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Antimicrobial resistance and possible

transmission of Escherichia coli between 

companion animals and related-personnels

Yeon Soo Chung

(Supervised by Prof. Yong Ho Park)

Abstract

Livestocks today are not that much more valuable than they were long ago, we treat 

our companion animals as if they were far more valuable. In addition, we have seen a 

huge switch in animal medicine, from a focus on livestocks to a focus on companion 

animals such as horses, dogs and cats. In the Korean companion animal industry, the 

market size associated with companion animals is rapidly increasing and estimated to be 

$5.4 billion by 2020. In addition, more and more Korean people have recognized the 

importance of horse industry according to the increasing trend of horse-riding. However, 

limited information is available regarding horse-associated antimicrobial resistant (AR) 

bacteria in Korea.
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As first study, we evaluated the frequency and characterize the pattern of AR 

Escherichia coli (E. coli) from healthy horse-associated samples. Thirty of the E. coli

isolates (21%) showed antimicrobial resistance to at least one antimicrobial agent, and 

four of the AR E. coli (13.3%) were defined as multi-drug resistance. Pulsed-field gel 

electrophoretic analysis showed the cross-transmissions between horses or horses and 

environments were detected in two facilities. Although cross-transmission of AR E. coli

in horses and their environments was generally low, our study suggests a risk of 

transmission of AR bacteria between horses and humans.

Quinolone (Q) and fluoroquinolone (FQ) are broad-spectrum synthetic antimicrobials 

used to treat bacterial infections in humans and animals. Since they are very potent 

antimicrobial agents against Gram-negative bacteria including E. coli, these agents have 

been widely used to treat a range of infections in companion animals. Consequently, 

(F)Q resistance has markedly increased worldwide, posing a significant threat to the 

health of animals and humans. In the second study, we investigated the prevalence and 

the mechanisms of FQ/Q resistance in E. coli isolates from companion animals, owners, 

and non-owners. A total of 27 nalidixic acid (NA)-resistant isolates were identified. Of 

these, 10 isolates showed ciprofloxacin (CIP) resistance. Efflux pump activity was 

detected in 18 isolates (66.7%), but this was not correlated with the increased minimum 

inhibitory concentration (MIC). Target gene mutations in Q resistance-determining 

regions (QRDRs) were the main cause of (F)Q resistance in E. coli. The number of point 

mutations in QRDRs was strongly correlated with increased MIC (R = 0.878 for NA and 

0.954 for CIP). Interestingly, (F)Q resistance mechanisms observed in isolates from 



3

companion animals were the same as those in humans. Therefore, a prudent use of (F)Q 

in veterinary medicine is warranted to prevent the dissemination of (F)Q-resistant 

bacteria from animals to humans.

Companion animals such as horses and dogs are considered as one of the reservoirs of 

AR bacteria that can be cross-transmitted to humans. The inherent risk of any use of 

antimicrobials to select for AR bacteria poses a relevant risk for public health by 

spreading of antimicrobial resistance from animals to humans via direct or indirect 

contacts. However, limited information is available on the possibility of AR bacteria 

originating from companion animals being transmitted secondarily from owners to non-

owners sharing the same space. To address this issue, in the third place, we investigated 

clonal relatedness among AR E. coli isolated from dog owners and non-owners in the 

same college classroom or household. Of 31 E. coli, 20 isolates (64.5%) were resistant 

to at least one antimicrobial, and 16 isolates (51.6%) were determined as multi-drug 

resistant E. coli. Pulsed-field gel electrophoretic analysis identified three different E. 

coli clonal sets among isolates, indicating that cross-transmission of AR E. coli can 

easily occur between owners and non-owners. The findings emphasize a potential risk of 

spread of AR bacteria originating from companion animals within human communities, 

once they are transferred to humans.

Antimicrobial resistance is an urgent global problem. There are increasing concerns 

about the emergence of multi-drug resistant bacteria in humans, animals and 

environments. The antimicrobial resistance is a complex phenomenon driven by many 

factors such as the interaction of humans, animals and environmental sources for 
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antimicrobial resistance. Our study also showed that they could be not only reservoirs 

but also transmitters of antimicrobial-resistant bacteria. Therefore, the aims of 

combating antimicrobial-resistant bacteria and preserving the efficacy of the currently 

available antimicrobials in human and veterinary medicine as well as in ecological 

systems should be addressed in an interdisciplinary effort within a “One Health”

approaches.

Addressing this urgent threat requires the multifaceted strategies. Elements include 

strengthened surveillance of antimicrobial usage; improved antimicrobial stewardship in 

humans and animals; approaches to incentivize new antimicrobials development; 

increased research on mechanisms of resistance; a prudent use of antimicrobials by 

veterinarians as well as clinicians.

Keywords: Antimicrobial resistance, Escherichia coli, one health, horses, companion 

animal-owners, non-owners, fluoroquinolone

Student number: 2014 - 30549
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I. The genus Escherichia coli

Escherichia coli (E. coli) is a predominant facultative anaerobe Gram-negative 

bacteria. E. coli is the species of the genus Escherichia within the family 

Enterobacteriaceae and the tribe Escherichia [19]. Most E. coli strains are harmless and 

commonly isolated from the intestinal tract of healthy humans and animals [133]. The 

harmless strains can benefit their hosts by producing vitamin K2 [18] and by preventing 

the colonization of pathogenic bacteria such as Salmonella spp. within the intestine [74]. 

However, these bacteria can cause the infection and illness in immunosuppressed hosts. 

Three clinical symptoms are usually detected from infected hosts with pathogenic E. 

coli strains: i) enteric or diarrheal, ii) sepsis or meningitis and iii) urinary tract infection. 

The five main categories of pathogenic E. coli are enterotoxigenic E. coli (ETEC), 

enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterohemorrhagic E. 

coli (EHEC) and enteroadherent E. coli (EAEC) [108]. ETEC infection is acquired by 

ingesting contaminated food or water. The bacteria colonize the proximal small intestine, 

the critical site of host-parasite interactions, where they elaborate heat-labile enterotoxin 

(LT) or heat-stable enterotoxin (ST). The clinical features of ETEC infection are watery 

diarrhea, nausea, abdominal cramps and low-grade fever. EIEC can invade and 

proliferate within epithelial cells and cause eventual death of the cell [39]. The invasive 

capacity of EIEC is dependent on the presence of large (~140 MDa) plasmids coding for 

the production of several outer membrane proteins involved in invasiveness [63]. EPEC 

is an important category of diarrheagenic E. coli which has been linked to infant 
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diarrhea in the developing countries [83]. The hallmark of infections due to EPEC is the 

attaching-and-effacing (A/E) histopathology, which can be observed in intestinal biopsy 

specimens from patients or infected animals and can be reproduced in cell culture [12]. 

The term EHEC was originally coined to denote strains that cause hemorrhagic colitis 

(HC) and hemolytic uremic syndrome (HUS), express shiga-toxin (stx), cause A/E 

lesions on epithelial cells and possess a ca. 60-MDa plasmid [108]. EAEC expresses 

aggregative adherence (AA) distinguished by prominent autoagglutination of the 

bacterial cells to each other. The necessary feature of AA was the characteristic layering 

of the bacteria, best described as a stacked-brick configuration.

E. coli can be cultured from clinical specimens on enrichment or selective media at 37℃

under aerobic conditions. MacConkey and eosin methylene blue agar are the most 

popular selective media for isolation of E. coli [23]. For epidemiological purposes, E. 

coli is often isolated by presumptive visual identification. However, this method 

sometimes makes an error in identification of E. coli strains. Only about 90% of E. coli

strains have the ability to ferment lactose. Some diarrheagenic E. coli strains such as 

EIEC strains are lactose negative [133]. Unlike other E. coli strains, E. coli O157:H7, 

which is the most important EHEC serotype is unable to ferment sorbitol. Therefore, 

this E. coli strain can be differentiated from other strains on the MacConkey agar 

containing sorbitol instead of lactose.

E. coli can be serotyped on the basis of O (somatic), H (flagella) and K (capsular) 

antigen profiles [40]. The O, H and K antigens can be found in many of the possible 

combinations. Theoretically, the possible number of E. coli serotypes reaches about 
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50,000 to 100,000 [142]. Serotyping of E. coli was the predominant method for the 

identification of pathogenic E. coli strains prior to the detection of virulence factors. 

There are many studies about the association of the E. coli serotypes with outbreaks of 

diarrhea in patients [182]. Karmali et al. reported that the E. coli O157:H7 can cause the 

HUS which is defined by acute renal injury, thrombocytopenia and microangiopathic 

haemolytic anaemia in patients [129]. Especially, E. coli O157:H7 produces numerous 

virulence factors, most notably stx which is also called verocytotoxin or shiga-like toxin 

[129]. Shiga toxin can be classified into diverse variants such as stx1, stx2, stx2c and 

inhibits protein synthesis in endothelial cells [139].

The problem of drug resistance is not restricted to pathogenic bacteria—it also 

involves the commensal bacterial flora, which may become a major reservoir of resistant 

strains. Since E. coli acquires resistance easily and is commonly found in many different 

animal species, it is well suited for surveillance studies of antimicrobial resistance [195]. 

Chromosomal and plasmid-borne integrons have been identified as one of the crucial 

factors for the development of multidrug resistance in E. coli as well as many other 

bacterial species by harboring and lateral gene transfer of gene cassettes [162, 176]. 

Most common in resistant Enterobacteriaceae are class 1 resistance integrons, which are 

primarily located on elements derived from Tn5090 such as Tn402 and Tn21. They 

carry the site-specific tyrosine recombinases IntI, often contain qacED1 and sul1

conferring resistance to quaternary ammonium compounds and sulfonamides and harbor 

gene cassettes encoding resistance to ß-lactams, streptomycin–spectinomycin and 

trimethoprim. Several investigators observed a significant correlation between the 
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presence of class 1 integrons and multiresistance in Gram-negative isolates [66, 107]. In 

addition to integron-mediated resistance, antimicrobial resistance may be caused or 

increased by mutations. E. coli is one of several pathogens for which elevated mutation 

frequencies (f) have been described among natural isolates. Baquero et al. proposed to 

differentiate between strong mutators if f ≥ 4 x 10-7 and weak mutators if their frequency 

was 4 x 10-8 ≤ f < 4 x 10-7 [15].

II. Use of antimicrobials in animals

An antimicrobial is an agent that kills microorganisms or stops their growth. 

Antimicrobials can be classified according to their function. Agents that kill microbes 

are called microbicidal, while those that merely inhibit their growth are called biostatic. 

The use of antimicrobials to treat infection is known as antimicrobial chemotherapy, 

while the use of antimicrobials to prevent infection is known as antimicrobial 

prophylaxis.

Antimicrobials are widely used in the treatment and prevention of bacterial infection 

in livestock (cow, pig and poultry) and companion animals (horse, dog and cat). In 

livestock, sub-therapeutic doses of these antimicrobials are commonly utilized to 

promote growth and improve feed efficiency [87]. In cattle, the use of narrow-spectrum 

antimicrobials is favored in cases of clinical mastitis, with first-choice antimicrobials 

being the β-lactam antimicrobials used when treating mastitis resulting from 

streptococci or penicillin when treating mastitis caused by staphylococci [197].
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Antimicrobial treatment is one of the most common treatment plans for therapy of 

bovine mastitis [56]. A standard recommendation for most clinical mastitis is a 3-day 

intra-mammary treatment of antimicrobials. Cure rates are highly depended on the 

causal pathogens and other cow factors [16]. In swine, usage of antimicrobials for 

prevention is a common practice in farms, especially in stressful periods that predispose 

for infectious diseases. Such periods are the time between birth and first lactation. For 

the prevention and treatment of bacterial enteritis, especially when the etiological agent 

is E. coli, antimicrobial treatment with penicillins, tetracyclines (chlortetracycline, 

oxytetracycline), quinolones (enrofloxacin) or aminoglycosides (gentamicin, neomycin) 

is required [38]. In poultry, antimicrobials used for therapeutic reasons are usually 

administered through water, in contrast to growth-promoting use, where antimicrobials

are added in feed [70]. The most commonly used antimicrobials in livestocks are 

penicillins (amoxicillin), quinolones (enrofloxacin), tetracyclines (doxycycline and

oxytetracycline), macrolides (erythromycin and tylosin), aminoglycosides, the 

sulfonamide/trimethoprim combination, polymyxins (colistin) and other antimicrobials 

(tiamulin) [122]. In the United States, antimicrobials are used primarily in swine and 

poultry production and to a lesser extent in dairy cows, sheep and companion animals

[46]. An estimated 14,788 tons of antimicrobials were sold for use in animals in 2013 in 

the United States, including 4,434 tons of ionophores, a class of antimicrobials used 

only in veterinary medicine [50]. Rapid income growth in low- and middle-income 

countries has increased demand for animal protein [34, 154, 184]. This increasing 

demand is being met by a shift toward intensive livestock production systems that 
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depend on antimicrobials to keep animals healthy and operate efficiently [175]. 

According to the survey of Korea animal health products association in 2015, the largest 

volume of antimicrobials was sold for use in pigs (53%, 481 tons) followed by fishery 

(22%, 201 tons), poultry (17%, 157 tons) and cattle (8%, 71 tons) [1]. The use of 

antimicrobials in livestock first started in the 1940s when they were added to feeds used 

in broiler poultry production [177]. As a result, a chicken weighing greater than 2.27 kg 

could be produced in less than 50 days in 2010 [93]. In case of swine industry, 

antimicrobials used in feed improved the daily weight gain in starter pigs by an average

of 16.4% and the feed efficiency by 6.9% [31]. In addition to improving feed efficiency, 

adding antimicrobials to swine feed was found to reduce the mortality rate by 50% in 

young pigs (2.0% vs 4.3%) [31]. However, it remains unclear why antimicrobials cause 

livestock to gain weight more quickly. A certain hypothesize that they lead to decreased 

illness allowing weight to gain faster [47]. In 2011, the use of antimicrobials for the 

purpose of animal growth promoters was banned in Korea [81]. However, antimicrobial 

agents can still be added to water, feed and injected into animals with a veterinary 

prescription on individual farms [121].

A companion animal, as defined by the American society for the prevention of cruelty 

to animals (ASPCA) is a “domesticated or domestic-bred animals whose physical, 

emotional, behavioral and social needs can be readily met as companions in the home or 

in close daily relationship with humans. The ASPCA also specified “species suitable to 

be companion animals include dogs, cats, horses, rabbits, ferrets, birds, guinea pigs and 

select other small mammals, small reptiles and fish. A strong human-animal bond exists 
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for companion animals. In addition, most owners consider their companion animals as 

parts of their family members. Companion animal ownership, or just being in the 

presence of a companion animal, can have a positive effect on individuals’ mental and 

physiological health status. Most research addressing health benefits of companion 

animal ownership or companion animals focuses on reductions in distress and anxiety, 

decreases in loneliness and depression and increases in exercise [52]. In addition, 

companion animal owners made about 15% fewer annual doctor visits than companion 

animal non-owners, even after controlling for gender, age, marital status, income and 

other variables related to health [67]. Subsequently, they go to great length for medical 

treatments to their companion animals [199]. Companion animals account for most 

(65%) of first generation cephalosporins used in veterinary medicine in Denmark [44].

