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Abstract 
 

Department of Physics and Astronomy  

 

Doctor of Philosophy 

 
Synthesis of large monolayer MoS2 film and 

its application to field-effect transistors 
 

Tae-Young Kim 
 

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained 

considerable attention as an emerging semiconductor due to their promising 

atomically thin film characteristics with good field-effect mobility and a tunable 

bandgap energy. Among TMDC materials, molybdenum disulfide (MoS2) has gained 

significant attention due to its direct bandgap of 1.8 eV as a single layer. Herein, 

numerous studies have explored the application of MoS2 in nanoelectronic devices. 

To make full use of its unique optical and electrical merits in practical applications, 

however, synthesis of large and uniform monolayer MoS2 is highly necessary. In this 

regard, a chemical vapor deposition (CVD) technique has been intensively used to 

produce large and uniform monolayer MoS2.  

Meanwhile, their electronic applications have been generally realized with 

conventional inorganic electrodes and dielectrics implemented using conventional 

photolithography or transferring processes that are not compatible with large-area 

and flexible device applications. To facilitate the advantages of 2D TMDCs in 

practical applications, novel strategies for realizing flexible and transparent 2D 

electronics using low-temperature, large-area, and low-cost processes should be 

developed. Here, in this dissertation, the study on the atomically thin MoS2 synthesis 

and its application to FETs will be discussed. 

First, the effect of irradiation on MoS2 FETs with 10 MeV high energy proton 

beams will be discussed. The electrical characteristics of the devices were measured 

before and after proton irradiation with different fluence conditions. The electrical 

changes were explained by the proton-irradiation-induced traps, including positive 
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oxide-charge traps in the SiO2 layer and trap states at the interface between the MoS2 

channel and the SiO2 layer. 

Second, the CVD synthesis of large and monolayer MoS2 film will be discussed. 

The predominantly monolayer character of the CVD-grown MoS2 film was verified 

by atomic force microscopy (AFM), Raman, and photoluminescence (PL) 

spectroscopy measurements. 

Third, the electrical properties of synthesized large-area monolayer MoS2 field-

effect transistors with low-cost inkjet-printed Ag electrodes will be discussed. The 

monolayer MoS2 film was grown by CVD method, and the top-contact Ag 

source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-

on-demand inkjet-printing process without any masks and surface treatments. The 

electrical characteristics of FETs were comparable to those fabricated by 

conventional deposition methods such as photo or electron beam lithography.  

Last, the fully printed transparent CVD-synthesized monolayer MoS2 

phototransistor arrays on flexible polymer substrates will be discussed. All the 

electronic components, including dielectric and electrodes, were directly deposited 

with mechanically tolerable organic materials by inkjet-printing technology onto 

transferred monolayer MoS2. By integrating the soft organic components with ultra-

thin MoS2, the fully printed MoS2 phototransistors exhibits excellent transparency 

and mechanically stable operation. 

 

Keyword : MoS2, field-effect transistor, electrical characteristics, chemical vapor 

synthesis   

Student Number : 2013-30113 
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1. Introduction 

1.1. Graphene and 2D materials 

Graphene has been highly favored due to its fascinating properties such as high 

mechanical strength, small thickness, and flexibility, etc. Most of all, due to its 

extremely high electrical mobility, graphene has been studied for next-generation 

electronic components [1–3]. However, graphene has a critical shortcoming to be 

used as a channel layer, because it does not have band gap energy intrinsically. So, 

in order to overcome this, researchers tried to dope graphene chemically or fabricated 

nano-ribbon shape graphene to open a band gap artificially [4]. Though the band gap 

can be induced in specially-treated graphene, electrical properties like mobility are 

reduced to be fully utilized as an electronic device. 

 

1.2. Molybdenum disulfide (MoS2) 

After knowing the interesting features of 2-dimensional (2D) materials by 

graphene, researchers tried to find another 2D materials which can be used in 

electronics. In this sense, transition metal dichalcogenides (TMDCs) which are 

composed of three atoms– one from transition metals, and the other two from the 

oxygen-group elements (chalcogen)– have been studied [5]. These TMDC materials 

have a covalent bonding in-plane direction, and weak Van der Waals bonding in out-

of-plane direction. So, it can be easily exfoliated using sticky tape. Among many 

TMDCs, molybdenum disulfide (MoS2) channel field-effect transistors (FETs) have 

been studied widely. MoS2 FETs have many good characteristics such as high 

mobility, On/Off ratio, thin layer and tunable band gap energy according to its 

thickness [6]. 
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2. Proton beam irradiation effect on atomically thin MoS2 

field-effect transistors 

 

2.1. Introduction 

Recently, two-dimensional (2D) transition-metal dichalcogenide (TMD) 

materials have gained significant attention due to their potential applications in 

atomic-film devices [1–4]. Graphene, one of the most popular of these 2D materials, 

has been widely studied but has limited utility as a semiconductor because it lacks 

an energy band gap [5]. Unlike graphene, TMD materials such as MoS2, MoSe2, and 

WSe2, possess a band gap and semiconducting properties [6–8]. In particular, 

molybdenum disulfide (MoS2) has an indirect band gap of 1.2 eV as a bulk material 

and a direct band gap of 1.8 eV as a single layer [4, 8]. Numerous studies have 

explored the application of 2D TMD materials in nanoelectronic devices because of 

their semiconducting properties [9–14]. For example, researchers have demonstrated 

that MoS2-based field effect transistor (FET) devices have outstanding electrical 

characteristics; single-layer MoS2 device exhibits a high mobility (~200 cm2/Vs) 

with near-ideal subthreshold swing down to 74 mV/decade and a high on/off ratio 

(~108) [15].  

 The ability to tailor the electrical properties of MoS2 FETs would provide 

numerous advantages. In particular, to prepare a logic circuit using MoS2, it is 

necessary to control the operation voltage. When trap states are introduced at the 

MoS2 active layer and dielectric layer, the electrical properties of the device, such as 

the current and threshold voltage, are affected by charge trapping to these trap states. 

Attempts to tailor the electrical properties of FET devices made with carbon 

nanotubes [16, 17] or semiconducting nanowires [18, 20] have been made using 

irradiation with high energy particles. Originally, high energy particle beams of 

protons, electrons, or ions were used to impact silicon-based metal-oxide-

semiconductor (MOS) devices in order to modify the electrical properties of the 

devices or investigate the properties under outer space conditions [21–24].  

A few theoretical and experimental studies have investigated the irradiation of 

MoS2 materials with electrons, protons, or heavy ions. Komsa et al. studied the 
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effects of electron beam irradiation on 2D TMD materials using first-principle 

simulations and experimental studies of single-layer MoS2 devices irradiated by 

electron beams in a transmission electron microscope (TEM) operating at 20 keV 

[25]. Ochedowski et al. demonstrated the deterioration of MoS2 FETs following 1.14 

GeV U28+ ion beam irradiation [26]. And, Mathew et al. studied ferromagnetism in 

MoS2 bulk materials following 2 MeV proton beam irradiation [27]. However, a 

comprehensive study of high energy particle beams on MoS2 atomic film-based FET 

devices have not yet been investigated. Therefore, it would be important to 

understand and develop irradiation-mediated engineering in MoS2 FET devices. 

Here, we studied the effect of proton irradiation on MoS2 FET devices prepared 

with a few layers of MoS2 flakes. The devices were irradiated with 10 MeV proton 

beams under fluence conditions of 1012, 1013, and 1014 cm-2, corresponding to beam 

irradiation times of 20, 200, and 2000 seconds, respectively. We systematically 

measured and compared the electrical properties of the devices, including current 

level, conductance, and threshold voltage, before and after proton irradiation for each 

proton beam fluence condition. The changes in the electrical properties of the proton-

irradiated devices can be attributed to irradiation-induced traps, such as positive 

oxide-charge traps in the SiO2 layer and interface trap states.  

 

 

2.2. Experiments 

2.2.1. Device fabrication process   

The multi-layer MoS2 flakes were transferred by 3M Scotch tape to SiO2 on a 

heavily doped p++ Si wafer (resistivity ~5×10-3 Ω∙cm) that can be used as a back 

gate. The MoS2 flakes were transferred onto silicon substrate by the mechanical 

exfoliation using a scotch tape from a bulk MoS2 crystal (purchased from SPI 

Supplies). The location of a MoS2 flake was found using an optical microscope, then 

the MoS2 flake’s height was measured with a NX 10 AFM system (Park Systems). 

In order to make patterns of electrodes, we spin-coated MMA (8.5) MAA (9% 

concentration in ethyl lactate) and PMMA 950K (5% concentration in anisole) at 

4000 rpm for 50 sec. After the two-step spin-coating, the sample was baked at 180 °C 

for 90 s on a hot plate. The electrodes were patterned using an electron beam 
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lithography system (JSM-6510, JEOL) with a 30 kV exposure. For the development 

of pattern, MIBK:IPA (1:3) solution was used with a development time of 50 s.  

 

Figure 2.1 Schematic illustration of device fabrication process. Adapted from Kim 

et al. [43] 

 

The Raman spectroscopic measurements were done with a Raman spectrometer 

(T64000 Horiba Jobin Yvon, at National Center for Inter-University Research 

Facilities) that uses an Ar ion laser (wave length of 514.5 nm) as a source. 

 

Figure 2.2 (a) Optical images showing the fabrication of a MoS2 FET device. (b) 

Schematic illustration of proton beam irradiation on a MoS2 FET device. (c) AFM 

image of the MoS2 FET device with a cross-sectional topographic profile indicated 

by the blue line (MoS2 flake). Red dashed-lines in (a) and (c) indicate MoS2 flakes. 

Adapted from Kim et al. [43] 
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2.2.2. Proton beam irradiation experiment 

The proton beam facility used for this research was the MC-50 cyclotron at the 

Korea Institute of Radiological and Medical Sciences. The proton beam exhibited an 

energy of 10 MeV, an average beam current of 10 nA, and a beam uniformity of 

approximately 90%. Beam irradiation time of 20, 200, and 2000 seconds were 

investigated, corresponding to total fluence (or dose) values, Φ, of ~1012, 1013, and 

1014 cm-2. 

