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Abstract 

Every summertime, tropical cyclone (TC) activity over the worldwide 

tropical ocean has been receiving large attention due to its destructive impacts 

on heavily populated countries. To reduce and prepare the potential damages 

from the TC approach/landfall, development of skillful TC prediction model 

has been one of the most essential missions for meteorological agency. In this 

dissertation, the detailed physical relationships between TC activity and 

environmental fields are investigated. On the basis of these understandings, a 

track-pattern-based model is developed to predict seasonal to near-future TC 

activity over the western North Pacific (WNP) and the North Atlantic (NA) 

basins. This model employs a hybrid statistical–dynamical method and is the 

first approach to predicts spatial distribution of TC track density covering the 

entire basin. Thus, it would be a milestone for the prediction of long-term TC 

track distribution without simulating the climate model. 

There are three major steps to operate the track-pattern-based model. First, 

climatological basin-wide TC tracks during the TC season are identified into 

several patterns using the fuzzy c-means method. Second, the TC counts for 

each cluster are predicted by using a hybrid statistical–dynamical method. 

The hybrid prediction for each pattern is based on the statistical relationships 

(interannual correlation in this thesis) between the seasonal TC frequency of 

the pattern and the seasonal-mean key predictors dynamically forecast by the 
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National Centers for Environmental Prediction (NCEP) Climate Forecast 

System version 2 (CFSv2). Third, the final forecast map of track density is 

constructed by merging the spatial probabilities of the all clusters and 

applying necessary bias corrections. 

The leave-one-out cross validation shows good skill of the WNP TC 

prediction model, with the correlation coefficients between the hindcasts and 

the observations ranging from 0.71 to 0.81. The hindcasts of the WNP 

seasonal TC track density exhibit significant predictability in reproducing the 

observed pattern. As a real forecast, this model fairly forecast the anomalous 

spatial distribution of WNP TC track density for the 2010 typhoon season, 

representing the lowest count since 1951. A higher-than-normal track density 

was successfully forecast near the East China Sea, Korea, and Japan. The total 

seasonal TC genesis frequency integrated over the seven patterns is well 

below normal (about 16.4) close to the observations. The skillful performance 

in 2010 using the seasonal TC prediction model is attributed to the skillful 

forecast of the ENSO transition by the NCEP CFS, cooperated with the 

validity of the prediction model itself. 

In addition to the WNP basin, a seasonal prediction model of the NA TC 

activities for the period August–October has been developed on the basis of 

representative TC track patterns. Using the fuzzy c-means method, a total of 

432 TCs are categorized into the following four groups: 1) TCs off the East 

Coast of the United States, 2) TCs over the Gulf of Mexico, 3) TCs that 
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recurve into the open oceans of the central NA, and 4) TCs that move 

westward in the southern NA. The model is applied to predict the four TC 

groups separately in conjunction with global climate forecasts from the NCEP 

CFSv2. By adding the distributions of the four TC track patterns with pre-

calculated TC genesis frequencies, this seasonal TC forecast model provides 

the spatial distribution of TC activities over the entire NA basin. Multiple 

forecasts initialized in six consecutive months from February to July are 

generated at monthly intervals to examine the applicability of this model in 

operational TC forecasting. Cross-validations of individual forecasts show 

that the model can reasonably predict the observed TC frequencies over NA 

at the 99% confidence level. The model shows a stable spatial prediction skill, 

proving its advantage for forecasting regional TC activities several months in 

advance. In particular, the model can generate reliable information on 

regional TC counts in the near-coastal regions as well as in entire NA basin. 

Among the TC activity, intense TCs accompanying torrential rain and 

powerful wind gusts often cause substantial socio-economic losses in the 

regions around their landfall than weak TCs. Thus, we develop the prediction 

model targeting only intense TCs in the WNP and the NA basins. Different 

intensity criteria are used to define intense TCs for these two basins, category 

3 and above for WNP and category 1 and above for NA, because the number 

of TCs in the NA basin is much smaller than that in the WNP basin. Using a 

fuzzy clustering method, intense TC tracks in the WNP and the NA basins are 
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classified into three and two representative patterns, respectively. On the basis 

of the clustering results, a track-pattern-based model is then developed for 

forecasting the seasonal activities of intense TCs in the two basins. Generally, 

the WNP intense TC patterns have predictors of dynamical factor (vertical 

wind shear or low-level relative vorticity) because of thermally mature state 

over the WNP to develop the TC whereas the NA intense TCs have 

thermodynamical factor (sea surface temperature) to the predictor due to the 

thermally insufficient condition to generate TC over the NA. Cross-validation 

of the model skill for entire training period as well as verification of a forecast 

for the 2014 TC season suggest that our intense TC model is applicable to 

operational uses. 

Although many studies have attempted to predict TC activities on various 

time scales, very few focused on near-future predictions. Here we show a 

decrease in seasonal TC activity over the NA for 2016–2030 using the track-

pattern-based TC prediction model. The prediction model is forced by long-

term coupled simulations, CFSv2 free runs, initialized using reanalysis data. 

Unfavorable conditions for TC development including strengthened vertical 

wind shear, enhanced low-level anticyclonic flow, and cooled sea surface 

temperature over the tropical NA are found in the simulations. Most of the 

environmental changes are attributable to cooling of the NA basin-wide sea 

surface temperature (NASST) and more frequent El Niño episodes in the near 

future. Consistent NASST warming trend in the Coupled Model 
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Intercomparison Project phase 5 projections suggests that natural variability 

is still dominant than anthropogenic forcing over the NA in the near-future 

period. 

 

Keywords: tropical cyclone, intense tropical cyclone, track-pattern-based, 

hybrid statistical–dynamical, Climate Forecast System, seasonal, near future, 

western North Pacific, North Atlantic, spatial distribution, natural variability 
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1. Introduction 

 

Summertime tropical cyclone (TC) activities over the western North 

Pacific (WNP) and the North Atlantic (NA) are the most severe weather 

phenomenon for people dwelling in coastal region. Generally, TC 

accompanies hazardous disasters such as strong wind gust, wild wave, and 

heavy rainfall causing a large economic loss and many injured persons. For 

every boreal summer-to-autumn season, approximately 20 and 10 TCs occur 

in the WNP and NA ocean basins, respectively (Gray 1968). About half of 

them strike countries in the coastal regions of two basins bringing torrential 

rainfall and strong wind gusts to the land (Kim et al. 2005a, 2006; Pielke et 

al. 2008; Zhang et al. 2009; Fengjin and Ziniu 2010; Smith and Katz 2013; 

Park et al. 2015). 

Smith and Katz (2013) reported that the total estimated damage caused 

by TCs in the United States (US) was about $418 billion during the period of 

1980–2011, about 47% of the total losses from natural disasters. Hurricane 

Sandy, a category 3 storm, made landfall on the east coast of the US in 2012, 

claimed nearly 100 human lives and caused 65 billion US dollars in economic 

losses. In 2013, typhoon Haiyan reached category 5 level and resulted in 

approximately 6,000 deaths and 13 billion US dollars of property losses in 

the Philippines. The seriousness of TC-induced catastrophes has been acting 

as the catalyst for accelerating TC activity studies and developing a skillful 
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seasonal prediction of TC activities. 

To minimize or preclude the societal-economic damages from the TC 

activity, it has become necessary to develop a TC prediction system ensuring 

high predictability. Above all, seasonal prediction of TC activity is attempted 

because tourism and insurance companies are affected by these seasonal 

forecasts in their policy decisions. A number of empirical models have been 

developed for the seasonal predictions of TC activities based on their time-

lagged relationships with precursory environmental conditions. Since the first 

attempts in the early 1980s by Neville Nicholls (1979) for the Australian 

region, William Gray (1984a, 1984b) for the NA region and Chan et al. (1998, 

2001) in the WNP basin had been developed seasonal TC prediction model. 

Some of these models have shown statistically significant skill and have been 

employed in operational TC prediction system. However, the statistical 

relationships are at times difficult to interpret physically because of their time-

lagged properties. This lagged relationship may eventually result in poor 

forecasting skill in operational TC predictions. 

In addition to statistical forecasts, dynamic simulations of TC using the 

high-resolution models have also been used for seasonal prediction by 

incorporating the TC detection algorithm based on key characteristics of TCs 

(e.g., Knutson et al. 2007; Camargo and Barnston 2009; Zhao et al. 2010; 

Chen and Lin 2011). Despite demanding substantial computational resources, 

operational dynamic TC forecasts in seasonal time scale are experimentally 
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attempted in various modeling agencies (LaRow et al. 2010; Vecchi et al. 

2014; Camp et al. 2015). Recently, the performances of dynamic models have 

been improved significantly from just a few years ago (Camargo et al. 2007a). 

However, the dynamical prediction of regional TC activity or TC landfall is 

still challenging because the simulation of TC tracks is quite unreliable in 

climate models with their own TC detecting criteria (Camargo et al., 2006). 

So far, these two approaches have been widely applied to existing prediction 

models of seasonal TC activity. 

As an alternative to these statistical or dynamical TC forecasts, several 

recent studies have introduced hybrid statistical–dynamical approaches for 

TC prediction over key ocean basins (e.g., Wang et al. 2009; Kim and Webster 

2010; Vecchi et al. 2011; H.-S. Kim et al. 2012; Li et al. 2013). These hybrid 

methods utilize the simultaneous relationship between TC activities (i.e. 

predictand) and large-scale environmental conditions (i.e. predictors) 

forecasted by dynamical models to improve upon the traditional pure 

statistical forecasts. It is known that the hybrid forecast can overcome the 

weaknesses inherent in the statistical methods and also preserve the physical 

and direct connections between summertime TCs and the environmental 

conditions (H.-S. Kim et al. 2012). Furthermore, these approaches have 

operational advantages because TC predictions can be updated by real-time 

according to forecasted atmospheric and oceanic conditions from coupled 

atmosphere-ocean climate models. 
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Most seasonal TC prediction approaches target the total number of TCs 

over the entire basin. However, the impact of TCs on human society are 

mainly associated with their landfalls rather than the total basin-wide TC 

counts (Pielke and Landsea 1998; Pielke et al. 2008; Weinkle et al. 2012). 

Recognizing the practical importance of TC pathways, several recent studies 

attempted to predict the TC track density by track-oriented-pattern 

categorization approach. Chu et al. (2010) and Chu and Zhao (2011) 

introduced this concept. They argued that this approach can eventually, in 

principle, lead to better performance via more detailed physical links with 

individual TC track patterns. 

As a hybrid statistical-dynamical type model, Kim et al. (2012) 

developed a track-pattern-based model that predicts summertime (June 

through October, JJASO hereafter) TC activity over the WNP. The key idea 

of this model is to individually predict seasonal TC counts for a several 

number of track patterns, and build up a final forecast map of TCs track 

density by combining all track clusters over the entire basin. Thus, the track-

pattern-based model has unique merit in providing predictions for the spatial 

TC track density anomaly in the WNP. The prediction is operationally made 

in early-May using the dynamically forecasted atmospheric/oceanic fields by 

the National Centers for Environmental Prediction (NCEP) Climate Forecast 

System version 1 (CFSv1), which is a fully coupled ocean-land-atmosphere 

seasonal prediction system (Saha et al. 2006). However, the operational data 
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of NCEP CFSv1 is no longer released from April 2011. Thus it is further 

necessary to reintroduce the model, because several revisions were made for 

the input data from the NCEP CFSv1 forecasts and the method of 

incorporating the predictors into the statistical model, which differ from the 

earlier version described in H.-S. Kim et al. (2012). 

This track-pattern-based approach can be applied not only to TC track 

classification and prediction in WNP, but also to NA basin. The classifications 

and predictions of the TC track patterns over the NA as well as their 

frequencies have been reported in several studies (Hall and Jewson 2007, 

2008; Kossin et al. 2010; Kozar et al. 2012). A number of previous studies 

have applied clustering techniques to TC tracks; such studies have shown that 

clustering analysis can be used to divide the overlapped effects of climate 

systems into individual categories of TC track patterns (Elsner 2003; Kossin 

et al. 2010). Based on these properties, we have developed statistical 

prediction models for each track pattern, and merged the predictions for 

individual track patterns into a seasonal TC track density forecast for the 

entire basin. Therefore, one of the objectives of this thesis is to develop a 

skillful seasonal TC prediction model for the NA basin. Moreover, skill 

examination of this hybrid statistical–dynamical model is performed in terms 

of the entire basin aspect. By comparing the model results to observations, 

we can evaluate the model’s forecast skill for the entire NA basin and sub-

basins. Specifically, this thesis targets the prediction of TCs that affect the 
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East Coast of the US, the Gulf of Mexico, and the Caribbean Sea, all of which 

are severely affected by landfalling TCs. 

In addition, we aim to develop models for forecasting intense TCs at 

seasonal time scales for the WNP and NA basins using a hybrid statistical–

dynamical method as well as to understand the distinctions between intense 

and weak TCs. The track-pattern-based hybrid forecasting method is 

modified to forecast the intense TC activities in the two basins by using their 

observations for the 32-year period of 19822013. Because these hybrid 

models showed comparable or higher skills in forecasting seasonal TC 

activities than numerical modeling approaches thus far, the model is then 

applied to the real 2014 TC season to examine its performance for the NA and 

WNP basins. 

As well as the seasonal TC prediction, near-future (i.e., the next one or 

two decades) climate prediction is challenging because of the limitations in 

our understanding of climate variability, uncertainties in climate models, and 

the lack of long-term observational data. Climate variability on decadal time 

scales results from both internal variability (i.e., time-evolving natural 

oscillation) and external forcings (i.e., greenhouse gas effects) so that near-

future prediction is a marginal time scale with application of initial values and 

forced boundary conditions. As such, it has been referred to as a predictability 

desert between short-range forecasting and long-term future projections 

(Meehl et al. 2009; 2014). At the same time, the impacts of near-future climate 
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change have become a serious concern because of their substantial socio-

economic costs and environmental risks that directly affect human kinds. 

Thus, studies on near-future climate are emerging and would help to 

formulate the long-term plans for mitigating the damages due to extreme 

weather phenomena, including TCs, under near-future climate conditions. 

The changes of TC activities in the next several decades are among the 

most imminent concerns due to their potential for huge damages in coastal 

regions. There has been a growing demand to explore the near-future changes 

in TC activities such as the location and frequency of TC genesis, intensity, 

and track patterns. Most previous studies on projecting future TC activities 

focused on the genesis frequency and maximum intensity in the late 21st 

century (Bengtsson et al. 2007; Stowasser et al. 2007; Emanuel et al. 2008; 

Knutson et al. 2010, 2015; Murakami et al. 2012; Emanuel 2013). There have 

been only a few studies predicting TC tracks in the far-future (Park et al. 2017) 

although tracks are the most crucial factor for determining TC disasters as 

they are related to landfall locations. Near-future changes in TC track patterns 

have therefore become necessary to address TC disasters in advance, but little 

has been known yet. 

Previous studies have shown enhanced TC activities in the NA in recent 

years due to basin-wide sea surface temperature (SST) warming and 

weakened vertical wind shear (VWS) over the tropical NA (Goldenberg et al. 

2001; Saunders and Lea 2005; Elsner and Jagger 2006; Holland and Webster 
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2007; Klotzbach 2007). Among the large-scale climate variabilities, the 

Atlantic Multidecadal Oscillation (AMO) and El Niño–Southern Oscillation 

(ENSO) are known to strongly affect TC activities by modulating the SSTs 

and VWS over the tropical NA (Gray 1984a; Goldenberg and Shapiro 1996; 

Xie et al. 2005; Vimont and Kossin 2007; Colbert and Soden 2012; Davis et 

al. 2015; Krishnamurthy et al. 2016). The recent positive phase of AMO since 

the late 1990s is responsible for the higher basin-wide SSTs over the NA, 

which has been attributed to the recent enhancements in TC activities there. 

In El Niño (La Niña) episodes, fewer (more) TCs have occurred in the NA 

due to stronger (weaker) VWS and greater (weaker) atmospheric stability 

over the Caribbean and the tropical Atlantic basin. Thus, if climatological 

changes in the NASST and ENSO occur in the near future, the NA TC activity 

will also change in response to the altered environmental conditions (Vimont 

and Kossin 2007; Davis et al. 2015; Krishnamurthy et al. 2016). 

Another objective of this thesis is to predict the NA TC activity in the 

near-future period 2016–2030 and to explain the mechanisms related to the 

near-future climate condition, especially in relation to NASST and ENSO 

variations. To accomplish these objectives, we use a track-pattern-based 

hybrid prediction model (Choi et al. 2016a). This model has been shown to 

be capable of simulating realistic seasonal NA TC activity such as track 

density and genesis frequency. Although this model was originally developed 

to predict seasonal NA TC activity, it is also applicable for near-future 
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predictions because the present-day empirical relationships used in the model 

are likely to be valid for the next 15 years. Finally, the impacts of 

anthropogenic forcing and natural variability on near-future climate in the NA 

are discussed by investigating near-future SST predictions from multi-model 

products. 

This thesis is organized as follows. Data and method are described in 

section 2. Section 3 presents the understanding of seasonal TC activity and 

development of prediction model in both of the WNP and NA basins. The 

near-future TC prediction is shown in the section 4 and section 5 provides 

future study regarding TC prediction. Finally, section 6 gives the concluding 

remarks including summary and discussions of this thesis. 
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2. Data and Method 

 

2.1 Data 

2.1.1 Tropical cyclone 

The best track datasets of WNP TC information are obtained from the 

Regional Specialized Meteorological Center (RSMC) Tokyo–Typhoon 

Center and the Joint Typhoon Warning Center (JTWC). Both of the datasets 

include TC center position (latitude and longitude), the maximum sustained 

wind speed, and the minimum sea level pressure at least for each 6-h interval. 

The main difference is that the RSMC TC data includes 10-min averaged 

maximum sustained wind speed whereas the JTWC provides the 1-min 

averaged maximum sustained wind speed to apply the Saffir-Simpson 

hurricane wind scale in the below. A TC in this thesis is selected if its 

maximum wind speed stronger than tropical storm intensity (vmax ≥ 17 m s1). 

Although release period ranges from 1950s to present, we exclude pre-

satellite period (before the 1965). The analysis and prediction are focused on 

the typhoon season (June through October; JJASO) when about 80% of the 

annual WNP TCs are formed climatologically. 

The data for TC activities over the NA basin during 1965–2015 are 

obtained from the hurricane database (HURDAT) at the National Hurricane 

Center, National Oceanic and Atmospheric Administration (NOAA), which 
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posts the location and intensity of all NA TCs at 6-h intervals (McAdie et al. 

2009). The HURDAT best track data are available from 1851, however this 

study has analyzed only the TCs from 1965 when satellite observations 

became available, to 2015 (Chu 2002). We focus on the TC activities from 

August through October (ASO) because the number of NA TCs in this three-

month period is relevant to about 80% of climatological mean annual NA TC 

counts. Only the cyclones with maximum sustained wind speeds greater than 

17 m s1 are defined as TCs as the WNP TC. 

 

2.1.2 Large-scale environmental fields 

To investigate the effects of the large-scale environment on WNP TC 

activity, atmospheric circulation data is obtained from the NCEP Reanalysis-

2 dataset (R-2; Kanamitsu et al. 2002), which has a horizontal resolution of 

2.5°  2.5° in latitude and longitude. We analyzed the VWS defined as the 

zonal wind difference between 200 hPa and 850 hPa in addition to the zonal 

wind at 200 hPa and 850 hPa, relative vorticity at the 850 hPa level (U200, 

U850, and VOR850, respectively), and geopotential height at 500 hPa (Z500). 

The monthly SST data is obtained from the NOAA Extended Reconstructed 

SST version 3 (ERSST v3; Smith et al. 2008). ERSST v3 data has a 2°  2° 

resolution in latitude and longitude. The reanalysis data and SST during 

1982–2015 are used for consistency with the dynamic seasonal forecast 

described below. 
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To develop the hybrid prediction models, we investigate empirical 

relationships between the large-scale environments and TC activity using 

atmospheric–oceanic circulation data from the NCEP CFSR (Saha et al. 2010). 

This product is a fully coupled global reanalysis with a spatial resolution of 

0.5°  0.5° in latitude and longitude. We analyzed SST, U200, U850, VWS, 

and VOR850. The ASO-averaged fields from the CFSR data recorded during 

1982–2015 are used for consistency with the NA TC datasets. 

