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Abstract

Clustering is one of the most popular methods to extract meaningful patterns from

data. In genomics, increasingly large amounts of DNA sequencing data are being

generated. Developing effective clustering tools appropriate for each data structure

is a major challenge. In this thesis, we develop the CLQ and CLQ-D clustering

algorithm to partition SNP sequence data using theoretical graph-based approaches.

Based on these clustering algorithms, the LD block construction method, Big-LD,

is able to detect the LD blocks of SNP sequence data using interval graph modeling

of the clustering results. A sparse graph is defined as a graph in which the actual

number of edges is much less than the possible number of edges. Real-world data

including biological, social, and internet network data can be modeled as sparse

graphs. Due to the structural characteristic of SNP data, graph models construc-

ted for the clustering algorithm and LD block construction algorithm have a sparse

structure, which facilitates the efficient operation of the algorithm in terms of time

and memory usage. The Big-LD algorithm detects LD blocks including “holes”,

which are not allowed in the previous methods. Based on the LD block structure

constructed by the Big-LD algorithm, we investigated the relationships between

big LD block structure and biological phenomena using the HapMap phase 3 data

and phase 1 data of the 1000 Genomes Project. The LD block boundaries detec-

ted by the Big-LD algorithm coincided better with the recombination hotspots than

previous methods. In addition, we demonstrate that the comparison of LD block

structures can provide additional information about positive selection using the res-

ults applied to the candidate regions suggested by previous research. By gener-

alizing the Big-LD algorithm, which is designed to partition SNP sequence data
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into blocks, we suggest four clustering algorithms—PSHSC, PSHRC, PSHSQ, and

PSHRQ—for the sparse hypergraph partitioning problem. Simulation experiments

demonstrated that the algorithms generate high-quality partitions in terms of global

and local quality measures. The partitioning results closely agreed with the true un-

derlying cluster structures of simulated hypergraphs. We also applied the developed

algorithm to the problem of predicting protein complexes in yeast protein-protein

interaction network data, and confirm its potential as a tool for clustering biological

network datasets.

Keywords : hypergraph, clustering, maximum weight independent set, clique,

linkage disequilibrium, LD block, single nucleotide polymorphism, positive selec-

tion
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Chapter 1

Introduction

1.1 Motivation

Clustering is one of the most popular methods to extract meaningful patterns from

data. The clustering task for a set of data objects involves identifying groups of ob-

jects sharing similar features in the same cluster compared to the objects in different

clusters. Clustering may allow overlap between clusters. However, many clustering

problems impose a goal of dividing the data objects into disjoint nonempty sets.

This type of clustering is called “partitioning”. In partitioning, the data points are

assigned into only one cluster (partition) based on their similarity and dissimilarity.

The outcomes of clustering can reveal the underlying structure of the data and lead

to new scientific discoveries.

While clustering can be applied to the data with various contexts and types,

there is no gold standard to deal with the problem in a universal way. The clustering

problem can be defined differently in different situations. Sometimes, an optimal

solution cannot be attained due to the impracticality of the application of the theory.

Therefore, it is important to adopt appropriate data modeling for specific problems

and to apply tailored clustering methods to the data in light of the objectives of

problem solving.

In genomics, ever-larger quantities of DNA sequencing data are being gener-

ated, and the discovery of structural characteristics and drawing of biological inter-

pretations from the genomic data has become a major challenge. Single nucleotide
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polymorphisms (SNP) are sequence variations in genomes. SNPs are analyzed to

gain insight into gene-trait associations as well as population genetics [GBH+03,

Sla08, TMP+03, SVF+07, GSK+10, WAZ+02, SMB+07, LH02, JKN01, Man10,

WLZ15]. Clustering has several applications in SNP-based genotype data ana-

lysis. It is useful in the identification of tag SNPs that represent groups of SNPs

in strong linkage disequilibrium (LD) with previously studied tag SNPs. LD is

the non-random association of the alleles of genetic markers. Selection of a set

of tag SNPs requires the identification of clusters of SNPs with strong LD. Once

these clusters are identified, the best tag SNP for a cluster is chosen to repres-

ent the other SNPs in the cluster. The tag SNPs can capture the effects of un-

typed (data unavailable) causal SNPs through an indirect association, which allows

the strategic planning of genotyping and saving of resources. In a genetic asso-

ciation study, an array comprising only tag SNPs that are tailored for the study

can be used for genotyping, with the reduced cost guaranteeing a certain degree

of power to capture the effect of causal SNPs that are not included in the array

[Str04, ZQL+04, HKS05, ENK+07, ZRM+05].

Another recognized clustering problem based on genomic data is the identific-

ation of LD blocks in the genome. An LD block refers to a group of consecutive

genetic markers in strong LD with each other. LD block construction can be seen

as a block partitioning problem, which requires an additional constraint to be added

to the clustering algorithm so that the clustered SNPs are consecutively positioned.

In genome sequence data, the distribution of LD has been theorized as being recip-

rocally proportional to the distance between markers [RCB+01a]. However, actual

LD patterns of SNP data are more complicated. Mosaic patterns are evident, with

SNPs in weak LD with other SNPs being located in the middle of strongly cor-

related SNPs. The disruption caused by low LD SNPs in the high LD region are
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referred to as “holes” [WP03]. The conventional methods of LD block clustering

avoid including holes in the block. This approach seemed reasonable at the time of

development since the methods have been developed using less dense genomic data

in the years before next generation sequencing technology made it possible to ob-

tain whole-genome sequencing data. However, the LD patterns of dense sequencing

data with the genotyping of every single-base marker has revealed that the mosaic

patterns of LD are much more complex than had been thought. The complexity

means that excluding holes in LD blocks will produce blocks that are too short,

rather than revealing the structure of LD formations extended over a wide range in

the genome. In particular, the extended LD around a genetic variant is considered

evidence of positive selection [SRH+02, VKWP06, SVF+07]. Therefore, obtaining

large LD structures from whole-genome sequencing data could provide support for

the population genetic hypothesis.

Clustering problems have been tackled using various types of models including

modeling based on distance metrics like the K-means algorithm, statistical modeling

such as principal component analysis, artificial neural network, and graph model-

ing [HW79, WEG87, BBC02, CPMC96, KWR+01, Sch07, SM00, HS00, ZCY09,

FTT04]. Graph-based approaches allow detailed structural modeling of data ob-

jects, which makes it possible to devise a clustering algorithm tailored for the spe-

cific situation. In graph modeling, a set of objects and their relatedness can be

described by a graph with vertices representing the objects and edges representing

the pairwise relationship between the objects (Figure 1.1(A)). For example, SNP

sequence genotype data can be modeled using a graph whose vertices represent

SNPs, with the two vertices joined by edges with weights assigned according to

the values of pairwise LD measures, such as D′ or r2, obtained from the genotype

data [Lew64]. A group of vertices of a graph model of SNP genotype data can
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be taken as a cluster if every vertex in the subset is joined by edges with bigger

weights. However, the edges linking the vertices of the group and the vertices out-

side the group have a relatively small weight. These clusters of SNPs can be used

to select for tag SNPs. A sparse graph is defined as a graph in which the num-

ber of edges is much less than the number of possible edges. In many areas, such

as social interaction analysis, biology, internet network analysis, and finance, data

are often represented by sparse graphs [SXZF08]. SNP genotype data also can be

depicted by a sparse graph representing the pairwise LD structure in SNPs. Since

the strength of LD tends to diminish as the distance between two SNPs increases,

most SNPs are in high LD with only a small proportion of SNPs in a chromosome.

Using this property, a sparse graph can be constructed if the edges represent high

pairwise LD between a pair of nodes representing SNPs; this helps in reducing the

time and memorized information required to analyze the graph. Another application

of sparse graph modeling is the protein-protein interaction (PPI) network. Usually,

proteins interact with each other to regulate the biological functions, rather than act

as isolated entities; hence, analysis of modules or complexes of proteins based on

protein-protein interactions (PPI) facilitates deeper understanding of the biological

process and mechanism in molecular systems [JZL+14]. PPI can be presented in a

graph (PPI network), where nodes represent proteins and two nodes are joined by

an edge if the corresponding two proteins interact with each other. By analyzing

the structural and topological properties of PPI networks and clustering of densely

connected proteins in the PPI network, functional complexes can be detected.

In SNP sequencing data, the clusters of SNPs chosen by their LD relation-

ship may not be physically consecutive. SNPs that are not included in a cluster but

which are located in between SNPs in the cluster may be also considered as candid-

ates for cluster membership if we wish to find big LD blocks that allow for holes.
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Following this specific requirement, the SNP cluster can be regarded as an interval

that ranges from a starting SNP to an ending SNP of the cluster. If we consider

these intervals corresponding to LD-based clusters as a new level of objects, then

another graph model at a second level can be constructed. In this interval graph, the

intervals are represented by vertices. Overlap between intervals represents the incid-

ence between two vertices (Figure 1.1(B)). This interval graph modeling approach

provides a multi-level strategy to identify hidden structures from the data. LD block

partitioning can be conducted using the second-level interval graph structure, which

makes the block partitioning more natural, since the overlapping intervals (vertices

joined by an edge in the interval graph) should be a block of consecutive SNPs. At

each construction level, the graph model can maintain sparse structural properties

because of the LD structure and the sequential characteristic of the SNP data. Thus,

even a multi-level algorithm can run in real time.

