

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학박사 학위논문

Secure Computation via
Homomorphic Encryption

(동형암호를 이용한 안전한 연산)

2017년 8월

서울대학교 대학원

수리과학부

정 희 원

Secure Computation via
Homomorphic Encryption

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Heewon Chung

Dissertation Director : Professor Jung Hee Cheon

Department of Mathematical Sciences
Seoul National University

August 2017

c© 2017 Heewon Chung

All rights reserved.

Abstract

(Fully) Homomorphic encryption (FHE, HE) is one of the natural and

powerful tools for ensuring privacy of sensitive data since it enables to han-

dle ciphertexts without decryption and thus allow complicated computations

on the encrypted data. Due to this property, homomorphic encryption can be

applied to many scenarios in the real life, especially, databases. Until now,

most of homomorphic encryption schemes restrict a plaintext space as an

integer and thus numeric data should be represented by integers. However,

there are many applications working in the real number system that oper-

ate on very sensitive information, for example, user’s location information

and patient’s medical information. Usually, these information can be repre-

sented by the real numbers and thus it should be encoded into the integers.

The general decimal representation requires quite large plaintext space and a

polynomial representation also requires a higher degree of polynomials, which

has a bad influence to the performance of FHE scheme.

In this thesis, we employ continued fraction to represent real numbers

and to alleviate this inefficiency. With continued fraction, real numbers can

be represented by a set of quite small integers and it makes performance im-

provement than other encoding techniques. Moreover, we can develop a set of

algorithms and circuits using continued fraction for the following operations:

homomorphic integer division, equality circuit and comparison circuits over

the real numbers.

First, we suggest an algorithm for homomorphic integer division using

continued fraction and restoring division algorithm. Since the integer is not

closed under the division, the most of homomorphic encryption schemes can-

not support the division, however, we suggest a transformation from rational

numbers to continued fractions being encrypted and it allows to divide two

encrypted integers. Further, we can evaluate a polynomial whose coefficients

i

ii

are in the rational numbers.

Second, we describe comparison circuits over the encrypted real numbers

including equality circuits. Since comparing two continued fraction is also

easy as much as comparing two decimal numbers, we can build more efficient

comparison circuits while maintaining the small message space utilizing the

homomorphic comparison circuits over the integers. With our efficient com-

parison circuits, we can apply to the real-type database which indicates each

numeric data is represented by the real numbers and our circuits enable to

sorting and private database queries such as retrieval queries and aggregate

queries, which makes database useful.

Finally, we present a proof of correct decryption in a single party ho-

momorphic encryption. Although a server evaluates some polynomial being

encrypted, the server cannot know any information about the result. Thus, if

a server is interested in the result, a data owner returns the decryption result.

The problem is that the server should believe the data owner at this time

because the data owner can manipulate the decryption result and the server

cannot recognize it. We prevent this situation by utilizing one-time message

authentication code. Moreover, this technique can be applied to many sce-

narios, especially, a protocol for authentication of biometrics.

Keywords: homomorphic encryption, continued fraction, real number, database

queries, authentication

Student Number: 2013-30900

Contents

Abstract i

1 Introduction 1

1.1 Overview and Contributions 2

1.1.1 Homomorphic Integer Division 2

1.1.2 Homomorphic Comparisons over the Real Numbers . . 4

1.1.3 Integrity of Homomorphic Evaluations 7

2 Preliminaries 9

2.1 Notation . 9

2.2 Continued Fraction . 9

2.3 Homomorphic Encryption . 14

2.4 Homomorphic Comparisons over the Integers 16

2.4.1 Equality Circuit over the Integers 16

2.4.2 Greater-Than and Less-Than Circuits over the Integers 17

2.5 Fuzzy Extractor . 18

2.5.1 Reusable Fuzzy Extractor 19

3 Algorithms for Homomorphic Integer Division 22

3.1 Overview and Related Works 22

3.2 Restoring Division Algorithm 24

3.3 Homomorphic Integer Division 27

3.3.1 Algorithm . 28

iii

CONTENTS

3.3.2 Efficiency . 29

3.4 Homomorphic Arithmetics over the Polynomials 30

3.4.1 Description . 31

4 Algorithms for Homomorphic Comparisons over the Real Num-

bers 32

4.1 Overview and Related Works 32

4.2 Comparing Two Continued Fractions 36

4.2.1 Our Idea: Comparing Two CFs in the Clear 36

4.3 Equality Circuit . 38

4.3.1 Construction . 39

4.3.2 Complexity . 39

4.4 Greater-Than and Less-Than 40

4.4.1 Construction . 40

4.4.2 Complexity . 41

4.5 Implementation . 43

4.5.1 Environment . 43

4.5.2 Scheme Parameters . 44

4.5.3 Experimental Results and Comparisons 45

4.6 Applications to Database Service 47

4.6.1 Sorting . 47

4.6.2 Private Database Queries 48

5 Algorithms for Integrity-based Homomorphic Evaluations 53

5.1 Overview and Related Works 53

5.2 Models and Settings . 56

5.2.1 System Model and Participants 56

5.2.2 Threat Model . 56

5.2.3 Security Model . 57

5.3 Integrity of Homomorphic Evaluations 58

5.3.1 Message Authentication Code 58

5.3.2 Protocol Constructions 59

iv

CONTENTS

5.3.3 Security Proof . 62

5.4 Application to Biometric Authentication 71

5.4.1 How Ghostshell Works 71

5.4.2 Analysis . 72

5.4.3 Optimization . 73

5.5 Implementation . 78

5.5.1 Micro-experiments . 79

5.6 Reusable Fuzzy Extractor for the Hamming Distance 82

5.6.1 Insecurity of Previous Reusable Fuzzy Extractor 83

5.6.2 Revising Reusable Fuzzy Extractor 84

5.6.3 Revising Idea . 85

5.6.4 Our Construction . 86

5.6.5 Analyisis . 87

6 Conclusion 89

Abstract (in Korean) 100

Acknowledgement (in Korean) 101

v

Chapter 1

Introduction

If someone ask

Given Enc(x) and a polynomial f(x), can you evaluate Enc(f(x))?

the answer is yes. A homomorphic encryption has a homomorphism property

and thus given Enc(x) and Enc(y), one can easily compute Enc(x + y) and

Enc(xy). Consequently, every polynomial and a circuit consisting of additions

and multiplications can be evaluated being encrypted with homomorphic en-

cryption. Thus, it is one of the natural and powerful tools for ensuring privacy

of sensitive data since it enables to handle ciphertexts without decryption and

thus allows complicated computations on the encrypted data. This concept

is introduced by Rivest et al. [68] and in 2009, Gentry firstly construct a

secure homomorphic encryption scheme [42] based on the ideal lattice. How-

ever, this scheme exhibits.a fairly poor performance. A later series of results

were proposed to address this concern. In particular, Brakerski and Vaikun-

tanathan introduced the concept of leveled FHE which allows the evaluation

of arbitrary circuits of polynomial depth [13]. Following this proposal, Brak-

erski, Gentry, and Vaikuntanathan (BGV) in [12] further presented a leveled

FHE scheme with significantly improved performance.

1

CHAPTER 1. INTRODUCTION

1.1 Overview and Contributions

This thesis covers three different topics which are applications of homomor-

phic encryption. My proposal can be applied to the most existing homomor-

phic encryption scheme even if there exists more appropriate homomorphic

encryption scheme for each applications. Hence, in this thesis, I do not target

any specific scheme and I will not present a detail of the scheme. However,

my implementation is build on the BGV scheme because it is not only sup-

ports SIMD operations but also stably supported by HElib [47], which is a

widely used software library of BGV scheme.

We can summary contributions of this thesis in three-folds.

1.1.1 Homomorphic Integer Division

Even though homomorphic encryption can handle ciphertexts, it does not

support dividing two encrypted integers because a set of integers is not closed

under the division. Until now, the most existing homomorphic encryption

scheme supports an integer plaintext space and thus we need to represent

a real number as a set of integers (or an integer) to utilize the existing

scheme. To do that, we use continued fraction which enables to represent a

real number as a set of integers.

The next step is replacing a division algorithm to be executed with ho-

momorphic encryption. Typically, the simplest way to replacing division al-

gorithm is by subtracting repeatedly divisor from the dividend. However, a

terminated condition is that subtracting result is less than divisor and since

these are encrypted, we cannot distinguish some value satisfy the termina-

tion condition Hence, it cannot replace a division algorithm when employing

homomorphic encryption. For this reason, we choose the restoring division

algorithm which outputs a quotient and a remainder. The main idea of restor-

ing division algorithm is

pi+1 = b× pi − qn−(j+1) × d

2

CHAPTER 1. INTRODUCTION

where pi is i-th the partial remainder of the division, b is the radix, n is the

number of digits in the quotient, qi is the i-th digits of the quotient and d

is the divisor. This algorithm is also an iterative algorithm, but the number

of iterations are fixed as much as the size of a numerator. Moreover, it also

contains a step for comparing an encrypted integer and zero, but it can be

replaced by determining a sign of a integer when we use a binary field. For

example, if a underlying message is positive, then the most significant bit

of the integer should zero and if a underlying message is negative, then the

most significant bit of the integer should be one. Therefore, we have to set

R = 2 in order to replace comparing step.

The last step is expressing a real number to continued fraction being en-

crypted using restoring division algorithm. In fact, continued fraction and

euclidean algorithm are based on the same principle. Euclidean algorithm

is very efficient algorithm which enables to compute greatest common divi-

sors of two integer. The fundamental is that the greatest common divisor of

numbers does not change even if the larger number is subtracted from the

other number. Since the subtraction reduce the large number, repeating this

step outputs successively smaller pairs of numbers and finally the size of two

numbers becomes equal and the number is the greatest common divisor of

the original two integers. Since a remainder for two integers can be obtained

by successively subtracting the smaller numbers to the larger number, com-

puting a remainder is reduced the iteration number instead of a subtraction.

In this sense, both euclidean algorithm and continued fraction require a step

to compute a quotient and a remainder for two original integers. Since each

partial quotient corresponds to a quotient for each iteration in euclidean al-

gorithm, one can compute every partial quotient using euclidean algorithm.

Moreover, restoring division algorithm outputs a quotient and a remainder

for two integers and thus we can divide two integers and a output can be

represented in continued fraction form by executing several restoring division

algorithm.

Moreover, we can evaluate a polynomial over Q being encrypted. Our

3

CHAPTER 1. INTRODUCTION

encoding techniques enable to handle encrypted rational numbers as well as

encrypted integers. Since the evaluation of any polynomial over Q is also in

Q, the polynomial over Q can be evaluated using our technique. Similarly,

any arithmetic of two polynomials over Q is also a polynomial over Q, we

can evaluate it being encrypted.

1.1.2 Homomorphic Comparisons over the Real Num-

bers

We provide homomorphic comparison circuits including equality circuits over

the real numbers. In the paper [25,26], the authors provide an equality circuit

and a comparison circuit for fully homomorphic encryption using boolean cir-

cuits with data represented by bits. In order to tell which of two real numbers

is larger with homomorphic encryption, these are should be encoded into in-

tegers because the most homomorphic encryption scheme only supports an

integer message space. There are several encoding techniques: one is using the

decimal representation and another method is an encoding to a polynomial.

However, these techniques have a step of removing a precision by multiply-

ing a prefix numerator such as a power of 10 and it makes large integer. For

example, suppose a precision is 5 and any real number is approximated to a

rational number of 5 places of decimals. One can make an integer by multi-

plying 105 to this rational number and the integer should be at least 16 bit

integers because 105 ≈ 216. It means that the plaintext space should be large

as much as 16 bits and if there are some multiplications, then the plaintext

space should be much larger in order to prevent overflow the message. Since

there are some parameters depending on the plaintext space, these parame-

ters should be large, for example, the degree of cyclotomic polynomial and

a modulus for a ciphertext space. Furthermore, a multiplicative depth con-

sumes more than 1 even though the only one multiplication are performed,

which implies that more multiplicative depth are required than theoretical

multiplicative depth. The same problem occurs in the polynomial encoding.

4

CHAPTER 1. INTRODUCTION

In the same example, a real number is encoded into a polynomial of degree

at least 16 and a degree of modulus polynomial should be enough large. Such

large parameters leads to the poor performance.

For this reason, we employ continued fraction which enable to represent

a real number as a set of integers. Let X = [x0; x1, . . . , xn−1] be a continued

fraction of p/q ∈ Q, where X ∈ Q and xi ∈ Z. In this case, we can easily

derive that

log x0 + log x1 + . . .+ log xn−1 < logp

log x0 + log x1 + . . .+ log xn−1 < logq

and it implies that each partial quotient’s size is relatively smaller than p and

q. Because of the relatively small, this encoding strategy has advantages in

terms of the size of parameter for homomorphic encryption. The performance

of homomorphic encryption totally depends on the parameter, especially,

the plaintext space. In addition, the previous encoding techniques requires

to keep track of the precision in order to recover the real number. However,

continued fraction is independent from the precision and thus we do not need

to keep track of the precision. In this sense, continued fraction is one of the

best encoding technique.

Beside the size of partial quotient, there are fascinating properties for

continued fraction and what I am focusing is that it is easy to compare

which of two continued fractions represent the larger number. We can easily

compare two real numbers with decimal representation: just compare left-to-

right since a digit dominates all other digits which is positioned on the right.

Similarly, in the case of continued fraction, a partial quotient dominates

all other partial quotients which is positioned on the right and thus the

first different partial quotient determines the order. The only difference is

that even-numbered partial quotient It could be summarized like this: Let

X = [x0; x1, . . . , xn−1] and Y = [y0; y1, . . . , ym−1]. Let k be the smallest index

for which xk is unequal to yk. Then,

X < Y if (−1)k(xk − yk) < 0

5

CHAPTER 1. INTRODUCTION

and X > Y otherwise. If there is no such k which implies xi = yi for all i < n

and n < m, then X < Y if n is odd and X > Y if n is even. If there is no such

k and n = m, then clearly X = Y . Now, we can translate it to the ciphertext

domain using homomorphic encryption and give concrete constructions. For

equality circuit, it should be the same for all partial quotients and thus it

can be translated to

EQR(X̄, Ȳ) =

n−1∏

i=0

EQZ(x̄i, ȳi)

For comparison circuits, at first we need to find the smallest index of different
partial quotient. However, it cannot be done in the ciphertext domain and
thus we should consider the worst case, which implies that we need to consider
the case that the last partial quotient is different.

GTR(X̄, Ȳ) =GTZ(x̄n−1, ȳn−1) +

n−2

n∑

i=0

GTZ(x̄2i, ȳ2i) ·

n−1∏

j≥2i

EQZ(x̄j , ȳj)

+

n−2

n∑

i=0

LTZ(x̄2i+1, ȳ2i+1) ·

n−1∏

j≥2i+1

EQZ(x̄j , ȳj)

LTR(X̄, Ȳ) =LTZ(x̄n−1, ȳn−1) +

n−2

n∑

i=0

LTZ(x̄2i, ȳ2i) ·

n−1∏

j≥2i

EQZ(x̄j , ȳj)

+

n−2

n∑

i=0

GTZ(x̄2i+1, ȳ2i+1) ·

n−1∏

j≥2i+1

EQZ(x̄j , ȳj)

Using our comparison circuits, we can apply to the database service, espe-

cially, sorting and private database queries. Since the most sorting algorithm

consists of comparison and swap and swap is based on the comparison, we

can easily build a circuit for swap. Similarly, private database queries are

mainly based on the equality circuit and the comparison circuit and thus it

means that one can execute private database queries being encrypted.

6

CHAPTER 1. INTRODUCTION

1.1.3 Integrity of Homomorphic Evaluations

Suppose a data owner has data and he gives encrypted data to a data con-

sumer. Until now, we only consider the scenario such that the data owner

wants to evaluate some functions without leaking information about his data.

However, there is a scenario such that the data consumer wants to know the

result. If the data consumer wants to know the decryption result, the data

owner should decrypt a ciphertext and give back to the data consumer, how-

ever, the data owner cannot guarantee the correct decryption so he will need

a proof of correct decryption.

In order to resolve this problem, at first, we employ a technique of a mes-

sage authentication code (MAC). The MAC is a short piece of information,

called a tag, used to authenticate a message. In other words, the MAC guar-

antees the message came from the sender and has not been changed. The

MAC value protects both a message’s data integrity as well as its authen-

ticity, by allowing verifiers (who also possess the secret key) to detect any

changes to the message content. In my case, the sender is the data owner and

a tag is generated by the data consumer and thus the data consumer has a

secret key for the MAC. The data consumer evaluates some polynomial being

encrypted and a tag for the evaluation is generated by the data consumer.

Since homomorphic encryption is used to encrypt data, the data owner can

get a tag of the result, but he cannot learn anything about the result because

he does not have a secret for the MAC. After the data owner send the tag of

the result, the data consumer can recover the result using the secret key for

the MAC. Moreover, to improve the performance, we define a tag function

Tag and a verification function Vrf: for a message x,

Tag(x) = r0x+ r1

where r0 and r1 are random numbers and Vrf(τ) = (τ − r1)/r0. We can

easily check that Vrf(Tag(x)) = x. Whenever the data consumer generates

a tag, these random numbers r0 and r1 should be always newly generated in

order to secure against adversaries. If someone use only a multiplication or

7

CHAPTER 1. INTRODUCTION

an addition to generate a tag, it can be easily broken and thus we insist that

our tag function is the optimized.

However, this approach provides a type of decryption oracle, which could

clearly result in a security weakness and allow a malicious data consumer to

recover the original data. It should be noted that homomorphic encryption

is only secure against chosen plaintext attacks (CPA) and insecure against

chosen ciphertext attacks (CCA). In order to prevent an undesirable situation

where the decryption oracle is obtained, we also introduce a method for

enclosing the tag using a one-way function with discrete logarithm (DL)

settings and thus the data consumer can only learn the enclosed value of the

tag. This prevents misuse of the decryption key when receiving a decryption

query for its ciphertext.

Moreover, our technique can be applied to the biometric authentication,

especially, iris authentication. Recently, there are many use cases using bio-

metric such as building entrance. In this case, a server store employee’s bio-

metric information and this information is used to determine the validity.

However, biometric information is one of sensitive personal data and thus it

should be protected whenever used since it cannot be changed and replaced.

Hence, it should be stored in a ciphertext form. An iris can be converted

into 2,048 bit and a matching algorithm for iris is based on the hamming

distance. Since homomorphic encryption can compute a hamming distance

being encrypted, the server can obtain a hamming distance result, however,

it is still encrypted. In order to determine the validity, the server should

know the result and thus our techniques can be applied to this situation in

order to protect from the invalidity visitor. In this thesis, we suggest a secure

biometric authentication protocol with our suggestions and give a security

proof of our construction.

8

Chapter 2

Preliminaries

2.1 Notation

For readability, we define some notations and terminologies for the rest of the

paper. A bar over some integer means that the integer is encrypted by an FHE

encryption algorithm Enc; that is, x̄ = Enc(x) for x ∈ Z. A continued fraction

is encrypted means that each partial quotient of the continued fraction is

encrypted. For a continued fraction X = [x0; x1, x2, . . .],

Enc(X) := [Enc(x0); Enc(x1), Enc(x2), . . .],

which can be abbreviated as X̄ := [x̄0; x̄1, x̄2, . . .]. To distinguish an integer

and a real number, a small letter indicates an integer (e.g. X) and a capital

letter indicates a real number (e.g. xi). We write α ← A(a, b) to denote an

algorithm which receives two inputs a and b and outputs α. log denotes a

logarithm with base 2.

2.2 Continued Fraction

A set of integers is closed under addition and multiplication, but not division.

However, there are some methods representing rational numbers to integers,

9

CHAPTER 2. PRELIMINARIES

e.g., continued fractions and decimal representations. Continued fractions are

more mathematically natural representations of rational numbers than deci-

mal representations. First of all, the continued fraction representation for a

rational number is finite, but decimal representation for a rational number

may be infinite. Moreover, every rational number has an unique continued

fraction representation with some restrictions. The successive approximations

generated in finding the continued fraction representation of a number, i.e.,

by truncating the continued fraction representation, are in a certain sense

(described below) the best possible. Therefore, it has occasionally been con-

sidered to be a great tool in mathematics and it has been researched for a

long time in a variety of topics. Here, we rephrase only those related to our

works.

A continued fraction can be obtained through an iterative process of

representing a number as the sum of its integer part and the reciprocal of

remaining part, and then writing the remaining part as the sum of its integer

part and remaining part, and so on. In other words, given a real number X

and ri < 1 for all i, we have

X = x0 +
1

r0
= x0 +

1

x1 +
1
r1

= x0 +
1

x1 +
1

x2+
1
r2

= · · · (2.2.1)

and use X = [x0; x1, x2, . . .] to denote this. Note that x0 can be any integer,

but for i ∈ N, xi must be positive and with this restriction, the continued

fraction of X is unique. We can define further terminologies related to con-

tinued fractions.

Definition 2.2.1 ([48]). For a continued fraction x = [x0; x1, . . .],

• xi is called a partial quotient of x for all i.

• A continued fraction x is finite if the number of partial quotients of

some x is finite.