 

2.2.3. Electrical characteristics measurements 

All the electrical measurements were conducted with a probe station (JANIS, ST-

500) using a semiconductor parameter analyzer (HP 4145B) at room temperature in 

a vacuum (~10-4 torr). The fabricated MoS2 FET devices were divided into three 

groups according to the proton beam fluence conditions. The electrical 

characteristics of each device were measured before and after proton irradiation and 

systematically compared. 

 

2.3. Results and discussions  

2.3.1. Electrical characteristics 

Fig. 2.3 illustrates the electrical characteristics of the MoS2 FET devices. The 

left and right plots in Fig. 2.3 (a) show the output characteristics (source-drain 

current versus source-drain voltage, IDSVDS) measured for a MoS2 FET at gate 

voltages (VGS) ranging from -30 to 30 V in increments of 10 V before and after, 

respectively, proton beam irradiation with a fluence of 1012 cm-2 (corresponding to 

an irradiation time of 20 sec). Fig 2.3 (b) shows the transfer characteristics (source-

drain current versus gate voltage, IDSVGS) of the same device at a fixed source-drain 

voltage (VDS) of 0.5 V before and after proton irradiation under the same proton beam 

conditions used in Fig 2.3 (a). The MoS2 FET device exhibited n-channel behavior, 

with the current increasing as a more positive gate voltage was applied. The results 

in Fig 2.3 (a) suggest that the electrical properties of the MoS2 FET device did not 

change substantially following the proton irradiation with a small fluence condition 

of 1012 cm-2 (i.e., a short proton irradiation time of 20 sec). However, the MoS2 FET 
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devices were influenced noticeably when irradiated with the proton beam for a 

longer period of time. Fig. 2.3 (c) shows the output characteristics measured for 

another MoS2 FET device before and after proton beam irradiation with a fluence of 

1014 cm-2 (corresponding to an irradiation time of 2000 sec). Fig. 2.3 (d) displays the 

corresponding transfer characteristics. Importantly, we observed that the current of 

the device decreased dramatically following proton beam irradiation. For example, 

the current of the device was measured as ~20 µA at VDS = 5 V and VGS = 20 V prior 

to proton irradiation, whereas after proton irradiation, the current was measured as 

~1 μA under the same measurement conditions (see inset of the plot on the right in 

Fig. 2.3 (c)). Hence, the current decreased by nearly 95% as a result of proton 

irradiation. This effect was clearly observed in the transfer curves (Fig. 2.3 (d)); i.e., 

the current decreased significantly following proton beam irradiation.  

 

 

Figure 2.3 Representative electrical characteristics of MoS2 FET devices. (a) Before 

and (b) after proton irradiation with a beam fluence of 1012 cm-2. (c) Before and (d) 

after proton irradiation with a fluence of 1014 cm-2. (a, c) Output characteristics (IDS–

VDS) measured for different gate voltages. (b, d) Transfer characteristics (IDS–VGS) 

measured at a fixed VDS = 0.5 V. The inset figures of (b) and (d) are the transfer 

characteristics on a log scale. Adapted from Kim et al. [43] 
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For the MoS2 FET devices irradiated by a proton beam with a fluence of 1013 cm-

2 (corresponding to an irradiation time of 200 sec), the current level also decreased 

following proton irradiation, although the decrease was smaller than that observed 

under a fluence of 1014 cm-2; the current decreased from ~17.5 µA (before proton 

irradiation) to ~5 μA (after proton irradiation) when measured at VDS = 5 V and VGS 

= 20 V, as shown in Fig. 2.4. 

 

 

 

Figure 2.4 Representative electrical characteristics of a MoS2 FET device before and 

after proton irradiation with a beam fluence of 1013 cm-2 (corresponding to an 

irradiation time of 200 sec). (a) IDS‒VDS curves measured for different gate voltages 

before (left) and after (right) proton irradiation. (b) IDS‒VGS curves measured at a 

fixed VDS = 0.5 V before (open circles) and after (filled circles) proton irradiation. 

Adapted from Kim et al. [43] 
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2.3.2. Dose-dependence and Raman spectra 

Figs. 2.5 (a)(c) show the statistical results for the MoS2 FET devices that were 

irradiated by proton beams under the three different fluence conditions. Here, we 

measured three devices under each fluence condition. A total of nine MoS2 FET 

devices were therefore investigated, divided into three groups, and exposed to proton 

beams under the three different beam fluence conditions of 1012, 1013, and 1014 cm-2. 

We subsequently compared the measurements before and after each proton 

irradiation condition. The error bars in the figures represents the standard deviations 

from the individual measurements. In Fig. 2.5 (a), the current levels of the proton-

irradiated devices measured at VG = 30 V and VDS = 0.5 V were compared with those 

of the devices before proton irradiation. The normalized current value in Fig. 2.5 (a) 

means the ratio of the current of the proton-irradiated device to that (value = 1.0, 

dashed line) of the same device before-proton-irradiation case. In Fig. 2.5 (b), the 

normalized conductance values were calculated and compared in a similar manner 

as in Fig. 2.5 (a). Here, the low-field conductance values were determined from the 

slope for a linear segment at the low bias region (-0.3 < VDS < 0.3 V). Fig. 2.5 (c) 

displays the changes in threshold voltages following proton irradiation. First, the 

current, conductance, and threshold voltage values for the devices irradiated by 

proton beams under a low fluence of 1012 cm-2 did not change significantly.  In the 

contrast, for the devices irradiated by a proton beam with a medium fluence of 1013 

cm-2, the current and conductance values decreased substantially, accompanied with 

a shift of the threshold voltage to the positive gate voltage direction. These changes 

in the current, conductance, and threshold voltage became more significant for the 

devices irradiated by proton beams with a high fluence of 1014 cm-2, as indicated by 

the greater decreases in the current and conductance and the more positive shifts of 

the threshold voltage. 

We measured Raman spectra of MoS2 flakes before and after proton beam 

irradiation with the fluences of Φ = 1012 cm-2 (Figure 3(d)) and Φ = 1014 cm-2 (Fig. 

2.5 (e)). The two prominent E1
2g (~380 cm-1) and A1g (~405 cm-1) peaks are due to 

in-plane and out-of-plane vibrations of MoS2 atoms [28], as illustrated in Fig. 2.5 (f). 

There was no significant change found in the E1
2g and A1g modes of MoS2 in the 

Raman spectra before and after the proton irradiation. Note that we did Raman or 
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electrical measurements on the proton-irradiated samples at least 1 day after the 

proton irradiation because we were not allowed to pick up the proton-exposed 

samples right after the proton irradiation due to the radioactivity safety regulation. 

Importantly, we observed significant changes in the electrical properties of MoS2 

FETs (Figs. 2.3 and 2.5 (a)(c)) while we didn’t observe noticeable changes in the 

Raman spectra of MoS2 flakes (Figs. 2.3 and 2.5 (d)(e)). These results suggest that 

the change of the electrical characteristics of MoS2 FET devices after the proton 

irradiation is not due to MoS2 itself, instead it is due to the proton-irradiation-induced 

oxide traps in the SiO2 layer or the interface trap states at the SiO2/MoS2 interface. 

 

 

Figure 2.5 Statistical data for the (a) normalized conductance, (b) normalized current, 

and (c) change in the threshold voltage of the devices following proton irradiation 

with different beam fluences (1012, 1013, and 1014 cm-2). Raman spectra of MoS2 

flakes before and after proton beam irradiation with the fluences of (d) Φ = 1012 cm-

2 and (e) Φ = 1014 cm-2. (f) Schematic illustrations of MoS2 vibration modes. Adapted 

from Kim et al. [43] 
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2.3.3. Time-dependence 

We investigated the time-dependence of the electrical characteristics of the 

proton-irradiated devices by measuring the devices before proton irradiation and 1 

day, 3 days, and 5 days after proton irradiation. Figs. 2.6 (a)–(c) show the transfer 

curves of three MoS2 FET devices that were irradiated by proton beams with fluence 

conditions of either 1012, 1013, or 1014 cm-2. For the 1012 cm-2 fluence condition, the 

current of the proton-irradiated device remained nearly constant with time (Figure 

4(a)), consistent with the results of Figs. 2.3 and 2.4. For the cases of the 1013 and 

1014 cm-2 fluences, the currents of the proton-irradiated devices decreased following 

proton irradiation (for example, see the day 1 data). However, the current typically 

recovered; for the middle fluence condition (1013 cm-2), the current recovered to 

nearly its original level after 5 days (Fig 2.6 (b)), whereas for the high fluence 

condition (1014 cm-2), the current recovered but remained diminished even after 5 

days (Fig. 2.6 (c)). Figs. 2.6 (d)(f) summarize the normalized current, normalized 

conductance, and changes in the threshold voltage before and after proton irradiation 

with fluence conditions of 1012, 1013, and 1014 cm-2. These plots show that the 

electrical parameters were not significantly influenced by the weak fluence proton 

irradiation (1012 cm-2) and that these values typically recovered with time but that the 

recovery was not complete for the high fluence proton irradiation (1014 cm-2). 

 

 

Figure 2.6 Time-dependence of the IDS–VGS curves of the MoS2 FET devices before 

proton irradiation and 1, 3, and 5 days after proton irradiation with fluences of (a) 
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1012 cm-2, (b) 1013 cm-2, and (c) 1014 cm-2. The (d) normalized current, (e) normalized 

conductance and (f) change in the threshold voltages of the devices are plotted as a 

function of time (i.e., before proton irradiation and at 1, 3, and 5 days after proton 

irradiation) for the three different fluence conditions of 1012, 1013, and 1014 cm-2. 