For the dynamical component of this hybrid statistical–dynamical model, 

we adopt the NCEP CFS version 2 (CFSv2), a fully coupled global 

atmosphere–ocean–land modeling system. NCEP CFSv2 was updated in 

March 2011 from the earlier CFSv1 model and has since been used for 

operational seasonal climate forecasting (Saha et al. 2014). In this thesis, the 

monthly NCEP CFSv2 retrospective forecasts at a 1°  1° resolution in 

latitude and longitude for the period 1982–2015 are used. The retrospective 

data is reforecasted with the CFS Reanalysis as an initial condition, which is 

utilized to construct a simultaneous statistical relationship between TC 

activities and environmental fields for each TC cluster. The CFSv2 generates 

nine-month forecasts consisting of four ensembles per day with different 

initial conditions at 00, 06, 12, and 18 UTC. The retrospective data includes 

nine-month forecasts issued every five days, beginning from January 1 of 

every year; thus, 24 ensemble members are generally included for each month 

except November, which has 28 members. 
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In addition, the real-time operational forecasts of CFSv2 are used for 

model application to real forecast. The real-time operational CFSv2 data are 

released daily for the four aforementioned reference times. To forecast the TC 

activity during the TC season, we use 12 ensemble members of NCEP CFSv2 

forecasts representing the number of ensembles for half a month. The 

ensemble average should be needed to avoid the dependence of the forecasts 

on the initial conditions. These ensemble members are issued on three 

consecutive days including two five-day periods, 10 and 5 days prior to the 

forecast in addition to the original forecast day for our TC prediction model 

(e.g., June 25 and 30 and July 5 for the case of a July 5 TC forecast). 

Additionally, we verified the model performance against observations every 

month by changing the forecast day in preceding winter to early summer. 

The long-term free runs of CFSv2 in CMIP simulations up to the year 

2030 are used for the near-future prediction (Saha et al. 2014). Three 

ensemble members starting from January 1 of 1988, 1996, and 2002, are used 

for the CFSv2 CMIP simulations. Although the CFSv2 CMIP simulations are 

initialized with actual conditions (i.e., CFSR), errors would still arise from 

long numerical simulation of more than several years. A previous study 

reported that the system is stable with no drifting caused by technical 

problems (Saha et al. 2014). Thus, we investigate the changes in the TC 

activities by averaging all three ensemble members for the present period of 

2002–2015 (P1) and for the near-future period of 2016–2030 (P2), which are 
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the overlap periods of the three ensembles. In addition, the use of CFSv2 to 

predict near-future TC frequency is advantageous to us because the model 

itself was used for developing the seasonal prediction, and it reasonably 

simulates the behavior of climate variations (Saha et al. 2014; Choi et al. 

2016a). The CFSv2 in CMIP simulations have the same settings as those used 

for CFSv2 seasonal hindcast simulations. For the future CO2 concentration, it 

is extrapolated to increase by two parts per million in volume per year based 

on the current seasonal observations. 

For comparison with the near-future SST prediction of CFSv2 CMIP 

simulations, we use 24 CMIP5 models including ACCESS1-0, BCC-CSM1.1, 

BNU-ESM, CanESM2, CCSM4, CESM1-BGC, CMCC-CM, CMCC-CMS, 

CNRM-CM5, CSIRO-Mk-3-6-0, FIO-ESM, GFDL-CM3, GFDL-ESM2G, 

GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-CC, HadGEM2-ES, 

INM-CM4, IPSL-CM5A-LR, IPSL-CM5B-LR, MPI-ESM-LR, MPI-ESM-

MR, and NorESM1-M (see http://cmip-

pcmdi.llnl.gov/cmip5/availability.html). The historical simulations, 

prescribed with observed atmospheric composition and time-evolving land 

cover changes, and mid-range mitigation simulations (representative 

concentration pathway 4.5, RCP4.5) corresponding to radiative forcing 

values of 4.5 W m2 up to the year 2100 are investigated in this study (Taylor 

et al. 2012). Because 24 CMIP5 models have different horizontal resolutions, 

they are interpolated into 2.5° × 2.5° grids for consistent analysis. We analyze 



15 

 

the historical and RCP4.5 scenario datasets for the periods 2002–2005 and 

2006–2030, respectively. 

 

2.2 Method 

2.2.1 Fuzzy clustering algorithm 

In this thesis, we first have identified typical TC track patterns in the WNP 

and NA using the fuzzy c-mean method (FCM; Bezdek 1981), one of the most 

widely used methods in clustering analysis. A previous study of Kim et al. 

(2011) which examined various clustering techniques found that the FCM can 

yield reliable classification of TC tracks that have intricate geographical 

features for defining boundaries separating different clusters. Once these 

climatological TC patterns are set, it is not necessary to repeat this process 

due to its quasi-stationary feature and also the basis of our prediction model 

is prepared. Because all TC datasets must be of equal length for performing 

FCM, each TC track is interpolated into 20 segments following Kim et al. 

(2011) who showed that 20 segments are sufficient for representing the 

characteristics of TC tracks. The FCM is performed by minimizing the c-

means functional (J) defined as 

𝐽 =  ∑∑(𝜇𝑖𝑘)
𝑚

𝐾

𝑘=1

‖𝒙𝑘 − 𝒄𝑖‖
2

𝐶

𝑖=1

,              (1) 

where 
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𝜇𝑖𝑘 = [∑(
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. 

C is the number of clusters, K is the number of TCs, 𝜇𝑖𝑘 is the membership 

coefficient of the kth TC to the ith cluster, m is the fuzziness coefficient, 𝒙𝑘 

is the kth TC position, 𝒄𝑖 is the center of the ith cluster, and the symbol ‖ ‖ 

represents the Euclidean norm. The membership coefficient, a special 

measurement of the FCM, indicates the distance of the kth TC with respect to 

the ith cluster center as a probability concept. Each TC has membership 

coefficients with values between zero and one for all clusters. After the 

membership coefficients and cluster centers are calculated by minimizing the 

c-means functional in Eq. (1), individual TCs are assigned to a specific cluster 

for which its membership coefficient is largest, allowing for probabilistic 

characteristics of their tracks. This procedure makes newly-updated TC track 

data with additional observations to be assigned to one of the track patterns 

based on the historical data. Finally, TC track densities for each cluster are 

constructed in a 5° × 5° latitude and longitude grid nest by sorting TC tracks. 

The clustering results must be carefully examined as they vary according 

to the number of clusters (Camargo et al. 2007b; Kim et al. 2011) and will 

eventually affect the entire model development. To objectively determine the 
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optimal number of clusters in FCM, we examined the sensitivity of the four 

scalar indices, the partition coefficient (Bezdek 1981), the partition index 

(Bensaid et al. 1996), the separation index (Xie and Beni 1991), and the 

alternative Dunn index (Dunn 1973), to the number of clusters. The 

definitions and properties of these indices are described in Dunn (1973), 

Bezdek (1981), Xie and Beni (1991), Bensaid et al. (1996), and Kim et al. 

(2011). Larger (smaller) values of partition coefficient (partition index, 

separation index, and alternative Dunn index) indicate that corresponding 

cluster number is more optimal in FCM (Kim et al. 2011). The comprehensive 

optimum cluster number detection process using these four indices showed 

that seven (four) TC track patterns can adequately represent the WNP (NA) 

TC track properties during the TC season (figures not shown). In same manner, 

three (two) intense TC track patterns are determined in the WNP (NA) basin. 

 

2.2.2 Track-pattern-based model 

The track-pattern-based model was originally developed to predict 

seasonal TC activity in the WNP as a hybrid statistical-dynamical type (Kim 

et al. 2012). Process of the model mainly consists of three steps. Step 1 is the 

process to obtain the seven TC track patterns by the clustering analysis. This 

step has been done already by clustering 855 TC tracks during the typhoon 

seasons (i.e., JJASO) of 1965–2006 into the seven representative patterns 

(Kim et al. 2011). These seven gridded TC track patterns (𝑃𝐶𝑖), which is the 
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basis of this seasonal TC track density forecast model, are defined as 

𝑃𝐶𝑖(𝑙𝑎𝑡, 𝑙𝑜𝑛) =  
𝑁𝑤𝑖𝑡ℎ𝑖𝑛 5° × 5° 𝑔𝑟𝑖𝑑 𝑏𝑜𝑥(𝑙𝑎𝑡, 𝑙𝑜𝑛)

𝑁𝐶𝑖
,        (2) 

where i is the cluster number, and NCi indicates the number of TCs in cluster 

i. These seven patterns are known to be climatologically static parameter. 

Accordingly, step 1 has been fixed for the time being and the seven patterns 

are utilized as the basis of this model. 

Next step is the actual prediction module of this model. Step 2 is to 

predict TC frequencies of each track pattern with the NCEP CFSv1 dynamic 

seasonal forecasts and the statistical Poisson regression models (i.e., a hybrid 

statistical-dynamical type). As a predictor for this model, the critical large-

scale environments (e.g., the typhoon-seasonal mean SST, U200, VWS, U850, 

Z500, and VOR850) from the NCEP CFSv1 retrospective forecasts have 

similar interannual relationships with their counterparts from the NCEP R-2 

data, indicating that the NCEP CFSv1 has a skill to predict the large-scale 

environments related to the seasonal TC count of each pattern. In the 

statistical part, the model prediction of the TC frequency for each track pattern 

is developed by incorporating the corresponding predictors into the Poisson 

regression. The Poisson regression is known to show better skill for the case 

where the predictand consists of non-negative integer data such as TC 

frequency (Elsner and Schmertmann 1993; Chu and Zhao 2007, 2011; Chu et 

al. 2010; Kim et al. 2012). A Poisson regression assumed that the expected 
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occurrence rate is the exponential function of the linear combinations of the 

predictors. Detailed formula is defined as 

𝑦̃ = exp(∑𝛽𝑗𝑥𝑗

𝑘

𝑗=1

+ 𝛽0),                 (3) 

where 𝑦̃ is the expected value of occurrence of the event (i.e. predictand) 

which is equal to Poisson intensity parameter, k is the number of predictors, 

𝛽𝑗 is the coefficient of the jth predictor (𝑥𝑗), and 𝛽0 is the constant. In our 

hybrid statistical–dynamical model, the predictors (𝑥𝑗) are obtained from the 

seasonal forecasts of CFSv2. The regression parameters are estimated by 

maximizing the likelihood of the Poisson distribution using iteration during 

the training period. 

The step 3 is to assemble the forecasts of TC counts with basis track 

densities of the seven patterns (obtained a priori from the climatology) so that 

one basin-wide map of TC track density in the WNP can be constructed. If 

the track-pattern-based forecasts are made, the basin-wide map of TC track 

density can be constructed by summing the climatological each track pattern 

density weighted by the forecasted TC count over all patterns divided by the 

total TC count forecasted. In other words, all of the predicted results are 

multiplied to the basis of this model (i.e. seven gridded TC track patterns) and 

combined together to construct the final forecasts (𝑃𝑙) of TC occurrence for 

each grid over entire WNP basin. The formula is expressed as 
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𝑃𝑙 =∑𝑁𝐶𝑖,𝑙 × 𝑃𝐶𝑖(𝑙𝑎𝑡, 𝑙𝑜𝑛).                (4)

7

𝑖=1

 

In Eq (4), l is the target year, and NCi,l the predicted number of TCs in cluster 

i for the year l. The forecasted TC track density represents the probability of 

TC tracks at each grid point in the entire basin. The final forecast maps (i.e., 

the total and anomalous track density maps) are issued after biases in the mean 

and standard deviation are corrected using the modeled and observed 

climatological track densities. 

For validation, we used the leave-one-out cross-validation technique to 

evaluate the performance of the forecast model. This method has been widely 

used for estimating forecast models’ accuracy in practice (Gray et al. 1992; 

Elsner and Schmertmann 1993, 1994; Wilks 2006; Chu et al. 2007; Kim et al. 

2012; Ho et al. 2013; Choi et al. 2016a, b). Specifically, when predictions are 

performed for the training period, the model is iteratively adjusted for all 

available retrospective forecasts data except the target year. Because annual 

TC activities can be regarded as independent events, the condition for using 

cross-validation is satisfied (Gray et al. 1992). If we select a certain year for 

re-forecasting, this technique optimizes our model parameters to make the 

best fitting on the basis of the remaining years. We repeatedly performed this 

re-forecast process several times to cover the entire training period. 

 



21 

 

2.2.3 Upgrade the dynamic part of model from CFSv1 to CFSv2 

This model uses NCEP CFS datasets as the dynamic component to 

develop the hybrid statistical–dynamical process. As mentioned above, the 

earlier CFSv1 was recently replaced to CFSv2 in March 2011. Following this 

upgrade, the track-pattern-based model, which was originally developed 

using CFSv1, was re-built based on the CFSv2 data (Fig. 2.1). In the revised 

module based on the NCEP CFSv2, the model training period for the 

statistical prediction is extended to the year 2010 (i.e., 1982–2010). These 

changes in the dynamic forecast data and training period have a substantial 

influence on the selected predictors and their critical regions, and hindcast 

skills for all clusters. 

First of all, we can look into the predictor sets for using to the prediction 

of each track pattern. The selection of appropriate predictors is a crucial factor 

in yielding better prediction performance of the track-pattern-based model. In 

this model, the predictors are selected by the following four rules. 

1) The predictor candidates are SST, U200, VWS, and VOR850 as 

previous version. These environmental parameters are known to affect the TC 

genesis and tracks (e.g., Gray, 1968; Wang and Chan, 2002; Kim et al., 2005b). 

2) Critical regions are determined for each predictor and each cluster by 

considering significant correlation patterns between the observed TC counts 

and the large-scale environments during JJASO. Correlation analysis is 

performed for the 12-member (early-May) ensemble mean of NCEP CFSv2 
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reforecasts as well as the observed environments of the NCEP-R2 data. We 

can identify statistically significant and physically reasonable regions for 

candidate predictors of each cluster by comparing the two correlation patterns 

cluster (figures not shown. See Figs. 6 and 7 in Ho et al., 2013). If there are 

multiple significant regions in a cluster, the cross-validation tests are 

performed by changing the critical region, by which the set of critical regions 

showing the better hindcast skill is determined. 

3) Once the critical regions are selected, final predictors are obtained 

with respect to each member of the NCEP CFSv2 ensemble forecasts. For 

each ensemble member, the spatial average of candidate predictor variables 

within their individual critical regions is calculated using only the grid points 

for which the correlation coefficient is significant at the 95% confidence level, 

and where the sign of the correlation is the same as that determined from the 

correlation patterns for the ensemble mean. It is noted that the significant grid 

points used to construct final predictors are all different between the 12 

ensemble members 

4) The cross-validation tests are also performed to find the optimal 

combination of predictors showing the better hindcast skill. In addition, a 

variance inflation factor (VIF) (Davis et al., 1986) is examined for each 

ensemble predictor set to avoid multicollinearity among the predictors. If a 

predictor has a VIF greater than 10, the predictor is dropped from the final 
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predictor set in order to ensure the stability of the regression-based forecast 

model (e.g., Davis et al., 1986; Villarini et al., 2011). 
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Figure 2.1. Schematic flow diagram of seasonal WNP TC prediction model 

after the modification. 
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The final predictor sets are obtained from each ensemble member of the 

NCEP CFSv2 forecasts, although the critical regions are selected using their 

ensemble means. Therefore, the grid points used for the final predictor can 

vary depending on the correlation maps for the individual CFSv2 ensemble 

members, whereas the critical regions are invariant. As the NCEP CFSv2 

reforecasts provide four ensembles every fifth day, the same ensemble 

members are obtained for the final predictor sets from the NCEP CFSv2 

reforecasts as well as operational forecasts. Using these ensemble predictor 

sets, the hybrid prediction module can provide ensemble predictions. The 

ensemble prediction of the hybrid statistical–dynamical prediction module 

yields more accurate forecasts than the use of single predictions (Kim et al., 

2012). 

We calculated scalar quantities such as the correlation coefficient (COR), 

root–mean–square errors (RMSEs) and mean square skill score (MSSS) by 

cross-validation analysis (Table 2.1). These measures are generally used to 

verify the reliability of the forecast (Wilks, 2006). The formulas of RMSE 

and MSSS are 

RMSE =  [MSE]
1
2 = [

1

n
∑(yobs,t − 𝑦𝑡̃)

2
n

t=1

]

1
2

,            (5) 

MSSS = 1 − 
𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙
𝑀𝑆𝐸𝑜𝑏𝑠

= 1 − 

1
𝑛
∑ (yobs,t − 𝑦𝑡̃)

2𝑛
𝑡=1

1
𝑛
∑ (yobs,t − 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )

2𝑛
𝑡=1

,       (6) 
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where n is the number of the training years (i.e., 32 in this study), 𝑦𝑜𝑏𝑠,𝑡 

is the observed TC frequency for the tth year, 𝑦̃𝑡 is the ensemble average of 

the hindcasts of TC frequency for year t, and 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅   is the mean of the 

observed TC numbers. The accuracy of reconstructed TC counts (i.e., the 

correlation between the observed and predicted TC counts) for each cluster is 

slightly improved in the updated version; that is, the statistics (e.g., COR, 

RMSE, and MSSS) that can be used to measure the reliability of the model 

forecast (Wilks, 2006) are generally better in the majority of the patterns. 
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Table 2.1. Correlation coefficients (COR), root–mean–square errors (RMSEs), 

mean square skill scores (MSSS) between the observed TC frequencies and 

the ensemble mean of NCEP CFSv1 and CFSv2 hindcasts for the 1982–2010 

period. 

Pattern 

COR RMSE MSSS 

CFSv1 CFSv2 CFSv1 CFSv2 CFSv1 CFSv2 

C1 0.75 0.81 1.30 1.31 0.54 0.53 

C2 0.74 0.85 1.44 1.12 0.53 0.72 

C3 0.72 0.77 1.21 1.17 0.51 0.58 

C4 0.81 0.83 0.85 1.02 0.63 0.64 

C5 0.74 0.84 0.96 0.87 0.51 0.61 

C6 0.77 0.77 1.28 1.26 0.50 0.53 

C7 0.71 0.78 1.11 0.96 0.49 0.59 
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3. Seasonal prediction of tropical cyclone activity 

 

In this section, we describe the seasonal TC prediction. We show a brief 

introduction of substitution for the new dynamical general circulation model 

(GCM) as an input data to operate quasi-real time prediction, predictability 

assessment for the abnormal 2010 case. In addition, the development of track-

pattern-based prediction models for TC and intense TC activities over the 

WNP and NA basins are presented. For the validation, we assess the 

predictability of models by each track pattern and regional perspective. 

 

3.1 Application of the track-pattern-based model in the WNP 

As we mentioned above, there are seven representative TC track patterns 

over the WNP basin (Kim et al. 2011). The seven patterns include three 

recurvers (C1–C3) mostly affecting East Asian regions (e.g., East/Southeast 

China, Taiwan, Korea, Japan, and Luzon Island), two more recurvers over the 

open ocean (C4 and C5) traveling inshore east ocean and offshore east ocean 

of Japan, one irregular type confined in the South China Sea (C6), and the 

west-northwestward moving straight-movers traversing the Philippines (C7). 

Most of them have physically interpretable potential predictors, which 

enabled us to constitute this track-pattern-based model. For instance, C1–C3 

are known to reflect the influences of ENSO, C4 is a unique cluster which has 
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an exceptional connection to the phase of the stratospheric quasi-biennial 

oscillation (QBO), and the rest have their own local or broad-scale potential 

predictors. 

 

3.1.1 Assessment of the 2010 TC season 

a. Observational feature of the 2010 typhoon season 

From a climatological aspect, most TCs during 1981–2010 were 

observed during the typhoon season (JJASO) with an annual total of 25.6 TCs 

that developed in the WNP (Table 3.1). Fourteen named TCs formed in the 

WNP basin in 2010 representing the lowest count since 1951, even lower than 

the previous record of 16 named TCs in 1998. In addition, as far as the 

typhoon season is concerned, development of 13 named TCs is much lower 

than the climatological mean of 19.6 TCs during the typhoon season. 

Although not included in the prediction, the pre- (January–May) and post-

typhoon seasons (November–December) were also very quiescent and much 

calmer than the typhoon season in terms of their number ratio to the 

climatology (Table 3.1). It is found that all seasons constructively contributed 

to the record-breaking event that occurred in 2010. 
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Table 3.1. TC frequencies for pre-typhoon, typhoon, post-typhoon seasons 

averaged over 1981–2010 (climatology), and those in 2010. The interannual 

variability is presented in parentheses as a standard deviation. 

Season 

Pre-

typhoon 

Season 

Typhoon Season 

Post-

typhoon 

Season Total 

Month 

Jan–

May 

Jun Jul Aug Sep Oct 

Nov–

Dec 

Climatology 

2.5 

(1.5) 

1.7 

(1.2) 

3.6 

(1.5) 

5.9 

(1.5) 

4.8 

(1.4) 

3.6 

(1.6) 
3.5 

(1.7) 

25.6 

(4.6) 

19.6 (4.1) 

2010 1 

0 2 5 4 2 

0 14 

13 
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The spatial distributions of TC activity parameters (e.g., genesis 

frequency and track density) are displayed with respect to the typhoon season 

in Fig. 3.1. Figure 3.1a and 3.1b show the climatology of genesis and track 

density, binned in a 1° latitude and longitude grid box with a 5° radius circular 

window, respectively. Here, track density is defined as the TC occurrence 

count in each grid box divided by the basin-wide seasonal total count, which 

is then converted to the percentage concept [%]. The gridded genesis 

frequency and track density for the year 2010 are presented in the middle 

panels (Fig. 3.1c and 3.1d), including actual genesis points and corresponding 

tracks. In addition, anomalies from the climatology are shown in the bottom 

panels to distinguish the characteristic features of 2010 effectively (Figs. 3.1e 

and 3.1f). 

