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Abstract

Automatic music transcription refers to an automatic extraction of musical at-

tributes such as notes from an audio signal to a symbolic level. The symbolized

music data are applicable for various purposes such as music education and pro-

duction by providing higher-level information to both consumers and creators.

Although the singing voice is the easiest one to listen and play among various

music signals, traditional transcription methods for musical instruments are

not suitable due to the acoustic complexity in the human voice. The main goal

of this thesis is to develop a fully-automatic singing transcription system that

exceeds existing methods. We first take a look at some typical approaches for

pitch tracking and onset detection, which are two fundamental tasks of music

transcription, and then propose several methods for each task. In terms of pitch

tracking, we examine the effect of data sampling on the performance of peri-

odicity analysis of music signals. For onset detection, the local homogeneity in

the harmonic structure is exploited through the cepstral analysis and unsuper-

vised classification. The final transcription system includes feature extraction

and probabilistic model of the harmonic structure, and note transition based

on the hidden Markov model. It achieved the best performance (an F-measure

of 82%) in the note-level evaluation including the state-of-the-art systems.

Keywords: Automatic music transcription, music information retrieval, onset

detection, pitch estimation, singing voice, harmonic structure
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Chapter 1

Introduction

1.1 Motivation

Music is one of the most popularly produced and consumed content today. In

the last decade and a half, it is reported that over 100,000 albums are released

a year worldwide [1]. Perceiving or not, people routinely consume music all the

time in their life. Background music is always being played during commute,

work, exercise, even watching TV programs at home after work. According

to a survey of 3,000 people by an American survey organization, the average

American listens to four hours of music each day [2]. They listen to music via a

variety of channels including radio, internet streaming, and their owned music.

According to another survey, the average person will spend 13 years of their

lives listening to music [3]. As such, it is evident that music is a very deeply

ingrained content in our lives.

Nevertheless, the use of music content still remains unidirectional because

1



listeners receive only limited information in the music. In a typical listening

environment such as online streaming, only the raw audio and a few metadata

(e.g. artist, song title, album title) are available. Musically highly-trained people

can immediately play the melody that they just listened, but most ordinary

people need a musical score (i.e. sheet) to practice their playing or singing.

People may purchase the scores from online websites to get more information

about the melody they listened, but most of these scores are not guaranteed to

be correctly transcribed because those are manually processed by individuals.

The most authoritative source is the one that the creator directly publishes, but

it is very rare for creators to distribute it publicly. Also, procedures for music

creation are sometimes done even without the score. Considering the fact that

the band music has become popular in the contemporary music, it is now very

common that the inspiration of the artist is realized directly in the form of

audio signal.

For decades, listeners have been provided only with the raw audio and ba-

sic metadata, which caused the unidirectional consumption of music. As the

streaming has become the primary channel of listening to music, fortunately,

latest services that provide high-level information are growing. Beatport [4] es-

tablished a platform for buying and selling multi-track audio sources for music

creators and DJs. Some musical attributes such as tempo and key are also pro-

vided with the downloaded audio, but these are manually tagged by creators

and therefore not applicable to existing songs. Pandora [5] and Last.fm [6] are

the ones that analyze many users’ listening patterns and statistics to provide

personalized music recommendation services, but the use of the information

inherent in the content itself is very limited. Echonest [7] performs the content-

2
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Fig. 1.1 Music services and the accessibility for the listener, performer, and

developer/provider.

based analysis of tempo, key, and beat in music and distributes them through

a web API, but it is more useful for service developers and researchers rather

than most general listeners.

Automatic music transcription (AMT) allows bi-directional and interactive

consumption, and the potential for the content to be expanded and reproduced.

It refers to a task which extracts a musical notation in the form of symbolic data

from audio recordings. AMT not only generates musical scores for songs that

the score does not exist but also can help consumers to fully understand and

enjoy music. The symbolized music does not necessarily have to be in a form of

traditional Western music score, but it often consists of numerical data of the

musical attributes of each note at a more fundamental level. In some aspects,

this is likened to inferring the recipe after taste of a dish or reverse-engineering

the source code of a computer program [8].
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Music contents can be utilized in various fields when they are provided

as symbolized data together with audio signals and metadata. First, it can

be used for educational purposes for those who want to learn to sing or play

musical instruments. Songs2See [9], a project started at the Fraunhofer Insti-

tute in Germany, is a game application to learn by playing real instruments.

Users can practice the traditional instruments such as guitar, piano, saxophone,

flute, bass, clarinet to play popular classical music, and receive the points by

their performance. Time-scale modification and pitch-shifting technologies are

applied for adjusting tempo and key of accompaniment music. AMT is also

used for more creative purposes such as automatic accompaniment generation.

Microsoft’s Songsmith [10, 11] is an application that automatically creates ac-

companiments that match singer’s voices. This service is not only for beginners

who are not musically trained at all but also for musicians who want to get

musical inspiration easily. More recently, mobile learning market is expanding

these days with the advances in mobile technologies. Smartphones or tablet

devices are becoming an important platform for learning and training. Music

education on mobile platforms is one of the most popular areas, and mobile

apps such as Yousician [12] provide a real-time tutoring service for beginners

who like to play guitar, piano, or violin. In such applications, users’ performance

is recorded through a built-in microphone, and transcribed into note-level data

in order to guide users to play a given music score correctly.

AMT is also useful as an fundamental study for higher-level music infor-

mation retrieval (MIR) tasks. It can be used as a front-end in tasks such as

query-by-humming (QBH) or melodic similarity analysis. Also, this will give

useful information in musicology-based MIR studies such as tonality analysis

4



and harmonics theory.

In the rest of this chapter, we define some important keywords in both

musical and scientific field. We also introduce several ways to represent music

and music signals, and describe the scope of our research. Next, the problem

statement in the singing transcription, which is the destination that this thesis

is heading for, is followed. Finally, we summarize our major contributions and

the outline of the thesis, before the description of about the detailed algorithms

and system.

1.2 Definitions

As this thesis deals with aspects of music and singing voice, this section de-

scribes some important definitions for a clear understanding of relevant terms

and how they will be used throughout this dissertation.

1.2.1 Musical keywords

Pitch is the ordering of sounds on a frequency-related scale extending from

low to high. Pitch can be expressed in two major units: Hz, the unit of frequency,

and MIDI1 note number, which converts the frequency in semitone scale. In the

early days, the conversion formula was into a range of [1, 88] corresponding to

the frequencies of a typical 88-key piano keyboard, but later 106-key range is

used as a wider pitch range is required. The MIDI note number is converted

from the frequency into the logarithmic scale as 12 log2(frequency/440) + 69.

The voiced speech of a typical adult male will have a fundamental frequency

1MIDI (Musical Instrument Digital Interface) is an industry standard specification for
transmitting and sharing performance data of electronic musical instruments.

5



(F0) from 85 to 180 Hz, and that of a typical adult female from 165 to 255 Hz

[13]. In the case of singing, the highest F0 increases to about 1 kHz.

Onset is the exact time when a note starts. An onset can be hard or soft

depending on the attack time, which is “the time taken for initial run-up” of

the amplitude envelope [14]. Typical examples of hard onset include pitched

percussive instruments such as vibraphone, xylophone, and keyboard instru-

ments such as piano. These instruments are relatively easy to detect because

all notes have a clear attack in their amplitude envelope. On the other hand,

bowed string instruments such as violin or cello can be an example of the soft

onset. Similarly, singing voice can also be classified as soft onset.

Duration is the time during which a note is playing. The time of which an

onset plus its duration is called the offset, indicating the end of the note. Since

it is often ambiguous to locate clearly where the notes end on most instruments,

it is generally considered more difficult to detect offset than onset.

Articulations refers to performance techniques which affect the transition or

continuity on a single note or between multiple notes or sounds. This includes

staccato which infers playing strongly, and slur playing smoothly on several

notes. As a particular type of articulation, legato refers to an articulation in

which the melody is played from note to note with no intervening silence. This

playing technique is closely related to soft onset appeared in such as string

instruments and singing voices.

In this dissertation, a transcription system interprets a melody from a single

source at the symbolic level, on the basis of three attributes of musical notes:

6



onset, duration, and pitch.

1.2.2 Scientific keywords

Harmonic (also known as partial) is a wave which is added to the fundamen-

tal wave. An acoustic signal with a certain pitch can be expressed by the sum

of k sinusoids as follows:

x(t) =
∑
k

Ak(t) cos
(
2πfk(t) + ϕk

)
(1.1)

where Ak(t) is the amplitude, fk(t) is the frequency, and ϕk(t) is the phase

at a time instance t. The fundamental frequency (F0) is closely related to the

pitch of the complex tone. The relative energy of the harmonics determines the

timbre of a tone.

Harmonic structure refers to the energy relationship between harmonic

partials in an acoustic context. It is distinguished from the definition used in

music theory, which is the combination of musical sounds in consonances and

progressions in the musical context of mode and tonality.

1.2.3 Representations

We here introduce four ways to represent music and music signals. The first

is waveform, the most physical form. From an acoustic perspective, the sound

has the physical property of the wave. As a function of time, its amplitude is

related to the sound pressure caused by waves propagating into the air.

The second is a time-frequency representation through the short-time

Fourier transform (STFT) or the constant-Q transform (CQT). Unlike the

waveform (of one-dimensional time series data), time-frequency representations

7
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Fig. 1.2 Four representations of the first four measures of Ludwig van
Beethoven’s Piano Sonata No. 8 in C minor, Op. 13.

consist of two axes: time and frequency. The frequency axis can be along with

the mel scale that approximates the frequency perception in the human audi-

tory system, or a logarithmic scale that is directly proportional to the chromatic

scale in western music.

The third ismusical score, the most traditional representation. It can express

not only the basic attributes of note but also various musical information such

as key, tempo, bar, and playing style.

The last representation is piano-roll illustration, which represents only three

attributes of onset, duration, and pitch. It is the most symbolic representation

in that it only expresses the basic attributes of notes more abstractly than the

traditional musical score.
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1.3 Problems in singing transcription

Most of MIR tasks are evaluated annually in the Music Information Retrieval

Evaluation eXchange (MIREX)2. Audio onset detection is one of the most tra-

ditional tasks since 2005, and it aims to detect note onset in various musical

signals such as mixed music and various types of instruments. As shown in Fig.

1.3, the performance gap between the overall score and singing voice has not

been narrowed until 2016.

As such, singing voice is more difficult to transcribe than typical instru-

ments due to its complex characteristics. We classified them into three factors

as follows:

2http://www.music-ir.org/mirex/
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1. Diverse tone: Different instruments with the same kind have a common

sound tone, even if they are played by different performers. However, the

tone of the singing voice varies greatly depending on the gender and age of

a singer. The singer’s unique tone differ from another even with the same

gender and age. In addition, the voices of the same singer have different

harmonic structures by the pronunciation and singing style. Accordingly,

it is not beneficial to use an intrinsic harmonic structure of the singing

voice, which is used for the analysis of musical instruments.

2. Erratic loudness: Singing voice allows a richer musical expression than

any other instrument, and this becomes one of the obstacles for automatic

transcription. Crossing notes and notes, the loudness of singing voices is

very unpredictable and immediately changing, and this is often observed

even in the same note. This characteristic is not found in instruments

such as piano and guitar, and makes it difficult to apply the traditional

onset detection methods based on the energy change of the signal.

3. Abundant articulation: The delicate musical expression of a singing

voice is found not only in terms of loudness but also in pitch. Vibrato

produces a regular, pulsating change of pitch, and ornament decorates

melody with a very short and fast note before or after a reference note,

and glissando makes a continuous change of pitch from one to another.

1.4 Topics of interest

Automatic music transcription from audio has long been one of the most in-

triguing problems and a challenge in the field of music information retrieval,
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because it requires a series of low-level tasks such as onset/offset detection and

pitch estimation, followed by high-level post-processing for symbolic represen-

tation. Onset detection and pitch estimation, which are two fundamental topics

in music transcription, have been considered separate tasks in early days. In

the former case, there have been various attempts for note onset detection of a

music signal since the mid-90s. To detect the onset of a single instrument signal,

the first attempt was a simple approach using the derivative of the amplitude

envelope [15]. However, because of the different characteristics depending on

the type of instrument, researchers have attempted to find suitable approaches

to the characteristics of instruments classified as pitched non-percussive (PNP)

and non-pitched percussive (NPP).

For the latter, the term ‘pitch tracking’ has become more preferred for recent

years, as it is more useful to utilize the pitch contour instead of a single pitch

value from a quasi-periodic signal. The most traditional and effective method

is to choose a frequency at the global maximum value of a detection function

generated from such as the autocorrelation. This approach was very intuitive

and somewhat effective, but the key was to minimize the ‘octave error,’ which

means that estimates are sometimes doubled or half frequencies.

Among the three main topics that make up this thesis, the first two top-

ics deal with pitch tracking and onset detection of general monophonic music

signals, respectively. Regarding the pitch tracking, we exploit a data sampling

method to reduce the octave error, which is one of the major cause of incorrect

estimation, examining on several existing methods. The term ‘data sampling’ is

used in this method to refer to the selective acquisition of extrema (i.e. maxima

and minima) related to the predominant period instead of using all the given
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samples, while generating a detection function such as autocorrelation from the

discretized digital signal.

In terms of onset detection, we pay attention to the point that existing

algorithms are not capable of detecting soft onsets, and present an alternative

approach using the harmonic structure. It is noticed that the harmonic structure

remains stable within a single note, even in the case of complex music signals

where the amplitude envelope is unpredictable and the tone varies. We examine

that this hypothesis can be applicable to onset detection of various kinds of

musical instruments.

As the transcription of complex music signals has been more attempted, on-

set detection and pitch tracking is not treated as separate tasks anymore, and

many approaches aim to solve them in a single framework. A typical example

is an algorithm that transcribes polyphonic music based on non-negative ma-

trix factorization (NMF) [16, 17] and recurrent neural networks (RNNs) [18].

More recently, RNNs have been used to detect the presence of singing voice

from mixed music signals [19]. In general, transcription of polyphonic music is

considered a more challenging problem than of monophonic music. The main

reason for this is that multiple notes are often played simultaneously, and thus

individual notes interfere by virtue of their harmonic relations [20]. When only

a single instrument is targeted, polyphonic music has notable achievements in

recent studies due to the regularized harmonic structure. However, the tran-

scription of singing voices with complex characteristics still remains room for

improvement, for the reasons explained in Section 1.3.

The goal of this thesis is ultimately extended to a fully-automatic transcrip-

tion of singing voice signals. This includes seeking and enhancing the suitable
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approach to the complex characteristics of singing transcription. We expand the

hypothesis that was first attempted in our onset detection study, and develop a

system that can effectively use the local homogeneity of the harmonic structure.

Compared with other singing transcription systems, the proposed system aims

to achieve high performance for various types of singing voices.

1.5 Outline of the thesis

Chapter 2 provides an overview of the two main topics of music transcription:

pitch estimation and note segmentation. Focusing on existing methods that are

widely used, we investigate which approaches have been historically taken for

each topic. In addition, we review the literature on singing transcription, which

is the final objective of this thesis, and highlighted the differences between

singing transcription and traditional transcription systems. Finally, the public

datasets used in many studies related to music transcription are listed to aid in

future research.

Chapter 3 examines the effect of data sampling on periodicity analysis of

a quasi-periodic signal. In dealing with the conventional pitch detection func-

tions, such as the autocorrelation function or the average magnitude difference

function, we select only a few samples that are regarded to be relevant to the

periodicity, rather than using all the data. Periodicity analysis is performed in

the time and the frequency domains, with an iterative linear estimation tech-

nique for precise refinement of the fundamental period. To evaluate the method,

it is utilized as a monophonic pitch tracker, and we measure the performance

using the traditional pitch error metrics. The experimental result shows the
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improvement in the gross pitch error and the octave pitch error, compared to

the original method without sampling.

