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Abstract

This dissertation discusses a variational partial differential equation (PDE)
models for restoration of images corrupted by multiplicative Gamma noise.
The two proposed models are suitable for heavy multiplicative noise which
is often seen in applications. First, we propose a total variation (TV) based
model with local constraints. The local constraint involves multiple local
windows which is related a spatially adaptive regularization parameter (SARP).
In addition, convergence analysis such as the existence and uniqueness of a
solution is also provided. Second model is an extension of the first one using
nonconvex version of the total generalized variation (TGV). The nonconvex
TGV regularization enables to efficiently denoise smooth regions, without
staircasing artifacts that appear on total variation regularization based mod-
els, and to conserve edges and details.

Key words: image denoising, multiplicative Gamma noise, spatially adap-
tive regularization parameter, proximal linearized alternating direction al-
gorithm, nonconvex total generalized variation, iteratively reweighted `1 al-
gorithm
Student Number: 2011-20269
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Chapter 1

Introduction

Image denoising is a challenging task and is widely studied in the field
of image processing. Image denoising aims at eliminating noise from a cor-
rupted image, while also preserving essential features such as edges and
textures. It typically covers additive noise removal and multiplicative noise
removal. Many work have focused on the removal of additive Gaussian noise.
However, the Gaussian noise model is not suitable to describe noises in real
images such as synthetic aperture radar (SAR), ultrasound images and laser
images. In fact, these images are distorted by multiplicative noise, and the
multiplicative noise depends on intensity values of the original image. So,
the removal of multiplicative noise is more challenging than that of additive
Gaussian noise. We focus on multiplicative noise removal.

Let Ω Ă R2 be an open and bounded domain with a compact Lipschitz
boundary and u : Ω Ñ R be a clean image. The degradation model for
observed data f corrupted by multiplicative noise is given by

f “ u ¨ η, (1.0.1)

where η represents noise that follows a certain distribution such as Gamma
distribution or Rayleigh distribution. In this dissertation, we concentrate on
the Gamma-distributed noise present in SAR images, i.e., η is assumed to
be Gamma noise with the following density function [43],

P pηq “
MMηM´1

ΓpMq
e´M ¨η, for η ě 0, (1.0.2)
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CHAPTER 1. INTRODUCTION

where M ą 0 is an integer related to the noise level, and Γ is the Gamma
function. Thus, the mean of η is 1, and its standard deviation is 1{

?
M .

Generally, there are two ways to recover noisy image to a clean image.
One is filter based model [42, 26, 72, 38, 39] and the other is the variational
model [62, 5, 46, 65, 28, 41, 60]. For filter based model, one of the earli-
est adaptive filter model [42] used minimum mean square error estimator
to obtain the noise filtering algorithm. Later, Kuan, et al. proposed Kuan
filter based on maximum a posteriori [39]. Wavelet filter method [12, 11]
were studied quickly, but it did not produce a visually satisfactory result
by repeatability of the same pattern near edge. In recent years, there are
many filters [24, 20] with good results for Gaussian additive noise have
been extended to multiplicative noise [33, 59]. However, because of similar-
ity measurement, there is a limitation that can not restore thin or small
detail properly.

In a variational framework, several total variation (TV) regularization
based models have been proposed for removing multiplicative noise. TV reg-
ularization [62] is one of the most well-known regularization approaches for
image denoising, owing to its capability in preserving edges and discontinu-
ities. The first variational approach with TV regularization dedicated to mul-
tiplicative noise removal was proposed by Rudin et al. [61]. However, their
model could only address noise that followed Gaussian distribution. Based
on a maximum a posteriori (MAP) estimation, Aubert and Aujol (AA) [5]
introduced a new TV based model to remove multiplicative Gamma noise.
However, the data-fidelity term in their model is not convex; therefore, re-
sulting computed solutions may not be global optimal solutions. Moreover,
their model is strongly dependent on the initialization. To cope with these
drawbacks, Shi and Osher (SO) [65] utilized a log transformation and con-
verted the AA model into a convex model. Their model is independent of
the initialization, and has demonstrated better denoising results than the
AA model. On the other hand, Dong and Zeng (DZ) [23] suggested another
convex model, by inserting a quadratic penalty term into the AA model.
However, this model is designed to be more suitable for low noise levels,
owing to the penalty term. Therefore, Lu et al. [48] modified the DZ model
and proposed a new convex model (exp) that can handle high levels of noise.
In this dissertation, we extend the exp model [48] to a TV model with lo-
cal constraints, where the local constraints are derived from local statistical
characteristics of some random variables with respect to Gamma noise. All
these aforementioned models involve the TV regularization, so they tend to
produce some artifacts with stair form in smooth transition regions, which
is often called staircasing artifacts. To alleviate these artifacts, several hy-
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CHAPTER 1. INTRODUCTION

brid TV regularization models have been suggested in [13, 15, 50, 9], which
combines first and second-order TV functionals. In particular, Feng et al.
[25] extended the model in [65], by adopting the total generalized varia-
tion (TGV) regularization [9] instead of TV. Moreover, Shama et al. [64]
proposed a TGV based model associated with the convex fidelity term in
[23].

Nonconvex regularization [40, 58] has drawn interests since nonconvex
regularizers have more advantages than convex ones, in terms of keeping
edges and discontinuous features. In [37], the authors replaced the TV reg-
ularization term by the `q norm of gradient of image with 0.5 ă q ă 0.8
and demonstrated that the nonconvex one finds a better denoised image
than TV. Additionally, numerical results in [52] showed that nonconvex reg-
ularizations are superior to convex ones. Recently, Oh et al. [55] proposed
a nonconvex hybrid TV regularizer, which is a convex combination of TV
and second order TV. The authors also showed that the nonconvex hybrid
TV produces better denoising results than its convex one as well as TV.
The TGV was also extended in [54] to its nonconvex version, and it was
validated that the nonconvex TGV has preferable performance compared to
the TGV. Hence, we also utilize a nonconvex version of the TGV, to take
advantages of both nonconvex regularization and TGV regularization.

A variational model for image restoration is usually composed of a data-
fitting term and a regularization term. Typically, the regularization parame-
ter multiplied in the fidelity term handles the tradeoff of a fidelity term and
a regularization term. That is, a small value of it leads to over-smoothing
of fine features such as edges and details, while a large value of it results
in leftover noise in homogeneous regions. Therefore, spatially varying values
for the regularization parameter, i.e., small values in homogeneous parts and
large values in textural parts, are more appropriate for denoising. In fact,
the spatially adaptive regularization parameter (SARP) approach has been
proposed in many works [31, 29, 44, 7, 1, 22] for various denoising models.
Gilboa et al. [29] proposed a parameter update scheme based on local vari-
ance measures; however, it was only suitable for Gaussian noise removal.
The idea was later extended to deal with multiplicative noise [44], where the
proposed algorithm focused on evolving the negative gradient flow based on
the AA model. However, the model converges slowly and requires many iter-
ations for satisfactory results. In particular, Dong et al. [22] proposed a new
SARP approach for the additive Gaussian noise removal with a theoretical
analysis. This approach was extended for the denoising problems with other
types of noise [34, 16, 47]. We in this dissertation also extend this SARP
approach for the removal of heavy multiplicative Gamma noise.

3



CHAPTER 1. INTRODUCTION

In the last decade, many efficient optimization algorithms for convex
minimization problems have been proposed [30, 14, 8, 70]. The alternating
direction method of multipliers (ADMM) [8, 70] is the most commonly used
algorithms for convex problems in image processing due to its convergence
and wide applicability. It is known that ADMM is equivalent to the split
Bregman method [63] under linear equality constrained optimization prob-
lems. Despite its effectiveness, this algorithm usually requires inner iterations
or inverse operations involving the Laplacian operator at each iteration. The
computational cost of inner iterations or inversions are considerably high.
Therefore, many linearized techniques have been developed [56, 57] for ac-
celerating alternating algorithms that do not involve any inner iteration or
inversion. Recently, in [69], a fast proximal linearized alternating direction
(PLAD) algorithm was proposed for solving the multiplicative noise removal
models in [65, 67]. This algorithm linearized both data-fitting and quadratic
terms in the augmented Lagrangian function, and also demonstrated that
the linearized algorithm outperforms the original augmented Lagrangian al-
gorithm. On the other hand, nonconvex optimization algorithms have not
been studied as much as convex ones because of its intrinsic difficulties arisen
from nonconvexity. Nevertheless, several numerical algorithms for noncon-
vex problems have been proposed in [2, 4, 66] with or without convergence
analysis. Recently, Candes, et al. [10] introduced a new algorithm, called the
iteratively reweighted `1 algorithm (IRLA), to solve the compressive sensing
problems involving a nonconvex regularization. Furthermore, Ochs et al. [53]
extended it to solve linearly constrained optimization problems in computer
vision problems, which was also generalized as various kinds of iteratively
reweighted algorithms [54] with convergence analysis. In this work, we adopt
the IRLA in [53] to handle our nonconvex model, and the ADMM to solve
a convex subproblem.

In this dissertation, we propose a variational model with local constraints
for restoring images corrupted by heavy multiplicative Gamma noise. The lo-
cal constraint involves multiple local windows rather than one local window
as in [17], which helps in effectively removing the noise both in homogeneous
and edge regions. The proposed models are related to the exp model [48]
associated with the SARP. Thus, the proposed models enable us to handle
heavy multiplicative Gamma noise as well as to benefit from the advantages
of the SARP scheme. For the first proposed model, the convergence analysis
such as the existence and uniqueness of a solution is provided. Furthermore,
we derive our SARP algorithm from the first optimality characterization of
our model. Lastly, we utilize the PLAD algorithm for solving our subprob-
lem; this results in a fast optimization algorithm for solving the proposed
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CHAPTER 1. INTRODUCTION

model. The second proposed model is based on the nonconvex TGV (NTGV)
regularization. Despite, we can not guarantee theoretical analysis because
of nonconvexity, NTGV has a good property such as keeping edges sharply
and discontinuous feature.

The remainder of this paper is organized as follows: Section 2 recalls con-
vex and nonconvex regularizers, several variational models for multiplicative
Gamma noise removal and a proximal linearized alternating minimization
algorithm. In Section 3, we introduce our variational models as well as an
optimization algorithm for solving our model. We also present numerical
results for our models and compare them with some state-of-the art models.
Lastly, we conclude this paper in Section 4.

5



Chapter 2

Previous works

2.1 Variational models for image denoising

Generally, variational models for image denoising consists are composed of
data-fidelity term and regularization term. In this section, we explore several
existing regularizers for image denoising and introduce various variational
models for multiplicative noise removal.

2.1.1 Convex and nonconvex regularizers

This subsection recalls several existing regularizers. First, the total variation
(TV) regularizer [62] was introduced in a variational model for the Gaussian
noise removal:

min
u

λ

2

ż

Ω
pu´ fq2dx` |u|BVpΩq, (2.1.1)

where λ ą 0 is a tuning parameter that balances data-fitting and regular-
ization terms. Here, BVpΩq is the subspace of functions u P L1pΩq such that
the following quantity, namely, the BV semi-norm |u|BVpΩq, is finite:

|u|BVpΩq :“

ż

Ω
|Du| “ sup

"
ż

Ω
udivpφqdx

ˇ

ˇ

ˇ
φ P C1

c pΩq, }φ}8 ď 1

*

, (2.1.2)

where the vector measure Du represents the distributional or weak gradi-
ent of u, and } ¨ }8 is the essential supremum norm. If u P W 1,1pΩq, then
ş

Ω |Du| “
ş

Ω |∇u| dx, where |∇u| “
a

u2
x1 ` u

2
x2 with x “ px1, x2q. This reg-

ularization is also called the TV of u; it has been widely used owing to its
discontinuity or edges preserving. Note that, the space BV(Ω) is a Banach
space equipped with the norm }u}BVpΩq “ }u}L1pΩq ` |u|BVpΩq.

6



CHAPTER 2. PREVIOUS WORKS

To enhance the edge-preserving ability of TV, several nonconvex TV reg-
ularizers were proposed in [37, 52], which has the form Φp|∇u|q “

ş

Ω φp|∇u|qdx,
where φ is the nonconvex function defined as

φpsq “ sq p0 ă q ă 1q ,
ρs2

1` ρs2
,

1

ρ
logp1` ρsq pρ ą 0q. (2.1.3)

Numerical results in [52] exhibited that the nonconvex TV regularizers better
preserved edges or textures than TV. However, the nonconvex TV regular-
izers smooth homogeneous regions like TV, which indicates that they can
yield some staircasing artifacts near smooth transition regions in restored
images.

To overcome these staircasing effects, higher-order regularization based
models were suggested in [13, 15, 50]. As an early work, a inf-convolution
TV (ICTV) model was proposed in [13], which takes the infimal convolution
of TV and second-order TV:

min
u1,u2

λ

2

ż

Ω
pu1`u2´fq

2dx`

ż

Ω
|∇u1|`α|∇2u2| dx, with u1`u2 “ u, (2.1.4)

where | ∇2u2 |“
a

pu2q
2
x1x1 ` pu2q

2
x1x2 ` pu2q

2
x2x1 ` pu2q

2
x2x2 and α ą 0 is a

weight parameter.
Moreover, Li et al. [45] proposed the following denoising model, involving

a convex combination of TV and the second order TV as a regularizer:

min
u

λ

2

ż

Ω
pu´ fq2dx`

ż

Ω
p1´ gq|∇u|dx`

ż

Ω
g|∇2u|dx, (2.1.5)

where g “ 1
1`}∇pGσ˚fq}22

is an edge detector, where Gσ is a Gaussian kernel

with standard deviation σ.
Oh et al. [55] further extended the model (2.1.5) by making use of a

nonconvex hybrid TV regularizer:

min
u

λ

2

ż

Ω
pu´ fq2dx`

ż

Ω
p1´ gq|∇u|α1 dx`

ż

Ω
g|∇2u|α2 dx, (2.1.6)

where αi P p0, 1q are tuning parameters that control the nonconvexity of
regularization terms. The authors showed that the nonconvex hybrid TV
regularizer is more suitable for the image denoising problem than the convex
hybrid TV (2.1.5) or a nonconvex TV.

On the other hand, as a generalization of the ICTV, the total generalized
variation (TGV) regularizer was proposed in [9]. Particularly, the second-

7



CHAPTER 2. PREVIOUS WORKS

order TGV based model is as follows:

min
u

λ

2

ż

Ω
pu´ fq2 dx` TGV2puq, (2.1.7)

with TGV2puq “ min
p

ż

Ω
α1|∇u´ p| ` α0|Eppq| dx,

where Eppq “ 1
2

`

∇p` p∇pqT
˘

represents the distributional symmetrized
derivative, and α1, α0 ą 0 are the weighted parameters that control the
balance between the first and second-order terms. From the formulation
(2.1.7) of TGV, it can be interpreted that TGV2puq can automatically find
an appropriate balancing between the first and the second-order derivative
of u with respect to αi.

Recently, Ochs et al. [54] proposed a nonconvex extension of the TGV
regularizer as follows:

min
u,p

λ

2

ż

Ω
pu´ fq2dx`

ż

Ω
α1φp|∇u´ p|q ` α0φp|Eppq|qdx, (2.1.8)

where φpxq “ 1
ρ logp1`ρxq with the parameter ρ ą 0 controlling the noncon-

vexity of regularization term. This regularization takes advantages of both
noconvex regularization and TGV regularization.