Compared to the climatological distribution, TC genesis locations were 

concentrated west of 150°E (Fig. 3.1c), which represents a typical pattern 

during La Niña events (Wang and Chan 2002; Kim et al. 2010). Positive 

anomalies are confined to the area around Taiwan, with negative anomalies 

spread over the Philippine Sea (Fig. 3.1e). In harmony with the concentric 

genesis locations near the continent, TC track density also shows a high 

density around near-coastal regions in East Asia (Fig. 3.1d). The 

corresponding anomaly pattern further renders the large increase near the 

landmass more salient and also recovers the decreased activity to its southeast 

(Fig. 3.1f). Ten of the 14 named TCs that formed in 2010 made landfall. 
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Considering the overall quiescent genesis, the landfall probability (i.e., the 

ratio of TC landfalls to total TC genesis frequency) was extremely high in 

2010. 
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Figure 3.1 TC genesis (left panels; unit: 10 × frequency yr−1) and TC track 

density (right panels; unit: % yr−1) binned into a 1° × 1° grid box. The value 

of each grid is counted by the summation of detected TCs within 5° radius 

from the grid center. Their 1981–2010 climatologies (a and b), totals (c and 

d) and anomalies (e and f) in 2010 are displayed. Also shown in (c) and (d) 

are the genesis locations and tracks of TCs, respectively. 

Climatology (1979–2010)

TC genesis (10×frequency yr-1) TC track density (% yr-1)

2010 Anomaly

(a)

(c)

(e) (f)

(d)

(b)

2010 Total
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The 2010 typhoon season was extraordinary due to the influence of a 

strong ENSO phase transition from El Niño to La Niña. The observed large-

scale environments relevant to TC activity are presented in Fig. 3.2 including 

the anomalies of (a) SST, (b) VOR850 and 850 hPa horizontal wind, (c) VWS, 

and (d) steering flow. In Fig. 3.2d, the 5880 gpm lines for the climatology and 

year 2010 are overlapped to show the typical periphery of the western North 

Pacific subtropical high (WNPSH) (Tu et al. 2009). Note that the predictors 

for the track-pattern-based model include SST, U200, VWS, and VOR850. 

The tropical Pacific SST anomalies present the general pattern of the La 

Niña episode characterized by an increased zonal SST gradient along the 

equator, and warming along the Kuroshio extension (Fig. 3.2a). 

Corresponding to the anomalous tropical SST distribution, the anomalous 850 

hPa horizontal winds show notable easterlies along the near-equatorial zone, 

forming the meridional shear-induced negative VOR850 anomalies to the 

north where the main development region of TCs is located (Figs. 3.2b and 

3.1a). Such low-level large-scale conditions in the tropical WNP are 

unfavorable for TC development as both the seasonal-mean convection 

(Wang and Chan 2002) and the northwestward propagating tropical 

intraseasonal oscillation are suppressed (Teng and Wang 2003). Further, the 

VWS anomalies show large negative (positive) values west (east) of 150°E, 

which correlates well with the westward shift of genesis locations (Figs. 3.2c 

and 3.1c). Here we demonstrate that the seasonal-mean VOR850 and VWS, 
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which are necessary conditions for TC development (Gray 1968), disfavored 

TC genesis in the 2010 typhoon season.  

Finally, the large-scale circulation parameters relevant to TC tracks are 

shown in Fig. 3.2d. Considering the overall genesis locations in 2010 (Fig. 

3.1c), a majority of TCs headed toward the Asian continent due to (a) the 

anomalous steering flows in the genesis locations and inshore seas, and (b) 

the large expansion of the 5880 gpm line (Figs. 3.2d and 3.1d). In 2010, the 

5880 gpm line characterizes the westward expansion of the WNPSH and its 

northward expansion is physically consistent with warmer SSTs and weaker 

VWS in the mid-latitudes. The warmer SSTs in the mid-latitudes are highly 

likely to be a response to more incoming shortwave radiation as the 

anomalous barotropic anticyclone is centered above that region (Figs. 3.2b 

and 3.2d).  

The west- and southwestward WNPSH expansion can be understood in 

several ways. First, it can be driven by an eastward-propagating warm 

tropospheric equatorial Kelvin wave from the warm Indian Ocean (Xie et al. 

2009), and/or local negative SST forcing in the tropical Philippine Sea (Wu 

et al. 2010). Although Wu et al. (2010) showed, through composite analysis, 

that both are typically observed during an El Niño decaying summer, the SST 

anomalies in the Philippine Sea during the 2010 season were predominantly 

positive throughout the season indicating that the latter was not the case in 

2010. Second, it can originate from the anomalous easterly Walker circulation 
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responding to negative heating near the dateline associated with cooling of 

the tropical central/eastern Pacific (e.g., Sui et al. 2007); that is, the 

development of La Niña in summer and autumn is a representative case of 

phenomena favoring this mechanism. As the typhoon season spans boreal 

summer and autumn, these proposed mechanisms may serve to 

collaboratively explain the west- and southwestward intrusion of the WNPSH 

(i.e., weakening of the monsoon trough). Furthermore, it can be induced by 

the anomalous descent region of the local Hadley circulation in the WNP due 

to convective heating in the maritime continent (e.g., Sui et al. 2007; Chung 

et al. 2011). Each of these mechanisms are often referenced to explain the 

interannual variation of TC genesis frequency in the WNP (e.g., Zhou and Cui, 

2008; Du et al. 2011; Zhan et al. 2011; among others), and are applicable to 

the 2010 typhoon season as well. 
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Figure 3.2. Observed anomalies in (a) SSTs, (b) 850 hPa horizontal winds and 

VOR850, (c) VWS and (d) steering flows. The 5880 gpm lines at 500 hPa in 

the climatology (dashed line) and 2010 typhoon season (solid line) are 

overlapped in (d). Wind vectors less than 1 m s−1 are shown in grey color. 

  

(a) SST (℃)

(d) Steering flow and 5880 gpm line(c) VWS (m s-1)

(b) v850 and VOR850 (10-6 s-1)

2010 Anomaly (HadISST and NCEP-R2)

m s-1

2010

Climatology

m s-1
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b. Seasonal prediction of large-scale environments 

A direct comparison with the observed large-scale environments (Fig. 

3.2) is a simple and effective way to evaluate the NCEP CFSv1 ensemble-

mean seasonal forecast. Identical variables are obtained from the NCEP 

CFSv1 twenty members ensemble forecasts and their ensemble-mean 

anomalies are illustrated in Fig. 3.3. The 200 hPa horizontal wind is displayed 

instead of the steering flow in the forecasted large-scale environments as it 

consists of one of the four potential predictors, i.e., U200. A skillful seasonal 

forecast of TC activity by the track-pattern-based model largely depends on 

the predictability of the ensemble forecasts of the NCEP CFSv1. In Fig. 3.3, 

the statistical significance is calculated by the independent one sample t-test. 

The test statistic used is 0x
t

s n


  , where x   and s are the mean and 

standard deviation of twenty ensemble members in 2010, respectively, n is 

the number of ensemble members, and 0   is the climatology of the 

ensemble-mean during the period of 1981–2010. 

The forecasted ensemble-mean SST anomalies display the La Niña 

pattern in the tropical Pacific (Fig. 3.3a). Despite some discrepancies with 

observed SST (narrow scale warming in the mid-latitudes and South China 

Sea), the anomalous forecasted SST pattern is clear enough to say the La Niña 

episode (Fig. 3.2a). Successful forecast of developing La Niña in one or two 

antecedent seasons indicates that the NCEP CFSv1 is demonstrative of a 
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positive performance for the 2010 ENSO prediction. In concert with SST 

anomalies, the forecast ensemble-mean VOR850 and 850 hPa horizontal 

wind anomalies also remarkably resemble those in the observation, 

particularly over the tropics where TCs primarily develop (Fig. 3.3b vs. Fig. 

3.2b). From this low-level circulation information, we may expect that the 

model would predict a substantial decrease in TC activity in the WNP by the 

same possible mechanisms, as explained above. Moreover, the forecast 

ensemble-mean VWS anomalies show an unfavorable environment (i.e., an 

increase in the wind shear magnitude) for TC development across the main 

development region (Fig. 3.3c). Compared to the observation (Fig. 3.2c), the 

VWS is over-predicted toward the positive value in the west of the Philippine 

Sea (west of 150°E) and mid-latitude East Asia, while it is slightly under-

predicted in the equatorial central Pacific. In the forecast, the upper-

tropospheric westerlies intensify slightly along 40°N in concert with a 

negligible northward intrusion of the WNPSH. Accordingly, weakly positive 

VWS anomalies are not unexpected in the mid-latitudes (Fig. 3.3c). Further, 

mid-latitude storm tracks do not significantly migrate northward resulting in 

weaker seasonal-mean anticyclonic anomalies along the Kurishio extension 

region in the forecast (Figs. 3.3b and 3.3d). Naturally, less positive SST 

anomalies than those in the observation are expected, as shown in Fig. 3.3a. 

Positively over-predicted VWS anomalies around 20°N west of 150°E, where 

weak VWS anomalies were detected in the observation (Fig. 3.2c), are 
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attributed to the anomalous northerlies and easterlies at 200 hPa and 850 hPa 

(Figs. 3.3b and 3.3d), respectively, both of which act to reinforce 

climatological flows therein (not shown), i.e., northwesterlies at 200 hPa and 

easterlies at 850 hPa. Westward expansion of the WNPSH is further reflected 

by the upper-tropospheric anomalies that are related to the anomalous 

anticyclone centered in the East China Sea (Fig. 3.3d). 
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Figure 3.3. NCEP CFSv1 operational ensemble-mean forecasted anomalies 

in (a) SSTs, (b) 850 hPa horizontal winds and VOR850, (c) VWS and (d) 

U200. The 5880 gpm lines at 500 hPa in the climatology (dashed line) and 

2010 typhoon season (solid line) are overlapped in (d). The shadings and 

black vectors denote the statistically significant regions at the 99 % 

confidence levels. 

  

(a) SST (℃)
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c. Seasonal forecast by the TC prediction model 

As described in method section, the track-pattern-based model forecast 

utilized a total of twenty ensemble members during five consecutive days 

from 29th April through 3rd May 2010 to forecast the TC activity in the 2010 

typhoon season. Thus, the forecasted values hereafter are all from the 

ensemble-mean of them. First, the forecasted frequencies of the seven track 

patterns are obtained by step 2 of the track-pattern-based model and listed in 

Table 3.2. In Table 3.2, the 30-yr climatologies of predicted TC frequencies 

for the seven patterns and total and their respective standard deviations are 

also shown in parentheses using the available period of the NCEP CFSv1 

retrospective forecasts (1981–2009) and operational forecast in 2010. In 

addition, the same statistics in the 2010 typhoon season and the climatology 

are presented based on the 1981–2010 RSMC best track dataset as well. It is 

again noted that the seven clustered patterns, which were obtained in Kim et 

al. (2011) using a total of 855 typhoon-seasonal TCs during the period of 

1965–2006, are used here based on the empirical fact that the patterns are 

almost static (e.g., Chu et al. 2010; Kim et al. 2011). The track-pattern-based 

model has a climatological-mean count very close to the observation as 

indicated by low mean biases (i.e., forecast minus observation) for each 

pattern and total (Table 3.2). This is attributed to the advantageous property 

of the ensemble forecast using the hybrid statistical-dynamical model, i.e., an 

average of multiple fittings with best predictors. By the way, the interannual 
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standard deviations (σ) of forecasted TC counts are all smaller than those 

computed from the observed counts (Table 3.2), let alone the inter-pattern σ 

(i.e., standard deviation between patterns) for the 2010 forecast (i.e., 0.74 vs. 

1.57). These definitely come from the larger number of realizations in the 

model forecast, which generally reduces year-to-year fluctuation (Table 3.2). 

Although the extremes are not satisfactorily forecasted by the track-pattern-

based model, the signs of anomalies for all patterns are correctly forecasted 

for the 2010 typhoon season and the summation of them (i.e., 16.4) is well 

below normal (< −1σ) (Table 3.1). This indicates the feasibility of the track-

pattern-based model using the NCEP CFSv1 operational ensemble forecasts 

for forecasting the seasonal total TC genesis frequency, though this model did 

not aim at forecasting this parameter (Kim et al. 2011). With these forecasted 

TC counts for the seven patterns, the basin-wide map of TC track density can 

be constructed by step 3. 

Using this track-pattern-based model, predicted TC genesis number 

during the 2010 TC season (i.e., 16.4) is more reliable than those predicted 

by other agencies. For example, the Tropical Storm Risk predicted in May 

that 24.1 TCs would occur in 2010. Likewise, the city university of Hong 

Kong presented in April that 24 TCs will be developed for whole year. At 

June, the Central Weather Bureau in Taiwan predicted 20–23 TCs would form 

in 2010. Considering the total genesis frequency of the WNP TC in 2010 year 

is 14, all of the meteorological agencies showed significant overestimations 
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of the number of WNP TC. 

Thus far, the forecasts of the track-pattern-based model in 2010 have been 

summarized. In the following subsection, the forecast verifications will be 

given in detail, which will help to understand the characteristic of the track-

pattern-based model. 

 

d. Forecast verification 

After step 3 process, applying bias correction process for both mean and 

variation (Kim et al., 2012), final forecast map is constructed (Fig. 3.4a) 

showing the total (contour) and anomalous (shading) track densities in 

comparison with the observation (Fig. 3.4b). These result is derived from each 

cluster prediction (Table 3.2). We can find that the anomaly forecast for each 

pattern generally followed the observed anomaly in terms of its sign. 

Although the model slightly under-predicted the absolute TC count of C1 

compared with the observed count, it over-predicted the absolute TC counts 

for C2, C4, and C5. In contrast, C3, C6, and C7 are nearly perfectly 

reproduced in terms of the TC count similarity with their observed 

counterparts (Table 3.2). However, it does not assure that the model prediction 

success the anomalous track density in the northern South China Sea and 

Taiwan, despite a near perfect forecast for C3, C6, and C7, i.e., the effective 

patterns for those regions. Thus, it is apparent that a good forecast of absolute 

TC counts for the effective patterns of a region does not necessarily guarantee 
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good regional probability. This implies that bad forecasts in other patterns 

deteriorate the regional predictability where TCs of the patterns do not 

directly traverse. 

The reason is that this model prediction result is based on relative 

percentage concept which has a property that all patterns influence the 

predictability one another as fuzzy idea. Although the absolute counts for C3, 

C6, and C7 (3, 3, and 2, respectively) are all lower than their respective 

climatological values (3.5, 4, and 2.5), their relative percentages (23.1%, 

23.1%, and 15.4%) are all higher than the climatology percentages (18.3%, 

20.4%, and 13.0%). This explains why there was an increase in the anomalous 

track density around the northern South China Sea and Taiwan in the 

observation (Fig. 3.4b). Conversely, the anomalous track density is 

constructed to have negative values therein, which is contrary to the 

observation (Fig. 3.4a vs. Fig. 3.4b), despite near-perfect forecasts of the 

decreases in absolute TC counts for those three patterns by step 2 of the model. 

This occurs as their relative percentages do not increase but in some cases 

decrease as compared with the climatological percentages (e.g., C3 and C6), 

with negligible anomalies resulting therein. Further, the final forecast map 

does not capture the negative anomalies offshore to the east of Japan. In the 

observation, the effective patterns for that region (i.e., C2, C4, and C5) all 

largely decreased, leading to clear negative anomalies. Conversely, all 

effective patterns for that region were over-predicted in the forecast and did 
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not undergo a significant decrease in their relative percentages compared with 

their climatological percentages, resulting in negligible anomalies. In contrast 

to the aforementioned regions, the anomalous track densities followed their 

observed counterparts and are well above, and below, normal near Korea and 

Japan, and the subtropical Philippine Sea, respectively. Enhanced 

predictability for those regions is better explained by the relative percentages 

than by absolute TC counts. 
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Table 3.2. TC counts (N) and relative percentages of forecasted and observed 

in each pattern for the 2010 typhoon season. Presented in parentheses are their 

respective climatology. 

Pattern TC frequency (N) Relative percentage (%) 

Forecast Observation Forecast Observation 

C1 3.4 (3.3) 4 (3.0) 20.9% (16.5%) 30.8% (16.2%) 

C2 1.9 (3.1) 0 (2.8) 11.6% (15.0%) 0.0% (13.4%) 

C3 2.7 (3.6) 3 (3.5) 16.2% (17.4%) 23.1% (18.3%) 

C4 1.8 (2.1) 1 (2.1) 10.8% (10.2%) 7.7% (10.3%) 

C5 1.4 (1.8) 0 (1.8) 8.7% (8.9%) 0.0% (8.5%) 

C6 3.1 (4.0) 3 (4.0) 19.0% (19.9%) 23.1% (20.4%) 

C7 2.1 (2.4) 2 (2.5) 12.7% (12.0%) 15.4% (13.0%) 

Total 16.4 (20.3) 13 (19.6) 100% (100%) 100% (100%) 
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Figure 3.4. (a) Total (contour) and anomaly (shading) of the final forecast 

map of TC track density and (b) their observed counterparts. 

  

(a) Final forecast map (b) Observation
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3.1.2 Quasi-real-time operational forecast 

The track-pattern-based model was implemented at the National Typhoon 

Center (NTC) of the Korean Meteorological Administration, and its first 

experimental forecast for the TC season of 2010 was found to be successful 

(see aforementioned section). Subsequently, there has been continuous 

demand to provide technical guidelines for the track-pattern-based model. 

Separately from such requests, it is further necessary to reintroduce the model 

via this technical note, because several revisions were made for the input data 

from the NCEP CFS forecasts and the method of incorporating the predictors 

into the statistical model, which differ from the earlier version described in 

Kim et al. (2012). In addition, this thesis permits the model to operate 

automatically in quasi-real-time. To efficiently operate this seasonal TC 

forecast system, it is essential for users (e.g. TC forecasters) to have 

knowledge of the model structure and the capability to handle the model code 

or process autonomously. As such, this thesis will assist TC forecasters who 

wish to run and modify the model. 
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3.2 Prediction of the NA seasonal TC activity 

It is notable that this NA prediction model is developed for providing the 

deterministic predictions for TC occurrence, whereas previous models for the 

WNP TCs (Kim et al. 2012, Ho et al. 2013) were developed to provide 

probabilistic information of TC density. Because, after clustering, the number 

of seasonal TCs in the NA is insufficient for constructing the probabilistic 

distribution over the vast NA basin, our model targeting the NA basin 

prediction shows higher predictability in the TC occurrence than probabilistic 

TC density (figure not shown). Moreover, our model can realistically predict 

TC occurrence without requiring the bias correction process used for WNP 

TC prediction. 

 

3.2.1. Pattern classification of the NA TC tracks 

Figure 3.5 displays the four TC track patterns and the entire 432 TC tracks 

over the NA during ASO from 1965 to 2012. The TCs of cluster 1 (C1-pattern) 

generally originate off the North American East Coast (sub-tropical western 

NA) and propagate northeastward along the US East Coast (Fig. 3.5a). These 

TCs often affect and make a landfall in the eastern US region. The C2-pattern 

is characterized by tracks entering the Gulf of Mexico and the Caribbean Sea 

(Fig. 3.5b). These TCs generally form near Cuba and Haiti and move 

northwestward to the Gulf of Mexico. The devastating hurricane Katrina in 

2005 belongs to this cluster. The TCs in the C3-pattern originate over the vast 
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open ocean of the NA and move to mid- and high-latitude regions with 

recurving tracks (Fig. 3.5c). Although this type of TC has the longest life span 

and the strongest intensity, its damages are usually small because its track 

remains mostly over the ocean. The C4-pattern TCs are generated near the 

tropical region of the NA and move westward affecting maritime islands (Fig. 

3.5d). All together, the total TC track density of the NA clearly depicts two 

major paths of TCs. The first is a straight northwestward ridge to the Gulf of 

Mexico in the tropical regions (C2, C4), and the second is a northeastward 

recurving ridge at mid-latitude (Fig. 3.5e). The numbers (percentages) of C1, 

C2, C3, and C4 TCs are 112 (25.9%), 123 (28.5%), 98 (22.7%), and 99 

(22.9%) of the total 432 (100%) TCs, respectively. 