Keeping this definition in mind, the following theorem states that the

correspondence between rational numbers and a finite continued fraction

10

CHAPTER 2. PRELIMINARIES

[a0; a1, . . . , an] with an integer a0 and positive integer ai for i > 0 and an > 1

is one-to-one. We consider the situation that an integer is divided by another

integer, so only rational numbers are considered in this paper. 1

Theorem 2.2.2 ([48]). Any rational number can be represented as a finite

continued fraction and the continued fraction representation is unique when

the last partial quotient is larger than 1.

Theorem 2.2.3 ([48]). Let α = [a0; a1, a2, · · ·] and pi/qi = [a0; a1, · · · , ai].

For any rational number a
b
with a ∈ Z and b ∈ N, and 1 ≤ b ≤ qi,
∣∣∣∣
pi
qi
− α

∣∣∣∣ ≤
∣∣∣
a

b
− α

∣∣∣ ,

with equality if and only if a
b
= pi

qi
.

Theorem 2.2.3 indicates that pi/qi is the best possible approximation to

α among all rational numbers with the same or smaller denominator. In

other words, a continued fraction is the best approximation tool of rational

numbers.

Size of Partial Quotients. There are some useful theorems for the par-

tial quotients. Each partial quotients are closely related to each other and

thus a partial quotient can be represented as the previous partial quotients.

Moreover, when a rational number is represented as a continued fraction, its

denominator and numerator can also be written as a multivariate polynomial

in terms of the partial quotients, respectively. It means that the size of each

partial quotient is much smaller than the denominator and the numerator.

Before confirming this statement, we give a definition for the partial quotients

and then using this definition, we give some theorems.

Definition 2.2.4 (Convergent). Let X = [a0; a1, . . . , an−1], where X ∈ Q

and ai ∈ Z. The convergents of X are defined as

C0 := [a0], C1 := [a0; a1], . . . , Ci := [a0; a1, . . . , ai]

1Of course, since real numbers can be approximate to rational numbers, our techniques

also can be applied to real numbers.

11

CHAPTER 2. PRELIMINARIES

and Ci represents rational numbers, denoted by Ci = pi/qi where pi/qi is in

reduced form.

Since any real number can be approximated to the rational number and

any rational number can be represented as a finite continued fraction by

Theorem 2.2.2, we only consider the finite continued fraction. But, this no-

tation can be also applied to an infinite continued fraction and trivially,

X = limi→∞Ci, where X ∈ R. In this paper, we only consider a finite

continued fraction, not an infinite continued fraction. Using the property of

convergence, we claim that the size of partial quotients is much smaller than

denominator and nominator in terms of bit size.

Theorem 2.2.5. Let X = [x0; x1, . . . , xn−1] be a continued fraction of p/q,

where X ∈ Q and ai, p, q ∈ Z. Then,

log x0 + log x1 + . . .+ log xn−1 < logp

log x0 + log x1 + . . .+ log xn−1 < logq

Proof. Let X = [x0; x1, . . . , xn−1], where X ∈ Q and xi ∈ Z and its conver-

gents Ci = [x0; x1, . . . , xi] = pi/qi. By the mathematical induction, we can

easily derive that the number pi and qi are given by the recurrence

pi = xipi−1 + pi−2 (2.2.2)

qi = xiqi−1 + qi−2 (2.2.3)

with initial condition p0 = x0, p−1 = 1, q0 = 1, q−1 = 0. Eq.(2.2.2) and

12

CHAPTER 2. PRELIMINARIES

Eq.(2.2.3) can be written as a matrix representation as follows.



pi pi−1

qi qi−1


 =



pi−1 pi−2

qi−1 qi−2





ai 1

1 0




=



pi−2 pi−3

qi−2 qi−3






xi−1 1

1 0






xi 1

1 0




= · · ·

=



x0 1

1 0





x1 1

1 0


 · · ·



xi 1

1 0




Therefore, for all i, pi and qi contain x0x1 . . . xi and there is no negative term,

which implies that

pi > x0x1 . . . xi

qi > x0x1 . . . xi

Taking a logarithm with base 2 for both inequalities and one can obtain we

desired.

Compared to Euclidean Algorithm. Euclidean algorithm is an very ef-

ficient algorithm which enables to compute greatest common divisors of two

integers. The fundamental of euclidean algorithm is that the greatest common

divisor of numbers does not change even if the larger number is subtracted

from the other number. Since the subtraction reduce the large number, re-

peating this step outputs successively smaller pairs of numbers and finally

two numbers become equal. The number is the greatest common divisor of the

original two integers. Since a remainder for two integers can be obtained by

successively subtracting the smaller number to the larger number, comput-

ing a remainder is reduced the iteration number in the euclidean algorithm

instead of a subtraction. In this sense, both euclidean algorithm and contin-

ued fraction require a step to compute a quotient and a remainder for two

13

CHAPTER 2. PRELIMINARIES

integers and actually, these algorithms are based on the same primitive. For

two integer p and q, let ri be a remainder and qi a quotient for all i in the

euclidean algorithm. Let r′i be a remainder in continued fraction for all i.

Note that a partial quotient is the same as qi, so we also use qi for the partial

quotient.

Euclidean Algorithm Continued Fraction Relation

p = q · q0 + r0
p
q
= q0 + r′0 r0 = r′0 · q

q = r0 · q1 + r1
1
r′0

= q1 + r′1 r1 = r′1 · r0

r0 = r1 · q2 + r2
1
r′1

= q2 + r′2 r2 = r′2 · r1

r1 = r2 · q3 + r3
1
r′2

= q3 + r′3 r3 = r′3 · r2

...
...

...

where 0 ≤ ri < ri−1 and 0 ≤ r′i < 1. Likewise, every partial quotient is the

same as a quotient in the euclidean algorithm and every remainder for con-

tinued fraction can be expressed by a remainder of the euclidean algorithm,

both algorithms are primitively the same.

2.3 Homomorphic Encryption

An FHE scheme, denoted by FHE = (KeyGen, Enc, Dec, Ev), is a quadruple of

probabilistic polynomial-time algorithms, as follows.

Key generation. The algorithm takes the security parameter λ and outputs

a public encryption key pk, a public evaluation key ek and a secret de-

cryption key sk. We write the algorithm as (pk, ek, sk) ← KeyGen(1λ)

and assume that the public key specifies the plaintext space P and the

ciphertext space C.

14

CHAPTER 2. PRELIMINARIES

Encryption. The algorithm x̄ ← Encpk(x) takes the public key pk and a

message x ∈ P and outputs a ciphertext x̄ ∈ C.

Decryption. The algorithm x∗ ← Decsk(x̄) takes the secret key sk and a

ciphertext c and outputs a message x∗ ∈ P.

Homomorphic evaluation. The algorithm takes the evaluation key ek, a func-

tion f : ({0, 1}∗)n → {0, 1}∗, and a set of n ciphertexts ᾱ1, . . . , ᾱn and

outputs a ciphertext ᾱf , denoted by ᾱf ← Evek(f, ᾱ1, . . . , ᾱn).

In 2009, since Gentry’s first secure FHE scheme from ideal lattices [42],

various studies [29,37,77] have been presented on constructing efficient FHE

schemes. However they have fairly poor performance. As a solution of ef-

ficient FHE, Brakerski and Vaikuntanathan [14] introduced the concept of

leveled FHE schemes which allows the evaluation of functions of at most a

pre-determined multiplicative depth, instead of arbitrary functions. Shortly

after, Brakerski, Gentry, and Vaikuntanathan [12] proposed a leveled FHE

scheme over polynomial rings, which has significantly improved performance

over the previous schemes. Therefore, there are several good candidates for

instantiating FHE; examples include Brakerski et al.’s scheme [12] and Bos

et al.’s scheme [11].

An FHE scheme is said to be semantically secure if it achieves indis-

tinguishability against chosen plaintext adversaries. We use a widely known

formulation of semantic security [44], defined as follows.

Definition 2.3.1 (Semantic Security). An FHE scheme is semantically se-

cure if for any polynomial-time adversary A, it holds that

|Pr[A(pk, Enc(pk,m0)) = 1]− Pr[A(pk, Enc(pk,m1)) = 1]|

is negligible in security parameter λ where (pk, ek, sk) ← KeyGen(1λ) and

m0, m1 ∈ P are chosen by the adversary A.

15

CHAPTER 2. PRELIMINARIES

2.4 Homomorphic Comparisons over the In-

tegers

In the paper [25,26], the authors provide an equality circuit and a comparison

circuit for fully homomorphic encryption using boolean circuits with data

represented by bits.

2.4.1 Equality Circuit over the Integers

The equality circuit for two integers x and y outputs an encryption of 1 if

two integers are the same, and otherwise, outputs an encryption of 0. To

compare two integers, every bit of the same position should be the same and

adding two bits and plus 1 enables to check the coincidence two bits because

for a, b ∈ {0, 1}, a + b + 1 outputs 1 in Z2 if a = b, otherwise, outputs 0 in

Z2.

xi yi xi = yi xi + yi + 1

0 0 1 1

0 1 0 0

1 0 0 0

1 1 1 1

Hence, using this equation, the authors in [25,26] can formalize the equal-

ity test EQZ over the integers as follows; for x̄ = x̄ℓ−1 · · · x̄0 and ȳ = ȳℓ−1 · · · ȳ0

where x̄i, ȳi ∈ Z2,

EQZ(x̄, ȳ) =
ℓ−1∏

i=0

(1 + x̄i + ȳi) =




1̄ if x = y

0̄ if x 6= y

16

CHAPTER 2. PRELIMINARIES

2.4.2 Greater-Than and Less-Than Circuits over the

Integers

There are two types for the comparison circuits; one is Less-Than circuit and

the other is Greater-Than circuit. Less-Than circuit compares two integers

and outputs an encryption of 1 if x is less than y and outputs an encryption

of 0 if x is greater than y and similarly, Greater-Than circuit compares two

integers and outputs an encryption of 0 if x is greater than y and outputs

an encryption of 1 if x is less than y. Actually, the principle of these two

circuits is the same and then Greater-Than circuit can be easily obtained

from Less-Than circuit by adding 1 to the output, and vice versa. If a integer

x = xn−1 · · ·x0 is less-than (or greater-than) other integer y = yn−1 · · · y0,

there exists 0 ≤ i < n such that xi < yi (or xi > yi) and xj = yj for all i < j.

In similar as the equality circuit, yi(xi + 1) (or xi(yi + 1)) outputs 1 ∈ Z2 if

xi = 0 < yi = 1 (or yi = 0 < xi = 1) and outputs 0.

x y x > y x(y + 1) x < y (x+ 1)y

0 0 0 0 0 0

0 1 0 0 1 1

1 0 1 1 0 0

1 1 0 0 0 0

Hence, using this relation, the authors can also formalize less-than cir-

cuit LTZ (or greater-than circuit GTZ) over the integers combining the above

equality circuit.

LTZ(x̄, ȳ) = ȳℓ−1(x̄ℓ−1 + 1) +

ℓ−2∑

i=0

(
ȳi(x̄i + 1) ·

ℓ−1∏

j>i

(x̄i + ȳi + 1)
)
=





1̄ if x < y

0̄ if x ≥ y

GTZ(x̄, ȳ) = x̄ℓ−1(ȳℓ−1 + 1) +

ℓ−2∑

i=0

(
x̄i(ȳi + 1) ·

ℓ−1∏

j>i

(x̄i + ȳi + 1)
)
=




1̄ if x > y

0̄ if x ≤ y

17

CHAPTER 2. PRELIMINARIES

2.5 Fuzzy Extractor

Fuzzy extractors consist of two algorithms: one is generating a random num-

ber (Gen) and the other is reproducing a random number (Rep). Gen takes

an input w such as biometric data and outputs a random number R and a

helper value P ∈ {0, 1}∗. Rep takes an input w′ which may be different from

w and P and it outputs the same random R whenever w′ is close to w. For

more detail, we give a formal definition of fuzzy extractors and its security.

Definition 2.5.1 (Fuzzy Extractors [35]). An (M, m, ℓ, t, ǫ)-fuzzy extractor

is a pair of randomized procedures Gen and Rep with the following properties:

1. The generation procedure Gen on input w ∈ M outputs an extracted

string R ∈ {0, 1}ℓ and a helper string P ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element w′ ∈M and a helper

string P ∈ {0, 1}∗ as inputs. The correctness property of fuzzy extrac-

tors guarantees that Rep(w′, P) = R whenever HD(w,w′) ≤ t and

(R,P)← Gen(w).

3. The security property guarantees that for any distribution W on M,

the string R is nearly uniform even for those who observe P : if (R,P)←

Gen(W), then SD((R,P), (Uℓ, P)) ≤ ǫ where Uℓ is a random ℓ-bit string.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial time.

Digital Lockers. A concept of a digital locker is first proposed by Canetti

and Dakdouk [19]. Conceptually, digital locker is almost same as symmetric

encryption, however, the digital locker can maintain a security even when

a key with low-entropy is used multiple times. Like other cryptosystems,

obtaining any information of plaintext from the ciphertext is as hard as

guessing the secret key.

A digital locker is a pair of randomized procedures lock and unlock:

lock plays an encryption role and unlock a decryption role. lock performs

locking a message m using a secret key k and outputs a ciphertext c and

18

CHAPTER 2. PRELIMINARIES

unlock executes the unlocking using the secret key. Digital lockers have an

additional feature in unlock. If unlock receives a correct secret key, it outputs

a message, however, when it receives a wrong secret key, it outputs empty set

⊥ with high probability. In this reason, anyone can recognize that the current

key is the wrong. We use notation c = lock(k,m) andm = unlock(k, c) when

k is the correct key.

The security of digital lockers is

Definition 2.5.2 (Composable Secure Digital Locker [20]). The pair of al-

gorithm (lock, unlock) with security parameter λ is an ℓ-composable sucure

digital locker with error γ if the following hold:

Correctness. For all k and m, Pr[unlock(k, lock(k,m)) = m] ≥ 1−γ. More-

over, for any k′ 6= k, Pr[unlock(k′, lock(k,m)) =⊥] ≥ 1− γ.

Security. For every PPT adversary A and every positive polynomial p, there

exists a simulator S and a polynomial q(λ) such that for any sufficiently

large s, any polynomially long sequence of values (mi, ki) for i = 1, . . . , ℓ

and any auxiliary input z ∈ {0, 1}∗,

2.5.1 Reusable Fuzzy Extractor

In the recent Eurocrypt, Canetti et al. construct reusable fuzzy extractors

that is a fuzzy extractor with reusability property. It supports a couple of

times enrollment phases with the same input value, so one can register many

unrelated service providers. Specifically, the algorithm Gen can execute mul-

tiple times on correlated w1, . . . , wρ of a given input. For each input, Gen pro-

duce independent pairs of values (r1, p1), . . . , (rρ, pρ). The security of reusable

fuzzy extractors is that an adversary

Main idea of Canetti et al. scheme [20] is that a random r is locked

multiple times by some random subsets v1, . . . , vℓ of an input and thus

each locked value can be unlocked only with v1, . . . , vℓ, respectively. When

one wants to regenerate the same r with one’s input, one should make subsets

19

CHAPTER 2. PRELIMINARIES

v′1, . . . , v
′
ℓ by the same process constructing vi’s and then try to unlock with

these subsets. If one could succeed in making the same subset as vi, one can

obtain the wanted r. Since the composable digital lockers enables to sample

multiple times, they can be used to construct reusable fuzzy extractors.

Concrete Construction. Let M = {0, 1}n be a input space and W =

w1 . . . wn ∈ M, where wi ∈ {0, 1}. Let ℓ be Let lock, unlock be an ℓ-

composable secure digital locker with error γ.

Gen

Input: W = w1 . . . wn

1. Sample r
$
←− {0, 1}κ

2. for i = 1, . . . , ℓ

(i) choose uniformly ji,m
$
←− {1, . . . , n} for each

1 ≤ m ≤ k

(ii) vi ← wji,1 . . . wji,k

(iii) ci ← lock(vi, r)

(iv) pi ← ci, (ji,1, . . . , ji,k)

3. return (r, p) where p = p1 . . . pℓ

Algorithm 2.1: Gen of Canetti’s Reusable Fuzzy Extractors

Each subset is made by randomly chosen k positions of the input and thus

position information is required when recovring r. In this sense, p indicates

that each subset is come from and it would be a helper value.

20

CHAPTER 2. PRELIMINARIES

Rep

Input: W ′ = w′
1 . . . w

′
n, p = p1 . . . pℓ

1. for i = 1 to ℓ

(i) Parse pi as ci, (ji,1, . . . , ji,k)

(ii) v′i ← w′
ji,1

. . . w′
ji,k

(iii) ri ← unlock(v′i, c)

(iv) if ri 6=⊥

(v) return ri.

Algorithm 2.2: Rep of Canetti’s Reusable Fuzzy Extractors

Parameters Setting. To consider the FRR(false reject ratio), it needs to

satisfy the following inequality:

(
1−

(
1−

t

n

)k
)ℓ

+ ℓ · γ ≤ δ

Using the approximation ex ≈ 1+x, they suggested a parameter setting such

that ℓ · γ ≤ δ/2, tk = cn logn and ℓ ≈ nc log 2
δ
for some constant c.

21

Chapter 3

Algorithms for Homomorphic

Integer Division

3.1 Overview and Related Works

Homomorphic encryption enables to handle ciphertexts. It can add, subtract

and multiply two ciphertext without decryption, however, it does not support

dividing two ciphertexts. In order to solve this problem, there are technical

challenges.

Until now, the most existing homomorphic encryption scheme only sup-

ports an integer plaintext, but a set of integers is not closed under the divi-

sion, so the output cannot be put in the message of homomorphic encryption.

Thus, in order to divide two ciphertexts, someone should construct a new ho-

momorphic encryption scheme which supports an arithmetic of real numbers

or otherwise, a real number (or, a rational number) should be represented

to an integer (or a set of integers). In this sense, we employ continued frac-

tion which has interesting properties. For example, every real number has a

essentially unique continued fraction representation and most of all, simple

rational numbers have representations with few terms and small integers.

Hence, continued fraction could be a good candidate for representing real

numbers.

22

CHAPTER 3. ALGORITHMS FOR HOMOMORPHIC INTEGER DIVISION

A division algorithm should be replaced by alternative algorithm which

only uses a couple of additions and multiplications. And we suggest an al-

ternative algorithm as restoring division algorithm which outputs a quotient

and a remainder from a divisor and a dividend. Generally, it can be replaced

by subtracting divisor repeatedly from the dividend, however, this algorithm

is terminated when the output is less than the dividend. Even though one can

utilize the comparison circuit [25,26] on the ciphertexts domain, one cannot

check whether the output satisfies the terminated condition since the output

is also encrypted. On the other hand, restoring division algorithm is also an

iterative algorithm, but the number of iterations depends on the input size

and it can be easily known. When a plaintext space is Z2, then it is the same

as the number of ciphertexts. Furthermore, this algorithm also has a step to

check whether negative or positive, but it can be easily known from the most

significant bit.

Continued fraction and euclidean algorithm are based on the same princi-

ple. Thus, a partial quotient can be obtained through euclidean algorithm and

each iteration of euclidean algorithm also outputs a quotient and a remain-

der, which can be executed by restoring division algorithm. The remaining

problem is the number of partial quotients. But, each iteration of euclidean

algorithm outputs a partial quotient and thus the number of partial quotients

is the same as the number of iterations of euclidean algorithm which depends

on the input size and it is easily known. In addition, we can also evaluate a

polynomial whose coefficients are in the rational numbers since our technique

can represent an encrypted rational number.

Related Works. As related works, I first investigate Graepel et al.’s re-

sult [46] and Bos et al.’s work [10]. In both works, the authors first fix a de-

sired precision, multiply through by a fixed denominator, and round to the

nearest integer because any real number can be approximated by rational

numbers to arbitrary numbers and subsequently encoded to ring elements.

However, this approach to represent real numbers has some drawbacks. When

two encoded rational numbers are multiplied, it should be performed with-

23

CHAPTER 3. ALGORITHMS FOR HOMOMORPHIC INTEGER DIVISION

out any modular reduction and thus the plaintext space of FHE must be

sufficiently large. And these encoding techniques always keep track of the

precision in order to reconstruct a real number, but we do not need it be-

cause continued fraction is regardless of the precision.

The most closely related work to the present one is Jäschke et al.’s scheme

and Costache et al.’s scheme [31]. In [52], Jäschke and Armknecht dealt with

a particular encoding for rational numbers in the FHE context. However,

due to their specialty of encoding, Boolean comparison on encrypted data

of n-bit length should be inefficiently implemented since O(n) multiplication

depth is needed rather than O(logn). More recently, the work of [31] inves-

tigated fixed-point arithmetic in ring-based somewhat homomorphic encryp-

tion (SHE). However, this approach does not allow to compute a reciprocal

of encrypted data and support integer division.

3.2 Restoring Division Algorithm

As you can see in Eq (2.2.1), the main obstacle representing continued frac-

tion when the inputs are encrypted is computing partial quotients xi for all

i To formalize this problem, suppose there are two encrypted integers using

homomorphic encryption, called N̄ and D̄ and compute N̄/D̄ in a continued

fraction form. Since computing a partial quotient is equivalent to computing

a quotient, our goal is computing a quotient when given two encrypted in-

tegers. Typically, the simplest way to computing a quotient is by repeated

subtraction as shown in Algorithm 3.1.

