

O

Proof of Theorem 5.1. Since {0¢;(0y)/00,F;} forms a sequence of stationary

ergodic martingale differences, using a functional central limit theorem, we can have

1 w
[(90)_1/2%5[718](90) — Bd(S),

where S () = S5, 84,(8) /00 and {By(s),0 < s < 1} is a d—dimensional standard

Brownian motion. Further, from (i) in Lemma 5.2, we have

1(90)_1/2%5[7151(90) 5 By(s).

Then, using Lemma 5.3, we obtain

103 . _c:_r]i &1
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This establishes the theorem. O
Proof of Theorem 5.3. We verify that
k ]{Z n
121]?2; T Z 6t2 - €t2 n ;(@,2 - €t2) = 0P(1) (5-9)
Note that
. Y, — X, Y, — X(6h)
€t,2 — €2 — —5
VB () /B'1f)
(X,(0) - %) ( . . )
= t0o) — Ay — —
vV B’ (1)) Vv B'(U?)
¥ ( . . >+ L (X,(00) - X))
€1 — — t\Yo) — Ay
VB () /B (0) Vv B'(n))
= Ri1+ Rip+ Ry3.
It suffices to show that for i = 1,2, 3,
L - ES R = o) (5.10)
lglka<xn \/_ n P bi| = OF '
We express
max —— Z R 1 Z |Re1| < Iny+ Ins+ Ins,
f 1
where
2 — . 1 1
Ly = == > | (Xul6o) = Xu(6n) ( - ) ,
VS VB0 /B )
2 — . 1 1
Lz === > | (Xul00) = X:(00)) - ,
e ; VB(i)  /B'(nf)
2 — . . 1
[n,3 - T = (Xt<0n) - ) -
\/ﬁ tzz; \/B/ ) \/B’(m
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Using the mean value theorem with intermediate points 8}, ; and 6} , between 0,,

we have

TaXt(g;kL,l) ‘ B”(Tlt(e:m)) 1

o B'(n:(0;,5))% B'(n:(65, 2))
)

B” T]t 3Xt(9
Ssu < [fsu
veo B'(1)*2|  |[5en 00

]n,l - (én - 00)

00

n

< n\|9n—9o!|2 Z

where we have used Theorem 1.1 and (C8), (C11) and (C13). Since 7; can be
represented as 7,(6,) = B~*(X,(6,)) with X;(6,) = X1, we have,

= op(1),

S| (Xetho) — X6.0) (5 0) ~ B

1 1
In,2 %2Q\/§ _
. 1% X, (0% ,)
< Vs —foll \[Z 5| = 0(1) - 0p(1) = 0p(1),
t=1

with intermediate point 6 ; between 0, and 6, due to (C8), (C11) and (C12).

Furthermore, note that | X, — X,(6,)| < Vp' a.s. since owing to (CO0),

K= X)) =[Sy, (Ke1,Yen) = i, (Xia(6a), Vi)
< WX = Xo1(0,)] < wiTH Xy — X1(0,,)]-

Then, by using this and (C11),

ZVp

Now, we show that (5.10) holds for ¢ = 2. We express

2__2Rt2

2
su
sco /B'(m)

< —Z|Rt2| < I+ 11,

max ——
1<k<n

where

Il,,1 = max —

( ) s (v
\VEG) VB n&5M\VEG) VB
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11,0 = max—

1<k<n \/n

First, we can see that, using (C7), (C11) and (C12),

N———

1 1
.| (x/B’(ﬁt) /B

1 1
——E B'(n;) — B'(n"))| £ —=——= b= 1).
\/ﬁg\/é — €1 (B (1) ()] < ey A leta]p” = op(1)

Next, using Taylor’s theorem, we can have

2 n
I,y < W,Z

<

onY 1 oy oy
ron\=1/2 _ pt 12 1 Tﬂ_i _ sy Mtn ony
B2 = B ) 5 200) O 00) G~ Ouon)T (2u007) T~ zilon) ).

where 7/, = 1:(0;,) and 0} is an intermediate point between 0, and 6y, and Z,(0) =