Urinary tract infection (UTI) is a major reason for antimicrobial prescription in small 

animal such as dog and cat [79]. Suggested first-line antimicrobials for uncomplicated 

UTIs include amoxicillin, cephalexin or trimethoprim-sulfamethoxazole [140]. In equine

medicine, streptomycin is the first-line antimicrobial for Gram-negative bacterial 

infection in horses [183]. Oxytetracycline, which is the most commonly used 

antimicrobial, use applied in an injectable form in combination with a sulfa 

antimicrobial agent to treat bacterial respiratory infections in horses [210]. Furthermore, 

the antimicrobials used in companion animals are not much different from those in 

human medicine [57]. Antimicrobials used in both veterinary and human medicine are: 

penicillins, cephalosporins, tetracyclines, chloramphenicols, aminoglycosides, 
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spectinomycin, lincosamide, macrolides, nitrofuranes, nitroimidazoles, sulfonamides, 

trimethoprim, polymyxins and quinolones [155].

III-1. Mechanisms of antimicrobial resistance in bacteria

Bacteria can acquire resistance to antimicrobials. This can be mediated by some 

mechanisms, which fall into three main mechanisms: first, the minimization of 

intracellular concentrations of antimicrobials; second, the modification of target of 

antimicrobials; and third, the inactivation of antimicrobials.

(1) Minimization of intracellular concentrations of antimicrobials

Gram-positive bacteria are intrinsically less permeable to many antimicrobials than 

Gram-negative bacteria as their outer membrane limits a permeation of antimicrobials 

[91]. Porin proteins present in the outer membrane of Gram-negative bacteria and some 

Gram-positive bacteria [145]. Unlike other membrane transport proteins, they act as 

passive channels which molecules can diffuse from high to low concentrations [145].

Reducing the permeability of the outer membrane is commonly associated with a down-

regulation of porin proteins or replacement of porin proteins with selective channels. For 

example, E. coli and Enterobacter spp. exposed to antimicrobials such as carbapenem, 

show the emergence of mutations in porin-associated genes as well as in genes which 

regulate the expression of porin proteins [101]. E. coli produces three major trimeric 
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porins (OmpF, OmpC and PhoE) [33, 136]. These outer membrane proteins are termed 

classical porins. Despite their ‘non-specific’ nature, the members of this family can be 

classified according to a range of selective filters with respect to the charge and size of the 

solutes and charges in key regions of the porin channels: the OmpF and OmpC families 

show a slight preference for cations, whereas PhoE selects inorganic phosphate and 

anions [136]. Activities of β-lactams and fluoroquinolones, which blocks the synthesis of 

peptidoglycan and disrupt the activity of gyrase and topoisomerase, respectively are 

strongly affected by the porin channel. Several clinical studies have reported a 

modification of the porin profile in antimicrobial resistant isolates: resistant 

Enterobacteriaceae can exhibit a shift in the type of porin they express, a reduction in the 

porin expression level or the presence of a mutated porin [145]. An altered porin 

phenotype is also commonly associated with the expression of degradative enzymes such 

as β-lactamases and cephalosporinases, which efficiently confer a high level of β-lactam 

resistance [137, 146].

Efflux pumps of bacteria actively transport antimicrobials or harmful agents out of the 

cell. While some efflux pumps such as Tet pump show narrow substrate specificity, most 

pumps have a wide range of substrate specificity. These are known as multidrug 

resistance efflux pumps. The resistance nodulation division (RND) pump is a kind of 

multidrug resistance pump in E. coli [150]. Especially, AcrAB-TolC included in RND 

pump is a major resistance mechanism against antimicrobials in E. coli [167]. This pump 

has three major components: a transporter of the resistance-nodulation division family 

(AcrB), a periplasmic accessory protein (AcrA) and an outer membrane protein (TolC)



22

[167]. The substrate profile of the AcrAB-TolC pump includes chloramphenicol, 

lipophilic β-lactams, fluoroquinolones, tetracycline, rifampin, novobiocin, fusidic acid, 

nalidixic acid, ethidium bromide, acriflavine, bile salts, short-chain fatty acids, SDS, 

Triton X-100 and triclosan [49] In E. coli, acrD and the acrEF operon also encode efflux 

pumps [163] and AcrD has been shown to efflux aminoglycosides [138]. AcrE and AcrF 

are 80 and 88% similar to AcrA and AcrB, respectively [118].

(2) The modification of targets of antimicrobials

Some antimicrobials bind to their targets which have essential functions in bacteria 

and kill those bacteria. Alterations of the target structure that prevent efficient 

antimicrobial bindings, but that still enable the target to conduct a normal function, are 

called as antimicrobial resistance. For example, the erythromycin ribosome methylase 

(erm) family of genes methylate 16S rRNA and change the binding site, thus preventing 

the efficient binding of macrolides, lincosamines and streptogramins [96]. The qnr gene 

families (qnrA, qnrB, and qnrS), responsible for quinolone resistance are found on 

plasmids of bacteria [221]. These genes encode pentapeptide repeat proteins that bind to

and protect DNA gyrase (topoisomerase II) and topoisomerase IV proteins from 

quinolones. The essential function of these two topoisomerase proteins is to relax 

positive supercoils of DNA and allows replication and transcription can occur 

continuously [221].
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(3) The inactivation of antimicrobials

Many enzymes have been identified that can degrade and modify diverse 

antimicrobials such as ß-lactams, aminoglycosides and macrolides. Extended-spectrum 

beta-lactamases (ESBLs) are enzymes that confer resistance to most ß-lactam 

antimicrobials, including penicillins, cephalosporins and monobactams [77]. They arise 

by mutations in genes (especially TEM and SHV genes) that alter the configuration 

around the active site of TEM and SHV enzymes so as to increase their efficiency with 

non-hydrolyzable cephalosporins and monobactams [77]. In addition, there are hundreds 

of variants of CTX-M genes which encode ESBLs that show greater activity against 

cefotaxime than other ß-lactam antimicrobials [20]. Especially, the CTX-M-14 and 

CTX-M-15 enzymes are the most widely prevalent hydrolytic enzymes worldwide [152].

III-2. Mechanisms of quinolone resistance

Fluoroquinolones (FQs) are broad-spectrum antimicrobials used widely in the 

treatment of bacterial infections in humans and animals [84]. Resistance to FQs emerged 

following their widespread use and posed a significant threat to the health of companion 

animals and humans.

Three major mechanisms of (F)Q resistance have been investigated: i) mutations in 

genes encoding DNA gyrase and topoisomerase IV; ii) the presence of plasmid-

mediated Q resistance (PMQR) genes; and iii) efflux pump activity transporting 
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antimicrobials or harmful agents out of the bacteria [71].

1. Mutations in DNA gyrase and topoisomerase IV

(F)Qs bind to and inhibit two types of topoisomerases, DNA gyrase and topoisomerase 

IV which are essential for bacteria replication and transcription. DNA gyrase is composed 

of two GyrA and two GyrB subunits and topoisomerase IV is composed of two ParC and 

two ParE subunits, respectively. The main function of DNA gyrase is to catalyse the 

negative supercoiling of DNA [73] and the main role of topoisomerase IV seems to be 

associated with decatenating the daughter replicons [36]. However, mutations in 

topoisomerases protect bacteria from the bactericidal activity of (F)Qs [71]. Mutations in 

DNA gyrase and topoisomerase IV are commonly identified in quinolone-resistant 

bacteria [71]. Alterations described in the GyrA of E. coli are predominantly in the so-

called quinolone-resistance determining region (QRDR) [216], between positions 67 and 

106. In DNA gyrase, two amino acids, Ser83 and Asp87 of GyrA are known as the most 

frequently changeable sites in E. coli and the Ser83Trp mutation causes the decreased 

binding efficacy of (F)Qs to gyrase-DNA complexes [209]. The presence of a single 

mutation in the above-mentioned positions of the QRDR of gyrA usually results in high-

level resistance to nalidixic acid, but to obtain high levels of resistance to 

fluoroquinolones, the presence of additional mutations in gyrA and/or in another target 

such as parC is required [166, 192]. Thus it has been proposed that the MIC of nalidixic 

acid could be used as a generic marker of resistance for the quinolone family in Gram-
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negative bacteria [61, 166]. Different amino acid substitutions at the same position result 

in different quinolone susceptibility levels [32, 193], indicating that the final MIC is a 

function of the specific substitutions [215]. This fact is probably due to the mechanism of

interaction between the quinolones and their targets. It has been suggested that amino acid 

83 (numeration for E. coli) of GyrA interacts with the radical in position 1 of quinolones,

whereas amino acid 87 of GyrA interacts with the radical in position 7 [192]. Thus, 

different amino acid substitutions at these points would affect in different ways the 

affinity for the quinolone molecule. In addition, mutations in other positions might affect 

the whole protein structure, affecting the interaction with quinolones. In GyrB of E. coli, 

substitutions resulting in resistance to quinolones have been described at positions 426 

(Asp-426 to Asn) and 447 (Lys-447 to Glu) [217]. Substitutions at position 426 seem to 

confer resistance to all quinolones, whereas those at position 447 result in an increased 

level of resistance to nalidixic acid, but a greater susceptibility to fluorinated quinolones.

In case of topoisomerase IV, mutations tend to frequently occur in the positions 

equivalent to Ser80 and Glu84 of ParC in E. coli [71]. In E. coli, another substitution 

(Gly-78 to Asp) in ParC has been described both in clinical isolates and laboratory 

obtained quinolone-resistant mutants [68, 95]. The role of amino acid substitutions in 

ParE, resulting in the development of quinolone resistance in clinical isolates of Gram-

negative microorganisms appears to be irrelevant [45, 165]. Moreover, this mutation only 

seems to affect the MIC of quinolones in the presence of a concomitant mutation in gyrA

[21].
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2. The presence of PMQR genes

Plasmid-mediated quinolone resistance was first reported in 1998 from a Klebsiella 

pneumoniae clinical isolate in Birmingham, Alabama [123]. This isolate had a plasmid 

pMG252 encoding a pentapeptide repeat family that protects bacteria from a quinolone 

binding [185]. The responsible gene was termed qnr, later amended to qnrA, as additional 

qnr alleles were discovered. Investigation of a qnrA plasmid from Shanghai that provided 

more than the expected level of ciprofloxacin resistance led to the discovery in 2006 of a 

second mechanism for PMQR: modification of certain quinolones by a particular 

aminoglycoside acetyltransferase, AAC(6′)-Ib-cr [159]. A third mechanism for PMQR 

was added in 2007 with the discovery of plasmid-mediated quinolone efflux pumps QepA

[144, 213] and OqxAB [65]. The qnr gene has been detected with class 1 integrons which 

are also known as sul1-type integrons [201]. Sul1-type integrons possess qacEΔ1 and sul1

genes that involve a sequence that may act as a recombinase for mobilization of the 

antimicrobial resistance genes such as qnr, blaCTX-M and ampC [120]. Therefore, the 

quinolone resistance is usually associated with multi-drug resistance. Several ß-lactamase 

genes are associated with qnr-positive plasmids encoding for the cephalosporinase FOX-5, 

ß-lactamases SHV-7 and CTX-M-9 and the penicillinase PSE-1 [120]. In cell-free 

systems QnrA, QnrB and QnrS have been shown to protect E. coli DNA gyrase from 

quinolone inhibition. Qnr proteins with their additional structural features (loops, N-

terminal extension) are proposed to bind to gyrase and topoisomerase IV targets in such a 

way as to destabilize the cleavage complex between enzyme, DNA and quinolone causing 
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its release, religation of DNA and regeneration of active topoisomerase [189, 211].

AAC(6′)-Ib-cr is a bifunctional variant of a common acetyltransferase active on such 

aminoglycosides as amikacin, kanamycin and tobramycin but also able to acetylate those

fluoroquinolones with an amino nitrogen on the piperazinyl ring, such as ciprofloxacin 

and norfloxacin [159]. Compared to other AAC(6′)-Ib enzymes, the –cr variant has two 

unique amino acid substitutions: Trp102Arg and Asp179Tyr, both of which are required 

for quinolone acetylating activity. Models of enzyme action suggest that the Asp179Tyr

replacement is particularly important in permitting π-stacking interactions with the

quinolone ring to facilitate quinolone binding. The role of Trp102Arg is to position the 

Tyr face for optimal interaction [190] or to hydrogen bond to keto or carboxyl groups of 

the quinolone to fix it in place [127]. QepA is a plasmid-mediated efflux pump in the 

major facilitator (MFS) family that decreases susceptibility to hydrophilic 

fluoroquinolones, especially ciprofloxacin and norfloxacin [143, 213]. A qepA gene has 

often been found on plasmids also encoding aminoglycoside ribosomal methylase, RmtB

[115, 144].

3. Efflux pump activity

Decreased quinolone uptake may be associated with two factors: an increase in the 

bacterial impermeability to these antimicrobials or the overexpression of efflux pumps. 

Efflux pumps are transporters which extrude harmful substrates from cells to the 

external environment [202]. There are five major families of efflux pump system: major 
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facilitator (MF), multidrug and toxic efflux (MATE), resistance-nodulation-division 

(RND), small multidrug resistance (SMR) and ATP binding cassette (ABC) [202]. Most 

efflux pump systems use the proton motive force except for ABC which utilizes ATP 

hydrolysis as an energy source [202]. A major efflux pump system in E. coli is AcrAB-

TolC transporter which is included in the RND family [84]. This pump has three protein

components: a trans-membrane spanning integral inner membrane protein (AcrB), a 

periplasmic lipoprotein (AcrA) and an outer membrane protein (TolC) [167]. Over 

expression of efflux pumps from mutations within local repressor genes [4, 200] or may 

result from activation of a regulon regulated by a global transcriptional regulator such as 

MarA or SoxS of E. coli [9, 153]. The broad substrate range of efflux systems is of 

concern, as often overexpression of a pump will result in resistance to antimicrobials of

more than one class as well as some dyes, detergents and disinfectants (including some 

commonly used biocides). Over-expression of a multidrug resistance efflux pump alone 

often does not confer high-level, clinically significant resistance to antimicrobials. 