24

CHAPTER 3. ALGORITHMS FOR HOMOMORPHIC INTEGER DIVISION

Division Algorithm

Input: numerator n and denominator d

Output: quotient q and remainder r

1. r ← n and q ← 0

2. while r ≥ d

(i) r ← r − d

(ii) q ← q + 1

3. return q and r

Algorithm 3.1: Division Algorithm

Algorithm 3.1 could be executed even if n and d are encrypted because

every step except line 2 consists of an addition, however, the problem is

the termination condition of this algorithm requires while(r ≥ d). Even

though we can compare two ciphertexts through a comparison circuit [25],

the output of this circuit is still encrypted and thus we cannot know the

output of the termination condition. For this reason, we choose the restoring

division algorithm and in this algorithm, comparing two integers is replaced

by determining a sign of some integer. 1 Restoring division algorithm is based

on a standard recurrence equation.

pi+1 = b× pi − qn−(j+1) × d

where pi is i-th the partial remainder of the division, b is the base (radix),

n is the number of digits in the quotient, qi is the i-th digits of the quotient

and d is the divisor. In this paper, we restrict the message space of FHE

is Z2 because it occurs the most efficient performance and it implies the

radix b = 2. At first, we give the restoring division algorithm on plaintext

domain and then we translate it to the ciphertext domain. Restoring division

algorithm on plaintext domain can be seen in Algorithm 3.2.

1There are also non-restoring division algorithm, however, it requires more computa-

tional complexity than the restoring division algorithm.

25

CHAPTER 3. ALGORITHMS FOR HOMOMORPHIC INTEGER DIVISION

Restoring Division on Plaintext

Input: numerator n and divisor d

Output: quotient q and remainder r

1. r ← n and k ← logn

2. d← d << k

3. for i = k − 1 to 0

(i) r ← 2r − d

(ii) if r < 0

(iii) then qi = 0

(iv) r ← r + d

(v) else qi = 1

4. return q and r

Algorithm 3.2: Restoring Division Algorithm on Plaintext Domain

Since if -else statements can be replaced by using a couple of multiplica-

tions and Algorithm 3.2 always terminate after n iterations, we can handle

it even if every input is encrypted. For the simplicity, let r = rℓ−1 . . . r0 and

q = qℓ−1 . . . q0 be the binary representation. Note that ℓ is the same as the

number of ciphertexts for n when we use a plaintext space Z2 and a quo-

tient and a remainder should not exceed the numerator n, so allocating ℓ

bits is enough for q and r. Since we set a plaintext space Z2, two additional

circuits FullAdder and BinarySubtract are required in order to calculate

bit addition and bit subtraction, respectively. We do not give a detail about

FullAdder and BinarySubtract in this section and see the appendix for

more details.

To determine the sign of r, we only look into the most significant bit

(MSB) of r. If MSB of r is 1, then, R should be negative and otherwise, R is

positive. Thus, we can now handle if -else statements totally even if inputs

are encrypted and restoring division algorithm on ciphertext domain can be

seen in Algorithm 3.3.

26

CHAPTER 3. ALGORITHMS FOR HOMOMORPHIC INTEGER DIVISION

Restoring Division on Ciphertext

Input: encrypted numerator n̄ and encrypted denominator d̄

Output: encrypted quotient q̄ and encrypted remainder r̄

1. r̄ ← n̄ and k ← number of ciphertexts for n̄

2. for i = k − 1 to 0

(i) r̄ ← 2r̄ − d̄

(ii) q̄i ← 1− r̄n−1

(iii) r̄ ← r̄n−1 · (r̄ + d̄) + (1− r̄n−1) · r̄

3. return q̄ and r̄

Table 3.3: Restoring Division Algorithm on Ciphertext Domain

3.3 Homomorphic Integer Division

There are a couple of methods to represent the rational numbers such as dec-

imal representation, polynomial embedding [10] or continued fraction. Each

encoding techniques have their own strong aspect compared to other encod-

ing techniques. For example, when the natural decimal representation is used,

anyone can easily compare two rational numbers and when the technique for

polynomial embedding is used, the basic arithmetics except the division can

be executed easily because these are exactly the same as the arithmetics on

the polynomials. However, these encoding techniques require large plaintext

space to present the real numbers and the division is not supported with

these encoding techniques.

To encrypt the rational numbers through homomorphic encryption, the

rational number should be represented into (a set of) integers because ho-

momorphic encryption only supports an integer message space. But, since a

message space is directly related to the performance matter, the choice of

message space is the most crucial part in terms of efficiency. In this sense,

continued fraction encoding is the best choice when applying homomorphic

encryption because it can be represented to a set of relatively small integers.

27

CHAPTER 3. ALGORITHMS FOR HOMOMORPHIC INTEGER DIVISION

3.3.1 Algorithm

Now, we can present a concrete algorithm for dividing two encrypted integers

using Algorithm 3.3. Suppose there are two encrypted integers N̄ and D̄.

Since a partial quotient is the same as a quotient, we can get one partial

quotient after executing Algorithm 3.3. It means we execute the restoring

division algorithm several times, we can get all partial quotients of N̄/D̄.

The only remaining problem is how many repeating restoring division al-

gorithms are required to represent all partial quotients. Fortunately, we can

solve this problem by combining euclidean algorithm. Euclidean algorithm

is an very efficient algorithm which enables to compute greatest common

divisors of two integers. Since every quotient is actually one of the partial

quotients in continued fractions, euclidean algorithm is very close to contin-

ued fractions and thus the number of partial quotients is the same as the

number of repeating euclidean algorithm and it totally depends on the input

bit size. Euclidean algorithm can compute greatest common divisor of nu-

merator and denominator with number of iterations 2 log d, where d is the bit

size of denominator. Therefore, we can also obtain all partial quotients after

executing restoring division algorithm 2 log d times. A concrete construction

for dividing two encrypted integers can be seen in Algorithm 3.4.

Homomorphic Integer Division

Input: Encrypted Numerator N̄ and Encrypted Denominator D̄

Output: Encrypted Continued Fraction [q̄0; q̄1, . . . , q̄2d−1] = N̄/D̄

1. d← number of ciphertexts for D̄

2. for i = 0 to 2d− 1

(i) (q̄i, r̄i)← RestoringDivision(r̄i−2, r̄i−1)

3. return [q̄0; q̄1, . . . , q̄2d−1]

Algorithm 3.4: Division Algorithm

28

CHAPTER 3. ALGORITHMS FOR HOMOMORPHIC INTEGER DIVISION

3.3.2 Efficiency

We describe how to divide two encrypted integers and represent through

continued fractions in Section 3.3.1. There are many types of necessary op-

erations in order to execute our suggestion such as homomorphic additions

HA and homomorphic multiplications HM. In this section, we analyze the

efficiency of the proposed algorithms. Since FullAdder and BinarySubtract

also can be represented by using HA and HM, we can evaluate every step

of our proposal in terms of the number of HA and HM. In Algorithm 3.4,

every step but line 4 is just allocated to the variables and so there is no

cost. Therefore, the computational complexity of Algorithm 3.4 is the same

as multiple times of the computational complexity of Algorithm 3.3.

Restoring Division Algorithm. At first, we investigate a computational

complexity of Algorithm 3.3 in terms of HA and HM. Since BinarySubtract

is required to execute Algorithm 3.3, we need to set the plaintext space

Z2. It means every bit of a message is encrypted respectively and cipher-

texts are generated as many as the bit-size of the message. For this rea-

son, line 3 does not require automomorphism to shift bit left and just re-

allocates the memory. Line 4 requires BinarySubtract which will be covered

in the below paragraph and line 5 needs a homomorphic subtraction, not

BinarySubtract. In line 5, it seems FullAdder is necessary, however, actu-

ally this FullAdder is just restoring R before executing BinarySubtract.

For this reason, rn−1 · FullAdder(R̄, D̄) requires just one homomorphic mul-

tiplication and line 6 requires only two homomorphic multiplications and one

homomorphic subtraction. In total, in order to execute the restoring division

algorithm, it costs just two HA, two HM and one BinarySubtract. Note that

the homomorphic subtraction is the same as the homomorphic addition.

Bit Subtraction and Full Adder. Now, we give a computational com-

plexity of BinarySubtract and FullAdder. Even though FullAdder is not

necessary in line 5 of Algorithm 3.3, FullAdder is still necessary because of

BinarySubtract. Since we need to evaluate a complexity of BinarySubtract(R̄, D̄),

we may assume the input of BinarySubtract is n bits. The first step of

29

CHAPTER 3. ALGORITHMS FOR HOMOMORPHIC INTEGER DIVISION

BinarySubtract is making 2’s complement R̄ and it requires n HA and one

FullAdder. And the next step is adding D̄ through FullAdder, so it also

cost one FullAdder. Note that FullAdder for two n bits costs 2n − 1 HA

and n− 1 HM due to carry. Therefore, in order to execute BinarySubtract

for two inputs of size n bits, it costs 5n− 2 HA and 2(n− 1) HM.

Homomorphic Division Algorithm. By the previous paragraph, we can

know that restoring division algorithm for two integers of size n bits requires

(3n + 2) HA and 2n HM. According to Algorithm 3.4, the number of 2n

iterations are required and each iteration consists of the restoring division

algorithm. Hence, we can conclude that Algorithm 3.4 requires 2n(3n + 2)

HA and 4n2 HM, where n is the input size.

HA # HM

FullAdder 2n− 1 n− 1

BinarySubtract 5n− 2 2n− 2

Restoring Division Algorithm 5n 2n

Homomorphic Division Algorithm 10n2 4n2

Table 3.5: Necessary number of arithmetics for each algorithm

3.4 Homomorphic Arithmetics over the Poly-

nomials

The cloud computing enables to evaluate polynomial and provide useful ser-

vice to a user. For example, a Cox model is a statistical technique for explor-

ing the relationship between the survival of a patient and several explanatory

variables, and it provides an estimate of the effect of treatment on survival

after adjusting for other explanatory variables. In addition, this technique al-

lows us to estimate the hazard (or risk) of death for an individual given their

prognostic variables. To protect the sensitive medical data, the data should

30

CHAPTER 3. ALGORITHMS FOR HOMOMORPHIC INTEGER DIVISION

be encrypted, however, these data are not form of integers but homomorphic

encryption supports only integer message space.

In the previous section, we have described an algorithm for homomor-

phic integer division in Algorithm 3.4. Actually, this algorithm is the same

as transforming encrypted rational numbers to encrypted continued fraction

and then we can also handle encrypted rational numbers as well as encrypted

integers. In this section, we present the method for evaluating polynomials

homomorphically being encrypted. Since the evaluation of any polynomial

over Q is also in Q, the polynomial over the rational numbers can be com-

puted using the above technique. Moreover, any arithmetic of two polynomi-

als over Q is also a polynomial over Q and thus we can also evaluate it being

encrypted.

3.4.1 Description

Suppose there are two polynomials whose coefficients are in the rational

numbers, say a(x) =
∑n−1

i=0 aix
i ∈ Q[x] and b(x) =

∑n−1
i=0 bix

i ∈ Q[x]. Then,

a(x)±b(x) =
∑n−1

i=0 (ai±bi)x
i and since the rational numbers are closed under

the addition and subtractions, a(x)± b(x) ∈ Q[x]. No matter whether x = p

is in the integers or the rational numbers, a(p) ± b(p) are in the rational

numbers with high probability. Similarly, a(x) · b(x) is also a polynomial

of degree 2n − 2 whose coefficients are in the rational numbers. It implies

that we can evaluate an addition, a subtraction and a multiplication of two

polynomials over Q being encrypted and using Algorithm 3.4, we can express

the encrypted rational numbers to the encrypted continued fraction.

Consider dividing two polynomials in Q[x]. Even though the rational

numbers are closed under the divison, a(x)/b(x) is not a polynomial over Q.

However, when we evaluate a(x)/b(x) at x = p ∈ Q, a(p)/b(p) becomes the

rational numbers and then we can also utilize Algorithm 3.4. Therefore, we

can conclude that we can evaluate every arithmetics for polynomials over Q

using the above techniques.

31

Chapter 4

Algorithms for Homomorphic

Comparisons over the Real

Numbers

4.1 Overview and Related Works

Cloud computing enables general users to outsource their complex data ma-

nipulation systems to the commercial public cloud while enjoying high avail-

ability and economic savings. For ensuring data privacy, sensitive data should

be encrypted before outsourcing to a remote server. Thus, enabling the cloud

server to manipulate all types of data without decryption is of paramount

importance. However, the great majority of existing solutions for secure data

manipulation focus on computations on the integers; thus there are unavoid-

ably restrictions to integer arithmetic or comparison.

In this work, we provide an efficient solution for private comparison

between non-integer data types. Different from existing secure comparison

protocols with real numbers that have been studied in the realm of multi-

party computation, our work allows the cloud server to compare encrypted

real numbers without any interaction with users. For the purpose of non-

interactiveness, we base our comparison protocol on fully homomorphic en-

32

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

cryption (FHE); moreover, by encoding real numbers with continued frac-

tion, we relieve the computational overhead caused by FHE. Such a non-

interactive approach as ours fits well into the cloud environment. Further-

more, we present interesting applications built on top of our comparison

solution: private sorting and private database query. Our micro-benchmark

results demonstrate that our solution is a viable approach for cloud comput-

ing.

In this chapter, we make the following specific contributions. At first,

we design efficient homomorphic comparison algorithms, called equality, less-

than, greater-than, for the real numbers in a homomorphic encryption frame-

work. Our suggested algorithms are based on the comparison circuits over

the integers since a real number is represented by a set of integers. In this

thesis, we only consider a plaintext space is Z2, however, it can be changed

depending on the situations and our circuits support an arbitrary plaintext

space. If two continued fractions are the same, then every partial quotients

of the same position should be the same. If two continued fractions are dif-

ferent, then a partial quotient of some position should be different and since

this partial quotient dominates all right-side partial quotients, the compar-

ison result depends on that partial quotient. With these properties, we can

translate it to the ciphertexts domain and present concrete algorithms on

the ciphertext domain. After then, we evaluate the developed techniques to

demonstrate our techniques are feasible and are capable of efficient homomor-

phic comparisons over FHE-encrypted real numbers. Even though we have

to execute comparison circuits for all partial quotients, each partial quotient

is independent and thus it can be performed at the same time. On the other

hands, in order to obtain a result, we have to some more multiplications be-

tween the result for each partial quotients, but due to small plaintext space,

these operations are also on the small ciphertext domain compared to the

other encoding techniques.

At last, We list specific applications on top of our FHE-based algorithms

whose expected services rely on computations over the real numbers in a

33

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

privacy-preserving manner. Especially, we have focused on the database ser-

vice such as sorting and private database queries. The most sorting algo-

rithms consist of the comparison and swap algorithm. Moreover, swap algo-

rithm can be easily constructed using the comparison algorithm since the

position of two data is changed (swap) when the order is wrong (compari-

son). Hence, our suggestions could be applied to the almost generic sorting

algorithm. Similarly, private database queries are mainly based on the qual-

ity circuit and the comparison circuits. For example, in the case of retrieval

queries, equality circuit is the main building block and in the case of aggre-

gate queries, equality circuit and comparison circuits are the main building

block. Thus, with our techniques, one can execute such private database

queries being encrypted.

Related Works. As mentioned above, secure comparison is a key primitive

and thus there have been lots of solutions for the secure comparison prob-

lem. However most solutions have focused on integer comparisons regardless

of which areas their underlying tools come from (e.g., MPC or FHE). We

recommend reference [32] as a good survey for these existing techniques.

Catrina and Saxena represent rational numbers as fixed-point representa-

tion [21]. More specifically, they write a rational number q by q = n0.n1 · · ·nℓ

with precision ℓ, compute q′ =
∑ℓ

i=0 niβ
i ∈ Z for a prefixed radix β, and take

q′ as a fixed-point encoding of q by observing that q = q′ · β−ℓ as well as by

publicly opening ℓ. Then the authors provide an interactive comparison pro-

tocol that tests if a secret integer q′ is equal or less than zero [21, §3.2].

This protocol can be easily extended to greater-than comparison between

two secret rational numbers. However this protocol requires O(ℓ) rounds.

Furthermore, the length of the fractional part, ℓ, should be revealed.

Franz et al. in [40] use a logarithmic representation proposed in [55]. For

some b ∈ N, [−b, b] denotes a closed interval {r ∈ R|−b ≤ r ≤ b}. Given

a non-zero real number r ∈ [−b, b] along with a scaling factor ℓ, a base for

logarithm β, and a constant c ≥ b, compute τ =
⌈
−ℓ · logβ

(
|r|
c

)⌋
and take

(s, z, τ) as an encoding of r where s ∈ {0, 1} is the sign of r and z ∈ {0, 1}

34

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

is a flag indicating whether r = 0 or not. One can recover r by setting

r = s ·c ·β−τ/ℓ. The authors note a protocol to compare two real numbers en-

crypted by a special-purpose additive homomorphic encryption by Damg̊ard

et al. [33]. However, because Damg̊ard et al.’s encryption scheme requires

bit decomposition, their protocol consisting of 3 rounds requires to encrypt

encodings of real numbers in a bit-by-bit manner and their underlying en-

cryption scheme strictly limits a general use of encrypted data.

Recently, Liu et al. [58] propose a floating point arithmetic protocol while

representing real number as the IEEE 754 standard format. Given a real

number r, the authors write it by r = (s, z, e, ℓ) where s, z are the same

as above, e is the exponent, and ℓ is the mantissa defined in the IEEE 754

standard [50]. Their basic observations are tow-folds. The first is that every

component in the representation consists of integers, and the second is that

repeatedly applying bit manipulations bit shift and alignment to component-

wise representations of floating point numbers preserves their arithmetics. As

a result, if additive shares of each component are distributed and bit manip-

ulation protocols over the shares are repeatedly invoked, then additive shares

of floating point arithmetics are obtained. However, no floating-point num-

ber comparison protocol is mentioned. Using the same representation and

the same cryptographic tools, Aliasgari et al. provide a series of protocols

for complex floating point arithmetics such as square root, exponentiation,

and logarithm. Thus their protocols do not give a floating point comparison

solution.

More recently, Pullonen and Siim [66] and Dimitrov et al. [34] also study

secure arithmetics over real numbers. Pullonen and Siim improve Aliasgari et

al.’s protocols by fusing garbled circuit with secret sharing schemes. However,

no protocol for comparison is provided. Different from other existing work,

Dimitrov et al. represent real numbers as their golden representation. Pre-

cisely, given a real number r they write it by r = a−ϕ·b where ϕ is the golden

ratio. Then they construct protocols for computing square root, logarithm,

and exponentiation over pairs of secretly shared integers (a, b) representing

35

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

real numbers. Likewise, no explicit protocol for real number comparison is

provided.

A common characteristic of existing solutions in the MPC framework

is that higher-layer protocols built on top of them have logarithmic round

complexity; for example, secure sorting for N secret shared N real numbers

requires O(logN) rounds.

4.2 Comparing Two Continued Fractions

For better understanding, we first design algorithms (precisely, boolean cir-

cuits) for comparing two continued fractions in the clear, and then extend

them such that they do the same on FHE-encrypted CFs. We construct the

algorithms by plugging in the integer comparison algorithms discussed in

Section 2.4.

4.2.1 Our Idea: Comparing Two CFs in the Clear

Given two real numbers represented by the decimal expansion, it is straight-

forward to compare the two numbers. Concretely, it can be done by com-

paring two integers of the same position with a left-to-right direction. When

considering the use of FHE to encrypt numbers in decimal form, one needs to

instantiate an FHE scheme with a relatively large plaintext space (e.g., Z220),

for keeping a reasonable precision as mentioned before. This leads to perfor-

mance degradation, which, in turn, may lead to a lower performance through-

put of upper-layer applications, compared to the same circuits on encryptions

under an FHE scheme of a smaller plaintext space.

As observed in Section 2.2, we introduce continued fraction to fix this

performance problem. A way to compare real numbers in CF are quite similar

to that for numbers in decimal form, but due to the smaller plaintext space,

it is possible to achieve a more efficient comparison circuit between FHE-

encrypted real numbers.

36

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

Containing an equal number of partial quotients. Denoting by n the

number of partial quotients, letX = [x0; x1, . . . , xn−1] and Y = [y0; y1, . . . , yn−1].

For demonstrating our idea, we look into a few cases where their partial quo-

tients at a specific position are different from each other.

Case 1. If x0 ≥ y0, then X ≥ Y .

By the definition of CF (see Eq. (2.2.1)), we see that the partial quotients

x0 and y0 dominate all other partial quotients xi and yi for i > 0. Therefore,

X is greater (resp., less) than Y if x0 is greater (resp., less) than y0.

Case 2. If x0 = y0 and x1 ≥ y1, then X ≤ Y .

Consider the case where x0 = y0. Then, Eq. (2.2.1) can be written as

follows.

1

X − x0
= x1 +

1

x2 +
1

x3+...

and
1

Y − y0
= y1 +

1

y2 +
1

y3+...

,

which can be re-written as 1
X−x0

= [x1; x2, . . . , xn−1] and
1

Y−y0
= [y1; y2, . . . , yn−1].

Therefore, the result of the comparison between 1
X−x0

and 1
Y−y0

completely

depends on x1 and y1. The only difference from Case 1 is that if x1 is

greater (resp., less) than y1, then X is less (resp., greater) than Y because
1

X−x0
> 1

Y−y0
(resp., 1

X−x0
< 1

Y−y0
) where x0 = y0.