Adapted from Kim et al. [43] 

 

 

 

2.3.4. Stopping and Range of Ions in Matter (SRIM)  

When high energy particles are irradiated on silicon-based materials and 

devices, they lose the majority of their energy near the stopping position [29,30]. We 

calculated the energy-loss depth profiles of irradiated protons using Stopping and 

Range of Ions in Matter (SRIM 2008) software, which is a computer program that 

calculates the interactions of energetic particles with matter. The SRIM simulation 

results are provided in Fig. 2.7 [30,31]. From these simulation results, we found that 

protons could penetrate and stop ~700 μm from the top surface. Because the structure 

of our MoS2 FET devices comprised stacks of MoS2/SiO2/Si (28 nm/270 nm/500 

μm), the majority of protons could simply penetrate through the entire structure, 

generating electron-hole pairs along the path of the proton beam.  

 

Figure 2.7 Energy loss depth profiles of irradiated protons calculated using SRIM. 

The inset image is a zoomed plot for the energy loss depth profile in the range of 0‒

400 nm from the top surface. Adapted from Kim et al. [43]   
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It is known that when high energy particles such as electrons and protons are 

irradiated on silicon-based FET devices, they can ionize atoms and generate 

electron-hole pairs in the oxide (SiO2) layer which is the layer that is most sensitive 

to ionizing irradiation [32,33]. The generated electrons are quickly swept out of the 

bulk SiO2 layer in a few picoseconds due to their high mobility [34]. The remaining 

holes wander through the SiO2 layer and may be trapped at localized trap sites in the 

bulk SiO2 layer, leading to positive oxide-trapped charges. In addition, the 

irradiation-induced holes and protons in the SiO2 can transport to the SiO2/MoS2 

interface, leading to the formation of interface trap states, which are negatively 

charged electron trap centers for n-channel transistors. The positive oxide traps in 

the SiO2 layer enhance the gate electric field, leading to an increased carrier 

concentration. In contrast, the negative interface trap states act as electron trap 

centers, leading to a reduction in the carrier concentration. Furthermore, the 

irradiation-induced interface trap states occur on a time scale that is much slower 

than that of the positive oxide-charge traps in the SiO2 layer. Therefore, the effects 

of proton irradiation on the MoS2 FET devices can be attributed to the combined 

effects of positive oxide-charge traps in the SiO2 layer and interface trap states 

[35,37].  

For low fluence (short irradiation time) proton irradiation, neither positive 

oxide-charge traps nor interface trap states will be generated in sufficient quantities 

to significantly affect the electrical characteristics of the devices. As a result, no 

significant changes in the electrical parameters of the proton-irradiated devices were 

observed for proton irradiation under a 1012 cm-2 fluence (see Figs. 2.3 (a), 2.3 (b), 

2.5 (a)(c), 2.6 (a), and 2.6 (d)(f)). However, at high fluence (long irradiation time), 

the interface trap states will play a major role in influencing the electrical 

performances of the proton-irradiated devices. These effects were observed in the 

MoS2 FET devices irradiated by proton beams with 1013 or 1014 cm-2 fluences (Figs. 

2.3 (c), (d), 2.5 (a)(c), and 2.6 (b)(f)). Note that for the 1012 cm-2 fluence condition, 

the currents of a portion of the proton-irradiated devices increased slightly compared 

with those measured prior to proton irradiation (see Fig. 2.5 (a)), which could be due 

to the effect of positive oxide-trap charges in the SiO2 layer. However, this effect 

was too small to be confirmed, and a modified experimental design would be 

necessary to distinguish the effect of the positive oxide-trap charges in the SiO2 layer 
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from that of the interface trap states. The recovery phenomena (Fig. 2.6) can also be 

attributed to the traps generated by the proton irradiation [37,38]. The recovery of 

the current indicates that the proton-irradiation-induced traps are not permanent and 

do not act as charge traps for an extended period unless the fluence of the proton 

irradiation is beyond a certain threshold. We observed that the current was fully 

recovered for a middle fluence of 1013 cm-2 approximately 5 days after proton 

irradiation (Fig. 2.6 (b)), but was not fully recovered at this time point for the high 

fluence condition of 1014 cm-2 (Fig. 2.6 (c)).  

 

2.3.5. Energy band diagram 

The observations in this study can be explained using energy band diagrams, as 

shown in Fig. 2.8. Fig. 2.8 (a) shows the energy band diagrams for VDS = 0 V and 

VGS = 0 V. The MoS2 flakes have a band gap of ~1.2 eV, which is similar to the band 

gap of bulk MoS2 [8]. In addition, the work function (ΦMoS2) and electron affinity 

(χMoS2) of the flakes are 4.64.9 eV and ~4.0 eV, respectively [39-42]. We used 

Au/Ti as the source and drain electrodes in contact with the MoS2 and a work 

function for Au (ΦAu) of 5.4 eV and that for Ti (ΦTi) of 4.3 eV [41]. Therefore, the 

contact between Ti and MoS2 will have a very small Schottky barrier (ΦB), as 

indicated in the energy band diagram (Fig. 2.8 (a), right) [41]. When protons are 

irradiated on the devices, the proton beam induces positive oxide-trap charges in the 

SiO2 layer and interface trap states at the SiO2/MoS2 interface. When the proton 

beam fluence is sufficient, the interface trap states influence the current flow in the 

MoS2 channel, which hinders charge flows by trapping conduction electrons in the 

n-channel MoS2. This will decrease the conduction electron concentration, raising 

the conduction band. In other words, an increasing interface trap density in the 

channel region by proton irradiation increases trapped electrons in the channel and 

reduces the current conductance, as shown in the right panel in Fig. 2.8 (b). 
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Figure 2.8 Energy band diagrams of a MoS2 FET device (a) prior to proton 

irradiation (no irradiation) and (b) after proton irradiation with high beam fluence 

(1013 and 1014 cm-2). EF: Fermi level energy, EC: conduction band minimum, EV: 

valence band maximum, ΦB: Schottky barrier height. The green arrow indicates the 

proton beam irradiation, the blue circles with plus signs represent the oxide trapped 

charges, and the red circles with minus signs represent the interface trapped charges. 

Adapted from Kim et al. [43] 

 

2.4. Conclusion 

In summary, we studied the effect of proton beam irradiation on multi-layer MoS2 

FET devices. The n-channel MoS2 FET devices irradiated by proton beams with 

sufficiently high fluence conditions exhibited decreases in the current and 

conductance and a shift of the threshold voltage toward positive gate voltage 

direction. The recovery of these changes was observed over a time scale of days. 

These phenomena can be attributed to the interface trap states at the SiO2/MoS2 

interfaces. This study improves our understanding of the influence of high energy 

proton beams on MoS2-based nanoelectronic devices and may provide a method to 

control the electrical properties of MoS2 FET devices through changing interface 

states using proton beams. 
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3. Chemical vapor deposition of monolayer MoS2 film 

 

3.1. Introduction 

3.1.1. Limit of mechanical exfoliation 

Ultra-thin monolayer MoS2 is one of the promising channel materials in 

optoelectronics devices, such as photosensors, photodetectors and photodiodes [1–

8]. However, it is still difficult to produce large-area monolayer TMDC films, by 

widely used top-down methods, such as mechanical exfoliation [9], thinning [10], 

and liquid intercalation [11]. As we can see from the Fig. 3.1 below, mechanically 

exfoliated MoS2 samples are very small. Moreover, the number of layers cannot be 

controlled.  

   

Figure 3.1 Mechanical exfoliation of atomically thin MoS2 flake by sticky tape. 

 

3.1.2. Many synthesis methods 

In this regard, many bottom-up synthesis methods, including metal-organic 

chemical vapor deposition (MOCVD) [12], physical vapor deposition (PVD) [13] 

and atomic layer deposition (ALD) [14] have been reported to realize large-area 

optoelectronic devices. Among these candidates, the one-step chemical vapor 

deposition (CVD) method has been widely used to yield high-quality and large-area 

MoS2 films [15–17]. CVD-synthesized MoS2 films allow atomically thin, uniform 

and large-area semiconducting properties with a direct bandgap energy of 1.9 eV and 

thus offer promising opportunities in high-performance wearable optoelectronics. 
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3.2. CVD system setup 

Fig. 3.2 (a) shows the schematic illustration of the dual-heating zone CVD 

system for monolayer MoS2 synthesis. In the quartz tube, two crucibles were placed. 

One crucible for the S powder (99.5 % Sigma Aldrich) was heated up to ~200 °C, 

and the other for the MoO3 powder (99.98 % Sigma Aldrich) and the SiO2 substrate 

was heated up to ~750 °C. After the growth, we could see the oval shape of grown 

MoS2 films. 

Fig. 3.2 (b) illustrates the photoluminescence (PL) peak-position mapping image 

of CVD-grown monolayer MoS2 film with inkjet-printed Ag contacts. From the PL 

spectrum, the number of layers of MoS2 can be verified at the specific point where 

the laser is irradiated. Hence, by this uniform blue PL peak-position mapping, the 

uniformity of the CVD-grown MoS2 film could be determined.S4,S5 Furthermore, 

Statistical analysis of PL peak-position in both film and triangular island samples 

shows the strong monolayer PL peaks for both CVD-grown MoS2 triangular islands 

and film. (Fig. 3.2 (c))  

 

Figure 3.2 (a) MoS2 synthesis process. (b) PL peak-position mapping of CVD-grown 

MoS2 film. (c) Statistical analysis of PL peak-position in CVD-grown MoS2 

triangular island and film. Adapted from Kim et al. [26] 
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3.3. Material characterization 

3.3.1. Atomic force microscopy 

Fig. 3.3 (a) presents a representative optical image of a synthesized monolayer 

MoS2 on a heavily-doped Si/SiO2 substrate by a CVD system (Teraleader Co., Ltd.). 

In this optical image, the synthesized MoS2 and the no-growth regions are colored 

dark violet and light violet, respectively. It is well-known that a large number of 

individual MoS2 triangular islands that are few tenths of micrometers  in size are 

merged into a continuous film [18] (MoS2 triangular islands and continuous film are 

shown in right and left part of Fig. 3.3 (a), respectively). The thickness of the 

individual MoS2 triangular islands was measured using a non-contact mode AFM 

(Park systems, NX 10), as shown in Fig. 3.3 (b). The cross-sectional topographic 

profile indicated by the cyan line included in Fig. 3.3 (b) indicates the thickness of 

~0.7 nm along the blue straight line; this measurement is consistent with previously 

reported thickness of CVD-grown MoS2.  