2.1.2 Variational models for multiplicative noise removal

In this subsection, we review existing variational models for multiplicative
Gamma noise removal. First, based on a MAP estimator, Aubert and Au-
jol (AA) [5] proposed a new TV-based model for removing multiplicative
Gamma noise:

min
uą0

λ

ż

Ω

´

log u`
f

u

¯

dx`

ż

Ω
|∇u|dx, (2.1.9)

where λ ą 0 is a tuning parameter that balances data-fitting and regulariza-
tion terms. The main defect of model (2.1.9) is that the data-fidelity term
is not convex. Thus, classical optimization algorithms provide only a local
minimum, which may not be the global optimal solution; moreover, the al-
gorithms strongly rely on the initialization. To overcome this difficulty, Shi
and Osher (SO) [65] adopted the log transformation, z “ log u, and proposed

8



CHAPTER 2. PREVIOUS WORKS

the following convex model:

min
z

λ

ż

Ω

´

z ` fe´z
¯

dx`

ż

Ω
|∇z|dx, (2.1.10)

It was shown in the [65] that this model outperforms the AA model (2.1.9)
and their results do not depend on initial guesses. Furthermore, to better
preserve textures and details, this model was extended by Chen and Cheng
[17], incorporating it with a spatially dependent regularization parameter
λ P L8pΩq:

min
z

ż

Ω
λpxq

´

z ` fe´z
¯

dx`

ż

Ω
|∇z|dx, (2.1.11)

where λ : Ω Ñ R is a spatially varying parameter. In [25], this convex
data-fitting term was integrated with the TGV regularizer, leading to the
following model:

min
u

λ

ż

Ω

`

u` fe´u
˘

dx` TGV2puq. (2.1.12)

Different from the idea of the SO model, Dong and Zeng (DZ) [23] in-
serted a quadratic penalty term into the AA model (2.1.9) and proposed the
following convex model:

min
uą0

λ

ż

Ω

”

log u`
f

u
` α

ˆ
c

u

f
´ 1

˙2
ı

dx`

ż

Ω
|∇u|dx, (2.1.13)

where α ą 0 is a parameter. It was shown in [23] that the objective function

of (2.1.14) is strictly convex if α ě 2
?

6
9 . The penalty term was derived from

the following statistical properties of multiplicative Gamma noise η with

distribution (1.0.2): (I) limMÑ8 E
!

p 1?
η ´ 1q2

)

=0, (II) 1?
η “

b

u
f . However,

Etp
a

u{fqu is always larger than 1 and is close to 1 only when M is large
sufficiently. This indicates that this model is more appropriate for a relatively
large value of M , which corresponds to a low noise level. Recently, Shamma
et al. [64] proposed a variational model by combining the convex data-fidelity
term in [23] with the TGV:

min
u
λ

ż

Ω

«

log u`
f

u
` α

ˆ
c

u

f
´ 1

˙2
ff

dx` TGV2puq, (2.1.14)

To address considerable multiplicative Gamma noise, Lu et al. [48] sub-

9
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stituted the value 1 in the quadratic penalty term in model (2.1.13) with
the varying value β ě 1. Furthermore, owing to the constraint u ą 0 and
the observation that exponent-like models usually provide better quality de-
noised images than their logarithm-like counterparts, the authors used the
log transformation, z “ log u, and proposed the following model, called the
exp model:

min
z

λ

ż

Ω

”

z ` fe´z ` α

ˆ
c

ez

f
´ β

˙2
ı

dx`

ż

Ω
|∇z|dx, (2.1.15)

where β is no less than 1 and varies depending on the level of noise. The
objective function of this model is strictly convex if

αβ4 ď
4096

27
. (2.1.16)

In this dissertation, we extend this model (2.1.15) to a TV model with
local constraints and nonconvex extension of TGV with local constraints.

2.2 Proximal linearized alternating direction method
of multipliers

This subsection recalls the proximal linearized alternating direction method
of multipliers (PLAD) proposed in [69], which is adopted for solving our
proposed model.

Let us consider the following TV-based convex minimization problem:

min
u
tλF puq ` }∇u}1u, (2.2.1)

where F is a real-valued, convex, and differentiable function. Moreover, the
gradient of F is assumed to be Lipschitz continuous with a Lipschitz constant
LF ą 0: }∇F puq ´∇F pvq}2 ď LF }u´ v}2, @u, v P dom F .

Using the variable splitting technique [21, 30], the unconstrained problem
(2.2.1) can be converted into its equivalent constrained version as

min
u,d

tλF puq ` }d}1 | d “ ∇uu. (2.2.2)

The augmented Lagrangian function for problem (2.2.2) is given by

Lρpu, d, bq “ λF puq ` }d}1 ` xb, d´∇uy `
ρ

2
}d´∇u}22, (2.2.3)

10



CHAPTER 2. PREVIOUS WORKS

where b is a Lagrange multiplier that can alternatively be regarded as the
variables of the dual problem of (2.2.2), and ρ ą 0 is a penalty parameter.
The alternating direction method of multipliers (ADMM) [70, 71, 21, 30] for
solving problem (2.2.2) is as follows:

$

’

&

’

%

uk`1 “ arg min
u
Lρpu, dk, bkq,

dk`1 “ arg min
z
Lρpuk`1, d, bkq,

bk`1 “ bk ` ρ
`

dk`1 ´∇uk`1
˘

.

(2.2.4)

The ADMM is a well-known algorithm for solving linearly constrained con-
vex minimization problems. However, in many cases, the subproblem for u
does not have a closed form solution.

To address this issue, the authors in [69] replaced Gpuq “ F puq ` ρ
2}d´

∇u}22 in the first subproblem in (2.2.4) by its second-order Taylor series at
û as follows:

Gpûq ` x∇uGpûq, u´ ûy `
1

2
pu´ ûqT∇2

uGpûqpu´ ûq. (2.2.5)

In addition, they substituted the Hessian matrix, ∇2
uGpûq, with a positive

definite diagonal matrix, 1
δ I, for a small constant δ ą 0. Then, they updated

u using the following linearized augmented Lagrangian function, LLα, with
the generalized proximal term as:

LLαpu, d, b ; ûq “ Gpûq` x∇uGpûq, u´ ûy`
1

2δ
}u´ û}22`}d}1`xb, d´∇uy,

(2.2.6)
where ∇uGpûq “ λ∇F pûq`ρdivpd´∇ûq. To sum up, the PLAD algorithm
proposed in [69] updates u using LLα, instead of Lα, in ADMM framework
(2.2.4), with the other steps remain the same as in (2.2.4):

$

’

&

’

%

uk`1 “ arg min
u
LLρpu, dk, bk;ukq,

dk`1 “ arg min
d
Lρpuk`1, d, bkq,

bk`1 “ bk ` ρ
`

dk`1 ´∇uk`1
˘

.

(2.2.7)

The convergence of the PLAD algorithm was provided in [18] as follows:

Theorem 2.2.1. Let puk, dk, bkq be the sequence generated by the PLAD
algorithm with δ ă 1

λLF`ρ}4}2 , where 4 is the Laplacian operator. Then,

the tuple puk, dk, bkq converges to pū, d̄, b̄q that satisfies the Karush-Kuhn-
Tucker optimality conditions of (2.2.2).

11
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In [18], the authors proved this theorem with the energy functional,
F puq “ u ` fe´u, which is the data-fidelity of the SO model. However, we
note that the only conditions required for the proof of this theorem are that
F is convex and differentiable and ∇F is Lipschitz continuous.

12



Chapter 3

Proposed models

3.1 Proposed model 1 : exp TV model with SARP

In this section, we introduce our model and an optimization algorithm for
solving our model. In particular, in subsection 3.1.1, we describe the local
statistical characteristics of a random variable with respect to Gamma noise.
In subsection 3.1.2, we propose a TV model with local constraints. We also
present the first optimality characterizations of our model and show that
our model is related to the exp model with a SARP. From this relationship,
we derive our SARP algorithm in subsection 3.3, along with an efficient
algorithm for solving our subproblem.

3.1.1 Derivation of our model

To derive our model, we first present some statistical properties of a Gamma
random variable (RV) following distribution (2.1.15).

Lemma 3.1.1. Let η be a Gamma RV with mean 1 and standard deviation
1?
M

. Consider the following function of η:

Ipηq “ η ´ log η ` α

ˆ
c

1

η
´ β

˙2

, (3.1.1)

for any real numbers α and β. Then, the following estimate of the expected

13
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value of Ipηq holds true for a large value of M :

EtIpηqu “ 1`
1

2M
`

1

12M2
´

5

2M3
(3.1.2)

`α

˜

M

M ´ 1
´

2β
?
MΓpM ´ 1

2q

ΓpMq
` β2

¸

`Op
1

M3
q,

where Opsq
s ă 8.

Proof. Let T pηq “ η ´ log η. Then, as in [17], we can obtain

EtT pηqu “ 1`
1

2M
`

1

12M2
´

5

2M3
`Op

1

M3
q. (3.1.3)

Moreover, it was shown in [23] that

E
"

1

η

*

“
M

M ´ 1
and E

"

1
?
η

*

“

?
MΓpM ´ 1

2q

ΓpMq
. (3.1.4)

Thus, we can easily attain the conclusion by the linearity of the expectation.

Here, we assume that β satisfies the following condition:

β ą

?
MΓpM ´ 1q

ΓpM ´ 1
2q

ą 1, (3.1.5)

where the value of
?
MΓpM´1q

ΓpM´ 1
2
q

is decreasing as M increases, and it approaches

1 as M Ñ8.

Lemma 3.1.2. Let η be a Gamma RV with mean 1 and standard deviation
1?
M

, and assume that β satisfies (3.1.5). Then, we have

(a) If dpxq “ x´ logp1` xq for x ą 0, then dpxq ą 0 for x ą 0.

(b) E

#

ˆ

a
?
η
´ β

˙2
+

ą E

#

ˆ

1
?
η
´ β

˙2
+

, where 0 ă a ă 1.

Proof. (a) lim
xÑ0`

dpxq “ 0 and d1pxq “ 1´ 1
1`x ą 0 for x ą 0. Therefore, d is

a strictly increasing function, thus dpxq ą 0 for x ą 0.
(b) By the linearity of the expectation, it can be easily shown that the

inequality in (b) is identical to the following inequality, E
!

1
η

)

{E
!

1?
η

)

ă

14
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2β
1`a . On the other hand, the equalities in (3.1.4) and the condition (3.1.5)
for β yield

E
"

1

η

*

{E
"

1
?
η

*

“

?
MΓpM ´ 1q

ΓpM ´ 1
2q

ă β ă
2β

1` a
. (3.1.6)

Therefore, the inequality in (b) can be obtained.

From now on, we investigate the characteristic of the formula obtained
by letting η « f

ũ in the function (3.1.1):

gpũq “
f

ũ
´ log

f

ũ
` α

´

d

ũ

f
´ β

¯2
. (3.1.7)

Let u˚ be a clean and natural image defined on Ω. Assume that the
image u˚ can be decomposed into u˚ “ uc ` ut, where uc and ut represent
cartoon and texture regions, respectively. Then, the noisy image f “ u˚ ¨
η corrupted by the Gamma noise η can be rewritten as f “ puc ` utqη.
Generally, TV-based variational models pursue piecewise constant restored
images. Hence, we can assume that the denoised image ũ in a TV-based
model is approximated by the cartoon component uc, i.e., ũ “ uc. Under
this assumption, we can obtain

gpũq “ η´log η`

"

ut
uc
η ´ log

ˆ

1`
ut
uc

˙*

`α

ˆ

c

uc
puc ` utqη

´ β

˙2

. (3.1.8)

Let Ωc and Ωt be cartoon and textural regions in Ω, respectively, and
be assumed to be sufficiently large. In the region Ωc, we have ut « 0, which
leads to

1

|Ωc|

ż

Ωc

gpũq «
1

|Ωc|

ż

Ωc

˜

η ´ log η ` α

ˆ
c

1

η
´ β

˙2
¸

dx (3.1.9)

« EtIpηqu « C,

where C “ 1` 1
2M ` 1

12M2 ´
5

2M3 ` α

ˆ

M
M´1 ´

2β
?
MΓpM´ 1

2
q

ΓpMq ` β2

˙

.

15
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On the other hand, in the region Ωt, we can have the following relations:

1

|Ωt|

ż

Ωt

gpũq “
1

|Ωt|

ż

Ωt

ˆ

η ´ log η `

"

ut
uc
η ´ log

ˆ

1`
ut
uc

˙*

`α

ˆ

c

uc
puc ` utqη

´ β

˙2
¸

dx

“
1

|Ωt|

ż

Ωt

pη ´ log η ` tsη ´ log p1` squ

`α

˜
d

1

p1` sqη
´ β

¸2
˛

‚dx (3.1.10)

ą
1

|Ωt|

ż

Ωt

¨

˝η ´ log η ` α

˜
d

1

p1` sqη
´ β

¸2
˛

‚ dx

ą
1

|Ωt|

ż

Ωt

˜

η ´ log η ` α

ˆ
c

1

η
´ β

˙2
¸

dx « EtIpηqu « C,

where s “ ut{uc. The first inequality is derived from the Lemma 3.1.2-(a)
and the property Etηu “ 1, and the second inequality is obtained from the
Lemma 3.1.2-(b).

3.1.2 Proposed TV model with local constraints

Based on the arguments in Subsection 3.1, we make use of the local expected
value estimator of gpũq in (3.1.7) as a constrained term for the denoised
image ũ. As in [17], we define a local window centered at pixel x as Ωr

x “
 

y | }x´ y}8 ď
r
2

(

, and a mean filter wrpx, yq as

wrpx, yq “

" 1
|Ωrx|

, if }y ´ x}8 ď
r
2 ,

0, else.
(3.1.11)

Then, the local expected value estimator of gpũq at x can be defined as

ż

Ω
wrpx, yq

”f

ũ
´ log

f

ũ
` α

´

d

ũ

f
´ β

¯2ı

pyq dy. (3.1.12)

16
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Next we take the log transformation, u “ logpũq, in (3.1.12), leading to

Srpuqpxq “

ż

Ω
wrpx, yqq̄puqpyqdy, (3.1.13)

which is the local expected value estimator of the function q̄puq

q̄puq “ u` fe´u ´ log f ` α

ˆ
c

eu

f
´ β1

˙2

. (3.1.14)

Using the formula (3.1.13), we can obtain the following TV minimization
problem with local constraints:

min
u

Jpuq “

ż

Ω
|Du|, s.t. Srpuq ď C a.e. in Ω,(3.1.15)

where C is a constant value defined after equation (3.1.9). Note that the
exponential of the solution u of this model, i.e. eu, exhibits the denoised
image from the data f .

Now we assume α ą 0 and relax the condition (3.1.5) for β to be β ě 1.
If we further assume that α and β satisfy the condition (2.1.16), then the
model (3.1.15) is an extension of the exp model in (2.1.15) to a constrained
model with local constraints. We here further extend the model (3.1.15) by
adopting multiple local windows, instead of using one local window as in
[17]. Therefore, we propose the following model with the local constraints
involving multiple local windows:

min
u

Jpuq “

ż

Ω
|Du|, s.t. Spuq ď C a.e. in Ω, (3.1.16)

where Spuq is the local expected value estimator of q̄puq with multiple local
windows as

Spuq “
1

N

N
ÿ

i“1

Sripuq “
1

N

N
ÿ

i“1

ż

Ω
wripx, yqq̄puqpyqdy. (3.1.17)

This idea comes from the observation that a small local window leads to
denoised images with remaining noise in homogeneous regions, while a large
local window derives denoised images with over-smoothed details and small
features, which was shown in [17]. Fig 3.1 shows the efficiency of using
multiple local windows rather than using one local window. From (a) to (c),
we use one local window with r “ 9, 17, 31, respectively. It can be seen

17
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that the denoised image in (a) has well-preserved edges but still contains
noise in homogeneous background regions. In contrast, the denoised images
in (b) and (c) have well-denoised background areas, but they keep much
noises near edges, especially in the tripod part. On the other hand, we can
observe that the image in (d) denoised by using multiple local windows take
advantages of multiple sizes of local windows, resulting in well-denoised in
both homogeneous and edge regions.

Existence and uniqueness of solutions of model (3.1.16)

In this subsection, we prove the existence and uniqueness of a solution of
our model (3.1.16). Let us define a mean filter wpx, yq involving multiple
local windows as

wpx, yq “
1

N

N
ÿ

i“1

wripx, yq. (3.1.18)

Then, Spuq in (3.1.17) becomes

Spuq “

ż

Ω
wpx, yqq̄puq dy. (3.1.19)

The following lemma provides the lower bound for the local expected
value estimator Spuq, which is independent of u.