Case 3. If x0 = y0, x1 = y1 and x2 ≥ y2, then X ≥ Y .

Consider the case where x0 = y0 and x1 = y1. Then, 1
X−x0

− x1 =

[0; x2, . . . , xn−1] and
1

Y−y0
− y1 = [0; y2, . . . , yn−1]. Since the first two par-

tial quotients are the same, x2 and y2 determine the comparison between
1

X−x0
−x1 and

1
Y−y0

−y1. If x2 is greater (resp., less) than y2,
1

X−x0
−x1 is less

(resp., greater) than 1
Y−y0

− y1, which implies that X is greater (resp., less)

than Y .

Containing an unequal number of partial quotients. LetX = [x0; x1, . . . , xn−1]

and Y = [y0; y1, . . . , ym−1] for distinct positive integers n andm. Without loss

of generality, we assume n ≤ m. For 0 ≤ i ≤ n− 1, it is easy to compare two

CFs by applying the same rule as above. However, it is not clear to compare

37

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

two CFs because it may happen that xi = yi for all i ∈ {0, 1, . . . , n− 1}, but

these is no partial quotient of X corresponding to yi for some i ≥ n. To fix

this problem, we get two real numbers in CF to have the same number of

partial quotients, using the following simple trick.

A key observation behind our idea is that since 0 = 1
∞
, adding ∞ to the

end of partial quotients at the X side causes no side effects. Namely, since

1

xn−1
=

1

xn−1 +
1
∞

,

we have that X = [x0; x1, . . . , xn−1] = [x0; x1, . . . , xn−1,∞]

= [x0; x1, . . . , xn−1,
m−n︷ ︸︸ ︷

∞,∞, . . . ,∞]. In conclusion, we can always write two

real numbers as two continued fractions with the same number of partial

quotients. Thus, the idea as sketched above still makes sense in comparing

two real numbers in CF that have a different number of partial quotients.

Our argument can be formally stated by the following theorem. The proof

of the theorem is clear by mathematical induction on k.

Theorem 4.2.1. Let X = [x0; x1, . . . , xn−1] and Y = [y0; y1, . . . , ym−1] and

n ≤ m. Let k be the smallest index for which xk 6= yk. Then,

X < Y if (−1)k(xk − yk) < 0

and X > Y otherwise. If there is no such k which implies xi = yi for all

i < n and n < m, then X < Y if n is odd and X > Y if n is even. If there

is no such k and n = m, then clearly X = Y .

In addition, Alg. 4.1 provides a concrete algorithm to compare two con-

tinued fractions in the clear.

4.3 Equality Circuit

In this section, we translate the equality condition to the ciphertext domain.

Note that if two continued fraction are the same, then every partial quotient

for the same position should be the same.

38

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

4.3.1 Construction

Equality circuit, denoted by EQR, which takes as input two encrypted CFs

can be defined as follows.

EQR(X̄, Ȳ) :=
∏n−1

i=0 EQZ(x̄i, ȳi).

Let X̄ = [x̄0; x̄1, . . . , x̄n−1] and Ȳ = [ȳ0; ȳ1, . . . , ȳm−1] be two encrypted

CFs. Only if n = m and xi = yi for all 0 ≤ i ≤ n−1, equality of two CFs holds

true. The first condition is easily checked by the number of their ciphertexts,

and the second condition is examined by comparing two encrypted partial

quotients at the same position, i.e., by performing EQZ(x̄i, ȳi). If two partial

quotients at a specific position i are the same, then EQZ(x̄i, ȳi) outputs 1̄ and

outputs 0̄, otherwise. Hence, if xi = yi for all i ∈ {0, . . . , n − 1} then every

output of EQZ is 1̄, and the product of all of these outputs becomes 1̄. On the

other hand, if there is at least a pair of partial quotients different from each

other, then because the output of corresponding EQZ is 0̄, the product of the

outputs is 0̄.

4.3.2 Complexity

We analyze the complexity of our equality circuit in terms of the compu-

tational complexity and the multiplicative depth. Let n be the size of the

partial quotients and k be the number of partial quotients. For the readabil-

ity, we write HA and HM to denote the number of homomorphic additions

and multiplicatives, respectively. Note that for equality circuit for two n-bit

integers, the necessary multiplicative depth is log n and the computational

complexity is that 2 HA and log nHM.

Multiplicative Depth. Our equality circuit can be divided to two parts; one

is executing equality test for the partial quotients of the same position and the

other is multiplying all results of the equality test. Then, the multiplicative

depth for the first part requires logn and the second part requires log k

multiplicative depth. Therefore, in order to execute our equality circuit, the

necessary multiplicative depth is log n+ log k = log nk.

39

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

Computational Complexity. Even though we have to execute equality

tests for all partial quotients, it can be done at the same time since each test is

independent which implies that the complexity is the same complexity of one

equality test, 2 HA and nHM. Since the second part requires k homomorphic

multiplications, the necessary complexity for the second part is kHM. In total,

the computational complexity of our equality construction is that 2 HA and

(n+ k)HM.

4.4 Greater-Than and Less-Than

In this section, we translate the equality condition to the ciphertext domain.

If two continued fractions are different, then two partial quotients of the same

position should be different. However, in the ciphertext domain, we cannot

find such a position and thus we should consider the worst case.

4.4.1 Construction

Two comparison circuits, denoted by GTR and LTR, respectively, taking as in-

put two encrypted CFs can be defined using integer-based circuits as follows.

GTR(X̄, Ȳ) =GTZ(x̄n−1, ȳn−1) +

n−2

n∑

i=0

GTZ(x̄2i, ȳ2i) ·
n−1∏

j≥2i

EQZ(x̄j , ȳj)

+

n−2

n∑

i=0

LTZ(x̄2i+1, ȳ2i+1) ·

n−1∏

j≥2i+1

EQZ(x̄j , ȳj)

LTR(X̄, Ȳ) =LTZ(x̄n−1, ȳn−1) +

n−2

n∑

i=0

LTZ(x̄2i, ȳ2i) ·

n−1∏

j≥2i

EQZ(x̄j , ȳj)

+

n−2

n∑

i=0

GTZ(x̄2i+1, ȳ2i+1) ·

n−1∏

j≥2i+1

EQZ(x̄j , ȳj)

Let X̄ and Ȳ be two encrypted CFs as above. Comparison between CFs

moves in a left-to-right direction as comparing two integers. For two integers

40

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

written in binary, when the first difference appears at an index i in two

binary expansions, an integer of the i-th bit being 1 is greater than the

other integer. On the other hand, as shown in Theorem 4.2.1, when the first

difference appears at the index i in two CF expansions, comparison between

two CFs has to take into account the index i itself along with the i-th partial

quotients; that is, if the index i is odd, the inequality of the two i-th partial

quotients is the inequality of the two real numbers, but if the index i is

even, the reversed inequality of the two i-th partial quotients becomes their

inequality.

In the case where n 6= m, we need to take special care when comparing

two encrypted CFs. As many special partial quotients, ∞, as the difference

between n and m are added so that both CFs have the same number of

partial quotients. For performance reason, we do not encrypt the special

partial quotient. We then merely have to check if the index at which the first

partial quotient appears is even or odd since ∞ is greater than integers.

4.4.2 Complexity

We analyze the complexity of our comparison circuits in terms of the compu-

tational complexity and the multiplicative depth. Since greater-than test and

less-than test are based on the same principle and greater-than test result

can be obtained from the less-than test result easily, the multiplicative depth

and the computational complexity are the same. Similar to Chapter 4.3.2,

let n be the size of the partial quotients and k be the number of partial quo-

tients and HA and HM to denote the number of homomorphic additions and

multiplicatives, respectively. Note that for comparison circuit for two n-bit

integers, the necessary multiplicative depth is log n+1 and the computational

complexity is that (n+ 1 + log n)HA+ (2n− 2)HM.

Multiplicative Depth. Our comparison circuits can also be divided to two

parts; one is executing comparison tests for the partial quotients of the same

position and the other part is arithmetics on the results of the comparison

41

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

tests. Then, the first part requires logn + 1 multiplicative depth. For the

second part, we have to multiply all equality tests which requires log k mul-

tiplicative depth and multiply it to every comparison test which requires

log k, too. In total, the multiplicative depth for our comparison circuit is

logn + 1 + log k + log k = log nk2 + 1.

Computational Complexity. Similarly in equality test, comparing two

partial quotients of the same position can be done at the same time which

implies the complexity of the first part is (n + 1 + logn)HA + (2n − 2)HM.

For the second part, we have to multiply all k equality tests and multiply it

to k comparison tests. Moreover, there are 2 more homomorphic additions

required. Therefore, the computational complexity of our circuits is (n+3+

logn)HA + (2n− 2 + 2k)HM.

Comparison. For the simplicity, let ℓ = ⌈log x⌉ where x = X · 10k and n is

the number of partial quotients.

Our circuits are also designed on top of the integer-based circuits, but

a main difference is that the baseline integer circuits are evaluated at en-

cryptions under an FHE scheme instantiated with a small plaintext space,

compared to the use of other representations. More precisely, we use a plain-

text space of ⌈ℓ/n⌉ bits on average; however, as a trade-off, the number of

ciphertexts amounts to the number of partial quotients, i.e., n ciphertexts

of ⌈ℓ/n⌉-bit messages. Even though we have to perform equality test (or

comparison test) per partial quotient, because each test can be carried out

in parallel and with a smaller plaintext space, our suggestion is still more

beneficial than other choices in the sense of running time.

Concretely, our equality (resp., greater-than) circuit is about 3 times

(resp. 1.5 times) faster than an equality (resp., greater-than) circuit with

decimal expansion. We defer the detailed results of experiment for each of

input encoding to Section 4.5.3.

As for equality test, multiplying each result of comparison between en-

crypted partial quotients requires a multiplicative depth of ⌈log n⌉, in ad-

dition. Similarly, comparison test requires additional additional 2⌈log n⌉ ho-

42

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

momorphic multiplications and ⌈log n⌉ homomorphic additions. In Table 4.1,

we report measurements with respect to the plaintext space, the number of

ciphertexts, and multiplicative depth.

Table 4.1: Measurements between encodings
Algorithms Parameters CF (Ours) Decimal

EQR

Ptxt Space Z
ℓ/n
2 Zℓ

2

Ctxt n 1

Depth ⌈log ℓ/n⌉+ ⌈logn⌉ ⌈log ℓ⌉

GTR/LTR

Ptxt Space Z
ℓ/n
2 Zℓ

2

Ctxt n 1

Depth ⌈log ℓ/n⌉+ ⌈logn⌉+ 2 ⌈log ℓ⌉+ 1

4.5 Implementation

In this section, we present a list of experiments to evaluate the performance of

homomorphic evaluation of comparison circuits on real numbers. We start by

describing the test environment for reproducibility. Next, the approach used

to select the scheme parameters is presented. Lastly, experiment settings

alongside with results and analysis are provided for each experiment. The

code is uploaded on my GitHub [27].

4.5.1 Environment

We use the BGV [12] FHE scheme to implement the equality and comparison

circuits on integers and reals. A complete C++ implementation of the BGV is

provided by the open source library HElib [47]. Both HElib and the number

theoretic library NTL [70] (version 10.3.0) are used to facilitate the implemen-

tation. We also utilize the Open Multi-processing (OpenMP) [64] to boost

the performance by issuing several threads to run concurrently on the avail-

able computing resources. Although, HElib supports Bootstrapping, we use

a leveled variant of the BGV scheme that supports homomorphic evaluations

43

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

up to a predefined level. This is a common approach used when the circuit

multiplication depth is known in prior to avoid the expensive Bootstrapping

procedure.

We developed our implementation via C++ on a lightly loaded 64-bit

machine equipped with 2 CPUs and 64 GB RAM, each CPU has 6 cores

with hyper-threading enabled. The system can be though of as if there are

available 24 processing units. The operating system is ArchLinux (4.8.13-1-

ARCH) and the compiler used is GCC (6.3.1 20170109).

4.5.2 Scheme Parameters

In order to guarantee security, one needs to be vigilant while setting the

cryptosystem parameters to insure that the fastest known attack requires

unrealistic computational resources or time that is far beyond the lifetime of

private data. We set the security parameter in HElib to 80-bit security level

for all the experiments. The plaintext modulus is set to 2. The m-th cyclo-

tomic polynomial is initiated automatically using “FindM” function in HElib.

As will be shown in section 4.5.3, we vary the number and size of partial quo-

tients. Afterwards, we choose the minimum circuit multiplication depth that

guarantees correct results. A complete listing of the chosen parameters is

shown in Table 4.2.

Table 4.2: Parameters used
Parameter Value Meaning

λ 80 security level

p 2 plaintext modulus

r 1 lifting power

c 3 number of columns in key switching matrix

d 0 embedding degree

L 5-11 multiplicative depth

n 4-8 number of partial quotients

⌈ ℓn⌉ 3-5 bit length of a partial quotient

44

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

4.5.3 Experimental Results and Comparisons

In this section, we present a set of timing experiments for the implemented

circuits. The testing methodology can be summarized as follows: real numbers

are generated randomly and converted to continued fractions representation.

Each partial quotient in Z is converted to binary form. Each bit is encoded as

a polynomial, i.e. polynomials at this stage are simply constants in {0, 1}. We

pack these polynomials and encrypt them in a single ciphertext in a SIMD

fashion. Thus, a separate ciphertext is required for each partial quotient.

After generating all the ciphertexts, the desired circuit can be evaluated

homomorphically. We only measure the time required to evaluate the circuit.

Key generation, encryption and decryption execution times are not counted

for in all experiments. Chrono system functions are used to measure the

elapsed time with microseconds precision. We run each experiment 10 times

and the average execution time is always reported. To guarantee accurate

timing figures and to avoid any caching effect, we develop a python script

that executes the C++ binary and collects the evaluation time generated in

each run. Thus, each run is completely independent from the rest.

In Table 4.3, the third column shows the average evaluation time in (sec)

for the equality circuit. While varying the number and size of partial quo-

tients, we prepared our experiment with the circuit’s estimated multiplicative

depth of ⌈log ℓ/n⌉+ ⌈log n⌉. However, for some cases, we used different mul-

tiplicative depth (L) from the estimated depth when the ciphertext includes

extra multiplicative level. We think that one reason for this difference in

the depths is that multiplicative depth is not always consumed in a single

multiplication, but only consumed when there is enough large noise in the ci-

phertext. The fourth column of the table shows the average evaluation time in

(sec) for the comparison circuit. Similarly, we also the number and precision

of partial quotients and use a suitable multiplicative depth.

Lastly, we perform experiments for comparing the running time of our CF

based circuits with other well-known circuits that employ decimal expansion

for the same real numbers. To do this, we choose three random CFs by

45

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

Table 4.3: Average execution time for basic circuits

k n
Equality test Geater-than test

L time (in sec) L time (in sec)

3

6 7 1.743 9 8.831

7 7 2.075 9 9.141

8 7 2.433 9 11.787

4

4 5 0.685 8 4.776

5 7 1.483 9 6.424

6 7 1.750 9 8.731

5

4 7 1.600 9 6.678

5 7 2.072 9 6.954

6 7 2.433 11 19.539

varying the number of partial quotients and express these numbers in decimal

representation. These numbers are shown in the first column in Table 4.4.

We encode each real number in continued fractions and decimal expansion.

Then, we encrypt each encoding to generate two ciphertexts encrypting the

same real number. The smallest FHE parameters are chosen to guarantee

correct evaluations. The average running time of equality and greater-than

circuits for the two ciphertexts is reported. It can be clearly seen that CF

circuits outperform the decimal ones by at least a factor 3.36×.

Table 4.4: Comparison of running times between encodings

Input
in CF form in Decimal form

Equality Greater-than Equality Greater-than

7.194444 =
0.49 sec 2.77 sec 1.65 sec 3.76 sec

[7; 5, 6, 1]

6.313559 =
0.54 sec 2.96 sec 1.69 sec 4.52 sec

[6; 3, 5, 3, 2]

15.322749 =
0.59 sec 2.93 sec 1.71 sec 4.43 sec

[15; 3, 10, 6, 1, 2]

46

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

4.6 Applications to Database Service

We can construct a wide range of applications by utilizing our FHE-based

real number comparison technique. In this section, we list two promising

applications among them: sorting a list of FHE-encrypted real numbers and

processing database queries on FHE-encrypted databases.

4.6.1 Sorting

Sorting is one of the most fundamental topics in computer science which has

been researched for very long time. Moreover, with the development of cloud

service and cloud computing, sorting on encrypted database has also emerged

in these days. For this, order-preserving encryption (OPE) [3] and order-

revealing encryption (ORE) [9,24,57] are two appealing solutions for sorting

on encrypted data in terms of efficiency. However, OPE and ORE would

leak some information about the relative distance between the underlying

messages. In particular, they could leak more information in specific setting,

for example, a set of non-uniform data [38].

Comparison. On the contrary, FHE with semantic security does not leak

any information about the underlying messages and thus FHE-based sorting

leaks no information to a semi-honest server beyond that revealed by its

output (e.g., the size of list).

There are some solutions for sorting on FHE-encrypted datasets, for

example, see [22, 23]. Their protocols develop fully homomorphic circuits

for comparison and swap operations and utilize them in conventional sort-

ing algorithms. However, to our knowledge, they only support integer-type

databases. Therefore, there are great restrictions to their use for the practical

applications. For these reasons, we build a sorting algorithm by adopting our

encrypted real number comparison algorithm designed in Section 4.2.1.

Swap. Given comparison circuits GTR and LTR, it is easy to build a swapping

algorithm of two encrypted values. This means that we can homomorphically

sort FHE-encrypted real numbers only using our basic circuits. A swap circuit

47

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

receives a sequence of two numbers (in our cases, two real numbers) and

outputs an in order sequence of the same size. Without loss of generality, we

only focus on ascending order, but descending order can be obtained with

minor changes. For two encrypted real numbers X̄ and Ȳ , denoting by [X̄, Ȳ]

that X̄ and Ȳ is stored in order, swap in ascending order is defined by:

Swap(X̄, Ȳ):=[LTR(X̄, Ȳ) · X̄ + LTR(Ȳ , X̄) · Ȳ ,

GTR(X̄, Ȳ) · X̄ + GTR(Ȳ , X̄) · Ȳ].

Efficiency. Most of conventional sorting algorithms consist of comparison

and swap. Theoretically, thus we can execute any sorting algorithm with

our technique. However, since the performance of most FHE-based schemes

is closely related to the multiplicative depth, much work has been put to

reduce it.

In [22], Gizem et al. propose a new sorting algorithm, called direct sort

and greedy sort, whose multiplicative depth is lower than existing sorting

algorithms from O(n log2 n) to O(logn+log ℓ) where n is the size of input list

and ℓ is the bit size of elements. In order to sort n values, say a0, . . . , an−1,

their protocol first constructs an n × n matrix whose component (i, j) is

GTZ(ai, aj) for 0 ≤ i, j < n. Since the sum of i-th row of the matrix indicates

the number of elements greater than the element ai, it can sort all values in

according to the sum. In particular, combining their techniques with merger

sort, one can obtain a more efficient sorting algorithm.

Using our comparison circuits of real numbers, we can apply their tech-

nique to our setting. Similarly, we can build a comparison matrix whose

component (i, j) is GTR(ai, aj) for 0 ≤ i, j < n instead of GTZ(ai, aj) and we

can sort an encrypted list of real numbers.

4.6.2 Private Database Queries

A database query refers to the process of retrieving data that satisfy a set of

constraints from a database. Database queries are one of the core operations

that make databases so useful. However, if users’ data are very sensitive

48

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

such as medical or economical information, part (sometimes the whole) of

the database holding such sensitive attributes needs to be protected from

unauthorized access by for example encryption. For this reason, both the

database and cryptography communities have shown great interest in pro-

viding privacy-preserving and secure query services over outsourced data, for

short, private database query (PDQ).

PDQ techniques allow users to obtain desired information from encrypted

databases without revealing information to the server. Searchable encryption

(SE) [74] can be used to retrieve information as a result of queries; however,

it can leak information about the plaintext messages like ORE and OPE.

Furthermore, SE does not allow to evaluate encrypted polynomials.

In this work, we consider two simple types of PDQ, called retrieval queries

and aggregate queries. Consider two queries over a medical database:

• What is the first name of all patients whose random plasma glucose is

above 11.345009 mmol/l?

• What is the average age of patients whose random plasma glucose is

above 13.10134 mmol/l?

To answer these queries, we have to identify records (or tuples) satisfying a

given search condition and, if necessary, to compute over the result set. We

notice that functional encryption such as SE, OPE and ORE cannot evaluate

aggregate functions like avg and min over ciphertexts. This motivates the

need to develop FHE-based PDQ protocols (e.g., [7, 25]) to support from

simple to aggregate queries at a time.

Retrieval Queries. Retrieval queries consist of a list of target attributes,

their owner database names, and a search condition. A way to offer reasonable

performance is to encrypt only the private constants in the search condition.

Then on receiving such a retrieval query, the cloud server can see which

attributes in a given database are compared to the encrypted constants.

In general retrieval queries can be again classified into conjunctive query

and disjunctive query. Conjunctive queries require that all predicates in a

49

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

search condition hold true while disjunctive queries require that at least one

predicate in a search condition hold true.