The membership of SNPs in an LD-based cluster can be also depicted by a

hypergraph, which is generalization of a graph by defining the edges (called hy-

peredges) consisting of more than two vertices (Figure 1.1(C)). Hyperedges can rep-

resent the first-level community membership of the objects. The overlap of member-

ship between different hyperedges can be also depicted by a graph in second-level

modeling, which is actually a dualization by a line graph of the hypergraph. By

clustering the line graph of the hypergraph, we can solve a clustering problem given

with the community membership information. Multi-level clustering algorithms

might operate effectively, especially for a clustering problem that can be converted

into a sparse hypergraph. PPI networks are scale-free networks whose degree distri-

butions follow a power-law [JZL+14]. Therefore, we can efficiently search locally

dense sub-networks (i.e. maximal cliques) of a PPI network, since the number of

sub-networks linearly increases with the number of proteins. With the detected
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Figure 1.1: Examples of a graph (A), an interval graph (B), and a hypergraph (C)
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sub-networks of a PPI network, we can construct a hypergraph using hyperedges

representing the subnetworks and apply a multi-level clustering algorithm for the

constructed hypergraph.

For clustering problems, there are two categories of methods. One is a se-

quence of methods that finds the best clusters when the number of clusters is fixed to

a certain number. The other category of methods determines the number of clusters

and also identifies the clusters. The latter has more complexity by introducing an-

other variable, the number of clusters (usually denoted by k) in the optimization. For

the clustering problems of SNP genotype data or PPI networks presented above, the

number of clusters cannot be predetermined since there is no biological foundation

to assume a fixed number for the clusters of SNPs or protein complexes. Therefore,

we need a method to determine the number of clusters for DNA sequencing data of

SNPs or protein complexes.

1.2 Objectives and contributions of the thesis

The main objectives and contributions in this work are summarized as follows:

1. We aim to develop a clustering algorithm for SNP genotype data based on LD

structure. We propose two clustering algorithms, CLQ and CLQ-D, to partition

SNPs into clusters such that every two SNPs in a cluster are in strong LD using the

notion of clique.

2. We aim to develop an LD block construction algorithm that allows “holes” in

the block. We introduce a new LD block construction algorithm, Big-LD, based

on multi-level graph modeling using the notion of the interval graph. In Big-LD,

SNP clusters detected by the CLQ-D algorithm represented using an interval graph

model and LD block partitions are constructed by applying an algorithm to determ-
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ine the number of clusters using the concept of Maximum Weight Independent Set

(MWIS). The data demonstrate that the Big-LD algorithm produces a more optim-

ized solution in the clustering compared to previous methods. Furthermore, the

LD block boundaries determined using the Big-LD algorithm better agree with the

recombination hotspots (biologically expected regions of low LD) than results ob-

tained by previous LD block construction methods. The Big-LD algorithm produces

more invariant results for the changes in the marker density of genomic data, which

can be seen as the missing data situation, compared to previous methods.

3. We aim to reveal the relationships between the big LD block structure detected

by the Big-LD algorithm and population genetics phenomena, especially positive

selection. By comparing the LD blocks obtained by the Big-LD algorithm to the

previously reported candidate regions for positive selection, we show that the big

LD block structure might be used to find positive selection loci. Moreover, based

on the analysis of the big LD block structure, we provide additional evidence for

positive selection in the three gene regions (SLC30A9, PDE11A, and BCAS3) for

East Asian and European populations.

4. We aim to generalize the multi-level clustering approach of the Big-LD algorithm

to the clustering problem by using hypergraph modeling and the dualization by line

graph. The strategy to determine the number of clusters using MWIS for sparse

hypergraph models with a low number of edges. We show that the clustering results

obtained by the suggested hypergraph clustering algorithm show high-quality parti-

tioning results in terms of global and local quality measures, and cluster validation

measures compared to previous methods. Additionally, we apply this clustering al-

gorithm to predict protein complexes in the yeast PPI network data, and compare the

performance between the hypergraph clustering algorithm and the existing methods.
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1.3 Organization of the thesis

In chapter 2, we define various types of graphs, such as edge or vertex weighted

graph, interval graph, intersection graph, line graph, and hypergraph, and detail

important notions related to these graphs.

In chapter 3, we introduce the details of SNP clustering algorithms, CLQ and

CLQ-D, and the LD block construction algorithm, Big-LD. Using data from the

1000 Genomes Project and the HapMap data, we compare our algorithm to other

LD block construction algorithms based on statistical or sequence pattern analysis

regarding the characteristic of the LD block structure and population genetics phe-

nomena, such as recombination hotspots.

In chapter 4, we analyze the LD block structures obtained using the Big-LD

algorithm for several previously suggested candidate regions for positive selection,

and compare the results to other methods detecting positive selection loci. We show

the potential value of the Big-LD algorithm as a detection tool for positive selection,

and also show that LD block comparisons can provide additional information for

positive selection in regions of SLC30A19, PDE11A, and BCAS3 for East Asian

and European populations based on the LD block patterns.

In chapter 5, we propose partitioning algorithms for sparse hypergraph as a

generalization of the Big-LD algorithm. We suggest four algorithms (PSHSC,

PSHRC, PSHSQ, and PSHRQ), which differ in the scope of the “dense-set” or the

construction of intersection graph. We introduce various kinds of quality measures

for clustering in terms of local quality, global quality and validation of clusters. We

generate simulated data of various hypergraphs assuming a set of underlying clus-

tering structures. With these data, we compare the results and performances of our

algorithms with the results of the other method, hMETIS [KK98a], using the quality
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measures. We also apply our algorithms to the DIP (the Database of Interacting Pro-

teins) dataset of PPI networks [XSD+02], and compare the results of our algorithm

with the results of the existing methods, MCODE[BH03], CFinder[APF+06], PE-

WCC[EZB12], and NCmine[TK16]. Chapter 6 concludes the thesis by providing a

summary of the work and the evaluation results. It also suggests prospects for future

research.
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Chapter 2

Preliminaries

2.1 Basic graph theory

Graph theory is the study of graphs, which are models for objects with pairwise

relations. In this thesis, we develop a number of clustering algorithms based on the

graph theory. We first introduce the basic notions and terminologies in graph theory

used in this research.

Definition 1. (Graph) A graph G is an ordered pair (V (G), E(G)) consisting of a

set V (G) of vertices and a set E(G) of edges, where each edge of G is an unordered

pair of vertices of G.

Given a graph G, a function wG : V (G) → R can be defined on a vertex

set V (G). We call wG(v) the weight of v ∈ V (G). Together with weights on its

vertices, G is said to be a vertex-weighted graph and denoted by (G,wG). Given

a graph G, let w′
G : E(G) → R be the function defined on an edge set E(G).

We call w′
G(e) the weight of e ∈ E(G). Together with weights on its edges, G

is said to be an edge-weighted graph and denoted by (G,w′
G). A subgraph G′ =

(V (G′), E(G′)) of G is a graph with a vertex set V (G′) ⊂ V (G) and an edge set

E(G′) ⊂ E(G). A subgraph G′ of G is said to be induced by a vertex set S ⊂ V (G)

if S = V (G′) and E(G′) = {e|e ∈ V (G′) and e ∈ E(G)}. We denote by G[S]

the subgraph of a graph G if it is induced by S ⊂ V (G). The number of edges

incident to a vertex of a graph G is called the degree of v and denoted by dG(v). A

set of vertices adjacent to a vertex of a graph G is called the neighborhood of v and
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denoted by NG(v). The union of NG(v) and {v} is denoted by NG[v]. We mean a

partition of V (G) by a partition of G.

Definition 2. (Interval graph) Let I={I1, I2, . . . , In} be a set of closed intervals

of real lines. The interval graph G of I, denoted by GI , is defined as a graph

(VI , EI) where VI = {v1, . . . , vn} and {vi, vj} ∈ EI if and only if Ii ∩ Ij ̸= ∅.

Definition 3. (Line graph) For a given graph G, its line graph, denoted by L(G),

is a graph such that the set of vertices is E(G) and two vertices ei, ej ∈ E(G) are

joined by an edge if and only if ei ∩ ej ̸= ∅.

Definition 4. (Clique) A clique of a graph G is a set of vertices C ⊂ V (G) any two

of which are adjacent. A maximal clique in G is a clique which is not a subset of a

larger clique. A largest clique in G is a clique which has the maximum size among

all the cliques in the graph.

Definition 5. (Independent set) A set of vertices is said to be an independent set

(IS) if no two vertices in the set are adjacent. In a vertex-weighted graph (G,wG),

maximum weight independent set (MWIS) is an independent set of which the sum

of weights on vertices is greatest among the sums of weight of all the independent

set

Definition 6. (Intersection graph) An intersection graph IF of a family of the sets

F = {F1, F2, ..., Fk} is a graph in which a set of vertices is the family F and if two

vertices Fi, Fj ∈ F are joined by an edge if and only if Fi ∩ Fj ̸= ∅.