Lemma 3.1.3. Assume that α ą 0 and β ě 1 satisfy the conditions in
(2.1.16). Then, there exists a constant K 1 P R such that

Spuqpxq ě K 1 for any x P Ω. (3.1.20)

Proof. We define ppsq :“ s´ log s`α
´

1?
s
´ β

¯2
, for s ą 0. By [48, Theorem

2.4.], there exists unique k1 ą 0 such that ppk1q ď ppsq for all s ą 0. Let
K 1 “ ppk1q. By substituting s by f{eu, we can obtain

Spuqpxq “

ż

Ω
wpx, yqpp

f

eu
qdy ě K 1 ě s´ log s ě 1. (3.1.21)

By Lemma 3.1.3, it is easy to check that the following feasible set is
closed and convex:

C “ tu P BVpΩq | Spuq ď C a.e. in Ωu. (3.1.22)

18
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(a) (b)

(c) (d)

Figure 3.1: Denoised images with different size of local windows wr. (a) r “ 7
(b) r “ 17 (c) r “ 256 (d) r “ 7, 21, 256.
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In the following, we prove the existence and uniqueness of a solution of
our model (3.1.16). First of all, we define the following functional

Epuq “ Jpuq `

ż

Ω
Spuqpxq dx. (3.1.23)

Theorem 3.1.1. (Existence) Assume that α ą 0 and β ě 1 satisfy the
condition (2.1.16). Let fmin and fmax be two positive constants such that
f P rfmin, fmaxs. Then, }u}BVpΩq Ñ 8 implies Epuq Ñ 8. Moreover, the
model (3.1.16) admits a solution.

Proof. Let Lpuq “ Jpuq ` 1
N

řN
ri“1

ş

Ω

ş

Ωwripx, yqpfe
´u ` u´ log fq dydx.

Then, the functional Epuq is rewritten as Epuq “ Lpuq` α
N

řN
ri“1

ş

Ω

ş

Ωwripx, yq

ˆ

´
b

eu

f ´ β1
¯2

dydx. In [17, Theorem 1], it was shown that Lpuq with one

local window goes to 8 as }u}BVpΩq Ñ 8. Thus, we can easily extend this
result for Lpuq with multiple local windows. Furthermore, since Epuq ě Lpuq
for all u P BVpΩq, Epuq Ñ 8 as }u}BVpΩq Ñ 8, which indicates the BV-
coercivity of Epuq.

To show the existence of solutions of model (3.1.16), let tunu be a mini-
mizing sequence in C, where C is defined in (3.1.22). Since Spuq is bounded,
then Epuq is bounded. In addition, due to the coercivity of E, we can con-
clude that the sequence tunu is bounded in BVpΩq. Then, by the compact-
ness of BVpΩq [6], there exists a subsequence tunku of tunu and ū P BVpΩq
such that unk weakly˚ converges in BVpΩq to ū. Moreover, since Jpuq is
weakly lower semi-continuous with respect to the topology in BV(Ω), we
have

Jpūq ď lim inf
kÑ8

Jpunkq “ inf
uPC

Jpuq. (3.1.24)

Because C is closed and convex, we have ū P C . Therefore, ū is a solution
of model (3.1.16).

For the uniqueness of the solution of model (3.1.16), we assume the
following modified mean filter w̃ripx, yq instead of a mean filter wripx, yq in
(3.2.5) :

w̃ripx, yq “

#

1
wri

, if }x´ y}8 ď
ri
2 ,

εi, else.

where, 0 ă εi ! minp1, 1
wri
q, and wri satisfying

ş

Ω w̃ripx, yqdy “ 1.

Theorem 3.1.2. (Uniqueness) Assume that the assumptions in Theorem
3.1.1 hold true. Furthermore, we assume that cχΩ R C for any constant c,
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where χΩ “ 1 for x P Ω. Then, the solution of the model (3.1.16) is unique.

Proof. qpsq “ s` fe´s´ log f `α
›

›

›

b

es

f ´ β1
›

›

›

2

2
is strictly convex by the as-

sumption of α, β. Let z1 and z2 be two solutions of (3.1.16) in BV(Ω). Define
z̃ “ 1

2pz1 ` z2q. By the convexity of qpsq, we have qpz̃q ď 1
2 pqpz1q ` qpz2qq.

Case 1) If qpz̃q “ 1
2 pqpz1q ` qpz2qq a.e. in Ω , then z1 “ z2 by the strictly

convexity of qpzq.
Case 2) If there exist τ ą 0 and Ωτ Ă Ω with |Ωτ | ą 0, such that

qpz̃q ď
1

2
pqpz1q ` qpz2qq ´ τ a.e. in Ωτ (3.1.25)

Define ετ “ ε0τ |Ωτ |. Take multiplication a modified mean filter wpx, yq and
integral over Ω to (3.1.25), we get

Spz̃qpxq ď
1

2
pSpz1qpxq ` Spz2qpxqq ´ ετ ď C ´ ετ a.e in Ω

Let define zθ “ θz̃ for θ P r0, 1s. Since Sp¨q is continuous, then zθ P C for some
θ close to 1. If

ş

Ω |∇z̃|dx ‰ 0, then
ş

Ω |∇zθ|dx “ θ
ş

Ω |∇z̃|dx ă
ş

Ω |∇z̃|dx
for any θ P r0, 1q. Since z̃ is a minimizer,

ş

Ω |∇z̃|dx “ 0. This implies that
z̃ ” cχΩ for some constant c. It is a contradiction to assumption cχΩ R C
for any constant c. Thus there is no subset Ωτ with |Ωτ | ą 0 such that
qpz̃q ď 1

2 pqpz1q ` qpz2qq ´ τ a.e. in Ω for all positive τ . It implies that
z1 “ z2 a.e. in Ω.

First-order optimality characterization of a solution of model (3.1.16)

This subsection exhibits the first order optimality condition of a solution
of model (3.1.16). This shows that the constrained minimization problem
in (3.1.16) is relevant to the following TV model with a spartially adaptive
regularization parameter λ P L2pΩq:

min
uPBVpΩq

ż

Ω
λpxqqpuq dx` Jpuq, (3.1.26)

where qpuq “ u` fe´u ` α
´
b

eu

f ´ β1
¯2
. From this relation, we derive an

optimization algorithm for our model (3.1.16), which will be illustrated in
the next subsection.
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First, we consider the following penalty problems as

min
uPBVpΩq

Lµpuq “ Jpuq ` µ

ż

Ω
pmaxpSpuq ´ C, 0qq2 dx, (3.1.27)

where µ is a positive penalty parameter. Then, we obtain

Theorem 3.1.3. Let the assumptions of Theorem 3.1.1 still hold. Then,
the penalty problem (3.1.27) admits a solution uµ P BVpΩq for any posi-
tive constant µ. Moreover, as µ Ñ 8, tuµu converges along a subsequence
weakly in L2 to a solution of (3.1.16), and the following equation holds:
}maxpSpuµq ´ C, 0q}2 “ o

`

1{
?
µ
˘

, where lim
sÑ0

opsq{s “ 0.

Proof. Note that Sp¨q and maxp¨, 0q are continuous and convex function,
and

ş

Ω |∇ ¨ |dx is weakly lower semicontinuous in BV(Ω). Let zn P BVpΩq
be a minimizing sequence of Lµpzq. Let z̃ be a solution of (3.1.16). Since
dompLµq Ą C, we have

Lµpznq ď Lµpz̃q ` 1 “

ż

Ω
|∇z̃|dx` 1 for large enough n P N

Define Ωn
` “ tx P Ω | Spznqpxq ě Cu and Ωn

´ “ tx P Ω | Spznqpxq ă Cu.
Then, we have

ż

Ωn`

pSpznq ´ Cq
2dx “

ż

Ω
tmaxpSpznq ´ C, 0qu

2dx (3.1.28)

ď

ż

Ω
tmaxpSpznq ´ C, 0qu

2dx`

ż

Ω
|∇zn|dx

“ Lµpznq ď

ż

Ω
|∇z̃|dx` 1 for large n

By triangular inequality,

d

ż

Ωn`

Spznq2dx´

d

ż

Ωn`

C2dx ď

d

ż

Ω
|∇z̃|dx` 1 for large n P N (3.1.29)

Thus, we obtain

}Spznq}L2pΩn`q
ď

d

ż

Ω
|∇z̃|dx` 1`C

b

|Ωn
`| ď

d

ż

Ω
|∇z̃|dx` 1`C

a

|Ω| “ C1

(3.1.30)
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For Ωn
´ region, we have 1 ď K 1 ď Spznq ă C, here K 1 is a constant in

Lemma 3.1.3. So }Spznq}L2pΩn´q
ď C

a

|Ωn
´| ď C

a

|Ω| “ C2.

Note that C1, C2 do not depend on n and µ. Thus, }Spznq}L2pΩq is bounded
for large n.
Since Ω is bounded domain, }Spznq}1 is bounded by Holder’s inequality. i.e.
}Spznq}1 ď }Spznq}2|Ω| for large n
If zn is not bounded, then

ş

Ω |∇zn|dxÑ8 or
ş

Ω SpznqdxÑ8 by Theorem
3.1.1 and it implies that Lµ is not bounded. So we conclude that zn is
bounded in BV(Ω). Now similar arguments as in proof of Theorem 3.1.1
claim the existence of a solution zµ P BVpΩq for fixed µ.
Since Lµpzµq ď Jpz̃q, similar arguments in first part of the proof, we have
the boundedness of zµ in BV(Ω). Let z̃µ be a weak limit of a subsequence
of zµ P BVpΩq. Then by lower semicontinuity, we have

Jpz̃µq ď lim inf
kÑ8

Lµkpzµkq ď Jpz̃q “ inf
zPC

Jpzq.

Next, it is necessary to show that z̃µ P C. Above inequality holds for all
µ ą 0

µ

ż

Ω
tmaxpSpzµq ´ C, 0qu

2dx ď Jpz̃q ´ Jpzµq

which is represented as

ż

Ω
tmaxpSpzµq ´ C, 0qu

2dx ď
Jpz̃q ´ Jpzµq

µ
Ñ 0 as µÑ8

So we have

}maxpSpzµq ´ C, 0q}2 “ O
ˆ

1
?
µ

˙

By weak lower semicontinuity and Fatou’s Lemma, we obtain z̃µ P C such
that

ż

Ω
tmaxpSpz̃µq ´ C, 0qu

2dx ď lim inf
kÑ8

ż

Ω
tmaxpSpzµkq ´ C, 0qu

2dx “ 0

Therefore,we have maxpSpz̃µq´C, 0q “ 0 a.e. in Ω, which means Spz̃µq ď C
a.e. in Ω.

In the succeeding results, we present the first order optimality charac-
terization of a solution ū of problem (3.1.16), and we show that ū is also a
solution of the TV model (3.1.26) with some λ. Let us first define λ˝µ and
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λµ as

λ˝µ “ µmaxpSpuµq ´ C, 0q, λµ “

ż

Ω
wpx, yqλ˝µ dx. (3.1.31)

Then, we have

µ}maxpSpuµq ´ C, 0q}
2
2 “

ż

Ω
λ˝µpSpuµq ´ Cq dx

“

ż

Ω
λµqpuµq dx´ Cµ, (3.1.32)

where Cµ “ C
ş

Ω λ
˝
µ dx.

From (3.1.27) and (3.1.32) and the results in Theorem 3.1.3, we obtain
the following subsequences for the relationship of the problems (3.1.16) and
(3.1.26):

Theorem 3.1.4. Let the assumptions of Theorem 3.1.1 hold and ū denote
a weak limit point of tuµnu in L2 as µn Ñ 8. Moreover, we assume that
}uµn}L2 Ñ }ū}L2 as µn Ñ 8 and that there exists a constant h ą 0 such
that }λoµn}L1 ď h for any n P N. Then, there exist λ̄ P L8pΩq, a bounded
Borel measure λ̄˝, and a subsequence tµnku such that

(a) λµnk weakly˚ converges to λ̄ in L8pΩq and λ̄ ě 0 a.e. in Ω.

(b) There exists jpūq P BJpūq such that

xjpūq, vy `

ż

Ω
λ̄q1pūqv dx “ 0, for all v P BVpΩq. (3.1.33)

(c)
ş

Ω ψdλ
o
µnk

Ñ
ş

Ω ψdλ̄
o for all ψ P CpΩ̄q, λ̄o ě 0, and

ş

Ω λ
o
µnpSpuµnq ´ Cq dxÑ 0.

Proof. (a) Since wi P L
8pΩq, we have λµn P L

8pΩq from the similar argu-
ments in the proof of Theorem 3.1.1. Thus,

ş

Ω λµnf dx is well-defined for
all f P L1pΩq. Then, from the assumption, there exists C 1 ą 0, which is
independent of µn, such that

}µn}L8pΩq ď µn }wpx, yq}L8pΩˆΩq

›

›

›

›

›

max

˜

1

N

N
ÿ

i“1

Swipuµnq ´ C, 0

¸›

›

›

›

›

L1pΩq

ď C 1, (3.1.34)
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where the boundedness of the second term comes from the proof of Theorem
3.1.1. By Banach-Alaoglu theorem [19], we obtain

ż

Ω
λµnk fdxÑ

ż

Ω
λ̄fdx for all f P L1pΩq, (3.1.35)

which proves the first statement. The non-negativity of λ̄ is obtained from
the non-negativity of λµ and λµn .

(b) The boundedness of tuµnu in BV(Ω) can be obtained from the proof
of Theorem 3.1.1. Moreover, due to the continuity of Jp¨q, we attain the
uniform boundedness of BJp¨q with respect to µn. On the other hand, the
first-order optimality condition for problem (3.1.27) is given by

0 P BJpuµnq ` µn

˜

1

N

N
ÿ

i“1

S1wipuµnq

¸˚

max pSwpuµnq ´ C, 0q , (3.1.36)

where S1p¨q˚ denote the adjoint operator of S1p¨q and Swp¨q “
1
N

řN
i“1 Swip¨q.

Then, the boundedness of tuµnu and tBJpuµnqu in BV(Ω) and BV˚pΩq, re-
spectively, yields that

µn

›

›

›

›

›

˜

1

N

N
ÿ

i“1

S1wipuµnq

¸˚

max pSwpuµnq ´ C, 0q

›

›

›

›

›

BV˚pΩq

ď C2, (3.1.37)

for some constant C2 independent of µn. Moreover, for v P BVpΩq, we have

µn

C˜

1

N

N
ÿ

i“1

S1wipuµnq

¸˚

max pSwpuµnq ´ C, 0q , v

G

BV˚pΩq,BVpΩq

(3.1.38)

“

ż

Ω
µnk max

´

Swpuµnk q ´ C, 0
¯

«

1

N

N
ÿ

i“1

S1wipuµnq

ff

vdx

“

ż

Ω
λoµnk

1

N

"
ż

Ω
w1px, yqrq̄

1puµnk qvspyqdy ` ¨ ¨ ¨

`

ż

Ω
wN px, yqrq̄

1puµnk qvspyqdy

*

dx

“

ż

Ω

ż

Ω
λoµnk

ˆ

w1px, yq ` ¨ ¨ ¨ ` wN px, yq

N

˙

rq̄1puµnk qvspyqdydx
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“

ż

Ω
rq̄1puµnk qvspyq

ż

Ω
λoµnk

wpx, yqdxdy

“

ż

Ω
λµnk rq̄

1puµnk qvspyqdy

“

ż

Ω
rpq̄1puµnk q ´ q̄

1pũqqvspyqλµnkdy `

ż

Ω
rq̄1pūqvspyqpλµnk ´ λ̃qdy

`

ż

Ω
rq̄1pūqvspyqλ̃dy.

Since ū is a weak limit of tuµnu in L2 and }uµn}L2 Ñ }ū}L2 , we have
that

ż

Ω
rpq̄1puµnk q ´ q̄

1pūqqvspyqλµnkdy Ñ 0 as k Ñ8. (3.1.39)

Therefore, as k Ñ8, we have that

µn

C˜

1

N

N
ÿ

i“1

S1wipuµnq

¸˚

max pSwpuµnq ´ C, 0q , v

G

BV˚pΩq,BVpΩq

Ñ

ż

Ω
rq̄1pūqvspyqλ̃dy. (3.1.40)

(c) Based on the boundedness of λoµn and [3], we have ψdλoµnk
Ñ

ş

Ω ψdλ̄
o,

The non-negativity of λ̄o comes from the definition of λoµ. Finally, by Theo-
rem 3.1.3,

ˇ

ˇ

ˇ

ż

Ω
λoµnpSpuµnq ´Cq dx

ˇ

ˇ

ˇ
“ µn}maxpSpuµnq ´C, 0q}

2
L2pΩq Ñ 0 as nÑ8.

(3.1.41)

As a result, it can be observed from Theorem 3.1.3 and Theorem 3.1.4-
(b) that a solution of the constrained problem (3.1.16) satisfies the first
order optimality condition of the TV model (3.1.26) with λ “ λ̄. Besides,
assuming that the last result in Theorem 3.1.3 still holds with op1{µq in
place of op1{

?
µq, we can conclude from (3.1.31) that tλ˝µnu is uniformly

bounded in L2pΩq, thus λ̄˝ is the weak limit of the subsequence λ˝µn . And,
if the last statement in Theorem 3.1.4-(c) holds, then we can obtain

λ̄˝pSpūq ´ Cq “ 0 a.e. in Ω, (3.1.42)
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because of that λ̄˝ ě 0 and Spūq ´ C ď 0. The equation (3.1.42) indicates
that λ̄˝ is just the Lagrangian multiplier of the Lagrangian function of the
constrained problem (3.1.16). Therefore, we can utilize a updating rule for
λ̄˝ like the Lagrangian multiplier update rule, which will be used in the next
subsection.