B"(n:)B'(n:)~*?, so that

I, < II,+1I],

where
k n
- k|1 ond 1 0
S Eget,lzt(eo)%—ﬁ > ACD (;g
A 2 o * an;n ant
I, = v/llf, —90”5;|€t,1| Z03) 5" — Zb0) 5y
Since {e.1Z:(60)0n°/00} is ergodic and v/n||6, — 6o|| = O,(1), we have Il , = op(1)
by using ergodic theorem. Further, because
R 2 — 9] 0
11}, < Vil = 60ll = 3 leva] s Z(6) agt Z,(60) 8775
t=1 [16—60|<[|6n—0b0|

and Esupgeg | Z:(0)] - [[0n:/00]] < oo, we have II], = op(1), which implies I1,,» =
op(1), and thus, (5.10) for i = 2.
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Finally, using Taylor’s theorem, we write

0Xi(6o) | 5 0Xy(6;)  0Xi(6o)
T t\vo N T n)
gy (O t) ( a0 20

Xt<én) = Xt<00> + (én - 90)

for some 0 between 9n and 0. Then, similarly to the case of 11,5, we can show
that (5.10) holds for ¢ = 3. Hence, (5.9) is verified. The theorem is then a direct
result of (5.4). O
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Table 5.1: Empirical sizes for Poisson INGARCH (1,1) models.

w=1 w=0.3

est,1 est,2 score res,l res,2 est,1 est,2 score res,l res,2
n Tn Tn Tn Tn Tn Tn Tn Tn Tn, Tn

(a, B) = (0.1,0.3)

300 0.110 0.122 0.074 0.036  0.026 0.090 0.110 0.076  0.032  0.048
500 0.086 0.090 0.064 0.032 0.036 0.112 0.100 0.066  0.036 0.038
1000 0.055 0.080 0.036 0.045 0.040 0.080 0.095 0.070  0.050  0.055

(a, B) = (0.1,0.5)

300 0.100 0.114 0.040 0.038 0.048 0.107 0.124 0.056  0.032  0.040
500 0.063 0.068 0.028 0.042 0.030 0.075 0.110 0.042 0.054 0.048
1000 0.040 0.055 0.050 0.045 0.038 0.050 0.060 0.045 0.050 0.060

(o, B) = (0.1,0.8)

300 0.322  0.454 0.028 0.048 0.030 0.250 0.430 0.032 0.036 0.038
500 0.244 0.362 0.024 0.038 0.040 0.234 0.348 0.050 0.040 0.038
1000 0.210 0.170 0.038 0.025 0.044 0.190 0.265 0.040 0.050 0.025

(o, B) = (0.3,0.2)

300 0.210 0.240 0.032 0.036 0.030 0.172 0.236 0.042 0.024 0.026
500 0.204 0.222 0.0564 0.038 0.038 0.210 0.246 0.052 0.036 0.038
1000 0.120 0.205 0.046 0.020 0.040 0.175 0.175 0.055 0.040 0.045

(a, B) = (0.3,0.4)

300 0.230 0.240 0.026 0.022 0.046 0.226 0.242 0.014 0.038 0.038
500 0.182 0.180 0.028 0.034 0.036 0.184 0.196 0.024 0.020 0.020
1000 0.220 0.185 0.034 0.035 0.038 0.165 0.170  0.055  0.045 0.040

(a, B) = (0.4,0.5)

300 0.388 0.528 0.022 0.014 0.014 0.378 0.542 0.016 0.024 0.026
500 0.330 0.498 0.044 0.032 0.024 0.268 0.488 0.036  0.048 0.038
1000 0.195 0.320 0.040 0.040 0.048 0.270 0.375 0.035 0.045 0.035
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Table 5.2: Empirical powers for Poisson INGARCH (1,1) models when w = 1 changes to

w' =0.3 at t = [n7] and («, 3) does not change.

T=1/3 T=1/2 T=2/3

score res,l res,2 score res,l res,2 score res,l res,2
n TS Tresl res, TS Trest o res, TS Tres:l  Tres,

(o, B) = (0.1,0.3)

300 0.750 0.972 0.984 0.660 0.960 1.000 0.794 0.698  0.982

500 0.996 1.000 1.000 0.998 1.000 1.000 0.992 0.978 1.000
1000 1000 1.000  1.000 1000 1.000  1.000 1000 1.000  1.000
(o, B) = (0.1,0.5)

300 0.628  0.920  0.962 0.772  0.844  0.992 0.914  0.580  0.990

500 0.988 1.000 1.000 0.994 1.000 1.000 1.000 0.964 0.998
1000 1000 1.000  1.000 1000 1.000  1.000 1000 1.000  1.000
(a, B) = (0.1,0.8)