Our classification of the NA TC track patterns is highly consistent with 

previous studies. Kossin et al. (2010) and Kozar et al. (2012) suggested that 

the climatological TC tracks in the NA basin can be classified into four groups. 

Although the method and the period in their study are different from those in 

this study, their results are similar to those in the present study. Nakamura et 

al. (2009) clustered the TC tracks into six groups by using the k-means 

method with mass moments. In that study, TCs recurving to mid-latitude were 

classified into four clusters. In the present study, however, such TCs were 

grouped in two clusters (i.e., C1- and C3-pattern). Classification of the TC 

tracks into more groups may be helpful for identifying the separated linkage 

with diverse climate variability. Nevertheless, more clusters lead to smaller 
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numbers of TCs assigned to each cluster, which in turn makes it difficult to 

construct reliable statistical forecast models. Given the objective of this study, 

seasonal prediction of NA TC activities, we sorted the NA TC tracks as four 

patterns as well as aforementioned result of optimum cluster number 

detection process. 

  



53 

 

 

Figure 3.5. (a)–(d) Four track patterns of NA TCs during the period 1965–

2012 TC season and (e) total tracks. Contours represent climatological track 

densities; the interval is 10 except in (e), which is 5. Black circles indicate the 

genesis position of each TC, and gray lines show individual TC tracks. The 

number of TCs for each pattern is shown in parenthesis. 
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3.2.2. Simultaneous relationships and predictors 

As we mentioned in the above section, construction of the hybrid 

statistical–dynamical TC prediction model for each track pattern is a core step 

in this development. Prior to developing the model, we first examined the 

empirical relationships between TC activity and large-scale environmental 

fields for each track pattern. Candidate variables in constructing the model 

are decided as ASO-averaged SST, VWS, VOR850, and U850, all of which 

are well-known large-scale factors that influence the NA TC activities (Gray 

et al. 1992; Blake and Gray 2004; Saunders and Lea 2005; Klotzbach 2007). 

Other factors such as moist stability and mid-level relative humidity also 

affect TC activity (Gray 1998); however, these are not regarded as suitable 

for predictors because of the lack of reliability in today’s climate model 

simulations (John and Soden 2007; Saha et al. 2014). 

Figure 3.6 shows the temporal correlations between the TC frequency and 

the selected atmospheric and oceanic variables for each cluster based on the 

ensemble mean of the NCEP CFSv2 retrospective issued on July 5. The 

critical domains (rectangular boxes in Fig. 3.6) are identified as that when 

both correlations of the NCEP R-2 (figure not shown) and CFSv2 

retrospective data with TC activity equal or exceed the 90% confidence level. 

The NCEP CFSv2 closely reproduces the observed relationships between TC 

frequency and large-scale atmospheric and oceanic forcings with high 

statistical significance in the critical domains. It is also required that the 
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selected domains with variables should be physically related to the 

corresponding TC track patterns. Predictors are computed by obtaining the 

area averages of grid point values in the critical domains that meet the 

threshold of statistical significance at the 90% confidence level. The relative 

importance of individual predictors and their combinations for each track 

pattern can then be determined in sensitivity tests. As long as the NCEP 

CFSv2 effectively simulates the TC-environmental fields relationships, we 

can anticipate that the hybrid-type model will in principle provide credible 

predictions. 

The VWS is negatively correlated with the C1 TC frequency in the mid-

latitude region (Fig. 3.6a). It is noted that small VWS (i.e. weak baroclinity) 

is a key for TC formation as well as for maintaining TC activities. Based on 

this, VWS is included as a predictor as it is expected to affect TCs especially 

in the mid-latitudes where strong westerlies in the upper troposphere can 

negatively affect TCs. Some regions like the equatorial eastern Pacific show 

positive correlations between TCs and VWS, which can be recognized as 

well-known anti-correlation of the NA TC activity and eastern Pacific VWS 

(Frank and Young 2007). However, this significant anti-correlation pattern is 

not well shown in the correlation map of the CFSv2 retrospectives because 

the number of grid points showing significant correlation with the C1-pattern 

TCs is too small (Fig. 3.6a). Thus, we exclude such regions. The C1-pattern 

TCs are also positively correlated with local VOR850 over the eastern US 
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coastal region, where this type of TC is dominant (Fig. 3.6b). 

If a TC season is in a La Niña phase in the equatorial Pacific or if positive 

SST anomalies appear over low-latitude regions of the NA, C2-pattern TCs 

(i.e. TCs in the Gulf of Mexico) are found to be more active (Goldenberg et 

al. 2001; Holland and Webster 2007; Kossin and Vimont 2007; Vecchi and 

Soden 2007). Both of the remote influence of the negative anomalous SST 

values in the eastern Pacific and the local positive SST effect in the NA induce 

a rising motion over the Gulf of Mexico. Because negatively correlated SST 

regions with statistically significant at the 90% level are not reached in the 

CFSv2 correlation map, only positively correlated SST patterns in the low-

latitude regions of the NA are used as a predictor (Fig. 3.6c). This physical 

mechanism also results in triggering positive vorticity anomalies and creates 

favorable conditions for TC genesis in the off-equatorial region (Fig. 3.6d). 

The U850 shows a significant positive relationship with C2-pattern TCs over 

the tropics; thus U850 is selected as a predictor (Fig. 3.6e). Equatorial low-

level zonal wind is related to Madden–Julian Oscillation (MJO), which has 

been shown to modulate TC activity in the Gulf of Mexico and northwestern 

Caribbean Sea (Klotzbach 2010). In fact, MJO itself may not be suitable for 

seasonal prediction because its time scale is subseasonal (i.e. about 30–60 

days). Nevertheless, the dynamical mechanism of U850 for affecting C2 TC 

activity analogous to the MJO effect is still valid even in a seasonal time scale. 
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The prediction model of C3-pattern TCs uses SST, VOR850, and U850 

as predictors. C3-pattern TCs activities show positive correlations with basin-

wide SST in the NA (Fig. 3.6f), which is a pattern similar to the Atlantic 

Multidecadal Oscillation. Along with that, C3-pattern TC frequency is 

positively correlated with VOR850 (Fig. 3.6g). Both create well-known 

favorable conditions for TC development and were thus selected as predictors. 

The U850 over the tropical NA also positively correlates to C3-pattern TCs 

(Fig. 3.6h). When the strong eastward zonal wind is dominant over the 

tropical NA, TCs (here, C3-pattern TCs) may be steered to recurve without 

making a landfall on the North American coast. For C4, we invite the positive 

relationships of mid-latitude VWS as a predictor (Fig. 3.6i). Because the 

strengthening of mid-latitude VWS can weaken TC activity, TCs usually have 

tracks that are active only in low-latitude regions (i.e. C4-pattern TCs). 

Moreover, the anomalous positive vorticity in the tropics apparently can 

contribute to C4 TC genesis (Fig. 3.6j), similar to that in the other cases. These 

results imply that if favorable conditions of low-level vorticity are presented 

during the ASO season, the NA TCs are more likely to develop. 

 

  



58 

 

 

Figure 3.6. Distribution of correlation coefficients between observed C1–C4 

TC frequencies and the ensemble average of CFSv2 retrospectives initialized 

on July 5 for each predictor. The contour interval is 0.2; the zero contour line 

is omitted. Shading indicates areas statistically significant at the 90% 

confidence level. Critical regions are presented as a rectangular box. 
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3.2.3. Validation 

Examination of the model skill employs a leave-one-out cross-validation 

method which is widely used to assess the performance of statistical 

prediction. Figure 3.7 shows the ensemble-mean hindcasts for the TC 

frequency for individual clusters (Figs. 3.7a–d) as well as the total TC 

numbers (Fig. 3.7e) initialized in early February to early July on a monthly 

interval. The 12 members of the NCEP CFSv2 retrospective forecasts are used 

to calculate the ensemble means. Although individual forecasts oscillate with 

relatively large variances (not shown), the ensemble mean for constructing 

the final forecast agrees well with observations (black lines in Figs 3.7a–e) 

regardless of the forecast lead time. These are consistent with those reported 

by Kwon et al. (2007), who showed that multi-member ensemble means 

generally outperform individual members in statistical predictions of TC 

activity. In addition, to objectively evaluate the model performance compared 

to the reference forecast, reforecasts from the model based on NCEP R-2 

instead of CFSv2 retrospectives are overlapped (black dashed lines in Figs. 

3.7a–e). In this comparison, the reforecast using the reanalysis data (i.e. 

NCEP R-2 in this study) can be regarded as the reference forecast. The 

reforecasts using the NCEP R-2 compare well with observations with no 

forecast biases. As shown in the hindcasts from the CFSv2 retrospectives and 

reforecasts using NCEP R-2 data, the overall climatology and variability of 

TC activities are well represented in the model despite some forecast 
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uncertainties due to the errors in CFSv2 seasonal forecasts. Thus, we conclude 

that the ensemble mean hindcasts from CFSv2 are reliable. 

It is noteworthy that the hindcast of CFSv2 effectively resolves the 

interannual variability and most of the observed extreme TC activity seasons 

(e.g., 2000 in C1, 2005 in C2, and 1995 in C3), suggesting that our model is 

skillful also in predicting abnormal TC activities. Note that the predicted 

frequency does not reach the zero TC count because the Poisson regression 

model cannot generate zero (e.g., 1994 and 1995 in C1, 2008 in C3, and 1985 

in C4). One notable forecast error is that the hindcast substantially 

overestimates the observed TC frequency in 2010, particularly for clusters C2, 

C3, and C4 (Figs. 3.7b–d). This discrepancy is mainly caused by large-scale 

positive VOR850 anomalies in the CFSv2 retrospective forecast in 2010. The 

CFSv2 retrospective shows broad positive VOR850 anomalies over the low-

latitude NA region concentrated over the Gulf of Mexico (not shown), which 

were subsequently adopted as predictors for C2–C4 patterns (Figs. 3.6d, g, j). 
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Figure 3.7. Time series of TC frequency from observations (black solid line), 

from reforecasts using the NCEP R-2 data (black dashed line), and from the 

ensemble mean of the model hindcast driven by the CFSv2 retrospective run 

(gray solid line) for the period 1982–2012. 
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To examine the statistical skill, the COR, RMSEs, and MSSS of ensemble 

averaged hindcasts using CFSv2 and reforecasts using NCEP R-2 with the 

observation are analyzed on varying forecast day (Table 3.3). For all clusters, 

the TC hindcasts show significant relationships with observations at the 99% 

confidence level with COR values exceeding 0.66. These results indicate that 

our model can reliably reforecast the interannual variability of the observed 

TC activities with several months of lead time. The RMSEs of the four TC 

patterns are approximately one, suggesting that our model error is about one 

TC for individual track patterns. Likewise, the model error in predicting the 

total TC number over the NA basin is about two per year. The MSSS is the 

ratio of the mean-square error of the predictions compared to that of the 

observation. This measure is applicable only for deterministic forecasts. A 

large MSSS indicates prediction skill improvement over climatology-based 

reference forecasts in which the MSSS is equal to zero. MSSS are all 

significantly larger than zero (Table 3.3), suggesting that our model shows 

significant forecast skill compared with climatology-based reference 

prediction. Moreover, all of the CFSv2 ensemble averaged hindcasts show 

better skill than that using NCEP R-2 data. These statistical measures also 

advocate again that the effect of uncertainty in model parameters due to errors 

in CFSv2 seasonal forecasts is a relatively minor factor in model predictability. 
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Table 3.3. Correlation coefficients (COR), root–mean–square errors (RMSEs), mean square skill scores (MSSS), and 

Gerrity skill scores (GSS) of ensemble averaged hindcasts from CFSv2 retrospectives in six issue days and the 

reforecast using the NCEP R-2 with the observation for the period 1982–2012. 

 

COR / RMSE / MSSS / GSS  

February 5 March 2 April 1 May 1 June 5 July 5 
NCEP R-2 

reforecast 

C1 
0.93 / 1.10 / 

0.61 / 0.83 

0.89 / 1.08 / 

0.62 / 0.69 

0.86 / 1.12 / 

0.59 / 0.82 

0.92 / 1.00 / 

0.68 / 0.75 

0.91 / 0.99 / 

0.68 / 0.66 

0.89 / 1.08 / 

0.62 / 0.63 

0.67 / 1.31 / 

0.44 / 0.53 

C2 
0.89 / 0.82 / 

0.77 / 0.70 

0.83 / 0.96 / 

0.69 / 0.55 

0.74 / 1.30 / 

0.43 / 0.46 

0.71 / 1.25 / 

0.47 / 0.58 

0.75 / 1.18 / 

0.53 / 0.58 

0.79 / 1.08 / 

0.61 / 0.57 

0.65 / 1.37 / 

0.37 / 0.55 

C3 
0.92 / 0.78 / 

0.83 / 0.68 

0.87 / 0.95 / 

0.75 / 0.68 

0.80 / 1.15 / 

0.63 / 0.66 

0.75 / 1.26 / 

0.56 / 0.73 

0.66 / 1.52 / 

0.36 / 0.63 

0.74 / 1.30 / 

0.53 / 0.66 

0.50 / 1.72 / 

0.18 / 0.56 

C4 
0.93 / 0.71 / 

0.78 / 0.85 

0.92 / 0.67 / 

0.80 / 0.85 

0.85 / 0.80 / 

0.72 / 0.77 

0.81 / 0.89 / 

0.66 / 0.77 

0.76 / 1.00 / 

0.56 / 0.65 

0.80 / 0.90 / 

0.64 / 0.66 

0.59 / 1.28 / 

0.29 / 0.34 

Total 
0.91 / 1.80 / 

0.80 / 0.76 

0.87 / 2.03 / 

0.74 / 0.83 

0.78 / 2.71 / 

0.55 / 0.71 

0.78 / 2.68 / 

0.55 / 0.66 

0.77 / 2.96 / 

0.46 / 0.56 

0.82 / 2.45 / 

0.63 / 0.64 

0.71 / 3.11 / 

0.40 / 0.49 
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As well as the TC number prediction, it is also worth to see the forecast 

results in terms of categories compared to its climatology; below normal (BN), 

normal (N), and above normal (AN). When the number of TCs are 0.5 

standard deviations above (below) the average TC frequency, that year is 

assigned to AN (BN) category. Understandably, the other years are defined as 

category N. The categorized results of observation and ensemble averaged 

hindcasts are shown in contingency tables for each cluster and total TC 

number (Table 3.4). The diagonal components of each matrix, both 

observations and predictions are the same category, mean successful 

prediction. The other components can be interpretable as forecast failures. 

Table 3.4 shows C1 model correctly predicts the 21 years among the 31 years 

(1982–2012), which is about 68% success rate. In the similar way, success 

rate of C2, C3, C4, and total TC models are 65%, 74%, 71%, and 74% 

respectively. 
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Table 3.4. Contingency tables between the observed TC activity and hindcast 

results issued on July 5 for the period 1982–2012. 

C1 Observation 

BN N AN Total 

Forecast 

BN 8 2 0 10 

N 6 7 1 14 

AN 0 1 6 7 

Total 14 10 7 31 

C2 Observation 

BN N AN Total 

Forecast 

BN 7 3 0 10 

N 2 7 5 14 

AN 0 1 6 7 

Total 9 11 11 31 

C3 Observation 

BN N AN Total 

Forecast 

BN 10 1 0 11 

N 4 8 2 14 

AN 0 1 5 6 

Total 14 10 7 31 

C4 Observation 

BN N AN Total 

Forecast 

BN 7 3 0 10 

N 1 9 3 13 

AN 0 2 6 8 

Total 8 14 9 31 

Total Observation 

BN N AN Total 

Forecast 

BN 8 0 0 8 

N 3 9 4 16 

AN 0 1 6 7 

Total 11 10 10 31 
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To assess quantitatively the predictability as these three categories, we 

introduce the Gerrity skill score (hereafter GSS; Gerrity, 1992). GSS takes 

account of equitability for multi-categorical forecasts, so it is an appropriate 

measure for this purpose. GSS is generally used for verification of the 

forecast/observation outcome represented by the contingency table (see Table 

2 in Kim et al. 2010). GSS is defined as  

GSS =  ∑𝑝𝑖𝑗𝑠𝑖𝑗

3

𝑖=1

                     (7) 

where 𝑝𝑖𝑗 is the marginal probabilities of each cell and 𝑠𝑖𝑗 is the scoring 

weights. The scoring weights are given by 
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                       (9) 

where r is a dummy summation index and 𝑝𝑟 is sample probability to the 

total number. The GSS of one is recognized as perfect prediction, zero is 

reference skill, and negative value of that represents poor skill than reference. 

All of the GSSs of multiple forecasts shown in Table 3.4 are much higher than 
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zero, which means that our model well predicts TC activity with three 

categories (i.e., BN, N, and AN) than the reference forecast based on 

climatology. 

In summary, our model is skillful with various forecast lead time. Some 

of the long-lead predictions (e.g., five–six months lead forecast) show slightly 

better skill than the short lead-time predictions (e.g., one–two months lead), 

although the predictability of CFSv2 normally decreases as the lead-time 

increases. This is expected as all prediction models of multiple leads are 

optimized for their own training period. As mentioned earlier, the hybrid 

statistical–dynamical model picks statistically significant grids for obtaining 

predictors. Although the number of significant grids for longer lead-time 

prediction decrease, the skillful predictors from selected variable sets and 

grids maintain the high prediction skill of the model. Thus, stable skill with 

varying forecast lead-time is a unique virtue of the hybrid statistical–

dynamical model for predicting ASO TC activities, which differs from that in 

previous traditional statistical models (e.g., Gray et al. 1992; Elsner and 

Schmertmann 1993; Hess et al. 1995; Lehmiller et al. 1997; Blake and Gray 

2004; Saunders and Lea 2005; Elsner and Jagger 2006; Klotzbach 2007; 

LaRow et al. 2010). 

 

3.2.4. Regional prediction 

Our model is used to predict seasonal TC track patterns for the entire NA 
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basin. To assess the forecast skill in generating spatial TC distributions during 

the training period, we analyzed the rank-correlation for each 5° × 5° grid 

point in the NA basin for different forecast lead months (Fig. 3.8). Because 

the observed and forecasted TC frequency do not follow a Gaussian 

distribution at each grid point, we use rank-correlation as a statistical measure 

for the model skill in order to consider prediction model errors (Vecchi et al. 

2014). By using rank-correlation which represents the degree of similarity 

between two rankings, we can evaluate the significance relationship between 

them. Strong rank-correlations (> 0.5) for all forecast lead months appeared 

in regions with high TC frequency, suggesting the model is more skillful in 

regions with high TC activity. Most of these high predictability grids are 

located in regions in which the four TC track patterns overlap. Although these 

results imply that the seasonal prediction results represented as a TC track 

density distribution may vary with time, the rank-correlation patterns are 

largely invariant of the forecast lead time. 

The direct impact of TCs to human society is closely linked to TC landfall 

accompanied by strong wind gusts and heavy rainfall; therefore, coastal 

regions are more vulnerable to TC effects. To examine the model skill for 

these vulnerable coastal regions, we focused on three major regions 

particularly vulnerable to TCs (Fig. 3.8a). The first region (R1) includes the 

US East Coast area, where population and economic activities are heavily 

concentrated. The second region (R2) covers the Gulf of Mexico, the western 
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Caribbean Sea, and their neighboring countries. The third region (R3) 

includes the eastern Caribbean Sea, a main region of TC genesis and their 

pathways. Spatially, these regions show substantial rank-correlation, 

indicating high forecast skill (Fig. 3.8). By assessing TC distribution over 

these three vulnerable regions, we can interpret the results of TC activity 

prediction microscopically as well as macroscopic view of the entire basin-

wide map. 
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Figure 3.8. Spatial distribution of retrospective rank-correlation between the 

observed TC passages and ensemble average of hindcasts results in a 5° × 5° 

grid box. The contour interval is 0.25; shading indicates areas with rank-

correlation greater than 0.5. (a)–(f) Multiple forecasts initialized in February 

5, March 2, April 1, May 1, June 5, and July 5, respectively. Three vulnerable 

TC-influenced domains, defined as R1, R2, and R3 regions are also shown. 
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Figure 3.9 depicts the temporal variations of the observed TC frequency 

and the ensemble mean hindcast for six different lead times in the three 

regions. To compare observations and hindcasts consistently, both of 

parameters are converted into track densities in 5° × 5° grid boxes covering 

the entire NA basin. The area averages for the three regions are then evaluated. 

The three time series show no climatological forecast biases for all regions, 

which is consistent with the aforementioned time series of each cluster. 