However, such bacteria are better equipped to survive antimicrobial pressure and 

develop further mutations in genes encoding the target sites of antimicrobials [85]. It has 

been shown that fluoroquinolone resistant strains of E. coli are selected 1000-fold more 

readily from mar mutants than wild-type bacteria [29], and highly fluoroquinolone

resistant E. coli contain mutations in genes encoding the target topoisomerase enzymes 

and have reduced accumulation and increased efflux [200, 203]. Additive increases in 

MICs of antimicrobials have also been seen after concurrent over-expression of more 

than one pump of different classes, also resulting in highly resistant E. coli [102].
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IV. The emergence of antimicrobial resistance in animals

The veterinary use of antimicrobials includes the use on companion animals, 

livestocks and animals raised in aquaculture. Antimicrobials are vital agents in 

veterinary medicine and cannot be replaced due to the lack of suitable alternatives such 

as vaccines [187]. However, the increased use of antimicrobials induces the emergence 

of antimicrobial resistant (AR) bacteria from animals. Some surveillance studies have 

shown an increased incidence of development of antimicrobial resistance in bacteria 

from animals [2]. High resistance rate in indicator E. coli from all age group of pigs and 

their farm environment in Korea [113]. The extensive and long-term use of tetracycline 

has apparently resulted in high prevalence of tetracycline resistant bacteria in swine and 

other food animals. In Korea, tetracycline has long been used and was the most 

commonly used antimicrobials occupying over 50% of total antimicrobials consumption 

in Korean livestock [5]. The tendency of higher prevalence of resistance of tetracycline 

in animals was also observed in other countries such as Denmark [42] and Japan [134], 

although resistance is much higher in Korea. Especially, many studies reported that the 

antimicrobial resistance rate and incidence of multiple resistances were markedly higher 

in the young pigs (piglet and nursery) in all antimicrobials than those from adult pigs

[99, 125]. The high incidence of resistance noted in piglet and nursery may be a 

reflection of increased antimicrobial use at that time and may also reflect the increased 

colonization by pathogens that occurs during postweaning [126, 128].

Enterobacteriaceae isolates from chicken cecums were highly resistant to common 
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antimicrobials such as ampicillin, cephalothin, kanamycin, nalidixic acid, spectinomycin

and streptomycin in Korea [181]. Specifically, the overall antimicrobial resistance rates 

were higher in E. coli isolates from chickens compared with commensal E. coli isolates 

from humans [181]. E. coli isolates from chicken showed a resistance rate the ranged 

between 56.9% and 84.7% to ampicillin, chloramphenicol, kanamycin, streptomycin or 

trimethoprim whereas E. coli isolates from humans displayed between 3.6% and 36.5% 

to the same antimicrobials [82]. However, unlike other livestocks, much less attention 

has been given to the prevalence and characterization of AR bacteria associated with 

companion animals such as horse, dog and cat in Korea. The number of people living 

with dogs and cats has been increasing annually worldwide. According to the 2013 to 

2014 American Pet Products Association survey, about 70% of U.S. households include 

companion animals [114]. In the Korean companion animal industry, the market size 

associated with companion animals is rapidly increasing and estimated to be $5.4 billion 

by 2020 [172]. In addition, more and more Korean people have recognized the 

importance of horse industry according to the increasing trend of horse-riding [88]. 

Reflecting these figures, as Korea's economy is expanding, the horse industry is in the 

process that is similar to that of the developed countries. The main facts were as follows: 

the number of horses raised in Korea in 2014 reached up to 25,819, which was 5.5% 

more increased than the previous year. The horse businesses increased 9.6% totaled 

1,999. The horse-riding facilities were 395 nationwide, 19.3% increased [88].

The possible bacterial transmission routes between animals and humans are numerous. 

The most probable ways of interaction are summarized in transmission through the food 
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chain [173]; through direct or indirect contact with people working in close contact with 

animals, such as farmers and animal health workers [109]; and through manure 

contaminated environments and aquaculture [149]. In particular, the role of the 

environment is extremely important, as it can serve as the reservoir of antimicrobial-

resistance genes [158]. Companion animals such as horses, dogs and cats are responsible 

for potential sources of spread of antimicrobial resistance due to the extensive use of 

antimicrobials in these animals and their close contact with humans [57]. Likewise, the 

inherent risk of any use of antimicrobials to select for antimicrobial resistant bacteria 

poses a relevant risk for public health by spreading of antimicrobial resistance from 

animals to humans via direct or indirect contacts [187]. Direct contact includes a bite, 

lick or scratch and handling of animal feces, whereas indirect contact can occur by 

sharing the bed or toilet environment or being bitten by arthropods originating from 

companion animals [160].

Subsequently, it is needed to strengthen efforts to prevent and control the spread of 

antimicrobial resistance between companion animals and humans. An antimicrobial 

resistance is not a new problem and has long been recognized as a threat to effective 

treatment. For a number of years the priority focus in many countries was tackling 

healthcare-acquired infections caused by bacteria such as methicillin resistant 

Staphylococcus aureus and Clostridium difficile. Globally, the world health organization

(WHO) is leading some of this effort through the global antimicrobial resistance 

surveillance system and the world organization for animal health is tracking some 

antimicrobial uses in animals [141]. Despite these efforts, antimicrobial resistance has 
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continued to escalate and the need to accelerate progress has been acknowledged by the 

WHO. To achieve change at the rate required to impact on antimicrobial resistance

requires political will and global action, working across human and animal health

sectors through an international partnership, known as the ‘One Health’ approach. The 

one health concept means that human, animal and environmental health are closely 

linked and injudicious use of antimicrobials in one person or animal can harm other 

people and animals [161]. The concept is not new, having been promoted by Rudolf 

Virchow and others in the late nineteenth century, and emphasizes the linkages between

human, animal and environmental health in today’s rapidly changing world [98]. The 

concept received relatively little attention during much of the twentieth century, but in 

recent years, a one health movement has generated increased interest, primarily as a 

result of efforts by the veterinary community [98]. The WHO is well placed to 

coordinate this action, and the existing tripartite relationship between the WHO, the 

world organization for animal health and the united nations food and agriculture 

organization provides a mechanism for collaboration across sectors including through 

the codex alimentarius [10]. A global one health surveillance is a gold standard being 

called for, however, there are other immediate smaller-scale initiatives that can prevent 

to spread antimicrobial resistance; avenue to decrease the demand for antimicrobials 

from the public and animal-owners; avenue to increase uptake of vaccines; avenue to 

utilize other non-pharmaceutical disease prevention methods. On both the human and 

animal health, improved diagnostic tests can decrease unnecessary prescription of 

antimicrobials. Furthermore, increased one health instruction is needed for veterinarians, 
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physicians, and other health professionals. Integrated training and increased venues for 

physician-veterinarian discussion are needed. It is possible that a more integrated, one 

health–oriented approach will lead to cost savings, but more data are needed to assess 

the cost effectiveness of such an approach. If it does yield long-term health and 

economic benefits, economic support by governments and others should follow.
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General Introduction

Livestocks today are not that much more valuable than they were long ago, we treat 

our companion animals as if they were far more valuable. In addition, we have seen a 

huge switch in animal medicine, from a focus on livestocks to a focus on companion 

animals. During the past few decades, the veterinary profession has undergone a 

profound shift in focus from agricultural animals to companion animals in the United 

States (US) and to a lesser extent in Western Europe [208]. Several demographic and 

socioeconomic factors have contributed to this shift, including consolidation of the 

livestock and food production industries [100], urbanization and changing social 

attitudes [132], a gender shift towards women in veterinary medicine [132, 164] and 

expanding clinical specialization [117]. In 2016, 71.2% of veterinarians in the US work 

primarily with companion animals and 6.7% work primarily with livestocks [13]. A 

companion animal, as defined by the American society for the prevention of cruelty to 

animals (ASPCA) is a “domesticated or domestic-bred animals whose physical, 

emotional, behavioral and social needs can be readily met as companions in the home or 

in close daily relationship with humans. The ASPCA also specified “species suitable to 

be companion animals include dogs, cats, horses, rabbits, ferrets, birds, guinea pigs and 

select other small mammals, small reptiles and fish. In the Korean companion animal

industry, the market size associated with companion animals is rapidly increasing and 

estimated to be $5.4 billion by 2020 [172]. In addition, more and more Korean people 

have recognized the importance of horse industry according to the increasing trend of 
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horse-riding [88]. Reflecting these figures, as Korea's economy is expanding, the horse 

industry is in the process that is similar to that of the developed countries. The main 

facts were as follows: the number of horses raised in Korea in 2014 reached up to 

25,819, which was 5.5% more increased than the previous year. The horse businesses 

increased 9.6% totaled 1,999. The horse-riding facilities were 395 nationwide, 19.3% 

increased [88].

The prevalence and distribution of antimicrobial resistant (AR) E. coli from food and 

companion animals have been widely investigated and the transmission of AR E. coli

between those animals and humans has been demonstrated [170, 174]. However, unlike 

other animals, much less attention has been given to the prevalence and possible cross-

transmission of AR E. coli associated with horses. According to the report of the Korean 

Racing Association, the size of the horseback-riding industry is rapidly increasing 

annually and the estimated number of horse riders was about 420,000 in 2013 [89]. 

Therefore, we investigated the frequency of AR E. coli from horses, and their AR

profiles and molecular fingerprints to evaluate the distribution and clonalities of them in

horses and horse-associated environments in chapter I.

Quinolone (Q) and fluoroquinolone (FQ) are broad-spectrum antimicrobials used to 

treat bacterial infections in humans and animals [119, 157]. Since they are very effective

antimicrobials against Gram-negative bacteria including E. coli, these agents have been 

widely used to treat a range of infections in human and veterinary medicine. E. coli are 

also considered as major causative agents of bacterial infections. E. coli easily acquire 

antimicrobial resistance by genetic mutation and horizontal gene transfer [17]. The 
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transmission of AR E. coli from animals to humans has been demonstrated [64]. Several 

studies have investigated multi-factorial (F)Q resistance mechanisms in E. coli isolated 

from humans and food-producing animals [84]. However, few studies have examined 

the prevalence and the resistance mechanisms of (F)Q-resistant E. coli from companion 

animals [58]. Moreover, there have been no studies investigating the distribution of 

(F)Q-resistant E. coli in companion animals and their owners. Therefore, in this study, 

we investigated how (F)Q resistance develops and distributes in companion animals and 

humans that they contact is important for understanding (F)Q resistance trends in 

veterinary medicine in chapter II.

Companion animals such as horses, dogs and cats are responsible for potential 

sources of spread of antimicrobial resistance due to the extensive use of antimicrobials 

in these animals and their close contact with humans [57]. The cross-transmission of AR

bacteria or associated antimicrobial resistance genes is frequently occurred between

humans and animals via direct or indirect contacts [64]. Likewise, the possibility of 

cross-transmission of AR bacteria between humans and companion animals has already

been investigated [25, 170]. However, those studies were mainly focusing on only the 

possibility of cross-transmission of AR bacteria between humans and companion 

animals. Actually, a bacterial transmission (from human to human) is frequently 

occurred in confined human communities such as schools and households [55]. 

Nevertheless, there is no study about the possibility of cross-transmission of AR bacteria

between companion animal owners and non-owners in human communities. Therefore, 

in this study, we compared the genetic similarity of AR E. coli isolates from owners of 
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dogs and non-owners sharing a class room or households to identify the possibility of 

secondary transmission of AR bacteria between humans in confined community in 

chapter III.
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Chapter I

Isolation and characterization of antimicrobial-resistant 

Escherichia coli from national horse racetracks and 

private horse-riding courses in Korea
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I. Introduction

Escherichia coli (E. coli) is a predominant facultative anaerobe, Gram-negative and

commensal microorganism that is present in the gastrointestinal microflora of humans 

and animals. Most E. coli strains are non-pathogenic and some strains play an important 

role as a constituent of microflora in intestinal tract of healthy animals. However, 

pathogenic E. coli, such as enteropathogenic E. coli (EPEC), enterotoxigenic E. coli

(ETEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC) and diffuse 

adhering E. coli (DAEC), cause disease of the gastrointestinal, urinary or central 

nervous system in humans [133]. The illness is sometimes associated with food 

poisoning caused by ingestion of contaminated hamburgers at fast-food restaurants.

Resistance to antimicrobials in bacterial strains is considered as a serious threat to 

public health, particularly in developing countries. In the past 2 decades, it has increased 

the frequency of isolation of antimicrobial resistant (AR) bacteria, including those 

resistant to fluoroquinolones and cephalosporins [110]. E. coli is sometimes used as a 

sentinel strain for monitoring antimicrobial resistance in fecal bacteria because it is most 

commonly cultured from wide range of hosts [43] and easily acquires antimicrobial 

resistance by genetic mutation or horizontal gene transfer via certain mobile genetic 

elements, such as transposons, bacteriophages and plasmids [17]. Especially, many dfr

genes responsible for trimethoprim (TMP) resistance have been found in gene cassettes 

inserted in integrons [218]. Since many gene cassettes of integrons possess the diverse 

antimicrobial resistance genes in Gram-negative bacteria, such as E. coli, the horizontal 
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gene transfer by integrons causes the emergence of multi-drug resistant (MDR) bacteria 

[156].

The prevalence and distribution of AR E. coli from food and companion animals have 

been extensively studied and the transmission of AR E. coli between animals and 

humans has been demonstrated [170, 174]. However, unlike other animals, much less 

attention has been given to the prevalence and possible cross-transmission of AR E. coli

associated with horses. According to the report of the Korean Racing Association 

(KRA), the size of the horseback-riding industry is rapidly increasing annually and the 

estimated number of horse riders was about 420,000 in 2013 Korea [89]. This may 

suggest an increased chance of transmission of zoonotic pathogens originated from 

horses to humans due to the increased number of contacts with horses. Thus, this kind of 

risk may need to be evaluated in the near future with a concern of the public health.

In the present study, horse-associated E. coli were isolated and identified from 

samples acquired from horses and their environments in national racetracks and private 

horse-riding courses in Korea during 2013. The frequency of AR E. coli, and their AR 

profiles and molecular fingerprints were determined to evaluate the distribution and 

clonalities of them in horses and horse-associated environments. The current study 

provides the first data on the dissemination of AR E. coli in horses in Korea that will be 

invaluable to estimate the potential risk of transmission of AR E. coli from horses to 

humans.

II. Materials and methods
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1. Sampling

A total of 3,078 swab and specimen cup samples were collected from 3 national 

racetracks (Seoul, Busan-Gyeongnam and Jeju race parks) and 14 private horse-riding 

courses (Gyeonggi-do, n=6; Chungcheongnam-do, n=1; Jeollabuk-do, n=3; Jeollanam-

do, n=2, Kyongsangbuk-do, n=2) in Korea from July to October in 2013. From horses, 

healthy skin (n=645), nasal cavity (n=644) and fecal (n=637) samples were collected. 