Chapter 4 presents a novel onset detection algorithm based on cepstral

analysis. Instead of considering unnecessary mel-scale or any interests of non-

harmonic components, we selectively focus on the changes in particular cepstral

coefficients that represent the harmonic structure of an input signal. In com-

parison with a conventional time-frequency analysis, the advantage of using

cepstral coefficients is that it shows the harmonic structure more clearly, and

gives a robust detection function even when the envelope of waveform fluctu-

ates or slowly increases. As a detection function, harmonic cepstrum regularity

(HCR) is derived by the summation of several harmonic cepstral coefficients,

but their quefrency indices are defined from the previous frame so as to re-

flect the temporal changes in the harmonic structure. Experiments show that

the proposed algorithm achieves significant improvement in performance over

other algorithms, particularly for pitched instruments with soft onsets, such as

violin and singing voice.

Chapter 5 discusses a comprehensive transcription system for monophonic

singing voice based on harmonic structure analysis. Given a precise tracking

of the fundamental frequency, a novel acoustic feature is derived to signify

the harmonic structure in singing voice signals, regardless of the loudness and

pitch. It is then used to generate a parametric mixture model based on the von

Mises–Fisher distribution, so that the model represents the intrinsic harmonic

structures within a region of smoothly connected notes. To identify the note

boundaries, the local homogeneity in the harmonic structure is exploited by two
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different methods: the self-similarity analysis and hidden Markov model. The

proposed system identifies the note attributes including the onset time, duration

and note pitch. Evaluations are conducted from various aspects to verify the

performance improvement of the proposed system and its robustness, using

the latest evaluation methodology for singing transcription. The results show

that the proposed system significantly outperforms other systems including the

state-of-the-art systems.
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Chapter 2

Background

In this chapter, we present an overview of various methods for automatic mu-

sic transcription. As aforementioned in the introduction, music transcription

systems include two main topics of pitch estimation and note segmentation.

Although the two topics are not independent when a transcription system is

configured, we provide a review of each topic to help to understand the whole

transcription system.

This chapter is organized as follows. Section 2.1 presents methods for pitch

estimation in the time domain and the frequency domain. Section 2.2 introduces

onset detection algorithms for music signals, and shortly addresses offset detec-

tion. Then, we provide a historical review of singing transcription in Section 2.3,

and describe the evaluation methodology that is currently used in most papers

related to music transcription in Section 2.4. Finally, Section 2.5 concludes the

chapter.
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2.1 Pitch estimation

Most pitch estimation algorithms are done in the time domain or the frequency

domain. There are a few methods based on the cepstrum analysis, which was

mainly attempted in speech processing, to use the quasi-periodic magnitude of

the spectrum. However, it is not commonly used today because the estimation

accuracy is not superior to the time-domain methods, despite the high complex-

ity due to the double transform. Therefore, this section covers the time-domain

and frequency-domain methods that are widely used.

2.1.1 Time-domain methods

Autocorrelation-based F0 estimation is the most straightforward method for

pitch estimation. Basically, it calculates the correlation between a time-domain

signal and its time-shifted version. Then, it finds the global maximum in the au-

tocorrelation function (ACF), and converts the time lag at the global maximum

into the frequency scale in Hz.

Given a time-domain signal x(t) and a frame length T , the autocorrelation

function rt0(τ) at time t0 is defined by

rt0(τ) =

t0+T−1∑
t=t0

x(t)x(t+ τ) (2.1)

where τ is the time lag.

In practical cases, it is often observed that the actual F0 corresponds to one

of the local maxima rather than the global maximum. This is called the ‘octave

error,’ which is caused by higher harmonics that have stronger energy than

the fundamental frequency does. To solve this problem, many autocorrelation-

based methods refine the autocorrelation function so that the global maximum
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corresponds to the F0. A pre-processing such as spectral whitening can be a

possible solution.

Another popular time-domain method is YIN algorithm [21]. The YIN al-

gorithm is the most widely used pitch estimator owing to its high performance

despite its simple and clear structure. It has a similar structure to the auto-

correlation method, but it uses the difference instead of the multiplication of

signal amplitude.

The first step of the YIN algorithm is calculation of the absolute value of

the amplitude difference

dt0(τ) =

t0+T−1∑
t=t0

|s(t)− s(t+ τ)| . (2.2)

Then, the cumulative mean-normalized difference function is derived from dt0(τ)

as

d′t0(τ) =


1, τ = 0

dt0 (τ)

(1/τ)
∑τ

j=1 dt0 (j)
, otherwise.

(2.3)

The F0 estimate is determined by the smallest τ for which a local minimum of

d′t0(τ) is smaller than a threshold. A second-order polynomial interpolation is

followed to adjust the time lag τ precisely.

2.1.2 Frequency-domain methods

The advantage of using frequency-domain methods is that they are easy to

extend to multiple-F0 estimation. The time-domain methods contain a post-

processing step to emphasize the peak corresponding to a single F0, therefore

the harmonic energy of the signal may be distorted. On the other hand, algo-

rithms based on time-frequency representations such as the short-time Fourier
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transform (STFT) are free to use the pure harmonic energy. Nonetheless, it is

beneficial to use a time-domain method that yields a lower estimation error for

purposes of singing transcription.

In early days, Noll proposed a pitch estimator called the harmonic product

spectrum (HPS) for human speech signals [22]. The HPS method measures

the maximum coincidence for harmonics for each spectral frame. The periodic

correlation Y (k) of the spectrum X(k) is calculated by

Y (k) =
R∏

r=1

|X(rk)| (2.4)

where R is the number of harmonics to consider. The F0 estimate is obtained

at the global maximum of Y (k).

The HPS algorithm is simple to implement, thus can be run in the real-time

environment. However, the octave errors are commonly observed because the

second harmonics are often stronger that the F0 in most real-world music sig-

nals. Moreover, the downsampling technique (expressed as X(rk) term) cannot

help but lose the discrete data when the spectral resolution is insufficient.

Another frequency-domain method called subharmonic summation (SHS)

[23] can give an alternative way to solve this resolution issue. This method

applies a similar concept to the HPS algorithm to add up all the spectral

components have a harmonic relation with the F0, but the original spectral

resolution is preserved as the SHS method uses the shifted spectrum instead of

downsampling the spectrum.
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2.2 Note segmentation

In the introduction chapter, we defined an onset as the time at which a note

begins. From a signal processing perspective, three terms can be defined con-

sidering the acoustic characteristics at the beginning of a note [14]:

• Attack: The Time interval during which the amplitude envelope increases.

• Transient: Short intervals during which the signal evolves quickly in some

nontrivial or relatively unpredictable way.

• Onset: A single instant chosen to mark the temporally extended transient.

The definition for offset in terms of signal processing are not found in the

literature. This seems to be due to the difficulty in generalizing its signal char-

acteristics, as the offset has very different aspects depending on instruments.

For a monophonic signal, it is possible to locate the offset at which the frame

begins to be unvoiced.

2.2.1 Onset detection

Most onset detection methods consist of three main steps as follows. First,

preprocessing aims to emphasize the most important characteristics of onset

detection in input signals. Techniques such as spectral whitening and tran-

sient/sustain separation are consistently mentioned in literature. Second, the

reduction step converts the audio signal into a highly-processed detection func-

tion that represents the occurrence of the transient in the original input signal.

This step determines the detection function, which is a key part of the algo-

rithm. The last step is to select identifiable local maxima (i.e. peaks) in the

detection function.
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Pre-processing Reduction Peak pickingSignal Onset

Fig. 2.1 General workflow of onset detection.

Amplitude Envelope

The very first method for onset detection is reported to have been proposed by

Schloss in the mid-80s [15]. The detection function in this method is originated

from the amplitude envelope of the input signal x(n):

E(n) =

N/2−1∑
m=−N/2

(x(n+m))2w(m) (2.5)

where w(m) is a window function. The above formula does not imply the onset

strength, and preprocessing such as low-pass filtering of the input signal x(n)

must be accompanied.

Time-Frequency Analysis

A method proposed by Goto et al. [24] is an example of applying the analysis in

the time-frequency domain to onset detection. A component p(t, f) in the STFT

magnitude that fulfills the below condition is regarded as an onset component.
p(t, f) > pp, pp = max (p(t− 1, f), p(t− 1, f ± 1), p(t− 2, f))

np > pp, np = min (p(t+ 1, f), p(t+ 1, f ± 1))

(2.6)

This approach allows to extract the detection function intuitively from the

magnitude spectrum. However, it is vulnerable to noise, and has limits to be

able to detect only a very strong onset.
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High Frequency Content

Since the late 90s, algorithms that are not only simple but decently performed

have been studied. Considering the dramatic changes in the signal at the mo-

ment of the new note event, Masri proposed a detection function by weighting

along with the frequency axis as below [25]:

Ek(n) =

N/2+1∑
k=2

Wk|Xk(n)|2 (2.7)

where Wk is the weight on the frequency bins. With Wk = k, the detection

function increases when the stability of the signal rapidly collapses, because the

higher frequency components have a greater weight. In particular, this method is

known to be effective for the detection of non-pitched percussive (NPP) onsets.

Psychoacoustic Knowledge

With the achievements in the psychoacoustics field, multilateral approaches

have been applied to MIR systems. Based on the perceptual evidence that the

loudness is perceived logarithmically by the human hear, Klapuri proposed the

following detection function [26]:

W (t) =
d

dt
(logE(t)) =

dE(t)
dt

E(t)
(2.8)

where E(t) is the amplitude envelope. The local maxima of the detection func-

tion became closer to the actual perceived point by using the logarithmic scal-

ing, which is the biggest difference from the previous methods.

Spectral Flux/Difference

Among the various methods using the derivative of successive STFT magni-

tudes, the spectral flux (or difference) method is most widely used one. Like
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the HFC algorithm, it is effective for NPP onsets but is often reported to per-

form better. The detection function is derived as below [27]:

SD(n) =

N/2−1∑
k=−N/2

{H (|Xk(n)| − |Xk(n− 1)|)}2 (2.9)

where H(x) = x+|x|
2 .

Given the magnitude spectrum at two successive frames, the distance be-

tween two vectors determines the detection function. When ℓ1-norm is used as

a distance metric, then the detection function is called spectral flux. If ℓ2-norm

or Kullback-Leibler divergence is used, it is called spectral difference.

2.2.2 Offset detection

Offset detection has been considered a minor task compared to onset detection.

There are only a few studies on offset detection, because it does not give any

usefulness by itself; Acoustic features that do not require offsets, such as inter-

onset intervals, are already exploited in many papers. Another reason why it

has been hardly attempted is that offsets are not as salient as onsets. In many

instruments, decaying of a note is slow and gradual, so it is very difficult to

measure the exact time of an offset. This ambiguity makes it hard to annotate

the ground truth, and thus hard to evaluate.

For the reasons described above, most note segmentation methods do not

prepare a specific process for offset detection. An exceptional example is an

approach which models the activity of a note using a two-state hidden Markov

model (HMM) [28]. In this approach, the offset is detected at the frame when

an active pitch between two consecutive onsets changes from an active to an

inactive state for the first time, so that the moment when offset detection occurs
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can be specified.

2.3 Singing transcription

Since singing voice is much harder to transcribe due to its complex signal char-

acteristics compared to typical instruments, singing transcription has begun to

be attempted relatively late. The first algorithm for transcription of singing

voice was proposed in McNab’s work [29], which devised a note segmentation

scheme using the RMS energy and the F0 of the signal. If the signal energy

exceeds a given threshold, this method interprets it as the beginning of the

note, and similarly, the note offset is inferred if the signal energy falls below a

threshold. Additionally, a note boundary was detected when an F0 estimate was

more than half a semitone from the average of the previous estimates during the

segment. As shown in Fig. 2.2, McNab contributed to establishing a framework

for general singing transcription. In this framework, note pitch identification is

included in consideration of the difficulty lying in singing transcription in which

the F0s are unstable within a note, which is the most different aspect from the

transcription of other musical instruments.

Due to the vulnerability in legato note detection, however, the method based

solely on the signal energy cannot be applied to most singing voice inputs.

Therefore, many later researchers have tried to use the discontinuity of the F0.

Pollastri used both the energy and F0 changes for note segmentation, as well

as the zero crossing rate (ZCR) used to make voiced/unvoiced decisions [30].

Clarisse et al. performed note segmentation based on the adaptive adjustment

of thresholds for signal energy. Later, their system was improved by adding

several decision rules for richer expressions with legato, vibrato, and tremolo
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Acoustic and 

musicological models

Fig. 2.2 General workflow of singing transcription.

[31].

Voicing can be another feature to detect not only a silence between notes

but also some legato notes with a strong transient noise at the beginning

of the note (i.e. attack). In particular, fricative consonants ([s], [f], [v]) and

stop/plosive consonants ([p], [b], [t]) are the syllables come with very strong

noise. The voicing detection is commonly embedded within the F0 tracking.

The autocorrelation-based method determined an aperiodic signal if it cannot

detect any clear peak in the ACF, or the peak amplitude is less than a thresh-

old. In the YIN algorithm, the frame is determined as unvoiced when any of

the difference (YIN) value is not less than a threshold.
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2.4 Evaluation methodology

As music transcription has been studied for over a decade, methodology and

framework to evaluate the performance have been well-established. This sec-

tion provides a brief overview of the standard evaluation methods on pitch

estimation and note segmentation. For more information on how algorithms

are practically evaluated using real-world data, see Chapter 3 (for pitch esti-

mation), and Chapter 4-5 (for note segmentation). Also, this section introduces

public datasets used in various papers related to music transcription.

2.4.1 Pitch estimation

For monophonic speech/singing signals, a pitch estimator can be utilized for

voice activity detection (VAD), which identifies whether the voice is active or

not. Most pitch estimators include the voicing detection along with the F0

estimation accuracy in their performance evaluation.

To measure the estimation accuracy, two types of error metrics are com-

monly used. The first one is gross pitch error (GPE), for which the relative

error to ground truth is greater than 20%. The measure of the GPE is defined

by the ratio of the number of frames corresponding to the GPE and the total

number of frames. The find pitch error (FPE), on the other hand, refers to a

error where the relative error is less than 20%. In this case, statistics such as

mean or standard deviation of the FPE are preferred rather than the ratio of

frames.

In respect to voicing detection, precision (false alarm) and recall are used as

measures. A ‘false alarm’ means an unvoiced frame that is estimated as voiced,

and the precision will be low if it occurs frequently. Conversely, a high chance of
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estimating a voiced frame as unvoiced implies that important information may

be lost. In general, over 90% of recall is highly demanded for system stability.

Precision and recall are the evaluation metrics for binary classification, and are

described in detail in the following subsection.

2.4.2 Note segmentation

Precision and Recall are the measures that manifest the detection accuracy in

pattern recognition and information retrieval related to binary classification.

Precision is the ratio of the results that are predicted as relevant among the

retrieved results, and recall is the ratio of the actually retrieved items among the

items predicted as relevant. F-measure (also known as F1-score) that combines

the precision and the recall is widely used as the most representative measure

for binary classification.

True condition

Positive Negative

Prediction
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Table 2.1 Confusion matrix in binary classification.

Those measures are calculated taking into account both the predicted doc-

uments and the ground truth. More specifically, the predicted results of two

types (positive or negative) are combined with the true condition, thus all four

outcomes are formulated consequently as shown in Table 2.1. The formulation

of each measure is as follows:
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Precision =
n(True Positives)

n(True Positives) + n(False Positives)
(2.10)

Recall =
n(True Positives)

n(True Positives) + n(False Negatives)
(2.11)

F-measure =
2× Precision× Recall

Precision + Recall
(2.12)

For onset detection, the onset detected near the ground-truth onset time

is treated as a true positive. The longest time difference determined as true

positive is called a tolerance window, and it is usually given by 50 milliseconds.