3.1.3 A SARP algorithm for solving model (3.1.16)

Now we present an optimization algorithm for solving our model (3.1.16),
following the SARP strategy discussed in Subsection 3.1.2. Similar to [17], we
utilize an adjustment approach similar to the Lagrangian multipliers update
based approach for λ in (3.1.26). Initially, a small constant value of λ ą 0
is chosen, which results in an over-smoothed restored image without details
retained. However, since we have that Supxq ą C in the textured regions,
we observe that the value of λ would need to be increased. Therefore, from
(3.1.31) and assuming that λ̄k denotes the current estimate of λ̄˝ in (3.1.42),
the update rules for λ can be derived as follows:

λ̄k`1 “ λ̄k ` τ maxpSukpxq ´ C, 0q, (3.1.43)

λk`1 “

ż

Ω
wpx, yqλ̄k`1pxq dx, (3.1.44)

where τ ą 0 is a step size, and uk is the current estimate of the original
logarithmic image u. That is, uk is a solution of problem (3.1.26) with fixed
λk, i.e.,

uk :“ arg min
uPBVpΩq

ż

Ω
λkpxq qpuq dx` Jpuq. (3.1.45)

Consequently, the SARP algorithm for our model, (3.1.16), is summa-
rized in Algorithm 1.

Solving for the u-subproblem (3.1.46)

Now, we focus on solving the u-subproblem in (3.1.46). In this work, we
adopt the PLAD algorithm described in Subsection 2.2 for solving problem
(3.1.46). First, however, let us prove the following theorem:

Lemma 3.1.4. Let f P L8pΩq with infΩ f ą 0. Assume that α ą 0 and
β ě 1 hold for condition (2.1.16). A solution u of problem (3.1.46) for fixed
λk : Ω Ñ R satisfies

inf
Ω

logpt2α,βfq ď u ď sup
Ω

logpt2α,βfq,
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Algorithm 1 Proposed SARP algorithm for model (3.1.16)

1: Parameter : α, β, τ ; the size ri of local windows (i “ 1, 2, ..., n).
2: Initialization : k “ 0, λ̄k “ λk “ λ0 “ c with a small constant value
c ą 0.

3: while a stopping condition is satisfied do
4: Solve the discrete version of the problem

uk :“ arg min
uPBVpΩq

#

ż

Ω
λk

#

u` fe´u ` α

ˆ
c

eu

f
´ β

˙2
+

dx` Jpuq

+

.

(3.1.46)

5: Based on uk, update λk as follows:
Calculate Sri

uk
pxq for all i P t1, 2, ¨ ¨ ¨ , nu,

λ̄k`1 “ λ̄k ` τ max

˜

1

n

n
ÿ

i“1

Sri
uk
pxq ´ C, 0

¸

,

pλk`1qi,j “
1

n

n
ÿ

i“1

¨

˚

˝

1

r2
i

ÿ

ps,tqPΩ
ri
i,j

pλ̄k`1qs,t

˛

‹

‚

.

6: end while
7: Final output : ũ “ eu
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where tα,β is the unique real solution of 1´ 1
t2
` αpt2 ´ βtq “ 0 for t ą 0.

Proof. Let us consider a minimizing sequence tunu of the problem (3.1.46).
Define γ̃ “ infplogpt2α,βfqq, ξ̃ “ supplogpt2α,βfqq, and

V puq “ V0puq ` Jpuq and V0puq “

ż

Ω
λpxqqpuq dx. (3.1.47)

For fixed x P Ω, let v0psq “ λpxq

"

s` fpxqe´s ` α
´
b

es

fpxq ´ β
¯2
*

.

Then, the function v0psq has the unique minimum value at s “ logpt2α,βfpxqq.

And, vpsq is decreasing on p´8, logpt2α,βfpxqs and increasing on rlogpt2α,βfpxqq,8q.

This implies that if M1 ě logpt2α,βfpxqq and M2 ď logpt2α,βfpxqq, then
v0pminps,M1qq ď v0psq and v0pmaxps,M2qq ď v0psq. This yields that

V0pinfpu, ξ̃qq ď V0puq and V0psuppu, γ̃qq ď V0puq.

Moreover, by Lemma 1 in [36], we have that Jpinfpu, β̃qq ď Jpuq and
Jpsuppu, α̃qq ď Jpuq, which yields that

V pinfpu, ξ̃qq ď V puq and V psuppu, γ̃qq ď V puq. (3.1.48)

On the other hand, assuming that γ̃ ď un ď ξ̃, we have tunu P L
1pΩq.

Since tunu is a minimizing sequence of V , V punq is bounded. And from the
proof in Lemma 3.1.3, V0punq ě K for some constant K. Then, Jpunq is
bounded, and thus un is bounded in BV(Ω). By the compactness of BVpΩq,
there exists a subsequence tunku of tunu such that unk Ñ u in BV(Ω)-weak˚

and unk Ñ u in L1pΩq-strong. Then, we can obtain that γ̃ ď u ď ξ̃. Finally,
due to the lower semi-continuity of Jp¨q and Fatou’s lemma, u is a solution
of (3.1.46).

Based on the above lemma, in practice, we solve the following problem
for u:

min
uPU

ż

Ω
λk

#

u` fe´u ` α

ˆ
c

eu

f
´ β

˙2
+

dx`

ż

Ω
|∇u| dx, (3.1.49)

where U “ tu : infΩ logpt2α,βfq ď u ď supΩ logpt2α,βfqu. Using the variable
splitting technique [30], we can reformulate problem (3.1.49) as the following
constrained problem:

min
z,u
tF puq ` }z}1 | z “ ∇u, u P Uu , (3.1.50)
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where F puq “
ş

Ω λ

"

u` fe´u ` α
´
b

eu

f ´ β
¯2
*

dx with λ “ λk.

Before applying the PLAD algorithm to problem (3.1.50), we prove the
subsequent lemma, which is a necessary condition for the PLAD algorithm.

Lemma 3.1.5. The function F in (3.1.50) with λ P L8pΩq is differentiable
and has a Lipschitz continuous gradient on U .

Proof. Let hpuq :“ ∇F puq “ λ
´

1´ f
eu ` α

´

eu

f ´ β
b

eu

f

¯¯

. By the mean

value theorem, we have that for all u, v P U ,

}∇F puq ´∇F pvq}2 “ }hpuq ´ hpvq}2 “ |h1pũq|}u´ v}2 ď }λ}8Lq}u´ v}2,
(3.1.51)

where ũ “ tu`p1´ tqv for some t P r0, 1s, and Lq “ supw̃PU |q
1pw̃q|. By basic

calculation, we can find an upper bound for Lq as follows:

Lq “ sup

ˇ

ˇ

ˇ

ˇ

fe´u ` α

ˆ

eu

f
´
β

2

c

eu

f

˙
ˇ

ˇ

ˇ

ˇ

ď sup |fe´u| ` α sup

ˇ

ˇ

ˇ

ˇ

eu

f
´
β

2

c

eu

f

ˇ

ˇ

ˇ

ˇ

ď
fmax

t2α,βfmin
` αmax

¨

˝

αβ2

16
,
t2α,βfmax

fmin
´
β

2

d

t2α,βfmax

fmin

˛

‚. (3.1.52)

Define L̃ :“ fmax

t2α,βfmin
` αmax

˜

αβ2

16 ,
t2α,βfmax

fmin
´

β
2

c

t2α,βfmax

fmin

¸

. Then we

have
}∇uF puq ´∇uF pvq}2 ď }λ}8L̃}u´ v}2, (3.1.53)

which proves the Lipschitz continuity of ∇F .

As a consequence, we can apply the PLAD algorithm to the constrained
problem, (3.1.50), which leads to the following iterative algorithm:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

uk,``1 “ arg min
uPU

xλk∇qpuk,`q ` ρdivpz ´∇uk,`q, uy ´ xbk,`,∇uy
` 1

2δ }u´ u
k,`}22,

zk,``1 “ arg min
z
}z}1 ` xb

k,`, zy `
ρ

2
}z ´∇uk,``1}22,

bk,``1 “ bk,` ` ρ
`

zk,``1 ´∇uk,``1
˘

,
(3.1.54)
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where ∇qpuq “ 1´ f
eu `α

´

eu

f ´ β
b

eu

f

¯

. The solution uk,``1 in (3.1.54)

can be explicitly obtained as

uk,``1 “ PU

´

uk,` ´ δ
”

λk∇qpuk,`q ` ρdivpzk,` ´∇uk,`q ` divbk,`
ı¯

,

(3.1.55)
where PU denotes the projection onto the set U . In addition, the solution,
zk,``1, in (3.1.54) is also attained using the following explicit formula:

zk,``1 “ shrink

ˆ

∇uk,``1 ´
bk,`

ρ
,

1

ρ

˙

, (3.1.56)

where shrink is a soft-thresholding operator defined as
shrinkpa, bq “ a

}a}2
maxp}a}2 ´ b, 0q. The iterative algorithm for solving the

u-subproblem, (3.1.46), is summarized in Algorithm 4.

Algorithm 2 Solving the u-subproblem (3.1.46)

1: Parameter : ρ ą 0, δ ą 0.
2: Initialization : ` “ 0, uk,0 “ uk´1, zk,0 “ 0, bk,0 “ 0.
3: while a stopping condition is satisfied do
4: uk,``1 “ PU

`

uk,` ´ δ
“

λk∇qpuk,`q ` ρdivpzk,` ´∇uk,`q ` divbk,`
‰˘

,

zk,``1 “ shrink

ˆ

∇uk,``1 ´
bk,`

ρ
,

1

ρ

˙

,

bk,``1 “ bk,` ` ρ
`

zk,``1 ´∇uk,``1
˘

.

5: end while

Lastly, we discuss the selection of the parameter δ in (3.1.55). To guar-
antee the convergence of uk,`, the value of δ needs to satisfy the condition
in Theorem 2.2.1. In our work, the parameter λ is not a constant, but it is
assumed to be fixed for the u-subproblem. Hence, our iterative algorithm
converges to a solution if the following condition is satisfied:

δ ă
1

supΩpλpxqqLq ` ρ}4}2
. (3.1.57)

In practice, the parameter δ significantly affects the speed of the algo-
rithm. In our case, Lq may play a crucial role with regard to the speed of
the algorithm. The minimum value of a noisy image f corrupted by multi-
plicative Gamma noise is very small. This leads to a large value of Lq and a
small value of δ, resulting in slow convergence. Thus, we want to replace Lq
by its approximated value that is the expectation of the second derivative
of qpuq, as suggested in [69]. It is the averaged estimation of Lq to avoid
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the worst estimation of Lq. For this, let us assume that eu is closed to the
original clean image. Then, we can compute

Et∇2qpuqu “ E
"

f

eu
` α

ˆ

eu

f
´
β

2

c

eu

f

˙*

« E
"

η ` α

ˆ

1

η
´
β

2

c

1

η

˙*

“ 1` α

ˆ

M

M ´ 1

˙

´ αβ
?
M

ΓpM ´ 1
2q

ΓpMq
“ C̃.

From this calculation, in practice, we set the value of δ as follows:

δ “
1

2
¨

1

supΩpλpxqqC̃ ` ρ}4}2
. (3.1.58)

3.1.4 Numerical results

In this section, we test our model (3.1.16) on various natural images and
SAR images that are presented in Figure 3.15 and we also display noisy
images in Figure 3.3 that we will deal with. We compare the performance of
our model with those of the SAR-BM3D model [59] and several TV-based
state-of-the-art models; SO model [65], exp model [48], TV-SARP model
[17] and TwL-mV model [35].

In the experiments, all the test images are contaminated by multiplica-
tive Gamma noise for M “ 3, 5, or 10. To quantify the effect of the mod-
els, we measure the Peak-Signal-to-Noise (PSNR) vaule and the Structural
SIMilarity (SSIM) index [68]. The PSNR in dB is defined as PSNR “

10 log10

´

2552Np
}u´u˚}22

¯

, where u and u˚ represent the recovered image and noise

free image, respectively, and Np is the total number of pixels.
For all the models, we tune the parameters to achieve the best denoised

images with respect to the visual aspect as well as the PSNR and SSIM
values. The stopping criterion is as follows, with respect to the relative error:

}ũ``1 ´ ũ`}2
}ũ``1}2

ă tol, (3.1.59)

where ũ` displays the denoised image at iteration `; ũ “ eu for our model, the
SO model, and the exp model, ũ “ u for the TV-SARP model and ũ “ um for
the TwL-mV model. For our model and TV-SARP model, condition (3.1.59)
is used for solving the u-subproblem, since the outer iteration number for
both models is fixed as 3 which is the smallest iteration to provide enough
result. The tolerance value tol is fixed as 10´4 for our model, the SO model,
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Figure 3.2: Original images: (1st row) Cameraman p256ˆ256q, Parrot p256ˆ
256q, Bird p256ˆ256q, Castle p321ˆ481q, (2nd row) Clock tower p321ˆ481q,
Rectangle p215ˆ 215q, Zebra p481ˆ 321q, Butterfly p271ˆ 270q, (3rd row)
House p256 ˆ 256q, Remote1 p662 ˆ 541q, Remote2 p750 ˆ 563q, Remote3
p717ˆ 686q, (4th row) Remote4 p640ˆ 452q, Remote5 p200ˆ 200q, Remote6
p256ˆ 256q, Remote7 p400ˆ 400q.
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(b) (c) (d)

(a) (e) (f) (g)

Figure 3.3: Noisy images: (a) Clock tower (M “ 5) (b) Rectangle (M “ 3)
(c) Parrot (M “ 3) (d) Cameraman (M “ 3) (e) Bird (M “ 3) (f) Remote1
(M “ 5) (g) Remote2 (M “ 3)

and the exp model, and tol “ 10´3 for the TV-SARP model and the TwL-
mV model. Additionally, the maximum iteration number for ` is set to be
2000 for the SO and exp models and 500 for the TwL-mV, TV-SARP and
our model.

For solving the SO model (2.1.10), we use the PLAD algorithm, as in [69].
For exp model (2.1.15), we follow the algorithm in [48], which is a fixed-point
proximity algorithm. LPAMA is used to solve the TwL-mV model provided
in [35].

The codes for the exp model, SO model, TV-SARP model and our model
are written in Matlab, and we compute SAR-BM3D and TwL-mV models
in C language with interface to Matlab through the mex function which are
provided by the authors of [59, 35]. The experiments are implemented under
Windows 7 with 64 bit and MATLAB R2014b running on an Intel i7-3770
CPU @ 3.40 GHz and 16GB Memory.

Parameter selection

In the exp model and our model, the value of β depends on the noise level. In
both models, we fix β “ p1.9014, 1.3468, 1.0893q for M “ p3, 5, 10q, respec-
tively, based on the condition β “ 1

0.1113`0.1109M2 `1 provided in [48]. In the
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(a) (b) (c)

Figure 3.4: Denoised images with different number of windows and sizes. (a)
r “ 7, 21 (b) r “ 7, 321 (c) r “ 7, 21, 321

exp model, the value of α is heuristically selected satisfying the condition
(2.1.16) and the condition in [48, Proposition 5.3], while in our model we
choose it only within condition (2.1.16). The parameter λ is a tuning pa-
rameter that determines the smoothness of u; therefore, we select the value
of it manually to attain satisfactory denoising results.

For the TV-SARP model, we basically implement the same parameter
selection in [17], but we choose different values for some parameters because
we treat heavier multiplicative noise than that handled in the TV-SARP
model. Specifically, we choose the local window size r “ 17, ν “ 0.15, and
we increase the iteration number for the Chambolle projection method to be
12; see [17] for more details. Moreover, the initial regularization parameter
λ0 is set to be p0.6 , 0.8 , 1q for M “ p3, 5, 10q, respectively.