300 0.060 0192 0.180 0.068 0.094  0.222 0.140  0.016 0.168

500 0.114 0402  0.530 0.184 0214  0.704 0.420  0.042  0.580
1000 0.060 0.070 0.065 0.812 0.688  1.000 0.984 0.236  0.996
(o, B) = (0.3,0.2)

300 0.748  0.986  0.990 0516  0.960  0.998 0.508  0.596  0.968

500 0.998  1.000  1.000 0.986  1.000  1.000 0.970  0.988  1.000
1000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
(o, B) = (0.3,0.4)

300 0.406 0.858 0.862 0.286  0.704 0.930 0.552 0.314 0.856

500 0.890  0.996  1.000 0.802  0.962  1.000 0.926  0.742  1.000
1000 1.000 1.000  1.000 1000 1.000  1.000 1000 1.000  1.000
(o, B) = (0.4,0.5)

300 0.074 0.426 0.176 0.034 0.178 0.224 0.038 0.040 0.116

500 0.030 0.026  0.022 0.058 0.434 0.696 0.116 0.076  0.538
1000 0.030  0.055  0.050 0.600  0.976  1.000 0.748  0.484  1.000
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Table 5.3: Empirical powers for Poisson INGARCH (1,1) models when (a, 8) = (0.1,0.5)

change to (¢/,8') at t = [n7] and w does not change.

T=1/3 T=1/2 T=2/3

n Tscore  resl  pres? Tscore  resl  pres? Tscore  resl  pres?
(o/,08") =(0.1,0.3)
300 0.790 0.998 1.000 0.610 0.942 1.000 0.836 0.648 0.994
500 0.998 1.000 1.000 0.968 1.000 1.000 0.994 0.954 1.000
1000 1.000 1.000  1.000 1.000  1.000  1.000 1.000  1.000 1.000
(o/, ") =(0.1,0.8)
300 0.370 0.044 0.092 0.724 0.112 0.144 0.780 0.156  0.232
500 0.808 0.076  0.144 0.976 0.114 0.222 0.972 0.210 0.242
1000 1.000 0.088 0.244 1.000 0.155 0.330 1.000 0.328 0.312
(o, 8") =(0.3,0.2)
300 0.804 0.998 0.994 0.706  0.988  1.000 0.866 0.822 0.994
500 1.000 1.000  1.000 0.976 1.000 1.000 0.992 0.992 1.000
1000 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
(o, 8") =(0.3,0.4)
300 0.444 0.810 0.854 0.670 0.830 0.962 0.768 0.634  0.900
500 0.892 0.988 0.994 0.988 0.988  1.000 0.988 0.976  0.998
1000 1.000 1.000  1.000 1.000  1.000  1.000 1.000  1.000 1.000
(o, 8") = (0.4,0.5)
300 0.886  1.000  0.992 0.822 0.996 0.998 0.856 0.908 0.976
500 1.000 1.000  1.000 0.980 1.000 1.000 0.998 0.998 1.000
1000 1.000 1.000  1.000 0.990 1.000 1.000 1.000  1.000 1.000
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Table 5.4: Empirical sizes for negative binomial INGARCH (1,1) models.

w=1 w=0.3
n Testl  est2  score  resdl  res? Testl  est2  score  presl  res?
(o, B) = (0.1,0.3)
300 0.136 0.122 0.072 0.032 0.032 0.120 0.120 0.088 0.032 0.034
500 0.112 0.138 0.080 0.026 0.032 0.078 0.098 0.048 0.028 0.046
1000 0.084 0.118 0.074 0.056  0.050 0.084 0.096 0.050 0.038  0.052
(o, B) = (0.1,0.5)
300 0.126 0.124 0.030 0.024 0.028 0.118 0.104 0.062 0.024 0.036
500 0.114 0.086 0.038 0.020 0.044 0.112 0.088 0.048 0.024 0.028
1000 0.100 0.126  0.060 0.048 0.046 0.076 0.070 0.034 0.040 0.036
(o, B) = (0.1,0.8)
300 0.168 0.176  0.042 0.024 0.034 0.198 0.320 0.022 0.026 0.030
500 0.154 0.172 0.038 0.028 0.038 0.208 0.256 0.042 0.032 0.036
1000 0.132 0.156 0.046 0.040 0.032 0.180 0.200 0.058 0.038 0.042
(o, B) = (0.3,0.2)
300 0.188 0.258 0.024 0.018 0.022 0.170 0.264 0.038 0.042 0.030
500 0.228 0.296 0.046 0.036 0.032 0.194 0.228 0.050 0.024 0.028
1000 0.186 0.268 0.050 0.040 0.038 0.162 0.234 0.038 0.044 0.038
(o, 8) = (0.3,0.4)
300 0.234 0.290 0.026 0.032 0.034 0.216 0.258 0.024 0.030 0.032
500 0.232  0.228 0.038 0.028 0.034 0.178 0.226 0.034 0.028  0.026
1000 0.142 0.174 0.034 0.046 0.044 0.180 0.168 0.048 0.046 0.044
(o, B) = (0.4,0.5)
300 0.300 0.484 0.036 0.030 0.028 0.336  0.496 0.028 0.040 0.030
500 0.306 0.388 0.034 0.044 0.038 0.334 0466 0.024 0.028 0.018
1000 0.230 0.310 0.056 0.040 0.042 0.252 0.336 0.038 0.046 0.036
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Table 5.5: Empirical powers for negative binomial INGARCH (1,1) models when the