In other words, detected onsets that do not have any ground-truth onset within

50 ms are determined to be false positives. In the case of offset detection, a more

loose criterion applies to the tolerance window, since accurate annotation is

more difficult. It is generally given by 50 ms or 20% of note duration, whichever

is larger.

2.4.3 Dataset

For a fair evaluation, it is important to evaluate the algorithms under the same

experiment condition, including the dataset and measures. Because the dataset

is particularly the factors that most directly affect the performance, it is neces-

sary to choose carefully. Although the datasets used in the MIREX are consid-

ered to be a de facto standard, it is not publicly available in order to prevent

participants from being strongly biased towards specific data. Instead, a variety

of datasets for MIR tasks is available on the internet. We present here some

widespread datasets for music transcription purposes.

In respect to pitch estimation, the dataset should provide audio recordings
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and their corresponding ground-truth including the correct F0 sequence. The

ground-truth F0 sequence is usually generated using an existing pitch estimator

and then manually corrected. Since a pitch estimator is also treated as a voicing

detector, the annotation may include data related to voiced/unvoiced frames.

On the other hand, the dataset for note segmentation mainly provides the onset

time and duration time of each note as the ground-truth. Some datasets such

as Bach10 also provide the note pitch in the MIDI note number scale. Popular

datasets for music transcription are listed in Table 2.2.
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Table 2.2 Datasets for music transcription.

Dataset Target task Ground-truth Audio type Files Reference

SVO1
Onset/offset detection,
Pitch estimation

Onset time, offset
time, note pitch

Solo singing voice
(amateur singers)

22 Heo [32]

SVO2 Onset/offset detection
Onset time, offset
time (partial)

Solo singing voice
(singing experts)

14 Heo [32]

MIR-QBSH-
corpus

Note detection, pitch
estimation

Reference song
(MIDI)

Solo singing voice 4,431 MIREX [33]

MIR-1k Pitch estimation F0 contour
Accompaniment
and separable
solo singing voice

1,000 MIREX [34]

TONAS
Onset/offset detection,
pitch estimation

Onset time, du-
ration time, note
pitch

Solo singing voice
(flamenco)

72 COFLA team [35]

Bach10
Onset detection, pitch
estimation

Onset time, note
pitch, F0 contour

Violin, clar-
inet, saxophone,
bassoon

40 Duan et al. [36]

Onset Leveau Onset detection Onset time Multi-type 20 Leveau et al. [37]

ODB Onset detection Onset time Multi-type 20
University of Ali-
cante [38]

RWC database
(partially used)

Onset detection Onset time Solo instruments Huge Goto et al. [39, 40]

Jamendo Cor-
pus

Vocal activity detec-
tion

Vocal presence
time

Mixed song 93 Ramona [41]
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2.5 Summary

In this chapter, we have taken a look at a variety of methods related to three

main topics: pitch estimation, note segmentation, and singing transcription.

Some methods such as the YIN algorithm are still in use today, but many of

the methods are no longer used due to their lower performance than recent

achievements in the MIR field. However, by reviewing the past methods even

if obsoleted, we hope that our readers have been helpful in understanding how

to define problems and strategies for the purpose of music transcription. For

example, focusing on how acoustic features are related to musical pitch and

note onset can be a good starting point for seeking a novel approach.

The three main topics will be discussed in detail in the following chapters.

First, we will present a pitch tracking method using data sampling to improve

existing pitch estimation methods in Chapter 3. Second, a method for detect-

ing soft onsets that have not been easily realized by existing methods will be

discussed in Chapter 4. Lastly, in Chapter 5, we will describe our integrated

system to transcribe note onset, duration, and pitch from singing voice signals.
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Chapter 3

Periodicity Analysis by Sampling
in the Time/Frequency Domain
for Pitch Tracking

3.1 Introduction

In this chapter, based on the original work by Heo et al. [42], we describe

the first stage of the singing transcription system proposed in this thesis. The

estimation and tracking of the fundamental frequency in music and audio signals

is one of the elementary techniques in the music information retrieval field. The

analysis of a melody provides valuable data for many retrieval tasks. The pitch

contour, which is an essential attribute in music transcription alongside note

onset and offset, is utilized to analyze the harmonic structure of an input signal.

Besides, frame-wise pitch values are utilized as a feature in recent applications,

such as query-by-humming and audio fingerprinting. Since many pitch tracking

algorithms have shown reliable performances for monophonic inputs, the range
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of interest has expanded to multiple pitch estimation in recent years.

During several decades, there have been numerous attempts for pitch esti-

mation and tracking. Most approaches can be classified into two groups: the

time-domain approach and the frequency-domain approach. The time-domain

approach estimates the period of a quasi-periodic signal. To specify the fun-

damental period, the autocorrelation function and the average magnitude dif-

ference function are widely used in many previous works. Methods using these

functions can be computed and implemented easily. However, it is difficult for

this approach to deal with polyphony detection, which can cause the octave

errors. For music signals with unclear and complicated periodicity, sometimes

doubled (or half) pitch is estimated compared to the reference pitch.

One of the most popular algorithms called YIN [21] prevents octave er-

rors by utilizing several additional refinement steps, and its performance is

still competitive today. To exploit higher-order statistics, correntropy is em-

ployed to analyze the temporal structure, showing advantages over traditional

autocorrelation-based methods [43]. However, methods based on the autocor-

relation or difference function can be prone to music signals with irregular

harmonic structures. Although the fundamental frequency is the most domi-

nant harmonic partial for most cases, the harmonic structure can sometimes

be irregular depending on the instrument and the playing style. Probabilistic

modeling is one solution, which measures the likelihood of matching up the

harmonic structure with a pre-defined frequency map [44].

In the frequency-domain approach, the time-series data are transformed into

the frequency domain using the short-time Fourier transform, and the most

dominant part of the spectrum is detected. The harmonic product spectrum
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(HPS) algorithm calculates the greatest common divisor of harmonic frequen-

cies by the product of downsampled signals by degrees [22]. Pitch detection is

also attempted by cepstral analysis [32], using the fact that the spectrum of

a monophonic music signal contains equally-spaced harmonic partials. These

approaches have the merit of expansibility to multiple pitch estimation.

Whichever approach is used, it is important to make a clear detection func-

tion, since most approaches determine the fundamental period by selecting the

most predominant point of the detection function. For this purpose, we propose

a method of analyzing periodicity using only a few relevant data. Data sampling

is used here for effective computation as well as effective analysis of periodicity.

The rest of this chapter is organized as follows. We present the proposed

method based on the sampling in both time and frequency domains from Sec-

tion 3.2 to Section 3.4. The F0 refinement based on the least square method is

explained in Section 3.5. Next, Section 3.6 describes the experimental setup to

evaluate the pitch tracking performance. In Section 3.7, the results of the eval-

uation are reported along with the discussions. Finally, we draw our conclusion

in the last section.

3.2 Data sampling

Given a quasi-periodic signal x (n), two functions that are generally employed

to represent the periodicity are defined by

DACF (m) =
1

N

N−1∑
n=0

x (n)x (n+m) (3.1)

DAMDF (m) =
1

N

N−1∑
n=0

|x (n)− x (n+m)| (3.2)
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where DACF is the autocorrelation function (ACF) and DAMDF is the average

magnitude difference function (AMDF), respectively, and N is the length of

the input signal. In general, these functions have a few local maxima at the

smallest period and its integer-multiple values. For detection, it is desired that

the maximum value is located at the period index which is corresponding to its

fundamental value. Due to the cumulative property underlying these functions,

however, the most dominant peak may not be distinguished clearly from its

adjacent or harmonic values. In other words, it can be viewed that most data

that are less relevant to the periodicity cause a negative influence in the period

detection.

To reduce the influence of those data and emphasize the period-related

data, we select a few samples, which are considered meaningful data for pe-

riodicity detection, rather than using all the data in calculating the detection

functions. One simple way to distinguish meaningful samples is to choose parts

that characterize the macroscopic shape of the data - the points where sharp

changes occur, such as peaks and valleys. It is natural and empirical to focus

on these characteristic points and find a similar shape to estimate the period

of a quasi-periodic signal.

In addition to the effectiveness in the fundamental frequency detection, it

is also efficient for the computation. Because the complexity of the ACF and

the AMDF is proportional to N2, using a few samples can dramatically reduce

the computation time, particularly for huge input data.

We utilize peaks and valleys of the input data as the distinctive parts that

imply periodicity for the two following reasons. Firstly, it is easy to distinguish

inflection points from continuous data. Secondly, given that an audio signal
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Fig. 3.1 An example of amplitude and prominence.

comprises of multiple sinusoid elements with different frequencies, each peak

(or valley) represents the inflection point of more than one sinusoidal curve.

It is not necessary to sample as many peaks or valleys as possible. Rather,

taking a few prominent samples into account would help to reduce the aperiodic

influence. The prominence of a peak indicates the degree of how much the peak

stands out relative to other peaks, which is defined by the height difference

between the peak and its highest saddle point connecting it to its adjacent

peaks. Figure 3.1 shows that an isolated peak with a low height could be more

prominent than one that is higher.

The procedure for sampling data is as follows: Firstly, we normalize the

given data to a range between 0 and 1. It is necessary to calculate the sampled

ACF/DF through the basis function, which is explained in the next subsection.

Secondly, peaks are selected in order of prominence. If valleys are used instead

of peaks, the same procedures are conducted for the reversed-amplitude data.
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By adjusting the minimum prominence condition, a trend in the performance

of a pitch tracker can vary depending on the proportion of sampled data. The

details are explained in Section 3.7.

3.3 Sampled ACF/DF in the time domain

Let n+ =
(
n+
1 , n

+
2 , . . .

)
denote a set of time for sampled peaks in a single frame

of x (n). The sampled auto-correlation function (ACF) and sampled difference

function (DF) using only peaks are defined by summation of a basis function

B,

D+ (m) =
∑
i,j

B
(
A+

ij , µij ,m
)

(3.3)

for all i > j, where

A+
ij =

 x(n+
i )x(n

+
j ) (sampled ACF)

1−
∣∣∣x(n+

i )− x(n+
j )

∣∣∣ (sampled DF)
(3.4)

and µij =
∣∣∣n∗

i − n∗
j

∣∣∣. Similarly, we also define A−
ij and D− (m) by substitut-

ing x (n+) with sampled valleys x (n−). Then, the sampled ACF/DF is derived

with consideration of the periodicity by sampled peaks and sampled valleys

concurrently as follows:

D (m) = D+ (m) +D− (m) (3.5)

The function B (A,µ,m) is a basis function given in the form of the normal

distribution Ae−b(m−µ)2 . It models a single peak with magnitude A and center

point µ. b is a positive constant which is related with the peak width. The

summation form of the basis function enables the scattered sampled data to
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be interpreted as a successive trend. It can be understood as a similar notion

of expanding from a simple histogram to a weighted density function. Note

that the equation means the histogram of the distances between two different

time indices if the basis function is given by a delta function δ (µij). Provided

that all data are sampled and the delta basis function has a weight of Aij ,

the equation will be identical to the original form of the autocorrelation and

difference functions. Thus, sampled ACF/DF can be viewed as a restricted

version of the original ACF/DF.

The weight of the basis function can be replaced with the product (or dif-

ference) of peak prominences at two different time indices rather than using

the amplitude. In this case, the prominence is considered as the intrinsic ampli-

tude. Figure 3.2 illustrates the original ACF/DF and the sampled form by using

the amplitude and the prominence. Peaks become more salient in the sampled

functions, and the first peak, which corresponds to the fundamental period is

relatively significant among the other peaks.

Similar to the convention, the fundamental period is determined by choosing

the global maximum in the weighted detection function, which is the sampled

ACF/DF multiplied by an octave cost function. The octave cost function is

a weight function that attenuates high-frequency candidates. For the direct

comparison to the original ACF/DF, any additional refinements such as the

normalization and the smoothing are not included.

3.4 Sampled ACF/DF in the frequency domain

Utilizing the sampled ACF/DF in the frequency domain can be more useful than

in the time domain because there are only a few spectral peaks in the spectrum
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Fig. 3.2 An illustrative comparison between the original detection function and
the sampled function by using data amplitude and prominence. (Top) an input
signal. (Middle) autocorrelation functions. (Bottom) difference functions. The
original difference function is reversely normalized for comparison.

magnitude and it can be simply done by sampling those peaks to recognize the

periodicity. Since the magnitude of the spectrum of a monophonic music signal

is periodic, the period of the frequency is estimated in the same manner as the

time-domain case. This process is similar to the cepstral analysis in utilizing

the period of the spectrum.

Unlike the time-domain approach, however, the length of the input data

depends on the size of the FFT; not on the frame length. In the case of a time

39



series data, the greater the period, the lower the frequency. On the contrary, the

fundamental frequency is directly proportional to the period of the spectrum

magnitude, which could limit the frequency resolution, considering the fun-

damental frequency is concentrated in the low-frequency range in most cases.

To solve this problem, we also propose an iterative F0 refinement algorithm

based on the least square method. The details are described in the following

subsection.

3.5 Iterative F0 estimation

With some given frequency bins of each spectral peak underlying the spectrum

magnitude, this estimation technique enables the optimized interval between

the spectral peaks to be reached. Given the locations of the selected peaks,

F0 estimation can be substituted into the approximated greatest common di-

visor problem. Assuming that all harmonic partials are integer multiples of

a particular integer, it is apparent that the greatest common integer divisor

equals the fundamental frequency. However, it is not possible that all peaks are

equally-spaced on the frequency bin axis, owing to the limited frequency resolu-

tion or inharmonic partials. Fortunately, a fundamental frequency candidate is

roughly calculated through sampled ACF/DF. Therefore, the optimized interval

between peak locations can be estimated by through the following steps.

Let xn denote the frequency bin of the n-th spectral peak. By the assumption

that all harmonic partials are integer multiples of the fundamental, xn can be

expressed by the linear sum of a harmonic partial and error term as

xn = anx0 + en (3.6)
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Note that both the harmonic order an and the fundamental frequency bin

x0 are unknown. These are desired to be estimated subject to minimize the

error. To this end, the cost function J is derived as a sum of squares of errors

for each spectral peak by

J =
N∑

n=1

e2n (3.7)

=
N∑

n=1

(xn − anx0)
2 . (3.8)

To minimize this, we take its derivative and find x0 so that the derivative

equals zero. By solving this, an equation for the fundamental frequency bin x0

is obtained as below:

x0 =

N∑
n=1

anxn

N∑
n=1

a2n

(3.9)

Because we have only one observation of xn, and both an and x0 are un-

known, a numerical method is employed to estimate both unknown variables.

As described in Algorithm 1, x0 is iteratively converged in sequence during the

update and assignment steps.

Setting a proper initial value is essential to make x0 converge successfully

within a few iterations. Using an initial value which is estimated through sam-

pled ACF/DF prevents the iteration from converging incorrectly.

This refinement technique can be applied to general frequency-domain pitch

detection algorithms. It would help to estimate the pitch more precisely with

a very low computational complexity, especially when an insufficient frequency
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Algorithm 1 The iterative F0 refinement based on the least squares.

1: Input:
Partial frequencies f1, . . . , fN and their harmonic order
a1, . . . , aN .

2: Output:
Refined fundamental frequency f0.

3: initialize f0
4: for i = 1 to N do
5: assignment step: assign harmonic order, an =

⌈
fn
f0

⌉
6: update step: calculate f0 using a1···i, f1···i, f0 =

i∑
j=1

ajfj

i∑
j=1

a2j

7: end for
8: return f0

resolution is given. Although this technique is also valid for time series data, it

is not as effective compared to frequency-related data, because the reciprocal

relationship in the time domain between the period and the frequency gives a

sufficient resolution in the frequency range of interest.