Although there are some forecast failures such as overestimation for R2 in 

2010, the correlations of different lead times are all above 0.70 for the three 

vulnerable regions, which is statistically significant at the 99% confidence 

level. In addition to the interannual variability of regional TC activities, the 

model also effectively captured the extreme TC activity years (e.g., 2005 in 

R2 and 1995 in R3; Fig. 3.9). Therefore, our model is also reliable and skillful 

for predicting sub-basin coastal TC activity. 
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Figure 3.9. Time series of regional averaged TC passages in (a) R1, (b) R2, 

and (c) R3 regions. The black line indicates observation, and gray lines show 

ensemble averaged values of CFSv2 retrospectives for six forecast days 

including February 5, March 2, April 1, May 1, June 5, and July 5 for the 

period 1982–2012. 
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3.3. Predictions of intense TC activities in the WNP and 

NA 

3.3.1. Definition of intense TC 

Table 3.5 shows the TC frequency and its landfall ratio in the WNP basins 

according to the Saffir–Simpson scale with the maximum 1-min sustained 

wind speed from the JTWC datasets. A total of 631 TCs occurred in the WNP 

basin during the 32 TC seasons of 1982–2013. In the WNP, 214, 122, 54, 74, 

106, and 61 TCs reached tropical storm intensity to category 5, and 43%, 65%, 

65%, 58%, 63%, and 62% of them landed in coastal regions, respectively. As 

reported in a number of previous studies (Oouchi et al. 2006; Manganello et 

al. 2012; Kim et al. 2015), the observed TC frequency does not monotonically 

decrease with intensity, showing a momentary minimum at category 2. 

Intense TCs generally maintain their cyclonic structures longer than weaker 

ones, which in turn, may increase their chances of hitting coastal regions 

within their lifespans. In the WNP basin, approximately 43% of TCs of 

tropical storm intensity made landfall, whereas approximately 60% of TCs of 

categories 15 made landfall. 

To develop a seasonal forecast model focused only on intense TCs, target 

intensity criteria should be determined. The intense TC activity, focused on 

this thesis, should show different climate variation compared to typical TC 

because that is the main reason for this development of intense TC separately. 
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Most operational centers consider category 35 TCs as intense TCs (Saunders 

and Lea 2005; Bell et al. 2012) because such storms are responsible for more 

than 85% of the total damages in the US (Pielke et al. 2008). Despite the 

current categorization, construction of a robust regression model requires a 

sufficient number of samples for intense TCs (Wilks 2006). At 241, the total 

number of TCs of category 35 in the WNP is sufficient for this purpose. 

When we check the variation of TC activity correspondent to intensity from 

the TS to category 3, there are quite independent between typical and intense 

TC activity (Fig. 3.10a). Therefore, we define an intense TC in the WNP as 

category 3 and above. 
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Table 3.5. The number of TCs and its landfall rate (parenthesis) in the WNP 

for TC seasons during the period 1982–2013. 

Category of storm (wind speeds) WNP 

Tropical storm (34 – 63 knots) 214 (43 %) 

Category 1 (64 – 82 knots) 122 (65 %) 

Category 2 (83 – 95 knots) 54 (65 %) 

Category 3 (96 – 112 knots) 74 (58 %) 

Category 4 (113 – 136 knots) 106 (63 %) 

Category 5 ( ≥137 knots) 61 (62 %) 
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Figure 3.10. Time series of TC frequencies in the WNP and NA basins 

according to the Saffir-Simpson hurricane wind scales during the period of 

1982–2013. 

  



77 

 

Table 3.6 stratifies the TC frequency and its landfall ratio in the NA basins 

according to the Saffir–Simpson scale with the maximum 1-min sustained 

wind speed from the HURDAT datasets. A total of 310 TCs formed in the NA 

basin during the 1982–2013 TC seasons. In the NA basin, 139 TCs reached 

tropical storm intensity; 31% of them made landfall. In the same period, 64, 

24, 37, 35, and 11 TCs reached maximum intensity at hurricane scale category 

1 to 5, respectively, and 47%, 46%, 59%, 60%, and 100% of them made 

landfall. As we mentioned above, it is interesting to note that the percentage 

of TC landfalls increases with increasing TC intensities. All of the category 5 

hurricanes in the NA basin made landfall during the study period. 

However, if we take the definition of intense TC to same one as the WNP 

basin, only 83 TCs in the NA counted during the 32-year period including 37, 

35, and 11 for categories 3, 4, and 5, respectively. At 2.6, the number of TCs 

per year is too small for constructing a statistically significant forecasting 

model. The annual numbers of category 35 TCs in the NA basin are found 

to be closely correlated with those of category 15, with a correlation 

coefficient (COR) of 0.79, suggesting that category 15 and 35 TCs are 

closely related (Fig. 3.10b). On the basis of this consideration, intense TCs in 

the NA are defined as those of category 1 and above, bringing the total number 

of intensive TCs to 171. This measure resulted in a sufficient number of 

samples.  
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Table 3.6. Same as Table 3.5 except for NA basin. 

Category of storm (wind speeds) NA 

Tropical storm (34 – 63 knots) 139 (31 %) 

Category 1 (64 – 82 knots) 64 (47 %) 

Category 2 (83 – 95 knots) 24 (46 %) 

Category 3 (96 – 112 knots) 37 (59 %) 

Category 4 (113 – 136 knots) 35 (60 %) 

Category 5 ( ≥137 knots) 11 (100 %) 

 

  



79 

 

3.3.2 Development of hybrid statistical-dynamical model 

To prepare the basis of intense TC forecast model for the WNP, the FCM 

is applied to the WNP intense TC tracks such as those of categories 3–5. 

Establishing a basis of track pattern is a key step in attempting TC track 

density prediction without using high-resolution dynamic model simulations 

that require heavy computational resources (Kim et al. 2012; Ho et al. 2013; 

Choi et al. 2016). After detecting the optimum number of clusters, intense TC 

tracks are classified into three clusters (Fig. 3.11). TCs belonging to WNP C1 

develop mainly over the southeastern part of the main TC genesis region of 

the WNP (Fig. 3.11a) and move toward the mid-latitude region including 

Korea and Japan, passing through the East China Sea. A total 97 intense C1 

TCs develop with relatively narrow track density such that their maximum 

values reach above the 25. Offshore Japan, 59 TCs in C2 show recurving 

tracks (Fig. 3.11b). Only few of the C2 intense TCs make landfall; most of 

them dissipate over the ocean without making landfalls. The remaining 85 

TCs in cluster 3 (C3) are concentrated over the South China Sea and move 

westward (Fig. 3.11c). Most of the total 241 intense TCs are generated in the 

low-latitude broad region of the WNP, and their track density core is located 

over the Philippines Sea (Fig. 3.11d). The total intense TC track density shows 

two representative ridges: recurved to mid-latitude and westward straight-

moving (Fig. 3.11d). It is noted that although all patterns move toward 

different areas, they share the main genesis region, which is an important 
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point in terms of seasonal forecasts.  
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Figure 3.11. Three track patterns and total WNP intense TCs during June 

through October in the period 1982–2013. Contours represent climatological 

track densities; the interval is 5. Black circles indicate the genesis position of 

each TC, and gray lines show individual TC tracks. The number of TCs for 

each pattern is shown in parenthesis. 

  

(c) C3 (85 TCs)

(a) C1 (97 TCs) (b) C2 (59 TCs)

(d) Total (241 TCs)
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Next, we investigated the statistical relationships between WNP intense 

TC activities during JJASO (i.e. the WNP TC season) and large-scale 

circulations to determine predictors (Fig. 3.12). We conducted a correlation 

analysis for reanalysis and retrospective data initialized on May 1. Among the 

potential predictors, we selected the positive relationship of the east–central 

Pacific SST, tropical U200, and VOR850 as the WNP C1 predictors after 

verification of resemblance between two COR maps from reanalysis and 

retrospective. It is noted that the following characteristics of atmospheric and 

oceanic conditions are consistently found in both of reanalysis and CFSv2 

data. Developments of more intense TCs of the WNP during the El Niño 

episode are characterized by positive SST anomalies in the east–central 

tropical Pacific (Figs. 3.12a and 3.12d). On the basis of previous studies on 

the ENSO effects on WNP TC activity (Wang and Chan 2002; Chan 2007; 

Kim et al. 2012), we can understand the physical mechanism that relates 

atmospheric circulation with Pacific SST distribution to move the TC genesis 

regions relatively southeastward. In a weakened low-level easterly condition 

caused by a reduced zonal SST gradient over the tropical Pacific (i.e. an El 

Niño year), the Asian summer monsoon trough extends farther eastward. The 

energy transfer from the mean flow to synoptic eddies in the extending 

monsoon trough is crucial for TC development (Sobel and Bretherton 1999; 

Wu et al. 2012). If the genesis region moves farther from land and TCs remain 

longer over the ocean, the chance for TCs to intensify increases. Other fields 
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such as U200 and VOR850 also show systematic features associated with 

these El Niño episode characteristics (Figs. 3.12b, 3.12c, 3.12e, and 3.12f). 

The C2 prediction model adopts a negative relationship of SST and Z500 in 

the mid-latitude Pacific and a positive relationship of U200 in the subtropics 

(Figs. 3.12g–l). Compared with the SST pattern of C1, considerable positive 

correlation related to El Niño was noted in the tropical Pacific in addition to 

a distinguishable mid-latitude negative correlation pattern. This negative 

relationship with SSTs may be a response to the Z500 associated with the 

strength of the subtropical high. The weakened Z500 in El Niño years results 

in enhanced convective activities (i.e., penetration of TCs) and SST cooling 

therein. Thus, SSTs and Z500s with negative relationships with the C2 TCs 

are the critical predictors in separating C2 and C1 TCs. A strong U200 in the 

mid-latitude zonal band can steer the TC track to recurve; thus, it is selected 

as a predictor. In the C3 prediction model, the negative relationship of the 

subtropical U200 and influence of the tropical VWS are used as predictors 

(Figs. 3.12m–p). Negative VWS anomalies in the tropical region can be 

favorable atmospheric conditions for TC genesis because more instabilities 

can be frequently developed in an organized convection system such as a TC. 

All the predictors are verified that they are free multicollinearity problem by 

checking the VIFs of each predictor.  
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Figure 3.12. Distribution of correlation coefficients between observed C1–C3 

intense WNP TC frequencies and the ensemble average of CFSv2 

retrospectives initialized on May 1 for each predictor. The contour interval is 

0.2; the zero contour line is omitted. Red (blue) shading indicates areas 

statistically positive (negative) significant at the 90% confidence level. 

Critical regions are presented as a rectangular colored box. 

(a) SST (b) U200 (c) VOR850

(d) SST (e) U200 (f) VOR850

(g) SST (h) U200 (i) Z500

(j) SST (k) U200 (l) Z500

(m) U200 (n) VWS

(o) U200 (p) VWS

WNP C1 
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CFSv2

WNP C2 
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WNP C2

CFSv2

WNP C3 
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b. Validation 

Assessing predictability of the model is described in this section. We re-

forecasted the annual intense TC frequencies for the WNP basin using the 

present model to evaluate the performance of the forecasting model. We 

examined the time series of observed intense TC number and forecast results 

with varying issuance days (Fig. 3.13). Multiple hindcasts effectively 

reproduce the variability of the observed time series although their amplitudes 

differed slightly. Further, several observed peaks such as 2002 in C1, 1987 in 

C2, and 1985 in C3 are partly simulated by the WNP forecast model with no 

overall forecasting bias. However, limitations remain in simulations of 1992 

and 1994 in C1, 1997 in C2, and 2002 in C3. This result may indicate 

forecasting failure in some of the training period years as an inherent property 

of the statistical Poisson regression technique or due to NCEP CFSv2 

seasonal prediction uncertainty (Kim et al. 2012). 
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Figure 3.13. Time series of intense TC frequency in WNP from observations 

(black solid line) and from the ensemble mean of the model hindcasts driven 

by the four CFSv2 retrospective run (gray solid line) for the period 1982–

2013. 

  

(a) C1

(b) C2

(d) Total

(c) C3
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We calculated statistics measures such as the COR, RMSEs, and MSSS 

by cross-validation analysis for multiple forecasting days to concretely 

investigate the WNP prediction model performance (Table 3.7). The COR 

values for all clusters and the total intense TCs between observations and each 

prediction exceed 0.55, implying that our model can provide reliable intense 

TC variability. In addition, we can expect the standard error of our model with 

RMSE is in the range of 1.0–1.5 for every cluster, and that for total intense 

TC is below two. Moreover, all MSSSs exhibit significantly positive values, 

which means our model skill is improved over the climatology-based 

reference model. Generally, the WNP C2 model shows the lowest 

performance scores among the three WNP patterns although we performed 

various tests of predictor combinations to show best performance. Because 

the C2 model adopts mid-latitude region predictors, it would be estimated that 

the relatively inferior skill of CFSv2 over the mid-latitude region (Saha et al. 

2014) is responsible for this low performance. Skill restriction of the WNP 

C2 model eventually leads to lower performance of total intense TC 

prediction. 
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Table 3.7. Correlation coefficients (COR), root–mean–square errors (RMSEs), 

and mean square skill scores (MSSS) of ensemble averaged hindcasts from 

CFSv2 retrospectives in four issue days for the period 1982–2013 in WNP 

basin. 

 

  

 
COR / RMSE / MSSS 

February 5 March 2 April 1 May 1 

C1 
0.86 / 1.22 / 

0.63 

0.79 / 1.36 / 

0.54 

0.74 / 1.40 / 

0.52 

0.66 / 1.52 / 

0.43 

C2 
0.67 / 1.29 / 

0.40 

0.65 / 1.30 / 

0.39 

0.55 / 1.39 / 

0.30 

0.61 / 1.32 / 

0.37 

C3 
0.77 / 1.09 / 

0.42 

0.79 / 1.06 / 

0.45 

0.55 / 1.23 / 

0.26 

0.64 / 1.13 / 

0.37 

Total 
0.76 / 1.64 / 

0.51 

0.77 / 1.60 / 

0.54 

0.59 / 1.91 / 

0.34 

0.65 / 1.79 / 

0.42 
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The forecast model for the NA basin is developed in the same manner as 

that for the WNP basin. Through the optimum cluster number detection 

process, we concluded that the intense NA TC tracks should be classified into 

two major patterns (Fig. 3.14). The 68 intense TCs in the NA are grouped into 

cluster 1 (C1), which develop over the broad low-latitude NA basin and 

propagate northwestward to the Gulf of Mexico and southeast coast of the US 

(Fig. 3.14a). The reminding 103 intense TCs are grouped into cluster 2 (C2), 

which move to mid-latitude regions with recurving tracks (Fig. 3.14b). The 

C2 TCs develop mainly over the western ocean off Sahel and the eastern 

offshore region of the US; some even affect the east coast of Canada. Because 

the number of C2 TCs is greater than C1 TCs, the track density of the total 

171 intense TCs is slightly biased to C2 (Fig. 3.14c). 
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Figure 3.14. Same as Fig. 3.11 except for two patterns during the August 

through October in NA. 

  

(a) C1 (68 TCs) (b) C2 (103 TCs) (c) Total (171 TCs)
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A hybrid statistical–dynamical model for intense TC forecasting in the 

NA basin is constructed for individual track patterns. First, we have identified 

empirical relationships between each track pattern and the mean 

atmospheric/oceanic fields of reanalysis datasets in the NA TC season (ASO). 

As discussed above, we have analyzed multiple fields such as SST, U200, 

VWS, VOR850, and U850, which are known as appropriate factors for 

investigating summertime TC activity. Second, the same correlation analysis 

is also performed on the basis of the CFSv2 retrospective data. Third, 

comparing both correlation maps of potential predictor fields from reanalysis 

and retrospective data, we determined the critical regions that simultaneously 

show statistical significant correlations in the two maps. Finally, we verified 

that these relationships with potential predictors are physically relevant to the 

corresponding TC pattern in the context of providing favorable environmental 

conditions for TC activity. If all conditions are met, the predictor is obtained 

by averaging the values over the grids showing significant CORs with ASO 

TCs. After conducting iterative predictability tests by using different predictor 

sets, the optimal predictor combinations for providing the best performance 

are selected for each pattern model. 

Figure 3.15 shows the spatial distribution of CORs between the ASO 

intense TCs in the NA basin and the predictor variables obtained from 

reanalysis and retrospective data initialized on July 5 for 1982–2013. The 

maps in the figure show statistically significant regions at the 90% confidence 
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level as shadings, with positive correlations in red and negative correlations 

in blue, and critical domains are shown as shaded boxes. The prediction 

model of C1 in the NA utilizes SST, U200, and VOR850 as predictor variables 

from the NCEP CFSv2 retrospective datasets. The C1 TCs are positively 

correlated with SSTs in the tropical NA (Figs. 3.15a and 3.15d). In addition, 

a negative relationship of U200 in the tropical region (Figs. 3.15b and 3.15e) 

and a positive relationship of VOR850 over the main C1 active area (Figs. 

3.15c and 3.15f) are identified, which implies that more C1 TCs tend to form 

in weaker U200 condition over the tropics and in the warm Atlantic 

Meridional Mode phase (Gray 1984; Kossin et al. 2010). All of the above 

relationships of atmospheric and oceanic variables with Cl cluster activity are 

consistently found in both of reanalysis and CFSv2 data. Thus, we adopted 

the local positive influence of SST in the NA, VOR850 in the tropics, and the 

negative relationship of U200 over the low latitude band as predictors. 

Selection of these predictors is physically reasonable because warm SST, 

positive relative vorticity, and weakened vertical wind shear associated with 

decelerated U200 are all favorable conditions for TC development. Similarly, 

the predictor sets for C2 intense TCs are appointed (Figs. 3.15g–j). A positive 

relationship of SST over the entire NA is found (Figs. 3.15g and 3.15i). 

Because the C2 TCs form in the vast tropical open ocean of the NA and move 

to the mid-latitude ocean with recurving tracks, the basin-wide SST 

variability is an obvious predictor. In the case of U850, a positive relationship 
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is shown over the tropical NA (Figs. 3.15h and 3.15j). This is also regarded 

as one of the predictors because eastward low-level zonal wind obstructs 

intense TC track entry toward Gulf of Mexico or Caribbean Sea. 

When developing regression model, the multicollinearity problem can be 

a critical issue. We have checked the VIF which quantifies the 

multicollinearity for each predictor to ensure the use of the predictor in the 

model (Davis et al. 1986). As we mentioned above, it is noted that the 

threshold of variance inflation factor is 10 (Davis et al. 1986; O’Brien 2007; 

Villarini et al. 2011). When VIF reaches to 10 or larger, the severity of 

multicollinearity could be strong and the predictor should be rejected. In this 

NA prediction model, all the maximum values of variance inflation factors 

are smaller than 10 (not shown), implying that the predictors can be useful to 

be employed in the model. Using these predictors, a forecast model is 

developed based on the Poisson regression of individual clusters. 
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Figure 3.15. Same as Fig. 3.12 except for two patterns in NA initialized on 

July 5. 
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Figure 3.16 shows the observation and six hindcasts initialized in 

February 5 through July 5 from the cross-validation of each pattern model for 

the number of intense TCs in the NA basin. This figure shows only 12 

ensemble mean time series for every hindcast because the final result is 

provided as the form of ensemble mean. As for the WNP forecast model, 

variability of the observed intense TC activity (black line) is effectively 

reproduced by multiple predictions (gray lines) with varying initial times. 

Although the Poisson regression model does not reach the zero line, the 

prediction results resolve several explicit peaks. The peaks at 1987, 1995, 

2005, and 2007 for C1 (Fig. 3.16a) and 1995, 1998, and 2010 for C2 are 

reasonably predicted in our model (Fig. 3.16b). The time series of total intense 

TC prediction obtained from C1 plus C2 shows variability similar to the 

observation (Fig. 3.16c). It should be noted that although our model is based 

on the interannual variability, it has simulated the enhanced NA intense TC 

activities after the 2000s. This strength occurred because the selected 

predictors from the CFSv2 are determined by a thorough sensitivity test to 

indicate best performance. Furthermore, no climatological model forecast 

biases are generally present. 
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Figure 3.16. Same as Fig. 3.13 except for two patterns hindcasts driven by the 

six CFSv2 retrospective run in NA. 

  

(a) C1

(b) C2

(c) Total
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To objectively assess the prediction performance, we calculated 

aforementioned statistical measures such as COR, RMSE, and MSSS of 

multiple hindcasts (Table 3.8). RMSE represents the expected errors for 

statistical prediction, and MSSS denotes the forecast accuracy of our 

statistical–dynamical model compared with a climatology-based reference 

model (World Meteorological Organization 2002; Wilks 2006; Kim et al. 