Definition 7. (Hypergraph) A hypergraph H = (V (H), E(H)) is defined as a set

of vertices V (H) and a set of hyperedges E(H) where each hyperedge is a subset

of V (H).
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Hypergraphs can be thought as generalizations of graphs. We may give a func-

tion w′
H : E(H)→ R from the hyperedge set of a hypergraph to the set of real num-

bers, similarly to the graph case. A sub-hypergraph H ′ = (V (H ′), E(H ′)) of H is

a hypergraph with a vertex set V (H ′) ⊂ V (H) and an edge set E(H ′) ⊂ E(H).

A sub-hypergraph H ′ of H is said to be induced by a vertex set U ⊂ V (H) if

U = V (H ′) and E(H ′) = {e|e ∈ E(H) and e ∈ V (H ′)}. A degree of a vertex v

in H , denoted by dH(v), is defined as the number of hyperedges which contains the

vertex v, i.e., dH(v) = |{e ∈ E(H)|v ∈ e}|. We mean a partition of V (H) by a

partition of H .

Similarly for the line graph of a graph, the line graph of a hypergraph can

be defined as follows: given a hypergraph H , its line graph, denoted by L(H), is

a graph such that the set of vertices is E(H) and two vertices ei, ej ∈ E(H) are

joined by an edge if and only if ei ∩ ej ̸= ∅.

2.2 Terminologies in genetics

Genome-Wide Association Studies (GWAS)

GWAS is an attempt to identify the associations between genetic risk factors and

diseases in the population by analyzing the DNA sequence variations across the hu-

man genome. The important goals of GWAS include making predictions about the

risk of disease and identifying the biological basis of genetic effects for developing

new treatment and prevention of disease [BM12].

Single Nucleotide Polymorphism (SNP)

An SNP is a variation at a single base position in a DNA sequence among indi-

viduals [BM12]. It has been predicted that there are more than 10 milion SNPs

in the human genome for minor allele frequency (MAF; the frequency of the least
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frequent allele) at 1% [KN+01]. SNP data have been analyzed for gene-trait asso-

ciation studies as well as population genetic research.

Linkage Disequilibrium (LD)

LD is the non-random association between alleles at different loci (positions on a

chromosome; the singular form is ’locus’). Suppose there are alleles A and a at an

biallelic marker and B and b at another marker. Let the allele frequencies of A and

B be pA and pB . Similarly let pAB be the frequency with both A and B occuring

together in the same gamete. The LD coefficient D is defined as

D = pAB − pApB.

Since the range of the LD coefficients depends on the frequency of the alleles, Le-

wontin [Lew64] suggested normalizing D as follows:

D′ = D/Dmin

where

Dmin =

 max{−pApB,−(1− pA)(1− pB)} when D < 0

min{pA(1− pB), (1− pA)pB} when D > 0

However, a high value of D′ cannot guarantee that one locus can predict the other

with high accuracy. The correlation coefficient r or r2 can be an alternative to D′,

and r is defined as

r =
D√

pApB(1− pA)(1− pB)

Recombination

Recombination is a process in which pieces of DNA are broken and recombined to
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produce new combinations of alleles. This recombination process creates genetic

diversity at the level of genes that reflects differences in the DNA sequences of

different organisms. Recombination events preferentially occur in specific regions

called recombination hotspots.

Positive Selection

Positive selection is the process in which beneficial genetic variants tend to become

more frequent in populations. Understanding the traits of positive selection provide

insight into how humans have evolved and the emergence of various diseases today

[SSF+06].
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Chapter 3

Clustering of genomic data

3.1 Background

Understanding the patterns of linkage disequilibrium (LD) across the human gen-

ome, especially its block-like structures, has interested many researchers in genet-

ics because it provides useful insight for disease association mapping and popula-

tion genetics [GBH+03, SVF+07, Sla08, DRS+01, RCB+01b, JKN01, BFMD05,

TMP+03, WAZ+02]. These blocks are called LD blocks or haplotype blocks. It

has been observed that LD block regions can vary in size, and strong LD extends

over each block region until it breaks down abruptly possibly due to recombina-

tion hotspots or population genetic phenomenon [JKN01, SS05]. Recombination,

mutation, selection, or other evolutionary history can affect LD block patterns in

the aspects of location and length of blocks [MMH+04]. Identifying LD blocks,

therefore, can provide evidential groundings for population genetic arguments and

necessary information for the design and analysis of genetic association studies for

complex diseases [REW+04, WAZ+02, WKE+10].

Researchers have proposed several methods to determine LD blocks from pop-

ulation data consisting of independent unrelated individuals [PRFP08, GSN+02,

WAZ+02, BFMD05, TGP14]. Pattaro [PRFP08] developed an method, called MAT-

ILDE, to identify LD blocks based on LD measure either D′ [Lew64] or r2 using

a MCMC algorithm and used the partitioning results in genetic association ana-

lysis. Gabriel et al [GSN+02] showed that the human genome can be partitioned
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into LD blocks within which little evidence of recombination and less haplotype

diversity is observed. They proposed a method, called the confidence interval (CI)

method, to define haplotype blocks using a 95% confidence bound for an LD meas-

ure D′ [Lew64]. Wang et al [WAZ+02] suggested a different approach to defining

LD blocks using the four-gamete test (FGT) that identifies the occurrence of past

recombination events. Both methods, CI and FGT, are implemented in the soft-

ware package Haploview [BFMD05] which is a visualization and analysis tool for

haplotype patterns. In Haploview, LD blocks can be recognized by an additional al-

gorithm called “Solid Spine (SS)” with which an LD block consists of all the SNPs

that are in strong LD with the first and last SNPs in the block (Haploview docu-

mentation). Recently, Taliun et al. [TGP14] developed an algorithm called MIG++,

with increased computational efficiency incorporating an incremental computation

strategy and estimation methods of approximated confidence interval for D′ [Zap11]

applying the LD block definition of Gabriel et al. [GSN+02] to extensive high-

throughput datasets such as whole-genome sequencing data; a version of MIG++

is now implemented in PLINK [CCT+15]. Another computationally improved LD

block construction algorithm named S-MIG++, also using the definition of Gab-

riel et al. [GSN+02], adopts a two-step approach: the estimation step finding the

upper limits of the haplotype blocks by sampling a fraction of SNP pairs and the

refinement step determining exact haplotype boundaries [TGLP16].

Nowadays, high-throughput genotype data such as genome-wide SNP array

data or whole genome/exome sequencing data are collected and analyzed for gene-

trait association studies [Man10, WLZ15]. An efficient approach for the analysis

of high-throughput genomic data and a good alternative to single-SNP methods

is to combine the effects of multiple SNPs on disease phenotype, [NS04, Pan09,

WKE+10, NRV+11]. However, to apply multi-SNP analysis methods, it is ne-
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cessary to specify a set of SNPs to be combined prior to performing multi-SNP

tests. To specify these SNP sets, LD block information can be utilized in combina-

tion with gene or pathway information [WKE+10, ZGS+11]. For some multi-SNP

tests, higher LD among combined SNPs can improve the power of the test, but

having fewer SNP-set analysis units and independent global null hypotheses that

correspond to each of the units is preferred as a simple way to reduce type I error

inflation [YKB15, DLS14]. Yoo et al. [YKB15] proposed and evaluated a gene-

based multi-SNP combination method that combines the effect of SNPs in “LD

bins” using CLQ, a clique-based SNP clustering algorithm.

In this thesis, we develop a new algorithm called Big-LD that adopts a wider

sense LD block definition - a block region based on the LD bin clusters. To do this

we utilize LD bins constructed using CLQ-D, a modified version of the previous

LD bin construction algorithm CLQ [YKB15, YSP+17], and consider the intervals

defined by the physical positions of the starting and ending SNPs of each LD bin.

Each interval corresponding to an LD bin represents the physical range of LD asso-

ciated with SNPs in that bin. In the Big-LD algorithm, we model the relationships

between intervals by a graph with vertices that represent the LD bin intervals and

edges that represent the overlap between LD bin intervals. By applying an algorithm

that partitions the vertex set of the interval graph into mutually exclusive sets by

selecting an independent set with the maximum weight, Big-LD automatically de-

termines the number of partitions to be formed into LD blocks. Using data from

the 1000 Genomes Project and the HapMap Phase III of East Asian populations, we

show that the LD blocks found by Big-LD are larger than the blocks produced by the

existing methods MATILDE, Haploview, MIG++ or S-MIG++. Furthermore, using

data of class II regions of MHC with true recombination hotspot information exper-

imentally determined in a prior study [JRN00, JKN01], we show that, compared to
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the existing methods, the LD block boundaries obtained by Big-LD coincide more

closely with recombination hotspot positions.