parameter change occurs at t = [n/2].

r=1 r=38

Tscore  resl  qres? Tscore  Tresl qres?
(, B) n 0=1—9¢§=03

300 0.648 0.500 0.968 0.662 0.886 0.994
(0.1,0.3) 500 0.988 0.814 1.000 0.996 0.998  1.000
1000 1.000 0.996  1.000 1.000 1.000 1.000
300 0.760 0.180 0.932 0.780  0.676  0.990
(0.1,0.5) 500 0.992 0.350 0.996 0.992 0.954 1.000
1000 1.000 0.804 1.000 1.000 1.000 1.000
300 0.666  0.008  0.700 0.182  0.028 0.438
(0.1,0.8) 500 0.958 0.006 0.944 0.574 0.046  0.786
1000 1.000 0.004  0.990 0.980 0.078  1.000
300 0.558 0.412  0.968 0.510 0.904 0.998
(0.3,0.2) 500 0.930 0.814 0.996 0.986 1.000 1.000
1000 1.000 0.992  1.000 1.000 1.000 1.000
300 0.562 0.104 0.836 0.306 0.412  0.908
(0.3,0.4) 500 0.926 0.208  0.996 0.820 0.844 1.000
1000 1.000 0.584  1.000 0.998 1.000  1.000
300 0.172  0.018 0.378 0.052 0.076  0.218
(0.4,0.5) 500 0.602 0.028 0.770 0.168 0.090 0.656
1000 0.992 0.014 0.990 0.826 0.248 0.996
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Table 5.6: Empirical powers for negative binomial INGARCH (1,1) models when the

parameter change occurs at t = [n/2].

r=1 r=2_8

score res,l res,2 score res,l res,2
Tn Tn ’ Tn ’ Tn Tn ) Tn ’

(o, B') n (a, 8) = (0.1,0.5) — (', §')

300 0.112  0.360  0.990 0.270 0.814 1.000

(0.1,0.3) 500 0.222 0.544 0.998 0.638 0.994 1.000
1000 0.472  0.892 1.000 0.952 1.000 1.000

300 0.124 0.018 0.488 0.492 0.040 0.258

(0.1,0.8) 500 0.306 0.018 0.758 0.962 0.084 0.356
1000 0.718 0.044 0.970 1.000 0.152  0.532

300 0.186 0.504 0.974 0.364 0.920 0.992

(0.3,0.2) 500 0.306 0.814 0.998 0.622  0.998  1.000
1000 0.706  0.988  1.000 0.956  1.000 1.000

300 0.122  0.156  0.740 0.210 0.694 0.932

(0.3,0.4) 500 0.234 0424 0.956 0.460 0.968  1.000
1000 0.558  0.798  0.998 1.000  1.000 1.000

300 0.450 0.660  0.898 0.654 0.970  0.996

(0.4,0.5) 500 0.798 0.942  0.996 0.932 1.000 1.000
1000 0.988  0.998  1.000 1.000  1.000 1.000
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Table 5.7: Empirical sizes for binomial INGARCH (1,1) models when m = 1.

w=0.1 w=0.3

est,1 est,2 score res,l res,2 est,1 est,2 score res,l res,2
n Tn Tn ’ Tn Tn Tn ’ Tn ’ Tn Tn Tn ’ Tn ’