 

3.3.2. Raman and photoluminescence 

Raman and PL spectra measurements were performed on the CVD-grown MoS2 

film to clarify the spatial uniformity and the number of layers. Fig. 3.3 (c) shows 

Raman spectra from three different MoS2 samples: CVD-grown MoS2 film (red 

curve), MoS2 triangular island (blue curve), and mechanically exfoliated monolayer 

MoS2 flake (black curve). The CVD-grown MoS2 triangular island and film showed 

similar Raman spectra with that of a mechanically exfoliated monolayer MoS2 flake 

(SPI supplies, USA) on the SiO2 (270 nm) substrate measured as a reference, 

including a strong Si peak at approximately 528 cm-1. The expected monolayer MoS2 

Raman peak spacing of ~19.6 cm-1 from the out-of-plane A1g (385.2 cm-1) and in-

plane E1
2g (404.8 cm-1) peaks were clearly observed on all three MoS2 samples, as 

shown in the inset of Fig. 3.3 (c) [19, 20]. For further investigation, PL spectra, 

intensity, and peak-position mappings were measured for three different points on 

the CVD-grown large-area MoS2 film. Figure 1d shows the identical strong A1 peaks 

around photon energy of ~1.83 eV originated from direct band-to-band 

recombination of excited electron-hole pairs and relatively weak B1 at 

approximately 2.0 eV [21–23]. The linear scale PL image of the CVD-grown MoS2 
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triangular islands in inset of Figure 1d substantiates the excellent optical properties 

of monolayer MoS2. The PL peak-position mapping of the CVD-grown MoS2 film 

also showed good uniformity across few hundred micrometers (see Fig. 3.2) [24, 25]. 

These results strongly support that the CVD-grown MoS2 film was predominantly 

composed of monolayers. 

 

 

 

 

Figure 3.3 (a) Optical micrograph of CVD-grown monolayer MoS2 (left area) and a 

no-growth SiO2 (right area) substrate. (b) AFM image of CVD-grown monolayer 

MoS2 triangular islands (the profile indicates the thickness of triangular islands along 

the blue line). (c) Raman spectra of three different MoS2 samples. (d) PL spectra of 

three different points of CVD-grown films. The inset image shows linear scale PL 

image of triangular islands. Adapted from Kim et al. [26] 
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3.3.3. Electrical characteristics of triangular islands 

The electrical properties of the monolayer MoS2 FETs were measured in the dark 

in a vacuum (~10-3 Torr) using a semiconductor parameter analyzer (Keithley 4200, 

USA). Before the measurement, the MoS2 FETs were placed on a heating stage at 

400 K in a vacuum for 16 h to remove the adsorbates from the MoS2 surface, such 

as water, oxygen molecules, and polymer residue. The surface adsorbates could 

induce charge trapping states, which can result in hysteresis in the transfer curves 

(drain current versus source-gate voltage, IDSVGS) of the MoS2 FETs [31]. No 

IDSVGS hysteresis was observed after the heating process, which indicates the effect 

of surface adsorbates was negligible in this measurement. 

The IDSVGS characteristics (Fig. 3.4 (c)) exhibited typical n-type 

semiconductor behavior. The field-effect mobility and on/off current ratio of the 

monolayer MoS2 FETs at room temperature were found to be ~5.5 cm2/Vs and ~106, 

respectively. The output characteristics (drain current versus source-drain bias, 

IDSVDS) are displayed in the inset of Fig. 3.4 (c). Fig. 3.4 (d) shows the IDSVGS 

curves measured in a temperature range from 80 to 300 K at a fixed VDS of 0.5 V. 

The same transfer characteristics on the linear scale are also included in the inset. 

The IDS decreased with decreasing temperature, indicating that the amount of 

thermally activated charges decreased as decreasing temperature. The fabricated 

CVD-grown monolayer MoS2 FETs showed good electrical characteristics 

comparing to the previously reported results [21-25]. 
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Figure 3.4 (a) Optical image showing a CVD-grown monolayer MoS2 FET. The 

inset shows the schematics of the device. (b) Raman and PL spectra of a CVD-grown 

monolayer MoS2. (c, d) Representative electrical characteristics of the CVD-grown 

monolayer MoS2 FET. (c) IDSVDS curves measured for different gate voltages at 

room temperature. (d) IDSVGS curves measured at a fixed VDS = 0.5 V for various 

temperatures. Adapted from Kim et al. [27] 

 

3.4. Conclusion 

We successfully synthesized a large-area MoS2 film of a monolayer-thickness. 

Dual heating zone low-pressure CVD system was used with Ar carrying gas. The 

monolayer-thickness of both triangular islands and continuous films were verified 

by AFM, Raman and PL spectra. The electrical characteristics of the single grain 

CVD-grown monolayer MoS2 island with Ti/Au top-electrodes and Si back gate 

were comparable to those fabricated by the mechanically exfoliated MoS2 flakes.  
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4. Inkjet-printed contact electrodes on CVD-synthesized 

MoS2 film 

 

4.1. Introduction 

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted 

much attention due to their great potential monolayer applications in opto- and 

nanoelectronics [1–4]. Among various TMDC materials, molybdenum disulfide 

(MoS2) has been most widely studied because the atomically thin (~0.65 nm) 

monolayer MoS2 exhibits an excellent transparency in visible wavelength range, 

mechanical stiffness, flexibility, and electrical carrier mobility [5–7]. In particular, 

contrary to zero-bandgap graphene, MoS2 shows a transition from indirect band gap 

(~1.2 eV) to direct band gap (~1.8 eV) with decreasing thickness from bulk to 

monolayer, which allows higher efficiency in photogeneration and recombination. 

Therefore, large-area monolayer MoS2 is a promising material to use in 

optoelectronic devices, such as photodetectors, light-emitting-diodes (LEDs), and 

solar cells [8–10]. 

Various methods for preparation of a monolayer MoS2, such as mechanical 

exfoliation, chemical exfoliation, physical vapor deposition (PVD), and chemical 

vapor depositions (CVD), have been recently reported [11–13]. To meet the growing 

demand for large-area electronics, synthetic fabrication methods to produce a large-

are monolayer MoS2 are highly desirable because a large-area monolayer MoS2 

cannot be consistently obtained using conventional mechanical or chemical 

exfoliation methods. Among these synthetic fabrication methods, the CVD method 

with molybdenum trioxide (MoO3) and sulfur powder has enabled high-quality 

MoS2 film deposition on largely selected regions and controllable thickness with 

excellent electrical characteristics [14–17]. 

For designing of source/drain (S/D) electrodes, electron beam (e-beam) or photo 

lithography techniques have been widely used on the nanometer-thick MoS2. 

Unfortunately, these processes, which require unwanted procedures such as 

chemicals deposition, ultraviolet (UV) exposure, and contact contaminations, can 

degrade the electrical properties of devices and are also not suitable for large-area 

flexible platforms. In this regard, an inkjet-printing process, which has been 
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proposed for large-area, low-cost, and ambient electronics, such as organic thin-film 

transistors (TFTs), organic light-emitting diodes (OLEDs), oxide TFTs, and sensors, 

is believed to be a promising candidate for top-contact electrodes formation due to 

its low-cost, non-vacuum character, and large-area process abilities [18–21]. For the 

printed electrodes formation on monolayer MoS2, low-cost Ag ink can be a good 

candidate in terms of electron-injection, because the work function of Ag (~4.26) is 

equivalent to that of Ti (~4.33) which is widely used as a contact metal with n-type 

semiconductor layers. To date, however, there has been no report regarding 

monolayer MoS2 field-effect transistors (FETs) with inkjet-printed Ag S/D due to 

the difficulties in optimizing inkjet-printing process and compatibility between 

printable inks and the bottom monolayer MoS2.  

Herein, we report the demonstration of large-area monolayer MoS2 FETs with 

inkjet-printed Ag S/D electrodes. The monolayer MoS2 film was grown by a CVD 

system, and the Ag electrodes were inkjet-printed using a commercial drop-on-

demand (DOD) printer, which allows for the realization of large-area and low-cost 

electronics. The metallic ink for the S/D formation was carefully selected by 

considering the wetting and contact properties of the underlying MoS2 film. The 

predominantly monolayer character of the CVD-grown MoS2 film was verified by 

atomic force microscopy (AFM), Raman, and photoluminescence (PL) spectroscopy 

measurements. The electrical properties of the MoS2 FETs with the printed S/D, 

including field-effect mobility and on/off ratio, were comparable to those of the 

FETs with conventionally deposited contacts using e-beam or photo lithography 

processes. The wetting and contact properties between the Ag contacts and the MoS2 

semiconductor layer were also investigated by extracting the surface energy and the 

contact resistance. Moreover, the electrical instability of the MoS2 FET was 

investigated under a prolonged positive gate-bias stress to verify the charge-trapping 

mechanism between the CVD-grown monolayer MoS2 and the SiO2 gate dielectric. 

This study for the integration with large-area CVD grown monolayer MoS2 films 

and low-cost inkjet-printed contacts can have a strong impact in the fields of 2D 

TMDC nano and optoelectronics. 
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4.2. Experiments 

4.2.1. Inkjet-printing process 

For S/D electrodes formation, a nanoparticle-type Ag ink containing 32 wt.% Ag 

(DGP 40LT-15C, ANP Co. Ltd.) and a cartridge which ejects 1 picoliter (pl) of ink 

droplets were used. After the Ag ink was inkjet-printed at a drop velocity of 8 m/s 

and a drop spacing of 30 µm onto a 60 °C substrate using DMP-2831 (Fuji Films 

Corp.) printer, the sample was sintered on a 180 °C hot-plate for 30 min under 

atmospheric environment. Note that the no more oxidation related degradations 

during other fabrication processes or measurements are not observed because the 

surface of printed Ag conductive layers is slightly oxidized during the sintering 

process [55].  