For the environmental samples, feed box (n=646), drinking water (n=495) and bedding 

(n=11) samples were obtained. Swab methods were used to collect superficial samples 

(skin and feed box) and nasal cavity samples as follows: i) healthy skin: a swab was 

placed on the healthy skin of horse neck region and swept 3 to 5 times along 15 cm of 

the surface; ii) feed box: the residual feeds were removed and a swab sample was 

collected from the surface as described above; iii) nasal cavity: a swab was passed into 

horse’s nostril at least 10 cm deep and rotated to absorb nasal secretion. All the swab 

samples were immediately placed into the individual sterile collection tubes containing 

Amies transport medium (Yu-Han Lab Tech, Korea). The rest of samples (feces, 

drinking water and bedding) were aseptically collected and placed into the sterile 

specimen cups (Medikorea, Korea). All the individual samples were transported to the 

laboratory on ice within 6 h after collection. On arrival, the samples were immediately

processed as described below.

2. Isolation and identification of E. coli
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All the samples were subjected to the non-selective pre-enrichment step as described 

below. Briefly, the tip of swab stick (swab samples: skin, nasal cavity and feed box) or 1 

g (or 1 ml) of specimen cup sample (feces, drinking water and bedding) was put in 10 

ml of buffered peptone water (BPW: BD, USA) and vigorously vortexed. The pre-

enrichment medium was incubated at 37°C for 24 h. After incubation, 1 ml of BPW was 

transferred into 9 ml of Escherichia coli broth (ECB) and incubated at 37°C for 24 h for 

the selective growth of coliforms or E. coli. The culture in ECB was streaked on 

MacConkey agar (BD, USA) plate and incubated at 37°C for 24 h. Putative E. coli

colonies were selected according to a standard protocol previously established in our 

laboratory. For further confirmation, E. coli were identified by strain-specific 

polymerase chain reaction (PCR) targeting the 16s ribosomal 20 RNA region [186].

3. Antimicrobial resistance profiling of E. coli isolates

Antimicrobial susceptibility was determined by a standard disk diffusion test [207]

with the following antimicrobial disks (BD, Sparks, MD, USA): ampicillin (AM, 10 μg), 

amoxicillin/clavulanic acid (AMC, 20/10 μg), ceftazidime (CAZ, 30 μg), cefotetan 

(CTT, 30 μg), imipenem (IMP, 10 μg), gentamicin (GM, 10 μg), tetracycline (TE, 30 

μg), ciprofloxacin (CIP, 5 μg), nalidixic acid (NA, 30 μg), 

sulfamethoxazole/trimethoprim (SXT, 1.25/23.75 μg), chloramphenicol (C, 30 μg), 

aztreonam (ATM, 30 μg), ceftriaxone (CRO, 30 μg), cefotaxime (CTX, 30 μg), 

amikacin (AN, 30 μg) and streptomycin (S, 10 μg). The interpretation of antimicrobial 
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resistance, intermediate resistance or susceptibility was done following the Clinical and 

Laboratory Standards Institute (CLSI) guidelines [207]. E. coli ATCC 25922 (American 

Type Culture Collection, Manassas, VA, USA) was used as a reference strain. The 

MDR isolates were defined as E. coli isolates resistant to three or more different 

subclasses of the evaluated antimicrobials [92].

To confirm the TMP resistance of candidate E. coli isolates, the Minimal Inhibitory 

Concentrations (MICs) of TMP were determined by the standard agar dilution method 

according to the guidelines of the National Committee for Clinical Laboratory Standards 

(NCCLS) [28]. The isolate showing MIC of 16 μg/ml or higher was considered be 

resistant to TMP. E. coli ATCC 25922 was used as a reference strain.

4. Detection of antimicrobial resistance and integrase genes

The isolates showing resistance to AM, S, TE and SXT were PCR screened for the

presence of the following antimicrobial resistance genes; AM resistance genes (SHV and 

TEM) [151], S resistance genes (strA-B and aadA) [180], TE resistance genes (tetA and 

tetB) [135], sulfamethoxazole (SMX) resistance gene (sul1) [188] and TMP resistance 

genes (dfrA1, A9, A7/17 and A12/13) [54, 104]. To differentiate dfrA7 and dfrA17 genes, 

the PCR products of dfrA7/17 genes were digested with Pst1 restriction enzyme before 

gel electrophoresis. Since the Pst1 restriction site is only present in dfrA17 gene, the two 

genes can be easily differentiated by the band pattern of restricted PCR fragments (1 vs 

2 bands) [104].
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The integrase genes were amplified with the PCR primers (hep35-

TGCGGGTYAARGATBTKGATTT and hep36-CARCACATGCGTRTARAT) binding 

to the conserved regions present outside of integron-encoded integrase genes intI1, intI2

and intI3 [206]. The class of the integrons was determined by restriction analysis of the 

PCR fragments (restriction fragment length polymorphism, RFLP). Briefly, the PCR 

fragments were restricted with HinfI restriction enzyme and the band patterns of 

restricted fragments were analyzed by gel-electrophoresis. intI1 generates a single band 

of 491 bp, intI2, two bands of 191 and 300 bp and intI3, two bands of 119 and 372 bp, 

respectively [206].

5. Determination of O and H serotypes

The type of O-antigen of each isolate was determined by the slide agglutination 

method as described by Guinee et al. [59] using polyvalent and monovalent antisera 

(Joongkyeom, Korea). The H-antigen typing was carried out by the test tube method 

using the bacteria cultured in liquid medium with H2, H4, H7, H11, H16, H19, H21 and 

H51 antisera as previously described [59].

6. Molecular fingerprinting

The genetic relatedness among the AR E. coli isolates was determined by standard 

pulsed-field gel electrophoresis (PFGE) using CHEF MAPPER (Bio-Rad, Hercules, CA, 
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USA) following the manufacture’s instruction. In brief, the AR E. coli isolates cultured 

overnight in Tryptic Soy Broth (BD, USA) were streaked on Tryptic Soy Agar (BD, 

USA) and incubated at 37℃ for 14 - 18 h. The bacterial colonies of each isolate were 

suspended in 0.8% saline and adjusted to 4.0 McF. The suspensions were embedded in 

1.0% agarose plugs and lysed by proteinase K (Sigma-Aldrich, USA). The lysed plugs 

were then digested for 2 h with 50 U of XbaI restriction enzyme (New England 

Biolabs,Waltham, MA, USA) at 37℃. Digested plugs were then placed on 1.0% 

SeaKem Gold agarose (Lonza, Allendale, NJ, USA) and PFGE was carried out at 6.0 V 

for 19 h with a ramped pulse time of 6.76 - 35.38 sec in 0.5x Tris-Borate-EDTA (TBE) 

buffer at 14℃. BioNumerics software (Applied Maths, Sint-Martens-Latem, Belgium) 

was used to establish a DNA similarity matrix using the dice coefficient (0.5% 

optimization, 1.0% tolerance) and the un-weighted pair group method (UPGMA).

III. Results

1. E. coli isolation from the horse-associated samples

A total of 143 E. coli (4.6%) were isolated from 3,078 horse-associated samples 

(Table 1). Ninety six isolates (5.0%) were obtained from horses; 51 isolates from fecal 

samples, 25 isolates from nasal cavity swab samples and 20 isolates from healthy skin 

swab samples. Forty seven isolates (4.1%) were from facility environments; 19 isolates 
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from drinking water samples, 25 isolates from feed box swab samples and 3 isolates 

from bedding samples (Table 1).

2. Phenotypic characterization of antimicrobial resistance of E. coli isolates

The number of E. coli isolates showing antimicrobial resistance to each antimicrobial 

is shown in Table 2. Thirty E. coli isolates (21%) were resistant to at least one 

antimicrobial and all isolates were susceptible to CAZ, IMP, CIP, NA, C, CRO, CTX 

and AN. The antibiogram analysis revealed that the frequencies of AR E. coli isolates 

were 10.5% (15 isolates) and 8.4% (12 isolates) for S and TE, respectively, followed by 

6.3% (9 isolates) for SXT. The other 11 isolates resistant to each AM, AMC, GM, ATM 

and CTT accounted for minor portions in this study. Only 4 isolates were identified as 

MDR E. coli, which showed resistance to more than 3 classes of antimicrobials. The 

frequencies of antimicrobial resistance to each antimicrobial were higher in E. coli

isolated from horses than those from environmental samples, except for AMC (Table 2).

3. Detection of the antimicrobial resistance and integrase genes in AR E. coli 

isolates

For the AR E. coli isolates belong to the 4 most frequent AR phenotypes (AM, S, TE 

and SXT), gene-specific PCRs were performed to detect AR genes responsible for their 

AR phenotypes (Table 3). Among the E. coli isolates resistant to AM, 3 isolates (60.0%) 
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harbored the TEM gene. The strA-B genes were widely distributed among the S-resistant 

isolates (86.7%). Interestingly, the tetA gene (66.7%) was more prevalent than tetB gene 

(8.3%) in TE-resistant E. coli isolates in this study. Only two SXT-resistant E. coli

isolates (22.2%) harbored the sul1 gene responsible for SMX resistance. The dfrA1 gene 

was the most prevalent TMP resistance gene, followed by dfrA9 gene (22.2%) and 

dfrA17 gene (11.1%) (Table 3). All 30 AR isolates were screened for the presence of 

integrase genes. Only 4 isolates harbored an integrase gene (all class 1 integrase gene, 

intI1). They were all isolated from horses (3 isolates from horse feces and 1 isolate from 

nasal cavity). Although only 2 of them were defined as MDR isolates based on the 

definition in this study, they all carried at least 2 antimicrobial resistance genes (Table 

4).

4. Serotyping of E. coli isolates

Out of the 143 E. coli isolates, only 41 isolates (28.7%) were defined by their 

serotypes based on the serotyping methods used in this study. The 41 isolates were 

clustered into 19 serotypes including O28ac (O28ac/H-, 4 isolates) and O148 (O148/H-

and O148/H7, 4 and 1 isolates, respectively) (data not shown).

5. Genotyping of AR E. coli by PFGE
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Since the serotyping method used in this study revealed serotypes from only 3 out of 

the 30 AR isolates, PFGE analysis was performed for the all AR isolates to determine 

the genetic relatedness among the AR isolates. Since 2 AR isolates did not show their 

electrophoresed bands, these were excluded from the analysis. Except for 5 isolates 

clustered into two clonal sets (Type G and L), all AR isolates showed distinct genotypes 

which indicated a weak genetic relatedness (Type A to Y) (Fig. 1). In case of type G, 

two E. coli isolates showed the same antibiogram profiles and were isolated from feces 

of two different horses at the same horse-riding course. In case of type L, three E. coli

isolates showing slightly different antibiogram profiles were acquired from different 

sample sources (feces, feed box and nasal cavity) at the same national racetrack (Fig. 1).

IV. Discussion

To date, many studies have evaluated the prevalence of AR bacteria in food and 

companion animals and the risk of transmission to humans [170, 174]. However, only a 

few studies have investigated leisure and sports animals, such as horses, for 

antimicrobial resistant microorganisms. The recent increase in the horse racing and 

riding industries in Korea [88] indicates an increased possibility of introducing horse-

related pathogens into human communities. In this study, we investigated the frequency 

of antimicrobial resistant E. coli isolated from horses and surrounding environments and 

characterized AR E. coli to evaluate the risk of transmission to humans. This is the first 
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study conducted to isolate and characterize AR bacteria from horses using samples 

collected nationwide, including from three national horse racetracks in Korea.

E. coli is one of the most commonly isolated bacteria from animal related specimens 

[43]. However, the isolation rates from horse related samples were generally low in the 

current study (overall average: 4.6%). E. coli are first secreted from the animal intestine 

by fecal shedding, then spread to other material by contact transmission. Except for the 

primary source of E. coli (feces, 8.0%) and their first contact material (bedding, 27.3%),

E. coli isolation rates from horses and their surrounding environments were very low (＜

4%). These findings indicate that all of the investigated horse related facilities maintain 

a good hygienic management that minimizes the transmission of fecal contaminants. All 

of the facilities we visited kept a high level of hygiene by immediate removing dropped 

feces, frequently replacing bedding and periodically cleaning the facilities.

Out of the 143 E. coli isolated, 30 (21%) showed resistance to at least one 

antimicrobial compound. This frequency was much less that observed for E. coli

isolated from fecal samples of hospitalized horses (81.7%), but similar to that for 

healthy horses (24.5%) [7]. When E. coli isolated from horses and environments was 

compared, the AR rate was higher in isolates collected directly from horses. In addition, 

MDR E. coli and E. coli carrying class I integrase gene, a gene associated with multi-

drug resistance in bacteria, were only isolated from horses. These results are somewhat 

different from a previous study in which the frequencies of AR E. coli from animals 

were similar to or higher than those from environments in food animal farms [168]. 

Therefore, the lower AR ratio of environmental isolates in this study might suggest good 
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hygienic management in the horse facilities minimized fecal contamination of the 

environment as mentioned above.

The most frequently detected phenotypes of antimicrobial resistance in AR E. coli

were against S, TE and SXT in the current study. This pattern is very similar to the 

results from a previous study conducted in northwest England [6], and suggests a 

relationship with the amount of antimicrobials used in equine medicine. In veterinary 

medicine, streptomycin is the first-line antimicrobial for Gram-negative bacterial 

infection in horses [183]. Oxytetracycline, which is the most commonly used 

antimicrobial, use applied in an injectable form in combination with a sulfa 

antimicrobial agent to treat bacterial respiratory infections in horses [210]. Similarly, 

Enterococcal spp. isolated from the same samples used in this study also showed high 

antimicrobial resistance to TE (18.6%, unpublished data). SXT has also been used 

extensively for oral administration to horses due to the minor side-effects on the normal 

microflora of the horse intestine [37].

As shown in Table 3, many of the AR E. coli isolated in this study harbored 

corresponding antimicrobial resistance genes (60–100% in each AR group). The AR E. 

coli without the antimicrobial resistance genes may have other kinds of antimicrobial 

resistance genes not screened in this study, or alternative resistance mechanisms such as 

a biofilm formation [75]. Consistent with the results of a previous study [6], the TEM 

gene was most prevalent in AM-resistant E. coli isolates. Most AR E. coli resistant to S, 

the most prevalent phenotype of antimicrobial resistance in this study, contained strA-B

genes (13/15), which are known to confer a higher level of resistance to E. coli than the 
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aadA gene [180]. Our findings indicate that E. coli harboring strA-B genes are prevalent 

in healthy horses in Korea. The portion of genes responsible for TE resistance in E. coli

is different from that in other countries [22]. While the tetB gene was the prevalent 

resistance gene in TE-resistant E. coli isolated from horses in the United States [22], 

most TE-resistant E. coli harbored the tetA gene in this study. Additionally, all TMP-

resistant E. coli harbored at least one of the dfr genes, which are usually encoded on 

mobile genetic elements including plasmids or transposons [11]. The most predominant 

dfr gene they harbored was dfrA1gene (88.9%, Table 3), which is consistent with the 

results of a study conducted in northwest England [7]. However, the dfrA17 gene was 

reported to be the predominant antimicrobial resistance gene to TMP in E. coli isolated 

from hospitalized horses at the university of Liverpool, UK [6]. Taken together, these 

results suggest that horse riders and horse-care workers could be transmitters of these 

AR E. coli to other humans.