For the TwL-mV model, we select m “ 4 owing to satisfactory denoised
images with reasonable compatational cost as in [35]. We choose all param-
eters used in [35].

In our model, we use three local windows with r1 “ 7, r2 “ 21, r3 “

sizepfq. In Figure 3.4, we compare the denoised images obtained by using
two or three local windows. Figure (a) shows the denoised image when us-
ing two small windows, which still retains noise near edges. On the other
hand, Figure (b) presents the denoised image when using one small and one
large windows, where the textural regions are oversmoothed. However, as
in (c), the denoised image when using three local windows, which is the
combination of small, medium, large windows, preserves the texture parts
while sufficiently removing noise near edges. We also note that the use of
more than four windows is not necessary since it produces similar denoising
results with when using three windows. Therefore, this example justifies the
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use of three different local windows rather than two local windows.
The initial constant value for λ is set to be the same as the TV-SARP

model. In Algorithm 2, the value of ρ is fixed as 0.75 and the value of δ is
computed as in (3.1.58).

Denoising results

First, in Figure 3.5, we present the denoising results of all mentioned models,
tested on a natural image. The data f is contaminated by the multiplicative
Gamma noise with M “ 5. Since our model is an extension of the exp model
with the SARP, it is expected that our model more adaptively removes the
noise than the exp model. In fact, our model sufficiently denoises in homo-
geneous regions like the sky area while preserving details in textured regions
such as the grass area. This is obtained from a suitable selection of the spa-
tially adaptive regularization parameter in our model. On the other hand,
the exp model inadequately eliminates the noise in homogeneous regions
while also oversmoothing textures or details. These phenomena also happen
in the SO and TwL-4V models that use fixed regularization parameters.
Hence, this example validates the benefit of the SARP approach and the
efficiency of our model for removing multiplicative Gamma noise. Moreover,
comparing our model with the TV-SARP model, we can observe that the
TV-SARP model tends to produce smoother denoised image than ours, so
more details are preserved in our model, as seen in the grass area and window
parts of the building. This can be more clearly seen in the zoomed images
in Figure 3.8 (a). Lastly, we can observe the SAR-BM3D model better pre-
serves textures than the other models, such as the repeated patterns in the
building, leading to the highest PSNR value among all models. However,
it produces undesirable artifacts in homogeneous regions, such as the sky
area, and near the edges, which can be also shown in Figure 3.8 (a). On the
contrary, our model yields clean homogeneous regions and sharp edges, that
can be the advantages of our model over the SAR-BM3D model. There-
fore, despite the better denoising performance of the SAR-BM3D model,
our model is still meaningful in the sense that it outperforms the existing
TV-based models, such as the exp, SO, TwL-4V, TV-SARP models, and
moreover provides clean homogeneous regions and sharp edges, unlike the
SAR-BM3D model that supplies unwanted artifacts in homogeneous regions
and near edges.

In Figures 3.6 and 3.7, we compare our denoising results with those of
other models, tested on a synthetic image and a natural image. The noisy
images are contaminated with noise level M “ 3, and the restored images
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Denoising results of our model when M “ 5 and comparisons
with the exp [48], SO [65], TV-SARP [17], TwL-4V [35], SAR-BM3D [59]
models. Denoised images with PSNR values: (a) exp (23.82) (b) SO (23.63)
(c) TV-SARP (24.01) (d) TwL-4V (23.78) (e) SAR-BM3D (25.14) (f) our
model (24.21)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Denoising results of our model when M “ 3 and comparisons
with the exp [48], SO [65], TV-SARP [17], TwL-4V [35], SAR-BM3D [59]
models. Denoised images with PSNR values: (a) exp (28.09) (b) SO (27.71)
(c) TV-SARP (27.42) (d) TwL-4V (27.77) (e) SAR-BM3D (28.94) (f) our
model (28.32)
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of all models are shown. Since the exp model includes a data-fidelity term
that is suitable for heavy multiplicative noise, it brings the highest PSNR
values among the variational models with fixed regularization parameters.
Comparing our model, which is an extension of the exp model, with the
TV-SARP model, it can be seen that the denoised images are visually dis-
tinguishable. This is a result of different local constraints used in these two
models. In particular, the TV-SARP model tends to oversmooth the regions
compared with ours; in Figure 3.6, our model produces sharp edges whereas
the TV-SARP model provides some over-smoothed edges whcih can be seen
in Figure 3.8 (b). In addition, in Figure 3.7, our model preserves more de-
tails than TV-SARP, especially in the areas of the beak and the head of the
bird. We can also observe from the zoomed images in Figure 3.8 (c) that the
TV-SARP model retains more noise in the textural parts than our model,
while the head part is over-smoothed. Consequently, these examples show
that our model performs better than the TV-SARP model for multiplica-
tive noise removal. On the other hand, the SAR-BM3D model produces the
better denoised images with the higher PSNR values than ours, however, it
also results in some artifacts in homogeneous regions as well as near edges,
while our model contributes to neat homogeneous regions and sharp edges.
These also show the benefits and effectiveness of our model, compared to
other state-of-the-art models.

In Figure 3.9, we display two final SARPs, λ : Ω Ñ R, obtained from
Figures 3.5 and 3.7, respectively. It can be seen that the SARP, λ, has high
values in the textural regions and edges and low values in the background
and homogeneous regions. This indicates that the updating process for λ
functions appropriately, and 3 outer iterations are enough to achieve the
proper SARPs as well as the satisfactory denoising results.

Figures 3.10 and 3.11 present the denoising results of our model, with
comparisons with SO, exp, TV-SARP, TwL-4V, and SAR-BM3D models.
We consider the data f degraded by the heavy multiplicative noise with
the noise level M “ 3. In both figures, we can observe that the SARP
based models (our model and TV-SARP) generate adequately denoised ho-
mogeneous regions with better conserved details than SO, exp, and TwL-4V
models. In particular, in Figure 3.10, SO, exp, TwL-4V models smooth out
the camera and tripod parts, while the SARP models maintain the details in
those parts. Moreover, in Figure 3.11, all variational models seem to engen-
der similar denoised images; however, the noise remains in the homogeneous
regions in the denoised images of the SO, exp, and TwL-4V models. Indeed,
we can adjust the regularization parameter in these models in order to re-
move the remaining noise in the homogeneous regions, but this may result
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Denoising results of our model when M “ 3 and comparisons
with the exp [48], SO [65], TV-SARP [17], TwL-4V [35], SAR-BM3D [59]
models. Denoised images with PSNR values: (a) exp (23.01) (b) SO (22.52)
(c) TV-SARP (22.70) (d) TwL-4V (22.60) (e) SAR-BM3D (24.39) (f) our
model (23.23)
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(a) (b) (c)

Figure 3.8: Zoomed denoised images in Figures 3.5, 3.6, 3.7. Top row: de-
noised images of TV-SARP [17]. Middle row: denoised images of SAR-BM3D
[59]. Bottom row: denoised images of our model. (a) Figure 3.5, (b) Figure
3.6, (c) Figure 3.7.
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Figure 3.9: Final SARP λ obtained from Figures 3.5 and 3.7: (a) Figure 3.5
(M “ 5) (b) Figure 3.7 (M “ 3)

in over-smoothed details. Thus, these examples also show the effectiveness
of the SARP models in denoising. Comparing our model with the TV-SARP
model, both models produce comparable denoised images. However, we ob-
serve that our model yields sharper and cleaner edges than the TV-SARP
model, which can be observed in the zoomed images given in Figure 3.14
(a) and (b). Moreover, our model brings the highest PSNR and SSIM val-
ues among the TV-based models, as shown in Table 3.3. Nevertheless, the
SAR-BM3D model preserves more details than ours, such as the camera and
face areas in the Cameraman image and the bird’s body in the Bird image,
and furnishes the highest PSNR values among all models. However, we can
also see that undesirable artifacts appear in the background and near edges
in both examples, which can be also shown in the zoomed images in Figure
3.14.

In Figures 3.12 and 3.13, we test all the aforementioned models on SAR
images. We consider noisy images with noise levels set at M “ 5, 3 in Figures
3.12 and 3.13, respectively. Again, it can be observed that the SARP models
(our model and TV-SARP) provide more effective denoising results than the
others (SO, exp and TwL-4V), with satisfactorily smoothed homogeneous
regions and well-retained details. Moreover, our model preserves more de-
tails than the TV-SARP model since the TV-SARP model oversmooths
some small scales such as edges. This can be also seen in the zoomed images
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in Figure 3.14 (c) and (d). Therefore, these example also justify the predom-
inance of our model over the other variational models such as the exp, SO,
TwL-4V and TV-SARP models. However, the SAR-BM3D model exhibits
the better reconstructed images with higher PSNR values than our model.
Since the SAR images are dark and include very fine details, the artifacts
that appeared in natural images are rather unnoticeable in the SAR images.
Although the artifacts can be detected in the zoomed images in Figure 3.14,
we admit the good denoising performance of the SAR-BM3D model on the
SAR images. In spite of that, our model is also worthwhile since it has a
merit of providing sharp edges and clean homogeneous regions.

In Tables 3.1, 3.2, 3.3, and 3.4 we quantify the denoising performance
of different models and algorithms for natural images and SAR images in
Figure 3.15. The tables list the PSNR, SSIM values, and the computational
time for all models (exp, SO, TV-SARP, TwL-4V, SAR-BM3D, our model)
with respect to the noise levels M “ 10, 5, 3. We observe that our model
provides the highest PSNR and SSIM values in nearly all examples, except
the SAR-BM3D model. When it comes to the computational time, it is in-
evitable that the SARP models (our model and TV-SARP model) require
more computing time than the others (exp, SO, TwL-4V) due to the ad-
ditional updating step of the SARP λ in outer iterations. By comparing
our model with the TV-SARP model, our model takes less computing time
than the TV-SARP model, especially in the case of the heavy multiplicative
noise such as M “ 3. This is owing to the PLAD algorithm used for solving
the u-subproblem since the outer iteration number is fixed as 3 for both
models. The TwL-4V and SAR-BM3D models are written in C language,
which is much faster than MATLAB. Although the SAR-BM3D model is
written in C language, our model provides much faster computing time.
In fact, the computational cost of the SAR-BM3D model is too expensive,
compared to the other variational models. Therefore, our model also has
a benefit of computational time over the SAR-BM3D model. Nonetheless,
the SAR-BM3D model brings the highest image quality measurements in
almost all examples. However, as discussed above, the SAR-BM3D model
produces some undesirable artifacts in homogeneous regions and near edges,
unlike our model. Lastly, we note that the SAR-BM3D model does not have
any mathematical analysis, such as the existence or uniqueness of a solu-
tion, while our model involves the theoretical analysis. As a result, all these
discussions validate the effectiveness our proposed model and the efficiency
of our algorithm, compared to other state-of-the-art models.
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(a) (b)

(c) (d)

Figure 3.10: Denoising results of our model when M “ 3 and comparisons
with the exp [48], SO [65], TV-SARP [17], TwL-4V [35], SAR-BM3D [59]
models. Denoised images with PSNR values: (a) exp (23.17) (b) SO (22.93)
(c) TV-SARP (23.51) (d) TwL-4V (23.28) (e) SAR-BM3D (24.93) (f) our
model (23.57)
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(a) (b)

(c) (d)

Figure 3.11: Denoising results of our model when M “ 3 and comparisons
with the exp [48], SO [65], TV-SARP [17], TwL-4V [35], SAR-BM3D [59]
models. Denoised images with PSNR values: (a) exp (25.86) (b) SO (25.73)
(c) TV-SARP (25.92) (d) TwL-4V (25.95) (e) SAR-BM3D (26.93) (f) our
model (26.14)

45



CHAPTER 3. PROPOSED MODELS

(a) (b)

(c) (d)

Figure 3.12: Denoising results of our model when M “ 5 and comparisons
with the exp [48], SO [65], TV-SARP [17], TwL-4V [35], SAR-BM3D [59]
models. Denoised images with PSNR values: (a) exp (22.17) (b) SO (21.92)
(c) TV-SARP (22.04) (d) TwL-4V (22.09) (e) SAR-BM3D (22.94) (f) our
model (22.39)
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(a) (b)

(c) (d)

Figure 3.13: Denoising results of our model when M “ 3 and comparisons
with the exp [48], SO [65], TV-SARP [17], TwL-4V [35], SAR-BM3D [59]
models. Denoised images with PSNR values: (a) exp (25.08) (b) SO (24.83)
(c) TV-SARP (24.78) (d) TwL-4V (24.91) (e) SAR-BM3D (25.73) (f) our
model (25.04)
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(a) (b) (c)

Figure 3.14: Zoomed denoised images in Figures 3.10, 3.11, 3.12, 3.13. Top
row: zoom-in images of Figure 3.10, Second row: zoom-in images of Figure
3.11, Third row: zoom-in images of Figure 3.12, Bottom row: zoom-in image
of Figure 3.13. (a) TV-SARP [17], (b) SAR-BM3D [59], (c) our model
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Table 3.1: Comparisons of denoising results when M “ 10 (PSNR/SSIM)

exp model SO model TV-SARP TwL-4V model SAR-BM3D Ours

Cameraman 25.77/0.79 25.39/0.77 26.11/0.80 25.73/0.78 26.98/0.80 26.45/0.81

Parrot 25.70/0.80 25.48/0.79 25.44/0.79 25.57/0.79 26.66/0.82 26.09/0.81

Bird 29.51/0.88 28.98/0.87 29.45/0.89 29.20/0.88 30.45/0.86 29.55/0.89

Castle 25.35/0.76 24.97/0.75 25.39/0.78 25.00/0.76 26.75/0.80 25.70/0.78

Clock tower 23.26/0.76 23.07/0.75 23.52/0.80 23.06/0.75 24.68/0.84 23.71/0.82

Rectangle 31.34/0.91 30.82/0.90 30.72/0.90 30.86/0.91 32.37/0.93 31.39/0.92

Zebra 23.24/0.67 23.07/0.68 23.39/0.69 23.01/0.67 24.92/0.73 23.69/0.70

Butterfly 25.93/0.85 25.50/0.84 25.62/0.86 25.85/0.85 27.39/0.87 26.12/0.86

House 27.89/0.78 27.48/0.77 27.79/0.79 27.51/0.78 29.91/0.81 28.08/0.80

Remote1 23.51/0.67 23.34/0.67 23.50/0.68 23.52/0.68 24.16/0.73 23.80/0.69

Remote2 21.44/0.71 21.48/0.71 21.61/0.73 21.31/0.70 21.69/0.75 21.93/0.74

Remote3 25.39/0.79 25.13/0.78 25.09/0.78 25.22/0.77 25.40/0.81 25.46/0.80

Remote4 24.85/0.75 24.71/0.75 24.75/0.77 24.81/0.75 25.66/0.81 25.14/0.78

Remote5 23.04/0.74 22.81/0.74 22.84/0.74 23.01/0.74 23.56/0.78 23.16/0.75

Remote6 20.03/0.79 19.61/0.78 19.52/0.77 19.96/0.78 19.84/0.80 20.09/0.80

Remote7 27.77/0.78 27.57/0.78 27.55/0.78 27.61/0.78 28.38/0.83 27.78/0.79

Table 3.2: Comparisons of denoising results when M “ 5 (PSNR/SSIM)

exp model SO model TV-SARP TwL-4V model SAR-BM3D Ours

Cameraman 24.15/0.74 23.83/0.74 24.59/0.77 24.31/0.75 25.74/0.75 24.83/0.78

Parrot 24.38/0.76 23.95/0.75 23.95/0.76 24.10/0.76 25.32/0.78 24.58/0.77

Bird 27.63/0.85 27.52/0.85 27.98/0.86 27.83/0.85 28.71/0.81 28.20/0.86

Castle 23.82/0.71 23.63/0.70 24.01/0.73 23.78/0.70 25.14/0.75 24.21/0.74

Clock tower 21.73/0.69 21.41/0.68 21.83/0.74 21.49/0.68 23.16/0.77 22.10/0.75

Rectangle 29.23/0.88 28.86/0.87 28.71/0.87 28.81/0.88 30.33/0.89 29.39/0.89

Zebra 21.46/0.61 21.28/0.60 21.72/0.64 21.25/0.59 23.52/0.68 21.90/0.63

Butterfly 25.93/0.85 25.50/0.84 25.62/0.86 25.85/0.85 27.39/0.87 26.12/0.86

House 25.80/0.74 25.59/0.73 25.66/0.74 25.90/0.74 27.73/0.75 25.91/0.75

Remote1 22.17/0.60 21.92/0.60 22.04/0.62 22.09/0.61 22.94/0.66 22.39/0.63

Remote2 19.58/0.59 19.62/0.60 19.82/0.64 19.51/0.59 20.20/0.65 20.03/0.65

Remote3 23.78/0.71 23.42/0.69 23.49/0.70 23.51/0.68 24.05/0.72 23.74/0.72

Remote4 23.32/0.66 23.16/0.67 23.20/0.68 23.34/0.67 24.23/0.73 23.54/0.69

Remote5 21.69/0.66 21.38/0.65 21.36/0.66 21.52/0.66 22.12/0.70 21.70/0.67

Remote6 18.35/0.70 17.85/0.68 17.78/0.67 18.14/0.69 18.52/0.72 18.27/0.71

Remote7 26.19/0.70 25.95/0.70 25.96/0.70 26.07/0.70 26.88/0.76 26.15/0.72
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Table 3.3: Comparisons of denoising results when M “ 3 (PSNR/SSIM)