 

Figure 4.1 (a) Schematic illustrations and a representative optical image (in grey 

background) of the fabrication of CVD-grown monolayer MoS2 FETs with inkjet-

printed Ag electrodes. (b) Representative optical images of sessile drops on CVD-

grown monolayer MoS2 film. The top and bottom images show the Ag ink and DI 

water drops on the MoS2 film, respectively. (c) The surface profiles of CVD-grown 

monolayer MoS2 films with inkjet-printed Ag electrodes. Adapted from Kim et al. 

[55] 
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4.3. Results and discussions 

4.3.1. Electrical characteristics 

The electrical properties were characterized using a semiconductor parameter 

analyzer (4155C, Agilent Technologies) under ambient condition. In particular, all 

measurements were performed in a dark box to avoid the contribution of the 

photocurrent in the CVD-grown MoS2 FETs [33, 34]. Figure 3a shows the transfer 

characteristics (drain-source current versus gate-source voltage, IDSVGS) measured 

for drain-source voltage (VDS) ranging from 1 to 20 V by sweeping VGS from  -40 

to 60 V. The results showed the typical n-type semiconductor behavior with a field-

effect mobility (FE) of 1.8 cm2/Vs and on/off ratio of over 104 at VDS of 1 V. The 

inset in Fig. 4.2 (a) shows the logarithmic scale plot of the transfer characteristics. 

Considering the reported FE values of 1 to 45 cm2/Vs for CVD-grown monolayer 

MoS2 FETs at room temperature [35], several factors are believed to deteriorate the 

FE of the devices in this study. The electrical characteristics measurements 

performed in ambient condition would cause lower charge transport due to oxygen 

or water absorption on the semiconductor surface that can deplete electrons, resulting 

in the degradation of the channel conductivity [36, 37]. In addition, intrinsic 

structural defects in CVD-grown MoS2 films, such as grain boundaries and point 

defects, and the interfacial states between the MoS2 layer and SiO2 surface could 

limit the charge transport as well [35, 38, 39]. The electrical properties can, therefore, 

be improved by optimizing the structural quality of the CVD-grown monolayer 

MoS2, employing passivation layers onto the channel, and transferring the CVD-

grown MoS2 films onto dangling-bond free hexagonal boron nitride (hBN) substrates 

to minimize the interfacial traps [40, 42]. However, the key advantage of a use of 

inkjet-printed Ag contacts on a large-area CVD-grown MoS2 film lies not on the 

electrical performance improvement but on the low-cost drop-on-demand (DOD) 

deposition. 

Fig. 4.2 (b) shows the output characteristics (drain-source current versus drain-

source voltage, IDSVDS) measured at VGS ranging from 20 to 20 V in increments of 

10 V by sweeping VDS from 0 to 20 V. The output characteristics revealed good 

linearity at low VDS regime. In the relationship 𝐼𝐷𝑆 ∝ 𝑉𝐷𝑆
𝛾 in the logarithmic scale 

plot, as shown in Fig. 4.2 (c), the average  (= linearity parameter) values of ~1.1 
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was found to be close to 1, indicating the formation of an ohmic contact between the 

CVD-grown MoS2 film and the printed Ag electrodes. For further investigation, the 

contact resistance values between the channel and the printed S/D was also extracted 

because the contact properties strongly affect the electrical characteristics [7, 43]. 

 

 

Figure 4.2 Representative electrical characteristics of the CVD-grown monolayer 

MoS2 FET with the inkjet-printed Ag electrodes. (a) Transfer characteristics (IDS–

VGS) measured at different VDS. The inset figure shows the same transfer 

characteristics on a log scale. (b) Output characteristics (IDS–VDS) measured at 

different VGS. (c) Log-Log plot of output characteristics in low VDS region. The red 

dashed lines indicate the fitting line to the IDS∝VDS
γ relationship. Adapted from Kim 

et a. [55] 

 

4.3.2. Y-function method and contact resistances 

Although transmission line measurement, also called transfer length method 

(TLM), is widely used to evaluate contact resistance of FETs, it cannot be 

conveniently employed because several transistors with various channel lengths and 

uniform contacts are necessary to extract the accurate value. Due to these limitations, 

the Y-function method (YFM) was proposed for the contact resistance extraction 

between the CVD-grown monolayer MoS2 FET and the Ag printed contacts, as 

shown in Fig. 4.3 (a). YFM has been widely used to analyze the contact resistance 

and intrinsic mobility (0) in the low VDS linear regime (VGS  Vth >>VDS) for both 

organic and carbon nanotube based FETs [44–47]. Recently, Chang et al. reported 

that YFM can also be a robust method to extrapolate the contact resistances of 

nanometer-thick MoS2 FETs.48 Generally, IDS in a linear region can be described by 

    𝐼𝐷𝑆 =
𝑊

𝐿
𝐶𝑖𝜇𝑒𝑓𝑓(𝑉𝐺𝑆 − 𝑉𝑡ℎ)𝑉𝐷𝑆 =

𝑊

𝐿
𝐶𝑖

𝜇0

1+𝜃(𝑉𝐺𝑆−𝑉𝑡ℎ)
(𝑉𝐺𝑆 − 𝑉𝑡ℎ)𝑉𝐷𝑆        (3) 
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where eff, 0, Ci, Vth, W, L, and   denote the effective mobility in linear regime; 

the intrinsic mobility; the capacitance between the channel and the gate per unit area; 

the threshold voltage; the channel width; the channel length; and the mobility 

attenuation coefficient, respectively. According to the definition of transconductance 

(gm=IDS/VGS), the Y-function can be defined as 

𝑌 ≡
𝐼𝐷𝑆

√𝑔𝑚
= √𝐼𝐷𝑆√(𝑉𝐺𝑆 − 𝑉𝑡ℎ){1 + 𝜃(𝑉𝐺𝑆 − 𝑉𝑡ℎ)} = √𝜇0𝐶𝑖𝑉𝐷𝑆

𝑊

𝐿
 (𝑉𝐺𝑆 − 𝑉𝑡ℎ)   (4) 

From the slope of Y-function, the extrapolated 𝜇0 value at VDS = 1 V, which is 

independent of the attenuating factors, was 2.1 cm2/Vs, which is 17 % bigger than 

the measured 𝜇𝐹𝐸𝑇  of 1.8 cm2/Vs. The mobility attenuation factor 𝜃  can be 

described by the following equation: 

              𝜃 = 𝜃𝑐ℎ + 𝜃𝑐 = 𝜃𝑐ℎ+𝜇0𝐶𝑖𝑅𝐶
𝑊

𝐿
                    (5) 

where ch, c, and RC denote the mobility attenuation factor from the channel, such 

as a surface roughness and phonon scattering; mobility attenuation factor from the 

contact; and the contact resistance, respectively. Assuming that ch is negligible [44, 

48, 50], the value of  is ~0.02 and the contact resistance of 115 k can be extracted 

at high VGS from the slope of Y-function (the red dashed line in Fig. 4.3 (a)). The 

contact resistance value is relatively higher than the reported contact resistance 

values of the MoS2 devices fabricated with various methods. But these contact 

resistance values cannot be compared fairly due to the several reasons (see the 

detailed discussion in the Supporting Information). 

The extracted contact resistance is also consistent with the saturated total 

resistance of 175 k at sufficiently large VDS and VGS where the contribution of the 

contact resistance is much more dominant than that of the channel (Fig. 4.3 (b)). This 

contact resistance value is higher than the reported values [49–51], because 

unwanted residues from the organic solvent or ligands may limit charge injection 

from the contacts to the MoS2 layer during the metallic ink sintering process. In 

addition, the quite porous surface of the printed S/D due to the size of Ag 

nanoparticles (~35 nm) results in smaller effective-contact areas. In particular, 

increasing evidence has suggested that metal/MoS2 junction formations depend on 

not only metal work function but also the chemical reactions at the metal/MoS2 [7, 

43]. Thus, the contact property of inkjet-printed Ag electrodes on CVD-grown MoS2 
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would be different from that of evaporated ones, thus affecting the electrical 

characteristics of the devices. 

 

 

Figure 4.3 (a) 1/√gm and Y-function (IDS/√gm)of the CVD-grown monolayer MoS2 

FET with inkjet-printed electrodes at VDS of 1 V. (b) Graph of the total resistance 

(Rtot) versus VGS graph at VDS of 20 V; the enlarged image shows the Rtot at VGS from 

5 to 20 V. The red dashed line shows the slope around VDS of 15 V. Adapted from 

Kim et al. [55] 

 

4.3.3. Electrical instability and gate-bias stress effect 

The electrical instability was also investigated by measuring the electrical 

characteristics of the FETs under positive gate-bias stress of 30 V. The transfer 

characteristics were measured every 500 s for 10,000 s at VDS of 20 V by sweeping 

VGS from 40 to 60 V  while interrupting the gate-bias stress. Figs. 4.4 (a) and (b) 

show the transfer curves on the logarithmic and linear scales, respectively. The 

curves shifted in the positive gate-bias direction as a function of applied gate-bias 

stress time. The subthreshold swing (S.S.) and slope of the curves were almost 

identical to during the measurement (the inset of Fig. 4.4 (b)). These results support 

that the defect-creation of extra electron trapping states is negligible, whereas the 

trapped electrons at the MoS2/SiO2 interface or bulk dielectric that can reduce the 

effective gate-bias are dominant for the Vth instability during positive gate-bias stress. 