3.6 Experimental setup

To evaluate the performance in pitch tracking by our sampling approach and

many other methods, the MIR-1K dataset [34] is used. The dataset is widely

used for various tasks in the music information retrieval field, including source

separation and pitch tracking. It contains 1,000 audio recordings of the singing

voice and the music accompaniment, and the total length of the dataset is 133

minutes. Each signal is recorded in separate channels, and only the singing voice

signal in the right channel was used for the experiment with the original sample

rate of 16 kHz. The pitch values in MIDI numbers, which are provided every 20
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milliseconds, were used as the ground truth after converting into frequencies.1

A fixed frame length of 512 samples was equally used in the proposed

method and the comparison group. In data sampling, we set the minimum

peak prominence condition so that only peaks with prominence greater than

0.1 are sampled. The peak width constant b was set to 32. In the case of the

frequency-domain sampled ACF/DF, a whitening process was employed that is

described in [45].

Reference methods for pitch estimation and tracking include the seven fol-

lowing techniques which are publically available. Since the pitch values have

been independently generated from different tools, the details of parameters

need to be tuned separately as below:

• ac: This method performs the autocorrelation function of Boersma [46]

in the Praat system. It is called with the command “To Pitch (ac). . . 0.02

93.75 15 no 0.0 0.0 0.01 0.0 0.0 800.” refers to applying 20ms of hop size

and 512 samples of window size with no V/UV (voiced/unvoiced) cost.

• cc: This method implements a cross-correlation analysis [47]. It is also

available in the Praat system, and called with the command “To Pitch

(cc)... 0.02 93.75 15 no 0.0 0.0 0.01 0.0 0.0 0.0 800.” which performs the

cross-correlation function using the same parameters as ac.

• shs: Also available in the Praat system, this method is based on spectral

subharmonic summation [23]. It is called with the command: “To Pitch

(shs)...0.02 93.75 4 1700 15 0.84 800 48.” as used in [21].

• SRH: The Summation of Residual Harmonics (SRH) method [48] is a

1The MIDI number is defined by 12 log2 (frequency/440) + 69.
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pitch tracker, focusing on the harmonicity of the residual signal. We used

the SRH PitchTracking in the GLOAT Matlab package [49] and set the

parameters as F0min=94, F0max=800, and shift=20ms.

• HPS: The Harmonic Product Spectrum (HPS) method [22] is a pitch

estimate algorithm which multiplies the original magnitude spectrum and

its decimated spectra by an integer number. We used the implementation

found on the website of “Audio Contents Analysis” [50] and used the same

hop/window size as the SRH method.

• YIN: YIN [21] is one of the most well-known algorithms for pitch esti-

mation. It is based on the autocorrelation method, considering the dif-

ference function instead, and it was further improved to reduce possible

errors. We used the Matlab code freely available in [51] using the same

minF0/maxF0, hop size as above, and 640 samples of window size.

• pYIN: pYIN (probabilistic YIN) [52] is a state-of-the-art method which is

a modification of the YIN algorithm. It contains threshold parameters in

a distributed form, in comparison with the single parameter in YIN. Also,

a hidden Markov model (HMM) is Viterbi-decoded to find a smooth path

through the fundamental frequency candidates. We used the plugin found

in [53] with default parameter values except for the hop/window sizes,

which were given the same values as other methods. The pitch values

were annotated from the Sonic Annotator [54].

The assessment for all the above methods was performed using two tra-

ditional metrics: gross pitch error and fine pitch error [55]. Voicing activity

decision, which is a common metric for the pitch tracking assessment, was not
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used in our experiment, because the performance of voicing decision tends to

vary depending on the parameter setting, and it has been revealed by a previ-

ous work [56] that it does not differ so much from different methods. We opted

to focus on the pitch estimation accuracy since the aperiodic power, which is

closely related to voicing decision, can be easily calculated by using F0. Instead,

we define an additional error metric called “octave pitch error” to evaluate how

robust the algorithm is, especially for the octave pitch error. Each of the three

metrics is defined as follows:

• Gross Pitch Error (GPE): The proportion of frames that are labeled as

voiced by ground truth, for which the relative pitch error is greater than

20%.

• Fine Pitch Error (FPE): The standard deviation of the relative pitch

errors that are less than 20%, for frames that are labeled as voiced by

ground truth.

• Octave Pitch Error (OPE): The proportion of frames with pitch errors

greater than a semitone and pitch chroma errors less than a semitone.

For the last evaluation, the pitch tracking error rate is examined depending

on the proportion of sampled data. A frame-level factor called the data sampling

ratio is primarily defined by the ratio of the number of sampled data points and

the number of all data points in a single frame. Then, for each data sampling

ratio, we calculated the gross error rate, which is the proportion of frames that

are decided as gross errors. Note that this metric is a function of data sampling

ratio, which implies that the optimal proportion of sampling for the highest

accuracy can be derived.
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3.7 Result

The pitch tracking performance for various methods in the time domain is dis-

played in Table 3.1. The proposed methods are placed in the first four rows,

denoting the sampled autocorrelation function as sACF and the sampled dif-

ference function as sDF. Through the comparison of the three error metrics

between the sACF and the ac, it is observed that the sACF with prominence

achieved the significant improvement compared to the original autocorrelation,

in the aspect of the overall performance and the octave pitch error. This result

supports the assumption that using a few meaningful data is more effective

for the periodicity analysis rather than using the entire data. We also noticed

that the peak prominence, which is considered the intrinsic amplitude, is more

suitable than the peak amplitude for the fundamental period detection. The

difference function, which is commonly regarded as a good alternative to the

autocorrelation function, showed a slightly better performance compared to

the autocorrelation function, when the peak amplitude is sampled. However,

it is observed that the improvement is not as much as the sACF with promi-

Table 3.1 Pitch tracking errors comparison over the time-domain methods.

Method GPE (%) FPE (cents) OPE (%)

sACF, prominence 1.8 23.3 1.1
sACF, amplitude 2.8 21.1 1.6
sDF, prominence 2.2 21.3 1.3
sDF, amplitude 2.4 21.2 1.4
ac 3.0 26.3 1.8
cc 4.0 32.7 2.0
YIN 1.1 22.9 0.5
pYIN 1.0 49.0 0.6
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Table 3.2 Pitch tracking errors comparison over the frequency-domain methods.

Method GPE (%) FPE (cents) OPE (%)

sACF 5.7 48.0 1.6
sACF (F0 refined) 4.8 27.3 1.8
sDF 11.6 45.2 5.2
sDF (F0 refined) 10.7 26.3 4.6
shs 4.5 27.9 0.7
SRH 2.8 34.6 1.3
HPS 24.3 24.4 5.8

nence, inferring that the prominence is more effective for autocorrelation-based

approaches.

The YIN and the pYIN are employed as the reference method using the

difference function. As a consequence, both of the YIN methods outperform

among all methods including the frequency domain approaches. Those methods

contain several refinement steps because those are regarded as the essential parts

of the algorithm. Although it has been revealed in many related works that the

refinement steps improve the overall performance, as we mentioned in Section

3.2, we did not utilize any refinements for the sACF and the sDF, except an

octave cost function.

Table 3.2 describes the pitch tracking errors over the frequency-domain

methods. The relatively poor result compared to the time-domain sACF and

sDF shows that using the difference function upon the magnitude spectrum is

not so much effective as the time-series data. That is because the peak level of

each harmonic partial tends to decrease as the frequency goes toward higher

harmonic orders, thus it is less periodic than the time-domain amplitude. The

fine pitch error in the sACF and the sDF decreased significantly as the iterative

F0 refinement method is used. It turns out that the proposed method enables
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Fig. 3.3 Gross error rates per data sampling ratio.

to estimate the pitch more precisely. Meanwhile, HPS was not operated very

stable in our experiment. It is assumed that this relatively poor result is caused

by the limited audio quality of the input data, which does not give the sufficient

number of higher-order harmonic partials.

The actual computation time for each method is not stated in this chap-

ter, because we conducted the experiment for some methods in the different

environment. Given the 1,000 audio files in the MIR-1k dataset, we measured

the computation time of the Matlab based implementation. The sACF and the

sDF took about an hour respectively, while the original autocorrelation and the

difference function took over 6 hours per method.

The trend in the gross error rate per data sampling ratio is illustrated in

Fig. 3.3, for the time-domain sACF and the sDF. When the sampling ratio is
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less than 4%, data is sampled too sparsely to analyze the periodicity. When

more than 5% of the entire data are sampled, interestingly, it appears that the

impact on the gross error is growing due to the oversampling. The reliability

of the gross error decreases as the data sampling ratio increases, because the

proportion of sampling is limited as long as only peaks and valleys are sampled.

Despite that, this result indicates that using the data as many as possible does

not lead to the best performance.

3.8 Summary

In this chapter, a data sampling method was presented for the estimation of

the fundamental period of quasi-periodic signals. As dealing with the input

data directly, this method is able to be utilized in the time and the frequency

domains, and can be adapted in many conventional algorithms. The data sam-

pling method is not only efficient for computation but also effective to analyze

the periodicity. When evaluated over a public dataset which contains plenty of

the singing voice recordings, the sampling method improved the pitch tracking

performance compared to the original detection functions without sampling.

An iterative F0 refinement technique was also presented, and the improvement

in precise F0 tracking was proved in the experiment.
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Chapter 4

Note Onset Detection based on
Harmonic Cepstrum Regularity

4.1 Introduction

This chapter presents an onset detection algorithm which is an important part

of the transcription system proposed in this thesis. The main goal of this study

is focused on the detection of soft onsets that have not been clearly detected in

existing onset detection algorithms. This study is the first attempt based on the

idea on the harmonic structure, a key hypothesis of this thesis. This chapter is

based on the research published in the proceedings of the IEEE International

Conference on Multimedia and Expo [32].

For a couple of decades, onset detection of musical notes has been a major

issue in the music information retrieval community. Being a fundamental low-

level task in this field, accurate note onset detection can lead to solving many

problems for advanced music analyses, including pitch estimation, tempo esti-
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mation, automatic transcription, and many commercial applications of music

and audio processing.

Masri proposed a well-known algorithm for pitched non-percussive (PNP)

onset detection applying linear weight on high frequency content (HFC) [25].

Klapuri’s sub-band energy change method used a filter bank model to ap-

proximate the human cochlea [26]. A more general approach is introduced by

Duxbury, where the changes in the spectrum called spectral difference or spec-

tral flux, are used to indicate musical onsets [27].

With all the contributions made so far, however, according to the Music

Information Retrieval Evaluation eXchange (MIREX) 2012, onset detection still

remains a challenging problem, particularly for soft onsets. The best result for

onset detection of solo singing voice is an F-measure of 55.9%. In the case of

solo sustained strings, averaged F-measure for all participants is only 52.8%.

Since most of the traditional approaches use spectral energy and its difference

via time-frequency analysis, detection function must be solely affected by the

original source. A soft onset generally does not rapidly occur because it has a

long attack interval or indistinguishable envelope shape, and becomes the main

reason of difficulties in the peak-picking procedure.

Supervised machine learning-based approaches are also proposed to handle

this problem. Toh et al. viewed onset detection as a classification problem, and

used two Gaussian mixture models (GMMs) to classify audio features into onset

and non-onset frames [57]. Also, they derived a fusion of four different types of

acoustic features, including mel-frequency cepstral coefficients (MFCCs), linear

predictive cepstral coefficients (LPCCs), and equal loudness phon values along

critical bands. However, as in other machine learning algorithms, this approach
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is supposed to rely heavily on the training data. Furthermore, it is extremely

time-consuming and laborious to annotate a large amount of audio data at

the frame level. Finally, MFCCs, which is the main feature of learning-based

approaches, are hard to represent all kinds of characteristics of various musical

instruments.

To resolve these issues on detecting soft onsets, we propose a novel approach

based on harmonic cepstrum regularity (HCR), by focusing on the changes in

the harmonic structure. HCR is expected to yield better results for sustained

string instruments and singing voice which usually contains soft onsets and

unexpected energy flow. Especially, it is robust to irregular changes in the for-

mant structure caused by different singing styles. In addition, unlike spectral

difference or spectral flux, HCR gives a steady detection function regardless

of note strengths since only harmonic components in the cepstral domain are

considered. Overview of the proposed system is illustrated in Fig. 4.1.

The rest of this chapter is organized as follows. In Section 2 we explain

the reason why we applied cepstral analysis to this task. Section 3 describes

the four main procedures to locate positive onsets, including harmonic que-

frency selection, sub-harmonic regularity function, adaptive thresholding, and

peak-picking. In Section 4, the experiments we performed to evaluate the im-

provement of the proposed algorithm are presented, and we finally draw our

conclusions and present directions for future works in Section 5.

4.2 Cepstral analysis

Cepstrum is originally defined as the inverse Fourier transform of the log-

magnitude Fourier spectrum. When a magnitude spectrum has a strong
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Fig. 4.1 Architecture of the proposed onset detection system.

periodicity—i.e. if a regular frequency interval is found between harmonic

partials—cepstrum appears strong. On the other hand, weak cepstrum is gen-

erally obtained for noisy audio signals. The conversion to the logarithmic scale

aims to adjust the dynamic range of the audio energy, so that the cepstrum

simulates the way in which the human auditory system perceive the loudness.

In the field of image and audio processing, discrete cosine transform (DCT)

is more preferred than inverse Fourier transform, because its “energy com-
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paction” property enables not to lose much information of the signal, while

most of information are concentrated in the low-frequency range of the DCT.

Cepstral coefficients are determined as the results of the DCT which is the

last step of cepstral analysis. These are widely used as a feature to represent

timbral characteristics in many audio processing tasks, including speech recog-

nition, speaker identification, and genre classification.

It is well known that pitch is proportional to frequency. More specifically,

the relation between pitch and frequency is logarithmic, not linear. When pitch

increases by an octave, frequency would be doubled. Mel scale reflects this

characteristic of the human auditory system. MFCC is derived by first taking

the Fourier transform of a windowed signal, mapping the log-amplitudes of

the resulting spectrum into the mel scale, then performing DCT on the mel

log-amplitudes. The amplitude of the resultant cepstrum become the MFCC

[58]. Similarly, LPCC can be derived as linear predictive coding coefficients

transformed into cepstra.

Almost every algorithm using the MFCC generally truncates higher coef-

ficients. In many cases, only the first 13 coefficients are said to be enough to

store the signal characteristic. However, we use a sufficient number of cepstral

coefficients which are the same size as the frame length, because we would need

higher quefrency resolution to get the coefficients corresponding to harmonic

components more precisely. In the following experiments we conducted, we use

a Hamming window of 2,048 length, and therefore the cepstral coefficients with

the same length are obtained for every analysis frame. Using a 44.1 kHz sam-

pling rate and an 87.5% overlap, we get a frame rate of five milliseconds which

is short enough to detect the shortest possible musical note.
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Another difference between the classic MFCC and our cepstral analysis is

that we use a linear scale in frequency rather than the mel scale. Mel-scaling

compensates differences between frequency and subjective pitch. This psychoa-

coustic knowledge definitely makes some advantages when human perception

(i.e. timbre, masking, etc.) is an important issue, but in this situation we do

not need to consider this because we are only interested in whether the har-

monic structure is noticeable or not. It is known that the n-th order harmonic

frequency for three types of musical instruments is derived as

fn =


nf1, open tube & string instruments

(2n− 1) f1, closed tube instruments

(4.1)

where f1 means the fundamental frequency [59]. For singing voice, a very com-

plex calculation is required to derive the exact harmonic frequency but we can

simplify vocal tract as a closed-tube type instrument. While harmonic frequen-

cies are linearly related to the order, any scaling along frequency bands is not

necessary.

