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Abstract 

Regionally focused algorithm for Atmospheric Infrared Sounder (AIRS) 

temperature and humidity retrievals was developed. We first employed regression model 

with a moving window technique. This is done by relating the AIRS measurements to 

temperature and humidity profiles with consideration of regionally and seasonally 

changing local climatology. Regression coefficients were obtained from four-year 

(2006-2009) of ECMWF interim data over East Asia and simulated AIRS radiances. 

Result showing a notable improvement of mean biases, compared to the regression 

retrieval which does not consider local features, suggests that the moving-window 

technique can produce better regression retrievals by including the local climatology in 

the regression model. 

For further improvement of the regression retrieval, one dimensional variational 

(1DVAR) physical model was also included in our algorithm. Error covariance matrix 

for the moving-window regression was obtained by using pre-developed regression 

retrieval and its error covariance. To assess the performance of 1DVAR using the 

mowing-window regression as a priori, error statistics of the physical retrievals from 

clear-sky AIRS measurements during four months of observation (March, June, 

September, and December of 2010) were compared; the results obtained using new a 

priori information were compared with those using a priori information from a global 

set of training data which are classified into six classes of infrared (IR) window channel 
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brightness temperature. This comparison demonstrated that the physical retrieval from 

the moving-window regression shows better result in terms of the root mean square 

error (RMSE) improvement. For temperature, RMSE improvements of 0.1 – 0.2 K and 

0.25 – 0.5 K were achieved over the 150 – 300 hPa and 900 – 1000 hPa layers, 

respectively. For water vapor given as relative humidity, the RMSE was reduced by 1.5 

– 3.5% above the 300 hPa level and by 0.5 – 1% within the 700 – 950 hPa layer. 

As most of improvements due to use of the moving-window technique were shown 

in situations in which the relationship between measured radiances and atmospheric 

state is not clear, we investigated a possible use of surface data for further improving 

AIRS temperature and humidity retrievals over the boundary layer. Surface data were 

statistically and physically used for our AIRS retrieval algorithm. Results showing 

reduced RMSEs at both the surface level and the boundary layer, suggest that the use of 

surface data can help better resolve vertical structure of temperature and moisture near 

the surface layer by alleviating the influences of incomplete channel weighting function 

near the surface on the retrieval. 

In conclusion, developing regionally focused algorithm, the inclusion of climate 

features in the AIRS retrieval algorithm can result in better temperature and humidity 

retrievals. Further improvement was also demonstrated by adding surface station data to 

the channel radiances as pseudo channels. Since the hyperspectral sounder is available 

on the geostationary platform, the development of regionally focused algorithm could 
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enhance its applicability to enhance our ability to monitor and forecast severe weather. 

 

Keyword: Temperature profile, Humidity profile, IR hyperspectral sounder, AIRS, 

Linear regression model, 1DVAR 
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1. Introduction 

Temperature and moisture profiles are fundamental data for describing 

thermodynamic features of the atmosphere and thus accurate measurements of those 

parameters are prerequisite for better understanding and better prediction of the 

atmospheric phenomena. With the advent of satellite-based hyperspectral infrared 

measurement technologies such as Atmospheric Infrared Sounder (AIRS; Chahine et al. 

2006), global pictures of three-dimensional temperature and moisture became available, 

recently yielding a high vertical resolution of ~1 – 2 km. One dimensional variational 

(1DVAR) based physical methods have been developed for retrieving relevant 

parameters in a manner consistent with both satellite measurements and a priori 

condition (Eyre 1989; Li and Huang 1999; Li et al. 2000; Susskind et al. 2003; 

Carissimo et al. 2005; Gambacorta 2013; Masiello and Serio 2013). 

Retrievals from hyperspectral sounder have been widely used for achieving a 

variety of objectives. One of the major achievements from the satellite-based sounding 

is to extend our understanding of atmospheric phenomena from the weather to the 

climate (e.g. Dessler et al. 2008; Tian et al. 2010; Kahn et al. 2011 among many others). 

In particular, better understanding of the role of water vapor in the global climate 

system can be brought with these retrievals. Moreover, the retrievals are utilized for 

monitoring severe weather (i.e., Weisz et al. 2015) as well as for improving numerical 

weather prediction (Le Marshall et al. 2006; Hilton et al. 2012; Zheng et al. 2015 among 
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many others). In line with these, many attempts have been made to improve the physical 

methods (Li et al. 2007; Kwon et al. 2012; Smith et al. 2012; Bisht et al. 2015), but 

solving the retrieval problem remains a challenge (Grieco et al. 2011; Serio et al. 2015). 

Nonetheless, the knowledge obtained from these previous studies should have been 

useful for developing better data assimilation methods for numerical weather 

forecasting. 

It has been long recognized that a priori information for constraining the physical 

method is essential for solving ill-posed inverse problems (Bouttier and Courtier 1999; 

Prunet et al. 2001; Zhang et al. 2014). One can use regression-based retrievals from 

satellite measurements for providing a priori information (Li et al. 2000; Kwon et al. 

2012). In this case, regression retrievals are used as a priori but also used as a first guess 

in the physical method. Therefore, improving the regression method is considered to 

yield more accurate retrieval. 

Different from this approach, regression retrievals can be used as first guess only 

while a priori information is obtained from climatology or numerical model outputs. For 

those, better regression is also thought to be an important way to improve the physical 

retrievals. Recent updates of AIRS and Infrared Atmospheric Sounding Interferometer 

(IASI; Blumstein et al. 2004) operational products (i.e., version 6 of AIRS L2 retrieval 

from National Aeronautics and Space Administration (NASA), and version 6 of IASI L2 

retrieval from European Organisation for the Exploitation of Meteorological Satellites 
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(EUMETSAT)) reflect such efforts. In the case of AIRS version 6, training data sets 

were classified in terms of surface type and pressure, latitude, season, and day/night 

(Olsen 2013). This effort was based on the assumption that well-categorized regression 

coefficients can reduce the nonlinearity between observed radiance and underlying 

atmospheric state. Similarly, IASI version 6 introduced a piecewise regression method 

for generating better first guess (EUMETSATa 2016). In the EUMETSAT method for 

IASI, training segments are stratified into 480 classes, such that each retrieval case is 

examined to determine the most appropriate class out of 480 classes using scan angle, 

solar zenith angle (i.e., day or night), surface altitude, radiances from IASI, and 

collocated radiances from Advanced Microwave Sounding Unit-A (AMSU-A) and 

Microwave Humidity Sounder (MHS). 

If well-classified training data set is a key to improving regression algorithm, then 

a question may arise about whether regression methods based on regionally and 

seasonally varying regression coefficients can yield a better a priori information or first 

guess, compared to globally derived coefficients. Along this line of reasoning, a method 

(called “the moving-window technique” in this study) is introduced here to yield a better, 

regionally focused a priori information as well as first guess, for improving the 1DVAR 

based physical retrievals of clear-sky temperature and moisture profiles from AIRS 

infrared hyperspectral measurements. This idea is not completely new, and in fact, as 

shown in Thompson et al. (1985) and Chedin et al. (1985), the idea has been tested by 
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partitioning the global ensemble into various classes for improving the first guess fields. 

This study first compares two types of regression retrievals from (1) regionally and 

seasonally driven regression coefficients obtained for the moving-window technique, 

and from (2) Cooperative Institute for Meteorological Satellite Studies (CIMSS) 

regression coefficients derived from a global training data set (Weisz et al. 2007; Weisz 

et al. 2013). The CIMSS regression uses the clear-sky training data set (Borbas et al. 

2005) classified with scanning angles and six classes of the window channel brightness 

temperature (TB) (referred to as the TB-based classification technique) (Weisz et al. 

2003). Comparison is made over the East Asian region, for four months spanning a year 

(i.e., March, June, September, and December of 2010). Then, regression retrievals 

obtained from the two methods are used as a priori information constraining the CIMSS 

1DVAR based physical retrieval model (Li et al. 2000). The effect of different types of a 

priori information on the accuracy of physical retrieval is studied by comparing the 

error statistics of physical retrievals using the two sets of regression data against 

reference profiles.  

Once we confirm that the moving-window technique is helpful for improving 

temperature and humidity soundings, we examine the impact of use of surface station 

data in the satellite-based retrieval for further improving regionally focused AIRS 

algorithm. In inclusion of the surface station data in the retrieval is interesting because 

those data should have much more information on in particular the surface than the 
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climatology provided by moving-window technique. As in the possible improvement of 

satellite retrieval from use of climatology information, the radiative signal delineating 

the boundary layer would be helpful if surface station data are used. Such effort may be 

helpful to improve the retrieval performance not only at surface level where surface 

station is located, but also over the boundary layer above the surface station. 

In this study, two approaches are considered for the synergetic use of surface data 

in AIRS temperature and humidity retrievals. The impact of surface data is first 

evaluated through including those data in a regression model. In doing that, a new 

regression model is developed by using the surface data as additional predictors. 

Obtained results will be compared with results from the regression model without 

surface data. This comparison provides an opportunity to examine the vertical extent 

which the surface data might influence as well as the magnitude of the improvement in 

a statistical perspective. As the second approach, direct use of surface data for a 1DVAR 

is considered. In this approach, surface data are used as if additional channels. Note that 

the Jacobians linking the variation of surface data to the variation of temperature and 

moisture profiles should be defined, along with introduction of the error covariance 

matrix for surface data. The proposed two approaches will be tested in this study over 

the Korea peninsula using surface observations at Automatic Weather Station (AWS) 

stations maintained by Korea Metrological Administration. 

In summary, the main objective of this research is to develop regionally focused 
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algorithm for better retrieving temperature and moisture profiles. In doing so, a 

synergetic use of climatology features and surface station data is proposed. The 

procedures include the development of a new regression model and construction of the 

error covariance and Jacobian for 1DVAR. Results will be validated against retrievals 

from pre-developed algorithm as well as against re-analysis data. We hope that this 

study leads to better ability of monitoring and forecasting severe weather phenomena 

through the improved data assimilation. 

The dissertation is organized as follows. In section 2, we review basic 

understanding of temperature and moisture sounding, including the regression method 

and the physical method (i.e., 1DVAR). Here, various documented previous studies are 

examined. Then detailed information on AIRS measurement as well as other infrared 

hyperspectral sounders is provided in section 3. In section 4, a method (called “a 

moving window technique” in this study) which uses regional and seasonal climatology 

for temperature and moisture soundings is introduced and its benefits are discussed by 

comparing with pre-developed algorithm and re-analysis data. In section 5, the effects 

of moving-window technique on the physical retrieval are described. Then, in section 6, 

possible use of surface data for better retrieval of temperature and moisture profiles 

from AIRS radiance measurement will be examined. Summary and our conclusion 

follow in section 7. 
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2. Review of previous satellite-based temperature and 

humidity soundings 

There has been a huge amount of studies for temperature and humidity soundings 

from satellite measurements. Here we review documented satellite-based temperature 

and humidity retrieval methods as well as general understanding of atmospheric 

sounding from IR measurements. 

In a nonscattering atmosphere, observed radiance Rv for a given wavenumber v is 
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where subscript s denotes surface, B is the Plank radiance, ε is the surface emissivity, τ 

is the upward transmittance, p is the surface pressure, τ* = τs2/τ is the downwelling 

transmittance, and Rʹ is the reflected solar radiation. Four terms on right hand side are 

surface contribution term, upwelling component of atmospheric contribution term, 

reflected downwelling component of atmospheric contribution term, and reflected solar 

energy contribution term on observed radiance, respectively. Last term, Rʹ, is generally 

hard to be simulated by using radiative transfer model, thus we avoid the spectral 

regions where Rʹ term is dominant. Since equation (1) is a function of temperature and τ, 

which is a function of absorption coefficient and absorber amount, principle of 

temperature and moisture sounding can be explained from equation (1). In case of CO2 

channels, for example, absorber amount and absorption coefficient are well known, so 
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temperature information can be retrieved. In addition, if we use various CO2 channels 

whose absorption coefficients are different, we can retrieve temperature profile also. 

This is because lower and higher atmospheric information are included in weak and 

strong absorption channels, respectively; weak absorption channels detect radiation 

coming from lower atmosphere, whereas strong absorption channels only detect 

radiation coming from higher atmosphere. Figure 1 provides examples of thermal 

emission spectra from Hanel et al. (1971) to explain how to change the shape of the 

infrared spectra for various atmospheric situations. It can be seen that temperature 

structure is well reflected in CO2 band area. Similarly, when temperature and absorption 

coefficient are known, absorber amount can be extracted. From this principal, it is 

possible to retrieve amount of atmospheric water vapor. Besides those, in case of 

window channels, terms related to gas absorption (e.g., second and third terms) can be 

neglected and τs,v is close to unity, so those channels have ability to retrieve surface 

information. These are the theoretical reasons why hyper-spectral sounder, which 

observes almost whole thermal spectra, can resolve high resolution temperature and 

moisture profiles. 

From a practical point of view, solving the equation (1) is an ill-posed problem. 

One could solve this problem by a regression method. The merits of regression method 

are physically straightforward to understand principle of method and very quickly 

retrieve the atmospheric state once well-trained C matrix is obtained. 
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As very early work, Smith et al. (1970) has investigated a least squares regression 

method for obtaining global temperature profile from satellite radiation measurements, 

particularly those obtained by the Satellite Infra-Red Spectrometer (SIRS) aboard the 

Numbus 3 satellite. This study is followed by previous works such as Wark and Fleming 

(1966), Rodgers (1966), Westwater and Strand (1968), which indicate that maximum 

information about the atmosphere’s thermal structure may be derived from satellite 

radiation observations through the use of statistical relationship. In the regression 

method, atmospheric state vector X is retrieved from CYT, where C is regression model 

and Y is predictors (e.g., observed radiances). Best fitting solution of X = CYT is the 

one that minimizes ∑(X-CT)2, and minimization yields C = XY(YTY)-1. In order to 

obtain C, various pairs of X and Y which cover possible relations between atmospheric 

states and satellite observations are needed. Basic concept of regression method is quite 

straightforward, but lots of effort to improve regression model is tried.  