The stress time dependence of the Vth shift during a prolonged gate-bias was fitted 

to the stretched-exponential equation described as  

                    𝑉𝑡ℎ = ∆𝑉0 [1 − exp (− (
𝑡𝑠𝑡

𝜏
)

𝛽

)]                 (6) 
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where V0, , , and tst denote the change of Vth after infinite time, the 

characteristic trapping time, the stretched-exponent, and the gate-bias stress time, 

respectively (Fig. 4.4 (c)). The stretched-exponential equation has been developed 

to quantitatively model the charge trapping mechanism by injection of carriers from 

the channel to the near-interface or the bulk dielectric in amorphous silicon (a-Si) 

TFTs [52]. The extrapolated values of V0, , and  were found to be ~18.1 V, 8.1  

102 sec, and ~ 0.413, respectively. The statistical coefficient R2 value of 0.9937 

indicates that experimental data (black closed circles) were well fitted to the 

stretched-exponential equation fitting line (as the statistical coefficient R2 is closed 

to 1, the experimental data are well-fitted to the equation). Notably, the larger 𝜏 value 

compared to that of the mechanically exfoliated MoS2 FETs [53] indicates the higher 

trap density in the CVD-grown MoS2 film or at the interface with the dielectric and 

also can be evidence of a large number of band tail states of the CVD-grown 

monolayer MoS2 film [54].  

 

 

 

Figure 4.4 Transfer characteristics measured in ambient with respect to the different 

gate-bias stress time up to 10,000 sec on (a) log and (b) linear scales. The gate-bias 

stress voltage VGS was 30 V. The inset of (b) shows the change of normalized 

subthreshold swing (S.S.) with respect to the stress time. (c) Threshold voltage shift 

(∆Vth) with respect to the value of pre-stress curve. The solid red line represents a 

stretched-exponential fitting to the experimental data using equation (7). The inset 

figure shows the ∆Vth on a log scale. Adapted from Kim et al. [55] 
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4.4. Conclusion 

In summary, we report the large-area CVD-grown MoS2 FETs fabricated with 

low-cost inkjet-printed Ag S/D electrodes and their electrical properties. The CVD-

grown monolayer MoS2 films showed well-defined and uniform Raman and PL 

spectra, and the inkjet-printed S/D electrodes were deposited successfully onto the 

MoS2 films without any surface treatments by optimizing the printing process. The 

large-area FETs showed comparable electrical characteristics to those of MoS2 FETs 

with conventionally deposited contacts at room temperature under ambient condition. 

The contact property between the MoS2 and printed Ag electrodes was also analyzed 

using the Y-function method. Furthermore, the charge-trapping mechanism was 

primarily responsible for the electrical instability, especially the Vth shift, of CVD-

grown monolayer MoS2 FETs under positive gate-bias stress. This study provides a 

promising pathway for integrating CVD-grown large-area monolayer MoS2 FETs 

with a low-cost inkjet-printing technique. 
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5. Fully flexible and transparent MoS2 phototransistor with 

inkjet-printed components 

 

5.1. Introduction 

Molybdenum disulfide (MoS2) has shown many interesting features, such as a 

finite energy band gap and good electrical mobility in its atomically thin two-

dimensional (2D) form. Therefore, researches on a sub-thermioninc band-to-band 

tunneling transistors or near-ideal quantum yield were reported using atomically thin 

MoS2 channels. To make full use of its unique optical and electrical merits, synthesis 

of large and uniform monolayer MoS2 is highly required. Herein, chemical vapor 

deposition (CVD) technique has been highly investigated to produce large and 

uniform monolayer MoS2. Generally, electron-beam nanolithography or 

photolithography techniques are used to design the contact electrodes on the 

atomically thin MoS2 channel. Unfortunately, these processes involve unwanted 

procedures, such as chemical deposition of photoresist and ultraviolet exposure, 

which could be a reason of contact contaminations. Moreover, it is inadequate for 

large-area flexible platform. In this regard, an inkjet-printing process, which has 

been proposed for large-area area, low-cost, and ambient electronics, is believed to 

be a promising candidate for top-contact electrode formation due to its low-cost, non-

vacuum character, and large-area process abilities. Low-cost and drop-on-demand 

(DOD) inkjet-printing technique allows for the realization of large-area and low-cost 

electronics. 

In this work, we will report a demonstration of fully flexible and transparent 

FETs based on CVD-grown large monolayer MoS2 channel layer with all inkjet-

printed components. First, the monolayer MoS2 film (up to ~1 cm2) were synthesized 

by CVD system under low pressure conditions. The uniform structure of MoS2 film 

were verified by Raman and photoluminescene (PL) spectra and mapping. 

Subsequently, the CVD-grown monolayer MoS2 film was transferred onto a flexible 

polyethylene naphthalate (PEN) substrate and all the other device components 

including contact electrodes and top dielectric layers were fabricated by inkjet-

printing technique without any surface treatment under ambient conditions. This 
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integration of an atomically thin large area MoS2 synthesis and DOD inkjet-printing 

technique is highly meaningful, because it allows the fabrication of fully transparent 

and flexible devices directly onto the plastic substrate. The top-gated FET devices 

have shown high transparency at the wavelength of 400-800 nm and the electrical 

characteristics were preserved with repetitive bending tests. In addition, our devices 

have shown reasonable photoswitching properties such as a photoresponsivity of 

~0.1 W∙A-1 and an external quantum efficiency of ~8 %, comparable to the MoS2 

devices fabricated by conventional methods (such as e-beam deposition of metal 

electrodes or atomic layer deposition of dielectric layers). We believe that the fully 

transparent and flexible top-gated FET with CVD-grown monolayer MoS2 and all 

inkjet-printed components could be an essential milestone in flexible optoelectronic 

applications of atomically thin transition metal dichalcogenide (TMDC) materials.   

 

5.2. Experiments 

5.2.1. Device fabrication process 

Fig. 5.1 shows the device fabrication process. The monolayer MoS2 film was 

CVD-grown on SiO2/Si (270 nm) substrates (Fig. 5.1 (b)). A large-area monolayer 

MoS2 film was synthesized with MoO3 and sulfur (S) powders in the presence of Ar 

carrier gas [1]. The heating temperatures were 700 °C and 200 °C for MoO3 and S 

powders, respectively.The synthesized MoS2 was patterned using reactive ion 

etching (RIE) in an O2 plasma while covered with a shadow mask to form the channel 

layers (Fig. 5.1 (c)). The patterned CVD-synthesized MoS2 film was transferred onto 

a polyethylene-naphthalate (PEN) substrate using the poly(methyl methacrylate) 

(PMMA)-assisted transfer method [2]. After attaching thermal tape as a supporting 

layer, the entire structure (supporting tape/PMMA/MoS2/SiO2/Si) was immersed in 

a potassium hydroxide solution (~25 %) to detach the MoS2 film from the SiO2/Si 

substrate. After a PMMA supporting layer was deposited by spin-coating on 

MoS2/SiO2 (Fig. 5.1 (e)), a REVALPHA thermal tape (Nitto Denko, Japan) was 

attached as a supporting layer. Then, the whole structure (tape/PMMA/MoS2/SiO2) 

was immersed into a potassium hydroxide (KOH) solution (~25 %) at 70 C to detach 

the tape/PMMA/MoS2 structure from the SiO2/Si substrates (Fig. 5.1 (f)). The 

tape/PMMA/MoS2 structure was placed onto the PEN substrate using IPA as an 
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adhesion promoter, and then the PMMA supporting layer was carefully removed 

(Fig. 5.1 (g)). Finally, the PEDOT:PSS electrodes and PVP dielectric layers were 

directly inkjet-printed without surface treatment (Figs. 5.1 (h)–(k)). Specifically, 

poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) 

source/drain (S/D) electrodes, a cross-linked poly(4-vinylphenol) (PVP) gate 

dielectric layer and a PEDOT:PSS top-gate electrode were sequentially inkjet-

printed on the desired positions of the device substrate. The maximum processing 

temperature of 180 °C facilitated the direct integration of a wide range of printable 

organic materials onto the flexible substrate. It should be noted that the ultra-thin 

MoS2 channel layer was extremely sensitive to the surface roughness of underlying 

layers; therefore, a top-gate configuration was employed in this work because of the 

relatively poor surface roughness of the inkjet-printed PVP gate dielectric (rms 

roughness of ~4 nm) compared with that of the PEN substrate (rms roughness of ~1 

nm).  

 

5.2.2. Light illumination setup   

Monochromatic lasers with wavelengths of 405, 520, 650, and 780 nm were used 

(MDE5240V, Su Semiconductor) to investigate the photocharacteristics. All 

electrical characteristics of our MoS2 phototransistors were measured using a 

semiconductor parameter analyser (Keithley 4200) and an individual 

monochromatic light with intensities ranging from 0.1-1000 W/m2. 
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Figure 5.1 (a) Cleaned the SiO2/Si substrate. (b) CVD-grown MoS2 on the SiO2/Si 

substrate. (c) MoS2 patterning process using RIE while covered with a shadow mask. 

(d) Clearly patterned monolayer MoS2 film. (e) Spin-coated the PMMA supporting 

layer onto MoS2/SiO2. (f) After detaching the monolayer MoS2 film from SiO2 using 

a KOH solution, the MoS2/PMMA structure was placed on the PEN substrate. (g) 

Transferred the MoS2 onto the PEN substrate. Direct inkjet-printing of (h-i) 

PEDOT:PSS S/D electrodes, (j) PVP dielectric layer and (k) PEDOT:PSS gate 

electrodes. Adapted from Kim et al. [30]  
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5.2.3. Optical transmittance of the device   

The fully printed phototransistors exhibited good transparency (over ~76 %) in 

the visible wavelength range (from 400-800 nm), whereas a PEN substrate exhibited 

a transmittance of 87 % in the same wavelength range (Fig. 5.2 (a))   

 

 

 

Figure 5.2 (a) Transmittance spectra of the layer-by-layer stacked device structures 

from the bare PEN substrate to fully stacked structures 

(PEDOT:PSS/PVP/PEDOT:PSS/MoS2/PEN films). (b) Schematic of the stacked 

structures. Adapted from Kim et al. [30] 
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5.3. Results and discussions  

5.3.1. Fully-printed MoS2 phototransistors 

The contact properties of the PEDOT:PSS and PVP inks on the MoS2 film and 

PEN substrate were optimized with a consideration of the ink chemistry that allowed 

well-defined printed layers while preventing undesirable dewetting issues on the 

underlying layers (Fig. 5.3 (b)). Owing to the use of ultra-thin MoS2 and transparent 

organic layers, the fully integrated phototransistors exhibited high transparency (Fig. 