3.2 Algorithms

3.2.1 CLQ algorithm

Suppose that the SNP sequence data consist of genotypes of a total of n SNPs in

m individuals. Let S={s1, s2,. . ., sn} be the set of SNPs and y(si) be the phys-

ical position (in base pair; bp) of si in the chromosome. We may assume that

s1, s2,. . ., sn are arranged so that y(s1) < · · · < y(sn). We also assume an ad-

ditive genetic model such that the genotype of each individual for each SNP is the

count of the risk allele (usually the minor allele), i.e. either of 0, 1 or 2. Each gen-

otype vector of SNP si of m individuals is denoted as Xi. Then the pairwise LD

measure r2ij between two SNPs si and sj can be obtained by squaring the Pearson

correlation coefficient rij between additive genotypes Xi and Xj . We can construct

an edge-weighted complete graph G with the given SNP set S as the vertex set

and the edge set E= {{si, sj} | si, sj ∈ V, i ̸= j} with wE ({si, sj}) = |rij | for

{si, sj} ∈ E. Then the SNPs and their LD structures are represented by the graph

G = (S,E,wE).

Overall, LD between two SNPs tends to decrease as the physical distance

between them increases [Tak82, CLM99, Ott00]. However, this relationship does

not occur monotonically, and a group of strongly correlated SNPs can be formed

by non-consecutive SNPs. We call a group of strongly correlated SNPs an LD bin

within which every SNP is highly correlated with the other SNPs.

We developed an algorithm called CLQ that partition SNPs into LD bins using

a greedy clique partitioning method [YKB15]. The CLQ algorithm starts by mod-
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eling SNP set data by a graph in which vertices are SNPs and edges between two

SNPs si and sj exist whenever |r| between them exceeds a given threshold. Then,

by the Bron-Kerbosch algorithm [BK73, ELS10], all maximal cliques in the graph

are identified and among them the largest clique is taken as the first LD bin. We then

remove SNPs already taken as the LD bin, and again choose the next largest clique

as the next LD bin among remaining maximal cliques. Repeating this procedure,

the CLQ algorithm partitions the SNPs into a set of LD bins that are actually cliques

in the graph.

The CLQ algorithm is as follows:

Step 1. To find high-correlated groups of a given graph G = (S,E,wE), delete

edges with the relatively small weights. To be more specific, given a threshold θ, an

edge {si, sj} satisfying wE ({si, sj}) < θ is to be deleted from G. Let G1 = G

with S1 = S and E1 = E be the graph obtained by deleting those edges.

Starting with B1, iterate the selection of the kth cluster Bk found from the

graph Gk in steps 2 to 4.

Step 2. For each vertex in Gk, find the maximal cliques that contain the vertex using

the Bron-Kerbosch algorithm implemented in igraph package [BK73, ELS10] and

select the largest clique of maximal cliques found for all vertices. Proceed to Step 5

if there is no maximum clique with at least two vertices. Otherwise, proceed to the

next step.

Step 3. Apply the Wang and Elston SNP recoding algorithm [WE07] (Appendix A)

to the maximum cliques chosen in Step 2. If all pairwise correlations between

SNPs in the clique can be recoded to be positive, then take the SNPs corresponding

the chosen clique as the cluster Bk. If negatively correlated SNPs still exist after

the coding correction algorithm has been applied to this clique, discard the chosen

clique and select the next largest. If there are multiple cliques in Gk with the largest
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size and all SNPs can be recoded to be positively correlated, chose the one with the

largest sum of absolute correlation. Repeat application of the recoding algorithm

until Bk is determined. If there is no clique with at least two vertices that can be

recoded to have all positive correlations, proceed to Step 5.

Step 4. Remove SNPs in Bk from Sk and denote it as Sk+1 = Sk\Bk. Let Gk+1

be a subgraph of Gk induced by Sk+1. Iterate Steps 2∼4 unless the condition to

proceed to Step 5 is met or all SNPs are assigned into a cluster.

Step 5. If there is no maximum clique with at least two vertices in Gk, the SNPs in

Vk will be partitioned into singleton clusters. In this way all the SNPs are assigned

into clusters B1, · · · , Bl for some l ≤ n. Then V1 =
l⋃

k=1

Bk where Bj
⋂
Bk = ∅

for j ̸= k and Bk ̸= ∅ for k = 1, · · · , l.

3.2.2 CLQ-D: construction of LD bins

For the new LD block partition algorithm, we modify the original CLQ LD bins

selection to give priority to bins where SNPs are relatively close in physical prox-

imity. To do this, we develop CLQ-D as a modified version of CLQ incorporating

a marker-density function of cliques defined using the size k of the clique and the

range of physical positions of the SNPs in the clique. The marker-density function

D of a clique Q with size k is defined as D (Q) = k
b−a if k > 1, where a and b

are the minimum and the maximum, respectively, of the bp positions of the SNPs in

Q, and D (Q) = 0 if k = 1. When choosing an LD bin among the set of maximal

cliques in each iteration of the greedy algorithm, we give the priority to the clique

with the maximum marker-density D. The details of the newly developed CLQ-D

algorithm are as follows:

Step 1. To find high-correlated groups of a given graph G = (S,E,wE), delete

edges with the relatively small weights. To be more specific, given a threshold θ, an

21



edge {si, sj} satisfying wE ({si, sj}) < θ is to be deleted from G. Let G′ be the

graph obtained by deleting those edges.

Step 2. Find the family of all the maximal cliques Q = {Q1, Q2, . . . , Qq} of G′

using the Bron-Kerbosch algorithm [BK73, ELS10] implemented in the R igraph

package [CN06].

Step 3. If a clique in Q has two consecutive SNPs with distance between them is too

far, say above a threshold ρ, divide the clique into two cliques so that the distance

between two consecutive SNPs is within ρ. Update Q with these cliques in which

the distance between two consecutive SNPs is at most ρ.

Step 4. Calculate the density of each clique in Q. Choose i ∈ {1, 2, · · · ,m} such

that the density D (Qi) is the maximum over Q and take Qi as a first LD bin B1 and

let Q(1) = {Q1\B1, · · · , Qm\B1} where Qj\B1 (j = 1, 2, · · · , q) is the set of

elements in Qj and not in B1. Since a subset of a clique is also a clique, Q(1) is still

a family of cliques.

Step 5. Apply the same procedure as Step 4 to Q(1) to obtain Q(2) and LD bin B2.

Repeat this procedure until all the cliques in Q(t) for some t are singletons. In this

way we obtain B1, . . . Bt.

Step 6. Take the cliques in Q(t) that are singleton LD bins and add them to the set of

the previously chosen LD bins B1, . . . ,Bt. In this way all the SNPs are assigned into

mutually exclusive LD bins B1, B2, . . . , Bl so that S=
⋃l

i=1Bi and Bi ∩ Bj = ∅

for i ̸= j.

A heuristic procedure to reduce the computational time to find maximal
cliques

For a graph G with n vertices, the algorithm finds all maximal cliques in time

O(dn3d/3) where the value d, the degeneracy of a graph G, is the smallest value
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such that every nonempty subgraph of G contains a vertex of degree at most d

[ELS10]. Since the runtime grows exponentially as the degeneracy increases, run-

ning CLQ-D for a non-sparse graph with many vertices may require massive com-

putation time. The SNP sequence data sometimes have such regions that correspond

to graphs with large edge-density (defined as the ratio of the number of edges in a

graph over the number of all possible edges in a graph) when the LD extends over

a large region. Therefore, we incorporate a heuristic procedure in CLQ-D to reduce

computational time when the graph has many vertices and is not sparse.

To measure sparsity of a graph, we use the concept of a k-core of a graph and

the coreness of a vertex. A k-core of a graph G is a maximal subgraph in which

every vertex has at least degree k, and the coreness of a vertex is k if it belongs

to a k-core of G, but not to any (k + 1)-core. If there exists a k-core of G, the

degeneracy of G is at least k. For CLQ-D, we decide that the graph is not sparse if

the number of vertices is more than 500, and either the median and the maximum of

the corenesses of the vertices in the largest component (a component is a subgraph

in which any two vertices are connected by a sequence of edges) of the graph is

greater than 80 and 100, respectively, or the 75th percentile and the maximum of

the corenesses are both greater than 100. If the graph is not sparse, we select the

one having the highest edge-density among the subgraphs each of which is induced

by a vertex with at least top 30% degree and its neighbors, and delete it from the

graph. We repeat this procedure in a greedy manner until the graph induced by the

remaining vertices is not sparse. If the remaining graph reaches the sparsity criteria,

then we go to Step 2.
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3.2.3 Big-LD: construction of LD blocks

Let H = {B1, B2, . . . , Bl} be the set of LD bins obtained by the CLQ-D algorithm

(Figure 3.1B). Interval representation of H can be formulated from the physical

positions (bp) of SNPs. For each LD bin Bi = {si1 , si2 , . . . , siki} where y(si1) <

y(si2) < · · · < y(siki ), we can define an interval corresponding to Bi as Ii =

[y(si1), y(siki )]. We then obtain a set of intervals I = {I1, I2, . . . , Il} such that Ii

corresponds to Bi for each i = 1, . . . , l. (Figure 3.1C).