In Smith and Woolf (1976), new technique is formulated for using eigenvectors of 

covariance matrices to retrieve temperature and moisture profiles for 17-channels of 

High-resolution Infra-Red Sounder (HIRS) measurements and 5-channels of SCAnning 

Microwave Spectroradiometer (SCAMS) measurements. Since eigenvectors of 

covariance matrices provide the most economical representation of any variable, 

computational power requirements are much less than those of other regression methods. 

Moreover, the effects of random errors of observation on the analytical solutions are 
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greatly suppressed since the system of equations to be solved is heavily over-determined. 

With advent of satellite measurements, the number of channels sufficiently increase. 

Goldberg et al. (2003) noted that principal component analysis (PCA) is an effective 

way for thinning AIRS hyperspectral measurements. PCA is also used for the quality 

control. Similarly, the approach was evaluated for AIRS in Weisz et al. (2007), but in 

this study, Moderate Resolution Imaging Spectroradiometer (MODIS) derived cloud 

amounts are additionally used for the cloud screening. Not only temperature and 

moisture profiles, but also ozone profile, surface temperature and surface emissivity are 

simultaneously retrieved in Weisz et al. (2007). In order to obtain the better regression 

relationship, a scene classification method by using brightness temperature from 

window channels and satellite viewing angle was applied. 

Recent update of operational products (i.e. NASA product version 6 for AIRS, or 

EUMETSAT product version 6 for IASI) showed efforts for improving regression 

retrievals. For the AIRS operational product, an artificial neural network (ANN) 

technique was adopted for minimizing a non-linearity between the radiance and the 

atmospheric state. Also, training segments were stratified in terms of surface type and 

pressure, latitude, season, and day/night (Olsen 2013). For the IASI operational product, 

training segments were stratified into 480 classes, such that each retrieval case is 

examined to determine the most appropriate class out of 480 classes using scan angle, 

solar zenith angle (i.e., day or night), surface altitude, radiances from IASI, and 
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collocated radiances from Advanced Microwave Sounding Unit-A (AMSU-A) and 

Microwave Humidity Sounder (MHS). Moreover, quality flag which delivers, to certain 

extent, the accuracy of regression product was simultaneously retrieved with 

atmospheric parameters such as temperature, moisture, and ozone profiles, surface 

pressure, and surface temperature. 

Because of the high non-linearity in the relationship between water vapor amount 

and satellite measurements, a method for describing water vapor amount was important 

issue for improving regression method. Weisz et al. (2007), Smith et al. (2012), and 

Weisz et al. (2013) used a natural logarithm of mixing ratio for describing the water 

vapor amount. Since Li (1994) showed that change of water vapor in natural logarithm 

of mixing radio is proportional to change of brightness temperature from satellite 

measurement, those approaches are quite reasonable. However, the operational product 

of IASI uses dew point temperature for describing the water vapor amount, based on the 

empirical sensitivity test result. In case of Thapliyal et al. (2012), hybrid-regression 

retrieval was proposed. This study demonstrated that the use of the natural logarithm of 

humidity as a predictnand gives better accuracy for the drier atmosphere, whereas direct 

humidity as a predictand provides better accuracy for the wetter atmosphere. In addition 

to the unit issue, the vertical resolution aliasing issue caused by layer observation 

problem of satellite measurement was newly studied in Smith et al. (2015). Besides this, 

a new effort by August (2015), who uses the 3-dimensional atmospheric structure in 
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regression procedure, also indicated that improvement of regression method is on-going 

problem. 

The other method to solve the ill-posed problem is physical method which finds a 

solution from minimizing the following cost function 

 1 1

0 0( ) [ ( )] [ ( )] ( ) ( )J         m m
X Y Y X R Y Y X X X B X X

 
(2) 

where superscript T denotes the transpose, X is the candidate of solution, Ym is the 

observed radiances, Y(X) is the simulated radiances of candidate of solution, X0 is the 

background that constrains the solution, B is the error covariance of background, and R 

is the error covariance of observed radiances that includes instrument noise and forward 

model error. Theoretically, X and Y do not have bias and R and B are uncorrelated in 

order to obtain the optimal solution. Otherwise, the solution will be suboptimal. Often 

X0 is obtained from numerical weather model, a climate mean, retrievals from 

regression model. On the right hand side, first term and second term indicates that how 

far the current solution, X, is away from observed radiances and background, 

respectively, and each term is normalized by R and B. When J(X*) is a minimum of the 

function J, we assume X* as a solution that is consistent with both observed radiances 

and background. This physical approach for the satellite retrieval was firstly proposed 

by Rodgers (1976). 

 In Eyre (1989), a new approach was proposed for inverting satellite sounding 

data for use in numerical weather prediction based on Rodgers’s study. In this study, the 
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application of the scheme to the data from the TIROS Operational Vertical Sounder 

(TOVS) was discussed. According to Eyre (1989), by using the following Newtonian 

iteration 

 1

1 ''( ) '( )n n n nJ J 

   X X X X  (3) 

the following quasi-nonlinear iteration form could be obtained, 

 T 1 1 1 T 1

n 1 n n n n n n( ) ( )   

     X F R F B F R Y F X  (4) 

where δXn = Xn – X0, δYn = Ym – Y(Xn), F is the linearized Jacobean matrix which 

satisfies δY = FδX. 

Although the nonlinear problem could be partly solved by 1DVAR and physical 

understanding of retrieval procedure could be possible, a speed of the 1DVAR is one of 

the issues for the evaluation. Different from Rodgers (1976) and Eyre (1989) 

approaches (so-called inverse Hessian method), which uses a Laplacian of the cost 

function as a slope of the iteration, the steepest decent method was also reported in 

Levenberg (1944) and Marquardt (1963). In these methods, a smoothing factor was used. 

Generally, this smoothing factor was chosen empirically (Twomey, 1963). In Susskind 

et al. (1984), 0.0005 was chosen, while smoothing factor of 0.1 was chosen in Smith et 

al. (1985) and Hayden (1988). Although there is no clear and definite way to select the 

smoothing factor, empirically obtained constraint successfully controlled the 1DVAR 

system. To keep the benefit of both Hessian and steepest decent method, combination of 

Hessian method and steepest decent method was also tried (Ma et al., 1999). In the 
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combined algorithm, the solution tends to an inverse Hessian method if the smoothing 

factor approaches to 0, while the solution tends to the steepest decent method with a 

smaller step size if the smoothing factor approaches to infinite. 

Since a major reason of adopting the smoothing factor is uncertainty of the 

background error, those previous studies also indirectly implied importance of the 

background error in 1DVAR system. In case of Li and Huang (1999), they developed 

the discrepancy principle to find a smoothing factor physically. They proved that the 

smoothing factor is unique for given observation, and it could be estimated by 

comparing magnitude of background departure and error of observation which includes 

measurement noise error and radiative transfer model error. Based on the discrepancy 

principle, 1DVAR algorithm for TOVS was reported in Li et al. (2000). It is interesting 

to note that an efficient form of radiative transfer equation introduced in Li (1994) was 

successfully applied in this TOVS retrieval algorithm. It suggests that not only 

numerical iteration and convergence technique, but also radiative transfer theory are 

simultaneously advanced with the history of 1DVAR evaluation. 

Although there have been lots of effort for the evaluation of 1DVAR, solving 

retrieval problem is still challenging and many advanced methodologies are tried for 

improving 1DVAR. In Grieco et al. (2011), correlation interferometry, which is a 

particular application of Fourier transform spectroscopy with partially scanned 

interferograms, was analyzed for deeper understanding of the radiative signal. They 
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separated the atmospheric emission from the background by using partially scanned 

interferograms and they found that the vertical spatial resolution of the retrieved water 

vapor profile is only determined by the broad feature in the spectrum (Figure 2). 

Considering that Jacobian in 1DVAR is the core of cost minimization, such effort could 

be very helpful for explaining the atmospheric signal in hyper-spectral measurements. 

Use of cloud-cleared radiance for removing cloud contaminated signal in brightness 

temperature could also be considered as advanced 1DVAR (Susskind et al. 2003; 

Gambacorta 2013). In those algorithms, a portion of radiative signal caused by cloud is 

simultaneously analyzed with retrieving atmospheric parameters. Besides those, use of 

surface station data (Liu et al. 2014) or use of numerical weather prediction (Jin et al. 

2008; Schmit et al. 2008; Li et al. 2009) could also be considered as advanced efforts 

for improving 1DVAR. 
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Figure 1. Examples of thermal emission spectra recorded by IRIS D on Nimbus 4. 

Radiances of black bodies at several temperatures are superimposed. (a) Sahara; (b) 

Mediterranean; (c) Antarctic; (all apodized) (Hanel et al. 1971). 
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Figure 2. Example of IASI averaging kernels for H2O for a tropical atmospheric model 

for the pressure range 1025 to 900 hPa. a) Averaging kernels computed considering the 

full IASI spectral coverage and channels. Panel b) is the same as a), but now the 

averaging kernels have been computed with a partial interferogram extending in the 

range of [0.0090, 2] cm. The results have been obtained with the Masuda emissivity for 

the sea surface (Grieco et al. 2011). 
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3. Infrared hyperspectral measurements 

There has been a huge amount of studies for temperature and humidity soundings 

from satellite measurements. Here we review documented satellite-based temperature 

and humidity retrieval methods as well as general understanding of atmospheric 

sounding from IR measurements. Here, we provide detailed information of AIRS used 

in this study. AIRS is a first hyper-spectral IR instrument on board the Aqua satellite, 

launched on May 4, 2002 (Aumann et al. 2003; Chahine et al. 2006). It was built by 

NASA Jet Propulsion Laboratory, and is a cross-track scanning instrument. Its scan 

mirror rotates around an axis along the line of flight and detects IR energy from the 

Earth. As the spacecraft moves along, this mirror sweeps the ground creating a scan 

swath that extends roughly 1650 km. The scan geometries of AIRS and its partner 

microwave instruments, AMSU-A, and the Humidity Sounder for Brazil (HSB), are 

illustrated in Figure 3. Aqua is in a sun-synchronous orbit with an ascending node at 

1:30 pm local time. It covers the globe two times (daytime and nighttime) a day, but 

some points near the equator are missed since the swaths do not overlap at low latitudes. 

The spatial resolution is 13.5 km at nadir and 41 × 21.4 km at the scan extremes. Within 

the AIRS instrument the IR energy is separated into wavelengths, similar to rain drops 

splitting sunlight into a rainbow. By having multiple IR detectors, each senses radiance 

at a particular wavelength with 2378 detectors covering the IR spectral range of 3.8–4.6 

μm, 6.2–8.2 μm, and 8.8–15.4 μm at a nominal spectral resolution of λ/Δλ = 1200. 
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Radiometric sensitivity expressed as the noise equivalent differential temperature 

(NedT) for a scene temperature of 250 K is 0.07–0.4 K for 3.75–11 μm, and 0.27–0.68 

K for 11.75–15.4 μm. 

Absorption by gases in the atmosphere is mainly a feature of the IR bands, and thus 

each IR wavelength is quite sensitive to temperature and other gases. The AIRS 

upwelling spectrum suggests that an AIRS spectrum contains gaseous absorption bands 

by water vapor, CO2, O3, and other trace gases. In addition to the main absorption bands, 

it is noticed that the atmospheric gases are nearby transparent in the vicinity of 11 μm, 

referred to as an ‘IR window region’ which mainly reflects surface conditions. Using 

information on the window and absorption regions over an AIRS spectrum, temperature 

and water vapor profiles have been officially produced and distributed with the purpose 

of improvement of weather forecasts and climate researches. Not only the atmospheric 

profile retrieval, the extremely narrow spectral resolution allows us to resolve vertical 

distribution of other parameters such as cloud and dust. 

After the AIRS mission, various IR hyperspectral missions have been continued. 

The Infrared Atmospheric Sounding Interferometer (IASI) is another success of IR 

hyperspectral mission (Blumstein et al. 2004). IASI on board the Metop-A satellite, 

launched on 19 October 2006, is the first polar-orbiting interferometer and the second 

IASI on Metop-B is also successfully launched on 17 September 2012. It measures 

infrared part of the electromagnetic spectrum at a horizontal resolution of 12 km over a 
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swath width of about 2200 km. Global observations of 3.62 to 15.5 μm with 8461 

channels can be provided twice a day with 14 orbits in a sun-synchronous mid-morning 

orbit (9:30 equatorial passing time, descending node). The third instrument will be 

mounted on the Metop-C and launched in 2018. 

The Cross-track Infrared Sounder (CrIS), on aboard the Suomi National Polar-

orbiting Partnership (NPP) spacecraft launched on October 28, 2011, is also a recent 

success of IR hyperspectral mission (Bloom 2001; Han et al. 2013). It is a Fourier 

transform spectrometer with 1305 spectral channels and produces high-resolution, three-

dimensional temperature, pressure, and moisture profiles like AIRS and IASI. 1305 

spectral channels have 3 groups: LWIR group (4.14 – 15.38 μm); MWIR group (5.71 – 

8.26 μm); SWIR group (3.92 – 4.64 μm) group. Compared to previous IR hyperspectral 

sounders such as AIRS and IASI, much better instrumental noise level is reported 

(Figure 4). In order to maintain the continuity of observations from CrIS, Joint Polar 

Satellite System-1 (JPSS-1) will follow the Suomi NPP satellite, planned to launch in 

2017. 