2012). All multiple forecasts represent good skill regarding COR values 

above the statistical significance at the 99% confidence level. Because of the 

annual fluctuation of C1 TCs is less than that of C2, the performance of the 

C1 model appears to be better than that of C2 in terms of variability from the 

COR analysis. In the case of the total intense TC number, the COR values are 

between C1 and C2 CORs as a result of their overlapping variabilities. The 

RMSEs of C1 are approximately one and those of C2 are 1.3–1.6, and the 

general errors of the total intense TC are 1.6–2.1. The MSSSs of all multiple 

predictions of C1 and C2 in addition to the total number of intense TCs are 

larger than zero, which means the present model skill is improved over the 

reference forecast. The model skill does not appear to increase with time 

evolution close to the TC season. This is one of the distinctive properties of 

the model using a simultaneous relationship on the basis of the hybrid 

approach. Because the model utilizes only the selected grid point values that 

show skillful variability for calculating the predictor, prediction is optimized 

and predictability is retained at high levels despite the increasing forecast lead 
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time (Choi et al. 2016). In summary, our NA prediction model shows stable 

good performance regardless of the forecast issue date, which is special 

advantage of using the hybrid method for operational purposes. 
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Table 3.8. Same as Table 3.7 except for six issue days in NA basin. 

 

  

 

COR / RMSE / MSSS 

February 

5 

March 

2 
April 1 May 1 June 5 July 5 

C1 

0.85/ 

0.90 / 

0.71 

0.82 / 

0.98 / 

0.66 

0.79 / 

1.06 / 

0.60 

0.72 / 

1.16 / 

0.51 

0.79 / 

1.02 / 

0.63 

0.76 / 

1.09 / 

0.58 

C2 

0.77 / 

1.35 / 

0.53 

0.75 / 

1.37 / 

0.51 

0.59 / 

1.58 / 

0.35 

0.61 / 

1.56 / 

0.37 

0.62 / 

1.55 / 

0.38 

0.58 / 

1.61 / 

0.33 

Total 

0.79 / 

1.72 / 

0.62 

0.81 / 

1.62 / 

0.66 

0.72 / 

2.01 / 

0.48 

0.70 / 

2.08 / 

0.44 

0.75 / 

1.86 / 

0.55 

0.71 / 

2.00 / 

0.49 
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3.3.3 Real prediction in the 2014 TC season 

After constructing the forecast model, we evaluated the model in a 2014 

real-time forecast of one-month lead time to the TC season for the WNP basin. 

By presenting validation of actual prediction, we can provide the insight of 

our model results interpretation as well as discussions of practical purpose. 

The 2014 prediction of intense TC activity issued on May 1 and its validation 

were also performed for the WNP basin. Six intense TCs were formed in WNP 

during the 2014 TC season including Neoguri, Rammasun, Halong, Phanfone, 

Vongfong, and Nuri. Only typhoon Rammasun entered the South China Sea, 

whereas the other typhoons moved northward with recurving tracks. In 

addition, these intense TCs made landfall except for Nuri. As a reflection of 

these activities, positive anomalies were dominant over the Philippine Sea–

East China Sea–Japan train, whereas negative anomalies occurred over the 

South China Sea and the eastern part of the WNP (Fig. 3.17a). The seasonal 

forecast of the WNP during JJASO resembled the observational anomalous 

positive track density over the East China Sea–Japan region (Fig. 3.17b). 

According to our prediction results, information of seasonally active intense 

TC occurrence over the East China Sea in 2014 could be successfully 

documented in advance. The total intense TC frequency from the prediction 

was approximately 7.2, including 4.08 for C1, 1.51 for C2, and 1.58 for C3; 

this value is larger than that in observation. Overestimation of WNP C1 

mainly contributed to that of the total intense TC frequency. Moreover, 
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negative anomalous TC activity over the South China Sea was also noted in 

the prediction, which indicates that lower intense TC activity compared with 

the climatological average can be expected in that region. Overall, the actual 

prediction of 2014 intense TCs in the WNP suggested that the present models 

are satisfactory for use as operational forecast systems specifically focusing 

on intense TC activity. 
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Figure 3.17. Observed TC activity and prediction results from the model for 

the WNP basin during the 2014 TC season. Contours represent TC occurrence 

at each grid with an interval of 0.2 in the WNP. Shading denotes anomalies 

with respect to climatological TC occurrence. The total intense TC number is 

given in the bottom-right corners. 
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In the 2014 NA TC season, positive anomalies compared with their 

climatology appeared adjacent oceans along the east coast of the US, whereas 

a negative anomaly region occurred over the Gulf of Mexico and the 

Caribbean Sea (Fig. 3.18a). These results were caused by four intense TCs 

that developed in the NA basin during the 2014 TC season. Hurricanes 

Cristobal and Gonzalo developed over the open ocean and moved with 

recurving paths. In addition, Hurricane Edouard generated over the central 

NA, and Hurricane Fay intensified into a category 1 storm despite its short 

lifetime. In the prediction issued on July 5, negative anomalies over the NA 

basin prevailed, though the positive tendency was not well anticipated (Fig. 

18b). The forecasted 2014 NA intense TC frequencies for each cluster are as 

follows: 0.81 in C1 and 2.08 in C2. Considering that the climatological 

frequencies of C1 and C2 are 2.1 and 3.2, respectively, our model generally 

underestimates the 2014 intense TC activity. Therefore, higher activities than 

the climatology over the adjacent seas from observation were not included in 

the prediction. The total genesis frequency from the model was approximately 

2.9, which is a slightly smaller value within the general error range than the 

observed genesis number. 
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Figure 3.18. Same as Fig. 3.17 except for contour interval of 0.1 in the NA. 
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4. Near-future prediction of tropical cyclone activi

ty 

 

This section shows prediction the NA TC activity in the near-future 

period 2016–2030 and explanation the mechanisms related to the near-future 

climate condition, especially in relation to NASST and ENSO variations. To 

accomplish these objectives, we use a track-pattern-based hybrid prediction 

model developed in a previous study (Choi et al. 2016a). This model has been 

shown to be capable of simulating realistic seasonal NA TC activities such as 

track density and genesis frequency. Although this model was originally 

developed to predict seasonal NA TC activities, it is also applicable for near-

future predictions because the present-day empirical relationships used in the 

model are likely to be valid for the next few decades. Finally, the impacts of 

anthropogenic forcing and natural variability on near-future climate in the NA 

are discussed by investigating near-future SST predictions from multi-model 

products. 

 

4.1 Strategy for the near-future TC prediction 

4.1.1 Application of seasonal TC prediction model 

To predict near-future TC activities over the NA basin, we use the track-
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pattern-based model developed in a previous study (Choi et al. 2016a), which 

divided the climatological TC tracks into four representative patterns and 

predicted each pattern using the simultaneous empirical relationships with 

large-scale environments derived from the seasonal climate forecasts. Then, 

the prediction results of all track patterns were combined to produce the TC 

forecasts over the NA basin. 

The original version in the previous study used the NCEP CFSv2 seasonal 

reforecasts during the period 1982–2012 and quasi-real-time CFSv2 

operational forecasts. In this study, the track-pattern-based TC prediction 

model is developed using the NCEP CFSR datasets. We modify the statistical 

training period to 1982–2015 to include very recent climate variability. 

However, the overall structure for this model and its logical flow are the same 

as those in the original version. 

Figure 4.1 shows the four representative patterns of NA TC tracks (TC1–

TC4) and the associated interannual correlation maps between TC track 

patterns and climate predictors. We identify climatological NA TC track 

patterns by using the fuzzy c-means method (Choi et al. 2016a). Then, the 

hybrid prediction model is developed for each track pattern. The candidate 

variables for the predictor are SST, VWS, VOR850, and U850, which are 

well-known climate factors strongly related to TC activity. If the 

characteristics of the predictors are empirically explainable for TC activity 

and the corresponding relations are statistically significant, we employ their 
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relations as predictors. The positive relationships with SST and VOR850 are 

used for calculating predictors; other connections of VWS and U850 are also 

utilized. Because significant relations are still retained despite the inclusion 

of recent years, the detailed domain for the predictor region and combinations 

of predictors are the same as those used in the original version of the model. 
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Figure 4.1. (a), (d), (h), (l) Gridded TC occurrences of the four track patterns 

for hurricane seasons (AugustOctober) of 1965–2015 over the North 

Atlantic. (b)(c), (e)(g), (i)(k), and (m)(n) Spatial correlation coefficients 

between observed TC frequencies and predictor variables from CFSR during 

1982–2015 for each track pattern. Red (blue) shadings indicate areas with 

statistically significant positive (negative) correlations at the 90% confidence 

level. The predictor regions are presented as a colored box. 
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To reforecast TC frequencies of the four track patterns, we use a leave-

one-out cross-validation method. This method has been mainly used to 

evaluate the skill of statistical model employing the independent predictors 

on different years (Kim et al. 2012; Ho et al. 2013; Choi et al. 2016a, b). When 

we select a certain target year for prediction, the model is optimized to 

produce the best fitting result by using the remaining years. This process is 

iteratively performed to reforecast predictand (i.e., TC) for the whole training 

period. Statistical measures of hindcasts verify the performance of this model 

even with the inclusion of recent years in the training period (Table 4.1). All 

correlation coefficients between reforecasted TC and observed TC are 

statistically significant at the 95% confidence level. Moreover, we investigate 

the root–mean–square errors (RMSE) and mean–square skill scores (MSSS) 

to objectively assess the predictability. The RMSE value is the mean error of 

the forecasting model; a lower RMSE value indicates better performance. The 

MSSS value is a measure of improvement in performance over the reference 

prediction: A positive (negative) MSSS value implies that the model is better 

(worse) than the reference prediction. The MSSS value in the case of best 

prediction is 1. The expected errors (i.e., RMSE) for all track patterns are less 

than 1.59, and all of the MSSS values are positive. Therefore, the RMSE and 

MSSS of all TC track patterns demonstrate the skillful performance of our 

model. 

Table 4.1. Correlation coefficients (CORR), root–mean–square errors 
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(RMSEs), and mean–square skill scores (MSSS) of hindcasts using the CFSR 

compared with best-track observations for the period 1982–2015. 

Cluster CORR RMSE MSSS 

TC1 0.75 1.07 0.56 

TC2 0.63 1.59 0.22 

TC3 0.65 1.48 0.38 

TC4 0.66 1.38 0.41 
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4.1.2. Multivariate linear regression model using the NASST and Niño 

3.4 indices 

To examine the role of NASST and ENSO effects on changes in the NA 

TC activities, we set up the multivariate linear regression model using the 

NASST and Niño 3.4 indices. The empirical orthogonal function (EOF) 

analysis is applied to define the NASST index. The NASST index is 

calculated by projecting the ASO-averaged NASST (0–70°N) anomalies 

onto the leading EOF mode of CFSR SST (1982–2015), which would be 

known as the spatial pattern of AMO (not shown). We use NASST as an index 

for regression instead of AMO because there is not enough available SST data 

length to define AMO index as other previous studies. The Niño 3.4 index is 

the area-averaged SST anomalies over the region of 5°S–5°N, 170°W–120°W. 

The indices of NASST and Niño 3.4 are mutually independent, with an 

insignificant correlation coefficient value of r = 0.06 for the period 1982–

2015, which therefore satisfies the statistical assumptions for the multivariate 

linear regression model. All time-evolving two-dimensional fields (𝑦) such as 

SST, U200, U850, VWS, and VOR850 are decomposed into NASST-

regressed fields (𝑦𝐴𝑀𝑂), Niño 3.4-regressed fields (𝑦𝐸𝑁𝑆𝑂), and their residuals 

(𝑦𝑅𝑒𝑠). The formulas of each field are written as 

𝑦𝑝 = 𝛼0 + 𝛼𝑁𝐴𝑆𝑆𝑇𝑥𝑁𝐴𝑆𝑆𝑇 + 𝛼𝐸𝑁𝑆𝑂𝑥𝐸𝑁𝑆𝑂 

𝑦𝑁𝐴𝑆𝑆𝑇 = 𝛼0 + 𝛼𝑁𝐴𝑆𝑆𝑇𝑥𝑁𝐴𝑆𝑆𝑇 
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𝑦𝐸𝑁𝑆𝑂 = 𝛼0 + 𝛼𝐸𝑁𝑆𝑂𝑥𝐸𝑁𝑆𝑂 

𝑦𝑅𝑒𝑠 = 𝑦 − 𝑦𝑝 + 𝑦𝐶𝑙𝑖𝑚, 

where 𝑦𝑝  is the predicted field, 𝑦𝐶𝑙𝑖𝑚  is the climatological average, 

𝛼0 is the regression constant, 𝛼𝑁𝐴𝑆𝑆𝑇 is the regression coefficient of NASST, 

𝑥𝑁𝐴𝑆𝑆𝑇 is the NASST index, 𝛼𝐸𝑁𝑆𝑂 is the regression coefficient of ENSO 

(i.e., Niño 3.4), and 𝑥𝐸𝑁𝑆𝑂  is the Niño 3.4 index. By investigating the 

predictions with these different fields, we can determine the responsible 

mechanisms for regional TC activity changes in the near future. 

 

4.2 Near-future prediction of the NA TC activity  

4.2.1. Observational responses of the NA TC to NASST and ENSO 

Before performing TC predictions, it is necessary to examine the 

sensitivities of the TC prediction model to the changes in NASST and ENSO 

phases, and whether these sensitivities are physically explainable. Although 

the predictors of track-pattern-based models are strongly linked to NASST 

and ENSO variabilities, high predictability of the TC activity responses to the 

phases of NASST and ENSO is not guaranteed because the model uses the 

area-averaged climate variables as predictors. Thus, we need to identify the 

responses of NA TC activity from the model with observation during the 

statistical training period of this model (i.e., 1982–2015). 

Figure 4.2 presents the differences in the gridded TC occurrences between 
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the positive and negative phase of NASST and ENSO. It is well known that 

more (fewer) NA TCs form during a NASST warming (cooling) period 

associated with the positive (negative) phase of AMO years (Fig. 4.2a). Some 

regions in the tropical NA have experienced 1.5 more TC occurrences in the 

NASST positive years than negative years, which means that almost 50% 

more (less) TCs occur in the positive (negative) NASST years compared to 

the climatological TC numbers. Weakened TC activities of up to one less TC 

occurrence in the El Niño years compared to the La Niña years are noted over 

the Gulf of Mexico and the East Coast of North America (Fig. 4.2b) due to 

sinking motion over the Gulf of Mexico and the Caribbean Sea induced by 

the upward motion in the eastern Pacific (Frank and Young, 2007). The core 

regions of TC occurrence differences between positive and negative phases 

of NASST and ENSO are significant at the 95% confidence level. 

The hindcasts of TC activity from the model using Climate Forecast 

System Reanalysis (CFSR) can reasonably reproduce the observed responses 

of TC occurrences associated with the NASST and ENSO phases despite 

some overestimations (underestimations) in the mid-latitude NA offshore 

(Gulf of Mexico) for the NASST (ENSO) case (Figs. 4.2c and 4.2d). In 

addition, the model responses are significant in most parts of the NA basin. 

In general, this model realistically simulates the overall TC activity changes 

associated with NASST and ENSO variations. To verify the origin of 

performance, we prescribe NASST- and Niño 3.4-regressed fields to the TC 
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prediction model. Figures 4.2e and 4.2f show TC activity responses of the 

model to the phase differences of NASST and ENSO with their regressed 

fields used as input data. They are nearly identical to the reconstructions using 

the original CFSR fields (Figs. 4.2c and 4.2d). This result implies that most 

of the predicted TC activity responses originate from their regressed fields 

(i.e., NASST and ENSO); thus, the performance source of the reforecast is 

from its own variability. For the TC activity response to NASST (ENSO), the 

effect of Niño 3.4- (NASST)-regressed fields is negligible (not shown). Thus, 

this model can reasonably predict TC activities based on independent links 

with NASST and ENSO. 
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Figure 4.2. Composite differences in seasonal TC occurrence for positive 

minus negative phase years of the North Atlantic basin-wide SST (NASST) 

and El Niño–Southern Oscillation (ENSO) during the period 1982–2015. 

(a),(b) The best-track observations, (c),(d) CFSR reconstructions, (e) 

reconstruction using the NASST-regressed CFSR, (f) reconstruction using the 

Niño 3.4-regressed CFSR. Black dots indicate that the differences are 

statistically significant at the 95% confidence level in each 5° × 5° latitude–

longitude grid area. 

(a) (b)

NASST composite ENSO composite

Observation

(c) (d)

Reconstruction using the CFSR

Reconstruction using the regressed CFSR

(e) (f)
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4.2.2. Prediction results and contributions of the NASST and ENSO 

This good validation of the model performance lends credence to our 

predictions of the changes in TC activities for the near-future period. Here, 

we investigate the differences in the gridded TC occurrences between present 

decades (20022015, P1) and near-future decades (20162030, P2). Table 4.2 

shows the changes for the four clusters (TC1–TC4, Fig. 4.1) and their 

summation of seasonal TC frequencies for each ensemble during the two 

periods. All clusters and their summation of TC frequencies are expected to 

decrease in the near future except for TC2 in Climate Forecast System version 

2 (CFSv2) initialized in 1996 (CFS1996). Frequencies in TC2 in CFSv2 

initialized in 1988 (CFS1988), TC1 in CFS1996, TC3 and TC4 in CFSv2 

initialized in 2002 (CFS2002) are expected to decrease significantly in P2 

compared with that in P1. For the averages of the three ensembles, the number 

of TC1 through TC4 during the August to October (ASO) of P2 will decrease 

by 0.15, 0.32, 0.53, and 0.53, respectively, which correspond to 5–20% 

reduction. The total number of seasonal TCs is reduced by 1.53 (about 12% 

decrease, 11.25 in P2 and 12.78 in P1). 
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Table 4.2. Seasonal TC genesis frequencies of each track pattern and their 

summation by the track-pattern-based model for periods 2002–2015 (P1), 

2016–2030 (P2), and the difference between the two periods. Asterisks 

represent statistical significance level for each ensemble member at the 95% 

(***), 90% (**), and 80% (*) levels. 

Ensemble Period TC1 TC2 TC3 TC4 Sum 

CFS1988 

P1 1.02 5.63 2.16 3.61 12.42 

P2 0.80 4.74 1.78 3.25 10.57 

P2 minus P1 –0.22 –0.89* –0.39 –0.36 –1.86* 

CFS1996 

P1 0.93 5.23 1.95 3.53 11.65 

P2 0.74 5.58 1.93 3.17 11.42 

P2 minus P1 –0.19* 0.34 –0.02 –0.36 –0.23 

CFS2002 

P1 1.00 5.92 3.17 4.17 14.26 

P2 0.97 5.50 1.98 3.31 11.75 

P2 minus P1 –0.03 –0.42 –1.20*** –0.86** –2.51*** 

Average 

P1 0.99 5.59 2.43 3.77 12.78 

P2 0.84 5.27 1.89 3.24 11.25 

P2 minus P1 –0.15 –0.32 –0.53 –0.53 –1.53 
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According to these changes, the TC activity is predicted to weaken over 

the entire NA basin in the near-future period (Fig. 4.3a). In particular, seasonal 

TC occurrences over the region of 10°N–20°N, 60°W–30°W and in the open 

ocean of the NA basin will decrease by up to 0.4. It means that about four less 

TCs per decade are anticipated over the core region of reduced TC activities. 

All three ensembles based on the CFSv2 Coupled Model Intercomparison 

Project (CMIP) consistently show reduced TC activities except for the 

Caribbean Sea and the Gulf of Mexico. The large decrease in NA TCs is 

concentrated mainly in the open ocean with a maximum seasonal decrease of 

0.2 (i.e., two less TCs per decade) in the 50°N region. 

The weakened TC activities over the NA can be explained by the effects 

of the phase transitions in NASST and ENSO during the near-future period. 

The decrease in the TC activity over the open ocean is attributed mainly to 

the effects of NASST (Fig. 4.3b). The prediction using the NASST-regressed 

fields explains a large portion of the reduced TC occurrences offshore. 

However, no region shows the same sign in all three CFSv2 CMIP ensembles. 