We also take a pre-emphasis step by sending the input signal through a

highpass filter. This process is to compensate the high-frequency part and em-

phasize the high-order cepstral coefficients that we want to concentrate on.

Pre-emphasized signal s
′
n is derived as

s
′
n = sn − αsn−1 (4.2)

where sn is the original signal and the value of α is usually defined between 0.9

and unity, and we set this value to 0.97.

55



(a) Clarinet (b) Violin (c) Singing voice

Waveform

Spectrogram

Fig. 4.2 Waveform and spectrogram of a clarinet, a violin, and a singing voice
signal.

4.3 Harmonic cepstrum regularity

Figure 4.2 shows the waveform and spectrogram of three musical signals: a clar-

inet, a violin, and a singing voice signal. It is not difficult to recognize the onsets

from the spectrogram simply by our intuition, because we tend to pay visual

attention to several imaginary vertical lines. These are easily distinguishable

due to the discontinuity of many horizontal lines, which indicate the energy of

the harmonic components. In order to determine how regularly this harmonic

structure of the input signals is maintained, we need to examine the amount of

temporal change of the harmonic components.

To this end, we first extract the harmonic quefrencies from their cepstral

coefficients, and then check how much the energy changes in the selected que-

frencies. An important point is that the harmonic structure of the previous

frame is applied to the current frame. In other words, cepstral coefficients of

the previous harmonic quefrencies are selected to build the detection function

of the current frame. The cepstral coefficients of the current frame would not

be different much from those of the previous frame if the harmonic structure

is stable, and thus the peak locations would remain the same. On the other
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Fig. 4.3 Comparison between a sustain and a transient. Each vertical line rep-
resents its relative amplitude of cepstral coefficient.

hand, if the harmonic structure is changing rapidly, these peak locations will

also change, resulting in smaller amplitudes for the coefficients found in the

previous frame. As shown in Fig. 4.3, this causes the pronounced difference

between a sustain and a transient.

4.3.1 Harmonic quefrency selection

Harmonic quefrency selection is an essential procedure to make the results reli-

able. Pitch estimation can be regarded as an advanced concept of this process,

in a sense, so we can also extend this algorithm not only to note onset detection

but also to monophonic music transcription while as long as the harmonic que-

frencies are selected correctly. Therefore, conventional pitch estimators can be

used to find the exact harmonic quefrencies. For example, YIN is a well-known

pitch estimator [21] and the correntropy method is known to give the best result

for singing voice [43]. The relationship between the fundamental frequency f1
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and its corresponding quefrency q1 follows as below:

q1 =
2fs
f1

(4.3)

In this chapter, however, we simply take an autocorrelation method to pick

the harmonic peaks because pitch estimation is not our main goal and the auto-

correlation function (ACF) is also enough to yield the reasonable result. One-

dimensional Gaussian kernel function is applied to make peaks more salient,

and the kernel size is set to 64 via experiments. Then we compute the ACF

of the cepstral coefficient and derive the fundamental quefrency q1 from the

index of the maximum ACF value. For high order harmonics, we approximated

their possible ranges based on the integer harmonics assumption, and the local

maxima are chosen within the possible ranges.

4.3.2 Sub-harmonic regularity function

As a detection function, the harmonic cepstrum regularity function (HCR) is

derived by the summation of all harmonic cepstral coefficients, where harmonic

quefrencies represent the harmonic structure of the previous frame. That is,

dn =

M∑
k=1

Cqk,n,n−1 (4.4)

where C is the cepstral coefficient matrix whose rows and columns represent

quefrency and the frame index, respectively. k is the harmonic order up to M

(normally M = 5), which depends on the instrument type and the degree of

pre-emphasis. In general, the more harmonic components were used, the better

result we would get as the detection function would fully describe the harmonic

structure.
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4.3.3 Adaptive thresholding

We now describe the adaptive thresholding procedure, which picks local minima

of the detection function dn. Since our HCR function represents how regular the

harmonic structure is and this regularity is disrupted when onsets occur, local

minima are supposed to be picked instead of maxima. There are several adaptive

thresholding methods such as low-pass FIR filtering, median filtering, and low-

pass filtering of the square of the detection function. We choose a method based

on the local median because it is known to be robust by minimizing the effects

caused by the outliers [14]. In this chapter, adaptive threshold δn is determined

not to miss local minima as

δn = δ +median{dn−T , . . . , dn+T } (4.5)

where T , the size of the median filter, is set to 40 in our experiments.

A fixed thresholding is also used to detect silences of the input signal. δc is

a constant value separating silence from non-silence frames, and it is relevant

to the signal-to-noise ratio of the signal. For general recordings, 20 percent of

the maximum of dn will be proper.

4.3.4 Picking onsets

Before picking onsets, a post-processing is performed to discard multiple false

positive onsets adjacent to a true positive onset. Since the shortest note in

our experiment data is longer than 15 ms, we dismiss multiple onsets whose

duration are shorter than this interval.

Unlike many other approaches where the peaks in the detection function

directly indicate onsets, we first compute the ‘transient sections,’ which means

59



(a)

(b)

(c)

(d)

       

       

       

       Frame

Fig. 4.4 (a) Waveform of a violin signal. (b) Detection function and adaptive
threshold. (c) Five harmonic quefrencies. (d) Five sub-harmonic cepstral coef-
ficients.

the interval between different notes. Frames where the detection function dn is

greater than the adaptive threshold δn or less than the fixed threshold δc are

classified as the transient section. Then, positive onsets are defined at the end

of each transient section. Offsets can also be simply found (if needed) at the

beginning of each transient section, as long as transient sections are well-defined.

Figure 4.4 shows the graphical summary of procedures described in this
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section. An excerpt from a solo violin performance of “Ach Gott und Herr”

from Bach10 database1 [36] was used in this figure. Triangle markers in the first

two plots indicate the ground-truth onsets and detected onsets, respectively. In

the plot (b), detected onsets are located at the end of each transient section

which is depicted as a gray-shaded area. The solid line indicates a detection

function dn, dotted line an adaptive threshold, and dashed line a fixed threshold,

respectively. The detection function in (b) is obtained by summing across five

sub-harmonic cepstral coefficients which are shown in the plot (d). We can

observe in the plot (b) that the detection function is mostly stable within a note

regardless of the waveform amplitude, the only exception being the fluctuation

in the middle of the input signal due to the vibrato of the violin. In the plot

(c) are illustrated five harmonic quefrencies that correspond to five cepstral

coefficients shown in (d).

4.4 Experiments

4.4.1 Dataset description

The experiments were performed on Bach10 database [36] and both commer-

cial and non-commercial singing voice recordings, which contain 3,474 onsets

in total. The Bach10 database is accompanied by the ground-truth onsets.

For singing voice, 13 male and two female recordings are used, which contain

more than 1,500 onsets. Onset labeling for singing voice recordings was cross-

validated by three professional musicians. Ambiguous musical articulations such

as glissando and non-pitched notes were excluded in the experiments. All data

were preprocessed to be monaural signals sampled at 44.1 kHz. The detailed

1Details of the database can be found online at http://music.cs.northwestern.edu/

data/Bach10.html.
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information of the data set is reported in Table 4.1.

Table 4.1 Dataset details.

Instrument Reference Duration Onsets

Sustained string
Violin† Bach10 dataset 5m 34s 425

Woodwind

Saxophone* Bach10 dataset 5m 34s 500

Clarinet* Bach10 dataset 5m 34s 475

Bassoon* Bach10 dataset 5m 34s 507

Singing voice
Male† Professional singers 11m 46s 1,533
Female† Amateur singers 24s 34

† soft onset class; * hard onset class

4.4.2 Evaluation results

Like many other methods, we regarded an onset to be correctly detected (CD) if

the ground-truth and the detected onset are within a 50-ms interval. Because of

inaccuracy found on the annotation of the Bach10 database, a 70-ms tolerance

window was used instead for some clips. We applied the same tolerance to all

the comparison groups. If a detected onset is not within this interval, it is

regarded as a false positive (FP ). If a ground-truth onset is not detected (i.e.

missing onset), there is a false negative (FN). Precision (P ), Recall (R), and

the F-measure (F ) are used to evaluate the performance. These measures are

defined as follows:
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Table 4.2 Performance of the proposed algorithm.

Instrument Onsets Precision Recall F-measure

Violin 425 .874 .949 .910
Saxophone 500 .934 .960 .947
Clarinet 475 .878 .933 .904
Bassoon 507 .809 .829 .819
Singing voice (male) 1,533 .713 .737 .725
Singing voice (female) 34 .784 .829 .806

Total 3,474 .802 .836 .819

P =
CD

CD + FP
(4.6)

R =
CD

CD + FN
(4.7)

F =
2PR

P +R
(4.8)

The overall results of our algorithm are summarized in Table 4.2. We can see

that there is no large difference in performances between soft and hard onsets.

Particularly for singing voice, although not directly comparable, F-measure was

significantly improved by about 30% over the best performing algorithm of the

MIREX 2012.

For comparison with other approaches, we implemented several algorithms

aforementioned in Section 4.1 [25, 27] plus energy-based method, which was

first introduced by Schloss [15]. Klapuri’s psychoacoustic knowledge-based ap-

proach [26] was implemented based on MIR Toolbox 1.4 [60]. Parameters for

adaptive thresholding and peak-picking were fixed to the same values in every

experiment.
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Fig. 4.5 F-measure comparison for different classes of onset.

We classified all recordings into the soft onset class and the hard onset

class by the instrument type. Violin and singing voice are categorized into the

typical soft onset class. All other instruments were classified as the hard onset

class. As depicted in Fig. 4.5, HCR shows the remarkable improvement for the

soft onset class. While an F-measure of other algorithms is below 50%, HCR

achieves an F-measure of 76.7%. Considering that every algorithm yields a good

performance for the hard onset class, it is obvious that the performance for the

soft onset class makes the overall improvement.

4.5 Summary

In this chapter, we have proposed an automatic note onset detection algorithm

for pitched instruments including singing voice signals. The presented algo-

rithm is simple and yet achieves a significant improvement, especially for soft
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onsets. Using the cepstral analysis, sub-harmonic regularity functions were de-

rived from the changes in harmonic cepstral coefficients. The experiments were

performed on over about 3,500 onsets on multi-instrument recordings from the

Bach10 database and 15 singing voice recordings. The results showed that the

proposed algorithm not only achieved performance comparable to other con-

ventional algorithms for hard onsets but also outperformed significantly for soft

onsets.

Since the proposed algorithm is able to locate the transient sections whose

beginning and end position indicate note offset/onset, respectively, and also to

find the fundamental quefrency which is related to pitch, it has a potential to

apply to an integrated automatic music transcription system. Future research

will cover offset detection at the beginning of the transient section we already

obtained. We also plan to extend it for the polyphonic music transcription.
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Chapter 5

Robust Singing Transcription
System using Local Homogeneity
in the Harmonic Structure

5.1 Introduction

In this chapter, we present a robust singing transcription system based on the

idea using the harmonic structure, which was roughly attempted in Chapter

4. While our previous approach indirectly measured the degree in which the

harmonic structure was temporally maintained through cepstral analysis, this

approach differs in that it accurately tracks each partial, and measures the lo-

cal homogeneity in the harmonic structure. Based on our experience with pitch

tracking and onset detection studies, this study covers a fully automatic singing

transcription system from audio input to symbolic output. The latest F0 track-

ing method is used for harmonic structure analysis, and new acoustic features

are proposed and various probabilistic techniques were applied for note detec-
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tion. This chapter is based on the research published in IEICE Transactions on

Information and Systems [61].

In most related studies, a musical note is defined by three components:

onset, duration, and pitch. Since the late 1990s, many approaches have been

proposed to detect the onset time, defined by the exact time when a note starts

[14]. In general, onsets can be categorized as hard and soft onsets depending

on the attack time, which is the time taken for initial run-up of the amplitude

envelope. Soft onsets that commonly appear in singing voices or sustained string

instruments such as the violin, are usually more difficult to detect, because

the changes in acoustic features such as the energy envelope are very gradual

and insignificant. Duration refers to the time for which the note is played;

therefore, it is equal to the offset time minus the onset time of a note. Pitch is

a quantitative value representing how high or low a sound is. Pitch detection

algorithms estimate a sequence of successive pitch values at the frame level,

which are typically defined by the fundamental frequency (F0 henceforth) in

Hz or are given by MIDI note numbers. For monophonic music signals, the

accuracy of pitch estimation algorithms has already reached a high level. One

of the most popular pitch trackers called YIN [21] achieved an average gross

error rate of 1.03%, which is still competitive today. When the input signal is

a human voice such as speech or singing, it can be more reliable by using the

bone-conducted signal [62].

Although the human voice is a type of musical instrument to “perform”

in the easiest way, automatic transcription for the singing voice still needs im-

provement. According to the Music Information Retrieval Evaluation eXchange

(MIREX), the F-measures in the singing voice onset detection for the last five
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years have been around 0.6, which is 30% less than the results of other solo

instruments. Compared to general solo instruments, some difficulties in note

detection are commonly found in singing voice signals. Note events often arise

in very unpredictable ways, and it is difficult to define a single acoustic pattern.

From various singing voice signals, it is observed that this unpredictability is

mostly caused by two factors: loudness inconsistency and spectral heterogene-

ity. In singing, the dynamic range of loudness is not stable; rather, it varies

among singers and their singing styles. In addition, the spectral distribution

in singing depends on the pronunciation, whereas other instruments have their

own timbral characteristics.

Despite all these difficulties, singing voice signals have a clear benefit for

transcription. F0 estimation for the singing voice has reached a reliable level

because it is basically monophonic. A precise tracking of the F0 sequence can

give useful information to identify not only the pitch but also important tem-

poral attributes such as the onset and offset. Since McNab introduced a simple

segmentation method for singing transcription using the pitch and amplitude

[29], many approaches have been based mostly on the discontinuity in the F0

sequence. An auditory-model-based method uses the pitch continuity, together

with the loudness and voicing patterns [63]. Rynnänen combined two proba-

bilistic models to detect natural notes in a musicological sense [64]. More re-

cently, Gómez and Bonada proposed an iterative note-consolidation technique

using low-level features related to the pitch, duration, voicing and stability [35].

Molina presented a note segmentation method based on pitch-time hysteresis,

making use of the dynamic average of the pitch curve [65].

However, the pitch-based approach has a problem that it cannot detect
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smoothly continued notes with the same pitch. Frequently observed in singing

and humming, these notes can be detected using instantaneous changes in other

acoustic properties. In this respect, this study begins with a hypothesis that

both the beginning and the end of a note are recognized by the local homogene-

ity in the harmonic structure. The basic idea of using temporal changes in the

harmonic structure was first attempted by using the regularity of the harmonic-

related cepstrum [32]. We extend a similar approach here to make full use of the

harmonic structure as an important cue for detection of note boundaries. The

goal of this work is to propose a comprehensive transcription system that con-

verts a singing voice recording into a western music score. The proposed system

is presented in a unified framework, which includes extraction of a novel acoustic

feature reflecting the harmonic structure, a probabilistic model for classifying

the intrinsic harmonic structure, and transcription schemes for identifying the

musical attributes.

In the proposed system, a stream is defined by a region with continuous

voiced F0s, which is divided by unvoiced frames. A stream may contain sev-

eral notes smoothly continued, or may consist of only one note. There are two

strategic benefits when the transcription process is allocated for each stream.

It enables an efficient mixture model (described in Section 5.4) as it does not

necessarily consider the whole range of an input audio. In addition, the system

can be composed in a clear and unified framework because it does not need any

exceptional treatments for unvoiced regions. The overall workflow of the entire

proposed system is shown in Fig. 5.1.