With the advent of satellite measurement technique, geostationary hyperspectral 

sounding missions are proceeding. The Geostationary Interferometric Infrared Sounder 

(GIIRS) on Feng-Yun – 4 (FY4) satellite, launched by China Meteorological 

Administration, is a first geostationary hyperspectral sounder. As other hyperspectral 

sounders, main mission of the GIIRS is temperature and humidity profiling with high-



21 

resolution. However, benefit of continuous observation drastically increases with 

increased temporal resolution. Moreover, new product such as wind profile by tracking 

water vapor features could be available from GIIRS. The GIIRS covers two spectral 

ranges with 913 channels: 8.85 – 14.3 μm with 0.8 cm-1 spectral resolution; 4.44 – 6.06 

μm with 1.6 cm-1 spectral resolution. NEdR of the former is 0.5 mW m-2 sr-1 cm while 

that of the latter is around 0.1 mW m-2 sr-1 cm. In order to detect cloud in daytime, 

GIIRS also carries visible channels (0.55 – 0.75 μm). At the first version of FY4 (i.e., 

FY-4A), spatial resolution is around 16 km but it will be improved to 8 km in next series 

of FY4. 
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Figure 3. AIRS scan geometry and the relative alignment of the AIRS/AMSU/HSB 

footprints (Aumann et al., 2003). 
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Figure 4. CrIS on-orbit nominal NEdT is compared with AIRS (at CrIS spectral 

resolution) and IASI NEdT estimated at IASI original and CrIS-like spectral resolution. 

The black curve depicts CrIS spec requirements. NEdT was estimated for scene 

temperature of 270 K (Zavyalov et al. 2013). 
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4. Development of regionally focused regression model 

We first try to develop an improved regression model by considering seasonal and 

regional climatology features in the regression procedure. General steps for developing 

regression model are described in Figure 5. Starting from collecting data for simulation, 

radiance simulation, noise adding procedure, radiance compression, training of 

regression coefficients, and testing of regression model are included for regression 

model development. 

 

4.1. Construction of training data 

In developing a statistical regression model, a set of training data is necessary, from 

which predictand parameters (here temperature and moisture profiles) can be related to 

predictor variables (i.e., AIRS radiances and surface pressure). In addition, surface 

pressure is used as a predictor variable for maximizing the retrieval performance (Weisz 

et al. 2007; Thapliyal et al. 2012; Olsen 2013). 

Here we simulate expected AIRS radiances using four-year-long (2006–2009) 

European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis 

data (referred to as ERA-I; ECMWF 2009) as inputs to the radiative transfer model; 

these inputs are the temperature, moisture, ozone profiles, surface temperature, and 

surface pressure. Since ECMWF interim data are one of the reanalysis data with well-
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defined physical consistency between atmospheric parameters, and have very high 

accuracy about 1K for temperature and 0.5 g kg-1 for humidity, we could assume that 

simulation dataset based on ERA-I are able to reflect atmospheric variability 

realistically. Temporal resolution is six hour (00, 06, 12, 18 UTC), and spatial resolution 

is 1.5˚ with fixed 37 pressure levels (1000, 975, 950, 925, 900, 875, 850, 825, 800, 

775, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 225, 200, 175, 150, 125, 

100, 70, 50, 30, 20, 10, 7, 5, 3, 2 and 1 hPa). ERA-I data are publicly available on the 

ECMWF Data Server (http://data-portal.ecmwf.int/data/d/interim_daily/). Details of 

ERA-I data are described at Dee et al. (2011).  

The regression method is developed over the East Asian analysis domain (15N – 

55N, 90E – 150E). Considering horizontal resolution and temporal resolution with 

research domain, about 4500 samples are available for one day. However, all data are 

not required because lots of samples are duplicated. Therefore, we try to avoid 

unnecessary duplication by using random selection. Surface emissivity is also used to 

enhance the simulation accuracy and the data are obtained from the global infrared 

surface emissivity database produced by CIMSS (Borbas et al. 2007; Seemann et al. 

2008). One may construct the training data for the regression from satellite 

measurements collocated with reference data. However, this method is prone to errors 

related to not well-known sensor characteristics and collocation mismatch. On the other 

hand, although the simulated brightness temperatures are not true, due to inaccurate 
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radiative transfer modeling and specification of measurement errors, the simulation 

approach has an advantage of avoiding the collocation problem and thus being easily 

equipped with known reference data for constructing a priori as well as for validation. 

For the clear sky radiance simulation, Stand-Alone Radiative Transfer Algorithm 

(SARTA; Strow et al. 2003) is used, which ensures high-accuracy fast simulations of 

AIRS radiance. It was reported that uncertainty of the SARTA method results is ~0.2 K 

for CO2 absorption channels. For H2O absorption channels, uncertainty is reported to be 

mostly less than 1 K. All 2378 AIRS channels are simultaneously simulated using the 

SARTA model, except the channels that exhibit noisy behavior, e.g., owing to 

significant instrumental noise, non-Gaussian noise distribution, or poor spectral 

response function (Weisz et al. 2007). After subjectively identifying and removing these 

noisy channels, 1435 channels are retained for channel simulations. Figure 6 shows one 

example of brightness temperature spectrum and instrumental noise for all AIRS 

channels and selected channels. Although hundreds of channels are removed, selected 

channels cover whole spectral regions related to CO2, window, ozone and H2O. Twenty-

eight shortwave infrared (SWIR) channels are also retained, but are only used for 

nighttime retrieval analysis; thus, regression analysis is performed separately for 

daytime and nighttime.  

Random instrumental noise is added to the simulated radiances, based on the 

assumption that instrumental noise is Gaussian-distributed, with a standard deviation of 
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noise-equivalent differential temperature. Figure 7 shows error statistics of noisy 

radiances which follow our assumption; mean bias is close to zero and root mean square 

of differences is close to NedT. 

Although the number channels are sufficiently reduced from channel selection, 

information between channels may be still correlated. Therefore, the principal 

component analysis (PCA) has been applied to compress the 1435 radiances (Smith and 

Woolf, 1976). In order to apply the PCA on radiances, we need to define one subset 

which reflects almost all of variability of radiances. Then, we subtract the mean 

radiances from each individual radiance, and calculate their covariance. After applying 

eigenvector analysis on the covariance matrix, 1435 eigenvectors and corresponding 

eigenvalues are calculated. When we sort eigenvalues in descending order, values are 

very quickly decreasing; starting from 110000, second to sixth eigenvalues are 2600, 

1800, 500, 380, 100 for one subset. Since eigenvalue reveals that how much covariance 

can be explained by its associated eigenvector, we could expect that small portions of 

eigenvectors are good enough to explain variability of radiances. In other words, the 

small number of projection coefficients (PCs), which is the value when we project 

radiances on the eigenvectors, instead of the large number of radiances could be 

substituted for retrievals problem. To determine the number of eigenvectors for 

retrievals, we examine the sensitivity between errors of regression retrievals and the 

number of eigenvectors (Figure 8). Here, errors are defined by vertically cumulative 
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RMS errors. Generally, both RMS errors of temperature and moisture decrease as the 

number of eigenvectors increases, but the slope decreases. As a result, when the number 

of eigenvectors exceeds forty, accuracy is almost constant. Therefore, we choose forty 

as the number of eigenvectors for radiance compression. In addition, we perform same 

test but with noise-free radiances to examine impact of instrumental noise on retrievals. 

For noise-free radiances, errors sharply decrease until first forty eigenvectors. However, 

errors continuously decrease as the number of eigenvectors increases, whereas errors of 

retrievals with noisy radiances slightly increases; for example, temperature RMSE 

difference between use of 100 eigenvectors and 40 eigenvectors is 0.0033 (=0.9335–

0.9302) for experiment with noisy radiances while –0.0068 (=0.8193–0.8261) for 

experiment with noise-free radiances. As a results, we expect that instrumental noises 

are included after around fortieth eigenvector. It is reconfirming that use of PCA on 

radiances could reduce instrumental noise signal in noisy radiance (Huang and Antonelli, 

2001). 
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Figure 5. Schematic diagram showing procedures of developing a regression method 
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Figure 6. One case of (a) AIRS spectrum and (b) instrument error. Black dots indicate 

original 2378 AIRS channels while red dots indicate 1435 selected channels based on 

instrument noise. 
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Figure 7. (a) Mean bias and (b) RMS of noisy radiances. Mean bias and RMS are 

defined by an average of noisy radiances minus noise-free radiances and root mean 

square of noisy radiances minus noise-free radiances, respectively. In RMS plot, red 

dots are NedR which corresponds to given NedT 

 

 

 

 

Figure 8 Sensitivity between the number of eigenvectors for compressing the radiances 

and RMSE of regression retrievals for (a) temperature and (b) moisture. In sensitivity 

test, black and red lines applied noise-free radiances and noisy radiances, respectively. 
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4.2. Moving-window regression model 

Adopting a linear regression model (Smith and Woolf 1976; Weisz et al. 2007), we 

apply the moving-window technique for classifying the training data set in terms of 

their region and season. As mentioned in section 3.1, for a given set of predictor 

variables (here a vector YR of 41 parameters, containing data for 40 compressed 

radiances plus one surface pressure), the predictand XR can be retrieved as follows: 

 T=R RX CY
 

(5) 

The regression model finds the solution by minimizing 
T 2( ) R R

X CY  where 

the regression coefficient C is defined as follows: 

 -1= ( )T

R R R RC X Y Y Y
 

(6) 

To obtain regionally-based regression coefficients for the temperature and moisture 

retrievals, we define a moving window as a 10 × 10 box. Figure 9 exemplifies the 

retrieval procedure by showing the analysis domain, two adjacent windows for the 

retrieval, and associated two boxes for training. For retrieval for Box 1, the regression 

relationship is trained on a larger 20 × 20 training Box 1, concentric with the retrieval 

Box 1. After completing the retrieval for Box 1, the regression window is moved to the 

retrieval Box 2, where retrieval is performed with another regression relationship 

obtained from the 20 × 20 training Box 2. In this way, spatial discontinuity between 

neighboring windows is minimized. This procedure is repeated until the retrieval is 
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completed over the entire analysis domain. Seasonal variations are incorporated into the 

regression by training on different seasons (here, the four seasons of March–May, June–

August, September–November, and December–February). To reduce the temporal 

discontinuity between two adjacent seasons, the regression for each season is conducted 

over a period of five months by adding one month before the season and another month 

after the season in a target; for example, regression coefficients for spring (March–May) 

are obtained from the February–June period. Thus, regression coefficients relevant to 

each AIRS pixel are obtained by considering the pixel location and the associated 

season. 

In addition, the effect of the scan angle (θ) is also included in the regression model; 

11 scanning angles from 0 to 49 are considered, following Weisz et al. (2007): 

 sec( ) 1θ j   (7) 

where Δ = 0.0524, and j = 0, 1, 2, …, 10. Applying this method to AIRS measurements, 

retrieval at a specific θ is obtained by linearly interpolating retrievals at two adjacent 

viewing angles, with respect to the relative air mass associated with the viewing angles. 

The retrievals obtained using the moving-window regression method are henceforth 

denoted by 
W

RX . 
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Figure 9. East Asian analysis domain used in this study and an example of conducting 

the regressions in two neighboring regression domains. Dashed and solid boxes indicate 

the areas that were used for training and retrieval, respectively. 
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4.3. Detecting clear-sky FOVS from MODIS measurements 

Since infrared measurements are significantly affected by cloud, effort for 

screening cloud signal in hyper-spectral measurements should be necessary. In this study, 

retrievals are performed only over clear sky regions to avoid the problems caused by 

cloud contamination. One of the effective ways to find contaminated FOVs is the use of 

other high-resolution image channel measurements. Determining the clear-sky pixel, we 

use cloud information obtained from the IMAPP MODIS-AIRS collocation package 

(https://cimss.ssec.wisc.edu/imapp/uwairs_utils_v1.0.shtml), which provides cloud 

amount at each AIRS pixel (Li et al. 2004). Since the MODIS cloud mask has 1 km of 

spatial resolution, it is possible to estimate the cloud amount inside 14 km resolution of 

AIRS FOV. Figure 10 shows an example showing MODIS-AIRS collocation result from 

the IMAPP package. It is noted that change of footprint size with respect to satellite 

viewing angle is considered in the collocation procedure. Details of collocation method 

are described in Nagle and Holz (2009). In this study, the AIRS pixel is considered to be 

clear when the obtained cloud amount is zero. 

https://cimss.ssec.wisc.edu/imapp/uwairs_utils_v1.0.shtml


36 

 

Figure 10. An example of applying the collocation to an imager (MODIS) and infrared 

sounder (AIRS) measurements is presented for three different AIRS scan angles. The 

images present the collocation applied to the MODIS 1 km resolution 11 μm BT 

mearuements. (Nagle and Holz, 2009) 
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4.4. Error analysis 

4.4.1. Validation by using independent simulation dataset 

To validate the developed model could cover various atmospheric states, 

independent cases of about 45,000 (2.6% of one-year ECMWF data over East Asia) are 

randomly selected. Conceptually, validation by using the simulation dataset highly 

depends on the accuracy of radiative transfer modeling. Consideration of trace gas is 

one of the problems. Simulation was conducted by using only temperature, moisture, 

and ozone. Even though we omitted the channels affected by strong trace gases such as 

N2O, CH4 and CO, possible contamination in the real observation may still exist; it is 

not shown in validation by using the simulation dataset. Another problem is about the 

noise on observations. Noises on the real sensor cannot be reproduced perfectly, though 

we minimize the problem from the channel selection and noise adding procedures in the 

radiance simulation. Similarly, sensor calibration problem can affect the validation 

results. Therefore, possible unexpected spoiling by the sensor noise on the performance 

of the retrieval cannot be shown in the validation based on the simulation dataset. 

Nevertheless, the validation based on the simulation dataset has a great advantage, 

because it is free from the collocation problem. We assume that the ‘true’ state is known. 

In order to validate retrievals from observations, we need another data set as a reference. 

Generally, reference data have a different temporal and spatial resolution, so we need a 
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collocation procedure which could introduce artificial errors in the validation. On the 

other hand, the reference data have their own errors because they do not represent 

absolute true state. To sum up, we should note that the validation results from the 

simulation dataset reveal a theoretical performance of our regression model; but it 

should be useful to diagnose the regression model. 

In this study, two results are compared. One is retrievals based on the moving-

window regression model, and the other is retrievals from the CIMSS regression model 

(Weisz et al. 2007; 2013). There are two major differences between two regression 

models. First is the training database. As mentioned above, our data base only uses 

atmospheric states over East Asia, while the pre-developed regression model is designed 

for retrieving global atmospheric states from the tropics to the polar regions. Second 

thing is the classification procedure. Our regression coefficients are seasonally and 

regionally obtained, while the pre-developed regression model classifies the training set 

into 6-classes from mean brightness temperature of 11 channels around wavenumber 

910 cm-1 (window channel) which mainly contains information on the surface 

temperature.  