Each interval corresponding to an LD bin represents the range of the LD asso-

ciated with SNPs in that bin. When some LD bin intervals overlap one another, we

may infer that the LD extends over the combined region of these overlapping inter-

vals. In this sense, we assume that a set of LD bin intervals that overlap each other

are more likely to be included in the same LD block. Based on this assumption, we

construct an interval graph which reflects the intersection patterns of the range of

LD bins and cluster them into an optimal partition where the LD within the same

block remains strong and the LD between the SNPs in different blocks is relatively

low. To do this, first define an interval graph G = (V, E) of I with the vertex set

V = {v1, v2, . . . , vl} and the edge set E = {{vi, vj}|Ii ∩ Ij ̸= ∅} (Figure 3.1D).

A set of mutually overlapping intervals corresponds to a clique in the interval

graph G, and the union of the intervals corresponding to the clique forms an interval

that could be considered as an LD block since strong LD extends over these over-

lapping intervals. By an appropriate clique partitioning of the interval graph G, we

can find an optimized LD block partitioning of the genomic data. We perform this

clique partitioning using a greedy algorithm which finds a maximum weight inde-

pendent set of a graph which is updated at each iteration by taking the cliques in the

current interval graph as the vertices and joining two vertices by an edge whenever
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the intervals corresponding to the two vertices overlap in the current interval graph.

For the vertex weights of this graph, we assign the number of SNPs in the clique

corresponding to the vertex (Figure 3.1E). In this weighted graph constructed using

all possible cliques of the interval graph, we choose an independent set of vertices

such that the sum of weights assigned to its elements is the maximum. Each inter-

val region corresponding to a vertex in this set is recruited as an LD block, and LD

blocks selected in this way would not overlap each other since the vertices in an

independent set do not have edges between them (Figure 3.1F). Once we recruit LD

blocks from one iteration of the greedy algorithm, some SNPs could remain that are

not covered by the intervals corresponding to the independent sets we have chosen

so far. We apply the same process to the graph of updated intervals after deleting the

chosen SNPs from the previously selected intervals. The detailed steps of Big-LD

algorithm are as follows:

Step 1. Find all the cliques, say C1, C2, . . ., CM , in an interval graph G = (V,E) of

I by using the algorithm of Tsukiyama et al. [TIAS77] implemented in the R igraph

package [CN06]. (If maximum coreness of G is greater than 10, we find all max-

imal cliques instead cliques by using the Bron-kerbosh algorithm [BK73, ELS10]

to avoid exponential increase of the computational time and memory usage.)

Step 2. For each i ∈ {1, ...,M}, since the intervals corresponding to the vertices

in Ci are mutually overlapping, the union of those intervals forms an interval which

we denote by Ji.

Step 3. Take an interval graph of J (1) = {J (1)
1 , ..., J

(1)
M } with the vertex set V (1) =

{v(1)1 , ..., v
(1)
M }. We assign a weight to vertex v

(1)
i as the number of all SNPs which

belong to the LD bins corresponding to clique Ci for each i = 1, ...,M to obtain a

weighted interval graph.

Step 4. By using an algorithm to find a maximum weighted independent set of a
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Figure 3.1: An illustration of CLQ-D and BIG-LD algorithm applied to a region in chromosome 22
(chr 22: 20,197,335∼20,277,113) using 1000G dataset. (A) An LD heatmap of 141 SNPs in this
region. (B) LD bins constructed using CLQ-D algorithm in this region. The positions of SNPs in
each LD bin region are shown in color in each strip. The numbers in red color show the order of LD
bins selected by the greedy process of CLQ-D. (C) Interval representation of LD bins obtained in B.
(D) The interval graph G of the set of intervals given in C. Each vertex corresponds to LD bin in B
and each edge corresponds to the overlapping relationship between two intervals. (E) All possible
cliques in G. The weight on each interval clique (grey colored number) is obtained as the total
number of SNPs in the union of LD bins that correspond to the vertices of each clique in G. (F) The
result of the first iteration of BIG-LD algorithm. For each chosen clique in G, union of intervals
which correspond to vertices in the clique is taken as an LD block. (G) The final LD blocks obtained
by BIG-LD algorithm.
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vertex weighted interval graph (the details of the algorithm are stated in below, and

its pseudo code can be found in Algorithm 3.1), find a maximum weight independent

set K(1) = {v(1)i1
, ..., v

(1)
ik1
} of the weighted interval graph obtained in Step 3. Note

that the intervals J
(1)
i1

, ..., J
(1)
ik1

corresponding to the vertices in K(1) are mutually

disjoint. We take J
(1)
i1

, ..., J
(1)
ik1

as the first set of LD blocks obtained from the first

iteration.

Step 5. Update each J
(1)
i , i = 1, ...,M by removing the region taken as the

LD block at the previous step, i.e. the difference set after removing the union of

J
(1)
i1

, ..., J
(1)
ik1

. It could become an empty set or a non-empty subinterval of J
(1)
i .

Update J (1) into J (2) as the set of the resulting subintervals.

Step 6. If J (2) is non-empty, then repeat the same procedure from Step 3 to Step 6

for J (2) to obtain a set of LD blocks which are to be added to the previous set of LD

blocks to form the current set of LD blocks. Repeat the iteration until the updated

set of interval is empty. If it is empty set, stop and obtain the final set of LD blocks

(Figure 3.1G).

An algorithm to find maximum weighted independent set (MWIS) of
interval graph

Let G = (V, E, w) be a vertex weighted interval graph and T be an interval

representation of G. Also, we label V by the order of the left endpoints of the

intervals such as V = {1, 2, . . . , n}.

The construction of the maximum weighted independent set (MWIS) starts from

the low order vertices to the high order vertices. First, we obtain Pi={u ∈ V |u <

i, u/∈Adj (i)} for each vertex i ∈ V where Adj (i) is the set of all adjacent vertices

to i. Note that each vertex u ∈ Pi is independent of vertex i, and k ∈ Pi and

j ∈ Pk implies j ∈ Pi , i.e., j, k and i are all independent. We construct the set

27



Qi=Pi−
⋃

k∈Pi
Pk for each vertex i ∈ V so that if k ∈ Pi and j ∈ Pk, then j /∈Qi.

To find MWIS efficiently, we obtain the maximum cumulated weight sum W (i)

over the cumulated weight sums of the independent sets including i and independ-

ent vertices preceding i, and the pointer H(i) indicating the independent and imme-

diately preceding interval of interval i present in the independent set having W (i)

as the cumulated weight sum. The detailed steps are given as follows. Consider

all independent sets L that contain vertex i and vertices that are independent of i

and also of each other and their labels are less than i. Let Ki be the set satisfying

that the sum of vertex weights is the maximum among L. Let W (i) be the sum of

vertex weights in Ki and H(i) be the immediate predecessor of i in Ki considering

the labels of the order of intervals. If there is no immediate predecessor of i in Ki,

H(i) does not exist. From 1 to n in V , we obtain W (i) and H(i) for each i ∈ V .

Finally, if we take vertex x whose cumulated weight W (x) is greatest of W (i) for

i= 1,. . .,n then we can construct MWIS K by recruiting the pointer H(x), an im-

mediate independent predecessor of i, recursively until we reach an interval with no

independent predecessor.

The rules to divide the SNPs into sub-tasks

To apply the CLQ-D and the Big-LD algorithms to big data with many SNPs, we

can partition the entire region of the data into sub-regions of consecutive SNPs and

apply the CLQ-D and Big-LD separately to reduce the computing time and memory.

To do that, we need some strategy to efficiently combine the results of these sub-

tasks. In the implementation of the Big-LD algorithm to deal with data with many

SNPs, we predefine an upper limit for sub-task size (λ), the number of SNPs in a

sub-region, and divide the SNP sequence into sub-tasks for a given task size limit λ.

The break points for sub-tasks are selected by examining each position between two
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Algorithm 3.1: Algorithm to find maximum weighted independent
set(MWIS) of interval graph

input : vertex set V of weighted interval graph and weight w(v) of each vertex v
output: maximum weight independent set K

/* Procedure get Pi: */
1 for i ∈ V do
2 Pi ← ∅ for u /∈ Adj(i) do
3 if u < i then
4 Pi ← Pi ∪ {u};

/* Procedure get Qi: */
5 for i ∈ V do
6 for j ∈ Pi do
7 Qi ← Pi − Pj ;

/* Find maximum weight independent set K: */
8 T ← V −

⋃
Qi for i ∈ V do

9 if Qi = ∅ then
10 W (i)← w(i);
11 H(i)← ∅;
12 else
13 W (i)← maxj∈Pi W (j) + w(i);
14 H(i)← j;

15 select y ∈ V such that W (y) = maxv∈V W (v);
16 K ← ∅;
17 while y ̸= null do
18 K ← K ∪ {y};
19 y ← H(y);

20 return K
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consecutive SNPs on each chromosome in the sequence order. The first choices of

break points are weak LD points where the r2 value between an SNP chosen from

the rightmost z1 number of SNPs in the preceding sub-region and an SNP chosen

from the leftmost z1 number of SNPs in the following sub-region is always less

than 0.5 for a given z1 (in this study, always set to 200). In the searching process

to find weak LD points between two consecutive SNPs in the sequence order, we

skip to the next position if we find any pair of SNPs with r2 greater than or equal

to 0.5 while examining the SNP pairs closer to the position of interest with priority.