exp model SO model TV-SARP TwL-4V model SAR-BM3D Ours

Cameraman 23.17/0.72 22.93/0.72 23.51/0.75 23.28/0.73 24.93/0.72 23.57/0.75

Parrot 23.01/0.73 22.52/0.72 22.70/0.73 22.60/0.72 24.39/0.74 23.23/0.73

Bird 25.86/0.72 25.73/0.82 25.92/0.84 25.95/0.82 26.93/0.75 26.14/0.84

Castle 22.94/0.68 22.80/0.68 22.99/0.70 22.92/0.67 23.99/0.70 23.18/0.70

Clock tower 20.81/0.64 20.55/0.64 20.85/0.69 20.64/0.64 22.19/0.72 21.10/0.69

Rectangle 28.09/0.85 27.71/0.85 27.42/0.84 27.77/0.84 28.94/0.86 28.32/0.86

Zebra 20.25/0.55 20.24/0.55 20.59/0.59 20.17/0.54 22.40/0.62 20.62/0.57

Butterfly 22.62/0.76 22.10/0.75 22.15/0.78 22.33/0.76 24.73/0.79 22.82/0.78

House 24.84/0.71 24.62/0.71 24.67/0.73 24.78/0.72 26.47/0.71 25.07/0.74

Remote1 21.17/0.54 20.87/0.53 21.01/0.56 21.02/0.55 22.06/0.61 21.32/0.57

Remote2 18.59/0.50 18.56/0.52 18.72/0.56 18.57/0.52 19.20/0.58 18.93/0.58

Remote3 22.75/0.64 22.43/0.63 22.48/0.64 22.37/0.61 23.10/0.66 22.80/0.65

Remote4 22.36/0.60 22.03/0.58 22.13/0.61 22.23/0.60 23.15/0.67 22.48/0.62

Remote5 20.56/0.59 20.22/0.58 20.14/0.59 20.41/0.60 21.11/0.65 20.66/0.61

Remote6 17.16/0.61 16.57/0.56 16.56/0.56 16.80/0.58 17.60/0.65 17.05/0.62

Remote7 25.08/0.62 24.83/0.62 24.78/0.63 24.91/0.63 25.73/0.69 25.04/0.65

Table 3.4: Comparisons of computing time (sec) when M “ p10{5{3q

exp model [48] SO model [65] TV-SARP [17] TwL-4V model [35] SAR-BM3D [59] Ours

Cameraman 2.7/5.5/6.1 0.4/0.4/0.5 3.8/5.1/6.1 0.04/0.12/0.06 20.2/20.2/20 3/3.5/3.4

Parrot 2.9/5.7/6.8 0.4/0.5/0.5 4.8/6.3/7.6 0.06/0.09/0.07 20.1/20.5/19.8 3.5/4.3/4

Bird 2.9/6/7.2 0.4/0.5/0.5 4.1/5.7/7.1 0.04/0.04/0.03 20.2/20.7/20.1 3.6/4/3.7

Castle 7.4/16.4/19.6 1.1/1.3/1.5 12.3/16.2/20.6 0.17/0.17/0.2 48.3/48.4/47.9 9.1/10.9/10.4

Clock tower 6.4/14.8/17.3 1/1.2/1.3 13/16.8/21 0.17/0.2/0.26 48.5/48.6/48.9 9.7/11.5/10.9

Rectangle 1.8/4.3/4.9 0.3/0.3/0.3 2.3/2.9/3.8 0.06/0.06/0.06 14.1/13.9/14 2/2.4/2

Zebra 6.5/14.6/17.5 1/1.2/1.3 12.5/15.2/19.1 0.14/0.18/0.2 49.4/48.7/49.1 8.4/9.8/10

Butterfly 3/6.5/7.6 0.5/0.5/0.6 5.4/7.1/9 0.06/0.07/0.07 22.6/22.6/22.7 3.3/3.7/3.5

House 2.6/5.5/6.5 0.4/0.5/0.5 4.2/5.7/7.1 0.06/0.03/0.04 20.2/20.2/20.3 3.2/3.8/3.7

Remote1 15.5/35/40.3 2.5/2.8/3.2 31.2/39.7/49 0.48/0.54/0.54 112.9/113.1/113.3 21/24.9/23.5

Remote2 14.1/37.7/46.6 2.3/2.8/3.4 35.9/47.4/60.5 0.65/0.6/0.74 134.2/134.6/135.7 19.4/25/25.2

Remote3 14/39.4/50.9 2.7/3.7/4 40.4/53.1/67.6 0.63/0.92/0.98 161.9/156.1/156.4 25.2/31.6/32.7

Remote4 11.3/27.5/32.7 1.9/2.1/2.4 22.1/29/35.7 0.39/0.54/0.49 91.6/91.7/91.7 13.2/16.7/16.3

Remote5 1.2/2.9/3.7 0.2/0.3/0.3 2.7/3.5/4.3 0.01/0.04/0.04 11.9/11.9/12 1.4/1.6/1.6

Remote6 1.7/4.1/4.9 0.3/0.4/0.4 4.8/6/7.5 0.09/0.04/0.06 20.1/20.1/20.2 2/2.3/2.5

Remote7 5.1/13.2/16.3 0.9/1.1/1.2 9/11.6/13.9 0.23/0.18/0.24 49.8/50/50.1 6.4/8.1/8.2
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3.2 Proposed model 2 : exp NTGV model with
SARP

In this section, we introduce a variational model using a NTGV and a SARP
approach, and present an efficient optimization algorithm for solving our
model. Specifically, in Section 3.2.1, we propose a NTGV-based model with
the SARP to remove heavy multiplicative Gamma noise. In Section 3.2.2, we
describe an updating strategy for the SARP by introducing a constrained
model with local constraints. We present an iterative algorithm for solving
the proposed model in Section 3.2.3.

3.2.1 Proposed NTGV model

First, we propose the following model for the removal of heavy multiplicative
noise, which utilizes a NTGV and a SARP λ : Ω Ñ R:

min
u

ż

Ω
λpxq

«

u` fe´u ` α

ˆ
c

eu

f
´ β1

˙2
ff

dx`NTGVpuq, (3.2.1)

with the NTGV defined as

NTGVpuq “ min
p

ż

Ω
α1φ1p|∇u´ p|q ` α0φ0p|Eppq|q dx, (3.2.2)

where φi (i “ 1, 2) are the nonconvex log functions, φipxq “
1
ρi

logp1 `
ρixq, where ρi ą 0 control the nonconvexity of regularization terms. The
parameters α ą 0 and β ě 1 are defined in (2.1.15) and satisfy the condition
in (2.1.16) to enforce the convexity of the data-fidelity term.

The data-fidelity term in (2.1.15) is employed for our model because it
is suitable for heavy multiplicative Gamma noise. Thus, our model is an ex-
tension of the TV-based denoising models in (2.1.15) and (3.1.16) to higher-
order regularization. Moreover, we utilize a nonconvex version of TGV, since
TGV automatically balances the first- and second-order derivatives rather
than using any fixed combination. The NTGV enables us to benefit from
both higher-order regularization and nonconvex regularization for image de-
noising. That is, it helps sufficiently denoise smooth regions without stair-
casing effects while preserving edges and details. We further extend our
model by incorporating the SARP approach. The SARP approach automat-
ically selects a spatially varying regularization parameter, which prevents
over-smoothing of small features such as textures while sufficiently denois-
ing homogeneous regions.
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Here we employ the nonconvex log function among some possible noncon-
vex functions in (2.1.3). In the case of the nonconvex `q-norm regularizer,
it is difficult to find its limiting supergradient at zero. Moreover, as dis-
cussed in [49], one can expect to obtain better denoising results when using
the fractional function to reconstruct piecewise-constant images. However,
for images that are no longer piecewise constant, the log function produces
better denoising results. In general, real natural or SAR images are not
piecewise-constant, so we utilize the log function as our nonconvex function
φi. This log type of NTGV was introduced in [53, 54], the only difference to
our approach is that we use different values for the parameters ρ1 and ρ2.

3.2.2 Updating rule for λpxq in (3.2.1)

Now we describe an updating rule for the SARP λpxq in (3.2.1), following
the SARP approaches given in [22, 51].

First, we present some statistical properties of a Gamma random vari-
able. Let us assume that η follows the Gamma distribution with mean 1 and
standard deviation 1?

M
, and consider the following function:

Ipηq “ η ´ log η ` α

ˆ
c

1

η
´ β

˙2

, (3.2.3)

where α, β P R. As discussed in Lemma 3.1.1, the expectation of Ipηq is
obtained as follows:

EtIpηqu “ 1`
1

2M
`

1

12M2
´

5

2M3
(3.2.4)

`α

˜

M

M ´ 1
´

2β
?
MΓpM ´ 1

2q

ΓpMq
` β2

¸

`Op
1

M3
q,

where the Opsq is defined as lim
sÑ0`

Opsq

s
ă 8.

From now on, we derive a constrained model with local constraints to
obtain an updating strategy for the SARP λpxq in (3.2.1). First, we define a
local window at center x with size r, Ωr

x “ ty | }x´ y}8 ď
r
2u, and a mean

filter wrpx, yq as follows:

wrpx, yq “

" 1
|Ωrx|

, if }y ´ x}8 ď
r
2 ,

0, otherwise.
(3.2.5)

From the degradation model (1.0.1), we can obtain η « f
ũ , and then we
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substitute η in (3.2.3) with f
ũ . Hence, the local expected value estimator of

Ipfũq at x, associated with the local window (3.2.5), is obtained as

ż

Ω
wrpx, yq

»

–

f

ũ
´ log

f

ũ
` α

˜
d

ũ

f
´ β

¸2
fi

fl dy. (3.2.6)

Then, by taking the transformation u “ log ũ in (3.2.6), we can obtain
the following local expected value estimation function F rupxq:

F rupxq “

ż

Ω
wrpx, yqḡpuqpyq dy, (3.2.7)

where ḡpuq “ u` fe´u ´ log f ` α

ˆ
c

eu

f
´ β

˙2

.

Now we consider the following NTGV based minimization problem with
local constraints:

min
u

NTGVpuq s.t. F rupxq ď C a.e. in Ω, (3.2.8)

where C is an approximate expected value of Ipηq, which is given by

C “ 1`
1

2M
`

1

12M2
´

5

2M3
` α

˜

M

M ´ 1
´

2β
?
MΓpM ´ 1

2q

ΓpMq
` β2

¸

.

(3.2.9)
The constrained model (3.2.8) involves only one local window. According

to [51], a small local window results in leftover noise in homogeneous regions,
whereas a large local window leads to over-smoothing of fine features such as
edges and details. Thus, an appropriate selection of window size is important,
so we here adopt multiple local windows to overcome this limitation. In
[51], it was shown that the use of multiple local windows results in better
denoising results in both homogeneous and edge regions than when using
one local window, especially when considering heavy multiplicative noise.

Therefore, we ultimately consider the following constrained model with
local constraints involving multiple local windows:

min
u

NTGVpuq s.t. Fupxq ď C a.e. in Ω, (3.2.10)

where Fupxq is the local expected value using multiple local windows, which
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can be computed as

Fupxq “
1

N

N
ÿ

k“1

F rku pxq “
1

N

N
ÿ

k“1

ż

Ω
wrkpx, yqḡpuqpyq dy

“

ż

Ω
wpx, yqḡpuq dy, (3.2.11)

with wpx, yq “ 1
N

řN
k“1wrkpx, yq is the average of the mean filters defined

in (3.2.5).
Finally, we relate the constrained model (3.2.10) with the proposed

model (3.2.1). For this, we convert the constrained model (3.2.10) into the
following unconstrained minimization problem using the penalty method:

min
u

NTGVpuq `
µ

2

ż

Ω
pmaxpFupxq ´ C, 0qq

2 dx, (3.2.12)

where µ ą 0 is a penalty parameter. As µ approaches 8, the unconstrained
problem (3.2.12) goes back to the original problem (3.2.10).

The Féchet derivative of Fupxq, with its action ν, is computed as

F 1upxqν “

ż

Ω
wpx, yqpḡ1puqνqpyq dy. (3.2.13)

Using this formula (3.2.13), the Féchet derivative of the penalty quadratic
term in (3.2.12) is computed as follows:

ż

Ω
GµpuqF

1
upxqν dx “

ż

Ω
Gµpuq

ˆ
ż

Ω
wpx, yqpḡ1puqνqpyq dy

˙

dx, (3.2.14)

where Gµpuq “ µmaxpFupxq ´C, 0q. Thus, the first-order optimality condi-
tion of the problem (3.2.12) is given by

0 P BpNTGVpuqq ` F 1upxq
˚Gµpuq, (3.2.15)

where F 1upxq
˚ is the adjoint operator of F 1upxq. This condition (3.2.15) is only

the necessary optimality condition due to the nonconvexity of the model
(3.2.12).

Let uµ be a critical point which holds the first-order optimality condition
(3.2.15). Then, we can have the following equality for any action ν:

ż

Ω
F 1uµpxq

˚Gµpuµqν dx “

ż

Ω
rḡ1puµqνspxqλµpxq dx, (3.2.16)
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where

λ˝µ “ Gµpuµq, λµ “

ż

Ω
wpx, yqλ˝µ dx. (3.2.17)

On the other hand, the right-hand side of (3.2.16) is identical to the
Féchet derivative of the data-fitting term in the proposed model (3.2.1) at
u “ uµ when λµ “ λ. This implies that the problem (3.2.10) is identical to
the problem (3.2.1) with a spatially varying function λ : Ω Ñ R defined in
(3.2.17).

Consequently, from this relation, we can obtain the updating rule (3.2.17)
for the spatially varying parameter λ in (3.2.1).

3.2.3 Algorithm for solving the proposed model (3.2.1)

In this subsection, we present an algorithm to solving the proposed model
(3.2.1). The function λ : Ω Ñ R is automatically updated from the updat-
ing rule in (3.2.17). We initially select a small positive constant value for
λ to obtain an over-smoothed restored image, and then restore details by
updating the function λ. The updating rule for λ is as follows:

$

&

%

λ̃n`1 “ λ̃n `Gδpu
nq,

λn`1 “

ż

Ω
wpx, yqλ̃n`1 dx,

(3.2.18)

where δ ą 0 is a step size and un is the current estimation of the original
image u. In other words, un is a solution of the problem (3.2.1) with respect
to u for fixed λ “ λnpxq:

un :“ arg min
u

ż

Ω
λnpxqgpuq dx`NTGVpuq. (3.2.19)

To sum up, our SARP algorithm for the model (3.2.1) is summarized in
Algorithm 1.

Solving for the u-subproblem (3.2.20)

Here we focus on solving the u-subproblem (3.2.20) for fixed λn, which is a
nonconvex problem. We first adopt the IRLA, which is introduced in [53] for
solving a nonconvex minimization problem with linear constraints. Let us
consider the following nonconvex linearly constrained minimization problem:

min
v

S1pvq ` S2p|v|q s.t. Av “ s, (3.2.21)
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Algorithm 3 Proposed SARP algorithm for model (3.2.1)

1: Parameter : α0, α1, ρ0, ρ1, α, β, δ; the size rh of local windows (h “
1, 2, . . . , N).

2: Initialization : n “ 0, λ̄n “ λn “ λ0 with a small constant value.
3: while a stopping condition is satisfied do
4: Solve the discrete version of the problem

un :“ arg min
u

#

ż

Ω
λn

«

u` fe´u ` α

ˆ
c

eu

f
´ β

˙2
ff

dx`NTGVpuq

+

.