Mean biases and root mean square error (RMSE) are given in temperature-pressure 

or moisture-pressure diagram (Figure 11). For temperature retrievals from moving-

window regression method, mean biases are close to 0 K for whole troposphere. RMSE 

in troposphere above 700 hPa are between 0.8 K and 1.2 K and below 700 hPa, RMSE 
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increase from 1.2 K to 3 K. For moisture, mean biases are also close to 0 for whole 

troposphere, and RMSE of whole troposphere are around 0.4. CIMSS regression 

retrievals also show reasonable results but retrievals from moving-window regression 

model show better results in terms of mean bias and RMSE in the given test dataset. 

The performance of regression model is generally decided by how well regression 

coefficients could reproduce relations between atmospheric states and radiances. In 

other words, when the relations are not easy to define because of nonlinearity or 

spoiling from other environmental factors, RMSE will increase. Also, if the new 

relations which never experienced in the training procedure are included in the test 

dataset, RMSE will increase; this is a theoretical limitation of the regression method and 

there is no way to overcome without extending the training dataset. In this study, we 

assume that 270,000 cases obtained during four-year ERA-I data could cover almost all 

possible variability of relations between atmospheric states and radiances. 

In case of error statistics for the temperature, interesting features are shown; RMSE 

increases near the surface level. One of explanations is that temperature over the lower 

atmosphere changes much dynamically compared to the higher atmosphere, so necessity 

of large coverage including more atmospheric variability degrades the performance of 

regression model. Considering that radiances observed from satellite are not for a single 

level but for a layer mean value, surface temperature which is much dynamically 

changing than that of atmosphere will be able to affect channels influenced by lower 
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level temperature. In other words, the way of satellite measurements could bring larger 

variability of lower atmospheric temperature. 

Moreover, RMSE increasing around the boundary layer can be related to the 

surface emissivity. When atmospheric composition is well-known (this is a reasonable 

assumption for CO2 channels), atmospheric term in Equation (1) is only a function of 

temperature, whereas surface term in Equation (1) is a function of surface emissivity as 

well as surface temperature. Since the observed radiance is affected by surface 

emissivity, surface affected channels need to consider both surface temperature and 

surface emissivity; it causes more complex relations between lower level channels and 

corresponding atmospheric states. Therefore, accuracy for the lower atmosphere is in 

general lower than that for the higher atmosphere. 

In case of moisture, retrievals are more difficult than the temperature because 

relations between radiances and water vapor amount is relatively more complex; 

relationship between water vapor and radiance is known for highly nonlinear (Schmetz 

et al. 1995; Picon et al. 2003). In this connection, CO2 channels and window channels 

are very accurately simulated using the fast radiative transfer model, while water vapor 

channels, especially strong water vapor channels, are relatively hard to simulate (Strow 

et al. 2003). Therefore, the water vapor retrieval algorithm based on the simulation 

dataset may show slightly degraded results when real radiance observations are applied. 

To minimize such a nonlinearity, logarithm of mixing ratio is used instead of mixing 
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ratio for the regression model development because longwave radiation (e.g., radiance 

of water vapor channel) is roughly proportional to the logarithm of its concentration. 

In order to examine regional or seasonal differences of error statistics, we further 

analyze the RMSE on longitude-latitude frame at 300 hPa and 850 hPa in summer and 

winter season. Temperature and moisture RMSEs are shown in Figure 12 and Figure 13, 

respectively. For temperature, errors in winter are slightly higher than those in summer 

at both higher and lower troposphere. Temperature RMSEs at the higher troposphere are 

between 0.8 K and 1.2 K, and significant regional differences are not shown though 

errors over lower latitudes show slightly smaller than higher latitudes in summer season 

(Figure 12a–b). In contrast to the higher troposphere, errors at the lower troposphere 

show larger regional differences (Figure 12c–d). Errors in the north-west of the analysis 

domain show much larger RMSEs around 4 – 5 K, while those over the south-east show 

smaller RMSEs around 1.5 – 2.5 K. Such patterns look like a land-sea contrast. Because 

regions showing larger errors are generally in high elevated regions, the number of data 

used for the regression is relatively small which may create generally more uncertain 

nature of error statistics. Such high errors over the high elevated regions may be due to 

the increasing nonlinearity between the dynamical temperature change in the lower 

atmosphere and surface's irregular elevations which cannot be resolved in the regression 

model. 

On the other hand, moisture RMSEs do not show significant regional differences in 
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both higher and lower troposphere, but errors are higher in winter than in summer 

(Figure 13). Conceptually, RMSEs of the water vapor amount will be correlated with 

RMSEs of temperature; because atmospheric contribution to the observed radiation is a 

function of temperature as well as absorbers amount, as described in Equation (1), 

inappropriate temperature information could be directly linked to misleading of 

absorber amount. One reason why such misleading does not appear in Figure 13c–d 

may be due to the use of logarithm of mixing ratio during the regression procedure, 

which could suppress the large moisture change at lower troposphere (e.g., smoothing 

effects). In other words, the regression model could capture only smoothly varying 

water vapor features in particular in the lower troposphere. In fact, RMSEs in the lower 

troposphere during the summer show similar error characteristics in temperature but 

magnitudes of errors are very smoothed. However, RMSE in the lower atmosphere in 

winter do not show such patterns, so additional explanations are needed. One of the 

possibilities is that regression coefficients are more relying on absorber amount than the 

temperature. It does not mean that temperature information in water vapor channel is 

not important in retrieval. Errors from unsuitable relations between radiances and water 

vapor amounts, nonlinearity, could be more significant in the accuracy of moisture 

retrievals. In Figure 13d, highest RMSEs are shown in coastal regions but not land or 

ocean region, leading to an expectation that the nonlinearity of regression model might 

cause such result. 
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In Figures 14–15, regional or seasonal improvement of the regression model at 300 

hPa and 850 hPa are shown. In this analysis, improvement is defined by the differences 

of RMSE between moving-window regression retrievals and CIMSS regression 

retrievals, and negative values imply that our regression retrievals have less RMSE than 

CIMSS regression retrievals. In case of temperature, similar improvement of about 0.3 

K is shown in the higher troposphere in both summer and winter (Figure 12a–b), while 

in the lower troposphere regional and seasonal variation of improvement is shown 

(Figure 12c–d). For the lower troposphere, CIMSS regression retrievals show better 

results than our regression retrieval in west part of research domain where surface 

elevation is high. However, in the other regions moving-window regression retrievals 

show better results; especially, RMSEs are reduced by up to 1 K in the boxes around the 

Korean peninsula in winter. 

In case of moisture, all results show optimistic improvement (Figure 15). For 

higher troposphere, much improvement over the dry regions of summer season is shown 

than the other regions, while weak regional dependency of improvement is shown in 

winter (Figure 15a–b). For lower troposphere, much improvement is shown over humid 

regions of winter season than other regions, and another big improvement is shown over 

the west-south region in summer (Figure 15c–d)). Including the temperature results, full 

physical explanation about how differences of two regression models such as 

classification methods or training dataset could cause such regional and seasonal 



44 

differences of improvement is not clear, but at least we could conclude that 

improvement shown in Figure 11 is relevant for nearly all the East Asia regions. 
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Figure 11. Comparison between moving-window regression retrievals (black) and 

CIMSS regression retrievals (blue) for (a) temperature and (b) moisture. Solid and 

dashed lines indicate mean bias and RMSE, respectively.
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Figure 12. RMSE map for regression retrievals of temperature in summer (a, c) and 

winter (b, d). Upper (a, b) and bottom (c, d) panels show errors of 300 hPa and 850 hPa, 

respectively. The numbers inside boxes indicate the number of test samples and training 

samples. The latter is written in parentheses. 
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Figure 13. Same as Figure 12, but for moisture. 
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Figure 14. Same as Figure 12, but for the improvement of temperature RMSE. Here, 

improvement is defined by RMSE of moving-window regression retrievals minus 

RMSE of CIMSS regression retrievals. 
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Figure 15. Same as Figure 14, but for the improvement of moisture. 
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4.4.2. Case study 

To validate the developed model could cover various atmospheric states, 

independent Here, we test the developed regression model for one randomly selected 

case, and compare the results with CIMSS regression retrievals. AIRS level 1B 

radiances for 0435 UTC 24 September 2012 are selected, and temporally closest 

ECMWF interim data for 06 UTH reanalysis are used as a reference. To remove cloud-

contaminated AIRS pixels, MODIS cloud mask products are collocated. Figure 16 

provides reference for temperature and moisture which are spatially collocated with 

AIRS granule. In this observation, the AIRS granule covers the area around the Korean 

peninsula. In the temperature field (Figure 16a), a cold temperature area showing 

around 270 K is located over the north-east region of the granule, while high 

temperature area around 280 K is shown over the south region of the granule. It is noted 

that a thermal tongue is developed along with Shandong peninsula and Liaodong 

peninsula, and a thermal core is shown in Liaodong peninsula. On the other hand, for 

moisture, dry regions are widely shown over Liaodong peninsula and middle of 

Manchuria. In contrast humidity over the north-west and the south-west shows 

relatively higher values than the other regions. From the south-west of granule, a humid 

band is extended from Shanghai area to middle Korea, and to East Sea.  

Retrieval results from the moving-window regression are shown in Figure 17a 

along with CIMSS regression retrievals for temperature (Figure 17c). Figure 17b and 
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17d show the differences from reference. In this study, differences are defined by 

retrievals minus reference. General features of both regression retrievals are in good 

agreement with the reference, but two products are slightly different. Over the Yellow 

Sea, CIMSS regression retrievals show gradually decreasing patterns from south to 

north, while moving-window regression retrievals show slightly increasing patterns 

around Liaodong peninsula like reference. Around the Yellow Sea and the Korean 

peninsula, both products overestimate temperature and the overestimation is slightly 

larger for the moving-window regression retrievals (Figure 17b, d). However, in 

Manchuria area, underestimation by CIMSS regression retrievals is larger than that by 

moving-window regression retrievals. In case of moisture, two products also show 

features similar to the reference, but different bias trends are shown (Figure 18). 

Moving-window regression retrievals show an overestimation over the Manchuria area, 

while CIMSS regression retrievals show an underestimation over the Yellow Sea and 

the Korean peninsula. From this study, results may not be generalized, however, the test 

results suggest that moving-window regression retrievals demonstrated that results are 

comparable to the reference data, as for the CIMSS regression retrievals. 
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Figure 16. The spatial distribution of (a) temperature and (b) moisture at 700-hPa from 

ECMWF reanalysis for 06 UTC 24 September 2012. The data are spatially collocated 

with AIRS granule for 0435 UTH 24 September 2012. 



53 

 

Figure 17. Comparison between (a–b) moving-window regression retrievals and (c–d) 

CIMSS regression retrievals of temperature at 700 hPa. Left and right panels are 

regression retrievals and their differences from reference, respectively. Here, ECMWF 

reanalysis data are used as reference. 
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Figure 18. Same as Figure 17, but for moisture at 700 hPa. 
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4.4.3. Comparison retrievals from real observation with reanalysis 

data 

In order to quantitatively evaluate retrieval performance, more AIRS measurements 

are collected. In this comparison, all AIRS granules over the East Asian domain for four 

months (March, June, September, and December of 2010) are used as inputs. As an 

additional predictor, we use surface pressure from collocated ERA-I data. Retrieval 

accuracy is examined in terms of error statistics for ERA-I data (used as reference) and 

collocated AIRS retrievals are averaged over the 0.75 × 0.75 ERA-I grid box. Linear 

time interpolation of ERA-I data is also considered, for determining the AIRS 

observation time. In examining the retrieval accuracy, however, a caution should be 

exercised because both ERA-I and AIRS retrievals are subject to uncertainties and thus 

the difference between two fields should not be a direct measure of AIRS errors. 

Furthermore, here, spatial and temporal interpolation may induce another source of error. 

Nevertheless, in this study, the collocation-caused error is considered to be negligible, 

and errors in ERA-I is considered to be minor although the surface layers in model 

outputs tend to be more uncertain. 

Here we provide mean temperature and moisture profiles to help understand the 

error statistics. The mean temperature profile in Figure 19 shows a monotonic decrease 

from 290 K to 210 K, from the surface to the level of 100 hPa. The mean relative 

humidity exhibits a pattern of reduction from ~70% at the surface to ~35% at 500 hPa, 
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followed by an increase up to the level of 250 hPa. This peak may be caused by a 

relatively lower ice saturation vapor pressure that was used for calculating the relative 

humidity. Above the level of 250 hPa, the humidity drops to 20% at 150 hPa. It is also 

interesting to note that the reduction in the relative humidity is highest in layers below 

850 hPa. 

The accuracies of moving-window regression (
W

RX ) and CIMSS regression (
C

RX ) 

are presented in Figure 20. In the case of water vapor comparison, the retrieved water 

vapor mixing ratio is converted into relative humidity using the saturation vapor 

pressure estimated from the collocated ERA-I temperature. Nearly 150,000 matched 

samples are used for this comparison, but the number of data used for the comparison is 

smaller near the surface owing to the surface topography.  

Regarding temperature, the mean bias of 
W

RX  is under 0.6 K and the RMSE is in 

the 1.5 – 3 K range. The bias appears to be smaller compared with the bias suggested by 

the CIMSS regression retrieval, except for the layer higher than the pressure level of 

150 hPa. On the other hand, the RMSEs of 
W

RX  and 
C

RX  show nearly the same 

patterns and have nearly the same magnitudes, although the moving-window technique 

yields slightly smaller values near the surface and for the upper troposphere, above the 

150 – 300 hPa layer. It is of interest to note that both retrievals show largest RMSEs 

near the surface layer (below ~800 hPa), which may be due to the effects of surface 
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parameters (i.e., skin temperature and surface emissivity) on the temperature channels. 