5.3 (c)). Photographic images of our devices are shown on a piece of paper (left, Fig. 

5.3 (c)) and in front of a building (right, Fig. 5.3 (c)). In particular, the laser-light 

transmitted the entire device structure without reflection or scattering (Fig. 5.3 (d)). 

 

 

Figure 5.3 (a) Schematic illustration of the fabrication processes for fully printed, 

flexible and transparent CVD-synthesized MoS2 phototransistors. (b) Contact angle 

measurements of PEDOT:PSS (top) and PVP (bottom) ink on the MoS2 film (left) 

and PEN substrate (right). (c) Digital images of the transparent MoS2 phototransistor 

arrays. In the left image, the device arrays (marked with a red square) were placed 

on a piece of paper with university symbols. The right image was taken in front of a 

building. (d) Photographic image (inset) and schematic of the devices under laser 

illumination. Adapted from Kim et al. [30] 
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5.3.2. Characteristics of CVD-grown monolayer MoS2 film 

The uniformity of the synthesized monolayer MoS2 film on a SiO2/Si substrate 

was evaluated by Raman and photoluminescence (PL) spectroscopy techniques. The 

Raman peak difference (~20.7 cm-1) between in-plane E1
2g and out-of-plane A1g (Fig. 

5.4 (a)) and a distinct PL peak A (~670 nm; ~1.85 eV) at the K point of the Brillouin 

zone (Fig. 5.4 (b)) provided evidence that the CVD-synthesized MoS2 film is an 

uniformly grown monolayer [3–5]. Interestingly, the blueshifted PL signal of the 

transferred MoS2 film on the PEN substrate was observed due to a slight tensile strain 

that was induced in the MoS2 layer during the CVD synthesis process because of the 

difference in thermal expansion coefficients of the SiO2/Si and MoS2 layers [6, 7]. 

For the further investigation, PL mapping over an area of 20 µm × 20 µm was 

performed, as shown in the inset of Fig. 5.4 (b). The color distribution indicated that 

the CVD-synthesized MoS2 channel layer has uniform bandgap energy at 1.85 eV. 

Cross-sectional scanning transmission electron microscopy (STEM) with energy 

dispersive X-ray spectroscopy (EDS) also supported that the MoS2 layer was 

uniformly synthesized showing confined Mo and S signals (Fig. 5.4 (c)). To 

implement phototransistor arrays, the MoS2 film was selectively patterned using RIE 

in an O2 plasma (Fig. 5.4 (d)). Note that the CVD-synthesized monolayer MoS2 film 

typically has a dark violet color on 270 nm-thick SiO2 [1, 5, 8]. The white-dashed 

rectangles indicate the patterned MoS2 channels after the RIE process. By exploiting 

the optimized PMMA-assisted transfer method, the patterned CVD-synthesized 

MoS2 array was successfully transferred onto a PEN substrate without physical 

damage. The transferred patterned MoS2 array films on the PEN substrate 

maintained its structural quality (Fig. 5.4 (b) and (e)); however, relatively weak PL 

and X-ray photoelectron spectroscopy (XPS) signals were observed because of light 

scattering from the PEN substrates. The XPS spectra depicted in Fig. 5.4 € indicate 

the binding energies of the Mo 3d and S 2p orbitals (229.9, 233, 162.6 and 163.9 eV 

for Mo 3d5/2, Mo 3d3/2, S 2p3/2 and S 2p1/2, respectively). The difference between the 

binding energies of each orbital (3.1 eV and 1.3 eV for Mo 3d and S 2p, respectively) 

were consistent with the previously reported values [1] of CVD-synthesized 

monolayer MoS2. In addition, the S/Mo atomic ratio of 1.95 estimated from the XPS, 
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suggests that our synthesized MoS2 film is stoichiometric. The lower binding energy 

of transferred MoS2 film originated from the transferring process.  

The fully printed MoS2 phototransistors with organic materials showed a high 

transmittance over 76 % in the visible wavelength range, whereas the bare PEN 

substrate exhibited a transmittance of ~87 % in the same wavelength range (Fig. 5.4 

(f)). Noticeable absorption peaks at 1.87 eV and 2.02 eV (marked as arrows) were 

observed. These peaks were attributed to the direct transition from the spin-orbit split 

valence band to the conduction band of MoS2 monolayer, which is consistent with 

the previously reported results for both mechanically exfoliated [9, 10] and CVD-

synthesized MoS2 monolayers [11]. The PEDOT:PSS and PVP layers evenly 

reduced the optical transmittance by ~5 % over the whole visible range. Because the 

fully transparent printed organic layers do not exhibit specific absorption peaks in 

the visible wavelength range, the photocharacteristics were entirely determined by 

the atomically thin MoS2 channel layer without interference (Fig. 5.2). To consider 

the worst-case in transmittance, the measured films were prepared by sequentially 

printing all phototransistor layers over the entire PEN substrate in following order: 

MoS2, PEDOT:PSS, PVP and PEDOT:PSS on the PEN substrate (see the inset 

illustration of Fig. 5.4 (f) and Fig. 5.2). Inset shows the schematic of the stacked 

layers (PEDOT:PSS/PVP/PEDOT:PSS/MoS2/PEN) of our devices. 
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Figure 5.4 (a) Raman spectrum of a CVD-synthesized monolayer MoS2 film on a 

SiO2/Si substrate. (b) PL spectra of CVD-synthesized monolayer MoS2 films on 

SiO2/Si and PEN substrates. The inset shows a PL intensity mapping at 670 nm (= 

1.85 eV). Scale bar is 5 µm. (c) EDS data of Mo (blue line) and S (yellow line) and 

a cross-sectional STEM image of a CVD-synthesized MoS2 film on a SiO2/Si 

substrate. Scale bar is 5 nm. (d) Optical images of a CVD-synthesized MoS2 channel 

before (top) and after (bottom) selective patterning processes. Scale bar is 400 μm. 

(e) XPS spectra of a CVD-synthesized monolayer MoS2 film on a SiO2/Si (top) 

substrate and transferred MoS2 film on the PEN (bottom) substrate. (f) Transmittance 

spectra of a bare PEN substrate (blue line) and fully stacked films (red line). Adapted 

from Kim et al. [30] 
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5.3.3. Electrical characteristics under bent conditions 

Fig. 5.5 (a) exhibits the transfer (source drain current versus gate voltage, IDS–

VGS) characteristics of a fully printed MoS2 phototransistor measured in air. In 

particular, the gate leakage (IGS), which can cause significant interference in the 

photocurrent [12], was greatly suppressed by removing the PMMA supporting layer 

very carefully and optimizing the inkjet-printing conditions for the PVP dielectric 

layer formation. These  efforts were necessary because the hydrophobic PMMA 

residue causes a critical dewetting issue during the PVP printing process, resulting 

in a high gate to source leakage current. As a result, the gate leakage current was 

drastically suppressed to < 1 nA after removing the PMMA layer with the optimized 

steps. The extracted field-effect mobility in the linear regime (μ) was found to be 

~0.27 cm2/V∙s using the following equation, 𝜇 = (
𝜕𝐼𝐷𝑆

𝜕𝑉𝐺𝑆
)

𝐿

𝑊

1

𝐶𝑖𝑉𝐷𝑆
, where 

𝜕𝐼𝐷𝑆

𝜕𝑉𝐺𝑆
, L, 

W,  𝐶𝑖  and VDS denote the transconductance, channel length, channel width, 

capacitance between the channel and gate per unit area and source-drain voltage, 

respectively. The grain boundaries of the CVD-synthesized MoS2 film [13], the low-

conductivity of the PEDOT:PSS electrode, and the low-k PVP dielectric deteriorated 

the electrical performance of the fully printed CVD-grown MoS2 phototransistors. 

Although the difference in the electron affinity of monolayer MoS2 (~4.0 eV) and 

the work function of the printed PEDOT:PSS layer (~5.07 eV) , resulted in a high 

Schottky barrier, an ohmic-like contact property was exhibited with a good linearity 

of IDS near low VDS due to the chemical reactions at the PEDOT:PSS/MoS2 interfaces 

[14]. Furthermore, It should be noted that because the large-area MoS2 channel also 

had a relatively high resistance due to the long-channel length of ~100 μm and large 

number of MoS2 grain boundaries on the film [8], which resulted in an on-state 

current of ~10-7 A, the contact resistance of PEDOT:PSS with the MoS2 channel 

(~1.9 MΩ determined from the Y-function method [15]) was acceptable [16, 17].  

Owing to the use of soft organic materials, the electrical performance was not 

degraded during a mechanical stability test over 1,000 repetitive bending-relaxation 

cycles at a bending radius (R) of 5 mm, which corresponds to a uniaxial tensile strain 

of 1.26 % along the channel length (Fig. 5.5 (b)). The atomically thin MoS2 layer 

allowed superior durability under a mechanical strain of 11 % compared with widely 

used engineering materials, such as carbon nanotubes and oxide-based 
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semiconductors [18, 19]. In contrast to the good mechanical stability under repetitive 

bending cycles, the µ  and subthreshold swing (SS) measured in a bent state (R of 15 

mm, 11 mm, 7.5 mm, and 5 mm) increased as R decreased. These enhancements can 

be attributed to a reduction in the band gap energy of CVD-synthesized MoS2 when 

mechanically deformed [18, 20, 21, 22]. 

 

 

Figure 5.5 (a) IDS–VGS curves using a log scale at VDS = 1 V. Inset represents the IDS–

VGS curves using a linear scale. The change in mobility (µ) and subthreshold swing 

(SS) versus (b) number of bending cycles with a bending radius = 5 mm and (c) 

bending radii of 5, 7.5, 11, 15 and ∞. Adapted from Kim et al. [30] 

 

5.3.4. Photo-characteristics 

Fig. 5.6 shows the photocharacteristics of the MoS2 phototransistors under laser 

illumination. The measurements were executed after the devices were maintained on 

a 400 K hot-chuck in vacuum for 20 h to provide successfully suppressed IGS by 

eliminating adsorbed water and oxygen molecules on the MoS2 and gate dielectric 

layers. To investigate the contribution of the photocurrent (Ilight = Iph+ Idark) to IDS, the 

ratio of Ilight to Idark in ON and OFF states was measured for different wavelengths 

with a fixed laser power density of 717 W/m2 at VDS = 10 V (Figure 4a). Under laser 

illumination, the ratio in the OFF state drastically increased from ~101 to ~104, 

whereas in the ON state, the ratio was below 10 (see the blue-shaded region in Fig. 