Assume that a database D has a schema D(A1, A2, . . . , Aτ) where D is a

database name and each Ai is the attribute name, and it has N encrypted

tuples. For simplicity, we denote by Search(Ai[j], X̄i) the i-th predicate to

compare an encrypted constant X̄i to an encrypted attribute value Ȳij of

Ai for some j ∈ {1, . . . , N}. Here we mean by “compare” either equality or

greater-than test. Then we can describe retrieval queries over the encrypted

database D as

Conj(X̄i1 , . . . , X̄iη)[j] = Search(Ai1 [j], X̄i1) ∧ · · · ∧ Search(Aiη [j], X̄iη)

Disj(X̄i1 , . . . , X̄iη)[j] = Search(Ai1 [j], X̄i1) ∨ · · · ∨ Search(Aiη [j], X̄iη).

If the target attribute is Ak, then the output of conjunctive queries is given

by {Ȳk,j · Conj(X̄i1, . . . , X̄iη)[j]}1≤j≤N . In the same way, we can describe the

output of disjunctive queries.

Aggregate Queries. Aggregate functions return a single result based on

a group of data is formed based on retrieval queries. In general, aggregate

functions include sum, avg, and count. Since we employ continued fraction

to represent the real numbers, one may not be familiar to arithmetics with

continued fraction. In 1972, Bill Gosper proposed the general arithmetic al-

gorithm [45] between continued fractions. This algorithm allows arithmetics

between two continued fractions as well as a continued fraction and a rational

number.

The algorithm receives two real numbers X and Y represented by contin-

ued fraction and outputs F (X, Y) := (a+ bX + cY + dXY)/(e+ fX+ gY +

hXY), where a, b, c, d, e, f, g, h ∈ Z. For example, setting b = 1, c = 1, e = 1

indicates F (X, Y) = X + Y , setting d = 1, e = 1 indicates F (X, Y) = X · Y ,

and setting a = 2, b = 3, g = 4 indicates F (X, Y) = (2 + 3X)/4Y . Since

F (X, Y) includes every primitive arithmetic, we can evaluate every primitive

arithmetics as well as a two-variable linear fractional transformation.

In [28], the authors explore the possibility of employing FHE with Gosper

50

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

algorithm, which implies that we can evaluate two encrypted continued frac-

tion. Theoretically, with Gosper algorithm, we can evaluate arbitrary poly-

nomials using the same technique to the arbitrary polynomial instead of

F (X, Y). However, because it becomes quite complex when the degree of

polynomial is more than 2, the algorithm is not suitable for aggregate queries

in terms of efficiency. More specifically, Gosper algorithm contains a step

for representing rational numbers F (X, Y) using the partial quotients of X

and Y which incurs high computational costs. For each partial quotient,

one multiplication is required to reconstruct numerator and denominator,

respectively. For this reason, we separately store both numerators and de-

nominators together with their continued fractions to reduce computational

overhead. Then arithmetic with numerators and denominators becomes much

easier than Gosper algorithm which can considerably reduce the cost for con-

structing rational numbers.

51

CHAPTER 4. ALGORITHMS FOR HOMOMORPHIC COMPARISONS

OVER THE REAL NUMBERS

Algorithm Comparing Two Continued Fractions

Input: X = [x0; x1, . . . , xn−1] and Y = [y0; y1, . . . , ym−1]

Output: The result of the comparison of X and Y

1. k ← the smallest index such that xk 6= yk

2. if ∃k then

3. c← (−1)k(xk − yk)

4. if c < 0 then

5. return X < Y

6. else

7. return X > Y

8. else

9. if n = m then

10. return X = Y

11. else if n < m then

12. if n is odd then

13. return X < Y

14. else

15. return X > Y

16. else

17. if m is odd then

18. return X < Y

19. else

20. return X > Y

Alg. 4.1: Comparison of two CFs in the clear.

52

Chapter 5

Algorithms for Integrity-based

Homomorphic Evaluations

5.1 Overview and Related Works

Biometric authentications are seeing greater industrial deployment, including

mobile payment systems such as Apple Pay and Alipay. Compared to other

types of authentication (e.g., passwords and secure tokens), biometrics can-

not be lost or forgotten and, in particular, users being authenticated should

be present at the time and place of authentication. On the other hand, pri-

vacy loss in biometric authentication systems is substantially more serious

than in other authentication systems because biometrics are difficult to be

replaced once stolen. Most recently, hackers have stolen a total of 5.6 mil-

lion fingerprint records from the U.S. government [2]. The stolen biometric

databases could be used to fool certain systems. Thus, it is imperative to

develop a solution with a far stronger protection of such data.

53

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

x

U

Authentication

Server(AS)

b ∈ {accept, reject}User

· · · , (U , x̄∗), · · ·

Encrypted DB

Figure 5.1: Our authentication framework.

Cryptographic protection. We investigate a secure biometric authentica-

tion method without relying on trusted hardware. Our approach is to encrypt

and store a userâs biometric template in a server as in Figure 5.1. During

authentication, the user sends an encrypted biometric attempt to the server,

which authenticates by comparing two ciphertexts without decryption. Com-

paring ciphertexts without decryption is the main security property that our

proposed scheme provides.

One may consider a trivial approach to store only hashed templates in

the server through a one-way hash function such as SHA3 [62]. However,

biometric inputs are not exactly the same every time they are captured due

to scanning noise and so cannot have the same hashed values. Indeed, we

have no hash function to map two slightly different inputs to the same value.

Related Works. One solution for protecting biometric data during authen-

tication is to only store them in a user’s device and to use hardware-based

security mechanisms, as employed by the Fast Identity Online [1] method.

However, this leads to another authentication problem between the user’s de-

vice and a server, so this approach is not appropriate for some applications.

Furthermore, trusted execution environments, such as ARM TrustZone [4],

may not always be available and theoretical security guarantees cannot be

provided, although they are not easy to compromise [60].

Alternatively, we could consider the method based on searching encrypted

data by Song et al. [74]. However, this method is not satisfactory because

54

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

it needs to match two ciphertexts where the plaintexts differ slightly from

each other. Other studies have recommended using functional encryption [41]

based on cryptographic multilinear maps, but we are currently unaware of

any secure cryptographic multilinear maps and it is not clear whether we will

be able to obtain secure and efficient cryptographic multilinear maps in the

near future.

Comparison with Previous Schemes. Recently, some studies have pro-

posed homomorphic encryption techniques for securely computing matching

algorithms as well as secure multiparty computation (SMC) techniques to

guarantee the full privacy of biometric data. SMC provides the same func-

tionality as our approach based on SHE, but it requires interaction-intensive

computations. Kerschbaum et al. [54] suggested an SMC-based protocol, but

it is only secure when all of the participants are honest. Erkin et al. [39]

proposed a protocol using Paillier’s cryptosystem, but it also requires that

the participants are honest.

Several related studies have considered the secure computation of the HD

using oblivious transfers (OTs) and garbled circuits, e.g., see [15, 17, 49, 51].

But these methods were restricted only to secure HD computation and storing

biometrics openly.

Similar methods have been proposed in privacy-preserving research based

on additive homomorphic encryption. Osadchy et al. [65] proposed a face

identification protocol, but it is only secure when the participants are hon-

est. They reported that online computation by a server required about 0.3

seconds for 900-bit values, but 213 seconds for offline computation. Blanton

and Gasti [6] suggested an iris identification protocol based on a semi-honest

model, but their OT-based protocol required O(n) interactions between the

user and the server. Blanton and Aliasgari [5] proposed solutions for iris

identification based on predicate encryption, but their methods were only

efficient with very small biometric templates.

Kulkarni and Namboodiri [56] presented an iris authentication scheme

based on the SHE scheme described by Boneh et al. [8], but the online ex-

55

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

ecution time on the server was 58 seconds for 2048-bit iris data. Recently,

Bringer et al. [16] showed that oblivious RAM techniques can be used in an

iris identification protocol, but the service provider is openly provided with

the user’s biometrics. Karabat et al. [53] proposed an authentication protocol

that only uses threshold homomorphic encryption, but their scheme required

6.1 seconds on the server side and 2.1 seconds on the user side.

5.2 Models and Settings

5.2.1 System Model and Participants

Our system is designed for an authentication server (AS, or server for short)

to authenticate each user using the 1:1 method; therefore, our system com-

prises a user and an AS.

The user denoted by U has a binary feature x extracted from a biomet-

ric source. The server denoted by S has rich computational resources and

storage, which allow the evaluation of arbitrary functions based on SHE ci-

phertexts, but it cannot decrypt the ciphertexts evaluated by itself as well as

the ciphertexts given by the user.

5.2.2 Threat Model

We address two security-related goals. The first goal is that no AS should

be able to learn anything about the biometric data contributed by users

except for that revealed by the final result obtained after execution. Even

if the AS and some users collude, they should not learn anything about

the biometrics from other honest users excluding the final result and its

implications. The second goal is that an impostor should not be able to fool

the AS into believing that he is authentic (see [67] for details of the possible

threats).

In this study, we focus on the following attacks to ensure secure authen-

tication and privacy of the user’s biometrics.

56

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

• Threat #1. Participants on the user side of our system are highly mo-

tivated to be malicious, and thus they make an honest AS output an

acceptance at the conclusion of user authentication. Furthermore, they

may collude with other arbitrary users to attempt to break through the

systemÂs security.

• Threat #2. Some participants on the server side of our system are

also motivated to behave maliciously and learn information about the

private biometrics of honest users because these data could potentially

be sold to an attacker, e.g., passport forgers. A typical example is a

biometric database administrator corrupted by an attacker.

Assumptions. It is possible that a third entity (e.g., service providers such

as Amazon) could develop a rich service using our authentication platform,

which might allow collusion with the AS. However, we do not consider addi-

tional tools to defend against collusion, but we suggest that there is a high

risk of a penalty when compromising a user’s biometrics in this manner.

5.2.3 Security Model

A formal security definition is given in Section ??, but we now provide an

outline of the security and privacy properties exhibited by our authentication

system.

Correctness. If all of the participants execute a given protocol faithfully, the

verification result produced after executing the protocol is equal to the

result obtained after submitting each honest participant to a biometric

database in the open.

Privacy. The servers can only learn the verification result and its implications

after executing a protocol.

Security. A dishonest user cannot persuade an honest AS into accepting him

as an authentic user.

57

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

5.3 Integrity of Homomorphic Evaluations

5.3.1 Message Authentication Code

MAC is a cryptographic tool used to ensure data integrity. A MAC scheme

denoted by MAC = (MKg, Tag, Vrf) is a triple of PPT algorithms as follows.

• mk ← MKg(1λ). The key generation algorithm takes the security pa-

rameter λ and outputs a secret key mk ∈ {0, 1}λ to generate a tag.

• (x, τ) ← Tag(mk, x). As inputs, the algorithm takes a secret key mk

and a message x ∈ P, and outputs a tag τ along with the message x,

where P is a message space.

• b← Vrf(mk, x, τ). The verification algorithm takes the secret key mk,

a message x, and a tag τ as inputs, and outputs b ∈ {0, 1}. If τ is a

valid tag for x, then b = 1; otherwise, b = 0.

If a secret key from the MAC key generation function can be used only

once (the MAC scheme can be forged otherwise), we call it an OTM scheme.

An OTM is secure if an OTM withstands a chosen-message attack. A formal

definition of security for the OTM is given as follows:

Definition 1. Consider the following experiment denoted by ExOTM
A (λ) be-

tween an adversary A and a challenger C.

1. The challenger C runs MKg(1λ) and obtains a secret key mk for a MAC.

2. The adversary A adaptively determines a message x. In Tag queries,

the adversary A sends x and receives a MAC tag τ ← Tag(x).

3. After the adversary A decides that the query is over, A outputs (x∗, τ ∗).

4. The game outputs 1 iff Vrf(mk, x∗, τ ∗) = 1 and x 6= x∗.

Definition 2. An OTM scheme OTM = (MKg, Tag, Vrf) is secure if for all

PPT adversaries A,

Pr
[
ExOTM

A (λ) = 1
]
≤ negl(λ).

58

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

5.3.2 Protocol Constructions

In this section, we provide two protocols, called a woodenman protocol and

an ironman protocol. A woodenman protocol is secure under the Threat #1

as I defined before and an ironman protocol is secure under the Threat #1

and Threat #2.

A Woodenman Protocol

Our starting point is MAC. Our main observation is that the homomorphic

property of SHE allows to run a MAC generation algorithm over ciphertexts.

Specifically, given a SHE scheme FHE = (KeyGen, Enc, Dec, Ev), we consider

a function Tag∗ such that for a MAC generation function Tag,

Tag∗ ◦ Enc(d) = Enc ◦ Tag(d).

Indeed, we take Tag∗ as Evek(Tag, mk, d̄), which leads us to the description

shown in Figure 5.2. This solution is attributable to a property of our settings

where the server can be viewed simultaneously as the originator and the

recipient.

User U(sk) AS S(mk, d̄)

τ̄ = Evek(Tag,mk, d̄)d̄, τ̄

d = Decsk(d̄)

τ = Decsk(τ̄) d, τ
b = Vrf(mk, d, τ)

Figure 5.2: Protocol level properties of our basic idea.

However, this design strategy implies that our choice of the underlying

MAC scheme determines the overall performance of a higher layer protocol

that uses the scheme. Therefore, we need to use a highly efficient MAC

scheme. In addition, the server will communicate with a number of users

so it is necessary to provide a large amount of storage for all of the secret

59

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

keys. Thus, we apply an OTM variant in our protocol, i.e., a simple variant

of the Simmons OTM [71], which requires only one modular multiplication.

However, our variant does not include the modular reduction process because

modular arithmetic over encryptions is highly expensive.

Description. We assume that the server has computed the distance d̄ be-

tween an encrypted template and an encrypted attempt, where d̄ denotes

the encrypted result of the computation. We focus on the HD between two

biometrics, but the details of HD computation are given in our discussion of

the full authentication protocol.

Let Rℓ be a set of ℓ = ℓ(λ)-bit integers. Given an encrypted HD value d̄,

the server chooses r0 and r1 uniformly at random in Rℓ, before computing

τ̄ = r0 · d̄ + r1. The server sets mk = (r0, r1). The user can obtain τ =

r0 · d + r1 by decrypting τ̄ , but cannot recover d because it does not know

the secret key mk. The server recovers d using its secret key mk and outputs

b = Vrf(mk, τ, d) by checking if d = (τ−r1)
r0

.

protocol Ensuring integrity of a matching result

syntax: 〈U(sk),S(d̄)〉 → (⊥, (d, b)) where b ∈ {0, 1}

1. [S] (r0, r1)
$
←− (Rℓ)

2,

τ̄ ← r0 · d̄+ r1

2. [U ← S] (d̄, τ̄)

3. [U] (d, τ)←
(
Dec(d̄), Dec(τ̄)

)

4. [U → S] (d, τ)

5. [S] Check if d
?
= τ−r1

r0

Protocol 5.1: Our Woodenman Scheme ΠT1

Performance.

After the server obtains d̄, it only needs to perform one addition and

multiplication by constants. These operations are cheaper than other homo-

morphic operations (see Table 5.4). On the server’s side, the most intense

computation involves computing d̄ by evaluating a matching function at the

60

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

encrypted biometrics. As described in Section 5.4.3, SIMD and ciphertext-

packing techniques improve the performance of this evaluation significantly.

We discuss the process optimization details in a later section.

An Ironman Protocol

Allowing decryption queries leads to attacks that can compromise biometric

privacy. We discussed how to mount such an attack in Section ??. In our

solution to circumvent this attack, a user does not send d directly but a hint

enclosing d instead, which allows the server to verify: (1) whether the d in

the hint is authentic and (2) whether the d hidden in the hint is less than a

matching threshold T .

The concept and description. To implement our solution, we require

that all of the values decrypted by the user are raised to the power of a

generator in the DL setting.

Let G be a cyclic group of a large prime order p where the DL assumption

holds, and let h be a generator of G. Let H1 : {0, 1}∗ → Rℓ and H2 : G →

{0, 1}poly(λ) be random oracles. Then, a user chooses a random generator

h ∈ G and computes v = hτ with τ = Dec(sk, τ̄). According to the DL

assumption, the server cannot construct an efficient algorithm to compute τ

from v. The only remaining problem is how to allow the server to run the

verification using the value v. Our solution is as follows: given a threshold T ,

we require that the user builds a set G of hashed values by G = {H2(h
j)|j ∈

[T]}, and sends the value v along with the set G to the server.

The MAC verification Vrf(r0, r1, u, v) is straightforward: compute h∗ =

(vu−r1)
1
r0 and check if H2(h

∗) ∈ G, where u = h. Note that d or hd are

not given to the server. The full description of the protocol is shown in

Protocol 5.2.

61

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

protocol Ensuring privacy of biometrics

syntax: 〈U(sk),S(d̄)〉 → (⊥, b)

1. [S] (r∗0, r
∗
1)

$
←− ({0, 1}∗)2,

(r0, r1)← (H1(r
∗
0), H1(r

∗
1)) ,

τ̄ ← r0 · d̄+ r1

2. [U ← S] (d̄, τ̄)

3. [U] (d, τ)←
(
Dec(d̄), Dec(τ̄)

)
,

h
$
←− G such that 〈h〉 = G

4. [U → S] (u, v, G)← (h, hτ , {H2(h
j)|j ∈ [T]})

5. [S] h∗ ← (vu−r1)
1
r0 ,

check if H2(h
∗)

?
∈ G

Protocol 5.2: Our Ironman Scheme ΠT2

Performance. Additional computation overheads are incurred on the user

side. The user performs T exponentiations in modulo p as well as T hash

operations. A biometric is encrypted into κ ciphertexts where κ = ⌈n/N⌉,

so the total cost comprises κT exponentiations and κT hashings. However,

this cost is significantly cheaper than that of homomorphic computations on

SHE ciphertexts. The user’s decryption costs are the same as before, i.e., 2κ

times Dec operations.

5.3.3 Security Proof

In this section, I provide a proof of security of my proposal. At first, I prove

a woodenman protocol is secure, that is, secure against Threat # 1. After

then, I give a security proof for an ironman protocol, that is secure against

Threat # 2.

62

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

Security Against Threat #1.

As described above, the server generates an encrypted tag τ̄ and receives the

decryption of τ̄ with the help of the user. From a MAC security perspective,

the user (i.e., decryptor) is modeled as an attacker. Thus, we propose a new

security model where the user is allowed to produce any output that it wants

to return. Next, we define security against one-time decryptor forgery attacks.

This concept requires that even if the adversary possesses the decryption

key for the challenge input, the adversary should not be able to return an

incorrect output that passes verification.

Definition 3 (Decryptor Forgery Experiment). Let FHE = (KeyGen, Enc, Dec, Ev)

be a SHE scheme and OTM = (MKg, Tag, Vrf) be an OTM scheme, and let

Π be a protocol associated with FHE and OTM. We consider the following

experiment between a PPT adversary A and the server S.

Experiment Exdfa
A,Π(FHE,OTM, λ)

(pk, sk)← AKeyGen(·)

Run the protocol Π〈A(sk),S(d̄)〉

A outputs (d∗, τ ∗) such that d∗ 6= Dec(sk, d̄)

If Vrf(mk, d∗, τ ∗) = 1, output 1; else, output 0

For correctness, we require that given the private key sk, for every mk

and every d such that Vrf(mk, d, Tag(mk, d)) = b, we have Π〈U(sk),S(d̄)〉 →

(⊥, (d, b)). Next, we require that an adversary controlling a user succeeds in

the experiment Ex with a negligible probability.

Definition 4. A protocol Π is secure against decryptor-forgery attacks if it is

correct and if a negligible function negl(·) exists for every PPT algorithm A

such that

Pr
[
Exdfa

A,Π(FHE,OTM, λ) = 1
]
≤ negl(λ).

We argue that the Woodenman protocol ΠT1 is secure against a corrupted

user. In Lemma 1, we first show that our OTM variant is secure against one-

time chosen-message forgery. Then, we prove Theorem 1 using the lemma.

63

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

Lemma 1. Let Rℓ be a set of ℓ-bit integers. Given d and τ such that τ =

r0 · d+ r1 for two integers r0, r1 chosen uniformly from Rℓ,

Pr
r0,r1

[τ = r0 · d+ r1] < 22−ℓ,

where the probability is taken over the random choice of r0 and r1 from Rℓ.

Proof. d and τ = r0 · d + r1 are given, so we can obtain a set of candidate

points r0 and r1. In particular, by the extended Euclidean algorithm for d and

τ , unique r̃0 and r̃1 exist such that τ = r̃0d + r̃1 with r̃1 < d and r̃0 ≥ 2ℓ−1,

so this can be transformed into

τ = r̃0d+ r̃1

= (r̃0 − 1)d+ (d+ r̃1) = (r̃0 − 2)d+ (2d+ r̃1) = · · ·

= 2ℓ−1d+ (r̃0 − 2ℓ)d+ r̃1.

We can see that these are all candidates for r0 and r1, and thus the number

of candidates is r̃0 − 2ℓ + 1. Furthermore, r̃0 is a quotient of τ and d, r̃0 =

⌊τ/d⌋. Therefore, the probability of choosing the correct pair of r0 and r1 is
1

r̃0−2ℓ−1+1
= 1

⌊τ/d⌋−2ℓ−1+1
. Moreover, because r0 is chosen randomly from Rℓ,

we can assume that r0 ≈ 3/2 · 2ℓ−1 = 3 · 2ℓ−2, and thus the probability of this

assumption becomes

Pr
r0,r1

[τ = r0 · d+ r1] ≈
1

2ℓ−2 + 1
<

1

2ℓ−2
.