The larger RMSEs may also stem from more uncertain features of model outputs (here 

ERA-I) near the surface. Distinct surface features such as diurnal variations of 

temperature and associated humidity field variations can also induce collocation errors, 

causing larger RMSE errors in the surface layers. 

The fact that the major improvement of the current moving-window technique, in 

comparison to 
C

RX , is with respect to the mean bias, suggests that the major benefit 

introduced by the moving-window technique appears to be the removal of the mean bias. 

It is because the current regression method may fit the retrievals better into the local 

climatology; yet, the proposed method seems to have a limited impact on explaining the 

variance of the parameter from the mean climatology. In particular, mid-tropospheric 

temperature around the 350 – 850 hPa layer shows no improvement in terms of RMSE. 

In this layer, we expect the regression performance to be relatively independent of the 

classification method. In this regime, a relatively straightforward relationship between 

temperature and observed radiance can be proposed. One possible reason for this is that 

mid-tropospheric temperature channels are nearly independent of surface parameters. 

That is, radiance observed from mid-tropospheric temperature channels is a function 

only of atmospheric temperature. A relatively simple temperature profile found in the 

mid-troposphere can also explain good regression performance. The other possible 

reason is that the classification approach employed in this study may not be fully 
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optimal. If it is classified against atmospheric situations, better regression can be 

expected over the mid-troposphere. For example, the recent validation study for IASI, 

based on the classification with respect to the atmospheric situations (so-called 

piecewise regression), reported that the precision in the mid-troposphere is closer to 1 K 

(EUMETSATb 2016). 

One of the interesting things in error statistics are error peaks in the upper 

troposphere (~200 – 300 hPa), suggesting less confidence for retrievals over that layer. 

Increasing complexity of the temperature field may be one reason for this. This layer is 

a layer in which the stratospheric influence starts to appear. It is noted that the lapse rate 

also changes around this layer. A detailed discussion of this phenomenon is beyond the 

scope of the present study, but we expect this phenomenon to be also related to seasons 

and geographical location, because the moving-window technique shows a significant 

improvement over the 200 – 300 hPa layer. 

The water vapor retrievals based on the moving-window technique are compared 

with the CIMSS regression results (Figure 20b). The mean bias ranges from −12% to 

2% and the RMSEs are in the 8 – 22% range. Compared with the CIMSS regression 

retrievals, the moving-window technique yields significantly smaller mean bias, except 

for the surface layer, in which the mean bias increases toward the negative value. The 

RMSE becomes smaller over the whole troposphere, but the major improvement 

appears to occur over the 200 – 400 hPa atmospheric layer.  



59 

Similar to the temperature retrieval, the main improvement for the water vapor 

retrieval is also in the bias removal, probably because this model more precisely 

describes the local climatology. In addition, smaller variances of regression coefficients 

again suggest that regionally and seasonally focused training data can help enhance the 

regression performance. 

Similar to the results obtained for temperature (Figure 20a), peaks of RMSEs of 

relative humidity are found over the upper troposphere of 200 – 300 hPa (Figure 20b). It 

may be partly due to the amplified error scale caused by the lower saturation vapor 

pressure of ice. 
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Figure 19. Mean profiles of collocated ERA-I temperature and relative humidity data 

used for comparison. Left and right panels represent temperature and relative humidity, 

respectively.
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Figure 20. Error statistics for (a) retrieved temperature and (b) relative humidity. For 

error statistics, mean biases (dashed lines) and RMSEs (solid lines) between regression 

retrievals obtained using the moving-window technique (red lines) and those obtained 

using the CIMSS regression retrievals (blue lines) are shown in (a) and (b). 
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5. Impact of a priori information improvement on 

accuracy of 1DVAR 

So far we showed that the moving-window regression method yields better 

temperature and moisture profiles than those obtained using the CIMSS regression 

method with training on global data. Because, in general, physical methods with better 

initial data will yield better retrievals, it is of interest to examine to what extent the 

proposed method improves retrieval, compared with the retrieval results obtained using 

the CIMSS regression method. 

 

5.1. 1DVAR model 

In this study, we adopt CIMSS 1DVAR model (Li et al. 2000), which uses an 

analytical form of the radiative transfer equation (Li 1994). Some salient features of this 

CIMSS model include the use of an error balancing factor (γ) to yield more accurate 

error covariance. That is B-1 = γI-1 is applied in Equation (4), where γ is the smoothing 

factor. The value of γ is dependent on the observations, the observation error, and the 

first-guess of solution; often it is chosen empirically (Susskind, 1984; Smith et al., 1985; 

Hayden, 1988). The smoothing factor plays a critical role in the solution; if γ is too large, 

then the solution could be over-constrained and largely biased, while if γ is too small, 

the solution could be under-constrained and unstable. In the CIMSS 1DVAR model, a 



63 

simple numerical approach is adopted to obtain γ. Starting with γ0 = 1, γ is updated 

every iteration by the following procedure: 

● If ||F(Xn) – Ym|| decreases, then decrease γ by a factor of 0.8. 

● If ||F(Xn) – Ym|| increases, then increase γ by a factor of 1.8 and keep the Xn-1. 

Since the variability of the atmosphere could be explained by a limited eigenvector, 

δX in Equation (4) is substituted by A which satisfies X – X0 = ΦA where Φ is the 

matrix of EOFs and A is the corresponding projection coefficient score. It is obvious 

that ΦTΦ = I. Defining Fʹ=FΦ and B-1 = γI-1, Equation (4) becomes 

 'T 1 ' 1 1 'T 1 '

n 1 n n n n n n( ) ( )   

     A F R F I F R Y F A  (8) 

where A0 = 0. Equation (5) is applied to retrieve the solution from AIRS observation. 

More details can be found in Li et al. (2000). 

 

5.1.1. Background error covariance 

To use the regression retrievals 
W

RX  as a priori information for the physical 

retrieval, its error covariance (BW) should be defined, in order to determine a relative 

importance to the observation, as expressed in Eq. (2). According to Bouttier and 

Courtier (1999), the errors in the background are modelled as follows, 

 T

b b b bB ( )( )        (9) 

where b = Xb – Xt, Xb is background field, and Xt is true state. The average of errors, 
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b , are called biases, and they are the sign of a systematic problem in the regression 

model. Biases are vectors of the same kind of the atmospheric state, so their 

interpretation is straightforward. Since physical method, discussed in section 3, assumed 

no biased state, it is noted that the calculation procedure for B removes such bias term. 

Black lines in Figure 21 indicate error statistics of physical retrievals by using 

moving-window retrievals as background and above derived BW as error covariance of 

background in the simulation verification dataset. Results show that errors of physical 

retrievals are higher than those of regression retrievals (gray) for both temperature and 

moisture. This is may be due to the imbalance between BW and R. Theoretically, BW is 

independent of R, but empirically, balance between BW and R plays an importance role 

in the physical method. Therefore, we empirically adjust BW to satisfy the balance 

between background and observation. In this study based on the simulation dataset, a 

background error covariance divided by 10 is used, and such adjustment corresponds to 

use a tenth part of smoothing factor, γ0, in equation (8). Results of the balanced physical 

method are shown in red lines of Figure 21. In both temperature and moisture, RMSEs 

of physical retrievals are evidently reduced. It should be noted that those results are 

obtained from the simulation dataset. 

For more physically reasonable evaluation of BW for real AIRS measurements, one 

may directly construct BW from ERA-I data, but uncertainties of the background 

covariance should be associated with errors in ERA-I data. Instead of directly 
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calculating BW from ERA-I data, BW is assumed to be similar to the one that is used for 

other regression methods; here, we utilize the pre-developed diagonal error covariance 

matrix (BC) that was used in the CIMSS regression retrieval (
C

RX ). Here, the error ratio 

between 
W

RX  and 
C

RX  is assumed to be proportional to the ratio between the diagonal 

component of BW and that of BC: 

 ( ) ( )diag diag W C
B α B  (10) 

where diag(∙) denotes the diagonal component and α is the ratio of the error variance 

between 
W

RX  and 
C

RX . ERA-I is used as a reference for estimating the ratio of the 

error variance between 
W

RX  and 
C

RX . Since standard deviation between two products 

are very similar to each other as shown in Figure 22, similar error covariance would be 

obtained. Final results of BW for temperature and moisture are shown in Figure 23a-b, 

respectively. 
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Figure 21. Comparison between regression retrievals (gray), physical retrievals (black) 

and physical retrievals with empirically adjusted B (red) for (a) temperature and (b) 

moisture. Solid and dashed lines indicate mean bias and RMSE, respectively. 
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Figure 22. Standard deviation of moving-window regression (red) and CIMSS 

regression (blue) for (a) temperature and (b) moisture. 
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Figure 23. Amplitudes of BW for (a) temperature and (b) moisture, and (c) 

corresponding increment of states for the given 1 K TB perturbations in 1DVAR. 
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5.1.2. Averaging kernel 

For a given B (here B = BW), kernel (A) explaining the relative importance 

between B and R can be expressed as follows: 

 T -1 -1 -1 T -1
A = (K R K + B ) K R

 
(11) 

where K denotes a Jacobian. In this study, the observation error R is defined by AIRS 

instrumental noise plus radiative transfer model error (0.2 K). No observation error 

correlation is assumed. In Eq. (11), the kernel A is used to estimate a best state for given 

observations and a priori information (Rogers, 2000), and the best estimate of X (i.e. 

Xbest) for given observations is defined as follows: 

 ( )  best 0 0X X A Y KX
 

(12) 

Since the kernel A is a matrix, we provide increments of temperature and moisture 

from X0 to Xbest by assuming all TB perturbations are 1 K (i.e. Y − KX0 = 1 for all 

channels) -- Figure 23c. For temperature, relatively larger increments are shown in 200 

– 300 hPa layer and below 500 hPa level, while in moisture most of increments are 

made below the 500 hPa level. Thus, we expect relatively larger improvements over 

those layers when 1DVAR is applied. 

 

5.1.3. Residual analysis for convergence criteria and quality control 

For a given B (here B = BW), kernel (A) explaining the relative importance In this 
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study, to determine whether the physical retrieval is converged to an acceptable solution, 

the following brightness temperature residual (Res) is used: 

 
21

Res ( ( ))
M

  P
Y Y X

 

(13) 

where M is the number of used channels. During the minimization of the cost function 

in Eq. (8), Res is calculated and is examined whether the convergence criterion, Res < 

0.1 K, is met for the ideal solution. But, even after the minimization is completed, all 

cases may not meet Res < 0.1 K condition. In this study, these cases are also considered 

to be the loosely optimized solutions if they satisfy the quality control criterion, Res < 1 

K, as in Kwon et al. (2012). 

Actually, the gradient of the cost function should reach close to zero when the 

global minimum is achieved in 1DVAR and thus the gradient of the cost function can be 

used as a criterion. However, in many cases, the global minimum is not available, 

resulting in relatively larger residuals even if the norm of the gradient of the cost 

function becomes close to zero. That is why we allowed 1 K residual as another 

criterion (or quality flag). As expected, the majority of retrievals are less than 2% of the 

norm of the gradient; cumulative distributions function indicates 75%, 90%, 93% of the 

population for 0%, 1%, 2% of the norm of the gradient, respectively -- Fig. 24. 

Here, to facilitate our understanding of the algorithm, a flowchart of summarizing 

the 1DVAR-based physical algorithm is provided in Figure 20. With given AIRS TBs 
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and a priori information (i.e. regression retrieval), first updated state (X2) is estimated 

from the guess field (X1) using an iterative method of 1DVAR, which starts with a 

regression retrieval. From now, at each iteration step, residuals of both guess and 

updated fields are calculated. When the residual of updated field becomes smaller and is 

less than 0.1 K, the iteration stops and the updated state is set to a final solution (here, 

best solution). If Res ≥ 0.1 K the algorithm keeps updating from the previous estimate. 

At this time, the speed of iteration is enhanced by reducing the weight of a priori 

information with the use of error balancing factor (i.e. B-1 = γB-1, γ = 0.8). This iteration 

process for updating is allowed up to 6 times. After 6 times, the last updated state is 

considered to be a final solution. It should be noted that original CIMSS 1DVAR in Li et 

al. (2000) uses γI-1. 

During the minimization process, the residual of updated state may become larger 

than the previous state. If this is the case, the increased weight of a priori information is 

used (i.e. B-1 = γB-1, γ = 1.8) to allow a more stable iteration in the next step. This 

stabilizing process is allowed up to 3 times. If the residual is not further minimized in 3 

times, the iteration stops and the state having the lowest residual is set to a final solution. 

In this algorithm, iteration up to 9 times is allowed, and the mean iteration number in 

this study is found to be about 6.4. 

As shown in Figure 25, thus, the final solution is one of following three; (1) best 

solution satisfying the preset convergence criterion (Res < 0.1 K), (2) loosely optimized 
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solution (0.1 K ≤ Res < 1 K), and (3) not-converged solution (Res ≥ 1 K). In this study, 

first two classes (i.e. Res < 1 K) outlined as a dotted box in Figure 20 are considered to 

be accepted physical solutions. 
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Figure 24. Cumulative histogram for the change of the cost. Only successful retrievals, 

whose residual is less than 1 K, are used for calculating histogram. 
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Figure 25. Flowchart of the 1DVAR employed in this study for AIRS temperature and 

moisture retrievals. 
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5.2. Error analysis 

5.2.1. Validation by using independent simulation dataset 

In order to show the impact of providing high quality background on physical 

method for improving its accuracy, we compared two physical retrievals whose 

background is coming from moving-window regression retrievals and CIMSS 

regression retrievals. The evaluation is carried out on the CIMSS physical retrieval 

algorithm developed by Li et al. (2000) which has been discussed in section 5.1. To 

check the best performance of physical method, only accepted solutions whose residual 

is less than 1 K are used both moving-window physical retrieval and CIMSS physical 

retrieval. If residual increases with iteration (e.g., divergent), regression retrieval is 

chosen as final solution. 

Figure 26 shows impact of background optimization both temperature and moisture. 