If a sub-region partitioned in this way exceeds the size limit, we split it at some

relaxed weak LD point closest to the center to minimize the number of SNP pairs

which satisfy r2 less than 0.5 between an SNP chosen from the rightmost z1/5

number of SNPs in the preceding sub-region and an SNP chosen from the leftmost

z1/5 number of SNPs in the following sub-region. This procedure is repeated until

each of the sub-regions has a size within the limit λ. If the algorithm fails finding

the break points after scanning 5 × λ, then we divide the whole sequence into the

sub-regions of size of λ/2.

Once sub-regions are decided in this way, the Big-LD algorithm is applied to

each sub-region to obtain a tentative set of LD blocks. After we obtain the tentative

set of LD blocks from all sub-tasks, we take all pairs of consecutive sub-regions and

apply the Big-LD algorithm again for the SNPs included in the last LD block of the

preceding sub-region and the first LD block of the following sub-region in order to

determine final LD blocks at the boundary of sub-regions.

Big-LD execution for the data including rare/low frequency variants

Since the probability to detect LD is low when the minor allele frequency (MAF)

of a SNP in consideration is low [Lew95, GHHW00], we basically developed the
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Big-LD algorithm to construct LD blocks based on common SNPs. For the data

including rare/low frequency SNPs, below a MAF threshold value (usually, 0.05

or 0.01), we devised a two-stage process in which an initial LD block construc-

tion is first performed using the SNPs of which MAF is at least a threshold value,

followed by extra steps that assign rare/low frequency SNPs with the MAF below

the threshold into initially constructed blocks or add new blocks. The detailed steps

taken after initial LD block construction using common SNPs is done are as follows:

Step 1. Assign rare SNPs (MAF below the threshold) to an initially constructed LD

block if the rare SNPs are located between the first SNP and the last SNP of the

block.

Step 2. For each rare SNP located between two consecutive non-singleton LD

blocks, say B1 and B2, obtain the proportion of the SNPs (common and rare) within

each of B1 region and B2 region in strong LD with the rare SNP. Here, “strong LD”

means |r| > θ (threshold for CLQ-D).

Step 3. If the proportions obtained in step 2 for all rare SNPs between B1 and

B2 are all less than or equal to a threshold τ , execute Big-LD algorithm with all

SNPs between B1 and B2 as inputs and add the new LD blocks found from it. The

threshold τ is set to be 0.4 throughout this thesis, which has been chosen as the value

close to the empirical mean of such values obtained from chromosome 22 common

SNP data of the 1000G dataset.

Step 4. If there are rare SNPs located between blocks B1 and B2 with the pro-

portions obtained in the step 2 exceeding the threshold τ , extend each of B1 and

B2 to include that SNP, respectively. For the region remaining after extension of

blocks, run Big-LD algorithm for the SNPs in that region as inputs and add the

newly obtained LD blocks.

Step 5. If the extended regions of B1 and B2 in the step 4 overlap each other, run
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Big-LD algorithm for the entire region of B1, B2, and the region between B1 and

B2 as inputs and update LD blocks for the combined region.

3.3 Evaluation of Big-LD algorithm

3.3.1 Evaluation data

We conducted performance evaluations and comparisons with some existing meth-

ods using three datasets: 1000 Genomes Project phase 1 release 3 (1000G) with

286 individuals from JPT, CHB and CHS populations [C+12]; HapMap phase III

(HapMap) with 170 individuals from JPT and CHB populations [C+10]; the class

II region of the major histocompatibility complex (MHC) with 50 north-European

British semen donors [JKN01].

To evaluate runtime, memory, and the effect of sub-region sizes for the imple-

mented Big-LD algorithm, we used the 1000G dataset of chromosome 1 through

22 (13,288,240 non-monomorphic SNPs). To compare the Big-LD block parti-

tion results with the other methods and assess recombination hotspot estimation we

used the 1000G phased genotype data of 75,582 SNPs in chromosome 22 (chr22:

16,050,612∼51,243,297) after trimming with a minor allele frequency threshold of

0.05 and excluding insertion/deletion(indel) polymorphisms. For the HapMap data-

set, we used the phased genotype data of 13,994 SNPs in chromosome 22 (chr22:

16,180,203∼51,219,006) after applying the same pruning criteria as for 1000G.

The original MHC dataset contains unphased diploid genotypes for 264 SNPs

and 22 indels in 84kb resequenced regions [JKN01]. In this study, we used a subset

of 263 SNPs without missing data or any indels for comparison of the LD block

partition methods and the recombination hotspot locations experimentally identi-

fied by sperm-typing analysis of the same individuals which have been reported in
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[JKN01]. Since the original data are unphased diploid genotype data, the haplo-

types of 263 SNPs were reconstructed by PHASE v2.1.1 program [SSD01, SS05]

and these were used as the input data for various LD block partition methods and

recombination hotspot estimation methods. The MHC dataset can be downloaded

from http://www.le.ac.uk/genetics/ajj/HLA/.

3.3.2 Implementation and performance evaluation

We implemented the CLQ-D and Big-LD algorithms in R. For the modified Bron-

Kerbosch algorithm [BK73, ELS10] that finds all maximal cliques in a graph, re-

quired in CLQ-D and Big-LD implementation, we used the R library igraph package

[CN06] in which the modified Bron–Kerbosch algorithm is written in ANSI C. For

the algorithm to find all cliques in the graph, we used the method of Tsukiyama

et al. [TIAS77] implemented in R igraph. We apply CLQ-D algorithm adopting

heuristic procedure for evaluation of the runtime and memory of the data sampled

from the entire autosome data of 1000G. Unless noted otherwise, we run Big-LD

without the heuristic procedure throughout the thesis. We set threshold values re-

quired to run CLQ-D as θ = 0.5 and ρ = 40kb for entire evaluation. To decide

the threshold θ, we evaluate the threshold θ for |r| in terms of LD block construc-

tion results and choose a threshold value based on the results. We compared the

mean r2 values within constructed LD blocks and across consecutive LD blocks

(Table 3.1). We found that the mean r2 across consecutive blocks are almost same

for the thresholds θ = 0.4 and 0.5, excluding or including singletons, while the

means increase rapidly when we go to the threshold θ = 0.6 (from 0.155 to 0.165

and 0.139 to 0.149 respectively), and the mean r2 across consecutive blocks ex-

cluding singletons is minimized for the threshold θ = 0.5. Based on this result, we

decided to recommend the threshold value θ = 0.5 and obtain major results based

33

http://www.le.ac.uk/genetics/ajj/HLA/


Table 3.1: Summary of the LD block partition result of chromosome 22 region (75,582
SNPs) of the 1000G dataset obtained by Big-LD using various threshold θ for |r|

θ N. of blocks
Average r2

within a block
Average r2

across consecutive blocks N. of SNPs
Mean(SD)

Length of block(kb)
Mean(SD)

Excluding
singletons All

Excluding singletons
Mean(SD)

Excluding singletons
Mean(SD)

All
Mean(SD)

0.3 2200 3585 0.441 (0.264) 0.165 (0.155) 0.170 (0.195) 33.7 (68.2) 14043 (34184)
0.4 1935 3396 0.448 (0.243) 0.140 (0.129) 0.150 (0.163) 38.3 (71.2) 16080 (37333)
0.5 2000 3654 0.472 (0.243) 0.139 (0.128) 0.155 (0.156) 37.0 (69.2) 15427 (37001)
0.6 2050 4084 0.502 (0.246) 0.149 (0.133) 0.165 (0.16) 35.9 (65.9) 14897 (34612)
0.7 2175 4722 0.526 (0.246) 0.158 (0.146) 0.182 (0.167) 33.6 (61.7) 13835 (33114)
0.8 2479 6157 0.571 (0.255) 0.181 (0.16) 0.209 (0.182) 29.0 (53.7) 11772 (28198)
0.9 3044 8781 0.619 (0.271) 0.228 (0.189) 0.260 (0.226) 23.0 (43.9) 9087 (22223)

on θ = 0.5. The implemented R functions are packaged into “BigLD” and can

be downloaded from http://github.com/sunnyeesl/BigLD. All exper-

iments and performance evaluations were performed using these R functions on a

machine with Intel i7-6700 (3.4 GHz) CPU.