Thus, we may conclude the lemma.

Before proceeding to the next step, we need to define two random vari-

ables, dirty and verify. Intuitively, dirty = 1 if a user modifies the decryptions

of a pair (d̄, τ̄) and verify = 1 if the protocol outputs an accept.

Definition 5. We define a random variable dirty such that dirty = 1 if and

only if d∗ 6= Dec(d̄) or τ ∗ 6= Dec(τ̄). In addition, we define verify such that

verify = 1 if and only if the honest server outputs an accept (i.e., b = 1) at

the end of the protocol ΠT1.

64

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

Theorem 1 states that our basic protocol ΠT1 is secure against Threat

#1 except for a negligible probability of the security parameter λ.

Theorem 1. Let Rℓ be a set of ℓ-bit integers. Assume that the underlying

OTM scheme is secure against one-time existential forgery attacks. Then, for

every PPT adversary A, a negligible function negl(·) exists such that

Pr[Exdfa
A,ΠT1

(FHE,OTM, λ) = 1] ≤ 23−ℓ + negl(λ).

Proof. To prove the theorem, it is sufficient to show that

Pr [dirty = 1 ∧ verify = 1] ≤ negl(λ).

Thus, we prove that we can construct an efficient algorithm to forge our OTM

scheme with nonnegligible probability, where we assume that an adversary

can succeed in passing the protocol ΠT1 with a nonnegligible probability

by using (d∗, τ ∗) such that d∗ 6= Dec(d̄) or τ ∗ 6= Dec(τ̄). The remainder of

the proof follows directly by a standard reduction argument; however, the

calculation of the success probabilities can be quite tedious.

We proceed to construct an OTM adversary Aotm, which works as follows.

Let A be an adversary for the protocol ΠT1 such that Pr [dirty = verify = 1] =

ǫ(λ).

The adversary Aotm. Based on the input 1λ and the values (d, τ) from the

challenger,

1. Aotm invokes A based on input 1λ and outputs (pk, ek).

2. Aotm interacts with A and acts as the honest server in the protocol, as

follows:

(a) Aotm sets up the OTM key mk of the honest server in the protocol

and sets d̄ = Encpk(d), but computes τ̄ = Encpk(τ) without the

key mk, where (d, τ) is given by the challenger.

(b) Aotm sends the pair (d̄, τ̄) to the adversary A.

65

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

3. After receiving a pair of decryptions (d∗, τ ∗), Aotm checks if d = d∗. If

d = d∗, then Aotm outputs a pair of random values (r0, r1) ∈ (Rℓ)
2.

Otherwise, if d 6= d∗ and τ 6= τ ∗, it outputs
(
r0 =

τ−τ∗

d−d∗
, τ − d · r0

)
;

however, if d 6= d∗ and τ = τ ∗, it outputs (0, τ).

The intuitive explanation of the attack strategy by Aotm is straightfor-

ward. Next, we prove that Aotm outputs the correct pair of values (r0, r1)

with a probability ǫ(λ)(1 − negl(λ)), which is nonnegligible if ǫ(λ) is non-

negligible. Thus, we define Fail as the event, where Aotm outputs a pair of

random values during this attack. We have

rClPr[Exotm
Aotm

(1λ) = 1] = Pr[Exotm
Aotm

(1λ) = 1|¬Fail] · Pr[¬Fail] +

Pr[Exotm
Aotm

(1λ) = 1|Fail] · Pr[Fail]. (5.3.1)

We can see that Pr[Exotm
Aotm,ΠT1

(1λ) = 1|Fail] = 22−ℓ by the definition of

Fail, and the probability that Aotm outputs an incorrect pair of values on the

condition that Fail does not occur is negligible at most. Thus, we have

Pr[Exotm
Aotm

(1λ) = 1|¬Fail] ≥ 1− negl(λ)

for a negligible function negl(·).

Now, we only have to compute Pr[Fail] and Pr[¬Fail] to evaluate Eq. (5.3.1).

We compute Pr[¬Fail] by

Pr[¬Fail] =

Pr[¬Fail|dirty = verify = 1] · Pr[dirty = verify = 1]+

Pr[¬Fail|dirty = 0 ∨ verify = 0] · Pr[dirty = 0 ∨ verify = 0].

According to our assumption regarding A, we have Pr[dirty = verify = 1] =

ǫ(λ). Hence, it follows that Pr[dirty = 0 ∨ verify = 0] = 1 − ǫ(λ). Next, if

dirty = verify = 1, then Aotm outputs a pair of random values only when

d = d∗ ∧ τ 6= τ ∗. Thus,

Pr[¬Fail|dirty = verify = 1] = 1− 22−ℓ.

66

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

By contrast, if dirty = 0 or verify = 0, then Aotm always outputs a pair of

random values. Thus, Pr[¬Fail|dirty = 0 ∨ verify = 0] = 0. By combining

these, we have

Pr[¬Fail] = (1− 22−ℓ)ǫ(λ) and Pr[Fail] = 22−ℓǫ(λ).

By entering this into Eq (5.3.1), we have

Pr[Exotm
Aotm

(1λ) = 1]

= (1− negl(λ))(1− 22−ℓ)ǫ(λ) + 24−2ℓǫ(λ)

= ǫ(λ)
(
1− negl(λ)− 22−ℓ(1− negl(λ)− 22−ℓ)

)

= ǫ(λ)(1− negl(λ))− negl⋆(λ)

for a negligible function negl⋆(·). Thus, if ǫ(λ) is nonnegligible, then Aotm

succeeds in Exotm
Aotm

(1λ) with a probability of ǫ(λ)(1− negl(λ)), which is also

nonnegligible. However, this contradicts Lemma 1.

We have proved that Pr[dirty = verify = 1] is negligible. For notational

convenience, we assume that the experiment Exdfa
A,ΠT1

takes (FHE,OTM, λ)

as inputs. To show the remainder of the proof, we observe that

Pr[Exdfa
A,ΠT1

= 1]

= Pr[Exdfa
A,ΠT1

= 1 ∧ dirty = 1]+

Pr[Exdfa
A,ΠT1

= 1 ∧ dirty = 0]

= Pr[Exdfa
A,ΠT1

= 1 ∧ dirty = 1 ∧ verify = 1]+

Pr[Exdfa
A,ΠT1

= 1 ∧ dirty = 1 ∧ verify = 0]+

Pr[Exdfa
A,ΠT1

= 1 ∧ dirty = 0]

≤ Pr[dirty = verify = 1]+

Pr[Exdfa
A,ΠT1

= 1 ∧ verify = 0]+

Pr[Exdfa
A,ΠT1

= 1 ∧ dirty = 0]

≤ Pr[Exdfa
A,ΠT1

= 1 ∧ verify = 0]+

Pr[Exdfa
A,ΠT1

= 1 ∧ dirty = 0] + negl(λ).

67

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

We can see that Pr[Exdfa
A,ΠT1

= 1 ∧ verify = 0] = 22−ℓ and Pr[Exdfa
A,ΠT1

=

1 ∧ dirty = 0] = 22−ℓ, so we conclude that

Pr[Exdfa
A,ΠT1

= 1] ≤ 23−ℓ + negl(λ).

This completes the proof of the theorem.

Security Against Threat #2.

We define a precise security model for analyzing the security of Protocol 5.2.

We should note that it is not necessary to allow the adversary full access

to a decryption oracle, as observed above. Nevertheless, the protocol seems

to be useful in allowing the attacker to extract some biometric information

because it reveals details in Step 5 of the protocol ΠT2.

To characterize privacy, we need to modify protocol Π given in Sec-

tion 5.3.2, and we define a new ideal functionality F as

Π̃〈U(sk),S(d̄)〉 → (⊥, b),

where b ∈ {0, 1}. We note that d does not appear in the output from the

server.

Our privacy requirement captures the notion of protecting the biometric

templates of users during the execution of protocols. In the secure computa-

tion model, participants have their own private inputs and they want to eval-

uate a desired functionality F based on their inputs, but without revealing

any information except the outputs and their unavoidable implications [43].

Intuitively, the following two scenarios should be indistinguishable in a

computational sense: (1) securely computing F by executing a protocol; and

(2) privately sending their private inputs to a trusted party, who then com-

putes F and privately returns the outputs to each participant. This formaliza-

tion of secure computing is referred to as the simulation-based approach. In

the standard simulation-based privacy proof technique, given a well-defined

privacy-leakage, a simulator running in polynomial time can generate a tran-

script that is indistinguishable from the output of the real protocol. If an

68

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

efficient simulator exists, then an adversary cannot learn any additional in-

formation other than the defined leakage. The simulator must perform its

task without knowing the private information of the participant who wants

to proves his authenticity.

We now argue that our ironman protocol ΠT2 is secure against Threat

#2. In this proof, we show that when a participant is corrupted (either user

or server), a simulator exists denoted by A, which can produce a view that is

statistically indistinguishable from the view of the participant who interacts

with the honest counterpart. Assuming that one participant is corrupted,

we build an efficient simulator with access to the public input and private

materials (e.g., secret key and biometrics) of the corrupted participant. In

addition, the simulator knows the public output.

It should be noted that the proposed protocol ensures computational

privacy for both the user and the server because the underlying SHE scheme

provides IND-CPA security.

Theorem 2. Assuming that the SHE scheme provides IND-CPA security, pro-

tocol ΠT2 in Protocol 5.2 is secure in the presence of semi-honest adversaries.

First, we outline the solution by showing how we can construct an effi-

cient simulator A. The first case (say, Case I) allows the attacker (i.e., the

simulator) to learn the decryption key of the SHE scheme and the corrupted

user’s biometric. Hence, the simulator can output a view which is indistin-

guishable from that in the real protocol executions by using the ciphertext

indistinguishability of SHE. In the second case (say, Case II), the simulator

knows the secret key of a MAC scheme and all the decryptions of the match-

ing results enclosed in the DL setting. Thus, the adversary cannot distinguish

the output of the simulator from that of the real protocol.

Proof. We show that when a participant is corrupted, a simulator can pro-

duce a view for the adversary, which is computationally indistinguishable

from the view obtained after executing the real protocol based on its secret

inputs as well as the public information.

69

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

Case I: User is corrupted. In this case, we prove that our protocol is secure

when a user is corrupted. The simulator A has the decryption key sk of

the user and knows the user’s biometrics, including other public information

generated by the protocol.

Now, the simulator constructs a view for the user, which is computation-

ally indistinguishable from that the user observes when interacting with the

honest server based on these values. The simulator works as follows.

1. The simulator obtains a pair of attempt and template biometrics (x,x∗),

and the identity U .

2. The simulator computes x̄ = Enc(pk,x) and x̄
∗ = Enc(pk,x∗).

3. The simulator computes δ = s0 · d+ s1 for randomizers s0, s1 ∈ Rℓ, and

the HD value d between x and x
∗.

4. The simulator encrypts the value δ into δ̄ = Enc(pk, δ) and the encryp-

tion δ̄ is the simulated output.

Each step of the proposed authentication protocol for the simulator is sim-

ulated, which completes the simulation for the compromised user. The tran-

script is consistent and computationally indistinguishable from the userÂs

view when interacting with the honest server.

Case II: Server is corrupted. In this case, we prove that our protocol is secure

when a server is compromised by an attacker in the real-world protocol. The

simulator A has the MAC key mk = (r0, r1) of the server as well as the user’s

encrypted biometric attempt x̄ and template x̄∗ from the protocol. Now, we

can construct a simulator that runs as follows.

1. The simulator computes d̄ =
∑n−1

i=0 (x̄i − x̄∗
i)

2.

2. The simulator outputs an encryption δ̄ = r0 · d̄+ r1.

3. After receiving (u, v, G) from the honest user, the simulator runs the

remaining steps of the protocol.

70

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

4. The simulator outputs his choice of β ∈ {0, 1}.

Consequently, each step of the proposed authentication protocol is sim-

ulated for the simulator, which completes the simulation for the corrupted

server. The transcript is consistent and indistinguishable from the user’Âs

view because u, v are random elements in the DL group, which is uniformly

distributed. Moreover, the set G only contains elements in the DL group

Gp.

5.4 Application to Biometric Authentication

In this section, we describe our biometric authentication protocol by includ-

ing the enhancements proposed in Section ??. We argue that our proposed

protocol satisfies the security requirements, and we analyze the computation

and communication overheads.

5.4.1 How Ghostshell Works

Ghostshell comprises three phases: setup, enrollment, andmatch. In the setup

phase, Ghostshell fixes the system settings by running the key generation

algorithm for each underlying cryptographic scheme (see Section ??). Ghost-

shell then has a user extract its biometric template, encode the template as

a binary string, and then store the encrypted template in the server. In sub-

sequent uses, the user’s attempted biometric is compared with the encrypted

template.

In the following, we provide detailed descriptions of each phase.

Setup. Obtaining the security parameter λ, a user generates a pair of keys

(pk, sk) for the underlying SHE scheme and determines the system parame-

ters for other primitives (MAC and FKA).

Our authentication system is designed to run on a symmetric variant of

SHE, where the server cannot generate an encryption of its choice because

it does not know the secret key sk, but it still can perform homomorphic

71

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

evaluations using the public key pk. This approach provides several benefits:

in terms of security, the server is not allowed to encrypt arbitrary matching

results; and in terms of performance, this approach helps to slightly reduce

the computational cost.

Enrollment. The user first extracts a biometric feature x
∗, computes its

SHE ciphertext x̄
∗ = Enc(sk,x∗), and sends (U , x̄∗) to the server. After

receiving it, the server stores (U , x̄∗) in its database.

To ensure greater security against the device theft attack discussed in

Section 5.3.2, we may encrypt all of the interactions between two participants

using a session key determined by an FKA protocol. In this case, the user

encrypts (U , x̄∗) with a symmetric encryption scheme and the server stores

(U , x̄∗) after decryption under the session key.

Match. In the first step during this phase, the user encrypts an attempted

biometric into x̄ = Enc(sk,x) and sends (U , x̄) to the server.

• After receiving it, the server retrieves x̄
∗ denoted by U and computes

d̄ = HD(x̄, x̄∗). Next, the server and the user jointly execute the ΠT2

protocol given in Protocol 5.2, i.e.,

ΠT2〈U(sk),S(d̄)〉 → (⊥, b = {accept, reject}).

5.4.2 Analysis

Performance. Let n be the bit length of x and x
∗. Assuming a SHE

instantiation with N plaintext slots, we only need to keep κ = ⌈n/N⌉ SHE

ciphertexts instead of n SHE ciphertexts for an n-bit biometric. The user

invokes Enc κ times for the enrollment phase. It is clear that the performance

of the match phase is subject to the performance of the subprotocol ΠT2. We

note that most of the server’s time is consumed for performing homomorphic

evaluations to compute a HD value. Thus, the next section focuses on the

optimization of our algorithm to compute the HD on encrypted biometrics.

By contrast, the user’s most expensive computation is SHE decryption.

72

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

Security.We examine the security of our protocol. In the enrollment phase,

biometric privacy is protected by our SHE encryption. In the match phase,

a user corrupted by an attacker cannot fool the AS according to Theorem 1.

Theorem 2 states that an attacker of the server side cannot learn any infor-

mation about the user’s biometrics except for the verification result and its

unavoidable implications. In conclusion, Ghostshell provides security against

Threats #1 and #2.

5.4.3 Optimization

In this section, we describe our optimization techniques. These techniques

demonstrate feasibility of our solution for practical deployment in real-world

systems. Our optimization techniques have two different objectives: speeding

up the computational time and reducing the transmission costs.

Speeding Up Computations

Computing the HD between two ciphertexts for n-bit biometrics is the most

expensive computation in Ghostshell. A näıve computation of the HD based

on ciphertexts requires n homomorphic multiplications and subtractions, and

n− 1 homomorphic additions (see Eq. (??)). To improve the computational

efficiency, we specifically focus on reducing the number of multiplications of

ciphertexts because this operation is about 280× slower than homomorphic

addition.

Our technique builds on the SIMD techniques introduced by Smart and

Vercauteren [73] (journal version of [72]), who suggested that a plaintext

space can be treated as a partition of plaintext spaces of small size, which

are called slots, and that a ciphertext carries a vector of plaintexts instead of

a plaintext. By adding (resp., multiplying) these packed ciphertexts, we can

perform the component-wise addition (resp., multiplication) of two vectors

of plaintexts.

Obviously, ciphertext packing and SIMD operations allow efficient ho-

73

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

momorphic evaluations of multiple data simultaneously. Multiplication and

subtraction of the HD circuit benefits from these two techniques. The prob-

lem that we need to address is that the HD circuit also requires the sum of

all the components. However, no intrinsic operation supports addition and

multiplication across different positions (or slots). Thus, the question is how

do we efficiently compute the sum over plaintext slots?

We resolve this problem by using automorphisms as a technique for mov-

ing values between the different slots in a given plaintext vector. In particu-

lar, performing the automorphism X 7→ X i means that a vector of messages

(cyclically) rotates to the right i times. We denote the automorphism map-

ping X to X i by σi and a vector of N bits by w = (w0, . . . , wN−1).

A simple method for computing the HD for w is to add all of the vec-

tors σi(w) for i ∈ [N − 1]. This näıve method requires N − 1 homomorphic

additions and automorphisms, so the complexity remains O(N). To reduce

this computational cost, we use a tree structure and we proceed recursively

with each of 2i elements, which yields a binary tree of depth ⌈logN⌉, where

log is the binary logarithm. Based on this method, we can compute the HD

value of two independent vectors with one homomorphic multiplication, one

homomorphic subtraction, and O(logN) homomorphic additions and auto-

morphisms. We note that the homomorphic automorphism does not change

the noise estimate.

Example 1. Let N = 8 and w0 = (w0, w1, . . . , w7). If we let w1 := σ1(w0) =

(w7, w0, . . . , w6), then we have w0 + w1 = (w0 + w7, w0 + w1, . . . , w6 + w7).

Similarly, we obtain w2 = (w5 + w6, . . . , w4 + w5) with σ2(w0 + w1) and

w3 = (w1+w2+w3+w4, . . . , w0+w1+w2+w3) with σ4(w2). Then, we can

obtain the HD value
∑

wi by
∑

i∈[3] wi.

A Practical Version of the Ironman Protocol

Theoretically, this idea holds for arbitrary values of N . However, the other

parameters become bigger when the number of slots N is larger, which could

slow down our system. Thus, we have to choose a modest value of N as a

74

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

trade-off between the size of the associated parameters and the BGV instan-

tiation’s performance using the HElib library [47]. To achieve a balance, we

take N = 630 and m = 8191, where m is a system parameter and the m-th

cyclotomic polynomial Φm(X) is used to determine the polynomial rings on

which the BGV scheme runs.

n ≥ 2048 > N for some standard biometric features, so when we imple-

ment the ironman protocol ΠT2, we need to maintain one or more ciphertexts

at a time. For example, four SHE ciphertexts are given for a 2400-bit iris

code when N = 630; thus, the server should evaluate the HD circuit for the

required number of ciphertexts, where the resulting HD value is split and

stored in each ciphertext in order. This is why we reformulated the ironman

protocol.

As mentioned above, let κ = ⌈ n
N
⌉ denote the minimum number of cipher-

texts for carrying a HD value. We only describe the differences compared

with the original protocol, as shown in Protocol 5.3. We use d̄ = (d̄[0] ‖

· · · ‖ d̄[κ − 1]) to denote the splitting of a resulting HD value d̄ into κ ci-

phertexts d̄[0], . . . , d̄[κ − 1], and similarly, we set uj = hj , vj = hj
τ [j], and

Gj =
{
H2(hj

l)
}
for all l ∈ [Tκ] (see below for Tκ).

75

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

protocol Practical Variant of the Ironman Protocol

syntax: 〈U(sk),S(x̄)〉 → (⊥, b) where b ∈ {0, 1}

1. [S] Compute (r0[j], r1[j])j∈[κ−1] like-

wise

∀j ∈ [κ − 1], τ̄ [j] ← r0[j] · d̄[j] +

r1[j]

2. [U ← S]
{
(d̄[i], τ̄ [i])

}
i∈[κ]

3. [U] For all j ∈ [κ − 1], obtain

(d[j], τ [j]),

hj
$
←− G such that 〈hj〉 = G

4. [U → S] {(uj, vj , Gj)}j∈[κ−1]

5. [S] ∀j ∈ [κ−1], h∗
j ←

(
vjuj

−r1[j]
) 1

r0[j] ,

check if H2(h
∗
j)

?
∈ Gj

Protocol 5.3: Adaptation of ΠT2 to the implementation

Discussion. As described in a previous study [18], we use a matching thresh-

old of T = 600 (approximately 30% of the 2048-bit iris code) based on the

HD. However, we are restricted to carrying a κ-th of an iris code in a SHE

ciphertext, so we use a threshold of T scaled by κ, which is denoted by Tκ.

As a result, we need to consider the following practical issues.