Before comparing moving-window physical retrievals with CIMSS physical retrieval, 

error statistics for our physical retrievals are analyzed. For temperature, statistics of 

moving-window physical retrievals are almost same as moving-window regression 

retrievals in free troposphere. This indicates that regression retrievals are physically 

well balanced with satellite radiances in free troposphere. In lower troposphere below 

700 hPa, RMSE are significantly reduce about 0.5 K compare to regression retrievals, 

so we could expect that information of radiance on physical method could be helpful to 
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make better retrievals. In case of moisture, moving-window physical retrievals also 

show better results than moving-window regression retrievals for whole troposphere 

about 0.2. From such results, we could expect that moisture retrievals from regression 

method are not balanced with satellite radiances. Also, such imbalanced retrievals could 

be improved from physical method, and well balanced final moisture retrievals show 

much lower RMSE than first-guess. 

Regional or seasonal error statistics of physical retrievals are given in Figure 27–28. 

This is the same as Figure 12–13 but for the physical retrievals. As mentioned above, 

RMSE of temperature at higher troposphere do not much changed from Figure 12a–b. 

However, when we compare Figure 12c–d and Figure 27c–d, RMSE of lower 

troposphere are sufficiently reduced over high elevated region where larger errors were 

shown. Considering that the number of survived data are much smaller than first-guess 

data, such results come from filtering of imbalanced regression retrievals as well as 

error reduction by physical method. As shown in Figure 12, RMSE in winter are still 

higher than those in summer. For moisture, there are very small regional and seasonal 

variability of RMSE at both higher and lower troposphere like Figure 13, but generally 

RMSE are reduced in Figure 27. Also, it is noted that the regions showing high 

regression retrieval error show high physical retrieval error. 

In order to show improvement between moving-window physical retrievals and 

CIMSS physical retrievals in terms of RMSE reduction, similar map which is shown in 
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Figure 14–15 but for the physical retrievals are given in Figure 29–30. Generally, when 

moving-window retrievals are used as background, we could obtain more accurate 

temperature or moisture in a given simulation dataset. For temperature, impact of 

background optimization is very significant at higher troposphere, especially over land 

region in summer (Figure 27a–b). Since there is very small change of error statistics 

between moving-window physical retrievals and moving-window regression retrievals, 

most of improvement is coming from degradation of CIMSS physical retrieval. 

Therefore, we carefully doubt the failure of CIMSS physical retrieval due to imbalance 

of error covariance at higher troposphere in a given dataset; it does not necessarily mean 

that CIMSS physical retrieval will show such results globally. On the other hands, 

improvement at lower troposphere is similar or larger than those of regression retrievals. 

Considering that moving-window physical retrievals show reduced errors compared to 

moving-window regression retrievals, CIMSS physical retrievals also show similar 

scale of error reduction from CIMSS regression retrievals. Large improvement is shown 

over high elevated region in summer, while in winter large improvement is shown over 

the high latitudes. However, the number of cases where large improvement is shown is 

much smaller than the other region, so we could expect that such large improvement 

cannot critical on general error statistics. In addition, difference between moving-

window physical retrieval and CIMSS physical retrieval could be reduced in 

comparison with difference between moving-window regression retrieval and CIMSS 
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regression retrieval because role of observation terms on physical method is very critical. 

Such impact is shown in Figure 30a, and 30d. As mentioned above, error of physical 

retrieval for moisture is reduced over whole troposphere, so we could expect that error 

reduction of CIMSS physical retrieval is relatively larger than moving-window physical 

retrieval. Contrary to Fig. 30a and 30d, large improvement is shown over the north-east 

region in winter at higher troposphere (Figure 30b) and the west region in summer at 

lower atmosphere (Figure 30c); this is suggesting that error reduction of moving-

window physical retrievals over those regions are relatively larger than CIMSS physical 

retrieval. 
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Figure 26. Comparison between moving-window physical retrievals (black) and CIMSS 

physical retrievals (blue) for (a) temperature and (b) moisture. Moving-window physical 

retrievals are the solution of physical method when moving-window regression 

retrievals are used as background. Solid and dashed lines indicate mean bias and RMSE, 

respectively. 
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Figure 27. Same as Figure 12, but for physical method. Only accepted solutions whose 

residual is less than 1 K are used. 
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Figure 28. Same as Fig. 27, but for moisture. 
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Figure 29. Same as in Figure 14, but the improvement is defined by RMSE of moving-

window physical retrievals minus RMSE of CIMSS physical retrievals. 
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Figure 30. Same as Figure 29, but for moisture. 
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5.2.2. Case study 

In order to show the impact of providing high quality background on physical 

method We further analyze the impact of background on the real case discussed in 

section 4.4.2. Because we cannot conclude moving-window regression retrievals are 

quantitatively better than the CIMSS regression retrieval in the real observation case, 

the result of impact study also cannot be concluded. Therefore, we only show 

differences between two products, moving-window physical retrievals and CIMSS 

physical retrievals in this step. The results of temperature are shown in Figure 31. Like 

general features of both regression retrievals are very similar, both physical retrievals 

also show similar results (Figures 31a and c), but gradually decreasing patterns over the 

Yellow sea in CIMSS regression retrievals does not appear in CIMSS physical retrievals 

(Figure 31c). As a results, difference patterns compared to reference are more similar 

each other, though CIMSS physical retrievals show larger underestimation over the 

Manchu and smaller overestimation over the Korean peninsula, the Yellow sea and 

Liaodong peninsula. Also, from the results, we could carefully expect that moving-

window regression retrievals are relatively close to reference because difference 

patterns of moving-window regression retrieval are much similar to difference patterns 

of both physical retrievals. In case of moisture, both physical retrievals show very 

similar results (Figure 32a, c). Considering that both regression retrievals had different 

directed error patterns, the results of physical retrievals of moisture highly relies on 
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observed radiances than background. As a results, different directed biases of two 

products are changed into very similar patterns (Figure 32b, d). Also, magnitude of 

differences sufficiently reduced, and generally moving-window physical retrievals show 

relatively smaller biases than CIMSS physical retrievals. Therefore, we carefully expect 

moving-window physical retrievals of moisture are close to reference. 
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Figure 31. Same as Fig. 17, but for physical retrievals of temperature at 700 hPa. 
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Figure 32. Same as Fig. 18, but for physical retrievals of moisture at 700 hPa. 
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5.2.3. Comparison retrievals from real observation with reanalysis 

data 

Here, comparison results between moving-window physical retrieval (
W

PX ) and 

CIMSS physical retrieval (
C

PX ) by using real AIRS observation are provided. For 

temperature, the mean bias of 
W

PX  ranges from −0.5 K to 0.3 K for the entire 

troposphere, and the RMSE is in the 1.2 – 2.5 K range (Figure 33a). It is noted that 

these results are significantly improved, in terms of both the mean bias and RMSE, 

compared with the regression results in Figure 20a. In particular, much improvement is 

evident for the lower layer near the surface. The better performance demonstrated by 

this physical algorithm seems to be largely attributed to improving the radiative 

consistency between the observed radiance and the calculated retrieval radiance. 

Improved performance of the physical method using CIMSS regression retrievals as 

inputs is also clear. Although the bias values in the two cases may be similar to each 

other, 
W

PX  seems to yield a smaller RMSE than 
C

PX , likely owing to a smaller error in 

W

RX , as shown in Figure 20b. It is interesting to note that the RMSEs in the two cases 

are nearly the same over the 350 – 700 hPa layer and over the layer above the 150 hPa 

layer, although that of 
W

RX  is slightly larger than the CIMSS regression results for that 

layer, suggesting that the CIMSS physical method is less dependent on the input data 
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over the 350 – 700 hPa layer. 

With regard to the moisture retrieval (Figure 33b), both methods also yield 

significant improvement, compared with regression retrievals, especially over the 

surface – 400 hPa layer. Although better results can be expected using the moving-

window regression retrieval, which shows a slightly smaller RMSE for the surface – 

400 hPa layer, 
W

PX  and 
C

PX  show nearly the same RMSEs. It is considered that the 

physical retrieval of water vapor tends to be dominantly determined by radiance rather 

than by a priori information. In other words, the error associated with the a priori 

information is relatively larger than that associated with AIRS radiances. 

It is worthwhile to note that both water vapor retrievals show consistent dry biases 

over the upper troposphere and these dry biases may cause large RMSEs over the 200 – 

300 hPa layer. Considering that the retrievals have residuals smaller than 1 K, and thus 

the radiance consistency is strong, we suspect the humid bias of the ERA-I reference 

data in the upper troposphere. Such humid bias of ERA-I in the upper troposphere 

against radiosonde observations has been reported (Noh et al. 2016).  

In this study, retrieval outcomes having Res ≥ 1 K are considered as not-converged 

solutions. At this point, it is quite interesting to examine error characteristics of cases 

not meeting the quality control criterion. Results showing Res ≥ 1 K for both T and q 

exhibit biases and RMSEs similar to those obtained for Res < 1 K, albeit larger in 

magnitude, in particular over the lower atmosphere below 700 hPa (Figure 34a and 34b). 
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Considering similar statistics above 700 hPa level, it is suggested that the lower 

atmosphere could cause such a larger residual owing to the imbalance between the 

observed and calculated radiances. Compared with 
C

PX , the RMSEs of 
W

PX  are 

smaller, both for temperature and water vapor. For temperature, the RMSEs over the 

150 – 300 hPa and 850 – 1000 hPa layers are improved, while for water vapor, the 

RMSEs over the 200 – 400 hPa and 850 – 1000 hPa layers are improved. In addition, 

the biases of 
W

PX  below the 150 hPa layer are smaller than those of 
C

PX . 

In conclusion, 
W

PX  can be considered more accurate than 
C

PX , in terms of both 

temperature and water vapor retrievals, as shown in Figure 33–34. This conclusion can 

also be drawn by analyzing the final results of the physical retrieval (Figure 35), which 

is in fact an average over the results shown in Figure 33–34. In other words, even for 

optimization procedures that fail to meet the quality control criteria, the physical 

retrieval model yields a final solution that is at least equivalent to the a priori inputs. It 

is shown that the mean biases and RMSEs are nearly equivalent to the results in Figure 

33a and 33b, suggesting that the majority of physical retrievals satisfy Res < 1 K. Again, 

it is clearly shown that the regression retrieval with the moving-window technique 

improves the physical retrievals of temperature and water vapor profiles. For 

temperature, improved RMSEs are evident in the 150 – 350 hPa layer and below the 

700 hPa level. On the other hand, the RMSEs of the humidity profiles are clearly 
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improved in the layer above ~300 hPa. The RMSEs in the 700 – 950 hPa layer indicate 

reduced magnitudes associated with the physical retrievals. If we focus on the 

comparison of accepted solutions, improved RMSEs of temperature are evident in the 

150 – 350 hPa layer and below the 900 hPa level. On the other hand, the RMSEs of the 

humidity profiles are clearly improved in the layer above ~300 hPa. The RMSEs in the 

750 – 900 hPa layer indicate reduced magnitudes associated with the physical retrievals. 

However, it should be noted that the temperature retrieval bias becomes large above the 

200 hPa level, and the water vapor retrieval bias is higher at the surface. 
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Figure 33. Comparison of the mean biases (dashed lines) and RMSEs (solid lines) 

between physical retrievals from the moving-window regression (red lines) and CIMSS 

regression (blue line). Only accepted solutions are plotted. 
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Figure 34. Same as Figure 33, but for not-accepted solutions. 
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Figure 35. Same as Figure 33, except that all physical retrievals are considered here. 
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6. Synergetic use of AWS data for AIRS T/q retrievals 

Through previous sections, it was noted that climatological features of temperature 

and moisture profiles successfully enhanced the performance of retrieval. Most of 

improvement is especially evident over the boundary layer where radiative signal is not 

easily interpreted. Along this line, it is quite interesting to examine the impact of surface 

observation data for better retrieval over boundary. 

In this study, possible use of Automatic Weather Station (AWS) data operated by 

Korea Meteorological Administration (KMA) in AIRS temperature and moisture 

soundings is investigated. Currently, research area is limited over the Korea Peninsula 

but it can be extended if globally distributed surface observations or buoy data are 

available. Figure 36 exemplifies the spatial distribution of AWS data for temperature 

and moisture over the Korean peninsula on September 1, 2010. As shown in the 

distribution of observed temperature, AWS data in Korea have a very fine spatial 

resolution. However, due to data quality control problem, moisture data are missing at 

some stations. Available number of stations increases with time. The nominal accuracy 

of AWS data is about 0.5 K for temperature and 5 % for relative humidity. 

Here, two approaches (i.e., statistical approach and physical approach) are 

considered to evaluate the role of AWS data in the temperature and moisture retrievals 

from satellite measurements. In the statistical approach, AWS data are used as additional 

predictors. All experiment design and used data are the same as in the moving-window 
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regression development except for the window location. The regression window is 

centered over the Korean peninsula and then regression coefficient is derived again. The 

regression coefficients also have 41 predictors (i.e. 40 compressed radiances + surface 

pressure). On the other hand, new regression coefficient is derived from 43 predictors 

including 2 more from AWS temperature observation and AWS moisture observation. 

By comparing two retrieval results, impact of the AWS data can be evaluated. Figure 37 

shows the vertical distribution of RMSE in the simulation dataset with no AWS data 

included. By considering the RMSE after the AWS data are included, the degree of error 

improvement in % is defined as follows: 

 w/o AWS w/ AWS

w/o AWS

RMSE RMSE
Error improvement (%) = 100

RMSE




 

(14) 

where RMSEw/oAWS (RMSEw/AWS) represent RMSE from the retrievals when AWS data 

are not included (included) as predictors. Positive improvement percentage implies a 

reduced RMSE by adding two parameters from surface AWS observations. 