(3.2.20)

5: Based on un, update λn as follows:
Calculate F rh

uk
pxq for all h P t1, 2, . . . , Nu,

λ̄n`1 “ λ̄n ` δmax

˜

1

N

N
ÿ

h“1

F rhunpxq ´ C, 0

¸

,

pλn`1qix,iy “
1

N

N
ÿ

h“1

¨

˚

˝

1

r2
h

ÿ

ps,tqPΩ
ri
ix,iy

pλ̄n`1qs,t

˛

‹

‚

.

6: end while
7: Final output : ũ “ eu
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where A P Rmˆn, s P Rm, S1 : Rn Ñ R Y t8u is proper and convex, and
S2 : Rn` Ñ R is concave and increasing. Here, Rn` denotes the non-negative
orthant of Rn, and |v| is the coordinate-wise absolute value function. The
IRLA for solving the problem (3.2.21) iteratively solves the following convex
relaxation problem of (3.2.21):

#

dk P B̄S2p|vk|q.

vk`1 “ arg min
Av“s

S1pvq ` xd
k, |v|y, (3.2.22)

where B̄S2 :“ ´Bp´S2q denotes the superdifferential of the concave function
S2.

To apply IRLA, we first reformulate the problem (3.2.20) to the following
equivalent constrained problem, using the variable splitting technique:

min
u,p,a,b,c

ż

Ω
λnpxqgpcpxqq dx`

ż

Ω
α1φ1p|a|q ` α0φ0p|b|q, (3.2.23)

s.t. a “ ∇u´ p, b “ Eppq, c “ u.

This constrained problem (3.2.23) can be rewritten in the form (3.2.21) with
the following setting:

v “ pu,p,a,b, cqT , s “ 0, A “

¨

˝

∇ ´Ip ´Ia 0 0
0 E 0 ´Ib 0
Iu 0 0 0 ´Ic

˛

‚,

S1pvq “

ż

Ω
λpxqngpcpxqq dx and S2p|v|q “

ż

Ω
α1φ1p|a|q ` α0φ0p|b|q dx.

Now we can apply the IRLA to the constrained model (3.2.23). The first
step of the IRLA applied to the model (3.2.23) is given by

dk “

ˆ

0,0,
α1

1` ρ1|ak|
,

α0

1` ρ0|bk|
, 0

˙T

P B̄S2p|v
k|q. (3.2.24)

Since the functional S2 is differentiable, its limiting supergradient corre-
sponds to its gradient. Moreover, the second step of the IRLA applied to
the model (3.2.23) is obtained as follows:

pak`1,bk`1, ck`1, uk`1,pk`1qT “ (3.2.25)

arg min
Av“0

!

xλngpcq, 1y ` xdk1, |a|y ` xd
k
0, |b|y

)

,
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where x¨, ¨y is the componentwise inner product, dk1 “
α1

ρ1|ak|`1
and dk0 “

α0

ρ0|bk|`1
.

The problem in (3.2.25) is a convex minimization problem with linear
equality constraints. However, the minimization of (3.2.25) is not easy, due
to the nonsmooth terms and the constraints. To handle these difficulties,
we employ the ADMM. In the following section, we depict an algorithm for
solving the problem (3.2.25).

ADMM for solving the problem (3.2.25)

The ADMM [8, 70] is a widely used algorithm to solve linearly constrained
convex optimization problems. We consider the following convex minimiza-
tion problem with linear constraints:

min
y,v

θ1pyq ` θ2pvq s.t. Cy `Dv “ e, (3.2.26)

where θ1 and θ2 are convex, proper, and lower semi-continuous functions.
The augmented Lagrangian function for the problem (3.2.26) is defined as

Lτ py, v; zq “ θ1pyq ` θ2pvq ` z
T pCy`Dv´ eq `

τ

2
}Cy`Dv´ e}22, (3.2.27)

where z is the Lagrangian multiplier vector and τ ą 0 is a penalty parameter.
The ADMM for solving the problem (3.2.26) minimizes the augmented La-
grangian function (3.2.27) over each variable, y or v, with the other variable
fixed, and then updates the Lagrange multiplier z induced by the Karush–
Kuhn–Tucker optimality conditions for (3.2.26), which are given by

$

’

&

’

%

yi`1 “ arg min
y
Lτ py, v, ziq,

vi`1 “ arg min
v
Lτ pyi`1, v, ziq,

zi`1 “ zi ` τpCyi`1 `Dvi`1 ´ eq.

(3.2.28)

In the model (3.2.25), we let v “ py, vq with y “ pa,b, cq and v “ pu,pq.
Then the constraint in (3.2.25), i.e. Av “ 0, can have the form of Cy`Dv “
e. Hence, the augmented Lagrangian function for the problem (3.2.25) is as
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follows:

Lτ pa,b, c, u,p; γa, γb, γcq “ xλpxqgpcq, 1y ` xdk1, |a|y ` xd
k
0, |b|y

`xγa,a´∇u` py `
τ

2
}a´∇u` p}22

`xγb,b´ Eppqy `
τ

2
}b´ Eppq}22

`xγc, c´ uy `
τ

2
}c´ u}22. (3.2.29)

Thus, the ADMM applied to the problem (3.2.25) yields

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

¨

˝

ai`1

bi`1

ci`1

˛

‚ :“ arg min
a,b,c

!

xλpxqgpcq, 1y ` xdk1, |a|y ` xd
k
0, |b|y ` xγ

i
a,ay

`
τ

2
}a´∇ui ` pi}22 ` xγ

i
b,by

`
τ

2
}b´ Eppiq}22 ` xγic, cy `

τ

2
}c´ ui}22

)

,

ˆ

ui`1

pi`1

˙

:“ arg min
u,p

!

xγia,´∇u` py `
τ

2
}ai`1 ´∇u` p}22

`xγib,´Eppqy `
τ

2
}bi`1 ´ Eppq}22 ` xγic,´uy

`
τ

2
}ci`1 ´ u}22

)

,

¨

˝

γi`1
a

γi`1
b

γi`1
c

˛

‚ :“

¨

˝

γia
γib
γic

˛

‚´ τ

¨

˝

ai`1 ´∇ui`1 ` pi`1

bi`1 ´ Eppi`1qq

ci`1 ´ ui`1

˛

‚.

The first subproblem in (3.2.30) is decoupled over the variables a, b, and
c. Thus, it can be separated into the following three subproblems:

ai`1 “ arg min
a

!

xdk1, |a|y ` xγ
i
a,ay `

τ

2
}a´∇ui ` pi}22

)

, (3.2.30)

bi`1 “ arg min
b

!

xdk0, |b|y ` xγ
i
b,by `

τ

2
}b´ Eppiq}22

)

, (3.2.31)

ci`1 “ arg min
c

!

xλpxqgpcq, 1y ` xγic, cy `
τ

2
}c´ ui}22

)

. (3.2.32)

The subproblems for ai`1 and bi`1 in (3.2.30) can be solved exactly using
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the shrink operator:

ai`1 “ shrink

ˆ

∇ui ´ pi ´
γia
τ
,
dk1
τ

˙

, (3.2.33)

bi`1 “ shrink

ˆ

Eppiq ´
γib
τ
,
dk0
τ

˙

, (3.2.34)

where shrinkpa, bq “ a
}a}2

maxp}a}2 ´ b, 0q. On the other hand, there is no

closed-form solution for ci`1. Since the objective function in the c-subproblem
is differentiable, the Euler–Lagrange equation for ci`1 can be obtained as

Qpcq “ λpxq

ˆ

1´ fe´c ` α

ˆ

ec

f
´ β

c

ec

f

˙˙

` γic ` τpc´ u
iq “ 0. (3.2.35)

The normal equation (3.2.35) can be efficiently solved by using Newton’s
method.

The minimizer pui`1,pi`1q of the second subproblem in (3.2.30) satisfy
the following first-order optimality condition:

"

´τ M u` τu` τdivp “ ´divγia ´ τdivai`1 ` γic ` τc
i`1,

τ∇u´ τp` τdiv2Eppq “ γia ` τa
i`1 ` div2γib ` τdiv2bi`1,

(3.2.36)

where div2W “

ˆ

Bxω11 ` Byω12

Bxω21 ` Byω22

˙

for W “

ˆ

ω11 ω12

ω21 ω22

˙

, which is the

adjoint operator of ´E .
The formula (3.2.36) can be rewritten as the following linear equation:

B

¨

˝

u
p1

p2

˛

‚“

¨

˝

´divγia ´ τdivai`1 ` γic ` τc
i`1

B1,i

B2,i

˛

‚, (3.2.37)

where p “ pp1,p2q
T , B is defined as

B “

¨

˝

τpDT
1 D1 `D

T
2 D2 ` 1q ´τDT

1 ´τDT
2

τD1 ´τp1`DT
1 D1 `

1
2
DT

2 D2q ´ τ
2
DT

2 D1

τD2 ´ τ
2
DT

1 D2 ´τp1` 1
2
DT

1 D1 `D
T
2 D2q

˛

‚,

(3.2.38)

and pB1,i, B2,iq
T “ γia` τa

i`1` div2γib` τdiv2bi`1. Following the ideas in
[32, 27], we can obtain ui`1,pi`1 by two-dimensional fast Fourier transform
(FFT) under a symmetric boundary condition.

To sum up, we describe the algorithm for solving the u-subproblem
(3.2.20) in Algorithm 4.
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Algorithm 4 Solve the u-subproblem (3.2.20)

1: Parameter : α0, α1, ρ0, ρ1, α, β, τ ą 0; and u0 “ f
2: for k “ 0, 1, 2, . . . do
3: dk1 “

α1

1`ρ1|ak|
, dk0 “

α0

1`ρ2|bk|

4: for i “ 0, 1, 2, . . . ,M1 ´ 1 do
5: Initialize : γ0

a “ γ0
b “ γ0

c “ 0

ak,i`1 “ shrink
´

∇ui ´ pi ´
γai
τ ,

dk1
τ

¯

,

bk,i`1 “ shrink
´

Eppiq ´
γbi
τ ,

dk0
τ

¯

zk,i`1 is obtained by Newton’s method.

¨

˝

uk,i`1

pk,i`1
1

pk,i`1
2

˛

‚“ B´1

¨

˝

t´divγka ´ τdivak`1 ` γkc ` τc
k`1ui

B1,i

B2,i

˛

‚

γi`1
a “ γia ` τpa

k,i`1 ´∇uk,i`1 ` pk,i`1q

γi`1
b “ γib ` τpb

k,i`1 ´ Eppk,i`1qq

γi`1
c “ γic ` τpc

k,i`1 ´ uk,i`1q

6: end for
7: Return ak`1 “ ak,M1 , bk`1 “ bk,M1 , ck`1 “ ck,M1 ,

uk`1 “ uk,M1 , pk`1 “ pk,M1 .
8: end for
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3.2.4 Numerical results

In this section, we compare the performance of our model with other state-
of-art models which were recently proposed for multiplicative noise removal.
Specifically, we compare our proposed model with the exp-SARP model [51],
the TwL-mV model [35], the SO-TGV model [25], and the DZ-TGV model
[64].

We tested 10 images, as shown in Figure 3.15, which consist of six natural
images and four SAR images. For experiments, all test images are corrupted
by multiplicative Gamma noise for M “ 3, 5, or 10.

To measure the quality of restored images, we use the peak-signal-to-
noise-ratio (PSNR) value and structure similarity (SSIM) index [68]. The
PSNR is given by

PSNRpu, u˚q “ 10 log10

ˆ

2552Np

}u´ u˚}22

˙

,

where Np is the total number of pixels, u and u˚ present the restored image
and clean image, respectively.

All methods are terminated when the following stopping condition is
satisfied:

}ũl`1 ´ ũl}2
}ũl}2

ă tol or l ąMaxIter (3.2.39)

where ũl is the restored image at iteration l; ũ “ eu for our model, the
exp-SARP model, and SO-TGV model, ũ “ um for the TwL-mV model and
ũ “ u for the DZ-TGV model. We use the tolerance value tol “ 10´4 for
our model and the exp-SARP model when we solve the u-subproblem. In
particular, we set M1 “ 50 in Algorithm 2 and use the tolerance value in
the ADMM process. For other iterations of our model and the exp-SARP
model, we only use the maximum iteration which is fixed by MaxIter “ 3
which is the smallest iteration number to get satisfactory updated λ. As can
be seen in Figure 3.17, the more iteration, the texture region has higher λ
value while homogeneous region has still low λ value. This shows that λ is
updated appropriately. Moreover, Figure 3.17-(b) and (c) do not make a big
difference. Thus more iteration is not meaningful. The tolerance value of the
SO-TGV model and DZ-TGV model is set as tol “ 3ˆ 10´5 and 4ˆ 10´4,
respectively, as provided in [25, 64].

We use the proximal linearized ADMM (PLAD) algorithm [69] to solve
the exp-SARP model. For the SO-TGV and the DZ-TGV models, the primal
dual algorithm [14] is utilized.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.15: Original images. First row: Boat p256ˆ256q, Elaine p256ˆ256q,
Face p255ˆ 255q, Girl p336ˆ 254q, and Mountain p400ˆ 200q. Second row:
Peppers p256ˆ 256q, Remote1 p350ˆ 228q, Remote2 p350ˆ 253q, Remote3
p308ˆ 236q, and Remote4 p275ˆ 275q.

All numerical experiments are performed in MATLAB R2015b running
on a 64-bit Windows 7 PC with an Intel i7-3770 CPU @ 3.40 GHz and 16
GB RAM.

3.2.5 Selection of parameters

In the primal dual algorithm [14] used to solve the SO-TGV and DZ-TGV
models, the primal and dual proximal parameters σ, τ are directly related
to the speed of convergence. We set σ “ τ “ 1?

12
for the SO-TGV model

and σ “ 0.0016, τ “ 50 for the DZ-TGV model, as described in [25, 64],
respectively. The parameter α in the DZ-TGV model has to be manually
tuned to obtain satisfactory restored results. In particular, α should satisfy

the condition α ě 2
?

6
9 for the convexity of the data-fidelity term. Under

heavy noise level such as M “ 3 or 5, the restored images of the DZ-TGV
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Figure 3.16: Denoised images and final λ values of the Boat image with
different number of windows and sizes. (a) Original and noisy images (b)
pr1, r2q “ p7, 21q (PSNR : 25.31) (c) pr1, r2q “ p7, 256q (PSNR: 25.63) (d)
pr1, r2, r3q “ p7, 21, 256q (PSNR: 25.65)
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(a) (b) (c)

Figure 3.17: Denoising images and corresponding updated λ values of differ-
ent iteration : (a) first iteration (PSNR : 22.68) (b) second iteration (PSNR
: 24.79) (c) third iteration (PSNR : 24.82)

64



CHAPTER 3. PROPOSED MODELS

model get worse as α increases. For this reason, α was selected as 2
?

6
9 for

M “ 3 and 5. We tune the regularization parameter λ in the SO-TGV and
DZ-TGV models to obtain satisfactory denoising results.

We choose m “ 4 for TwL-mV model [35], which gives satisfactory
results with reasonable computational cost. To find a solution, LPAMA is
utilized and we set same parameter as in [35].

For the exp-SARP model and our model, the value of β is closely related
to the noise level M . As provided in [48], we take β “ 1

0.1113`0.1109M2 ` 1.
The value for α in the exp-SARP model and our model is heuristically set to
satisfy the condition (2.1.16). In fact, we use the same values for α and β in
the exp-SARP model and our model. Moreover, we fix a penalty parameter
τ “ 0.75 in both ADMM and PLAD algorithms. In Figure 3.16, we present
the restored images and final λ-value for pr1, r2q “ p7, 21q, p7, sizepfqq and
pr1, r2, r3q “ p7, 21, sizepfqq. Figure 3.16-(b) presents the denoised image
with two small local windows. It is observed that the difference of maximum
and minimum values in the final λ is too big and it yields to produce too
oversmoothed homogenous region and lots of noises in textural region. That
is, λ has not been updated properly and it leads the lowest PSNR value.
Figure 3.16-(c) is the denoised image obtained using one small and one large
windows. Compared to (d), which uses the combination of small, medium
and large windows, the denoising results do not differ significantly. However,
the texture regions in Figure 3.16-(c) are slightly oversmoothed. Thus, we
use the combination of three local windows that shows the most satisfactory
result. Therefore, in our experiments, three local windows are utilized with
size r1 “ 7, r2 “ 21, and r3 “ sizepfq for both models. For our model, the
parameters ρ1 and ρ0 affect the quality of restored images, which are fixed
as ρ1 “ 0.01 and ρ0 “ 5.