The rest of this chapter is organized as follows. Section 5.2 explains a front-

end stage for F0 tracking, and Section 5.3 describes the extraction of an acoustic
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Fig. 5.1 Schematic flow underlying the proposed transcription system.
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feature to signify the harmonic structure. A probabilistic model to characterize

the feature is also presented in Section 5.4, followed by a transcription of note

attributes such as the onset, offset, and note pitch in Section 5.5. Section 5.6

presents the evaluation methodology to assess the proposed system, and the

experimental results including the comparison with other systems are shown in

Section 5.7. Finally, the conclusions of this chapter are drawn in Section 5.8.

5.2 F0 tracking

Before the local homogeneity in the harmonic structure is directly mentioned,

a precise F0 tracking should precede it to identify the harmonic partials. In

this work, it is implemented by a robust pitch tracker called pYIN [52]. This

algorithm is chosen as a front-end F0 tracker of the entire transcription system

due to its strength against “octave errors,” which means that estimates are

sometimes doubled (or half) frequencies. In order to enhance the original YIN

algorithm, pYIN selects a few F0 candidates by taking valleys in the difference

function of the input signal. After that, the probability of each candidate is

calculated by observations in a hidden Markov model (HMM) for temporal

smoothing of the F0 track, which is determined by the optimal path of pitch

state decoded by the Viterbi algorithm.

The pitch space was defined from 65 Hz (C2) to 830 Hz (G#5) to cover the

vocal pitch range of non-professional singers. It was divided in a step of 1/4 semi-

tones, yielding 140 voiced pitch states in total. The same number of unvoiced

pitch states were concatenated with these voiced pitch states to construct the

HMM. In the tracking result, some frames could be labeled as unvoiced if their

corresponding path indicated an unvoiced state (weak probabilities of F0 candi-
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dates) or if the root-mean-square value was less than 0.1 (weak signal energy).

Observation probabilities were calculated using a parameter prior modeled by

the beta distribution with means 0.25, which is slightly greater than the param-

eter configuration that the original authors used. This is because the priority of

the proposed system is a high recall, which means it aims to estimate as many

frames as possible of the voiced F0s.

5.3 Feature extraction

Extraction of an acoustic feature that reflects the harmonic structure begins

with the magnitude of the harmonic partials. The use of harmonic partials has

been introduced in many previous works for different tasks, such as music source

separation [66] and vocal activity recognition [67]. In this work, we focus on the

point that the relative ratio between the harmonic energies remains constant,

regardless of the external factors including the pitch and loudness. The feature

extraction process consists of the two following steps: (1) Extraction of harmonic

partial magnitudes and (2) Vector transformation such as scaling, rotation, and

normalization.

The first step of feature extraction is a time-frequency representation of

an input signal using the short-time Fourier transform. The input signal is

downsampled to 22.05 kHz for a better computation time, and a Blackman

window of 32 ms is used to split the signal into frames. Only the magnitude

spectrum is considered, and the phase information ignored.

Instead of taking the magnitude at particular harmonic frequency bins,

the tracking of harmonic partials is realized by a dynamic filter bank, whose

frequency response is dynamically characterized by the estimated F0. The used
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filter bank is a series of overlapping triangular band-pass filters, so that the

center frequency of one filter is equal to the lower boundary of the next filter.

The center frequency of each filter is obtained from the multiple integers of the

estimated F0. All the filters show a maximum response of unity at their center

frequency.

The use of a filter bank offers advantages in two aspects. First, it compen-

sates the errors arising from insufficient frequency resolution. Some algorithms

[34, 68] use a multi-resolution FFT to enhance both the time and frequency

resolution. However, a recent study has shown there is no significant benefit in

locating the spectral peak frequency [69]. Second, frequencies slightly deviating

from the exact integer multiples of the F0 can be considered. Inharmonic par-

tials are rarely ever observed in cases of singing, but the spectral peak width

can be relatively wide when the pitch is sharply changing within a frame.

The harmonic partial magnitude is not refined enough to be used as a fea-

ture vector for the harmonic structure in two respects: energy dynamics and

imbalance in dimensions. The deviation in energy is too large to be character-

ized, and most of the spectral energy is concentrated in the first few harmonic

partials. Therefore, the harmonic partial magnitude is transformed into a more

refined form of a feature called the Harmonic Structure Coefficient (HSC), by

the three following steps of scaling, rotation and normalization.

Let a column vector u = [u1 u2 · · · uh]T denotes the magnitude for up to

the h-th harmonic partial at a time instance. The logarithmic scaling

x = log10 (u+ 1) (5.1)

converts the magnitudes into non-negative values in a limited range, thereby
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making the data more stable for abrupt events. One example of this is the mel-

scale filterbank cepstral coefficient (MFCC), which is the most popular acoustic

feature that represents the timbral texture.

Log-scaled magnitudes are then rotated in such a way that the eigenvec-

tor with the minimum eigenvalue is parallel to the mean vector of a stream.

This vector rotation allows the data distribution to be grouped easily when it

is projected onto a unit hypersphere. Given a sequence of log-magnitude vec-

tors X = [x1 x2 · · · xN ] with a stream length of N , its distribution can be

expressed by the mean vector µx and the covariance matrix Cx = Cov (X),

reflecting the center point and the spreadness in the h-dimensional Euclidean

space, respectively. Since Cx is a h × h square matrix, eigen decomposition

Cx = QΛQ−1 can be applied to find the eigenvectors and eigenvalues of Cx.

Then, the eigenvector qmin with the minimum eigenvalue is chosen to determine

the rotation angle.

The generalized form of the rotation matrix between two arbitrary vectors

a and b is defined as [70]

R = I− uuT − vvT +
[
u v

]cos θ − sin θ

sin θ cos θ

[
u v

]T
(5.2)

where

u =
a

∥a∥
,

v =
b− (u · b)u
∥b− (u · b)u∥

,

θ = arccos
a · b
∥a∥∥b∥

.

The first three terms in Eq. (5.2) find a projection onto the rotation subspace
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Fig. 5.2 A two-dimensional example of the vector rotation. (a) A scatter plot
of the original and the rotated data. Eigenvectors and eigenvalues are depicted
by the direction and the length of arrows. (b) A density plot of angles for both
data when normalized onto the unit circle.

using the orthonormal basis u and v. The last term performs a two-dimensional

rotation on a plane generated by two vectors a and b, and maps it back to the

original dimension. By substituting with a = qmin and b = µx, the rotation is

fixed with the angle between qmin and the mean vector µx. This allows that

the feature vectors are widely dispersed when projected onto the hypersphere,

by keeping the basis with the lowest spreadness parallel to the mean vector.

Figure 5.2 illustrates a graphical example of the two-dimensional vector rota-

tion, showing two distinct groups in the rotated data when the normalization

is applied.

As the final step, the HSC is defined by the rotation around the mean vector

followed by normalization:

y = R (x− µx) + µx (5.3)

HSC =
y

∥y∥
(5.4)
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The rotation enables to find the best perspective to interpret the clustered

data, while preserving the relative information between dimensions. Besides,

the normalization removes absolute information about the energy, thus the HSC

only includes the relative information between the harmonic partials. In other

words, the HSC eventually contains only the essential information to represent

the harmonic structure, regardless of other acoustic properties such as pitch

and loudness.

5.4 Mixture model

As mentioned in the previous section, it is assumed that perception of a note

boundary is closely related to a significant transition of the harmonic structure.

If a stream contains several notes with different pronunciations that can be

clearly distinguished, the HSCs will form several clusters on the surface of the

unit hypersphere. Ideally, the number of clusters would be equal to the num-

ber of vowel pronunciations. Unsupervised classification is known as a standard

solution for identifying these clusters; however, clustering methods such as the

K-means or Gaussian mixture model are not suitable for the data in this partic-

ular distribution. Alternatively, a mixture model based on the von Mises–Fisher

distribution is used here.

The von Mises–Fisher (vMF) distribution provides a suitable model to fit

the data on the surface of a multidimensional unit sphere. The vMF distribution

is applied in recent topics of information retrieval such as text mining, allowing

it not to have a huge bias towards only a few words with highly frequent oc-

currence [71]. It is parametrized by the mean direction µ and the concentration

parameter κ, which refers to the spread of the distribution around the mean. Its
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probability density function (pdf) for the h-dimensional unit vector x is defined

by

p (x|µ, κ) = κh/2−1

(2π)h/2 Ih/2−1 (κ)
eκx

Tµ (5.5)

where Ir (κ) is the modified Bessel function of the first kind at order r.

In the mixture model, the Expectation-Maximization (EM) algorithm is

used to estimate the mean and concentration parameters of each vMF distri-

bution as formulated by Banerjee [72]. In a general EM framework, the model

may converge to a local maximum of the likelihood function depending on set-

ting the initial point, and it does not guarantee that the model is correctly

converged to the global maximum. To avoid this, all the steps of parameter

estimation are repeated ten times with different initial points, and the iteration

is selected for which the log-likelihood sum is maximized. The mean vector of

randomly selected samples, for which the mixing proportions are uniform, gives

the initial point.

As all vectors belong to the (h− 1)-sphere, the mean vector should be cal-

culated in the h − 1 dimensional angular coordinate, instead of the Euclidean

space. The angular coordinates ϕi can be converted from the Cartesian coordi-

nates x1, . . . , xh as

ϕi = arccos
xi√

x2h + x2h−1 + · · ·+ x2i

(5.6)

where i = 1, 2, . . . , h − 1. For a special case of xh < 0, ϕh−1 = 2π −

arccos
xh−1√

x2
h+x2

h−1

. Given N sample vectors, the mean angle of each coordinate ϕ̄i
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is calculated by

ϕ̄i = atan2 (Im (z̄i) ,Re (z̄i)) (5.7)

where z̄i =
1

N

N∑
n=1

ejϕi . (5.8)

The mean vector x̄ = [x̄1 x̄2 . . . x̄h]
T is finally obtained by the inverse trans-

formation from the angular coordinates as follows:

x̄i =


sin(ϕ̄1) · · · sin(ϕ̄h−2) cos(ϕ̄h−1) if i < h

sin(ϕ̄1) · · · sin(ϕ̄h−2) sin(ϕ̄h−1) if i = h

(5.9)

Meanwhile, estimating the optimal number of mixture components (i.e. clus-

ters) is not a simple issue, especially when the statistical characteristic of the

data is not specified. In this work, fortunately, it is possible to assume roughly

that the number of notes is proportional to the length of the stream. A heuris-

tic regression approximated the correlation between the stream length and the

note count. Using the ground truth in the dataset (see details in section 5.6.1),

streams were first segmented so that each stream was divided by a short inter-

val (> 0.1 s). By counting the notes for each stream, it was noticed that the

maximum note count could be roughly approximated to five times the stream

length in seconds. To contain unnecessary clusters for a short transition, the

maximum number of clusters is limited to five so that clusters are generated

for only significant harmonic structures. Figure 5.3 shows the approximation of

the initial number of clusters using the actual note counts.

In practical cases, streams may contain fewer notes than the maximum

number. Moreover, the number of intrinsic harmonic structures can be even

lower when some notes have the same vowel pronunciation. To this end, an
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Fig. 5.3 Note counts by different stream lengths and the heuristic regression
of the maximum number of clusters. Each dot in the scatter plot represents a
stream. Variances in the box plot are shown with stream groups divided in a
step of 0.2 s. The regression function g(T ) = min (⌈5T ⌉, 5) is depicted by the
red line.

iterative method is developed to optimize the number of clusters as shown in

Fig. 5.4, using the regression function of the maximum number of clusters.

Once the maximum number of clusters is initially determined by the stream

length, the largest number of clusters that the mixture model converges within

100 EM iterations is found first. Next, by decreasing the number of clus-

ters K, the EM algorithm is repeated to estimate the model parameters

Θ = {µ1···K , κ1···K}, as long as the distance between the means of two clus-

ters is shorter than a threshold dmin. Since all the cluster means are located on

the (h− 1)-sphere, the distance is defined by the arc length between two points

on the unit hypersphere,

d = arccosµi · µj , 0 < d ≤ π. (5.10)

A close pair of clusters is merged by taking the mean vector of the two cluster

means, and the initial points of the next vMF model are determined by the
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Fig. 5.4 Flowchart on the cluster optimization.

mean vector and all the other cluster means. This method is based on the ag-

glomerative clustering, a bottom-up approach to merging pairs that are closely

formed. It is advantageous to make the final clusters as distant to each other

as possible.

5.5 Note detection

This sub-section describes the methods for determining the three basic at-

tributes of a note: the onset, offset, and note pitch. Significant transitions in the

harmonic structure are primarily detected to identify note boundaries. Then,

the actual onsets and offsets are selected from the harmonic structure transi-

tions, and a single pitch that represents a note will be finally decided.
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5.5.1 Transition boundary detection

Detection of the harmonic structure transition is achieved by two different

methods. The first builds a detection function representing the degree of lo-

cal changes in the feature, using the self-similarity (or self-distance) analysis.

The self-similarity analysis has been used mainly for music segmentation since

early studies [73, 74]. The purpose of these works is to automatically find some

points of significant structural transitions in music, such as a chorus after verses.

In this work, a similar technique is applied at the note level to detect onsets

instead of segments. A self-similarity matrix is obtained by subtracting from

one the cosine distance between two HSC vectors, i.e.,

Si,j = 1−HSCi ·HSCj (5.11)

where HSCn denotes a row vector of the harmonic structure coefficient at the n-

th frame. Note that the denominator of the cosine distance formula is removed

since the ℓ2-norm of the HSC is unity. The novelty function is determined by

Novelty(n) =

N/2∑
i=−N/2

N/2∑
j=−N/2

Wi,j · Sn+i,n+j (5.12)

where W is a Gaussian-tapered checkerboard kernel [75] which slides alongside

the diagonal elements of the self-similarity matrix. A small kernel allows the

detection of short notes but increases the chance of false positives. Conversely,

a large kernel can be considered when the transcription system should avoid

detecting spurious notes. In order to locate the transition boundaries, all the

peaks (i.e., local maxima) in the novelty function are found first, and only the

peaks higher than a peak-picking threshold δpeak are chosen. Note that this

similarity-based method does not use the mixture model.
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Although this approach is quite simple and easy to understand, choosing

a proper peak-picking threshold heavily affects the transcription performance.

Thus, another approach based on the hidden Markov model (HMM) is proposed

as well, applying the parametric mixture model. The proposed HMM consists

of a transient state and the same number of sub-HMMs as clusters from the

mixture model. Each sub-HMM contains several one-way states to model a har-

monic structure with a minimum duration constraint. This constraint prevents

the state path from fluctuating instantaneously, as the state path is forced to

stay in a cluster for Tmin seconds at least. All transition probabilities are de-

termined by an input parameter α, which decides the probability of staying

in the current cluster or the transient state. This “self-transition probability”

parameter controls the sensitiveness of the note event detection. If they become

closer to unity, the transition is less likely to occur, thus less number of notes

will be detected.

Observation probabilities are given by a function of the likelihood p (x|µ, κ)

of each cluster as defined in Eq. (5.5). Since the pdf can be greater than unity

by its definition, the pdf is so normalized that the probabilities sum to unity

at every instance of time. Given the normalized pdf pk,n for all K clusters, the

observation probabilities are calculated in the range between 0 and 1 as

bk,n =


pk,n · exp (pk,n − 1) (sustain state)

K∑
k=1

∆pk,n+1 +∆pk,n
2

(transient state)

(5.13)

where ∆pk,n = |pk,n − pk,n−1|. The observation probabilities of the transient

state are determined by changes in the pdf of the clusters. At the end, the prior

probability is uniformly given to all clusters and the transient state. After the

three HMM parameters are determined for all the states, the optimal state path
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Fig. 5.5 Transitions in the hidden Markov model.

v = {v1, . . . , vN} is decoded by the Viterbi algorithm. Accordingly, transition

boundaries, at which the state path changes from the transient state to a sustain

state, are simply detected.