For genomic regions with many SNPs, Big-LD divides the task into several

sub-tasks in which the number of SNPs is less than a predetermined limit (λ). We

first assessed the effect of the number of SNPs in one sub-task on runtime and

memory usage using various samples chosen according to MAF and inter-SNP dis-

tance (Figure 3.2). The run-time and memory required for each region without

dividing them into sub-tasks grows exponentially with the number of SNPs (Fig-

ure 3.3 and Table 3.2). Next, we tested how an upper limit for sub-task partition

affects the LD block partition results of Big-LD for sub-task sizes (λ) from 1000

to 3000 (increasing by 500) using the entire chromosome 22 data of 1000G data-

set (Table 3.3 and 3.5). When the upper limit is smaller, the runtime and memory

to partition the data is reduced with little difference in the block partition results.

Since more than 99% of the LD block partition results using the upper limit of 1500

and 3000 for sub-task size are the same (Table 3.5) and the run-time and memory
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Figure 3.2: Two-dimensional distributions of the median MAF and the median inter-SNP distance of
two consecutive non-monomorphic SNPs obtained for each window of fixed size shifting every 100
SNPs in chromosomes 1 through 22 of the 1000G dataset. Each plot from A to F corresponds to the
fixed window size of 500, 1000, 1500, 2000, 2500, and 3000, respectively. We divide the domains of
the two-dimensional distribution into 10×10 grid according to the ranges of the median MAF and the
median inter-SNP distances, and then randomly choose a sample (window) per each non-empty grid.
As a result, 43, 53, 45, 46, 54, and 49 samples for each window size 500, 1000, 1500, 2000, 2500, and
3000, respectively are chosen for evaluation of runtime and memory usage of Big-LD (blue dots)
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Table 3.2: Runtime and memory usage of Big-LD algorithm for different number of SNPs
(K=500, 1000, 1500, 2000, 2500, and 3000) without any sub-task partitioning evaluated
over randomly selected sample regions from chromosome 1 through 22 of the 1000G dataset

K
Number of

samples
Min. 1st Qu. Median 3rd Qu. Max. Mean (SD)

Memory
(Mb)

500 43 46.7 99.9 1908.6 3668.0 10895.4 2205.8 (2332.5)
1000 53 79.5 848.0 2351.2 4523.6 11072.2 2880.4 (2308.1)
1500 45 258.6 1049.0 2417.2 4246.0 6412.9 2645.5 (1767.9)
2000 46 767.3 2011.7 2750.0 3348.5 6341.1 2859.6 (1406.9)
2500 54 814.1 2484.2 4174.5 5666.9 12370.8 4623.3 (2637.9)
3000 49 832.7 2437.2 3490.1 4943.3 12192.5 3895.6 (2160.1)

Time
(sec)

500 43 0.5 0.9 1.1 1.3 4.4 1.2 (0.6)
1000 53 0.6 1.1 1.5 2.3 10.2 2 (1.6)
1500 45 1.0 1.8 2.5 4.1 14.2 3.4 (2.6)
2000 46 1.4 2.8 3.7 5.5 12.1 4.3 (2)
2500 54 2.3 4.7 6.7 9.5 31.8 8.2 (5.9)
3000 49 2.7 4.7 7.1 14.0 570.2 21.3 (80.4)

Figure 3.3: Boxplots of memory usage and runtime of Big-LD algorithm for samples of different
number of SNPs (n =500, 1000, 1500, 2000, 2500, and 3000) without any sub-task partition. The
boxplot shows the median, the first and third quartiles computed using Tukey’s “hinges” and the end
points of whiskers. The whiskers extend to the most extreme values no more than 1.5 times the
interquartile range.
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Table 3.3: Summary of the LD block partition result of chr 22 region (75,582 SNPs) ob-
tained by Big-LD for different values of upper limit of sub-task size (λ)

1000G HapMap

Upper limit
for sub-task size

(λ)

Runtime
(sec)

Memory usage
(MB) N. of blocks

Runtime
(sec)

Memory usage
(MB) N. of blocks

Excluding
singletons All

Excluding
singletons All

1000 273.18 2731.63 2002 3642 14.06 55.32 1254 2018
1500 291.92 3041.97 1999 3692 14.06 55.01 1254 2018
2000 290.10 3016.88 2000 3654 14.10 52.04 1254 2018
2500 346.84 3004.25 2015 3696 14.20 55.63 1254 2018
3000 358.12 4368.74 2016 3694 14.22 56.22 1254 2018

to run the same job is 81% and 70% respectively for the upper limit of 1500 in-

stead of 3000, we decided to use 1500 as the upper limit for the number of SNPs

in sub-tasks throughout the evaluation process. We also measured the runtime and

memory usage of the sub-task partitioning stage for various sub-task size limit (λ)

and for the data trimmed using two MAF threshold values of 0.05 and 0.01. The

results show that mostly it takes more time to divide the sequence into sub-tasks

with smaller λ values and to process the data including more low frequency variants

(Figure 3.4 and Table 3.4). To assess the computational feasibility to apply the

Big-LD for the entire genome sequence, we evaluated the runtime and the memory

usage of the Big-LD algorithm applied to the entire 1000G dataset from chromo-

some 1 through 22 excluding only monomorphic SNPs. We averaged the runtime

and the memory usage assessment over five repetitions of Big-LD executions for

1) Sub-task partitioning stage using SNPs with MAF ≥ 0.05, 2) Initial LD block

partitioning stage using SNPs with MAF ≥ 0.05, 3) Entire LD block partitioning

including the refinement steps for low frequency SNPs (Figure 3.5 and Table 3.6).

The average runtime required to partition the entire dataset into sub-tasks of the limit

size 1500 is 0.73 hours and the maximum memory usage is 3584Mb. The average
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Figure 3.4: Average runtime of sub-task partitioning procedure of Big-LD using various
values of the upper limit of sub-task size (λ =1000, 1500, 2000, 2500, and 3000) and
two MAF threshold values (0.05 and 0.01) applied to sub-regions with various sizes of
chromosome 22 of the 1000G dataset. We selected each sub-region in the center of the
sequence for sizes from 10,000 to 100,000 SNPs (for MAF threshold 0.05, to 70,000 SNPs)
by increasing 10,000 SNPs.
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Table 3.4: Runtime and memory usage of sub-task partitioning procedure of Big-LD al-
gorithm using various values of the upper limit of sub-task size (λ =1000, 1500, 2000,
2500, and 3000) and two MAF cut values (0.05 and 0.01) for chromosome 22 region of the
1000G dataset

MAF cut N. of SNPs λ
Runtime (sec)
Mean (SD)

Memory (Mb)
Mean (SD)

0.05 75,582 1000 51.59 (0.4) 1209.28 (0.08)
1500 41.42 (0.23) 1208.68 (0.58)
2000 41.36 (0.21) 1208.02 (1.23)
2500 39.19 (0.28) 1208.65 (0.46)
3000 36.78 (0.21) 1187.18 (0.76)

0.01 105,700 1000 28.48 (0.21) 1156.44 (0.17)
1500 141.41 (2.22) 1161.14 (2.69)
2000 125.04 (1.23) 1161.15 (2.77)
2500 107.58 (0.87) 1159.96 (3.43)
3000 96.33 (0.72) 1160.71 (2.57)

runtime and the maximum memory usage until initial LD block partitioning using

only common SNPs (MAF ≥ 0.05; 5,429,840 SNPs) is 4.45 hours and 4144MB. It

takes 5.83 hours to obtain LD blocks for the entire 1000G dataset of chromosome 1

through 22 excluding only monomorphic SNPs (13,288,240 SNPs) with maximum

memory usage of 8828MB. We confirmed that runtime and memory usage increase

linearly in most cases as the number of SNPs increases, which was expected, since

Big-LD adopts a process of dividing the data into sub-tasks when massive SNP data

are given (Figure 3.5).

We then compared the runtime and the memory usage of the Big-LD, S-MIG++,

and MIG++ using the chromosome 22 data of 1000G dataset (Table 3.7). For the

data including non-monomorphic SNPs, runtime of Big-LD is lowest (261.7sec),

which is a significant improvement over the two existing methods (3148.5sec for

MIG++ and 35678sec for S-MIG++). Meanwhile, for the SNPs with MAF≥0.05,

the runtime of MIG++ is lowest (114.6sec) followed by that of Big-LD (207 sec).
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Table 3.5: Effect of the upper limit of sub-task size (λ) for Big-LD evaluated by overlap
proportions of LD block partition results using two different size limits obtained for 1000G
chromosome 22 data

Common block declaration criteria*
Sub-task
size (1) Case

N. of
blocks

Sub-task
size (2) 100% 99% 95% 90% 80% 70% 60%

1000 All 3642 1500 3558(0.98) 3558(0.98) 3562(0.98) 3567(0.98) 3570(0.98) 3572(0.98) 3575(0.98)
3642 2000 3558(0.98) 3558(0.98) 3562(0.98) 3567(0.98) 3570(0.98) 3572(0.98) 3575(0.98)
3642 2500 3565(0.98) 3565(0.98) 3568(0.98) 3574(0.98) 3577(0.98) 3580(0.98) 3583(0.98)
3642 3000 3562(0.98) 3562(0.98) 3565(0.98) 3571(0.98) 3574(0.98) 3577(0.98) 3580(0.98)