For the ENSO effects, the overall decrease in the basin-wide NA TC activities 

is caused by changes in the ENSO effects during P2 (Fig. 4.3c). In particular, 

the remote effects of ENSO can reduce TC activities over the Caribbean Sea, 

the Gulf of Mexico, and the East Coast of the United States. Unlike NASST, 

the changes in the ENSO phase show the same TC change tendencies in the 

entire NA basin. Although residual fields from NASST and ENSO can lead 
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to decreases in TC activities over the tropical region, its variation shows 

relatively small amplitudes compared to the TC reductions by the changes in 

NASST and ENSO (Fig. 4.3d). Summation of these three decomposed 

changes presented nearly the same amplitude and spatial distribution of the 

total TC activity decrease (not shown). 
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Figure 4.3. Ensemble-averaged differences for seasonal TC occurrence 

between the two periods (2016–2030 minus 2002–2015) by using the (a) total 

fields, (b) North Atlantic basin-wide SST (NASST)-regressed fields, (c) Niño 

3.4-regressed fields, and (d) residual fields. Black dots indicate regions in 

which all three ensembles of reconstruction show the same sign in each 5° × 

5° latitude–longitude grid area. 
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We have analyzed near-future TC changes by considering the NASST and 

ENSO impacts. Here, we investigate how the changes in NASST and ENSO 

are simulated in the CFSv2 CMIP runs, and we examine their relationship to 

the predicted TCs changes. Table 4.3 presents a comparison of the event 

frequency per decade for NASST and ENSO phases between P1 and P2 for 

each ensemble member and their averages. Calculations of the long-term 

NASST and ENSO events over several decades are not available because the 

analysis period is limited to 2002–2030, the common period for all three 

ensembles. However, we were able to assess the climatological phase 

transitions of NASST and ENSO, and their changes in event frequency 

between P1 and P2. All ensembles predict more frequent NASST neutral 

phase and less frequent positive phase. For ENSO, all three ensembles show 

more frequent El Niño events in the near-future period. Thus, more frequent 

El Niño episodes, fewer neutral and La Niña phases are expected to occur in 

P2. These changes in the climate variability will become unfavorable for the 

TC genesis and development over the NA in the near-future period. 
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Table 4.3. Event frequencies per decade for positive, neutral, and negative 

phases of the North Atlantic basin-wide SST (NASST) and El Niño–Southern 

Oscillation (ENSO) for periods 2002–2015 (P1) and 2016–2030 (P2) and 

their difference. 

Ensemble Period 

NASST ENSO 

Positive Neutral Negative El Niño Neutral La Niña 

CFS1988 

P1 4.29 2.86 2.86 3.57 2.86 3.57 

P2 1.33 4.67 4.00 4.00 6.00 0.00 

P2 minus P1 –2.96 1.81 1.14 0.43 3.14 –3.57 

CFS1996 

P1 1.43 4.29 4.29 1.43 4.29 4.29 

P2 1.33 5.33 3.33 4.67 2.67 2.67 

P2 minus P1 –0.10 1.04 –0.96 3.24 –1.62 –1.62 

CFS2002 

P1 4.29 3.57 2.14 2.86 4.29 2.86 

P2 2.00 4.67 3.33 4.67 2.00 3.33 

P2 minus P1 –2.29 1.10 1.19 1.81 –2.29 0.47 

Average 

P1 3.34 3.57 3.10 2.62 3.81 3.57 

P2 1.55 4.89 3.55 4.45 3.56 2.00 

P2 minus P1 –1.79 1.32 0.45 1.83 –0.25 –1.57 
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Combinations of the NASST and ENSO phase transitions result in large-

scale environmental changes in P2. Figure 4.4 shows the ensemble-averaged 

changes for seasonal environmental fields such as SST, zonal wind at the 200 

hPa (U200) and 850 hPa levels (U850), VWS, and relative vorticity at 850 

hPa (VOR850), which are predictor variables for the TC prediction model 

(Fig. 4.1). Although the near-future changes in these three ensemble averages 

reveal that the SST warming will occur in the mid-latitude central NA, other 

tropical and subpolar gyre regions in the NA show SST cooling in P2 (Fig. 

4.4a). In addition, notable SST warming regions appear in the central to 

eastern Pacific. These results imply that the NASST phase slowdown from 

the positive to neutral phase in conjunction with more frequent El Niño events 

are anticipated in P2 compared with that in P1 as discussed earlier. All 

atmospheric circulations are systematically organized with these SST change 

patterns (Figs. 4.4b–e). The difference between the easterlies at 850 hPa and 

the westerlies at 200 hPa over the tropical NA causes the VWS to increase in 

P2. Both the strengthened VWS and weakened VOR850 over the tropical NA, 

shown in ensemble-averaged CFSv2 CMIP simulations, lead to unfavorable 

conditions for TC developments. 
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Figure 4.4. Ensemble-averaged seasonal differences in (a) sea surface 

temperature (SST; ℃), (b) zonal wind at 200 hPa (m s-1), (c) zonal wind at 

850 hPa (m s-1), (d) vertical wind shear (m s-1), and (e) relative vorticity at 

850 hPa (10-6 s-1) between the two periods (2016–2030 minus 2002–2015). 

Black dots indicate regions in which all three ensembles of CFSv2 CMIP runs 

show the same sign. 

  

(a) SST
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These SST changes in the NA and eastern Pacific can be understood with 

their own regressed fields. The SST decreases in the tropical NA and subpolar 

gyre occur in the changes of NASST-regressed SST (Fig. 4.5a). The decadal 

SST variability in the NA subpolar gyre is known to be closely related to 

AMO (Hermanson et al. 2014). Because the variability of NASST is closely 

related to AMO, the subpolar gyre heat convergence induces SST cooling and 

the NASST phase change. The upper and lower tropospheric wind fields 

changes related to the NASST variability lead to an increase in VWS in the 

tropical Atlantic region and a decrease in VOR850 in the subtropical NA 

region (Figs. 4.5b–e). All of these variations induce decreased TC activities 

in the NA offshore in near-future period. The SST warming in the eastern 

Pacific is also found in Niño 3.4-regressed fields (Fig. 4.6). Enhanced VWS 

in tropical and mid-latitude region of NA as well as weakened the VOR850 

in inshore (Caribbean and Gulf of Mexico) associated with the ENSO 

variation would cause reduction of overall TC activity in the entire basin (Figs. 

4.6b–e). 
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Figure 4.5. Same as Fig. 4.4 except for the North Atlantic basin-wide SST-

regressed fields. 

 

(a) SST

(b) U200

(d) U200 minus U850 (e) ξ850

(c) U850
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Figure 4.6. Same as Fig. 4.4 except for Niño 3.4-regressed fields. 

(a) SST

(b) U200

(d) U200 minus U850 (e) ξ850

(c) U850
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Figure 4.7. Same as Fig. 4.4 except for residual fields. 
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As for residual effects, many types of climate factors other than NASST 

and ENSO can affect NA TC activities. Considering the predictor variables 

and their critical domains of the model (see Fig. 4.1), we can infer these other 

factors. The change in VWS owing mainly to U200 over the subtropical NA 

could be a reason for the weakening of TC activities in the near-future period 

because this will have a significant impact by destroying the TC vertical 

structure (Figs. 4.7b–4.7d). In addition, strengthening of low-level easterlies 

(i.e., U850) in the tropical NA appear to suppressing factors for TC 

development because it can lead to the decrease in the relative vorticity 

(VOR850) over the main TC development region (Fig. 4.7e). These changes 

are not captured in our statistical decomposition and do not appear to be 

directly related to the NASST and ENSO variabilities (see Fig. 4.7a). 

However, the effects of these residual factors cancel out each other to result 

in small net effects (Fig. 4.3d). 

As one of the candidates for other influences, long-term external forcing 

effects such as greenhouse effect may be considered as residual effects. 

However, greenhouse effects are not expected to have a significant impact in 

the near-future decades. Moreover, significant differences in NA TC activity 

are not detected even in the prediction using environmental fields regressed 

onto global warming (not shown). Therefore, if we want to accurately 

characterize the residual effects, further investigations of various time scales 

and spatial scales are needed. 
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4.2.3. Roles of the natural variability and external forcing 

The cooling of NASST in the near-future period is an interesting issue 

when we consider recent global warming trend induced by the anthropogenic 

greenhouse gas emissions. As an attempt to understand this discrepancy, we 

analyzed the near-future SST predictions in other CMIP5 models to discuss 

the main driver of NASST variability and ultimately of TC activity changes 

in the near future. Figure 4.8 shows the ensemble-mean seasonal SST 

differences from 24 CMIP5 models following the historical and RCP4.5 

scenarios between P2 and P1. The RCP4.5 scenario data are calculated from 

pre-industrial initial conditions and forced by anthropogenic influences. We 

can assess that difference in seasonal SST from the CMIP5 multi-model 

ensemble average is mainly attributable to the anthropogenic forcing rather 

than internal variability for each model. As expected, the ensemble-mean 

prediction shows prevailing SST warmings over the Atlantic and Pacific 

basins in the near-future period. For the ENSO, the CMIP5 models generally 

predict greater SST warmings in the eastern Pacific, which implies the models 

simulate more frequent occurrences of El Niño events. For the SST in the NA, 

the warming amplitude is relatively small in the NA subpolar gyre region 

because of the cooling from some models, but most of the models show 

warming SST in the tropical NA. Overall, anthropogenic forcing acts to 

increase the SST over both the NA and the eastern Pacific basins in the near 
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future. Considering that NASST warmings (more frequent El Niño events) 

can lead to enhancement (decline) in the NA TC activity, the near-future 

decrease in the NA TC activity may be small or almost unchanged if only 

anthropogenic impact affects to the NA TC change. 
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Figure 4.8. Ensemble-averaged seasonal difference in SST from 24 CMIP5 

models for historical and RCP4.5 scenarios between the two periods (2016–

2030 minus 2002–2015). Black dots indicate regions in which 18 of 24 

CMIP5 models showing the same signs of averages in SST differences. 
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Our results based on the CFSv2 CMIP climate forecasts show clear 

decreases in the NA TC activity via the changes in both NASST and ENSO. 

Because the CFSv2 CMIP runs are initiated with the reanalysis data and 

forced by increased CO2 concentration, the internal variability and external 

forcing are considered simultaneously in the near-future prediction (see Data). 

We can estimate the impact of natural variability to SST increases in the near 

future by comparing the CFSv2 CMIP runs and the CMIP5 multi-model 

products. The number of El Niño events is expected to increase due to natural 

variability or anthropogenic forcing. The difference between the CFSv2 and 

CMIP5 multi-model ensemble-mean SST predictions implies that the cooling 

effects of natural variability dominates the warming effects of anthropogenic 

forcing in determining the future NASST. Thus, this result suggests that the 

cooling phase of NASST in conjunction with increasing El Nino events will 

significantly decrease the NA TC activities in the near future. 

Near-future prediction should be handled differently from long-term 

climate projection (e.g., late 21st century prediction) that is dominated by 

external forcing. Our study investigates the role of natural variability and 

anthropogenic forcing on the near-future climate and TC activity changes. We 

hope that this study can address the scientific challenges and the predictability 

desert fairly to satisfy the social needs in preparing for TC-induced disasters 

with long-range plans. 
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4.3 Near-future prediction of the WNP TC activity 

4.3.1. Prediction results and ENSO contribution 

As the NA basin, we attempted to predict the TC activity changes over 

the WNP basin. In the above section, we showed that more frequent El Niño 

events are expected in near future (Table 4.3). Because the ENSO is major 

natural variability to modulating the WNP TC activity, we developed linear 

regression model using the Niño 3.4 index. For the WNP basin, we excluded 

the NASST variability because its effect has been not revealed in any previous 

studies and the predictors of TC prediction model do not reflect the NASST 

variability. Prior to prediction of the near-future WNP TC changes, we 

extended training period of the track-pattern-based model developed in Ho et 

al. (2013) to include recent TC variability. The modified training period is 

1982–2015 consistent with the NA TC prediction model. 

Figure 4.9a shows observed composite differences between El Niño 

years minus La Niña years during the period of 1982–2015. As previous 

studies reported (Kim et al. 2013), the TC activity is enhanced over the 

southern-eastern part of the TC main develop region and significant high TC 

activity ridge leads to the southern Japan. The TC activity over the South 

China Sea is relatively weakened in El Niño years than La Niña years. 

Figure 4.9b presents the prediction of near-future TC changes over the 

WNP. Except for tropical offshore sea where maximum core region in ENSO 
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composite map (Fig. 4.9a), the WNP TC activity is expected to be weakened 

in overall basin including Philippines Sea, Taiwan, and southeastern sea of 

the Japan. If we investigate the near-future TC change associated with ENSO 

variability, it is expected to increase from offshore tropical seas through the 

Japan and Korea, and decrease in the South China Sea (Fig. 4.9c). 

Considering the ENSO-related TC activity characteristics and near-future 

large-scale circulation fields changes related ENSO (Table 4.3 and Fig. 4.6a), 

more active TCs from offshore sea through the Korea and Japan would be 

reasonable prediction result. Residual changes unrelated to ENSO variability 

are expected to reduce TC activity in the East China Sea (Fig. 4.9d). However, 

it is necessary to further analyze other possible climate variability effects to 

the WNP TC changes because the summation of these two effects does not 

account for the near-future TC changes (Fig. 4.9b). 

  



136 

 

 

Figure 4.9. (a) Composite differences in seasonal TC occurrence for positive 

minus negative phase years of the El Niño–Southern Oscillation (ENSO) 

during the period 1982–2015. Black dots indicate that the differences are 

statistically significant at the 95% confidence level in each 2.5° × 2.5° 

latitude–longitude grid area. Ensemble-averaged differences for seasonal TC 

occurrence between the two periods (2016–2030 minus 2002–2015) by using 

the (b) total fields, (c) Niño 3.4-regressed fields, and (d) residual fields. Black 

dots indicate regions in which all three ensembles of reconstruction show the 

same sign in each 2.5° × 2.5° latitude–longitude grid area. 
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4.3.2. Possible influences from other variabilities 

As we have seen, the ENSO-induced TC changes did not explain the near-

future prediction of the WNP TC activity changes. There would be many 

climate variabilities for affecting the WNP TC activity other than ENSO. Thus, 

we should investigate various climatic influences to the near-future TC 

activity.  

First of all, it is well known that the MJO may have an impact to the WNP 

TC activity on subseasonal time scale. If the MJO variability would be 

changed in climamtological perspective, therefore, we can expect the changes 

in the near-future TC activity. If there are changes in the mean state of the 

near-future WNP and associated wave propagation, the development and 

movement of MJO may change. In addition, variabilities of the stratospheric 

influences (e.g., QBO) and Pacific Decadal Oscillation (PDO) can affect the 

WNP TC activity. Previous study reported that the easterly phase of the 

stratospheric QBO can induce more TC occurrence in the offshore of Japan 

whereas more TCs approach over the East China Sea during the westerly 

phase (Ho et al. 2009). Regarding the PDO, Liu and Chan (2008) suggested 

the possible influence of PDO to the interdecadal WNP TC activity by 

changes in the strength and westward extension of the subtropical high. If 

climatic changes of the QBO and PDO occur in the near future, they can affect 

the WNP TC activity. 
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5. Future study 

 

Long-term prediction of TC activity is a necessary process to reduce the 

damage caused by TCs and to utilize the positive side of TC including water 

resource supply and elimination of the red tide. This thesis shows the long-

term prediction of TC track occurrences and intensity based on the 

understandings of variability of the WNP and NA TCs. Because the unskillful 

performance of seasonal TC simulations by the numerical modeling suggests 

that there are still several challenges to apply operational forecasts, this thesis 

explores the statistical relationships between the seasonal forecasts from the 

GCM (i.e., CFSv2 in this thesis) and the summertime TC activity, which is 

called as hybrid statistical-dynamical method, to predict TC activity as 

transition stage to the numerical TC prediction. 

Nevertheless, the TC prediction using the high-resolution dynamic model 

should be continued for next generation. Statistical approach has fundamental 

limitations regarding TC intensity, which can be overcome by the high-

resolution dynamics model. However, climate modeling of several-km 

resolution has not been attempted until now because of inappropriate dynamic 

core and model parameterization, limitation of computing source (i.e., 

promptness), and overall performance. We should overcome these limitations, 

so the numerical model should be used for long-term TC prediction in the 



139 

 

next generation. 

For a disaster prevention perspective, the accurate prediction of TC-

induced extreme weather is essential. At this generation, we anticipate that 

state-of-the-art numerical model with the order of few kilometers can 

reasonably predict the TC-induced precipitation and surface wind speed. 

Even though there are limitations for applying climate model to seasonal 

prediction at this moment, we have explored the possibility by investigating 

recent Korea-landfall TCs. 
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Figure 5.1. Model domains and Korea landfall region indicated by the shades. 
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In order to simulate TC structure and related environmental fields including 

precipitation and wind, we used the Weather Research and Forecasting (WRF, 

Skamarock et al. 2008) model, version 3.4. Many previous studies have been 

widely used in short-term TC simulation by using the WRF model (Davis et 

al. 2008; Fierro et al. 2009; Gentry and Lackmann 2010; Cha et al. 2011; 

Potty et al. 2012; Jin et al. 2013). The initial and lateral boundary conditions 

are acquired from the NCEP CFSv2 6-hourly forecasts. The two-way nested 

experiments containing fixed grid systems with horizontal resolution of 30 

and 10 km (Fig. 5.1), respectively, and 30 vertical levels (1000–50 hPa). The 

domains are centered at 30°N, 128°E with 202 × 178 (domain 1) and 244 × 

226 (domain 2) grid points. WRF single-moment 3-class microphysics 

(WSM3) scheme was used for microphysics scheme (Hong et al. 2004). The 

Kain–Fritsch scheme (Kain, 2004) was applied as the cumulus 

parameterization. The Yonsei University scheme (Hong et al. 2006) was 

chosen for the planetary boundary layer parameterization. The model also 

includes the radiative scheme for the NCAR Community Atmosphere Model 

(CAM 3.0) radiation scheme (Collins et al. 2004) and Noah land surface 

model (Chen and Dudhia 2001). 

As target cases, the recent ten landfall TCs to the Korean Peninsula during 

the 2011–2016 are simulated. A TC makes landfall in Korea when its center 

is at a distance of 1° from the coastal lines of the Korea (Fig. 5.1). For each 

TC case, three experiments initialized in 1-day, 2-day, and 3-day leads to the 
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landfall date are conducted (Fig. 5.2). Although unrealistic TC tracks are 

simulated in far-lead cases (mostly 3-day leads simulation), it is found that 

most of the 1-day lead simulations can reasonably predict TC tracks. 

Therefore, all the following analyses are based on the 1-day simulations. 
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Figure 5.2. Observed and simulated tracks of 10 landfall TCs during the 

2011–2016. The black line with closed circles plotted every 6 h denote the 

best-track observation. Simulated TC tracks by three experiments with 

initialized in 1-day, 2-day, and 3-day lead time to affecting day are presented 

in different gray colors. 
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Figure 5.3. Observed and simulated daily accumulated precipitation (mm) in 

Korea from the experiment initialized in first affecting day. The most 

destructive day of 10 landfall TCs are plotted, respectively. All dates are based 

on the KST. 
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Figure 5.4. Same as Fig. 5.3 except for daily maximum surface wind speed 

(m s-1). 
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Figure 5.5. Property losses caused by recent 9 Korean landfall TCs for 16 

metropolitan cities and provinces. The color scales are based on KRW.  
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The TC-induced precipitation and surface maximum wind speed are well 

simulated for all ten TC cases (Figs. 5.3 and 5.4). Among the ten landfall cases 

since 2011, there were several patterns of TC-induced precipitation: 

interaction with rain band called as Changma case (MEARI, 2011), intense 

precipitation near the Mt. Jiri by the topography effect case (MUIFA, 2011), 

more precipitation to the western and eastern part of Korean Peninsula case 

respectively (KHANUN, 2012; TEMBIN, 2012; DANAS, 2013; NAKRI, 

2014; CHABA, 2016), and nation-wide rainfall (SANBA, 2012; CHAN-

HOM, 2015). Compared to the station-based observation, the spatial 

distribution of daily accumulated precipitation during the most destructive 

landfall date are realistically predicted. Moreover, the predictions of the 

precipitation amounts for 79 stations are reliable enough to make use of 

operational forecasts. Although there are underestimations on the land by the 

land surface friction, overall spatial distributions of surface maximum wind 

speed are also reasonable to operational work. Before the TC landfall, 

therefore, we can estimate TC-induced extreme weather (heavy precipitation 

and surface wind gust) by the WRF-CFSv2 experiment. 

On the basis of the annual report on disasters published by the Korean 

government, the damages caused by the recent nine TCs are analyzed for 

province level (Fig. 5.5). The annual reports on disasters aggregate the 

property loss by the meteorological extreme event on a case-by-case. Using 

the property loss datasets, we diagnose the effects of TC-induced extreme 
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weather (i.e., heavy precipitation and strong wind gust) to the economic 

damage. Based on this understanding, we hope to develop the prediction 

model for TC-induced property loss to raise public awareness of TC activity. 

If the development of TC simulation by the numerical model continues, in-

depth understanding of the interaction between the TC and the surrounding 

environment field causing the TC-related extremes. This will enable 

predicting damages caused by TCs soon and will be a way for our academia 

to contribute to society. 
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6. Concluding remarks 

 

The seasonal to near-future prediction of summertime TC activity over 

the WNP and NA is very important for both scientific and social-economical 

aspect. Understanding relationship between TC activity and climate 

variability of seasonal time range have been studied and development of TC 

activity prediction model with high predictability has long been required. As 

one of these efforts, we have launched the track-pattern-based model which 

predicts seasonal TC density over the WNP and NA. On the basis of high 

performance for the seasonal prediction model, we have tried to pioneer 

decadal prediction (up to 2030 in this thesis) of TC activity. 