(a, B) = (0.1,0.2)

300 0.136 0.244 0.116 0.020 0.022 0.100 0.174 0.082 0.030 0.028
500 0.112  0.224 0.098 0.042 0.040 0.098 0.208 0.076 0.032  0.030
1000 0.120 0.204 0.084 0.052 0.040 0.080 0.192 0.060 0.036 0.040

(o, B) = (0.1,0.4)

300 0.106 0.178  0.072 0.026  0.032 0.092 0.148 0.062 0.034 0.032
500 0.108 0.144 0.070 0.042 0.052 0.090 0.110 0.050 0.036 0.042
1000 0.072  0.092 0.052 0.032 0.044 0.076 0.108 0.044 0.068 0.072

(o, B) = (0.2,0.1)

300 0.140 0.388 0.146 0.016 0.020 0.156 0.250  0.072 0.044 0.044
500 0.150 0.350  0.106 0.032 0.038 0.124 0.204 0.076 0.036  0.038
1000 0.168 0.300 0.072 0.036  0.040 0.104 0.184 0.036 0.036 0.036

(a, B) = (0.3,0.2)

300 0.202 0.320 0.054 0.026 0.028 0.210 0.292 0.070 0.040 0.042
500 0.198 0.280 0.034 0.046 0.050 0.168 0.238 0.052 0.046 0.046
1000 0.164 0.200 0.036 0.028 0.028 0.192 0.276  0.072 0.060  0.064
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Table 5.8: Empirical sizes for binomial INGARCH (1,1) models when m = 5.

w=0.5 w=1
n Testl  qest2  score  presl  qres? Test:l est2  score  resl  qres?
(o, B) = (0.1,0.2)
300 0.116 0.198 0.088 0.032 0.036 0.092 0.168 0.088 0.022 0.024
500 0.114 0.170 0.082 0.036 0.034 0.082 0.136 0.084 0.034 0.032
1000 0.084 0.148 0.076 0.048 0.048 0.084 0.164 0.044 0.048 0.048
(o, B) = (0.1,0.4)
300 0.092 0.146 0.056 0.030 0.034 0.130 0.120 0.066 0.020 0.024
500 0.098 0.114 0.074 0.042 0.038 0.096 0.090 0.060 0.032 0.032
1000 0.072 0.088 0.044 0.024 0.028 0.108 0.096 0.048 0.044 0.048
(a, 8) = (0.2,0.1)
300 0.132 0.344 0.150 0.044 0.044 0.132 0.172 0.060 0.024 0.024
500 0.156 0.288 0.110 0.038 0.040 0.156 0.172  0.068 0.046 0.044
1000 0.132 0.256 0.092 0.044 0.048 0.132 0.132 0.048 0.032 0.028
(o, B) = (0.3,0.2)
300 0.202 0.252 0.052 0.036 0.032 0.154 0.210 0.092 0.038 0.036
500 0.184 0.246 0.062 0.036 0.032 0.156 0.196 0.070 0.042 0.042
1000 0.164 0.256 0.068 0.036 0.044 0.156 0.192 0.072 0.076 0.076
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Table 5.9: Empirical sizes for binomial INGARCH (1,1) models when m = 10.

w=20.5 w=1

est,1 est,2 score res,l res,2 est,1 est,2 score res,l res,2
n T Test2 T Trest res, Testl e TS Tresl  Tres,

(o, 8) = (0.1,0.2)

300 0.104 0.190 0.098 0.028 0.030 0.090 0.080 0.154 0.032 0.032
500 0.102 0.146  0.088 0.032 0.032 0.074 0.086 0.110 0.040 0.040
1000 0.088 0.140 0.072 0.040 0.036 0.064 0.096 0.080 0.048 0.048

(0, ) = (0.1,0.4)

300 0.126  0.124  0.070 0.032  0.036 0.104 0.084 0.090 0.042 0.034
500 0.084 0.100 0.050 0.046 0.044 0.066 0.068 0.088 0.024 0.024
1000 0.120 0.108  0.068 0.048 0.048 0.052 0.044 0.040 0.032 0.036

(a, B) = (0.2,0.1)

300 0.140 0.184 0.074 0.020 0.022 0.062 0.084 0.172 0.050  0.050
500 0.134 0.188 0.062 0.040 0.042 0.064 0.090 0.180 0.066 0.066
1000 0.100 0.164 0.036 0.036 0.032 0.064 0.080 0.144 0.052 0.052

(a, 8) = (0.3,0.2)

300 0.1568 0.212 0.092 0.044 0.044 0.136 0.120 0.190 0.068 0.066
500 0.174 0.226  0.054 0.024 0.032 0.142 0.134 0.186 0.034 0.032
1000 0.140 0.212 0.064 0.048 0.068 0.124 0.168 0.088 0.056  0.056
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Table 5.10: Empirical powers for binomial INGARCH (1,1) models when m = 1 and

w = 0.1 changes to w’ = 0.3 at t = [n7]| and (o, 8) does not change.