Since the statistical approach could bring indirect information about the linkage 

between AWS surface data and atmospheric profile, additional experiment with a 

physical method may bring in better understating of the impact of AWS data. That is, it 

is interesting to examine the role of AWS data beyond the correlation between surface 

observation and atmospheric profile. In doing so, the 1DVAR is modified to use AWS 

data as additional super channels. Not only error for defining the contribution of AWS 

data in 1DVAR, but also corresponding Jacobian should be defined. In the statistical 
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experiment, noises or errors in the experiment may be partly included in the regression 

coefficient. By contrast, in the physical experiment, misunderstanding of uncertainty 

directly is attributed to the experiment result. Since the empirical error balancing of 

1DVAR (i.e., tuning process) is beyond this study, physical approach is evaluated using 

the simulation dataset, whose errors or Jacobians are completely controlled. As a priori 

information, moving-window regression retrievals are used and experiment region is 

confined within the Korean peninsula. Two retrieval results are compared: one with only 

AIRS channels, and the other with AWS data plus AIRS channel radiances. Error 

improvement given in Eq. (5), is also used for examining the error improvement due to 

the addition of AWS data. 
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Figure 36. Spatial distribution of AWS data over the Korea peninsula at September 1, 

2010. Left and right panels indicate temperature and relative humidity, respectively. 

 

 

 

Figure 37. Error statistics for (left) temperature and (right) moisture profile over the 

Korean peninsula. AWS data are not used as predictors. 
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6.1. Impact of AWS data on AIRS T/q soundings: Statistical 

perspective 

 

6.1.1. Pseudo-AWS data for training 

Since the current study uses a simulation database, real AWS observations cannot 

be directly used for the regression procedure. Thus pseudo-AWS data are defined. Four 

types of pseudo-AWS data are defined and their respective results are shown in Figure 

38. Variable names for four types of experiments using various pseudo-AWS data are as 

follows: 

(1) 2m: temperature and moisture at 2m 

(2) extp: extrapolated temperature and moisture at surface level from profile data 

(3) intp: interpolated temperature and moisture for the surface level from profile data 

and land model data 

(4) lowest: lowest level temperature and moisture from profile data 

Figure 38 shows error improvements in the retrieved temperature and moisture 

profiles when four types of pseudo-AWS are used. For temperature, lowest experiment 

shows a largest improvement while, extp experiment shows a smallest improvement. 

Results from 2m and intp experiments are comparable. On the other hand, for moisture, 

the lowest experiment shows the best improvement, while others show comparable 

results. For both temperature and moisture retrievals, lowest experiment shows the best 
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performance since the retrieval solution of lowest level is given as a predictor. More 

important thing is that such improvement is not limited at lowest level; the information 

appears to propagate upward up to 700 hPa level. Based on this, it is expected that 

satellite observations tend to provide information better solving temperature in the 700 

hPa - surface layer. Nevertheless, it may not be used because of the ill-posed problem; 

the information in a satellite channel does not represent a level but a weighted layer. In 

other words, even if very accurate lowest information is given as a layer information, 

improvement is made in spite of partly solving the ill-posed problem. Such impact is 

quite strong especially for the moisture. On the other hand, extp experiment shows a 

worst result. It can be expected because extrapolation could bring in erroneous results. 
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Figure 38. Error improvement for (left) temperature and (right) moisture. Four different 

types of pseudo-AWS data are assumed. (2m: temperature and moisture at 2m, extp : 

extrapolated temperature and moisture at surface level from profile data, intp : 

interpolated temperature and moisture at surface level from profile data and skin data, 

and lowest : lowest level temperature and moisture from profile data) 
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6.1.2. Retrieval sensitivity related to error of AWS data 

As discussed in section 6.1, the main purpose of conducting the error analysis for 

the use of pseudo-AWS data is to understand behaviors of regression the coefficient 

with respect to errors in pseudo-AWS data. This is because the difference between real 

AWS data and pseudo-AWS data can induce erroneous results. By this error analysis, 

uncertainty of AWS data itself is also considered. 

In this study, as errors the bias and standard deviation are defined. The bias 

indicates a systematical error, while the standard deviation indicates a random error. In 

order to simulate an error, the normal distribution is used. For the given normal 

distribution, five levels of biases and five levels of standard deviations are employed. 

Considering the nominal temperature error of AWS is to be 0.5 K, various errors are 

assumed by scaling the nominal error in ways to have 0.05 K, 0.1 K, 0.5 K, 1 K, and 5 

K errors. Similarly, for moisture, 0.5 %, 1%, 5%, 10%, and 50 % of relative humidity 

errors are assumed. Negative relative humidity and super saturated relative humidity are 

adjusted to have 0 % and 100 %, respectively.  

At first, sensitivity of retrieval performance with respect to bias is examined and 

results are presented in Figure 39. Five different levels of biases for temperature and 

moisture are separately added to pseudo-AWS data. For example, Figures at left panels 

show the sensitivity when pseudo-AWS temperature data have biases, while Figures at 

right panels show the sensitivity when pseudo-AWS moisture data have biases. Upper 
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and lower panels are for temperature and moisture, respectively. Different colors 

indicate different amount of errors. As shown in Figure 38, all experiments have 

positive impact on the error improvement and the improvement reaches until around 

700 hPa. There are no negative values although AWS data have significant bias. More 

important thing is that the bias cannot affect the retrieval performance. This is because 

the regression model is a linear model. Since the atmospheric states are statistically 

estimated, regression coefficient successfully absorbs the systematic bias. In case of 

biased pseudo-AWS moisture data, improvements of larger and largest experiments 

show different patterns because of the adjusted values. If negative relative humidity or 

super saturated relative humidity are permitted, those differences are removed (not 

shown). 

In conclusion, the bias of AWS data cannot affect the retrieval performance once 

the bias is estimated during the regression procedure. In order to estimate the bias of 

pseudo-AWS data, one of the possible ways is to repeat the training with respect to 

various assumed biases and then test the coefficient for real AWS data. 

By contrast, random error is relatively hard to estimate through the repetition of 

training. This is because regression coefficient cannot resolve why the regression 

performance decreases. Not only misunderstanding of AWS data error but also 

regression procedure brings in RMSE. Figure 40 shows the sensitivity of the retrieval 

performance with respect to the random error of pseudo-AWS temperature data. Upper 
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and lower panels are results of temperature and moisture improvements, respectively. 

Here, three cases can be assumed as follows: 

(1) Pseudo-AWS data have random error and it is perfectly known in regression 

procedure and application 

(2) Pseudo-AWS data do not have error (or smaller error than AWS data) but real AWS 

data of application procedure have unexpected random error 

(3) Pseudo-AWS data have random error but real AWS data of application procedure do 

not have error (or reduced error) 

Results of three cases are shown in left, middle and right panels of Figure 40, 

respectively. Case (1) is an ideal case. Error improvement decreases with increasing 

AWS data error. This is reasonable because the weight of predictors for AWS data 

should be reduced when the data are spoiled by random error. There are no negative 

values in left panels of Figure 40, indicating that larger random error cannot spoil the 

original retrieval performance (i.e., regression retrievals without AWS data) even if it 

cannot help for improving the retrieval performance. 

Interesting features are found in the case (2). When real AWS data have unexpected 

error, which is not counted in the regression procedure, use of AWS data spoils 

regression performance. In other words, retrieval without AWS data can be much better. 

In this case, regression coefficient provides very high weight to AWS predictors because 

AWS data have gold information to retrieve atmospheric states. Although real AWS data 
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have large error, regression highly relies on this bad information in this regression 

model. In order to avoid case (2), one possible way is that providing artificially larger 

random error on pseudo-AWS data like case (3). Because this way is very conservative, 

AWS data cannot fully provide their whole gold information into regression retrieval. 

Nevertheless, it does not spoil the retrieval algorithm. Note that there are no negative 

values in case of (3). Almost the same results are shown in Figure 41, which represent 

the sensitivity of retrieval performance with respect to error of pseudo-AWS moisture 

data. In case of moisture, unexpected AWS error is very critical compared to 

temperature case. From this result, it can be expected that role of AWS data of moisture 

could be much significant than that of temperature.  

To sum up, error of AWS predictors has significant impact on regression model. 

Since regression model is linear model, systematic error can be solved through a repeat 

of training with respect to various assumed bias. For random error, if amount of random 

error is not exactly known, conservative approach, which providing slightly larger error 

than expected error, would be better. This is because overestimation of the weight for 

AWS predictors may spoil regression model when unexpected random error occurs.  
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Figure 39. Sensitivity of temperature and moisture retrievals with respect to biased 

temperature predictor (left) and biased moisture predictor (right). Upper and lower 

panels indicate results of temperature and moisture retrievals, respectively. Different 

colors indicate differently assumed biases.
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Figure 40. Sensitivity of temperature and moisture retrievals when temperature predictor. Three cases are considered as 

follows: (left) AWS has random error and it is perfectly known, (middle) AWS has unexpected error, (right) artificial random 

error is considered for noise-free AWS data. Upper and lower panels indicate results of temperature and moisture retrievals, 

respectively. Different colors indicate differently assumed random errors. 
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Figure 41. Same as Figure 35 but moisture predictor has various random errors.



108 

6.1.3. Change of regression coefficient due to use of AWS data 

For more deep understanding of role of AWS predictors, changes of regression 

coefficient for lowest level temperature and moisture are analyzed. Before doing that, 

brief understanding of regression coefficient used in this study is discussed. In the 

regression model, predictors are simply multiplied to regression coefficient, which links 

measurements and atmospheric state. That is, amplitude of regression coefficient 

indicates how much of measurements is converted into physical space. If a given 

channel has very noisy signal, a regression coefficient related to this channel should be 

closed to zero because signal from this channel is physically meaningless. By contrast, a 

given channel has gold information, amplitude of regression coefficient related to this 

gold channel should be very large. However, if information of gold channel is highly 

correlated with the other channels, amplitude of regression coefficient could be smaller. 

This is because atmospheric state can be estimated without this correlated channel. 

Therefore, it can be expected that change of regression coefficient for AIRS channels 

could bring information about impact of AWS data for retrieval problem. It should be 

noted that scale of input signal is also important for deciding amplitude of regression 

coefficient. It means that even though change of regression coefficient is large, this 

change cannot affect final retrieval results. 

Figure 42 show change of regression coefficient for lowest temperature retrieval. If 

impact of use of AWS data is significant, change of magnitude is possibly significant. 
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Similarly, impact is not significant, the magnitude is closed to zero. Red and blue lines 

indicate coefficient difference between coefficient with and without AWS data. Since 

blue line uses noisy AWS data as predictors, magnitude of difference is relatively 

smaller than red line. In order to know which channels are related to which atmospheric 

parameters mean radiances are plotted also. From the mean spectrum brief channels 

locations are shown as follows: 

● 0 ~ 380: CO2 channel channels (i.e., temperature channels) 

● 380 ~ 650: window channels 

● 650 ~ 790: ozone channels 

● 790 ~ 900: window channels 

● 900 ~ 1430: water vapor channels 

As shown in Figure 42, use of AWS data affect whole AIRS spectrum. This 

indicates that whole AIRS spectrum could directly or indirectly affect lowest 

temperature retrieval. Considering magnitude of input data, which is shown in green 

color, relative importance is highest in window channels as expected. Interesting thing is 

that not only lower temperature sounding channels, but also lower water vapor sounding 

channels significantly affect lowest temperature retrieval. In other words, gold 

information of AWS data is highly related to lower level water vapor channels; if AWS 

data is not available, lower level water vapor channels explain large portion of the lower 

level temperature. 
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Impact of AWS data for lowest level humidity is also quite similar to temperature 

case (Figure 43). As shown in temperature case, whole AIRS spectrum affect lower 

level humidity retrieval. However, difference of regression coefficient between noisy 

and noise-free data looks to be much larger than temperature case. It is expected that 

very accurate AWS data is required to improve lowest level moisture data. Otherwise, 

improvement of regression retrieval is not that significant. Compared to temperature 

case, contribution of lower temperature channels and window channels are slightly 

reduced but role of lower humidity channels is still notable. 

To sum up, use of AWS data mostly affects role of window, lower temperature and 

lower water vapor channels. Among them, role of lower level water vapor channels is 

quite notable. It can be seen that information of lower level water vapor channels is 

relatively unstable, so AWS data positively affect retrieval performance through fixing 

contribution of these channels. 
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Figure 42. Differences between regression coefficient with and without AWS (red: 

noise-free AWS, blue: noisy AWS) for lowest level temperature retrieval. Black and 

green lines indicate mean radiance and magnitude of sample, respectively.  
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Figure 43. Same as Figure 42 but for lowest level water vapor retrieval. 

 



113 

6.1.4. Application 

Now real AWS data is applied on regression coefficient with real AIRS 

measurements. Details of used data is described in section 4.4.3 but data over the 

Korean peninsula are used for application. In order to use AWS data as predictors for 

AIRS retrieval, collocation should be done. For temporal collocation, AWS data 

observed at AIRS passing time are used, while for spatial collocation, AWS data located 

in 10 km from center of AIRS field of view are used. It should be noted that unexpected 

AWS error also includes collocation error. 

Comparison results between retrievals with and without AWS are shown in Figure 

44. As shown in simulation result in section 6.1, retrievals over boundary layer are 

improved when AWS data are used as predictors for both temperature and water vapor. 

For temperature, RMSE is reduced up to 1 K, while for moisture, RMSE is reduced up 

to 8 % point. As expected, amount of improvement decreases with increasing height. 

For temperature, impact of AWS reaches around 800 hPa level, while for moisture, the 

impact reaches around 750 hPa. 
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Figure 44. Comparison of the mean biases (dashed lines) and RMSEs (solid lines) 

between regression retrievals with AWS data (red lines) and without AWS data 

(blue line). 



115 

6.2. Impact of AWS data on AIRS T/q soundings: Physical 

perspective 

 

6.2.1. 1DVAR with AWS observation 

Result shown in section 6.1 suggests that AWS data have enough information for 

improving boundary layer temperature and moisture retrieval beyond information in 

AIRS measurements. Since improvement is not limited over AWS data layer, we 

carefully concluded that improvement could be possible from information synergy 

between AWS data and AIRS measurements. That is, better explanation for complex 

radiative information, which is affected by surface, could be possible by adding AWS 

data in retrieval algorithm. However, one may argue that only correlation between 

surface states and boundary layer states also brings error improvement. At this point, it 

is quite interesting to explain this improvement in physical perspective. 