• We compute a partial HD value per ciphertext and then compare the

resulting HD value with the scaled threshold Tκ. Thus, we set the scaled

threshold as Tκ = 150 for κ = 4. We consider that an iris code is

encrypted separately and sent in four small pieces. There are
(
604
5

)
≈ 240

possible ways that the sum of all HD values obtained from two small

pieces of encryptions are less than or equal to T = 600. During a

session, a dishonest user is very unlikely to correctly manipulate all of

the pieces of HD values at its disposal.

• Next, if we use Z2t as the plaintext space, then the FPR is
(
Tκ

2t

)κ
. For

76

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

example, for the plaintext space Z220 and κ = 4, the FPR is
(
150
215

)4
≈

2−31.

Ciphertext Compression

Ghostshell requires that a set of encrypted biometrics be sent to the server

each time the user attempts the authentication process. Biometrics are usu-

ally represented by a lengthy sequence of bits (e.g., 2048 bits for standard

iris codes [75]). Thus, encrypting biometrics in a bit-by-bit manner leads to

a long transmission delay. Two methods for avoiding long delays are consid-

ered: packing numerous plaintext bits into a ciphertext and compressing the

ciphertext in a cryptographic manner. The former technique was described in

Section 5.4.3, so we only discuss the cryptographic compression of ciphertexts

in the following.

The sizes of ciphertexts are designed to be very large to avoid lattice at-

tacks, but they can be a big burden during communication. Coron et al. [30]

observed that the size of ciphertexts could be reduced in their integer-based

scheme by introducing a pseudorandom number generator (PRG) in their en-

cryption function. They also described an extension of Brakerski and Vaikun-

tanathan’s scheme [13, 14].

We implement their idea in the BGV-type scheme. We recall that for

a plaintext x, the BGV ciphertext defined on a polynomial ring Aq :=

Zq[X]/〈Φm(X)〉 has the form of (a(X), 〈a(X), s(X)〉 + x + 2e(X)), where

a(X) is a random polynomial, s(X) is a secret key, e(X) is a small error, and

all of the components are in Aq. Now, let F be a q-bit PRG with a public ran-

dom seed ω as its input. We only keep ω rather than a(X), where H(ω ‖ i)

corresponds to each coefficient of X i for all i ∈ [ϕ(m) − 1] and a random

oracle H : {0, 1}∗ → Zq. Thus, the resulting ciphertext size is ⌈log q⌉ϕ(m)

whereas the original ciphertext size is 2⌈log q⌉ϕ(m).

A side effect of ciphertext compression is that we cannot perform ho-

momorphic evaluations based on compressed ciphertexts because the PRG

F is not homomorphic. Thus, homomorphically evaluating the ciphertexts

77

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

requires the recovery of the original ciphertext.

5.5 Implementation

To validate the impact of our optimization methods and to evaluate the

practical utility of our biometric authentication system, we implemented a

prototype with the following settings.

Test environment. A prototype of Ghostshell was implemented in C using

the NTL library [70] in GMP. In addition, our implementation utilized the

HElib library for the BGV cryptosystem. Our code was compiled using g++

4.9.2 on Ubuntu 14.04.2 LTS. We performed all of the timing experiments

on a server with 56 2.60 GHz Intel Xenon E5-2697 processors and 264 GB

RAM. Our implementation included a symmetric cryptosystem and random

oracles. We used AES-CBC and SHA1 for symmetric encryption and hash

functions to instantiate the random oracles. To ensure public confidence, we

utilized the AES and SHA1 modules provided by OpenSSL.

Parameter selection. To instantiate the BGV scheme via the HElib

library, we first determined the basic parameters, such as the security pa-

rameter λ, the multiplicative depth L, and the plaintext space ZM . In our

implementation, we set λ = 80, L = 5, and M = 215. As stated in Sec-

tion 5.4.3, we used the degree of the cyclotomic polynomial m = 8191 as the

number of plaintext slots N = 630.

Care is required when selecting an extension degree t for the plaintext

space ZM . In general, it is preferable to use a large plaintext space, such as

Z250 , but this causes many performance issues, especially in SHE settings. For

example, if t ≥ 20, then one homomorphic multiplication consumes two or

more levels. Furthermore, performing automorphism operations is no longer

free in the noise estimate, so we selected t = 15.

If the size of the plaintext space ZM becomes small, then the MAC key

(r0, r1) should be small in length. In our case, ⌈log r0⌉ = 7. In this case,

the server might have a problem ensuring the integrity of the decryption d

78

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

since the FPR on user side would be relatively high. To address this problem,

we required that the server send a set of s tags (τ̄0, . . . , τ̄s−1) for d̄, where

τ̄i = ri0 · d̄+ ri1 for uniformly random values ri0, ri1 of small size and for each

i ∈ [s]. By Lemma 1, it is sufficient to choose s such that ℓ ≤ s · ⌈log ri0⌉.

Biometric specification. In our implementation, we used irises as the

input biometric. There is no universally best selection among the various

biometric modalities, but the iris has been shown to be a superior biometric

because of the relatively high accuracy that can be obtained (e.g., see [59,76]).

We represented each iris code as a binary string of 300 bytes. Any wavelet

can be adjusted to the output length of the bit sequence, so the participants

could choose a suitable iris bit size n depending on the server’s environment.

In contrast to the iris matching algorithms found in commercial software,

our matching procedure is performed only once. The matching process must

compensate for misalignment errors due to small rotations, but the overall

performance ultimately depends on the computation of the HD, which can

be executed in parallel.

5.5.1 Micro-experiments

Test datasets. Various public iris databases are available for use in re-

search, such as CASIA-Iris [63]. CASIA-IrisV4 comprises six subsets: CASIA-

Iris-Interval, CASIA-Iris-Lamp, CASIA-Iris-Twins, CASIA-Iris-Distance, CASIA-

Iris-Thousand, and CASIA-Iris-Syn. We used CASIA-Iris-Interval, which com-

prises 2639 iris images from 249 subjects. We employed a public MATLAB

code [61] to extract a binary iris template, where the original code used

an image of the human eye as the input and produced a binary template

with 9600 bits as the output. We modified the code slightly to extract iris

templates with 2400 bits.

Basic operations. As shown in Section 5.4.1, the simplicity of Ghostshell is

attributable to our exclusive use of SHE. Thus, the performance of Ghostshell

is highly dependent on that of SHE. Therefore, our optimization processes

79

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

Table 5.4: Performance using 630-bit biometrics

Operations CPU Time (msec)

Encryption 16.16

Decryption 163.72

Addition 0.05

Multiplication 14.32

Multiplication by constant 0.196

use SIMD and automorphisms extensively to reduce the number of basic

operations, such as homomorphic addition and multiplication. In Table 5.4,

we show the running times required to compute a ciphertext, decipher the

ciphertext, and add and multiply two ciphertexts. Based on this information,

we predicted that the total encryption time required for an iris code was four

times 16.16 milliseconds, i.e., 64.6 milliseconds, which was confirmed by our

experiments. We determined the same results for the other operations with

each value of N . Thus, we predict that the total encryption time for an iris

code is about four times the encryption time for each N , which was also

confirmed by our experiments. We obtained the same results for the other

operations and parameters.

HD circuit evaluation. The most demanding computational operation

is the evaluation of the HD circuit. We measured the run-time required to

compute the HD using the circuit optimized as described in Section 5.4.3.

According to our parameter selection (§??), a SHE ciphertext carries N

plaintext bits at a time. Hence, we only need to retain ⌈2400/N⌉ ciphertexts

for a 2400-bit iris code. For example, if N = 630, then only four ciphertexts

are used to represent a 2400-bit iris code. For N = 630, the evaluation

requires four multiplications and additions, with at most 10 additions and

automorphisms. In our experiments, the average time of 0.37 seconds was

required to compute a HD value between two encrypted iris codes.

We tested various values of N and corresponding values of m where the

80

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

number of ciphertexts retained was determined by N . The experimental re-

sults obtained for these selections of N andm are shown in Figure ??. Each of

the multiple ciphertexts corresponding to an iris code could be processed in-

dependently, so the computation was executed using thread-level parallelism.

However, the results were substantially worse than our expectations based

on the performance measures reported in Table 5.4. The main explanation

for the computational delay is that the HElib library spends much of the

processing time on the noise-control mechanism each time the homomorphic

operations are performed.

Overall performance. In the setup phase, the user (1) runs the key

generation algorithm with the parameters (§??) and (2) sends the public

parameters required for running AES-CBC, SHA1, and our FKA scheme to

the server. Thus, we only describe the case where N = 630 because this

parameter had the best performance among the selected values of N . As a

result, the size of the SHE ciphertexts was 327600 bits with q of 40 bits, the

block length of AES was 128 bits, and the number of SHE ciphertexts per

iris code was κ = 4.

After capturing an image and computing its feature vectors, the user (1)

encrypts the iris feature code x
∗ into x̄

∗ and (2) sends it to the server. This

computation is performed only once and it will continue to be used until re-

enrollment. The delay from encryption was approximately 65 milliseconds.

After receiving the user’s authentication request with x̄, the server (1)

computes the HD distance d̄ = HD(x̄, x̄∗), (2) generates a tag τ̄ using a pair

of randomly chosen keys, and (3) sends the pair of resulting values.

The HD is divided into four chunks, so d̄ comprises four SHE ciphertexts,

with a total size of 327600 bits and their computation required 0.37 seconds.

Note that the server has to perform the homomorphic evaluations after de-

compression. Using the local parameter s = 10 and d̄ := (d̄[0] ‖ · · · ‖ d̄[3]),

the server randomly chooses (ri0[j], ri1[j]) ∈ (Z7)
2 for each i ∈ [9], j ∈ [3].

Next, the server computes τ̄i[j] = ri0[j] · d̄[j]+ri1[j]. The total computational

time was approximately 0.01 seconds and the total bandwidth requirement

81

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

was approximately 6.6 MB. The remaining computational time was signifi-

cantly less than this computational time. Indeed, the total computation time

on the user’s side was approximately 5 milliseconds, and the server’s compu-

tational time for the last verification was about 0.5 milliseconds.

Finally, we observed that different values of N and m had no effects on

the performance in the verification step. When the degree of the cyclotomic

polynomial m was higher, more computations had to be performed on the ci-

phertexts, but the performance did not differ with different choices of (N,m)

because the verification step occurs after decryption.

5.6 Reusable Fuzzy Extractor for the Ham-

ming Distance

Until now, biometric information is stored in the ciphertext form. However,

my concern is the secret key for homomorphic encryption is also stored in the

same data storage. Thus, if a secret key is leaked, then every biometric infor-

mation is also leaked, which implies that security of biometric information

also depends on the secret key of homomorphic encryption. In this sense, a

technique for generating the same secret key from similar input is necessary

and fuzzy extractor can achieve this goal.

Fuzzy extractors [36] extracts a uniformly random R from an input and

it is error-tolerant; the same random R is generated whenever new input is

not quite different from original input. In the recent Eurocrypt, Canetti et al.

proposed a reusable fuzzy extractor [20] that is secure even though original

input have been used multiple times. Therefore, if we take a biometric data

as an input, a person can register many unrelated service providers with his

biometric.

82

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

5.6.1 Insecurity of Previous Reusable Fuzzy Extractor

The drawback of Canetti’s reusable fuzzy extractor we found out is the too-

high false accept ratio(FAR), that is, the random number we want to keep

secret is easily obtained by an adversary even though he/she do not have a

close query to the legitimate input. Here is a theorem explaining the draw-

back.

Theorem 5.6.1. Let M = {0, 1}n be the input space of Canetti’s reusable

fuzzy extractor with parameters n, ℓ, γ, δ, k, t as in Parameter Setting. For

an input W = w1 . . . wn, let (r, p) ← Gen(W). If an adversary have a query

input W ′ = w′
1 . . . w

′
n with HD(W,W ′) = d > t, the FAR is at least 1/2 under

the assumption δ ≤ 1/4 and
(
1−

(
1− t

n

)k)ℓ
≈ δ/2.

Proof. Using the information about p, we can get v′i for 1 ≤ i ≤ ℓ. Then,

since the probability that vi 6= v′i for each i is 1 − (1 − d
n
)k, the probability

there exists i such that vi = v′i is

1−

(
1−

(
1−

d

n

)k
)ℓ

,

which has a maximum at d = t+ 1. Thus the FAR δ2 is

δ2 = 1−

(
1−

(
1−

t+ 1

n

)k
)ℓ

.

From the approximation ex ≈ 1 + x, we can approximate it as

δ2 ≈ 1− exp(−ℓe−
(t+1)k

n) ≈ 1−

(
δ

2

)e−
k
n

.

Note that we may assume k ≤ n without loss of generality, which leads to

the following inequality

1−
δ

2
≥ 1−

(
δ

2

)e−
k
n

(≈ δ2) ≥ 1−

(
δ

2

)e−1

≥ 1−

(
1

8

) 1
3

=
1

2
,

meaning the FAR is at least 1/2 as we mentioned above.

83

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

Theorem 5.6.2. Let M = {0, 1}n be the input space of Canetti’s reusable

fuzzy extractor with parameters n, ℓ, γ, δ = 2−λ, k, t as in Parameter Set-

ting. For an input W = w1 . . . wn, let (r, p) ← Gen(W). If an adversary

have a query input W ′ = w′
1 . . . w

′
n with dis(W,W ′) = d > t, the probability

that rep(W ′) recovers r is at least 1 − 2−(λ+1)e−(d−t)
under the assumption(

1−
(
1− t

n

)k)ℓ
≈ δ/2.

Proof. Using the information about p, we can get v′i for 1 ≤ i ≤ ℓ. Then,

since the probability that vi 6= v′i for each i is 1 − (1 − d
n
)k, the probability

there exists i such that vi = v′i is

1−

(
1−

(
1−

d

n

)k
)ℓ

,

which has a maximum at d = t + 1. Thus the probability δ2 that rep(W ′)

recovers r is

δ2 = 1−

(
1−

(
1−

d

n

)k
)ℓ

.

From the approximation ex ≈ 1 + x, we can approximate it as

δ2 ≈ 1− exp(−ℓe−
dk
n) ≈ 1−

(
δ

2

)e−
(d−t)k

n

.

Note that we may assume k ≤ n without loss of generality, which leads to

the following inequality

1−
δ

2
≥ 1−

(
δ

2

)e−
(d−t)k

n

(≈ δ2) ≥ 1−

(
δ

2

)e−(d−t)

≥ 1− 2−(λ+1)e−(d−t)

.

5.6.2 Revising Reusable Fuzzy Extractor

In Section 5.6.1, we find out the quality of Canetti’s reusable fuzzy extrac-

tors is low, that is, an adversary who does not have legitimate input can also

84

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

obtain the secret random number with probability more than 1/2. This sec-

tion addresses the main idea of reducing false accept rate and enhancing the

quality of previous reusable fuzzy extractors. Moreover, we give an analysis

of our proposal.

5.6.3 Revising Idea

As you can see in Algorithm, a random secret number is revealed when one

random subset is equal to the original random subset. Moreover, the message

space is Z2 and thus the probability of the coincidence is not low as expected,

which implies an adversary could get the secret random number with more

than half probability.

To overcome this shortcoming, we employ Shamir’s secret sharing [69]

which distributes a secret to participants, each of whom is allocated a share

of the secret. The secret can be recovered only if a sufficient number of

shares are combined together and individual shares are of no use on their

own. In our case, a secret random number is distributed to each random

subset which plays a participant role. Then, the secret random number can

be reconstructed only when some random subsets coincide and due to se-

cret sharing, we can expect reusable fuzzy extractors with combining Shamir

secret sharing have a better quality than before. By the property of biomet-

rics, templates which is made from extracting biometric is almost the same,

but there also exists a slightly difference. Even though iris templates which

can be expressed into a bit string are extracted from the same person, the

hamming distance of two iris templates is not zero. Thus, two random subset

which comes from two iris template, respectively, may not be the same even

if two random subsets are indicated the same position. In this sense, we apply

Shamir’s (n, τ)-threshold scheme instead of the secret sharing where τ < n.

It makes our construction is still error-tolerant.

85

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

5.6.4 Our Construction

In this section, we give our concrete construction of reusable fuzzy extractors

which combine Shamir’s secret sharing. Since our construction is based on

Canetti’s scheme and digital lockers, the form is almost the same except

distributing a secret. Moreover, parameter setting forM, n, ℓ is also the same

as before, but additional parameters p and τ are required in our construction.

Concrete parameter setting for p and τ will be dealt in the next section. Our

proposed Gen algorithm can be seen in Algorithm 5.5.

Revising Gen

Input: W = w1 . . . wn

1. Sample r
$
←− Zp and aj

$
←− Zp for 1 ≤ j ≤ τ − 1

2. Set a(x)← r +
∑

ajx
j mod p

3. For i = 1, . . . , ℓ

(i) Sample xi
$
←− Zp and set yi ← a(xi)

(ii) choose uniformly ji,m
$
←− {1, . . . , n} for each

1 ≤ m ≤ k

(iii) vi ← wji,1 . . . wji,k

(iv) ci ← lock(vi, yi)

(v) pi ← ci, (ji,1, . . . , ji,k)

4. Output (r, p) where p = p1 . . . pℓ

Algorithm 5.5: Gen of Revising Reusable Fuzzy Extractors

As you can see in Algorithm 5.5, our construction employs Shamir’s (ℓ, τ)-

threshold scheme, that is to say, among ℓ subsets, one who can generate at

least τ the same subsets can only recover the secret. Line 3.(i) of Algo-

rithm 5.5 implies distributing a secret yi to each subset and in line 3.(iii) of

Algorithm 5.5, an allocated secret yi is encrypted via digital lockers with a

random subset vi as a secret key.

We give reproducing algorithm Rep which is modified for Shamir’s thresh-

old scheme. Our construction can be seen in Algorithm 5.6.

86

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

Revising Rep

Input: W ′ = w′
1 . . . w

′
n, p = p1 . . . pℓ

1. For i = 1, . . . , ℓ

(i) Parse pi as ci, (ji,1, . . . , ji,k)

(ii) v′i ← w′
ji,1

. . . w′
ji,k

(iii) yi ← unlock(v′i, c)

If yi 6=⊥, then output yi.

2. Recover r from {(xi, yi)}

3. Output r

Algorithm 5.6: Rep of Revising Reusable Fuzzy Extractors

Since a(x) has τ−1 unknown coefficients, anyone who knows more than τ

input and corresponding evaulation value can recover all coefficients of a(x)

by polynomial reconstruction and then one can recover r. For this reason, if

one can successfully unlock more than τ times, then one can also find a(x)

and then r. (See line 1.(iii) and line 2 of Algorithm 5.6.)

5.6.5 Analyisis

In this subsection, we figure out some conditions to get desired FRR and

FAR. Since the highest probability that the secret random number r is not

recovered by a legitimate user occurs when the distance HD(W,W ′) is just

the threshold t, let us assume HD(W,W ′) = t to consider the FRR and X

be the cardinality of a set {1 ≤ i ≤ ℓ : vi = v′i} where v′i comes from W ′ and

p in the Rep phase. Then X is a bionomially distributed random variable,

more precisely, we can denote X ∼ B(ℓ, p1) where p1 =
(
1− t

n

)k
. Finally, we

have an upper bound for the FRR as following:

FRR = Pr(X ≤ τ) ≤ exp

(
−2 ·

(ℓp1 − τ)2

ℓ

)
,

or

FRR = Pr(X ≤ τ) ≤ exp

(
−

1

2p1
·
(ℓp1 − τ)2

ℓ

)
,

87

CHAPTER 5. ALGORITHMS FOR INTEGRITY-BASED HOMOMORPHIC

EVALUATIONS

where the first inequality comes from the Hoeffding’s inequality and the sec-

ond comes from the Chernoff’s inequality.

To consider the FAR, assume HD(W,W ′) = t+ 1 and let X be the same

as the above, that is, X = |{1 ≤ i ≤ ℓ : vi = v′i}|. In this time, X is

binomially distributed from B(ℓ, p2) where p2 =
(
1− t+1

n

)k
. Moreover, if we

define Y = ℓ − X , Y is a random variable for the number of i such that

vi 6= v′i and it is also binomially distributed from B(ℓ, 1 − p2). Thus we get

an upper bound for the FAR as following:

FAR = Pr(X > τ) = Pr(ℓ− Y > τ) = Pr(Y ≤ ℓ− τ − 1)

≤ exp

(
−2 ·

(ℓ(1− p2)− (ℓ− τ − 1))2

ℓ

)

= exp

(
−2 ·

(τ + 1− ℓp2)
2

ℓ

)

by the Hoeffding’s inequality, or

FAR ≤ exp

(
−

1

2p2
·
(τ + 1− ℓp2)

2

ℓ

)

by the Chernoff’s inequality.

Thus, if we choose parameters such that these upper bounds of FRR and

FAR are sufficiently small simultaneously, then we can obtain a reusable fuzzy

extractor with good quality. We are expecting we can take such parameters

soon although having not found these yet.

88

Chapter 6

Conclusion

Applying homomorphic encryption to the database is starting point of this

thesis. Database stores many information and if database are gathered, one

can find out more information than the stored data. In order to protect,

data should be encrypted when it stores and then anyone who can access

database cannot learn any information from the encrypted data. However,

for databases usefulness, database should provide database queries and thus

homomorphic encryption is necessary to execute requested query being en-

crypted.