This model is characterized by the hybrid statistical-dynamical type 

model. It is based on the statistical relationship between the clustered TC 

number and the seasonal averaged predictors from the dynamically forecasted 

in NCEP CFS. The advantage of our model is that it can predict spatial 

patterns of the TC activity in the entire basin with minimal computational 

costs than using fine-resolution dynamical models, either regional or global. 

The prediction skills of the WNP TC prediction model for each track pattern 

show good performance by the leave-one-out cross validation process for 

hindcast with the correlation coefficient 0.71 to 0.81 (Kim et al. 2012). In 

particular, we examined predictability for the case of 13 named TCs formed 
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over the WNP in the 2010 typhoon season, representing the lowest number 

since 1951. The model reasonably predicts 16.4 TCs which are well below 

one standard deviation from the climatological mean. The model, using the 

NCEP CFSv1 operational ensemble forecasts, is thus considered feasible for 

forecasting the seasonal-total TC genesis frequency.  

Regarding the end of CFSv1 operational data release, a new necessity is 

arisen to change the dynamic input data to new version of CFS. Ho et al. 

(2013) presents the procedure of the track-pattern-based model with brief 

technical background and rebuilding based on the CFSv2 data. After the 

modification, the performance of this model still good for climatological 

aspect (Table 2.1). Recently, in the light of this advantage, a track-pattern-

based model for the WNP basin has been employed for quasi-real-time 

operational forecasting by the NTC of the Korea Meteorological 

Administration (Kim et al. 2012; Ho et al. 2013). This implementation of 

WNP TC prediction model to meteorological agency and satisfactory 

operation until now could partly dispel worries about artificial skill, argued in 

DelSole and Shukla (2009), of our methodology for application to real-time 

forecast. 

Using this methodology, we also have developed a seasonal prediction 

model based on four TC track patterns of ASO TC activities over the NA basin 

and evaluated its forecasting skill for various lead months from February to 

July. Unlike previous studies focused on the seasonal forecast of the total 
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number of TCs in the NA basin, our model can also predict the basin-wide 

spatial distributions of TC activities in addition to the total number of TCs. 

Because TC-related damages are more closely related to its approach toward 

coastal areas or landfall rather than the total TC genesis number in the entire 

NA basin, this study can contribute directly to TC-impact preparedness which 

can significantly reduce the damages to life and property in TC-prone coastal 

areas. 

TCs in the NA basin are objectively classified into four TC track patterns 

by using the FCM in which each pattern has its own unique track 

characteristics. The C1-pattern TCs pass along the East Coast of the US, and 

C2-pattern TCs develop over the Gulf of Mexico and the Caribbean Sea and 

remain in these areas for their entire lifetimes. C3-pattern TCs are generated 

in the subtropical NA, and C4-pattern TCs develop in open ocean of the 

equatorial–central NA. C3 TCs move to the mid-latitude NA with recurving 

pathways, whereas C4 TCs are confined to low-latitude regions and mainly 

move northwestward toward the islands in the Caribbean. After classifying 

the four track patterns, the prediction model for an individual pattern is 

constructed. Identifying the simultaneous relationships between each TC 

pattern and climate variables enables us to select appropriate predictors of 

model for each pattern. Combinations of candidate predictors (e.g., SST, 

VWS, VOR850, and U850) well known for affecting TC activities are 

determined by conducting several cross-validation tests with various sets of 
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candidate predictors to yield the best predictability for each pattern. A hybrid 

dynamical–statistical model is developed by using CFSv2 retrospective 

forecasts and TC frequencies in each cluster based on the Poisson regression.  

To verify the performances of the forecasts initialized in six consecutive 

months from early February to early July, we conducted leave-one-out cross-

validation for all forecasts. Validation of the TC frequency of individual 

clusters and the total counts in the NA basin suggests high prediction skill at 

the 99% confidence level regardless of forecast lead time. Our model also 

shows better predictability than the reforecast based on the NCEP R-2 

predictors. In addition, the spatial distributions of rank-correlation for 

different forecast lead times are calculated to investigate predictability by 

regional groups. Because substantially high values of rank-correlation occur 

in a wide region, we can anticipate reliable regional TC activity prediction. 

To investigate regional TC activity more concretely, the model performance 

is evaluated for the three TC-vulnerable regions (i.e. R1, R2, and R3 in Fig. 

3.8). Temporal variations of observed TC activities and the ensemble mean 

hindcasts for the three vulnerable regions confirm that the model is skillful in 

predicting regional TC activities. High forecast skill of our model shown in 

this study also supports the applicability of the hybrid model to operational 

seasonal TCs prediction for the NA basin in conjunction with seasonal 

forecast dataset from the CFSv2 as predictors. 

Among the typical TCs, intense TCs are extremely dangerous weather 
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events than weak TCs in waterfront regions in summer and autumn. The 

powerful energy of intense TCs allow them make landfall on continents more 

often than weak TCs (Table 3.5 and 3.6). Therefore, track density predictions 

which are closely related to actual hazards of intense TCs, are of a special 

importance for disaster prevention. After checking the TC intensity 

distribution for various intensity intervals with respect to Saffir–Simpson 

hurricane wind scale, we adopted intensity criteria as category 3 for WNP and 

category 1 for NA for defining intense TCs. 

To attempt seasonal forecasts of the tracks of intense TCs, first of all, all 

intense TC tracks were grouped into several representative patterns by using 

the fuzzy clustering method. For the WNP basin, three main clusters were 

identified (Fig. 3.11). These included TCs that developed over the 

southeastern part of the main TC genesis region that moved toward mid-

latitudes through the East China Sea, those that tracked with a recurving 

pattern offshore Japan, and those that were active over the South China Sea 

and moved westward to a continent. For the NA basin, all tracks were 

clustered into two patterns including TCs entering the Gulf of Mexico and 

those moving into the mid-latitude region with recurving tracks (Fig. 3.14). 

Each pattern in the two basins showed statistically significant empirical 

relationships with large-scale environmental fields that are pertinent to the 

effects of climate on TC activity. Several variables such as SST distribution 

associated with periodic variabilities such as the ENSO and AMO; upper and 
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low-level zonal wind; the strength of the subtropical high; and low-level 

relative vorticity were analyzed by interannual correlation analysis. By 

inspecting the similarity between two COR distributions at the same time, 

seasonal averages of statistically significant grid point values in the critical 

regions were selected as potential predictors (Figs. 3.12 and 3.15). Second, 

the hybrid statistical–dynamical approach was used to develop the seasonal 

forecast model for each pattern based on simultaneous relationships between 

the intense TC activity and selected key predictors. In this step, we conducted 

a predictor sensitivity test iteratively to show the best performance of our 

model for each track pattern. Third, after model construction, the skill was 

objectively assessed by using the cross-validation technique for the training 

period of 1982–2013 and was applied for the 2014 prediction. Although the 

model showed limitations in simulating extreme cases such as 2005 for NA 

C1, 2010 for NA C2, and 2012 for WNP C1 (Figs. 3.13 and 3.16), the 

observational variabilities were effectively reproduced to show good 

statistical measurements regardless of the forecast date (Tables 3.7 and 3.8). 

In addition, our model was successfully applied to real-time prediction during 

the 2014 TC season for the total number of intense TCs for the WNP and NA 

basins and for track density behavior for the WNP basin (Fig. 3.17 and 3.18). 

Skillful predictions for the 2014 seasonal forecast experiment suggests that 

our model has a potential as an operational system for meteorological 

agencies, particularly for intense TC track density forecasts. 
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A number of studies focusing on typical TC track classifications for the 

two basins have shown that the optimal number of the patterns for WNP and 

NA TC tracks are seven and four, respectively (Camargo et al. 2007b, Kossin 

et al. 2010, Kim et al. 2012, Choi et al. 2016a). In this thesis, however, the 

classifications of intense TC tracks were three clusters for the WNP and two 

for the NA due to the strengthening intensity criteria. If we assume that the 

representative patterns of TC tracks from clustering analysis are static despite 

various clustering analysis methods and target periods, as discussed in 

previous studies, we can conclude that intense TC activities have their own 

characteristics that differ from those of general TCs. Therefore, a comparison 

of intense TC activity against the all TC track patterns is worthy of discussion. 

The intense TCs of WNP C1 were combined with C2 and C3 in Kim et al. 

(2012). It is estimated that the WNP C2 and C3 in this study are assembled 

by C4–C5 and C6–C7 of Kim et al. (2012), respectively. Similarly, the intense 

TC pattern of NA C1 is combination of C2 and C4 for total TC clustering 

results shown in previous work (Choi et al. 2016a). Moreover, the NA intense 

C2 TCs include C1 and C3 of the total TC groups. Because intense TCs 

generally have extended lifespans over ordinary TCs because their huge 

amounts of energy allow them to maintain their structures longer, it appears 

that the established two TC tracks were combined into one pattern in this 

study. The mixed effects of climate variabilities on intense TC activities can 

be more clearly divided than typical TCs because of strengthening criteria of 
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statistical sampling. Therefore, intense TC activity shows stronger empirical 

relationships with large-scale environments than typical TCs. This aspect 

contributes to the possibility of faithful model development. 

This thesis provides bridgehead of an attempt at intense TC activity 

prediction by using our model for the two major basins in the Northern 

Hemisphere. We hope that our model widens new point of view and 

possibility for TC intensity prediction. From our model operation, the coastal 

nations will be provided a specified service for forecasting intense TC 

activities as well as whole TCs, which is important information for disaster 

prevention. It is expected that further researches will be performed 

continuously to provide even better insight into TC intensity prediction. 

Prediction using a track-pattern-based model suggests that TC activities 

over the NA will decrease in the near future. As we mentioned above, this 

model is known to effectively simulate TC activities in the current climate 

(Choi et al. 2016a) and thus is expected to be useful for near-future TC 

prediction in conjunction with climate-model-projected atmospheric and 

oceanic fields. Changes in two dominant climate variabilities, the NASST and 

ENSO, in the upcoming decade are mainly related to the suppression of NA 

TC activities. The phase transition of NASST from positive to neutral and the 

greater frequency of El Niño events will work together to decrease SST for 

the overall NA basin and to strengthen VWS in the tropical NA. The impacts 

of changes for NASST and ENSO will make unfavorable environments for 
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TC developments for tropical regions in the near future. Considering the 

CMIP5 multi-model SST predictions, anthropogenic forcing causes SST 

warming over both the NA and eastern Pacific. This discrepancy suggests that 

strong natural variability is a key factor to the NASST cooling and to suppress 

the NA TC activities in the near future in combination with more frequent El 

Niño events. 

The long-term prediction of TC activity should be more developed to 

reduce the socio-economic TC-induced damages. Only skillful long-term TC 

prediction can guarantee the safety of us during the summertime natural 

disasters. In addition to the hybrid statistical–dynamical prediction method 

presented in this thesis, we expect the improve the performance of high-

resolution dynamic model through development of parametrization and many 

kind of TC simulating technique in the future. We should continue to study 

until we can predict all kinds of the future TC activity. 
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국문 초록 

 

여름철 태풍 활동은 인구와 산업이 밀집한 해안가 주변 지역에 막대한 

피해를 야기할 수 있기 때문에 주목 받고 있다. 호우와 강풍을 동반하는 

태풍의 접근이나 상륙으로 인한 잠재적인 피해를 줄이기 위해 지난 수십 

년간 태풍 활동을 이해하고 신뢰도 높은 태풍 예측 모델을 개발하는 것

은 세계 선진 기상 기관들의 가장 중요한 임무 중 하나였다. 이러한 노

력의 일환으로 본 박사학위 논문에서는 태풍 활동과 여름철 대규모 순환

장 사이의 물리적 관계를 상세하게 규명한다. 이러한 이해를 바탕으로, 

북서태평양 및 북대서양 지역에서 활동하는 태풍 활동의 계절 및 가까운 

미래 예측을 진로 유형 기반 태풍 예측 모델을 통해 수행한다. 이 모델

은 하이브리드 통계-역학 방법을 사용하며 대양 전체 태풍 활동의 공간 

분포를 예측하는 세계 최초의 모델이다. 본 모델은 수치 모델을 활용한 

기후 모의를 수행하지 않으면서도 장기 태풍 진로 분포를 우수한 성능으

로 예측할 수 있는 장점이 있다. 

이러한 진로 유형 기반 태풍 예측 모델은 세 가지 주요 단계로 구성되

어 있다. 첫 번째로, 태풍 주 활동 기간 동안의 태풍 진로들을 퍼지 군집 

분류(Fuzzy clustering method) 방법을 사용하여 대양의 대표적인 여러 

유형으로 구분한다. 두 번째 단계에서는 하이브리드 통계-역학 방법을 

사용하여 앞서 조사된 각 태풍 진로 유형들 마다 독립적으로 태풍 발생 

개수를 예측한다. 각 유형에 대한 하이브리드 예측은 군집 별 계절 태풍 
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빈도 수와 미국 환경청(National Center for Environmental Prediction)에서 

제공하는 기후 예측 시스템 (Climate Forecast System version 2; CFSv2)자

료의 계절 평균 예측 인자 사이 통계적 관계성을 활용하여 수행된다. 마

지막으로 대양 전체의 태풍 진로 밀도를 나타내는 최종 예측 결과는 모

든 진로 유형들의 예측 결과들을 병합하고, 필요할 경우 오차 보정 작업

을 추가적으로 수행하여 생산된다.  

개발된 북서태평양 태풍 계절 예측 모델의 예측성을 평가하기 위해 교

차 검증방법(leave-one-out cross validation)을 활용하였다. 이 모델을 활

용하여 과거 기간에 대해 재모의된 북서태평양 진로 유형 별 태풍 개수

와 관측치 간의 상관 계수는 0.71–0.81로써 통계적으로 99 % 수준에서 

유의미하게 우수한 예측 성능을 보이는 것으로 나타났다. 게다가 북서태

평양의 계절 태풍 진로 밀도의 공간 분포를 과거 기간에 대해 재현해 보

았을 때 관측된 태풍의 공간 분포를 현실적으로 모의하는 것을 확인할 

수 있다. 실제 사례 예측에서도 이 모델은 1951 년 관측 이후 가장 적은 

태풍 활동을 나타냈던 2010 년 북서태평양 태풍 진로 밀도에서 동중국

해 부근의 평년보다 활발한 태풍 활동을 성공적으로 예측하였다. 총 7 

가지 진로 유형 예측 결과에서 도출할 수 있는 총 계절 태풍 빈도수 예

측에서는 관측치에 가까운 약 16.4 개가 예측되었으며 이 결과는 타 기

관 예측 결과와 비교해 보았을 때 상대적으로 작은 오차이다. 이러한 

2010 년의 성공적 예측은 NCEP CFSv2에서 모의한 현실적인 엘니뇨 남

방진동의 위상 변화와 예측 모델 자체의 특성에서 기인하는 것으로 나타
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났다. 

본 박사학위 논문에서는 북서태평양 이외에도 북아메리카 대륙과 인접

하고 태풍 활동이 활발한 북대서양 지역에 본 예측 방법을 적용하여 예

측모델을 개발하였다. 북대서양 예측 모델은 8–10 월의 기간 동안 발생

하는 태풍 활동의 계절 예측을 위해 개발되었으며 북서태평양과 마찬가

지로 태풍의 진로 유형을 기반으로 개발되었다. 퍼지 군집 분류 방법을 

활용하여 1965–2012 기간 동안 발생한 총 432 개의 태풍이 다음과 같

은 4 가지 그룹으로 분류된다; 1) 미국 동부 연안의 태풍, 2) 멕시코만의 

태풍, 3) 중앙 북대서양의 해양에서 주로 활동하며 전향하는 태풍, 그리

고 4) 열대 북대서양에서 발생하며 서쪽으로 이동하는 태풍. 이 모델은 

NCEP CFSv2의 전지구 기후 예측을 활용하여 4 개의 태풍 그룹을 독립적

으로 예측하며, 개별적으로 예측된 각 진로 유형들의 태풍 빈도수를 각

각의 기후적 공간 분포와 결합한 후 병합함으로써 전체 북대서양 지역의 

태풍 활동 공간 분포를 제공한다. 2 월에서 7 월까지 다양한 초기 조건

에 따른 예측 성능을 검증하여 본 모델의 현업 적용 가능성을 조사한 결

과, 본 예측 모델이 통계적으로 99 % 신뢰 수준에서 북대서양의 관측 된 

태풍 발생 수를 현실적으로 모의할 수 있다는 것을 확인할 수 있었다. 

예측 시점 변화에 관계 없이 이 모델은 안정적인 공간 예측 성능을 나타

내며 미국 동부 해안가, 멕시코만, 섬나라 등지의 지역적인 태풍 활동 까

지도 신뢰할 수 있는 정보를 제시할 수 있다는 이점을 보여준다. 

태풍 활동과 동반된 집중 호우 및 강한 바람은 주로 일반적인 태풍보
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다 강도가 강한 태풍에서 그 위력이 더 강력하다. 따라서 일반적인 태풍 

보다 강한 태풍에 의한 사회 경제적 손실이 더 크다. 본 박사학위 논문

에서는 북서태평양과 북대서양 지역에서 발생하는 강한 태풍의 지역적인 

활동을 집중적으로 예측하는 모델을 개발한다. 기후적으로 북대서양에서

의 태풍 및 강한 태풍 수가 북서태평양 보다 훨씬 적은 것을 고려하여 

북서태평양의 경우 카테고리 3 이상, 북대서양의 경우 카테고리 1 이상

의 강도를 가진 태풍을 강한 태풍으로 정의하여 예측 모델을 개발하였다. 

퍼지 군집 분류 방법을 사용하여 기후적인 강한 태풍들의 진로를 분류한 

결과 북서태평양 및 북대서양 지역의 강한 태풍 진로 유형은 각각 3 가

지 및 2 가지의 대표적 유형으로 분류되는 것을 확인할 수 있다. 군집 

분류 결과에 근거하여 진로 유형 기반 모델을 독립적으로 개발하고 두 

지역에서 발생하는 강한 태풍의 계절적 활동을 예측한다. 일반적으로 북

서태평양에서는 이미 태풍 발생에 충분한 열적 조건을 보이기 때문에 주

로 역학적 요소(연직 바람 시어 또는 하층 상대 와도)를 북서태평양 태

풍 예측 모델의 주 예측인자로 선정하는 반면, 북대서양에서는 열적으로 

불충분한 환경 조건을 보이기 때문에 강한 태풍 활동은 주로 열역학적 

요인(해수면 온도)에 의해 조절되며 이를 예측 인자로써 활용한다. 모델 

개발에 활용된 분석 기간 동안 모델의 성능을 교차 검증하고 2014 태풍 

시즌에 대한 예측을 확인해 보면 강한 태풍 예측 모델이 현업 운영에 적

용될 수 있을 만큼 충분한 성능을 나타내는 것을 알 수 있다. 

많은 연구들에서 앞서 언급한 계절 예측을 포함하여 다양한 시간 규모
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의 태풍 활동을 예측하고자 시도했지만, 가까운 미래 예측에 초점을 맞

춘 연구는 지금까지 거의 없었다. 본 박사학위 논문에서 진로 유형 기반 

태풍 예측 모델을 이용하여 2016–2030 기간의 북대서양 계절 태풍 활동

이 현재보다 감소할 것을 예측하였다. 예측 모델은 장기 결합 시뮬레이

션, 즉 CFS 재분석 자료를 사용하여 초기화 된 CFSv2 장기 실험을 입력 

자료로 활용하였다. 대규모 순환장 변화를 확인하였을 때 가까운 미래에

는 연직 바람 시어의 증가와 강화된 고기압성 회전 흐름 및 북대서양 지

역의 낮은 해수면 온도를 포함하는 태풍 발달의 악조건이 형성될 것으로 

전망된다. 이러한 환경장 변화의 대부분은 북대서양 해수면 온도의 장주

기 변동성에 기인한 해수면 온도 감소 및 가까운 미래에 더 잦은 엘니뇨 

현상의 발달에 기인한다. Coupled Model Intercomparison Project phase 5

에 참여한 다중 기후 모델들에서 일관적으로 나타난 북대서양 해수면 온

도의 온난화와 비교해 보았을 때 북대서양 해수면 온도의 감소는 주로 

자연적인 변동성에 의한 것이며, 이러한 자연 변동성이 가까운 미래에는 

여전히 인위적인 강제력보다 지배적인 영향을 미칠 것 이라고 제안한다. 

 

주요어: 태풍, 강한 태풍, 진로 유형 기반, 하이브리드 통계–역학, 기후 

예측 시스템, 계절, 가까운 미래, 북서태평양, 북대서양, 공간 분포, 자연 
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