T=1/3 T=1/2 T=2/3

score res.1l res.2 score res.1l res.2 score res.1l res.2
n Tn Tn Tn Tn Tn Tn Tn Tn TrL

(a, B) = (0.1,0.2)

300 0.670 0.616 0.716 0.600 0.662 0.726 0.478 0.724 0.714
500 0.928 0.768 0.916 0.780 0.866  0.926 0.740  0.956  0.942
1000 1.000 0.988 1.000 0.896 1.000 1.000 0.960 1.000 1.000

(o, B) = (0.1,0.4)

300 0.712  0.880  0.900 0.760 0.952  0.962 0.608 0.888 0.882
500 0.970 0.994 0.996 0.970  0.998 0.998 0.944 0.994 0.994
1000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000

(o, B) = (0.2,0.1)

300 0.720  0.388  0.560 0.528 0.518 0.648 0.404 0.602 0.586
500 0.932 0.626  0.858 0.678 0.816 0.912 0.660 0.926  0.906
1000 1.000 0.992  0.996 0.956  1.000  1.000 0.948 0.996 0.996

(@, ) = (0.3,0.2)

300 0.770 0.754 0.744 0.542 0.828  0.802 0.408 0.812 0.718

500 0.936 0914 0.924 0.718 0.970 0.950 0.648 0.974 0.938

1000 0.992 0.996 0.996 0.844  1.000 1.000 0.884  1.000 1.000
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Table 5.11: Empirical powers for binomial INGARCH (1,1) models when m = 5 and

w = 0.5 changes to w’ =1 at ¢t = [n7] and (a, 8) does not change.

T=1/3 T=1/2 T=2/3

score res.1l res.2 score res.1l res.2 score res.1l res.2
n Tn Tn Tn Tn Tn Tn Tn Tn TrL

(a, B) = (0.1,0.2)

300 0.838 0.750 0.878 0.752  0.858 0.910 0.644 0.870 0.870
500 0.984 0.914 0.960 0.928 0.960 0.984 0.912 0.984 0.980
1000 1.000 0.992 1.000 0.988 1.000  1.000 0.980 1.000 1.000

(o, ) = (0.1,0.4)

300 0.844 0.932 0.968 0.832 0.968 0.986 0.724  0.940 0.938
500 0.992 1.000 1.000 0.996 1.000 1.000 0.984 1.000 1.000
1000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000

(o, B) = (0.2,0.1)

300 0.938 0.688  0.868 0.806 0.792  0.866 0.682 0.858 0.862
500 0.992 0.836 0.952 0.910 0.908 0.964 0.850 0.954 0.936
1000 1.000 0.996 1.000 1.000  1.000 1.000 0.988 1.000  1.000

(@, ) = (0.3,0.2)

300 0.868 0.808  0.898 0.730 0.902 0.928 0.610 0.914 0.906

500 0.990 0.948  0.990 0.918 0.974 0.982 0.856  0.996  0.990

1000 1.000 1.000 1.000 0.992 1.000 1.000 0.992 1.000 1.000
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Table 5.12: Empirical powers for binomial INGARCH (1,1) models when m = 10 and

w =1 changes to w’ = 3 at ¢t = [n7] and («, B) does not change.