Class 1 integron, which is known to be an important genetic element carrying TMP 

resistance genes in E. coli, is horizontally transferred by conjugative plasmids [218]. 

Lee et al. [104] reported that most of the TMP-resistant E. coli isolates harbored dfr

genes encoded in intI. Class 1 integron is also known to carry multiple resistance genes 

in enterobacteria [124]. Similarly, all four E. coli isolates carrying the class 1 integron 

harbored at least two different antimicrobial resistance genes, and two of these were 

MDR E. coli based on the phenotypical definition (resistant to more than three 

antimicrobials) in this study. These findings indicate that integrase genes are strongly 

related to multi-drug resistance, as previously suggested [156]. Out of the 143 isolates, 
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41 were serotyped into 19 different serological groups, while the remaining isolates 

were un-typed by the anti-sera used in this study (data not shown). The 19 defined 

serological groups included two clinically important serotypes, O28ac and O148, in 

humans [148]. O28ac is associated with EIEC, which cause non-bloody diarrhea and 

dysentery by invading and multiplying within colonic epithelial cells. O148 is related to 

ETEC, which cause travelers’ diarrhea [148]. Yun et al. [220] previously reported the 

prevalence of O28ac and O148 to be 3.1% and 1.1%, respectively, in E. coli isolated 

from thoroughbred brood mares in Korea. In the current study, the prevalence of the 

O28ac serotype in E. coli isolated from healthy horses and environments was similar 

(2.8%) to that observed in a study conducted by Yun et al. [220], but the prevalence of 

O148 serotype was slightly higher (3.5%) than that from thoroughbred brood mares in 

the previous study (data not shown).

Since serotyping only revealed the serotypes of three out of 30 AR E. coli isolates, 

PFGE analysis was performed for all AR isolates to analyze the clonal relatedness 

among isolates. Our results revealed no clear evidence of clonal expansion of AR E. coli

in horses and their environments. However, two types of clones showed cross-

transmission between horses or horses and their associated environments within the 

same facilities. These results indicate that horses could be carriers of AR E. coli to 

environments and other animals. Thus, these findings suggest a potential possibility of 

transmission of AR E. coli from horses to humans via close contact as previously 

demonstrated between companion animals and humans [57]. In conclusion, this is the 

first study to isolate and characterize AR E. coli from healthy horses and their 
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environments by nationwide sampling in Korea. The results indicate that all of the 

investigated racetracks and private horse-riding courses maintain a high level of 

hygienic management and there was no clonal transmission of AR E. coli among horse 

facilities. However, the E. coli isolated from horses showed a considerably high level of 

antimicrobial resistance, including multidrug resistance. Due to the frequent contact 

with horses, our study indicates that horse-care workers and riders may be exposed to a 

potential risk of infection with AR and pathogenic bacteria carried by horses. Therefore, 

further studies are needed to evaluate the risk of transmission of AR bacteria between 

horses and horse riders or workers in horse industries.
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Fig. 1. Pulsed-field gel electrophoresis (PFGE) analysis of antimicrobial-resistant E. coli 

isolates. All the genomic DNAs were digested with XbaI followed by standard PFGE 

analysis (see Materials and Methods). Levels of similarity were determined using Dice 

coefficient (0.5% optimization, 1.0% tolerance) and the un-weighted pair group method. 

Individual PFGE patterns are summarized with their isolate ID, antimicrobial resistance 

profiles, sample sources and PFGE types. TE, tetracycline; SXT, 

sulfamethoxazole/trimethoprim; AMC, amoxicillin/clavulanic acid; AM, ampicillin; 

CTT, cefotetan; S, streptomycin; GM, gentamicin; ATM, aztreonam.
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a Identification number of each E. coli isolate was given as a serial number of sampling 

facility followed by the isolate number in the facility.

b Antimicrobial-resistance profiles.

c Reference strain for PFGE analysis.

d Not resistant to any tested antimicrobials.
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Table 1. Prevalence of E. coli isolates from horse and environmental samples

Sample sources No. of samples No. of E. coli isolates (%)

Horse

feces 637 51 (8.0)

nasal cavities 644 25 (3.9)

skins 645 20 (3.1)

sub-total 1,926 96 (5.0)

Environment

drinking water 495 19 (3.8)

feed boxes 646 25 (3.9)

beddings 11 3 (26.3)

sub-total 1,152 47 (4.1)

Total 3,078 143 (4.6)
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Table 2. Antimicrobial resistance (AR) profiling of E. coli isolated from different 

samples

Source of E. coli

isolates

No. of resistant isolates (%)

AM AMC GM TE SXT ATM S CTT MDR

Horsea

feces

(n=51)
2 1 0 4 5 1 6 1 2

skin

(n=20)
1 1 0 2 1 0 3 0 0

nasal 

cavity

(n=25)

2 0 1 3 3 0 4 0 2

sub-total

(n=96)

5

(5.2%)

2

(2.1%)

1

(1.0%)

9

(9.4%)

9

(9.4%)

1

(1.0%)

13

(13.5%)

1

(1.0%)

4

(4.2%)

Environ-

mentb

drinking 

water

(n=19)

0 0 0 1 0 0 1 0 0

feed box

(n=25)
0 1 0 2 0 0 1 0 0

bedding

(n=3)
0 0 0 0 0 0 0 0 0

sub-total

(n=47)

0

(0%)

1

(2.1%)

0

(0%)

3

(6.4%)

0

(0%)

0

(0%)

2

(4.3%)

0

(0%)

0

(0%)

Total n=143
5

(3.5%)

3

(2.1%)

1

(0.7%)

12

(8.4%)

9

(6.3%)

1

(0.7%)

15

(10.5%)

1

(0.7%)

4

(2.8%)

a,b Total 30 isolates (21%) were defined as AR E. coli from horses (n=25: 13 from feces, 

6 from skins, and 6 from nasal cavities, respectively) and environmental samples (n=5: 2 

from drinking water and 3 from beddings, respectively). Note that AR E. coli showing 
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resistance to more than one antimicrobial agent were redundantly counted in each 

antimicrobial resistant test. 

AM, ampicillin; AMC, amoxicillin/clavulanic acid; GM, gentamicin; TE, tetracycline; 

SXT, sulfamethoxazole/trimethoprim; ATM, aztreonam; S, streptomycin; CTT, 

cefotetan; MDR, multi-drug resistance.
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Table 3. Detection of the antimicrobial resistance genes related to the AR phenotypes

AR

phenotype

Ampicillin

(n=5)

Streptomycin

(n=15)

Tetracycline

(n=12)

Sulfamethoxazole/trimethoprim

(n=9)

AR

Genes
SHV TEM strA-B aadA tetA tetB sul1 dfrA1 dfrA9 dfrA17 dfrA12/13

No.

(%)

0

(0)

3

(60.0)

13

(86.7)

0

(0)

8

(66.7)

1

(8.3)

2

(22.2)

8

(88.9)

2

(22.2)

1

(11.1)

0

(0)

SHV and TEM, ampicillin resistance genes; strA-B and aadA, streptomycin resistance 

genes; tetA and tetB, tetracycline resistance genes; sul1, sulfamethoxazole resistance 

gene; dfrA1/A9/A7/A17/A12/A13, trimethoprim resistance genes.

Table 4. The characterization of 4 E. coli isolates harboring integrase gene

Isolate No.
Class of 

integrons
Sample group Antibiograma

Integron-associated 

genesb

1-94 class 1/intI1 horse feces SXT and S dfrA1 and strA-B

3-33 class 1/intI1 horse
nasal 

cavity

AM, TE and 

SXT

sul1, dfrA1, dfrA9, tetA 

and TEM

5-153 class 1/intI1 horse feces
AM, SXT and 

S
dfrA1, strA-B and TEM

7-30 class 1/intI1 horse feces SXT dfrA9 and dfrA17

a AM, ampicillin; TE, tetracycline; SXT, sulfamethoxazole/trimethoprim; S, 

streptomycin.
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b TEM, ampicillin resistance gene; strA-B, streptomycin resistance genes; tetA, 

tetracycline resistance gene; sul1, sulfamethoxazole resistance gene; dfrA1/A9/A17, 

trimethoprim resistance genes.
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Chapter II

Mechanisms of quinolone resistance in Escherichia coli

isolated from companion animals, owners, and 

non-owners
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I. Introduction

Quinolone (Q) and fluoroquinolone (FQ) are broad-spectrum synthetic antimicrobials 

used to treat bacterial infections in humans and animals [119, 157]. Since they are very 

potent antimicrobial agents against Gram-negative bacteria including Escherichia coli

(E. coli), these agents have been widely used to treat a range of infections in human and 

veterinary medicine. Consequently, (F)Q resistance has markedly increased worldwide, 

posing a significant threat to the health of animals and humans [119, 157].

Three major mechanisms of (F)Q resistance have been reported: i) mutations in genes 

encoding DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) that are 

associated with quinolone resistance-determining regions (QRDRs); ii) the presence of 

plasmid-mediated Q resistance (PMQR) genes; and iii) reduced accumulation of drugs 

or chemicals due to active efflux pump activity [76]. PMQR genes include members of 

the qnr gene family (qnrA, qnrB, and qnrS) as well as genes encoding FQ-modifying 

enzyme [aac-(6')-Ib-cr] and the efflux pump (qepA) [221]. AcrAB-TolC overexpression 

is a major resistance mechanism against (F)Q that is associated with increased efflux 

pump activity and contributes to multi-drug resistance (MDR) in E. coli [167]. AcrAB-

TolC has three components: a transporter of the resistance-nodulation division family 

(AcrB), a periplasmic accessory protein (AcrA), and an outer membrane protein (TolC)

[167].

E. coli are usually commensal bacteria in humans and animals. They are also 

considered as major causative agents of bacterial infections. E. coli easily acquire 
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antimicrobial resistance by genetic mutation and horizontal gene transfer [17]. The 

transmission of antimicrobial-resistant E. coli from animals to humans has been 

demonstrated [170]. Several studies have investigated multi-factorial (F)Q resistance 

mechanisms in E. coli isolated from humans and food-producing animals [84]. However, 

few studies have examined the prevalence and the resistance mechanisms of (F)Q-

resistant E. coli from companion animals [58], and most of these have been limited to 

elucidating one or two of the above-mentioned (F)Q resistance mechanisms. Moreover, 

there have been no studies investigating the distribution of (F)Q-resistant E. coli in 

companion animals and owners. Clarifying how (F)Q resistance develops and distributes 

in companion animals and the humans that they contact is important for understanding 

(F)Q resistance trends in veterinary medicine. To this end, the present study examined 

the frequency of nalidixic acid (NA)-resistant E. coli isolated from companion animals 

and owners, and investigated the three basic mechanisms of (F)Q resistance in these 

isolates relative to those obtained from non-owners.

II. Materials and methods

1. Sampling

Sampling was carried out with informed consent from owners of companion animals 

and other human subjects. A total of 104 anal swab samples were collected from four 
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local veterinary clinics, one veterinary teaching hospital, and one local university in 

Seoul, South Korea between April 2010 and November 2012. The sampling procedures 

that were used have been previously described [60]. Swab samples were obtained from 

49 dogs, 4 cats, 14 dog owners, 3 cat owners and 34 non-owners (Table 1). People living 

with and without companion animals at the time of sampling were designated as owners 

and non-owners, respectively. Owners were selected from among visitors of four local 

veterinary clinics and a veterinary teaching hospital; non-owners were selected from 

among freshman students at a university. All protocols and procedures were approved 

by the institutional review board at the Seoul National University (IRB No. 1208/001-

004).

2. Isolation of NA-resistant E. coli from swab samples

E. coli isolation and confirmation was carried out as previously [26]. After isolating 

and identifying E. coli from swab samples, 30-μg NA antimicrobial disks (BD 

Biosciences) were used to select NA-resistant isolates according to Clinical and 

Laboratory Standards Institute (CLSI) standards [27].

3. Antimicrobial resistance profiling of NA-resistant E. coli isolates

The susceptibility of 27 NA-resistant isolates to other antimicrobials was 

characterized using the following antimicrobial disks (BD Biosciences): ampicillin (AM, 
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10 μg), amoxicillin/clavulanic acid (AMC, 20/10 μg), ceftazidime (CAZ, 30 μg), 

cefotetan (CTT, 30 μg), imipenem (10 μg), gentamicin (10 μg), tetracycline (30 μg), 

ciprofloxacin (CIP, 5 μg), sulfamethoxazole/trimethoprim (1.25/23.75 μg), 

chloramphenicol (C, 30 μg), aztreonam (ATM, 30 μg), ceftriaxone (CRO, 30 μg), and 

cefotaxime (CTX, 30 μg). Susceptibility or resistance to antimicrobials was determined 

according to CLSI standards [27]. E. coli ATCC 25922 was used as a reference strain 

(American Type Culture Collection; Manassas, VA, USA). MDR isolates were defined 

as isolates showing resistance to more than three different classes of antimicrobials [92]. 

NA-resistant E. coli isolates showing inhibition zone diameters of ≤ 25 mm against 

CRO were selected for the confirmation test of extended spectrum β-lactamase (ESBL) 

production [27]. Isolates were determined as ESBL-producing E. coli by the disk 

diffusion method using CAZ, CAZ/clavulanic acid (CAZ/CL, 30/10 μg), CTX, and 

CTX/CL (30/10 μg); those showing resistance to CAZ and/or CTX in combination with 

an increase in inhibition zone diameter of ≥ 5 mm for CAZ/CL and/or CTX/CL were 

defined as ESBL-producing E. coli [196]. In addition, the presence of the blaCTX-M 

gene in ESBL-producing isolates was determined by PCR using CTX-M universal 

primers [112].

4. Determination of minimum inhibitory concentrations (MICs) of NA and 

CIP

MICs of NA and CIP were determined for 27 NA-resistant E. coli isolates by the 
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broth microdilution method according to the CLSI standards [27], with E. coli ATCC 

25922 used as a reference strain.