5.5.2 Note boundary selection

It is clear that the transition boundaries indicate the points at where the har-

monic structure significantly changes. However, not all transitions are directly

converted into the note onset, because some voiced consonants such as [l], [m]

and [N] can be included. These voiced consonants, commonly observed in hum-
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ming, may cause low detection accuracy if they are detected as independent

notes. Therefore, it is necessary to exclude the voiced consonants from the note

boundary, using their distinguishing spectral characteristic due to the nasal

sound.

Let xi,t denotes the log-magnitude of the i-th harmonic partial at a time

instance t. Mean height δ̄τ at a transition boundary time τ is defined by

δ̄τ =
1

h

h∑
i=1

(
max

t∈(τ,τ+T )
xi,t − min

t∈(τ−T,τ)
xi,t

)
(5.14)

where T = Tmin/2. When a voiced consonant is followed by a normal vowel, the

harmonic partial magnitude decreases except in the first few partials. A note

boundary is selected at τ only if δ̄τ > δnote, and determines onset and offset.

5.5.3 Note pitch decision

When the note boundary and F0s are given, the simplest way to decide the note

pitch would be by taking a mean or median value of the F0s between the onset

and the offset. In singing, however, it is sometimes difficult to specify a single

value of the F0s within a note. Singing voices often include musical expressions

and ornaments such as a grace note, which is a separate pitch prefixed to a

principal note. The longest region for which the pitch deviations are kept below

a tolerance of 50 cents (100 cents = 1 semitone) is selected, and the pitch at the

beginning of the region decides the note pitch. In doing so, a note pitch that

is most likely to be perceived can be chosen. The detailed algorithm for note

pitch decision is presented in the form of a pseudo-code in Algorithm 2.

Figure 5.6 summarizes the whole transcription process of a female singing

voice signal. Panel (b) illustrates the HSC and eight detected transition bound-
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Fig. 5.6 Transcription result from an excerpt of afemale10.wav in the dataset.
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Algorithm 2 Note pitch decision.

1: Input:
pn : F0s in MIDI number for n = 1, . . . , N
Tp : Tolerance of pitch deviation

2: lmax ← 0
3: for n = 1 to N − 1 do
4: m← n
5: l← 1
6: while m < N, |pm+1 − pn| < Tp do
7: m← m+ 1
8: l← l + 1
9: end while

10: if l > lmax then
11: lmax ← l
12: pitch← pn
13: end if
14: end for
15: return pitch

aries. Panel (c) shows the observation probabilities of the HMM and the corre-

sponding state path. Mean height for each transition boundary is depicted in

the panel (d), showing six of them are selected as note onset. In the last panel,

the transcription result is displayed in the form of a piano-roll representation.

It is notable that two connected notes with the same pitch (the fourth and the

fifth note) are correctly transcribed.

5.6 Evaluation

5.6.1 Dataset

Evaluations have been conducted using a publicly available dataset [76, 77],

released for the purpose of evaluation on singing transcription. The dataset

consists of 38 audio recordings of monophonic singing, recorded with a sample

rate of 44.1 kHz and a 16-bit resolution. All the singings are in English, but
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a few hummings are also contained. Singers are categorized into three classes:

adult males (13 recordings), adult females (11 recordings), and children (14

recordings). The male and female recordings are randomly chosen from the

public dataset MTG-QBH1 [76], and the melodies came from several excerpts

of popular songs such as The Beatles and Aerosmith. In the case of children

recordings, traditional children songs were originally sung by eight different

children. The pitch and loudness are quite unstable as the singers are untrained.

The duration of the whole dataset is up to 19 minutes and 15 seconds in total.

All the recordings were very freely performed with musical articulations and

ornaments.

The dataset also contains the note-level ground truth by manual anno-

tations. The ground truth provides annotation of the onset, offset, and note

pitch for all the 2,154 notes in the dataset. The onset and offset are given by

their exact time in seconds, and the note pitch is by a MIDI number with two

decimal places. The MIDI number is converted from the frequency in Hz by

12 log2(frequency/440) + 69.

5.6.2 Criteria and measures

Precision and recall have been commonly considered the standard measures for

binary classification such as the onset detection. Combining the precision and

the recall, the F-measure is the most representative measure of the overall per-

formance. However, a note transcription system needs to adopt more extensive

criteria, because it includes the overall evaluation for the three note attributes.

Thus, recent criteria were extended particularly for singing transcription [65].

1The MTG-QBH dataset is available at http://mtg.upf.edu/download/datasets/MTG-

QBH.
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The qualitative meanings in the criteria are described as follows:

• COnPOff (correct onset, pitch and offset): The most restrictive criterion,

meaning the correct rate of onset (±50 ms), offset (±20% of the ground-

truth note duration or 50 ms, whichever is larger) and pitch (±0.5 semi-

tones). A note is correctly transcribed only if its onset, offset, and pitch

satisfy the criteria simultaneously.

• COnP (correct onset and pitch): A less restrictive criterion, accounting

for both the onset and pitch, using the same size of tolerance window as

above.

• COn (correct onset): Similar to the above two criteria, but only onset is

considered in this case. This is equal to the traditional metric for onset

detection.

• Split: The rate of ground truth notes incorrectly segmented into consec-

utive notes by transcription.

• Merge: The rate of ground truth notes merged as they are transcribed

into the same note (complementary to Split).

• Spurious: The rate of transcribed notes not having any overlap with

ground truth notes (neither in time nor pitch domain).

• Non-detected: The rate of ground truth notes not having any overlap with

transcribed notes (neither in time nor pitch domain).

Note that COnPOff, COnP, and COn are chosen as major criteria for the

overall performance of note transcription. Each criterion has its numerical mea-

sures such as precision, recall and F-measure. For other criteria such as Split,
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Merge, Spurious and Non-detected, the measures are expressed by the rate of

incorrectly transcribed notes that each criterion defines, emphasizing the more

specific points of wrong transcription.

5.6.3 Experimental setup

Two evaluations were conducted in various aspects of singing transcription at

the note level, rather than the assessment for the front-end pitch tracker at

the frame level. This is because the existing algorithms for monophonic pitch

tracking have already accomplished a reliable performance, and the proposed

note transcription system is based on the assumption that the F0 is known.

The first evaluation assessed the transcription performances among two

methods for transition boundary detection, and to examine the influence of

different parameter configurations. By comparing the results, the best method

and the most optimized parameter were determined. On the other hand, the

second evaluation shows the improvement of the proposed system compared to

other systems including the state-of-the-arts. For a fair comparison, the exper-

iment was conducted under an identical experimental setup including dataset

and metrics. The default parameter configuration in all the experiments is sum-

marized in Table 5.1.

All the experiments were conducted on a personal computer with a 3.3 GHz

CPU and 8 GB RAM. The computational time for the entire transcription

system depends on whether the probabilistic models are included or not, and

most of the time was spent on F0 tracking. The detailed time taken for all input

signals with a total length of 1,155 seconds is displayed in Table 5.2.
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Table 5.1 Parameter configuration.

Parameter Description Value

h Number of harmonic partials 13
dmin Minimum cluster distance (rad) 0.25
δpeak Peak picking threshold 0.03
α Self-transition probability 0.5
δnote Note boundary threshold 0.2
Tmin Minimum note duration (s) 0.1

Table 5.2 Computational time of the proposed system.

Using the given F0 track Including F0 tracking
Similarity-

based
HMM-
based

Similarity-
based

HMM-
based

Time (s) 37 110 296 374

5.7 Results and discussions

As the first evaluation, the overall performance was compared by using differ-

ent parameters, including the number of harmonic partials and the detection

sensitivity. This experiment was conducted using the two methods for transi-

tion boundary detection, the similarity analysis and the HMM-based note event

model. As shown in Fig. 5.7, the performance improvement was saturated in

both methods with more than 11 partials, and the highest F-measure of 0.82

was achieved by the HMM-based method. As the number of partials increases,

the performance of the similarity-based method slightly decreases while the

HMM-based method does not change. It is also noticeable that the similarity-

based method scored a very low performance when only a few partials were
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used. This result implies that the HMM-based method is more robust than the

similarity-based method.

To verify the robustness of the HMM-based method more clearly, the

precision-recall curve for both detection methods is reported in Fig. 5.8, show-

ing the trade-off between precision and recall. The precision and the recall

were obtained by varying the parameters δpeak and α, which determine the

detection sensitivity of the similarity-based and the HMM-based method, re-

spectively. While the HMM-based method achieved a reliable performance for

various detection sensitivities, the precision rapidly decreased in the similarity-

based method as the peak-picking threshold increased. In most cases, it was

reported that the recall tends to be greater than the precision.

Both experimental results show that the use of the mixture model not only

improves the overall performance, but also accomplishes the robustness of the

system. The similarity-based method is heavily influenced by the parameters

and the characteristic of the input signal, since it is difficult to choose a proper

threshold for peak picking. Whereas, the mixture model is effective for classify-

ing the intrinsic harmonic structures in a stream, even when a limited number of

partials are given. Nonetheless, the overall performance of the similarity-based

method is still higher than the recent average results of the onset detection

for the singing voice class in the MIREX. This infers that the HSC is a very

effective feature to represent the harmonic structure, and is suitable for singing

transcription even without the mixture model.

The second evaluation was conducted to compare the system performance

with five other methods. All the results are excerpts from the original pa-

pers [65, 77] that use the same dataset and criteria. The results attained by

91



3 7 11 15 19 23

Num. of partials

0.3

0.5

0.7

0.9

A
vg

. F
-m

ea
su

re

(a) Similarity-based

3 7 11 15 19 23

Num. of partials

0.3

0.5

0.7

0.9
(b) HMM-based

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

COnPOff COnOff COn

Fig. 5.7 Average F-measures in three criteria by different number of harmonic
partials.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

/peak = 0:5

/peak = 0:005

, = 10!6

, = 1! 10!6

Similarity-based
HMM-based

Fig. 5.8 Precision-recall curves in COn criterion for two transition detection
methods.

Rynnänen’s note event model approach [64], Gómez & Bonada’s method [35], a

commercial system named Melotranscript [78] were cited from Molina’s evalua-

tion framework [77]. The SiPTH system has only one overall performance about

COnPOff, since the authors do not mention the result on COnP and COn in
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Fig. 5.9 Evaluation comparison of the proposed system (marked by asterisk) and
other algorithms. Labels on the y-axis indicate the criteria and their numerical
measure. Items marked by crosses are not publicly announced.

their paper [65]. In case of Tony [79], their best result was chosen (reported as

pYIN s=0.8, prn=0.10) among different parameter configurations.

As shown in Fig. 5.9, the overall performance of the proposed system out-

performs others including the state-of-the-art methods (SiPTH and Tony). In

terms of COn, the best performance (average F-measure 0.82, 95% confidence
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interval 0.80 to 0.84) was achieved using the HMM-based method. The per-

formance improvement on COnP becomes more significant compared to the

first three systems. It implies that the local homogeneity within the harmonic

structure, which is the most distinguishing point to other approaches, can be an

effective feature for singing transcription, as it has an advantage that connected

notes with the same pitch can be detected.

However, the proposed system did not improve much when the offset detec-

tion is included. The relatively low improvement on COnPOff can be explained

by two factors. First, even with the feature normalization to remove the influ-

ence of the loudness, it cannot reflect the changes in harmonic structure as the

singing becomes softer at the end of a note. Second, it may be caused by the

ambiguity in the offset annotation for the singing voice.

Split and Merge are complementary to each other. As the detection sen-

sitivity becomes higher, Merge decreases and Split increases. In the proposed

system, the detection sensitivity mainly depends on the note boundary thresh-

old δnote. When it increases from 0.2 to 0.3, it was observed the system produces

only Splits less than 0.05% of the entire ground truth notes, while the overall

performance is still higher than others (over 80% COn). Since it cannot say that

either Split or Merge is more critical, it is required to use appropriate settings

depending on the purposes of transcription.

Although the proposed system accomplished the best overall performance,

it is not always the best approach for all cases. One example is a stepwise pitch

change with the same pronunciation, which can be easily detected by pitch-

based systems. It is expected that the system can be further improved when

the time-pitch curve is also considered.
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5.7.1 Failure analysis

Although the proposed system has improved overall performance compared

to existing algorithms, it was reported that the note detection still needs to

improve for some particular cases. As such, we analyze three typical cases of

incorrect transcription as follows:

• Long-tail release: As opposed to attack, the term ‘release’ means the

ending part of a note. A more relaxed criterion is applied to the tolerance

window for offset detection (as we have previously described), since it is

difficult to specify ambiguous offset points of singing voice. A long release,

which means gradual changes in volume, is expressed as decrescendo or

diminuendo in musical terms. Split occurs frequently in notes with long

release because the harmonic structure is not homogeneous from onset to

offset. As singers do not maintain the pronunciation and relax the tension

for singing at the end of the note, it is often observed that the pronun-

ciation changes to voiced consonants such as [m] or [N] (see Fig. 5.10).

Some detection errors can be corrected during the note boundary selec-

tion process, but if these errors occur frequently, the harmonic structure

coefficients of the long-tail release will form an individual cluster, which

may cause the note detection error. An exceptional treatment on the pre-

defined harmonic structure of the voiced consonants is considerable to

reduce this error.

• Vibrato: Vibrato is a musical technique by a regular and pulsating change

of pitch (and loudness). In singing, it occurs by movement in different

parts of the vocal tract, and has a frequency of about 5 Hz [80]. If only
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Fig. 5.10 Failure analysis for a case of incorrect transcription caused by long-tail
release. The ending part of the note formed a different cluster (from 8.5 to 9
seconds).

the pitch curve are used as features, vibrato can be a hard obstacle for

singing transcription. For non-professional singers, fortunately, it has been

observed in our system that the fluctuation in the harmonic structure

coefficient by vibrato is not extreme to be classified into other clusters.

However, since a strong vibrato of professional singers affects not only
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the pitch and loudness but also the timbre, it is also possible to consider

performing the vibrato suppression [81] in the pre-processing step.

• Pitch changes in a single harmonic structure: Although not of-

ten observed, notes with different pitches while maintaining the same

harmonic structure cannot be detected by the proposed approach. As a

solution to this problem, existing pitch-curve-based algorithms are simple

to implement and have low complexity. In order to prevent such errors,

it is expected that the performance can be improved by applying existing

algorithms together with the proposed system.

5.8 Summary

We presented a singing transcription system based on the analysis of harmonic

structure. Given the estimated F0 sequence, a novel acoustic feature named the

harmonic structure coefficient (HSC) was derived by extracting the harmonic

partial magnitude with several refinement steps of vector transformation. In

doing so, the HSC is defined on the surface of a unit hypersphere, representing

the relationship between harmonic partials.

A parametric mixture model based on the von Mises–Fisher distribution

was used to characterize the feature space. Further, an optimization technique

was proposed to determine the optimal number of clusters, so that the intrinsic

harmonic structure could be correctly classified.

To detect significant transition boundaries in the harmonic structure, two

different methods were presented based on the self-similarity analysis and the

HMM. Then, note attributes were finally determined by excluding the voiced
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consonant from the detected transition boundaries.