3.2.6 Image denoising

In Figures 3.18 and 3.19, we show the denoising results of our model when
the noise level M “ 10, and comparisons with other models. It can be seen
that the TwL-mV model and the exp-SARP model produces restored images
with staircasing artifacts around the faces of both images. Comparing our
model with the SO-TGV model and the DZ-TGV model, we can observe that
our model retains less noise around the cheek and preserves more details in
the eyes and hat in Figure 3.18. Moreover, in Figure 3.19, we can observe
that the restored image of our model has clear eyes, nose, and mouth and
some noise in the hat is eliminated well, unlike the SO-TGV model and the
DZ-TGV model. These images indicate that the SARP λpxq in our model
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performs properly, leading to better denoising results than a fixed constant
λ.

In Figure 3.20 and 3.21, we test all the above-mentioned denoising mod-
els for all noise levels M “ 10, 5, and 3. It is seen that recovered images
of TV based models (TwL-4V model and exp-SARP model) have the stair-
casing artifacts in the homogeneous region for all noise levels. However, the
exp-SARP model retains less noise in the background while preserving de-
tails than the TwL-4V model due to its SARP approach. In the case of
M “ 10, the DZ-TGV model provides a satisfactory result. However, when
M is small (M “ 5 and 3), it produces a restored image that is too over-
smoothed. Thus, the restored images of the DZ-TGV model do not capture
any details. Moreover, we can see some artifacts with black and white dots,
which are caused by the quadratic term in the DZ-TGV model. From [23],
the authors showed that the data-fidelity term of the DZ-TGV model is
mainly suitable for a large value of M owing to statistical property of the
Gamma distribution. In addition, we also confirm that the DZ-TGV model
is not suitable when the noise level M is smaller than 10. If we increase
the λ value for the DZ-TGV model, then we obtain a reconstructed image
with a lot of black and white dots while avoiding over-smoothing and con-
serving detail. Thus, when choosing the regularization parameter λ, we have
to decide whether to retain many such black and white points along with
preserving more details. In these experiments, we choose that the recovered
images for the DZ-TGV model involve fewer black and white points and are
slightly over-smoothed when M is smaller than 10. Comparing the SO-TGV
model with our proposed model, we can observe that the SO-TGV model
retains noise in the homogeneous region, which was not removed sufficiently.
In contrast, as one can see in Figure 3.20, the denoising result of the SO-
TGV model is less clear near the stem of the peppers than that of our model
and a lot of remaining noise as a whole in the result of the SO-TGV model.
In addition, our model in Figure 3.21 shows more details of the boat and
the edges are more clearly restored.

Figures 3.22 present the denoised images for all models when the ob-
served images are contaminated by the heavy multiplicative noise with noise
level M “ 3. The exp-SARP model removes noise in the homogeneous re-
gion while preserving details well owing to the SARP approach. However,
comparing our model with the exp-SARP model, our model preserves edges
more clearly in the face pattern than the exp-SARP model. Since the exp-
SARP model and our model are based on the SARP approach, this result
comes from the superiority of the NTGV regularization of our model. We
can confirm the DZ-TGV model is not suitable for heavy noise and the TwL-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Denoising results of our model when M “ 10, and comparisons
with other models: (a) data f with M “ 10. Denoised images: (b) TwL-4V
[35]; (c) exp-SARP [51]; (d) SO-TGV [25]; (e) DZ-TGV [64]; (f) our model.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.19: Denoising results of our model when M “ 10, and comparisons
with other models: (a) data f with M “ 10. Denoised images: (b) TwL-4V
[35]; (c) exp-SARP [51]; (d) SO-TGV [25]; (e) DZ-TGV [64]; (f) our model.
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(a) (b) (c)

Figure 3.20: Denoised results of our model when (a) M “ 10, (b) M “ 5,
and (c) M “ 3, and comparisons with other models. Top to bottom rows:
TwL-4V [35], exp-SARP [51], SO-TGV [25], DZ-TGV [64], and our model.
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(a) (b) (c)

Figure 3.21: Denoised results of our model when (a) M “ 10, (b) M “ 5,
and (c) M “ 3, and comparisons with other models. Top to bottom rows:
TwL-4V [35], exp-SARP [51], SO-TGV [25], DZ-TGV [64], and our model.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Denoising results of our model when M “ 3, and comparisons
with other models: (a) data f with M “ 3. Denoised images: (b) TwL-4V
[35]; (c) exp-SARP [51]; (d) SO-TGV [25]; (e) DZ-TGV [64]; (f) our model.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23: Denoising results of our model when M “ 3, and comparisons
with other models: (a) data f with M “ 3. Denoised images: (b) TwL-4V
[35]; (c) exp-SARP [51]; (d) SO-TGV [25]; (e) DZ-TGV [64]; (f) our model.

4V model produces staircasing artifacts. The restored image of the SO-TGV
model is satisfactory result, but that of our model shows less noise in the
homogeneous region.

Figure 3.23 shows the degraded image with noise level M “ 3 and denois-
ing results of our model with comparisons with the exp-SARP model, the
TwL-4V model, the SO-TGV model, and the DZ-TGV model. The DZ-TGV
model produces unsatisfactory results for heavy noise levels. Our model re-
moves noise in the sky region very well and furnishes more clear ridges
compared with the SO-TGV. In addition, the proposed model better pre-
serves the forest region, in front of the mountain, than the SO-TGV model.
The restored images of the exp-SARP model and the TwL-4V model include
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(a) (b)

(c) (d)

(e) (f)

Figure 3.24: Denoising results of our model when M “ 10, and comparisons
with other models: (a) data f with M “ 10. Denoised images: (b) TwL-4V
[35]; (c) exp-SARP [51]; (d) SO-TGV [25]; (e) DZ-TGV [64]; (f) our model.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.25: Denoising results of our model when M “ 5, and comparisons
with other models: (a) data f with M “ 5. Denoised images: (b) TwL-4V
[35]; (c) exp-SARP [51]; (d) SO-TGV [25]; (e) DZ-TGV [64]; (f) our model.

74



CHAPTER 3. PROPOSED MODELS

(a) (b)

(c) (d)

(e) (f)

Figure 3.26: Denoising results of our model when M “ 3, and comparisons
with other models: (a) data f with M “ 3. Denoised images: (b) TwL-4V
[35]; (c) exp-SARP [51]; (d) SO-TGV [25]; (e) DZ-TGV [64]; (f) our model.
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(a) (b) (c)

Figure 3.27: Denoised results of our model when (a) M “ 10, (b) M “ 5,
and (c) M “ 3 and comparisons with other models. Top to bottom rows:
TwL-4V [35], exp-SARP [51], SO-TGV [25], DZ-TGV [64], our model.
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several partitions in the sky region which cannot be observed in our model.
In Figures 3.24–3.27, we test all five models with SAR images with all

noise levels M “ 10, 5, and 3. It is observed that the exp-SARP model
gives more successful results in terms of preserving fine features than the
TwL-4V model, but both models still generate undesirable staircasing ef-
fects. The restored images of the DZ-TGV model improve as M increases.
We can confirm that our model provides the best denoising results. For SAR
images, our model also provides denoised images with well-smoothed homo-
geneous regions and conserved edges. Overall, the proposed model produces
the restored images with the most natural visual quality and these numerical
examples show the effectiveness of the NTGV regularization and the SARP
approach.

In Tables 3.5, 3.6, and 3.7, we measure qualities of the restored images
for the exp-SARP model, the TwL-4V model, the SO-TGV model, the DZ-
TGV model, and our model. We report the PSNR and the SSIM values
for M “ 10, 5, and 3, respectively. We note that our proposed model has
the highest PSNR and SSIM values for all images and for all noise levels.
Although some PSNR values of the proposed model and exp-SARP model
are not very different, we can see in Figures 3.21 and 3.23 that the denoising
results of our model have better visual quality than those of the exp-SARP
model.

TwL-4V model exp-SARP model SO-TGV model DZ-TGV model Our model

Boat 25.30 / 0.6851 25.54 / 0.6985 24.93 / 0.6762 25.22 / 0.6853 25.65 / 0.7094

Elaine 27.05 / 0.7646 27.06 / 0.7688 27.54 / 0.7977 27.21 / 0.7792 27.91 / 0.8103

Face 26.70 / 0.8158 27.08 / 0.8508 27.99 / 0.8779 26.84 / 0.8455 28.22 / 0.885

Girl 28.99 / 0.8199 28.79 / 0.8218 30.39 / 0.8724 29.06 / 0.8655 30.56 / 0.8789

Mountain 24.73 / 0.6491 24.70 / 0.6539 24.42 / 0.6486 24.16 / 0.6348 24.80 / 0.6677

Peppers 27.10 / 0.8064 27.22 / 0.8161 27.10 / 0.8143 27.12 / 0.8124 27.51 / 0.8303

Remote1 24.97 / 0.7091 25.07 / 0.7072 24.96 / 0.7095 24.23 / 0.6885 25.20 / 0.7098

Remote2 24.70 / 0.6912 24.74 / 0.701 24.66 / 0.6775 23.89 / 0.665 24.82 / 0.7025

Remote3 30.33 / 0.769 30.36 / 0.7701 30.60 / 0.7816 30.01 / 0.7583 30.82 / 0.7845

Remote4 24.62 / 0.6287 24.64 / 0.6611 24.72 / 0.6442 24.33 / 0.6311 24.88 / 0.6756

average 26.45 / 0.7338 26.52 / 0.7449 26.73 / 0.75 26.21 / 0.7365 27.04 / 0.7654

Table 3.5: Comparisons of denoising results when M “ 10 (PSNR/SSIM).
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TwL-4V model exp-SARP model SO-TGV model DZ-TGV model Our model

Boat 23.84 / 0.6207 23.89 / 0.6309 23.62 / 0.6165 23.41 / 0.6081 24.17 / 0.6514

Elaine 25.54 / 0.7122 25.41 / 0.714 26.01 / 0.7552 25.17 / 0.7173 26.20 / 0.7622

Face 25.02 / 0.7707 25.53 / 0.8065 26.12 / 0.8405 24.51 / 0.7974 26.50 / 0.8493

Girl 27.63 / 0.7806 27.29 / 0.7728 28.87 / 0.8394 26.90 / 0.8131 29.00 / 0.8446

Mountain 23.52 / 0.5869 23.40 / 0.5843 23.16 / 0.5791 22.66 / 0.5544 23.51 / 0.6028

Peppers 25.68 / 0.7601 25.82 / 0.7763 25.60 / 0.7732 25.17 / 0.7621 26.16 / 0.7959

Remote1 23.53 / 0.6329 23.60 / 0.622 23.54 / 0.6422 22.55 / 0.6005 23.70 / 0.6461

Remote2 23.38 / 0.6119 23.39 / 0.6171 23.34 / 0.5835 22.22 / 0.5755 23.57 / 0.6249

Remote3 29.32 / 0.7288 29.36 / 0.7286 29.45 / 0.7351 28.20 / 0.6977 29.76 / 0.7434

Remote4 23.53 / 0.5588 23.42 / 0.5787 23.63 / 0.575 22.91 / 0.55 23.74 / 0.6075

average 25.10 / 0.6763 25.11 / 0.6831 25.33 / 0.6939 24.37 / 0.6676 25.63 / 0.7128

Table 3.6: Comparisons of denoising results when M “ 5 (PSNR/SSIM).

TwL-4V model exp-SARP model SO-TGV model DZ-TGV model Our model

Boat 22.93 / 0.5786 23.01 / 0.5837 22.71 / 0.5704 21.92 / 0.5355 23.11 / 0.6005

Elaine 24.27 / 0.6706 23.95 / 0.6689 24.50 / 0.7117 23.06 / 0.6436 24.80 / 0.724

Face 23.50 / 0.7347 24.12 / 0.7624 24.66 / 0.8058 22.45 / 0.7389 25.00 / 0.8181

Girl 26.32 / 0.7465 26.25 / 0.7332 27.32 / 0.8038 25.30 / 0.7447 27.50 / 0.8125

Mountain 22.58 / 0.542 22.57 / 0.5384 22.30 / 0.533 21.12 / 0.4885 22.63 / 0.56

Peppers 24.16 / 0.7327 24.42 / 0.7371 24.27 / 0.7368 23.21 / 0.7074 24.77 / 0.7534

Remote1 22.61 / 0.576 22.65 / 0.5723 22.64 / 0.5731 20.77 / 0.5142 22.75 / 0.5755

Remote2 22.43 / 0.5525 22.45 / 0.5526 22.46 / 0.5327 20.32 / 0.4972 22.60 / 0.565

Remote3 28.37 / 0.6908 28.41 / 0.6931 28.56 / 0.7043 27.08 / 0.6514 28.75 / 0.7138

Remote4 22.81 / 0.5116 22.71 / 0.521 22.92 / 0.5309 21.95 / 0.4849 23.02 / 0.5513

average 24.00 / 0.6336 24.05 / 0.6362 24.23 / 0.6502 22.72 / 0.6006 24.49 / 0.6674

Table 3.7: Comparisons of denoising results when M “ 3 (PSNR/SSIM).
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Conclusion

In this dissertation, we proposed a new variational models, incorporated
with the SARP approach, for restoring images corrupted by multiplicative
Gamma noise. The new models, in particular, are based on the exp model
[48]; thus, it is designed to effectively deal with heavy multiplicative noise.
The SARP approach enhanced the denoising results, by sufficiently reducing
the noise in homogeneous regions while preserving textures. Moreover, our
SARP approach further improved denoising results as it used multiple local
windows unlike prior work [17], which used only one local window.

For the exp TV model with SARP (Proposed model 1), the convergence
analysis such as the existence and uniqueness of a solution for the model
was also demonstrated. Further, a SARP algorithm corresponding to our
proposed model was derived from the first order optimality conditions. Fur-
thermore, we adopted a proximal linearized alternating direction algorithm
to solve our subproblem. This resulted in a fast and efficient iterative algo-
rithm for solving our model. We tested our proposed model and algorithm
on various natural images and SAR images. Numerical experiments demon-
strated the effectiveness and efficiency of our proposed model and algorithm,
in terms of visual quality and various quantities, compared to several state-
of-the-art models.

For exp NTGV model with SARP (Proposed model 2), we used a NTGV
regularization and a SARP were utilized. The NTGV allowed us to ade-
quately denoise smooth regions without the staircasing artifacts that ap-
pear in TV-based models, while preserving edges and details. The SARP
further assisted in keeping textures and small scales during the denoising
process. We presented an automatic selection rule for the SARP, by intro-
ducing a constrained model with local constraints associated with multiple
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local windows. To solve the nonconvex minimization problem, we employed
the IRLA, and the ADMM was adopted to solve the subproblem induced
by the IRLA. These led to an efficient iterative algorithm for solving the
proposed model. We tested our proposed model and algorithm on several
images including real natural and SAR images. Numerical results showed
the superiority of our proposed model over the state-of-the-art models with
regards to visual quality and some quantities.
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국문초록

본 논문에서는 편미분 방정식을 이용한 곱셈 감마 잡음으로 오염된 영상복원

의 변분법적인 모델에 대해서 다룬다. 두 가지 제안하는 모델은 실제 응용에서
많이 다루는 강한 곱셈 잡음에 적합하다. 첫 번째로 우리는 국지 제한 조건과
총 변이 정규화를 기반으로 한 모델을 제안한다. 국지 제한조건은 여러 개의
국지 창으로 구성되어 있는데 이는 국지적 조정 정규화 매개변수와 연관이 있

다. 게다가 해의 존재성과 유일성과 같은 분석도 제공한다. 두 번째로는 우리는
첫 번째 모델을 비볼록일반총변이로 확장시켰다. 비볼록일반총변이는 평평한
지역을 효과적으로 잡음을 제거하고 경계와 세부적인 부분을 보존해주면서 총

변이 정규화에서 보이던 계단현상이 나타나지 않는다.

주요어휘: 영상잡음제거, 곱셈 감마 잡음, 국지적 조정 정규화 매개변수, 근접
선형화된 교류방향 알고리즘, 비볼록일반화총변이, 반복적 재가중치 `1 알고리
즘

학번: 2011-20269
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