5. Detection of PMQR genes and mutations in QRDRs

The 27 NA-resistant E. coli isolates were screened by PCR for the presence of the 

following PMQR genes: aac(6’)-Ib-cr, qepA, qnrA, qnrB, and qnrS [24, 212, 219]. The 

cr variant of the aac(6')-Ib gene was identified by direct sequencing of the amplified 

aac(6')-Ib gene [147]. Mutations in DNA gyrase (gyrA and gyrB) and topoisomerase IV 

genes (parC and parE) of the NA-resistant isolates were identified using specific 

primers [14, 48, 191, 214]. The wild-type E. coli K-12 sequence (GenBank accession no. 

U00096) was used as a reference [84].

6. Organic solvent tolerance (OST) assay

The activity of the AcrAB-TolC efflux pump system in NA-resistant E. coli isolates 

was measured by the OST assay [205]. For efficiency-of-plating assays [205], cultures 

of isolates in logarithmic growth phase were diluted to an optical density of 0.2 at a 

wavelength of 530 nm, and 100-μL aliquots were spread onto Luria-Bertani (LB) agar, 

which was then overlaid with a mixture of hexane and cyclohexane (3:1 v/v). The plates 

were sealed and incubated for 24–36 h at 30°C. The number of colonies was counted in 
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triplicate and colony growth was recorded as confluent (++, ≥ 100 colonies), visible (+, 

< 100 colonies), or none (−). E. coli ATCC 25922 was used as a reference strain.

7. Evaluation of the effect of each (F)Q resistance mechanism on MICs of 

NA and CIP

To assess the relevance of the three (F)Q resistance mechanisms to the increase in 

(F)Q resistance in E. coli, we evaluated the frequencies of point mutations in the QRDR 

region and PMQR genes as well as efflux pump activity in 27 NA-resistant E. coli

isolates. To assess the effects of point mutations and efflux pump activity, an additional 

comparison was made by determining Pearson’s correlation coefficient (R) [3]. The 

strength of efflux pump activity was graded based on the result of OST test described 

above (−, 0; +, 1; ++, 2). R values were calculated between the number of point 

mutations or strength of efflux pump activity and MICs of NA or CIP using SPSS 

software (SPSS Inc., Chicago, IL, USA) [3].

III. Results

1. Isolation of NA or CIP resistant E. coli from companion animals and 

humans
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A total of 63 E. coli isolates (60.6%) were collected from 104 anal swab samples. Of 

these, 27 isolates (42.9%) were determined as NA-resistant E. coli. Ten isolates (15.9%) 

were resistant to CIP, all of which also showed resistance to NA (Table 1). Overall, E. 

coli isolation and (F)Q resistance rates were higher in non-owners than in owners (Table 

1).

2. Susceptibility of NA-resistant E. coli isolates to other antimicrobials

Of the 27 NA-resistant E. coli isolates, 23 (85.2%) were resistant to at least one 

additional antimicrobial (data not shown) and 20 (74.1%) were identified as MDR 

(Table 2). The antibiogram analysis revealed that more than half of NA-resistant isolates 

were also resistant to AM (17/27, 63.0%), AMC (17/27, 63.0%) and TE (14/27, 51.9%). 

Ten of the NA-resistant isolates showed resistance to CIP (10/27, 37.0%); interestingly, 

these were all identified as MDR (Table 2). On the contrary, resistance against CAZ, 

CTT, C, ATM, CRO, and CTX was relatively low. In addition, 3 of the 27 NA-resistant 

isolates (11.1%) were identified as ESBL-producing E. coli harboring the blaCTX-M 

gene and were obtained from two dogs and a non-owner (data not shown).

3. Determination of MICs

The MICs of NA for the 27 NA-resistant E. coli ranged from 128 to > 1024 μg/mL. 

Ten isolates showed much higher MICs of NA (> 1024 μg/mL) than the others, and only 
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these isolates showed resistance to CIP (MICs of CIP, 16–256 μg/mL). The remaining 

isolates showed low MICs of CIP, ranging from 0.125 to 1 μg/mL (Table 3).

4. Analysis of mutations in QRDRs and detection of PMQR genes

Mutations in QRDRs of gyrA, gyrB, parC, and parE genes of the 27 NA-resistant E. 

coli isolates were analyzed. Mutations were identified as nucleotide alterations in 

QRDRs responsible for changes in amino acid sequences in the protein products; silent 

mutations were excluded from the analysis. Mutations were detected in the gyrA gene in 

all NA-resistant isolates (Table 3); 10/27 (37.0%) had double amino acid substitutions 

(S83L and D87N); 16/27 (59.3%) had a single amino acid substitution (S83L); and 1/27

(3.7%) had a single D87N substitution. Mutations in the parC gene were detected in 

10/27 isolates (37.0%); nine (33.3%) had a single S80I mutation and one had double 

mutations of S80I and E84G. However, no mutations were found in the gyrB gene. 

Eleven isolates (40.7%) had mutations in codons 355, 416, 458, or 477 of the parE gene 

(Table 3).

Of interest, all 10 isolates with double amino acid substitutions in GyrA had point 

mutations in both parC and parE genes, and only these isolates were resistant to CIP. 

While parC mutations were detected only in these 10 isolates among the 27 NA-

resistant E. coli, parE mutations were found in those 10 isolates and an additional isolate 

with a single amino acid substitution in the gyrA gene (no. P123; Table 3). Of the 10 

CIP-resistant isolates, five originating from humans had an amino acid substitution in 
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only codon 416 of parE (L416F). In contrast, the other five CIP-resistant E. coli isolates 

from dogs had amino acid substitutions in codon 355 or 458 of parE (I355T or S458A) 

(Table 3).

The PMQR gene was detected in only one of the 27 isolates (no. K73), which 

harbored the aac(6')-Ib-cr gene encoding a CIP-modifying enzyme (data not shown).

5. Measurement of efflux pump activity

Efflux pump activity in 27 NA-resistant E. coli isolates was measured with the OST 

assay [200, 205]. A total of 14 (51.9%) and four (14.8%) isolates showed confluent and 

visible growth, respectively, on the organic solvent mixture (Table 3).

6. Relative contribution of each (F)Q resistance mechanism to increases in 

MIC

We analyzed the correlations between efflux pump activity or target mutations and 

MICs of NA or CIP in the 27 NA-resistant isolates, and found that MICs of both NA 

and CIP were highly correlated with the number of point mutations in the QRDR (R = 

0.878 and 0.954, respectively; Fig. 1). However, efflux pump activity was not correlated 

with either NA MIC (R = −0.239) or CIP MIC (R = −0.169) in NA-resistant E. coli

isolates (Fig. 1).
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IV. Discussion

Many epidemiological studies have reported that companion animals in households 

are potential sources of transmissible bacteria such as E. coli and Salmonella spp. 

(reviewed in [35]). However, the isolation and antimicrobial resistance rates of E. coli

were not higher in owners then in non-owners. Another study reported a lower risk of 

MDR Staphylococci carriage in nursing home residents living with companion animals 

than in those living without companion animals [53]. These findings may suggest that 

although companion animals can be sources of bacterial infections in households, they 

do not always negatively affect the hygienic status of their owners.

(F)Q resistance is closely associated with MDR in E. coli [178]. We found that about 

74% of NA-resistant E. coli isolates were MDR. Cross-antimicrobial resistance between 

Q and β-lactams frequently occurs in E. coli and Klebsiella spp. due to the extensive use 

of antimicrobials against these bacteria in human and veterinary medicine [51]. The 

mechanism underlying the association between MDR and Q resistance is currently 

unclear. In our study, the MDR rate was higher in CIP-resistant than in NA-resistant E. 

coli isolates (100% vs. 74.1%). As shown in previous [58, 69, 84] and as well as in the 

current study, CIP resistance is strongly correlated with multiple mutations in QRDRs.

All 27 NA-resistant E. coli had at least one target mutation in the QRDRs (100%) in 

this study. Low or high efflux pump activity was observed in 18 isolates (66.7%), but 

only one (3.7%) harbored a PMQR gene. Mobile (F)Q resistance gene transfer by 

plasmids has been demonstrated, and high detection rates of PMQR genes in (F)Q-
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resistant E. coli isolated from human and animal specimens have been reported [119, 

130]. However, other studies have reported low detection rates or an absence of PMQR 

genes in FQ-resistant E. coli from animals [58, 84]. The results of the present study are 

consistent with the latter findings, and highlight the low prevalence of PMQR in Korea. 

The presence of PMQR genes is closely associated with that of genes encoding ESBL in

E. coli isolates [80]. Accordingly, the isolate harboring aac-(6')-Ib-cr (no. K73) was 

determined as an ESBL-producing E. coli strain carrying the blaCTX-M gene in this 

study.

We found no correlation between increased efflux pump activity and the increase in 

MICs of NA and CIP in NA-resistant E. coli. When MICs in 15 isolates harboring the 

same single amino acid substitution in GyrA (S83L) were compared to exclude other 

mutational variables in QRDRs (Table 3), MICs in isolates with high OST were not 

higher than those in isolates with no OST (average MICs: NA, 277 vs. 299 μg/mL and 

CIP, 0.33 vs. 0.33 μg/mL). Efflux pumps reduce the concentration of substrates within 

cells via active transport, and an increase in their activity has been reported to contribute 

to reduced (F)Q susceptibility [157]. However, our findings indicate that efflux pump 

activity did not contribute to resistance against (F)Q in these resistant isolates. If 

mutations in QRDRs lead to sufficiently high levels of (F)Q resistance in E. coli, the 

activity of the efflux pump may not further increase the MICs of (F)Q [3]. Similar 

findings were reported in other Gram-negative bacteria such as Klebsiella pneumoniae

and Campylobacter spp. [30, 169]. In contrast, the number of mutations in QRDRs was 

strongly correlated with increases in the MICs of both NA and CIP (Fig. 1). Particularly, 
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in QRDRs, (F)Q resistance in clinical E. coli isolates is more closely associated with 

mutations in the gyrA gene, whereas those in gyrB, parC, and parE genes are less 

important in the establishment of (F)Q resistance [72]. We found that all NA-resistant 

isolates in this study had amino acid alterations in GyrA (S83L and/or D87N). A single 

mutation in the gyrA gene has been linked to low FQ resistance in E. coli [216], while 

high FQ resistance was found to be acquired via accumulation of mutations in QRDRs

[69]. In particular, FQ resistance was related to double amino acid substitutions in GyrA 

with or without mutations in parC and parE genes [58, 84, 86]. In the present study, all 

CIP-resistant isolates from both humans and animals had double point mutations in gyrA

concurrently with target mutations in parC and parE genes. These results indicate that 

(F)Q resistance mechanisms in E. coli at animal hospitals are similar to those observed 

in humans.

Mutations in the parC or parE gene have been reported to be closely related to 

secondary mutations in the gyrA gene [21, 86]. In consistent, all mutations in parC or 

parE were detected in isolates with double amino acid substitutions, except in one case. 

Among the four amino acid substitutions in ParE identified in this study, three have 

been previously reported (I355T, L416F, and S458A) [84, 131]. However, the amino 

acid substitution (L477M) found in a cat isolate (no. P123) is a novel finding. 

Interestingly, the patterns of parE mutations observed in NA-resistant E. coli isolates 

were distinct in each species. L477M and L416F were present only in cat and human 

isolates, respectively. All I355T and S458A substitutions were only found in dog 

isolates, and they were in conjunction with amino acid substitutions in both GyrA and 
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ParC. Taken together, the CIP-resistant isolates from humans were distinct from those 

obtained from dogs and cats in terms of the position of parE gene mutations.

In conclusion, this is the first study to examine the mechanisms of (F)Q resistance in 

NA-resistant E. coli isolates from companion animals and their owners as compared to 

those from non-owners. The rates of E. coli isolation and (F)Q resistance were not 

higher in owners than in non-owners, which may suggest that persons living with 

companion animals are not always at a higher risk of bacterial infections than those 

living without companion animals. The prevalence of PMQR genes was very low and 

efflux pump activity was not found to contribute alone to the acquisition of high-level 

(F)Q resistance. Target site alterations in QRDRs appeared to be the most important 

mechanism contributing to high-level (F)Q resistance in E. coli of both animal and 

human origins in Korea. Since the (F)Q resistance mechanisms in companion animal

isolates are the same as those found in human isolates, prudent use of (F)Q by

veterinarians is warranted to prevent the development and dissemination of (F)Q-

resistant bacteria. To this end, a continuous monitoring process in veterinary hospitals 

may be needed to identify the trends and dissemination of (F)Q resistance in companion

animals and their owners.
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Fig. 1. Correlations between organic solvent tolerance (OST) or number of target 

mutations and minimum inhibitory concentrations (MICs) of nalidixic acid (NA) and 

ciprofloxacin (CIP) among 27 NA-resistant E. coli isolates. The size of the closed circle 

in each dot plot represents the number of NA- or CIP-resistant E. coli isolates. The scale 

box located on the right side of graphs shows three different-sized closed circles with 

the corresponding number of NA- or CIP-resistant isolates. The gradient of the trend 

line in each dot plot represents positive or negative correlation between two variables. R: 

correlation coefficient.
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Table 1. Prevalence of NA- or CIP-resistant E. coli isolates from anal samples

Sample sources
No. of  

samples

No. of 

E. coli isolates 

(%)a

No. of NA-

resistant E. coli 

isolates (%)b

No. of CIP-

resistant E. coli 

isolates (%)c

Companion 

animals
53 32 (60.4) 13 (40.6) 5 (15.6)

Owners 17 9 (52.9) 3 (33.3) 1 (11.1)

Non-owners 34 22 (64.7) 11 (50.0) 4 (18.2)

Total 104 63 (60.6) 27 (42.9) 10 (15.9)

aThe percentage indicates the frequency of E. coli isolation from the anal samples.

b,cThe percentage indicates the frequency of NA- or CIP-resistant isolates from the 

collected E. coli isolates. Note that all CIP-resistant isolates also showed resistance 

against NA.
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Table 2. Additional antimicrobial resistance profiling of 27 NA-resistant E. coli isolates 

Source of NA-resistant 

E. coli isolates
No. of resistant isolates (%)

AM
a

AMC CAZ CTT GM TE CIP SXT C ATM CRO CTX MDR

Humans

Owners

(n=3)
1 1 0 0 1 1 1 1 0 0 0 0 2

Non-

owners

(n=11)

9 9 0 0 2 7 4 5 0 0 1 1 10

sub-total

(n=14)

10

(71.4)
b

10

(71.4)

0

(0.0)

0

(0.0)

3

(21.4)

8

(57.1)

5

(35.7)

6

(42.9)

0

(0.0)

0

(0.0)

1

(7.1)

1

(7.1)

12

(85.7)

Companion 

animals

Dogs 

(n=12)
7 7 3 4 3 6 5 3 2 2 3 3 8

Cat

(n=1)
0 0 0 0 0 0 0 1 0 0 0 0 0

sub-total

(n=13)