The proposed system was evaluated using the latest evaluation methodol-

ogy for singing transcription. Comparing results of the two proposed methods

for transition boundary detection showed that the mixture model and the note

event model improve the transcription performance and robustness. When com-

paring with the existing systems, the evaluation results confirm that the pro-

posed transcription system significantly outperforms other systems including

the state-of-the-art systems.
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Chapter 6

Conclusion and Future Work

6.1 Contributions

As mentioned in the introduction, the final goal of this thesis was to develop a

fully-automatic singing transcription system that outperforms the state-of-the-

art methods. This requires a broad understanding and multilateral techniques

for pitch estimation and note segmentation, which are the fundamental topics

of a transcription system. We analyzed their strengths and limits through a

comprehensive review of existing methods (Chapter 2), and proposed a novel

approach to improve the accuracy and efficiency of pitch tracking algorithms

(Chapter 3). Also, focusing on the observation that the homogeneity of the har-

monic structure is maintained locally in a note, we presented an onset detection

method based on cepstral analysis (Chapter 4), which improves the detection

of soft onset which was difficult in traditional approaches. By extending these

works to the transcription of singing voices, we have shown that our approach
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is applicable to construct a robust system that can be applied to singing voice

signals with complex acoustic characteristics (Chapter 5).

The main contributions of this thesis can be summarized in the following

points:

• A broad range of review covering transcription-related topics: A

comprehensive review of related topics was provided to help understand

the problems and strategies for the purpose of music transcription. This

includes a variety of approaches for pitch estimation, onset detection,

and singing transcription. We also introduced the standard evaluation

framework and methods in the field of music transcription, and listed

highly relevant datasets to aid in future research.

• Improved F0 estimation method using data sampling: We ex-

ploited a data sampling method to improve the performance of F0 es-

timators. This method can be used in the time and frequency domain,

and can be applied to many conventional algorithms. The data sampling

method was not only computationally efficient, but also effective for esti-

mation accuracy. The performance evaluation using a large-scale singing

voice dataset showed that estimation accuracy was improved compared

to the original detection functions. In addition, an iterative F0 refinement

technique was also proposed.

• Note onset detection based on cepstral analysis: A novel approach

for note onset detection for pitched instruments was presented. We de-

rived the detection function that quantifies the regularity of the harmonic

structure. This cepstrum-based method achieved a significant improve-
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ment, especially in soft onset detection. Whereas the conventional meth-

ods depend heavily on the amplitude changes, this method enabled to

detect onsets in various types of music signals such as strings and singing

voices.

• Robust singing transcription system: A robust singing transcription

system was presented in a unified framework. This includes (i) a novel

acoustic feature, (ii) a parametric mixture model, and (iii) note tran-

scription schemes. The feature was defined to represent the relationship

between harmonic partials, regardless of pitch and loudness. It was char-

acterized by a mixture model based on the von Mises–Fisher distribution.

Further, an optimization technique was proposed to determine the opti-

mal number of clusters, so that the intrinsic harmonic structure in a music

signal can be properly classified. Finally, a note event model based on the

hidden Markov model was also designed.

The singing transcription system presented in this thesis was implemented

as an application named STAM (Singing Transcription App for Matlab). STAM

is an app with graphical user interface, developed using Matlab App Designer.

It can be run on multiple operating systems (Windows, Mac OS, and Linux)

with the Matlab version after R2016b, or can be executable standalone with

the Matlab Runtime. Its transcription method uses the vMF mixture model

and the HMM-based note detection methods, which were reported to be the

most robust algorithms in our experiments. Users may record their own song

through a microphone, or import a prepared audio file. The transcription result

is displayed in the form of piano-roll illustration, and can be exported to a MIDI

format file for the further uses. A screenshot of STAM is shown in Fig. 6.1.
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Fig. 6.1 A screenshot of the program implementation of the proposed system.

Despite the contributions to singing transcription and its relevant technolo-

gies in this study, there are some limitations for the following parts. First,

this study has a very limited consideration for the extensibility to polyphonic

music transcription. Regarding the most popular instruments such as piano

and guitar allow polyphonic notes, this study needs to be extended to poly-

phonic transcription for a wider range of musical instruments. Secondly, the

pitch tracking method presented in Chapter 3 was not used in the final system

implementation, but was replaced by a newer pitch tracking algorithm with

higher performance. Consequently, this has weakened the logical flow and con-

nection of the entire work. For better configuration of the overall system, a new
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pitch tracking method needs to be originally developed and optimized for this

system. The next section describes an approach to track the F0 and its har-

monic partials more precisely. We expect that this approach is more suitable

for polyphonic pitch tracking. Thirdly, we did not take full advantage of lyrics,

which is another useful information in the singing voice. Finally, the transcrip-

tion of musical expressions such as articulations and ornaments has not yet been

addressed in this thesis. Commonly found in other studies for singing transcrip-

tion, these limitations draw the future direction. In the next section, we provide

some good points that further studies can begin and go deeper.

6.2 Future work

6.2.1 Precise partial tracking using instantaneous frequency

Although a method to improve the pitch tracking accuracy was discussed in

Chapter 3, we did not use it for the final implementation of the proposed

singing transcription system. Instead, we constructed the system by employ-

ing a recent pitch tracker such as pYIN algorithm [52] in the front end of the

system. However, this is not a desirable configuration for the following reasons.

Currently, harmonic partial tracking in our system is done by taking the

magnitude spectrum corresponding to the integer multiples of the F0 estimated

by a pitch tracker. However, not only F0 but also harmonic partials can also

be utilized in the pitch tracking stage. For example, in the pYIN algorithm,

the observation probability is determined from the YIN function (the lower

this function, the higher the probability), and an average of four (voiced) pitch

states with a significant probability are calculated per frame. As the front-end

pitch tracking is independently working, only a single F0 estimate is preserved,
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Fig. 6.2 Instantaneous frequency of harmonic components in a singing voice
signal.

and useful information on the rest of harmonics would be lost in the main

transcription stage. This causes redundant calculation on harmonic partials,

and therefore, may worsen the efficiency of the overall system.

Can we realize both F0 tracking and multiple partial tracking at once? One

possible idea is tracking using instantaneous frequency (IF). Since the IF is

defined by a time-varying function, it has the advantage that the frequency at a

certain time can be precisely calculated. After tracking all harmonic components

including higher-order partials, if we estimate the F0 using the iterative F0

refinement (see Section 3.5), we expect that more precise partial tracking and

efficient system configuration can be accomplished. In particular, this approach

may be effective for tracking harmonic partials that are not exactly the integer

multiples of the F0. We describe the derivation of the instantenous frequency

of a music signal in Appendix.
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Figure 6.2 shows the instantaneous frequency of harmonic components ob-

tained from the above formulations. In a singing voice signal, energy distribu-

tion of harmonic partials varies depending on the pronunciation. Although not

shown in the figure, precise magnitudes of partials with strong energy can also

be obtained, as well as their frequency. This precise tracking of harmonic par-

tials is expected to improve the harmonic structure coefficient, and consequently

lead to better transcription performance.

6.2.2 Linguistic model for note segmentation

In the current transcription system, we regard the note segmentation of singing

voice as an unsupervised classification problem, and decompose the singing

voice by vowels (and voiced consonants). Although this approach improves the

detection performance for legato notes, lyrics of the song is not yet utilized.

Lyrics can be useful to detect syllables in a singing/speech signal. In situations

where very high performance is required, we expect a great performance im-

provement by allowing the system to know in advance what song the user will

sing.

According to International Phonetic Alphabet (IPA), the standard in lin-

guistics for classifying the pronunciations of various languages, vowels can be

plotted on a two-dimensional plane of the ‘closeness’ and ‘backness.’ This plot

is called a vowel chart or a vowel diagram [82] (see Fig. 6.3). In speech recog-

nition, there have been many studies to analyze the phoneme based on this

phonetic criterion [83, 84].

Note segmentation based on the linguistic model will re-define the transi-

tion probability in our system. Assuming the one-to-one mapping between a
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CONSONANTS (PULMONIC) © 2015 IPA

Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal
Plosive 
Nasal 
Trill 
Tap or Flap 
Fricative 
Lateral 
fricative 
Approximant 
Lateral 
approximant 

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible. 

CONSONANTS (NON-PULMONIC) 
Clicks Voiced implosives Ejectives

Bilabial Bilabial Examples: 
Dental Dental/alveolar Bilabial 

(Post)alveolar Palatal Dental/alveolar 

Palatoalveolar Velar Velar 

Alveolar lateral Uvular Alveolar fricative 

VOWELS 
Front Central  Back

Close

Close-mid

Open-mid

Open
Where symbols appear in pairs, the one 
to the right represents a rounded vowel. 

OTHER SYMBOLS 
Voiceless labial-velar fricative   Alveolo-palatal fricatives 
Voiced labial-velar approximant   Voiced alveolar lateral flap 
Voiced labial-palatal approximant   Simultaneous and 

Voiceless epiglottal fricative Affricates and double articulations 
can be represented by two symbols 
joined by a tie bar if necessary. 

Voiced epiglottal fricative 
Epiglottal plosive 

SUPRASEGMENTALS 
 Primary stress 

Secondary stress 
Long 
Half-long 
Extra-short 
Minor (foot) group 
Major (intonation) group 
Syllable break 
Linking (absence of a break) 

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g.
Voiceless Breathy voiced Dental 
Voiced Creaky voiced Apical 
Aspirated Linguolabial Laminal 
More rounded  Labialized Nasalized 
Less rounded  Palatalized Nasal release 
Advanced  Velarized Lateral release 
Retracted  Pharyngealized No audible release 
Centralized Velarized or pharyngealized 
Mid-centralized Raised ( = voiced alveolar fricative) 

Syllabic Lowered ( = voiced bilabial approximant) 

Non-syllabic Advanced Tongue Root

Rhoticity Retracted Tongue Root

TONES AND WORD ACCENTS 
LEVEL   CONTOUR
or Extra or Risinghigh 

High Falling
Mid High

rising
Low Low

rising
Extra Rising-
low falling

Downstep Global rise 
Upstep Global fall 

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015) 

Typefaces: Doulos SIL (metatext); Doulos SIL, IPA Kiel, IPA LS Uni (symbols) 

Fig. 6.3 IPA vowel chart.

musical note and a syllable, the transition probability between vowels is statis-

tically determined by analyzing a large-scale text corpus of a specific language.

According to the frequency of vowel transition in the Korean case we have

investigated [85], eight most frequent vowels are chosen from the IPA vowel

chart: [i], [1], [u], [e], [@], [æ], [a], and [o]. The authors examined the observed

and expected frequencies of these vowels. Similarly, there are studies on ‘vowel

harmony’ in other languages such as English and Finnish [86, 87]. The term

‘harmony’ implies that there are constraints on which vowels may be found

near each other.

As a pilot test, using a pronunciation data set of 31 vowels, we extracted the

HSC features from the eight most commonly used vowels in Korean. The 13-

dimensional HSC feature vectors were clearly distinguishable from each vowel.

Next, we assigned the clusters obtained by the mixture model to the vowels

with the nearest HSC vector distance, and then used the transition probability

between the vowels based on the statistics. However, transcription performance
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was not improved as expected compared to our original method based on un-

supervised classification.

The main issue to be solved to utilize the linguistic model for singing tran-

scription is to refine the transition probability appropriately. The transition fre-

quency between vowels obtained from linguistic literature is given at the phone

level, whereas audio signal processing is usually done at the frame level. At the

phone level, it is impossible to grasp the transition within a very short time

(commonly observed in a diphthong). Unlike speech recognition, fortunately,

singing transcription does not require a strict identification of every phoneme.

If only a few common vowels are modeled, acquiring training data directly from

an audio signal rather than a text corpus can be a possible solution.
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Appendix

Derivation of the instantaneous frequency

For a single sinusoid s(t) = Aej(ωt+θ), the instantaneous phase φ(t) and instan-

taneous frequency λ(t) are determined by their definition as

φ(t) = ωt+ θ (6.1)

λ(t) =
1

2π

dφ(t)

dt
=

ω(t)

2π
. (6.2)

Real world music signals have multiple harmonic components, of course, so it

is necessary to extend this concept to a two-dimensional time-frequency plane.

This can be done by analyzing the original signal using a filter bank, as described

in literature [88, 89].

Given xk(t), the output of the kth filter, the original signal x(t) can be

expressed as

x(t) ∼=
K∑
k=1

xk(t). (6.3)

Let the impulse response of the kth filter be gk(t) = h(t) cos(ωkt) where h(t) is

the impulse response of a physically-realizable low-pass filter (normally realized

by a window function). By using some basic properties of the Fourier transform

Gk(ω) =
1

2
[H(ω − ωk) +H(ω + ωk)] , (6.4)
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the filter bank can be explained by the frequency shifting of the low-pass filter.

Then, the output of the kth filter is the convolution of x(t) with gk(t),

xk(t) =

∫ t

−∞
x(τ)h(t− τ) cos [ωk(t− τ)] dτ. (6.5)

By substituting cos [ωk(t− τ)] into ejωk(t−τ) and taking the real part,

xk(t) = Re

{
ejωkt

∫ t

−∞
x(τ)h(t− τ)ejωkτdτ

}
(6.6)

= Re
{
ejωktX(ωk, t)

}
(6.7)

= |X(ωk, t)| cos [ωkt+ φ(ωk, t)] . (6.8)

Each xk(t) may be described as the simultaneous amplitude and phase mod-

ulation of a carrier cos (ωkt) by the short-time amplitude and phase spectra

of x(t), both evaluated at frequency ωk. The instantaneous frequency λ at the

point (ωk, t) is then defined as

λ(ωk, t) =
dφ(ωk, t)

dt
. (6.9)

Instead of a direct calculation of phase, its time derivatives can be expressed

by

λ(ωk, t) =
adb
dt − bdadt
a2 + b2

(6.10)

where

X(ωk, t) = a(ωk, t) + jb(ωk, t) (6.11)

a(ωk, t) =

∫ t

−∞
x(τ)h(t− τ) cos (ωkτ) dτ (6.12)

b(ωk, t) = −
∫ t

−∞
x(τ)h(t− τ) sin (ωkτ) dτ. (6.13)
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초 록

음악정보검색 분야의 가장 오래된 문제 중 하나인 자동 음악 전사는 오디오 신호

로부터 음표 등의 음악적 속성을 기호화된 수준으로 자동적으로 추출하는 기술을

의미한다. 악보 등의 형태로 변환된 음악 데이터는 소비자와 창작자 모두에게 보

다 고차원적인 정보를 제공하여 음악 교육, 제작 및 편집 등의 목적으로 다양하게

활용될 수 있다. 그 중 노래하는 목소리는 가장 쉽게 연주할 수 있고 또 일상적

으로 들을 수 있는 음악 신호이지만, 음색의 불균일성과 복잡한 신호적 특징으로

인하여 일반적인 악기들에 비해 기존의 전사 기법 적용에 어려움이 존재한다. 본

논문의 궁극적인 목표는 이러한 노래 신호의 특성을 고려하여 최고 성능을 넘는

자동화된 노래 전사 시스템을 개발하는 것이다. 이를 위하여 우리는 음악 전사의

요소 기술들인 음고 추적과 시작점 검출에 대한 기존의 접근들을 조사하고, 각

기술들의 성능을 개선하는 방법을 제안한다. 본 논문은 음고 추적의 측면에서는

시계열데이터의부분샘플링이음악신호의주기성분석성능향상에미치는영향

을 살펴보고, 시작점 검출의 측면에서는 켑스트럼 분석과 비지도 분류 기법 등을

이용하여배음구조의국지적균질성을검출에활용한다.최종전사시스템은이에

필요한 배음 구조의 특징 벡터화 기법과 확률 모형, 그리고 음의 전이를 표현한

은닉 마르코프 모형 등을 다루며, 음 수준의 성능 평가에서 82%의 최고 성능을

보인다.

주요어: 자동 음악 전사, 음악 정보 분석, 음고 추적, 시작점 검출, 노래, 배음 구조

학 번: 2011-31243
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