T=1/3 T=1/2 T=2/3

score res.1l res.2 score res.1l res.2 score res.1l res.2
n Tn Tn Tn Tn Tn Tn Tn Tn TrL

(a, B) = (0.1,0.2)

300 0.970 0.814 0.938 0.812 0.882 0.944 0.772  0.940 0.934
500 0.998 0.922 0.984 0.934 0.954 0.978 0.906 0.970 0.954
1000 1.000 0.984 1.000 1.000 1.000 1.000 0.992 1.000 1.000

(o, B) = (0.1,0.4)

300 0.952  0.986 0.996 0.910 0.996 1.000 0.890 0.998 0.998
500 1.000  1.000 1.000 0.994 1.000 1.000 0.996 1.000 1.000
1000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000

(o, B) = (0.2,0.1)

300 0.986 0.746  0.932 0.916 0.840 0.912 0.792 0.836 0.822
500 1.000 0.870 0.980 0.962 0.924 0.960 0.944 0.950 0.932
1000 1.000 0.972 1.000 0.992 1.000 1.000 1.000 1.000 0.996

(@, ) = (0.3,0.2)

300 0.974 0.886 0.964 0.770  0.932 0.948 0.724 0954 0.924

500 1.000 0.954 0.992 0.932 0.990 0.992 0.914 0.994 0.988

1000 1.000 1.000 1.000 0.992 1.000 1.000 0.996 1.000 1.000
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Table 5.13: Empirical powers for binomial INGARCH (1,1) models when («, ) =
(0.1,0.2) changes to (¢/,8') at t = [n/2] and w does not change.

(o, B) n Tscore  qresl  res? Tscore  Tresl  res?
m=1 w=0.1 w=0.3
300 0.264 0.142 0.070 0.894 0.816 0.840
(0.1,0.5) 500 0.516 0.284 0.168 0.990 0.974 0.976
1000 0.904 0.588 0.368 1.000  1.000 1.000
300 0.140 0.186  0.208 0.628 0.880 0.828
(0.4,0.2) 500 0.270 0432 0.434 0.852  0.994 0.970
1000 0.660 0.836 0.824 0.984 1.000 1.000
300 0.232 0416 0.318 1.000 0.926  0.988
(0.3,0.4) 500 0.568 0.712  0.592 1.000 0.970 0.996
1000 0.980 0.984 0.928 1.000 0.996 1.000
m=>5 w=0.5 w=1
300 0.572 0.664 0.516 0.900 0.968  0.960
(0.1,0.5) 500 0916 0914 0.822 1.000 1.000 1.000
1000 1.000  1.000 0.988 1.000  1.000 1.000
300 0.528 0.764 0.790 0.800 0.964 0.958
(0.4,0.2) 500 0.892 0.968 0.974 0.962 0.998  0.998
1000 0.996 1.000 1.000 1.000  1.000 1.000
300 0.654 0.950 0.938 0.712  0.988 0.974
(0.3,0.4) 500 0.988 0.998 1.000 0.942 1.000 1.000
1000 1.000 1.000  1.000 1.000  1.000 1.000
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Table 5.14: Empirical powers for binomial INGARCH (1,1) models when m = 10, («a, 8) =
(0.1,0.2) changes to (¢/,8) at t = [n/2] and w does not change.

(', B n Tscore  qresl  pres? Tscore  qresl  res?
m =10 w=1 w=3

300 0.846 0.940 0.868 0.946  0.994 0.992

(0.1,0.5) 500 0.998 0.996 0.996 1.000 0.984 0.984

1000 1.000 1.000  1.000 1.000 1.000 1.000

300 0.794 0.940 0.960 0.848 0.998 0.978

(0.4,0.2) 500 0.970  0.998  1.000 0.970  0.996  0.996

1000 1.000 1.000  1.000 1.000 1.000 1.000

300 0.776  0.970 0.974 1.000 1.000 1.000

(0.3,0.4) 500 0.988  1.000 1.000 1.000 1.000 1.000

1000 1.000  1.000  1.000 1.000 1.000 1.000
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Figure 5.1: Plot of counts series, the sample autocorrealation and the sample partial

autocorrealation for the traffic accidents of Seongdong county.
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Figure 5.2: Plot of Plot of T and Tr** i = 1,2, for the traffic accidents of

Seongdong county.
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Table 5.15: Estimated parameters for the counts of traffic accidents of Seongdong county

in Seoul, Korea, based on a Poisson INGARH(1,1) model. Standard errors are shown in

parentheses.
Mean Variance w & B
Full period 2.927 3.574 2.203 0.155 0.094
(0.942) (0.326) (0.030)
First period 3.163 3.613 2.843 0.013 0.090
Jan.01.2011-Dec.14.2011 (1.769) (0.556) (0.047)
Second period 2.713 3.451 1.947 0.329 0.062
Dec.15.2011 - Dec.31.201 (1.539) (0.582) (0.038)
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