7

(53.8)

7

(53.8)

3

(23.1)

4

(30.8)

3

(23.1)

6

(46.2)

5

(38.5)

4

(30.8)

2

(15.4)

2

(15.4)

3

(23.1)

3

(23.1)

8

(61.5)

Total n=27
17

(63.0)

17

(63.0)

3

(11.1)

4

(14.8)

6

(22.2)

14

(51.9)

10
c

(37.0)

10

(37.0)

2

(7.4)

2

(7.4)

4

(14.8)

4

(14.8)

20

(74.1)
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aAbbreviations: AM, ampicillin; AMC, amoxicillin/clavulanic acid; CAZ, ceftazidime; CTT, cefotetan; GM, gentamicin; TE, tetracycline; CIP, 

ciprofloxacin; SXT, sulfamethoxazole/trimethoprim; C, chloramphenicol; ATM, aztreonam; CRO, ceftriaxone; CTX, cefotaxime; MDR, multi-

drug resistance.

bThe frequency of E. coli isolates showing resistance to each used antimicrobial is shown in the parenthesis.

cAll the 10 CIP-resistant isolates were determined as MDR
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Table 3. Determination of MICs and characterization of 27 NA-resistant E. coli

isolates 

Isolate

No.
Source

NA 

MIC

(μg/mL)

CIP 

MIC

(μg/mL)

Mutations

in the QRDRsa

Growth in 

presence of 

organic solventc

GyrA ParC GyrB ParE

mixture of hexane 

and cyclohexane 

(3:1 [vol/vol])

P127 Owner >1024 32
S83L

D87N
S80I –b L416F –

P128 Owner 256 0.5 S83L – – – –

P143 Owner 256 0.25 S83L – – – + +

P97
Non-

owner
256 0.25 S83L – – – +

P98
Non-

owner
128 0.25 S83L – – – –

P102
Non-

owner
>1024 32

S83L

D87N
S80I – L416F –

P103
Non-

owner
>1024 32

S83L

D87N
S80I – L416F –

P108
Non-

owner
256 0.25 S83L – – – + +

P109
Non-

owner
512 1 S83L – – – + +

P99
Non-

owner
>1024 16

S83L

D87N
S80I – L416F –

P100
Non-

owner
256 0.25 S83L – – – + +

P154
Non-

owner
>1024 16

S83L

D87N
S80I – L416F –

P144 Non- 128 0.25 S83L – – – +
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owner

P150
Non-

owner
512 0.25 S83L – – – –

K132 Dog 256 0.125 S83L – – – + +

R14 Dog 256 0.5 S83L – – – + +

K161 Dog >1024 256
S83L

D87N
S80I – S458A + +

K48 Dog >1024 64
S83L

D87N

S80I

E84G
– I355T + +

K56 Dog >1024 64
S83L

D87N
S80I – S458A + +

K73 Dog >1024 128
S83L

D87N
S80I – S458A +

K154 Dog 256 0.25 S83L – – – + +

R56 Dog 128 0.125 D87N – – – + +

K168 Dog >1024 32
S83L

D87N
S80I – S458A + +

J11 Dog 512 0.5 S83L – – – +

P129 Dog 256 0.25 S83L – – – + +

K328 Dog 128 0.125 S83L – – – + +

P123 Cat 256 0.25 S83L – – L477M –

ATCC

25922
Control 8 0.008 – – – – –

aThe identified codon sites of mutations in NA-resistant E. coli isolates are indicated.

bNo mutations were found in the target gene.

cScoring: + +, confluent growth (≥ 100 colonies); +, visible growth (< 100 colonies); –, 

no growth.
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Chapter III

Probable secondary transmission of antimicrobial-

resistant Escherichia coli between people living with and 

without companion animals
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I. Introduction

The number of people living with companion animals has been increasing annually 

worldwide. According to the 2013 to 2014 American Pet Products Association survey, 

about 70% of U.S. households include companion animals [114]. In the Korean 

companion animal industry, the market size associated with companion animals is 

rapidly increasing and estimated to be $5.4 billion by 2020 [172]. Additionally, most 

owners consider their companion animals as family members and go to great lengths for 

their medical treatment [199]. As such, the use of antimicrobials in companion animals 

is increasing, which has resulted in the emergence and spread of antimicrobial-resistant 

(AR) bacteria. Companion animals are often considered as one of the reservoirs of AR 

bacteria that could be transferrable to their owners through direct or indirect contact [25, 

170]. Direct contact includes a bite, lick or scratch and handling of animal feces, 

whereas indirect contact can occur by sharing the bed or toilet environment or being 

bitten by arthropods originating from companion animals [160].

AR bacteria in companion animals can be cross-transmitted to humans [25, 170]. 

Bacterial transmission among humans frequently occurs in confined environments, such 

as schools and households [55]; indeed, the spread of hemolytic uremic syndrome and 

bloody diarrhea caused by infection with a same clone of Shiga toxin-producing 

Escherichia coli (E. coli) has been reported in these environments [94, 106, 116]. 

Likewise, owners of companion animals could spread AR bacteria originating from their 

companion animals to other persons via close contact. However, there have been no 
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studies investigating this possibility. We addressed this in the present study by 

comparing the genetic similarity of AR E. coli isolates from owners of dogs and non-

owners sharing a classroom or household to determine the risk of secondary 

transmission of AR bacteria between humans.

II. Materials and methods

1. Sampling

All study participants provided written, informed consent for their participation. All 

protocols and procedures were approved by the institutional review board at the Seoul 

National University (IRB No. 1208/001-004). A total of 48 anal samples were collected 

from owners of dogs and non-owners at a college classroom and households located in 

Seoul, Korea, from April in 2010 to November in 2012. We used the sampling method 

described in previous studies [60, 97]. Owner samples (n=14) were collected from 11 

undergraduate students as well as three of their family members; non-owner samples 

(n=34) were collected from 28 undergraduate students sharing the classroom with 11 

owner students as well as six of their family members. Samples were placed in 

individual collection tubes containing Amies transport medium (Yu-Han Lab Tech, 

Seoul, Korea) and transported to our laboratory on ice within 6 hr of collection.
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2. E. coli isolation and identification

For non-selective enrichment of microorganisms in samples, the swabs were mixed 

by vortexing in 10 ml buffered peptone water (BD Biosciences, Franklin Lakes, NJ, 

U.S.A.) and incubated at 37°C for 24 hr [198]. One milliliter aliquot of culture was 

inoculated in 9 ml E. coli broth and incubated at 37°C for 24 hr. The cultures were 

streaked on MacConkey agar plates and incubated at 37°C for 24 hr to isolate coliform 

bacteria, including E. coli [90]. Pink colonies suspected as E. coli were selected 

according to a standard protocol previously established in our laboratory [26]. Strain-

specific PCR targeting 16S ribosomal RNA was carried out to confirm the bacterial 

species as E. coli [186]. E. coli ATCC 25922 (American Type Culture Collection, 

Manassas, VA, U.S.A.) was used as a positive control strain.

3. Antimicrobial susceptibility tests

Antimicrobial susceptibility was tested by the standard disk diffusion method 

according to Clinical and Laboratory Standard Institute guidelines [207]. The 

antimicrobial disks (BD Biosciences) used in this study were as follows: ampicillin (AM, 

10 μg), amoxicillin/clavulanic acid (AMC, 20/10 μg), aztreonam (ATM, 30 μg), 

ceftazidime (CAZ, 30 μg), cefotaxime (CTX, 30 μg), cefotetan (CTT, 30 μg), 

ceftriaxone (CRO, 30 μg), chloramphenicol (30 μg), ciprofloxacin (CIP, 5 μg), 

imipenem (IMP, 10 μg), gentamicin (GM, 10 μg), nalidixic acid (NA, 30 μg), 
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sulfamethoxazole/trimethoprim (SXT, 1.25/23.75 μg) and tetracycline (TE, 30 μg). 

Resistance, intermediate resistance and susceptibility to antimicrobials were established 

as described by Clinical and Laboratory Standards Institute guidelines [207]. E. coli

ATCC 25922 was used as a reference strain. Multidrug resistance (MDR) was defined 

as resistance to three or more different subclasses of antimicrobial [92].

4. Detection of integrase genes in E. coli isolates

To determine the association between MDR and the presence of mobile genetic 

elements, integrase genes responsible for horizontal gene transfer, were detected in all E. 

coli isolates. Briefly, the integrase genes were amplified by PCR using the common 

integrase primer set, hep35 (5’-TGCGGGTYAARGATBTKGATTT-3’) and hep36 (5’-

CARCACATGCGTRTARAT-3’). For positive isolates, PCR fragments were first 

digested with HinfI restriction enzyme (New England Biolabs, Ipswich, MA, U.S.A.) 

and analyzed by gel-electrophoresis. The class of integron was determined based on the 

number and size of DNA bands as previously described [206].

5. Molecular fingerprinting

To investigate cross-transmission of AR E. coli between owners and non-owners, the 

genetic relatedness of AR E. coli isolates was evaluated by standard pulsed-field gel 

electrophoresis (PFGE) using CHEF MAPPER (Bio-Rad, Hercules, CA, U.S.A.) [78]. 
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Briefly, isolates cultured overnight in tryptic soy broth (BD Biosciences) were streaked 

on tryptic soy agar (BD Biosciences) plates and incubated at 37°C for 14–18 hr. The 

turbidity of bacterial suspensions was adjusted to 4.0 McFarland, and cells were 

embedded in 1.0% agarose plugs that were lysed with proteinase K prepared as a 20 

mg/ml stock solution (Sigma-Aldrich, St. Louis, MO, U.S.A.), followed by digestion for 

2 hr with 50 U XbaI (New England Biolabs) at 37°C. Digested plugs were then placed 

on 1.0% SeaKem Gold agarose (Lonza, Allendale, NJ, U.S.A.), and PFGE was carried 

out at 6.0 V for 19 hr with a ramped pulse time of 6.76–35.38 sec in 0.5× Tris-Borate-

EDTA buffer at 14°C. BioNumerics software (Applied Maths, Sint-MartensLatem, 

Belgium) was used to analyze DNA restriction patterns using the dice coefficient (0.5% 

optimization and 1.0% tolerance) and the unweighted pair group method. E. coli ATCC 

25922 was used as a reference strain.

III. Results

1. Isolation of E. coli from swab samples

A total of 31 E. coli isolates were obtained from 48 swab samples (64.6%), with 9/14 

(64.3%) and 22/34 (64.7%) collected from owners and non-owners, respectively (Table 

1).

2. Antibiogram of 31 E. coli isolates
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The number of E. coli isolates showing resistance to each antimicrobial is shown in 

Table 1. A total of 20/31 isolates (64.5%) from non-owners (n=15) and owners (n=5) 

were resistant to at least one antimicrobial (Table 1). All isolates were susceptible to

CAZ, CTT, IMP and ATM. The antibiogram analysis revealed frequencies of AR E. coli

isolates of 51.6% (n=16) for AM followed by 48.4% (n=15) for NA, 41.9% (n=13 each) 

for AMC and TE, 29.0% (n=9) for SXT and 16.1% (n=5) for CIP. In addition, nine 

isolates showed resistance to each of GM, CRO and CTX. A total of 16 isolates (51.6%) 

were identified as harboring MDR E. coli.

3. Detection of integrase genes in E. coli isolates

Six of the 31 E. coli isolates (19.4%) harbored integrase genes (Table 2). Of these, 

four originated from non-owners, and two were from owners. The four isolates from 

non-owners harbored only the class 1 integrase gene intI1, whereas both intI1 and the 

class 2 integrase gene intI2 were detected in the two isolates from owners. All six 

isolates were defined as having MDR, since they harbored at least three different 

antimicrobial resistance genes.

4. Genetic relatedness of E. coli isolates from owners and non-owners

To determine the risk of cross-transmission between owners and non-owners, we 

analyzed the genetic relatedness of the 31 E. coli isolates by PFGE. Three clonal sets 
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(PFGE types 5, 6 and 24) were identified (Fig. 1A and 1B). For type 5, two E. coli

isolates (nos. P106-1 and P124) were obtained from two students (one non-owner and 

one owner) who shared a classroom, whereas the other isolate (no. P119) was from a 

family member of an owner student. For type 6, the three isolates (nos. P102, P103 and 

P99) were obtained from three non-owner students, but they had slightly different 

antibiogram profiles. For type 24, the two isolates (nos. P108 and P109) were from two 

non-owners living in the same household who showed identical antibiogram profiles.

IV. Discussion

AR bacteria can be cross-transmitted between humans and animals [57, 105]. 

Transmission is usually determined by detecting the same clonal isolates from different 

hosts [25]. Livestock (e.g., horse, goat and cattle) and wild animals (e.g., free-roaming 

elk) are sources of enteric pathogens and AR bacteria that can be transmitted to humans 

via direct or indirect contact [62]. Companion animals are also considered as sources of 

AR bacteria and infectious human pathogens [35, 57]. However, there is no direct 

evidence that AR bacteria originating from companion animals are cross-transmitted 

between owners and non-owners living in a confined community. Common enteric 

microorganisms, such as E. coli, are easily and inadvertently transferred between 

individuals via hand-to-hand contact [103]. In addition, E. coli isolated from feces is 

considered as a good indicator for antimicrobial resistance in a population [8, 41]. The 

current study was carried out in order to establish the risk of cross-transmission of AR 
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bacteria originating from companion animals within a confined human community. Of 

31 E. coli isolates, 64.5% were identified as AR bacteria showing resistance to at least 

one antimicrobial. This rate is similar to that in healthy humans (67.1%), but much 

lower than that in human clinical specimens (98.5%) reported by a previous study from 

Korea [82]. Integrons are known to play an important role in the horizontal transfer of 

antimicrobial resistance genes by conjugative plasmids and transposons, and closely 

associated with the development of MDR in enterobacteria [124, 156]. Class I is the 

predominant class of integron detected in many countries including Korea [82, 111, 171]. 