5.6 (a)) [23]. An increase in the large Iph in the OFF state was observed in our study 

compared with that of the previously reported phototransistors with mechanically 

exfoliated MoS2 due to the relatively large channel area (W/L = 400 μm/100 μm) 

[24]. This advantage of CVD-synthesized MoS2 offers opportunities for large-area 

optoelectronics applications with a good photosensitivity. Moreover, the ratio of 

currents in the ON and OFF states also showed good linearity in the laser power 
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density (ranging from 0.43 to 717 W/m2 at λ = 520 nm), which is an important 

characteristic for photosensor applications (Fig. 5.6 (b)).  

The photodecay time (τdecay), which depends on VGS, was also investigated by 

measuring the time-resolved photocurrent before and after laser illumination for 20 

s with VGS values of -40 V, 0 V and 40 V at λ = 520 nm (Fig. 5.6 (c)). The decay 

curves were fitted by a stretched exponential equation, 𝐼𝐷𝑆  =  𝐼𝑝ℎ,𝑖𝑛𝑡𝑖𝑎𝑙𝑒𝑥𝑝 [− (
𝑡

𝜏
)

𝛽

], 

where Iph,initial, t, β and τ denote Idark, time, the fitting parameter and relaxation time, 

respectively. After laser illumination with a power density of 717 W/m2, τdecay 

decreased from 6.7 s to 1.7 s as VGS increased from -40 V to 40 V because the 

photocurrent contribution was weak at high VGS, as previously mentioned. The 

shorter decay time compared with that of conventional CVD-synthesized MoS2 

phototransistors fabricated on a SiO2/Si substrate is attributed to fewer interfacial 

traps between printed PVP dielectric and transferred MoS2 layers [23, 24]. The 

monotonic decrease in responsivity with increasing incident photopower indicates 

that the trap states of CVD-synthesized MoS2 are saturated (Fig. 5.6 (d)) [25, 26]. 

The responsivity and detectivity were also characterized for various laser 

wavelengths (Fig. 5.6 (e)). The fully transparent MoS2 phototransistors exhibited 

comparable photoresponsivity and photodetectivity over the entire visible range 

from 400 to 800 nm compared with that of mechanically exfoliated MoS2 

phototransistors on opaque platforms [27–29]. Moreover, the wavelength-dependent 

external quantum efficiency (EQE) (up to ~6.6 %) also supports the fully printed 

transparent phototransistors, which exhibit good photocharacteristics, even though a 

top-gate configuration was employed (Fig. 5.6 (f)) [29]. Note that the wavelength-

dependent EQE is dominantly attributed to the absorbance peaks in the MoS2 layer 

(Fig. 5.2). 
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Figure 5.6 (a) The ratio of Ilight (= Iph + Idark) to Idark in the ON and OFF states as a 

function of a) wavelength and (b) laser power at a fixed VDS = 10 V. Insets of (a) and 

(b) exhibit Iph versus VGS and the change in Vth with respect to the laser power, 

respectively. As the laser power increased, Vth shifted in the negative voltage 

direction, which indicates an increase in Iph in the subthreshold regime. (c) Time-

resolved photocurrent measurement under laser illumination (λ = 520 nm). The 

green-shaded regions indicate laser illumination for 20 s. (d) Responsivity of 

phototransistors as a function of power density under laser illumination (λ = 520 nm). 

(e) Photoresponsivity, photodetectivity and (f) external quantum efficiency as a 

function of wavelength at a fixed VGS = 80 V, VDS = 10 V and laser power density = 

57.3 W/m2. Adapted from Kim et al. [30] 
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5.4. Conclusion 

In summary, we have successfully demonstrated fully printed, transparent MoS2 

phototransistor arrays on flexible platforms. The CVD-synthesized monolayer MoS2 

and organic dielectric and electrode components were deposited directly onto 

flexible substrates using the optimized polymer-assisted transfer and inkjet-printing 

technologies, respectively. By employing ultra-thin MoS2 and transparent organic 

layers, the fully printed phototransistors exhibited excellent transparency and 

tolerance while maintaining electrical characteristics under tensile strain. Our work 

presents a new opportunity to realize 2D TMDC-based low-cost wearable device 

applications beyond conventional electronics that employ brittle components. 
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6. Summary 

In this dissertation, I have dealt with the study on the transistors based on 

atomically thin MoS2 semiconducting channel. Most of the chapters were devoted to 

analysis of the electrical characteristics of MoS2 field-effect transistors. From the 

mechanically exfoliated MoS2 samples to the CVD-synthesized large-area 

monolayer MoS2 films, and from the Ti/Au electrodes designed by conventional e-

beam lithography to the transparent and flexible PEDOT:PSS electrodes deposited 

by inkjet-printing techniques, several ways of practical application of atomically thin 

MoS2 were introduced.  
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국문초록 

대면적 단분자층 이황화 몰리브덴 박막 합성 및  

전계효과 트랜지스터에의 응용 

수 나노미터로 얇은 분자층 두께의 이차원 전이금속 다이칼코젠(transition-

metal dichalcogenides: TMDCs) 물질은 좋은 전계효과 모빌리티와 조절 가능한 

밴드갭 에너지를 가지고 있어서 차세대 반도체로 주목받고 있다. 여러 TMDC 

물질 중에서도 이황화 몰리브덴(MoS2)은 단분자층 두께에서 1.8 eV의 직접 

밴드갭 에너지를 가지고 있다. 따라서 MoS2를 나노일렉트로닉스에 이용하고자 

많은 응용 연구가 이루어지고 있는데, MoS2의 광학적, 전기적 특성을 활용하기 

위해서는 균일하면서 대면적의 MoS2 박막을 합성해야만 한다. 이를 위해 

화학기상증착법(chemical vapor deposition: CVD)으로 균일하면서 대면적을 가지는 

MoS2 박막을 합성하는 연구가 활발히 진행되었다. 

그런데 일반적인 MoS2연구에서는 무기 전극이나 유전물질을 전사시키거나  

포토리소그래피를 이용해서 디자인하는데, 이런 공정은 유연 소자에 활용되기 

힘들다. 따라서 이차원 TMDC물질의 장점을 활용해서 투명하면서 유연한 2차원 

일렉트로닉스를 구현하려면 저온, 대면적, 저비용 공정이 가능한 새로운 

접근방법이 필요하다. 이에 본 학위 논문에서는 분자층 두께로 얇은 MoS2를 

기반으로 한 전계효과 트랜지스터(field-effect transistor: FET)를 위한 MoS2 합성과 

FET에의 응용에 관해 다루고자 한다. 

첫째, MoS2 FET에 10 MeV의 고에너지 양성자 빔을 조사했을 때의 효과에 

대해 논하고자 한다. 다양한 도즈량에서 고에너지 양성자 빔 조사 전후의 전기 

특성이 분석되었는데, 전기적 특성 변화는 양성자 빔 조사에 의해 생성된 

트랩들–SiO2층에 트랩된 양전하를 띄는 옥사이드 전하와 MoS2/SiO2 계면에 

생성된 트랩–으로 설명했다.  

둘째, CVD로 대면적 단분자층 MoS2 박막을 합성하는 연구에 대해 논하고자 

한다. CVD로 합성된 MoS2 박막의 단분자층 여부를 원자현미경(atomic force 

microscopy: AFM), 라만(Raman), 광발광(photoluminescence) 스펙트럼분석으로 

확인했다. 

셋째, 합성된 대면적 단분자층 MoS2 박막에 저비용 잉크젯 프린팅으로 올린 

은(Ag) 전극을 이용해서 제작한 FET의 전기적 특성에 관해 논하고자 한다. 
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단분자층 MoS2 박막은 CVD로 합성되었고, 전극은 저비용 드롭 온 디맨드(drop-

on-demand) 잉크젯 프린팅 공정으로 마스크나 전처리 없이 제작되었다. 잉크젯 

프린팅으로 제작한 소자의 전기적 특성은 기존의 통상적인 포토리소그라피나 

전자빔 리소그라피로 제작한 FET와 비슷했다.  

마지막으로 대면적 MoS2 박막에 잉크젯 프린팅으로 제작한 투명하면서 

휘어지는 포토트랜지스터에 대해 논하고자 한다. 유전체와 전극을 포함하는 

모든 구성요소들을 투명하며 휘어지는 기판에 전사된 MoS2 박막 위에 

프린팅했다. 단분자층으로 얇은 MoS2 박막에 소프트한 유기 전극이나 유전층을 

프린팅해서 제작한 포토트랜지스터는 매우 투명하면서 높은 유연성을 보였다. 

 

주요어: 이황화몰리브덴(MoS2), 전계효과트랜지스터, 전기적 특성, 

화학기상증착법 

학번: 2013-30113 
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진우, 승엽이도 고마워. 이역만리? 버클리 생활에 큰 도움 준 향근형, 회사 
입사에 많은 도움을 주신 다운형도 고맙습니다. 군 생활때부터 지금까지 
연락하고 지내는 진이랑 대현형, 종수도 고마워. 제가 여기 적지 못한 다른 
많은 분들께도 다시 한번 감사드립니다. 

 
10년 동안 후회 없이 공부하고 뛰어놀 수 있어서 즐거웠습니다. 10년 동안의 

지식과 경험으로 교만해지는 것이 아니라, 겸손하게 나눌 줄 아는 사람이 
되도록 부단히 노력하겠습니다. 앞으로 행복할 때도 슬플 때도 있겠지만 제 
주위에 항상 저를 아껴주고 사랑해주는 사람들이 있단 걸 잊지 않겠습니다. 

 
  고맙습니다! 
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