Same 1DVAR described in section 5.1 is used. For the experiment, atmospheric 

state and corresponding AIRS observation are obtained from SARTA simulation result. 

Details of this simulation data are described in section 4.1. As AWS data, 2 m 

temperature and moisture data are used. Here, errors of AWS data are assumed that they 

have relatively very smaller errors than observation and a priori information: 0.5 and 0.1 

are assumed for temperature in kelvin unit and moisture in logarithm of mixing ratio 

unit, respectively. 
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In order to apply AWS data in 1DVAR, AWS data are considered as AIRS 

measurements but they do not need radiative transfer calculation. Here, we provide 

detail step for applying AWS data as satellite measurement by comparing with use of 

AIRS observation in 1DVAR. In 1DVAR procedure, increments of each channels are 

calculated at first. In other words, difference between observed AIRS radiance and 

calculated AIRS radiance of current guess is calculated. Similar difference for AWS data 

should also be obtained at first. Here, temperature and moisture at lowest level from 

current guess is considered as calculated AWS data. That is, difference between this 

lowest value of current guess and AWS data is calculated. After that, this difference is 

normalized by square root of observation error covariance. For the next step, 

background increment is calculated. Although this increment is independent with 

observation, converted value in observation dimension is dependent with characteristics 

of observation. For AIRS measurements, state increment is converted to observation 

increment by using Jacobian from radiative transfer calculation. Therefore, we should 

define Jacobian for AWS data. Considering the observation area of AWS data, delta 

function type of Jacobian whose peak locates at surface level is assumed. It means that 

background increment at lowest level is considered as background increment of AWS 

observation. This increment is also normalized by square root of observation error. Now 

we have new normalized increments; observation increment of AWS data and 

background increment in AWS observation dimension. After calculating averaging 
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kernel by using background error covariance and Jacobian of AIRS and AWS, discussed 

in 5.1.2, modified state is estimated by multiplying the averaging kernel and the sum of 

the increment (i.e., normalized observation increment plus normalized background 

increment). If residual of modified state decreases but it is not less than convergent 

threshold, one more iteration is proceeded by using modified state as current guess. 

Details of minimization procedure is shown in Figure 25 in section 5.1.3. 

 

6.2.2. Result 

Figure 45 shows error improvement defined in Eq. (14). For both temperature and 

moisture soundings, error improvements show positive values over boundary layer. 

Magnitude of improvement is around 4 %. As shown in regression result, improvement 

is not limited at lowest level where AWS observation is located. Since delta function 

type of Jacobian is used, AWS observation cannot directly affect boundary layer 

improvement. The only way to improve boundary layer information from AWS data is 

that improved near surface state due to AWS observation is used as constraint when 

AIRS observation improves boundary layer state during minimization procedure. 

Compared to regression results, degree of improvement is not that large. The one 

of the possible reasons is that AIRS measurements and background (i.e., regression 

retrieval) are too accurate in this experiment. In other words, it is very hard to improve 

atmospheric state by using single AWS observation for given error states. The other 
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possible reason is that statistical correlation between surface layer and boundary layer 

cannot be used for solving AIRS radiative signal. In the regression model, this 

correlation can be used as an evidence to estimate boundary layer condition. 

Nevertheless, above result clearly indicates that use of AWS data can improve retrieval 

over boundary layer in physical perspective. Once well-balanced error value for AWS 

data is obtained, use of AWS data should be helpful for explaining radiative signal of 

AIRS measurement.  
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Figure 45. Error improvement for (left) temperature and (right) moisture when AWS 

data are used as super-channels which have delta function type of Jacobian. 
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7. Summary and discussion 

To improve the temperature and moisture retrievals from hyperspectral AIRS 

measurements, we attempted first to improve the regression retrievals that can be used 

as a priori information for the physical retrieval model. In doing so, a moving-window 

technique was developed based on the assumption that the inclusion of local climate 

features in the regression procedures will yield better regression results compared with 

the CIMSS regression method that does not consider local features. The moving-

window technique performs the regression at a given location (a 10 × 10 grid box) and 

at a given time (any season). For regional and global applications, the regression box 

can be continuously moved to the adjacent location (i.e., another 10 × 10 box) for 

performing regression on that particular box area until the area in interest is covered. 

The obtained a priori information was then used to constrain the CIMSS physical model, 

and the results were compared with those obtained using the a priori information 

obtained from the CIMSS regression method. In this study, the developed moving-

window technique was applied to four months (March, June, September, and December 

of 2010) of AIRS clear-sky measurements over East Asia. 

Notably, regression retrievals based on the moving-window technique yielded 

smaller mean biases and RMSEs, compared with the CIMSS regression retrievals. 

Because regional and seasonal climate variations were accounted for by the moving-

window technique, the mean bias, implying the accuracy of the estimated climatology, 
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was substantially improved. The assumption of linearity between the atmospheric state 

and radiance variables must be more valid when using the moving-window technique, 

because the atmospheric state in a 10° × 10° regression box is one of many realizations 

yielding the box climatology. In other words, a relatively smaller deviation from the 

mean state can be expected, compared with the method in which training data set is 

collected over a much larger area. By the same token, by regressing over a narrower 

time window (here, season) a better linear relationship can be expected. In the end, 

regionally and seasonally varying regression coefficients may result in better 

performance, compared with performance that is obtained when training data are 

collected over larger regions and longer times. 

The effect of localization of regression coefficients derived from the moving-

window technique appears to be more significant in situations in which the relationship 

between measured radiances and atmospheric state is not clear (e.g., the relationship 

between the measured radiances and lower boundary layer states). The moving-window 

technique is particularly advantageous in this situation, compared with the TB-based 

classification technique used with the CIMSS regression method. The TB-based 

classification technique may be useful for reflecting the TB dependency on the 

statistical relationship between the atmospheric state and radiance. However, it is 

thought that the moving-window technique may result in a less accurate performance in 

extreme cases, compared with the CIMSS TB-based classification technique, because, 
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compared with the latter method, the moving-window technique is more susceptible to 

the variation from the local climatology. 

The use of a priori information from the moving-window regression method 

improved the physical retrieval. For temperature, RMSE improvements of 0.1 – 0.2 K 

and 0.4 – 0.6 K were demonstrated over the 150 – 300 hPa and 850 – 1000 hPa layers, 

respectively. For water vapor expressed as relative humidity, RMSEs were reduced by 

1.5 – 4.5% above the 300 hPa atmospheric pressure level and by 0.5 – 1.5% over the 

700 – 950 hPa layer, compared with the results obtained when CIMSS regression 

retrievals were used as initial guess fields. However, no effect was observed for the mid-

troposphere around 350 – 650 hPa. Water vapor retrievals were not much improved in 

the lower boundary layer. These benign results suggest that the regression-based 

improvement of the initial field data may be limited by only using climatological 

features. Other methods can be devised. For example, including also the numerical 

weather prediction (NWP) model background in regression procedure can improve the a 

prior information for 1DVAR physical retrieval (Jin et al. 2008; Schmit et al. 2008; Li et 

al. 2009), adding different types of observations, such as surface observations, to the 

retrieval procedures, as suggested by Liu et al. (2015), may be one way of improving 

the retrievals. 

Along this line, possible inclusion of observations of meteorological variables at 

the surface as inputs to the retrieval model has been examined. In this study, AWS data 
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over the Korean peninsula are employed as surface observations, further improving the 

boundary layer temperature and moisture retrievals. In doing so we first conduced the 

error analysis using the linear regression model. Five levels of biases and random errors 

are assumed and sensitivity test is performed assessing the retrieval performance. 

Sensitivity test results suggest that the systematic error of AWS data is not a problem 

since the regression model is a linear model. However, for the random error, an 

overestimation of the weight for AWS-related predictors may spoil the regression 

algorithm if unexpected random errors occur. If the amount of random error is not 

exactly known, the conservative approach providing a slightly larger error than an 

expected error, may be better for the stable retrieval. For deeper understanding of the 

impact of AWS data in the regression model, we examined how regression coefficients 

are changed with the use of AWS data. Analysis results suggest that use of AWS data 

mostly affects window, lower temperature and lower water vapor channels. Among 

them, change of lower level water vapor channels due to AWS data is quite notable. It 

can be interpreted that the information of lower level water vapor channels is relatively 

unstable and AWS data positively affect the retrieval performance through altering 

contribution of these channels. 

Results from the modified regression model in which AWS data are used as 

additional predictors, suggest that AWS data add information for improving the 

boundary layer temperature and moisture retrieval to the information of AIRS 



124 

measurements alone. Since the correlation in the state between the surface air and the 

boundary layer can enhance the error improvement in the regression approach, the 

impact of AWS data is also examined in terms of physical perspectives. The 1DVAR 

algorithm is modified by updating the Jacobians for AWS data. In addition, relative 

contribution of AWS data compared to a priori information and AIRS measurements is 

defined in the modified 1DVAR model through the error covariance matrix. For both 

AIRS temperature and moisture retrievals, RMSEs are improved up to 4% over the 

boundary layer. Since the delta function type of Jacobian is used, AWS observations 

cannot directly affect the boundary layer improvement; improved description of the 

atmospheric condition near the surface due to AWS data may lead to the improvement 

retrieval in the boundary layer.  

It suffices to say that the improvement of temperature and humidity retrievals from 

the regionally focused algorithm can surely enhance our ability to monitor the severe 

weather. By the same token, the knowledge obtained from this study would be useful for 

developing better data assimilation methods for numerical weather forecasting. Future 

work can be directed at how this algorithm can be applied for future IR hyperspectral 

sounder, especially for geostationary hyperspectral sounder such as GIIRS on FY-4. 
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국문초록 

Atmospheric Infrared Sounder (AIRS) 온도/습도 연직 분포 산출을 위한 지

역기반 알고리즘 개발 연구를 수행하였다. 첫째로 AIRS로 관측한 적외 초분

광 복사 휘도로부터 온도/습도 연직 분포를 산출할 수 있는 통계 모델을 구

축하였다. 통계 모델을 구축함에 있어 지역 및 계절에 따라 공통적으로 나타

나는 온도/습도 연직 분포의 형태를 산출에 활용할 수 있도록 이동창 방법을 

개발, 적용하였다. 통계 모델을 구축하기 위한 훈련 자료로 4년 (2006-2009) 

간의 ECMWF 재분석 자료와 이 재분석 자료로부터 이론적으로 계산된 AIRS 

복사 휘도가 사용되었다. 이동창 방법이 적용되지 않은 통계적 산출물에 비

해 뚜렷한 편차의 개선이 나타났고, 이는 이동창 방법을 이용한 기후 정보의 

활용이 보다 정확한 통계 모델 구축함에 있어 도움이 될 수 있음을 의미한

다. 

물리적 측면에서의 추가적 개선을 위한 1차원 변분법 역시 본 지역기반 

온도/습도 연직 분포 산출 알고리즘에 포함되었다. 사전에 잘 구축된 통계적 

산출물과 에러공분산행렬 쌍을 이용하여, 간접적인 방법으로 이동창 기반의 

통계적 산출물의 에러공분산행렬을 산정한 후 1차원 변분법에 적용하였다. 

이동창 방법으로부터 얻은 통계적 산출물을 초기장으로 한 물리적 산출물의 

정확도를 평가하기 위하여, 4개월 (2010년 3월, 6월, 9월, 12월) 간의 AIRS 청천 

관측 밝기 온도로부터 온도/습도 연직 분포를 산출하여 CIMSS의 통계적 산

출물을 초기장으로 사용한 물리적 산출물과 비교 분석을 수행하였다. 비교 
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대상으로 사용된 CIMSS의 통계 모델은 전구 기반의 훈련 자료로부터 개발 

된 산출 모델로, 대기 창 영역에서 관측된 밝기 온도를 이용하여 전 지구의 

대기 상태를 여섯 종류로 구분하여 AIRS의 온도/습도를 산출한다. 물리적 산

출물의 비교 결과, 이동창 방법을 통해 생산한 통계적 산출물을 기반으로 한 

물리적 산출물이 평균 제곱근 오차 측면에 있어 보다 개선된 결과를 보였다. 

온도 산출물의 경우 150 – 300 hPa 층과 900 – 1000 hPa 층에서 각각 0.1 – 0.2 

K, 0.25 – 0.5 K의 평균 제곱근 오차 개선을 보였고, 상대습도 산출물의 경우 

300 hPa 이상의 고도에서 1.5 – 3.5%, 700 – 950 hPa 층에서 0.5 – 1 %의 평균 제

곱근 오차 개선을 보였다. 

이동창 방법을 이용했을 때의 대부분의 오차 개선이 관측된 복사 휘도

와 대기상태 간의 관계가 명확하지 않은 곳에서 나타났기 때문에, 유사한 방

법으로 추가적인 AIRS 온도/습도 산출 개선을 위한 지상 관측 자료의 활용 

가능성을 조사하였다. 지상 관측 자료는 통계적, 물리적 방법으로 개발된 지

역기반 AIRS 산출 알고리즘에 적용되었다. 적용 결과 지상 관측 자료가 생

산된 지면 고도 뿐 만 아니라 경계층 전체에서 AIRS 온도/습도 산출물의 평

균 제곱근 오차가 개선되었다. 이러한 결과는 하층 대기 채널의 산출에 있어

서의 불안정성이 지상 관측 자료의 사용으로 인해 해소됨으로써 나타난 것

으로 해석된다. 

종합하면 본 연구에서는 보다 나은 AIRS 온도/습도 연직 구조 산출을 

위한 기후 값이 고려된 지역 기반 알고리즘을 개발하였고, 추가적인 개선을 
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위한 지면 관측 자료의 활용 가능성을 논의 하였다. 위성 관측 기술이 발전

함에 따라 정지 궤도 위성의 적외 초분광 관측이 가능해졌기 때문에, 개발된 

지역 기반 알고리즘을 이러한 차세대 위성에 적용시킬 경우 악기상 감시 및 

예측 능력의 큰 향상을 기대할 수 있을 것이라 판단된다. 

 

주요어: 온도 연직 분포, 습도 연직 분포, 적외 초분광 위성, AIRS, 통계 산출 

모델, 1차원 변분법 
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