Likewise, all integron positive E. coli isolates in this study were found to be multi-drug 

resistant, and the prevalent type was class I. PFGE analysis revealed that all isolates 

carrying integrons had distinct PFGE types (Fig. 1A). This suggests that the 

dissemination of integrons was not due to clonal spread, but to horizontal gene transfer 

of plasmids or transposons, emphasizing the important role of integrons in the spread of 

antimicrobial resistance genes. The prevalence of integrons (19.4%) in E. coli isolates 

from healthy humans was higher than that reported in an earlier study from Korea [82], 

but lower than that in other countries [111, 194]. Three clonal sets were identified 

among 31 E. coli isolates, providing evidence of clonal expansion of resistant strains 

within the study population (Fig. 1A and 1B). PFGE types 6 and 24 indicated the 

spreading of AR E. coli within a classroom and family, respectively, whereas PFGE 

type 5 included three isolates from an owner student, a non-owner student and an owner 

family member. Although we did not analyze E. coli isolates from the dogs in this study, 

our results indirectly demonstrate the possibility of cross-transmission of AR bacteria 
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from companion animals to non-owners. In most countries, the overall amount of 

antimicrobials used for companion animals is not reliably measured. However, 

antimicrobials used in human and veterinary hospitals are almost identical [57]; as such, 

resistance patterns in bacteria originating from animals and humans are very similar 

[179, 204]. There is an increasing concern that AR bacteria from companion animals 

can spread among humans. Although this study only investigated the clonal expansion 

of AR E. coli in a confined human community, the results indicate that once these 

bacteria are transmitted from companion animals to their owners, they can spread to 

other humans through social activities. Further investigations are required to provide 

more direct evidence and identify the risk factors of secondary transmission by studying 

larger numbers of bacterial isolates from companion animals, their owners and non-

owners in a community.
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(A)

(B)



92

Fig. 1. PFGE analysis of 31 E. coli isolates. (A), Dendrogram of all PFGE patterns; (B), 

PFGE results of types 5, 6, and 24. Levels of similarity were determined using the Dice 

coefficient (0.5% optimization, 1.0% tolerance) and the unweighted pair-group method. 

Individual PFGE patterns are summarized with their antimicrobial resistance profiles 

and genes and sample sources (A). PFGE results of each isolate belonging to types 5, 6, 

and 24 are presented (B). AM, ampicillin; AMC, amoxicillin/clavulanic acid; C, 

chloramphenicol; CIP, ciprofloxacin; CRO, ceftriaxone; CTX, cefotaxime; GM, 

gentamicin; NA, nalidixic acid; SXT, sulfamethoxazole/trimethoprim; TE, tetracycline.

aIdentification number of each E. coli isolate from owners and non-owners.

bAntimicrobial resistance profiles.
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cSample sources: college students (S) and family members (F). Students and family 

members living in the same house are represented by a combination of a letter and the 

same number, as follows: S1 (college student) and F1 (family member who lives in the 

same household as S1).
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Table 1. Antibiogram of 31 E. coli isolates from owners and non-owners

Antimicrobial
Non-owner

(n = 22)
Owner
(n = 9)

Total
(n = 31)

AM 13 (59.1)a 3 (33.3) 16 (51.6)

AMC 11 (50.0) 2 (22.2) 13 (41.9)

GM 2 (9.1) 1 (11.1) 3 (9.7)

TE 11 (50.0) 2 (22.2) 13 (41.9)

CIP 4 (18.2) 1 (11.1) 5 (16.1)

NA 11 (50.0) 4 (44.4) 15 (48.4)

SXT 7 (31.8) 2 (22.2) 9 (29.0)

C 0 1 (11.1) 1 (3.2)

CRO 1 (4.5) 0 1 (3.2)

CTX 1 (4.5) 0 1 (3.2)

CAZ 0 0 0
CTT 0 0 0
IMP 0 0 0
ATM 0 0 0

MDR 13 (59.1) 3 (33.3) 16 (51.6)

ARb 15 (68.2) 5 (55.6) 20 (64.5)

aNumber of E. coli isolates showing resistance to each indicated antimicrobial is 

presented with the antimicrobial resistant rate in parenthesis.

bAntimicrobial resistant. This row shows the number of E. coli isolates showing 

resistance to at least one antimicrobial tested.

AM, ampicillin; AMC, amoxicillin/clavulanic acid; ATM, aztreonam; C, 

chloramphenicol; CAZ, ceftazidime; CIP, ciprofloxacin; CRO, ceftriaxone; CTT, 

cefotetan; CTX, cefotaxime; GM, gentamicin; IMP, imipenem; MDR, multidrug 

resistance; NA, nalidixic acid; SXT, sulfamethoxazole/trimethoprim; TE, tetracycline.
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Table 2. Characterization of six AR E. coli isolates harboring integrase genes

Isolate

no.
Integron class Sample group Antibiogram Integron-associated genesa

P99 Class 1/intI1 Non-owner (S)b AM, AMC, TE, CIP, NA, SXT OXA, tetB, dfrA17

P130-2 Class 1/intI1 Non-owner (S) AM, TE, SXT OXA, tetA, dfrA7

P154-1 Class 1/intI1 Non-owner (S) AM, AMC, TE, CIP, NA, SXT OXA, tetB, dfrA17

P150 Class 1/intI1 Non-owner (S) TE, NA, SXT tetA, tetB, sul1, dfrA12/13

P143-1 Class 1/intI1 Owner (S) GM, TE, NA, SXT tetB, sul1, dfrA17

P117-1 Class 2/intI2 Owner (F) AM, AMC, TE, SXT, C OXA, tetB, sul1, dfrA1, cat1

acat1, chloramphenicol resistance gene; dfrA1/A7/A17/A12/A13, trimethoprim resistance 

genes; OXA, ampicillin resistance gene; sul1, sulfamethoxazole resistance gene; tetA/B, 

tetracycline resistance genes.

bS and F indicate college student and family member, respectively.

AM, ampicillin; AMC, amoxicillin/clavulanic acid; C, chloramphenicol; CIP, 

ciprofloxacin; GM, gentamicin; NA, nalidixic acid; SXT 

sulfamethoxazole/trimethoprim; TE, tetracycline.
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General Conclusion

In this study, we demonstrated the potential risk of infection with AR E. coli

originating from companion animals, such as horses, in the related people. We further 

examined the (F)Q resistance mechanisms in E. coli isolated from dogs and their owners 

to compare the resistance mechanisms acquired by AR bacteria between companion 

animals and humans. The results demonstrated that the (F)Q resistance mechanisms in 

the isolates from companion animals are very similar to those found in the human 

isolates. The findings emphasized the risk of transmission of AR bacteria from 

companion animals to humans. Therefore, we evaluated the possibility of cross-

transmission of AR bacteria from companion animals to non-owners, mediated by their 

owners. Although our study investigated the clonal expansion of AR E. coli only in a 

confined human community, the results indicated that once AR bacteria are transmitted 

from companion animals to their owners, they can spread to other humans through 

social activities.

In conclusion, we demonstrated that AR bacteria from companion animals have 

similar antimicrobial resistance mechanisms found in the human isolates, and they can

be transmitted to surrounding environments and humans by direct or indirect contacts. 

Antimicrobial resistance is an urgent global problem. There are increasing concerns 

about the emergence of multi-drug resistant bacteria in humans, animals and 

environments. Like our study, the antimicrobial resistance is a complex phenomenon 

driven by many factors such as the interaction of humans, animals and environmental
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sources. Therefore, the aims of combating antimicrobial-resistant bacteria and 

preserving the efficacy of the currently available antimicrobials in human and veterinary 

medicine as well as in ecological systems should be addressed in an interdisciplinary

effort within a “One Health” approaches. Further studies are clearly warranted to 

identify the exact risk and mechanism of transmission of AR bacteria from animals and 

humans.
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반려동물과 관련∙종사자에서 분리된

항생제 내성 대장균의 상관성 분석

국 문 초 록

서울대학교 대학원

수의학과 수의병인생물학 및 예방수의학 전공

정  연  수

(지도교수: 박 용 호)

오늘날, 우리는 소, 돼지와 같은 가축보다 말, 개 그리고 고양이와 같은

반려동물에 더 큰 가치를 두고 있으며, 반려동물의 수의학적 치료에 대한

관심 또한 더 높다. 한국의 경우, 반려동물 시장의 규모가 매년 급격히

커지고 있으며 2020 년에는 그 규모가 5 조 4000 억원에 달할 것으로

예상된다. 또한, 매년 더 많은 한국 사람들이 말 산업의 중요성을 인지하고
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있다. 하지만, 현재 국내의 말과 연관된 항생제 내성균에 대한 연구는 많지

않다.

첫 번째 연구는 건강한 말에서 채취한 시료들로부터 분리된 항생제 내성

대장균의 특성을 파악하는데 그 목적이 있다. 세 곳의 국립 마사회와

14 곳의 개인 마장에서 채취한 총 3,078 개의 샘플로부터 143 주의 대장균

(4.6%)이 분리되었으며 이 중, 30 주 (21%)는 적어도 1 종류의 항생제에

내성을 나타내었다. 또한, 30 주의 항생제 내성 대장균 분리주 중에서 4 주

(13.3%)는 3 종류 이상의 항생제에 내성을 나타내는 다제내성균으로

확인되었다. Pulsed-field gel electrophoresis (PFGE) 분석을 통하여 분리된

항생제 내성 대장균들의 유전적 상동성을 비교해 본 결과, 대부분의

마장으로부터 각기 다른 PFGE 타입의 항생제 내성 대장균이 동정 되었다.

하지만, 두 곳의 마장에서 분리된 항생제 내성 대장균들의 유전적 상동성을

확인한 결과, 말과 말이 거주하는 환경간에는 내성균이 교차 전파 되었음을

확인할 수 있었다. 이는 비록, 말과 환경으로부터 분리된 내성균이 교차

감염되는 가능성은 낮을지라도 말과 접촉하는 사람에게까지 말 유래의

내성균이 전파될 수 있음을 보여주고 있다.

퀴놀론과 플루오르퀴놀론 계열의 항생제는 사람과 동물에서 널리 사용되고

있는 항생제이다. 특히, 이 항생제들은 대장균과 같은 그람음성균에

효과적이기 때문에 인의와 수의학에서 균 감염을 치료하는데 주로 사용된다. 

하지만, 이는 전세계적으로 퀴놀론 내성균의 출현을 조장하였으며 사람과
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동물의 건강을 크게 위협하는 수준에 이르렀다. 따라서, 두 번째 연구를

통하여 반려동물과 그들의 주인, 그리고 반려동물을 키우지 않는

일반인들로부터 분리된 대장균의 퀴놀론 내성 기전을 확인함으로써 내성이

나타나는 원인을 규명하고자 하였다. 총 104 개의 항문 시료로부터 63 주의

대장균이 분리되었으며 이중, 27 주는 nalidixic acid 에 내성을 보였다. 또한, 

27 주의 nalidixic acid 내성 분리주 중에 10 주는 ciprofloxacin 에 내성을

나타내었다. 내성 기전을 구체적으로 살펴보면, 1 주는 plasmid 상에

존재하는 퀴놀론 내성 유전자를 가지고 있었으며 18 주 (66.7%)는 efflux 

pump 의 활성을 가지고 있었다. 하지만, 무엇보다도 quinolone resistance-

determining regions (QRDRs)라고 불리는 특정 유전자 염기서열에 발생하는

돌연변이가 퀴놀론 내성 기전의 가장 주요한 원인이었다. QRDRs 상에서의

점돌연변이는 모든 nalidixic acid 내성 분리주로부터 관찰되었으며 이와

같은 점돌연변이의 갯수는 최소성장억제농도 (MICs)와 연관성이 다소

낮았다. 흥미롭게도, 반려동물로부터 분리된 퀴놀론 내성균의 내성기전은

사람으로부터 분리된 내성 분리주의 내성기전과 동일하였으며 이는

반려동물로부터 사람으로의 퀴놀론 내성균의 상호 전파를 방지하기 위하여

인의와 수의에서 모두 신중한 항생제의 처방이 필요함을 보여준다.

반려동물은 흔히 사람에게 항생제 내성균을 전파하는 보균체로 여겨진다.

또한, 동물과 사람간에 직접적이거나 간접적인 접촉으로 인하여 발생하는

항생제 내성의 전파는 공중보건학적으로 큰 문제를 야기하고 있다. 하지만, 



134

반려동물 유래의 항생제 내성균이 그들의 주인을 통하여 주인들과 접촉하는

사람들에게까지 2 차적인 경로로 전파될 수 있는지에 대한 연구는 아직까지

이루어지지 않았다. 따라서, 마지막 연구 내용으로 반려동물의 주인들과

이들과 같은 환경을 공유하고 있는 반려동물을 키우지 않는 사람들로부터

분리된 항생제 내성균의 유전적 상동성을 확인함으로써 이들간에 항생제

내성균의 상호 전파 가능성을 확인하고자 하였다. 14 명의 반려동물의

주인들과 34 명의 반려동물을 키우지 않는 사람들로부터 총 48 개의 항문

시료를 채취하였으며 이로부터 31 주의 대장균 (반려동물의 주인으로부터

9 주의 대장균이 분리되었으며, 반려동물을 키우지 않는 사람으로부터

22 주가 분리되었다.)을 분리하였다. 또한, 31 주의 대장균 분리주중에서

20 주 (64.5%)는 적어도 1 종류의 항생제에 내성을 나타내고 있음을

확인하였으며, 3 종류 이상의 항생제에 내성을 나타내는 다제내성균은 16 주

(51.6%)가 확인되었다. 유전적 상동성을 비교한 결과, 유전적으로 100% 

일치하는 3 쌍의 클론이 확인되었으며 이는 같은 환경을 오랜 시간 동안

공유하는 반려동물의 주인들과 반려동물을 키우지 않는 사람들간에는 항생제

내성균의 상호 전파가 가능함을 보여주었다. 더 나아가, 이는 반려동물

유래의 항생제 내성균이 그들의 주인을 통하여 지역사회로도 쉽게 전파될 수

있음을 나타낸다.

항생제 내성은 전 세계적으로 큰 문제이며, 사람, 동물 그리고

환경으로부터 유래된 다제내성균의 출현은 거대한 위협이 되고 있다. 항생제
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내성은 사람, 동물 그리고 환경간의 밀접한 접촉에 의하여 발생하는

복합적인 현상이다. 본 연구의 결과를 통하여 사람, 동물 그리고 환경은

항생제 내성균의 보균체일 뿐만이 아니라 항생제 내성균의 전파체임을

확인하였다. 따라서, 향후에 항생제를 사용함에 있어서는 사람, 동물, 환경의

경계를 가릴 것 없이 “One Health” 개념으로 이해하여야만 효율적인

항생제의 사용을 유지할 수 있을 것이다.

항생제 내성 문제를 해결하는 대표적인 방안에는 사람과 동물에 사용하는

항생제의 지속적인 모니터링 및 관리, 새로운 항생제의 개발, 항생제 내성

기전의 연구 등이 있다. 본 연구를 통하여 반려동물 유래 균주의 퀴놀론계

항생제 내성 기전과 사람 유래 균주의 내성 기전이 동일하다는 것을

확인하였다. 따라서, 동물과 사람에서의 항생제 내성균의 발생을 방지하기

위해서는 수의사와 의사의 신중한 항생제의 처방이 뒤따라야 할 것이다.

주요어: 항생제 내성, 대장균, one health, 말, 반려동물의 주인, 퀴놀론계

항생제

학 번: 2014-30549
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