At first, I suggest an algorithm for homomorphic integer division. Al-

though homomorphic encryption enables to add and multiply two cipher-

texts, a division cannot be executed and a division can be widely used in

the database queries. To solve this problem, I employ continued fraction to

represent a rational number and restoring division algorithm to compute a

quotient of two integers. As a result, we can divide two ciphertexts being

encrypted.

Second, I propose an algorithm for homomorphic comparison over the real

numbers. Similarly, I employ continued fraction to represent a real number

to a set of integers and fortunately, comparing two continued fractions is also

easy as much as a decimal representation. Thus, I translate this algorithm to

the ciphertext domain and I can present concrete algorithms. Furthermore,

89

CHAPTER 6. CONCLUSION

it can be utilized to the database sorting and private database queries such

as retrieval queries and aggregate queries.

Finally, I propose an algorithm for integrity of homomorphic evaluations.

When a data consumer is interested in the result, he will need a proof of

correct decryption and I can solve this problem with one-time message au-

thentication code (MAC). My proposal tag function is optimized because it

only uses an addition and a multiplication. In addition, I suggest more secure

algorithm using message encoding and discrete logarithm in order to prevent

a data consumer from having a decryption oracle and it can be applied to

the biometric authentication protocol.

I have implemented such algorithms using HElib and my code is uploaded

in http://github.com/heewon-chung/. I would be delighted if my thesis

helps a little bit in the development of homomorphic encryption and database

security.

90

Bibliography

[1] FIDO alliance. https://fidoalliance.org.

[2] http://www.reuters.com/article/2015/09/23.

[3] R. Agrawal, D. Asonov, and R. Srikant. Enabling sovereign informa-

tion sharing using web services. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Paris, France, June

13-18, 2004, pages 873–877, 2004.

[4] ARM. Building a secure system using TrustZone technology. In

http://www.arm.com, 2009.

[5] M. Blanton and M. Aliasgari. Secure outsourced computation of iris

matching. Journal of Computer Security, 2012.

[6] M. Blanton and P. Gasti. Secure and efficient protocols for iris and

fingerprint identification. In ESORICS, pages 190–209, 2011.

[7] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu. Private database

queries using somewhat homomorphic encryption. In Applied Cryptogra-

phy and Network Security - 11th International Conference, ACNS 2013,

Banff, AB, Canada, June 25-28, 2013. Proceedings, pages 102–118, 2013.

[8] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas on ci-

phertexts. In Theory of Cryptography, Second Theory of Cryptography

Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005,

Proceedings, pages 325–341, 2005.

91

BIBLIOGRAPHY

[9] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zim-

merman. Semantically secure order-revealing encryption: Multi-input

functional encryption without obfuscation. In Advances in Cryptology

- EUROCRYPT 2015 - 34th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,

April 26-30, 2015, Proceedings, Part II, pages 563–594, 2015.

[10] J. Bos, K. Lauter, and M. Naehrig. Private predictive analysis on en-

crypted medical data. Journal of Biomedical Informatics, 50:234–243,

2014.

[11] J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig. Improved se-

curity for a ring-based fully homomorphic encryption scheme. In

M. Stam, editor, IMA International Conference on Cryptography and

Coding (IMACC) 2013, volume 8308 of LNCS, pages 45–64. Springer,

2013.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homo-

morphic encryption without bootstrapping. In ITCS, pages 309–325,

2012.

[13] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic en-

cryption from (standard) LWE. In FOCS, pages 97–106, 2011.

[14] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption

from ring-LWE and security for key dependent messages. In Advances

in Cryptology–Crypto, pages 505–524, 2011.

[15] J. Bringer, H. Chabanne, M. Favre, A. Patey, T. Schneider, and

M. Zohner. GSHADE: faster privacy-preserving distance computation

and biometric identification. In IH & MMSec, pages 187–198, 2014.

[16] J. Bringer, H. Chabanne, and A. Patey. Practical identification with

encrypted biometric data using oblivious RAM. In ICB, pages 1–8,

2013.

92

BIBLIOGRAPHY

[17] J. Bringer, H. Chabanne, and A. Patey. SHADE: Secure HAmming

DistancE computation from oblivious transfer. In FC, pages 164–176,

2013.

[18] J. Bringer, M. Favre, H. Chabanne, and A. Patey. Faster secure compu-

tation for biometric identification using filtering. In ICB, pages 257–264,

2012.

[19] R. Canetti and R. R. Dakdouk. Obfuscating point functions with multi-

bit output. In Advances in Cryptology - EUROCRYPT 2008, 27th An-

nual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Proceedings, pages 489–508, 2008.

[20] R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. D. Smith. Reusable

fuzzy extractors for low-entropy distributions. In Advances in Cryptology

- EUROCRYPT 2016 - 35th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, pages 117–146,

2016.

[21] O. Catrina and A. Saxena. Secure computation with fixed-point num-

bers. In Financial Cryptography and Data Security, pages 35–50, 2010.

[22] G. S. Çetin, Y. Doröz, B. Sunar, and E. Savas. Depth optimized efficient

homomorphic sorting. In Progress in Cryptology - LATINCRYPT 2015 -

4th International Conference on Cryptology and Information Security in

Latin America, Guadalajara, Mexico, August 23-26, 2015, Proceedings,

pages 61–80, 2015.

[23] A. Chatterjee, M. Kaushal, and I. Sengupta. Accelerating sorting of fully

homomorphic encrypted data. In Progress in Cryptology - INDOCRYPT

2013 - 14th International Conference on Cryptology in India, Mumbai,

India, December 7-10, 2013. Proceedings, pages 262–273, 2013.

[24] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu. Practical order-

revealing encryption with limited leakage. In Fast Software Encryption

93

BIBLIOGRAPHY

- 23rd International Conference, FSE 2016, Bochum, Germany, March

20-23, 2016, Revised Selected Papers, pages 474–493, 2016.

[25] J. H. Cheon, M. Kim, and M. Kim. Search-and-compute on encrypted

data. In WAHC, LNCS 8976, pages 1–18, 2015.

[26] J. H. Cheon, M. Kim, and M. Kim. Optimized search-and-compute

circuits and their application to query evaluation on encrypted data.

IEEE Trans. Information Forensics and Security, 11(1):188–199, 2016.

[27] H. Chung. http://github.com/heewon-chung/cfhe.

[28] H. Chung and M. Kim. Encoding rational numbers for fhe-based appli-

cations. IACR Cryptology ePrint Archive, 2016:344, 2016.

[29] J. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic

encryption over the integers with shorter public keys. In P. Rogaway,

editor, Advances in Cryptology - CRYPTO 2011, volume 6841 of LNCS,

pages 487–504. Springer, 2011.

[30] J. Coron, D. Naccache, and M. Tibouchi. Public key compression and

modulus switching for fully homomorphic encryption over the integers.

In Advances in Cryptology–Eurocrypt, pages 446–464, 2012.

[31] A. Costache, N. Smart, V. Vivek, and A. Waller. Fixed point arithmetic

in SHE scheme. In IACR Cryptology ePrint Archive, volume 2016, page

250, 2016.

[32] G. Couteau. Efficient secure comparison protocols. IACR Cryptology

ePrint Archive, 2016:544, 2016.

[33] I. Damg̊ard, M. Geisler, and M. Krøigaard. Efficient and secure com-

parison for on-line auctions. In ACISP, pages 416–430, 2007.

[34] V. Dimitrov, L. Kerik, T. Krips, J. Randmets, and J. Willemson. Al-

ternative implementations of secure real numbers. In ACM CCS, pages

553–564, 2016.

94

BIBLIOGRAPHY

[35] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. D. Smith. Fuzzy extractors:

How to generate strong keys from biometrics and other noisy data. SIAM

J. Comput., 38(1):97–139, 2008.

[36] Y. Dodis, L. Reyzin, and A. D. Smith. Fuzzy extractors: How to gen-

erate strong keys from biometrics and other noisy data. In Advances

in Cryptology - EUROCRYPT 2004, International Conference on the

Theory and Applications of Cryptographic Techniques, pages 523–540,

2004.

[37] L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic en-

cryption in less than a second. In E. Oswald and M. Fischlin, editors,

Advances in Cryptology - EUROCRYPT 2015, volume 9056 of LNCS,

pages 617–640. Springer, 2015.

[38] F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed by

order-revealing encryption? In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, Vienna, Aus-

tria, October 24-28, 2016, pages 1155–1166, 2016.

[39] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and

T. Toft. Privacy-preserving face recognition. In Privacy Enhancing

Technologies, 9th International Symposium, PETS 2009. Proceedings,

pages 235–253, 2009.

[40] M. Franz, B. Deiseroth, K. Hamacher, S. Jha, S. Katzenbeisser, and

H. Schröder. Secure computations on non-integer values. In WIFS,

pages 1–6, 2010.

[41] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters.

Candidate indistinguishability obfuscation and functional encryption for

all circuits. In FOCS, pages 40–49, 2013.

[42] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC,

pages 169–178, 2009.

95

BIBLIOGRAPHY

[43] O. Goldreich. The foundations of cryptography: Volume 2–Basic Appli-

cations. Cambridge University Press, 2004.

[44] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst.

Sci., 28(2):270–299, 1984.

[45] R. Gosper. Continued fraction arithmetic. In HAKMEM Item 101B,

MIT Artificial Intelligence Memo 239, 1972.

[46] T. Graepel, K. Lauter, and M. Naehrig. ML confidential: Machine learn-

ing on encrypted data. In ICISC, volume 7839, pages 1–21, 2013.

[47] S. Halevi and V. Shoup. HElib-An implementation of homomorphic

encryption.

[48] G. Hardy and E. Wright. An Introduction to the Theory of Numbers.

Clarendon Press, 1979.

[49] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party

computation using garbled circuits. In USENIX Security Symposium,

2011.

[50] IEEE Std 754-2008. IEEE standard for floating-point arithmetic. Stan-

dard, Microprocessor Standards Committee of the IEEE Computer So-

ciety, 2008.

[51] A. Jarrous and B. Pinkas. Secure Hamming distance based computation

and its applications. In ACNS, pages 107–124, 2009.

[52] A. Jäschke and F. Armknecht. Accelerating homomorphic computations

on rational numbers. In ACNS, pages 405–423, 2016.

[53] C. Karabat, M. Kiraz, H. Erdogan, and E. Savas. THRIVE: threshold

homomorphic encryption based secure and privacy preserving biometric

verification system. EURASIP J. Adv. Sig. Proc., 2015(71), 2015.

96

BIBLIOGRAPHY

[54] F. Kerschbaum, M. Atallah, D. M’Räıhi, and J. Rice. Private fingerprint

verification without local storage. In ICBA, pages 387–394, 2004.

[55] N. Kingsbury and P. Rayner. Digital filtering using logarithmic arith-

metic. Electronic Letters, 7(2):56–58, 1971.

[56] R. Kulkarni and A. M. Namboodiri. Secure hamming distance based

biometric authentication. In International Conference on Biometrics,

ICB 2013, pages 1–6, 2013.

[57] K. Lewi and D. J. Wu. Order-revealing encryption: New construc-

tions, applications, and lower bounds. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, Vi-

enna, Austria, October 24-28, 2016, pages 1167–1178, 2016.

[58] Y. Liu, Y. Chiang, T. Hsu, C. Liau, and D. Wang. Floating point

arithmetic protocols for constructing secure data analysis application.

In KES, pages 152–161, 2013.

[59] T. Mansfield. Biometric authentication in the real world.

http://www.npl.co.uk/biometrics.

[60] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun.

Secure enrollment and practical migration for mobile trusted execution

environments. In SPSM, pages 93–98, 2013.

[61] L. Masek and P. Kovesi. MATLAB source code for a biometric identi-

fication system based on iris patterns. The School of Computer Science

and Software Engineering, The University of Western Australia. 2003.,

2003.

[62] NIST. SHA-3 standard: Permutation-based hash and extendable-output

functions. In FIPS 202, 2015.

[63] C. A. of Science-Institute of Automation. CASIA iris database.

http://biometrics.idealtest.org.

97

BIBLIOGRAPHY

[64] OpenMP Architecture Review Board. OpenMP application program

interface version 3.0, May 2008.

[65] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI: A sys-

tem for secure face identification. In IEEE Symposium on Security and

Privacy, pages 239–254, 2010.

[66] P. Pullonen and S. Siim. Combining secret sharing and garbled circuits

for efficient private IEEE 754 floating-point computations. In Financial

Cryptography and Data Security - FC 2015 International Workshops,

BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30,

2015, Revised Selected Papers, pages 172–183, 2015.

[67] N. Ratha, J. Connell, and R. Bolle. Enhancing security and privacy

in biometrics-based authentication systems. IBM Systems Journal,

40(3):614–634, 2001.

[68] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM, 21(2):120–

126, 1978.

[69] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613,

1979.

[70] V. Shoup. NTL-A library for doing number theory. 2009.

[71] G. Simmons. Authentication theory/coding theory. In Advances in

Cryptology–Crypto, pages 411–431, 1984.

[72] N. Smart and F. Vercauteren. Fully homomorphic SIMD operations.

Cryptology ePrint Archive, 133, 2011.

[73] N. Smart and F. Vercauteren. Fully homomorphic SIMD operations.

Designs, Codes and Cryptography, 71(1):57–81, 2014.

98

BIBLIOGRAPHY

[74] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches

on encrypted data. In 2000 IEEE Symposium on Security and Privacy,

Berkeley, California, USA, May 14-17, 2000, pages 44–55, 2000.

[75] E. Tabassi, P. Grother, and W. Salamon. IREX II-IQCE Iris quality

calibration and evaluation performance of iris image quality assessment

algorithms. NIST Interagency Report 7820. 2011.

[76] S. Thavalengal, P. Bigioi, and P. Corcoran. Iris authentication in hand-

held devices - considerations for constraint-free acquisition. IEEE Trans.

Consumer Electronics, 61(2):245–253, 2015.

[77] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully ho-

momorphic encryption over the integers. In Advances in Cryptology–

Eurocrypt, pages 24–43, 2010.

99

국문초록

동형 암호는 복호화를 수행하지 않더라도 암호문 간의 연산을 가능하게

해주기 때문에 최근에 주목을 받고있는 암호 시스템이다. 이러한 이유로 여러

분야에서 동형암호를 활용하기 위해 많은 연구들이 이뤄지고 있는데, 본 학위

논문에서는데이터베이스에동형암호를접목시키는것에초점을두고연구를

하였다.

나눗셈은우리실생활에서많이쓰이는연산이기때문에상당히중요한연

산 중 하나이지만, 아직까지 동형 암호에서 나눗셈에 대한 연산을 지원해주고

있지 않다. 본 학위 논문에서는 이를 해결하기 위해 연분수를 도입하여 동형

암호를 활용한 정수 나눗셈에 대해서 연구를 하였다.

한편,현재까지알려진동형암호들은정수만을평문으로할수있기때문에

실수로 이뤄져있는데이터베이스에대해서 암호화를하기 위해서는어려움이

많았다. 하지만 마찬가지로 연분수 개념을 적용하여 실수를 작은 정수들로 표

시하고, 각 정수들을 암호화하는 방법을 통해 실수를 암호화하였다. 게다가

연분수로 표현된 암호화된 실수에 대해서 동형 암호 기반 상등 그리고 비교

대소에 대한 알고리즘을 제시했다. 그리고 제안한 알고리즘을 기반으로 가장

많이 쓰이는 쿼리에 적용시킬 수 있었고, 그 결과 데이터베이스가 실수로 이

뤄져있더라도 안전한 서비스를 제공할 수 있음을 확인했다.

마지막으로데이터소유주가아닌데이터베이스관리자가계산한결과값을

알아야하는 경우 메세지 인증 코드를 이용하여 데이터 소유주가 제대로 복호

화를 해서 관리자에게 전송을 했는지 확인하는 알고리즘에 대해서도 제안을

했다. 그리고 제안한 알고리즘을 바탕으로 생체인증을 기반으로 하는 안전한

인증 프로토콜을 설계하였다.

주요어휘: 동형 암호, 연분수, 실수연산, 데이터베이스 쿼리, 생체인증

학번: 2013-30900

	1 Introduction
	1.1 Overview and Contributions
	1.1.1 Homomorphic Integer Division
	1.1.2 Homomorphic Comparisons over the Real Numbers
	1.1.3 Integrity of Homomorphic Evaluations

	2 Preliminaries
	2.1 Notation
	2.2 Continued Fraction
	2.3 Homomorphic Encryption
	2.4 Homomorphic Comparisons over the Integers
	2.4.1 Equality Circuit over the Integers
	2.4.2 Greater-Than and Less-Than Circuits over the Integers

	2.5 Fuzzy Extractor
	2.5.1 Reusable Fuzzy Extractor

	3 Algorithms for Homomorphic Integer Division
	3.1 Overview and RelatedWorks
	3.2 Restoring Division Algorithm
	3.3 Homomorphic Integer Division
	3.3.1 Algorithm
	3.3.2 Efficiency

	3.4 Homomorphic Arithmetics over the Polynomials
	3.4.1 Description

	4 Algorithms for Homomorphic Comparisons over the Real Numbers
	4.1 Overview and Related Works
	4.2 Comparing Two Continued Fractions
	4.2.1 Our Idea: Comparing Two CFs in the Clear

	4.3 EqualityCircuit
	4.3.1 Construction
	4.3.2 Complexity

	4.4 Greater-Than and Less-Than
	4.4.1 Construction
	4.4.2 Complexity

	4.5 Implementation
	4.5.1 Environment
	4.5.2 Scheme Parameters
	4.5.3 Experimental Results and Comparisons

	4.6 Applications to Database Service
	4.6.1 Sorting
	4.6.2 Private Database Queries

	5 Algorithms for Integrity-based Homomorphic Evaluations
	5.1 Overview and RelatedWorks
	5.2 Models and Settings
	5.2.1 System Model and Participants
	5.2.2 Threat Model
	5.2.3 Security Model

	5.3 Integrity of Homomorphic Evaluations
	5.3.1 Message Authentication Code
	5.3.2 Protocol Constructions
	5.3.3 Security Proof

	5.4 Application to Biometric Authentication
	5.4.1 How Ghostshell Works
	5.4.2 Analysis
	5.4.3 Optimization

	5.5 Implementation
	5.5.1 Micro-experiments

	5.6 Reusable Fuzzy Extractor for the Hamming Distance
	5.6.1 Insecurity of Previous Reusable Fuzzy Extractor
	5.6.2 Revising Reusable Fuzzy Extractor
	5.6.3 Revising Idea
	5.6.4 Our Construction
	5.6.5 Analyisis

	6 Conclusion
	Abstract (in Korean)

<startpage>10
1 Introduction 1
 1.1 Overview and Contributions 2
 1.1.1 Homomorphic Integer Division 2
 1.1.2 Homomorphic Comparisons over the Real Numbers 4
 1.1.3 Integrity of Homomorphic Evaluations 6
2 Preliminaries 9
 2.1 Notation 9
 2.2 Continued Fraction 9
 2.3 Homomorphic Encryption 14
 2.4 Homomorphic Comparisons over the Integers 16
 2.4.1 Equality Circuit over the Integers 16
 2.4.2 Greater-Than and Less-Than Circuits over the Integers 17
 2.5 Fuzzy Extractor 18
 2.5.1 Reusable Fuzzy Extractor 19
3 Algorithms for Homomorphic Integer Division 22
 3.1 Overview and RelatedWorks 22
 3.2 Restoring Division Algorithm 24
 3.3 Homomorphic Integer Division 27
 3.3.1 Algorithm 28
 3.3.2 Efficiency 29
 3.4 Homomorphic Arithmetics over the Polynomials 31
 3.4.1 Description 31
4 Algorithms for Homomorphic Comparisons over the Real Numbers 33
 4.1 Overview and Related Works 33
 4.2 Comparing Two Continued Fractions 37
 4.2.1 Our Idea: Comparing Two CFs in the Clear 37
 4.3 EqualityCircuit 39
 4.3.1 Construction 40
 4.3.2 Complexity 40
 4.4 Greater-Than and Less-Than 41
 4.4.1 Construction 41
 4.4.2 Complexity 42
 4.5 Implementation 44
 4.5.1 Environment 44
 4.5.2 Scheme Parameters 45
 4.5.3 Experimental Results and Comparisons 46
 4.6 Applications to Database Service 48
 4.6.1 Sorting 48
 4.6.2 Private Database Queries 49
5 Algorithms for Integrity-based Homomorphic Evaluations 54
 5.1 Overview and RelatedWorks 54
 5.2 Models and Settings 57
 5.2.1 System Model and Participants 57
 5.2.2 Threat Model 57
 5.2.3 Security Model 58
 5.3 Integrity of Homomorphic Evaluations 59
 5.3.1 Message Authentication Code 59
 5.3.2 Protocol Constructions 60
 5.3.3 Security Proof 63
 5.4 Application to Biometric Authentication 72
 5.4.1 How Ghostshell Works 72
 5.4.2 Analysis 73
 5.4.3 Optimization 74
 5.5 Implementation 79
 5.5.1 Micro-experiments 80
 5.6 Reusable Fuzzy Extractor for the Hamming Distance 83
 5.6.1 Insecurity of Previous Reusable Fuzzy Extractor 84
 5.6.2 Revising Reusable Fuzzy Extractor 85
 5.6.3 Revising Idea 86
 5.6.4 Our Construction 87
 5.6.5 Analyisis 88
6 Conclusion 90
Abstract (in Korean) 100
</body>