Excluding 2002 1500 1948(0.97) 1948(0.97) 1952(0.98) 1957(0.98) 1960(0.98) 1962(0.98) 1965(0.98)
singletons 2002 2000 1948(0.97) 1948(0.97) 1952(0.98) 1957(0.98) 1960(0.98) 1962(0.98) 1965(0.98)

2002 2500 1950(0.97) 1950(0.97) 1953(0.98) 1959(0.98) 1962(0.98) 1965(0.98) 1968(0.98)
2002 3000 1950(0.97) 1950(0.97) 1953(0.98) 1959(0.98) 1962(0.98) 1965(0.98) 1968(0.98)

Block width 906 1500 872(0.96) 872(0.96) 876(0.97) 881(0.97) 884(0.98) 885(0.98) 887(0.98)
≥5kb 906 2000 872(0.96) 872(0.96) 876(0.97) 881(0.97) 884(0.98) 885(0.98) 887(0.98)

906 2500 874(0.96) 874(0.96) 877(0.97) 883(0.97) 886(0.98) 888(0.98) 890(0.98)
906 3000 874(0.96) 874(0.96) 877(0.97) 883(0.97) 886(0.98) 888(0.98) 890(0.98)

Block width 666 1500 640 (0.96) 640 (0.96) 643 (0.97) 647 (0.97) 650 (0.98) 651 (0.98) 652 (0.98)
≥10kb 666 2000 640 (0.96) 640 (0.96) 643 (0.97) 647 (0.97) 650 (0.98) 651 (0.98) 652 (0.98)

666 2500 641 (0.96) 641 (0.96) 643 (0.97) 648 (0.97) 651 (0.98) 653 (0.98) 654 (0.98)
666 3000 641 (0.96) 641 (0.96) 643 (0.97) 648 (0.97) 651 (0.98) 653 (0.98) 654 (0.98)

1500 All 3654 1000 3558(0.97) 3558(0.97) 3562(0.97) 3567(0.98) 3570(0.98) 3572(0.98) 3575(0.98)
3654 2000 3654(1) 3654(1) 3654(1) 3654(1) 3654(1) 3654(1) 3654(1)
3654 2500 3644(1) 3645(1) 3646(1) 3646(1) 3646(1) 3647(1) 3648(1)
3654 3000 3641(1) 3642(1) 3643(1) 3643(1) 3643(1) 3644(1) 3645(1)

Excluding 2000 1000 1948(0.97) 1948(0.97) 1952(0.98) 1957(0.98) 1960(0.98) 1962(0.98) 1965(0.98)
singletons 2000 2000 2000(1) 2000(1) 2000(1) 2000(1) 2000(1) 2000(1) 2000(1)

2000 2500 1992(1) 1993(1) 1994(1) 1994(1) 1994(1) 1995(1) 1996(1)
2000 3000 1992(1) 1993(1) 1994(1) 1994(1) 1994(1) 1995(1) 1996(1)

Block width 904 1000 872(0.96) 872(0.96) 876(0.97) 881(0.97) 884(0.98) 885(0.98) 887(0.98)
≥5kb 904 2000 904(1) 904(1) 904(1) 904(1) 904(1) 904(1) 904(1)

904 2500 897(0.99) 898(0.99) 899(0.99) 899(0.99) 899(0.99) 900(1) 901(1)
904 3000 897(0.99) 898(0.99) 899(0.99) 899(0.99) 899(0.99) 900(1) 901(1)

Block with 662 1000 640 (0.97) 640 (0.97) 643 (0.97) 647 (0.98) 650 (0.98) 651 (0.98) 652 (0.98)
≥10kb 662 2000 662 (1) 662 (1) 662 (1) 662 (1) 662 (1) 662 (1) 662 (1)

662 2500 657 (0.99) 658 (0.99) 659 (1) 659 (1) 659 (1) 660 (1) 660 (1)
662 3000 657 (0.99) 658 (0.99) 659 (1) 659 (1) 659 (1) 660 (1) 660 (1)

2000 All 3654 1000 3558(0.97) 3558(0.97) 3562(0.97) 3567(0.98) 3570(0.98) 3572(0.98) 3575(0.98)
3654 1500 3654(1) 3654(1) 3654(1) 3654(1) 3654(1) 3654(1) 3654(1)
3654 2500 3644(1) 3645(1) 3646(1) 3646(1) 3646(1) 3647(1) 3648(1)
3654 3000 3641(1) 3642(1) 3643(1) 3643(1) 3643(1) 3644(1) 3645(1)

Excluding 2000 1000 1948(0.97) 1948(0.97) 1952(0.98) 1957(0.98) 1960(0.98) 1962(0.98) 1965(0.98)
singletons 2000 1500 2000(1) 2000(1) 2000(1) 2000(1) 2000(1) 2000(1) 2000(1)

2000 2500 1992(1) 1993(1) 1994(1) 1994(1) 1994(1) 1995(1) 1996(1)
2000 3000 1992(1) 1993(1) 1994(1) 1994(1) 1994(1) 1995(1) 1996(1)

Block width 904 1000 872(0.96) 872(0.96) 876(0.97) 881(0.97) 884(0.98) 885(0.98) 887(0.98)
≥5kb 904 1500 904(1) 904(1) 904(1) 904(1) 904(1) 904(1) 904(1)

904 2500 897(0.99) 898(0.99) 899(0.99) 899(0.99) 899(0.99) 900(1) 901(1)
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904 3000 897(0.99) 898(0.99) 899(0.99) 899(0.99) 899(0.99) 900(1) 901(1)
Block with 662 1000 640 (0.97) 640 (0.97) 643 (0.97) 647 (0.98) 650 (0.98) 651 (0.98) 652 (0.98)
≥10kb 662 1500 662 (1) 662 (1) 662 (1) 662 (1) 662 (1) 662 (1) 662 (1)

662 2500 657 (0.99) 658 (0.99) 659 (1) 659 (1) 659 (1) 660 (1) 660 (1)
662 3000 657 (0.99) 658 (0.99) 659 (1) 659 (1) 659 (1) 660 (1) 660 (1)

2500 All 3696 1000 3565(0.96) 3565(0.96) 3568(0.97) 3574(0.97) 3577(0.97) 3580(0.97) 3583(0.97)
3696 1500 3644(0.99) 3645(0.99) 3646(0.99) 3646(0.99) 3646(0.99) 3647(0.99) 3648(0.99)
3696 2000 3644(0.99) 3645(0.99) 3646(0.99) 3646(0.99) 3646(0.99) 3647(0.99) 3648(0.99)
3696 3000 3693(1) 3693(1) 3693(1) 3693(1) 3693(1) 3693(1) 3693(1)

Excluding 2015 1000 1950(0.97) 1950(0.97) 1953(0.97) 1959(0.97) 1962(0.97) 1965(0.98) 1968(0.98)
singletons 2015 1500 1992(0.99) 1993(0.99) 1994(0.99) 1994(0.99) 1994(0.99) 1995(0.99) 1996(0.99)

2015 2000 1992(0.99) 1993(0.99) 1994(0.99) 1994(0.99) 1994(0.99) 1995(0.99) 1996(0.99)
2015 3000 2015(1) 2015(1) 2015(1) 2015(1) 2015(1) 2015(1) 2015(1)

Block width 913 1000 874(0.96) 874(0.96) 877(0.96) 883(0.97) 886(0.97) 888(0.97) 890(0.97)
≥5kb 913 1500 897(0.98) 898(0.98) 899(0.98) 899(0.98) 899(0.98) 900(0.99) 901(0.99)

913 2000 897(0.98) 898(0.98) 899(0.98) 899(0.98) 899(0.98) 900(0.99) 901(0.99)
913 3000 913(1) 913(1) 913(1) 913(1) 913(1) 913(1) 913(1)

Block width 670 1000 641 (0.96) 641 (0.96) 643 (0.96) 648 (0.97) 651 (0.97) 653 (0.97) 654 (0.98)
≥10kb 670 1500 657 (0.98) 658 (0.98) 659 (0.98) 659 (0.98) 659 (0.98) 660 (0.99) 660 (0.99)

670 2000 657 (0.98) 658 (0.98) 659 (0.98) 659 (0.98) 659 (0.98) 660 (0.99) 660 (0.99)
670 3000 670 (1) 670 (1) 670 (1) 670 (1) 670 (1) 670 (1) 670 (1)

3000 All 3694 1000 3562(0.96) 3562(0.96) 3565(0.97) 3571(0.97) 3574(0.97) 3577(0.97) 3580(0.97)
3694 1500 3641(0.99) 3642(0.99) 3643(0.99) 3643(0.99) 3643(0.99) 3644(0.99) 3645(0.99)
3694 2000 3641(0.99) 3642(0.99) 3643(0.99) 3643(0.99) 3643(0.99) 3644(0.99) 3645(0.99)
3694 2500 3693(1) 3693(1) 3693(1) 3693(1) 3693(1) 3693(1) 3693(1)

Excluding 2016 1000 1950(0.97) 1950(0.97) 1953(0.97) 1959(0.97) 1962(0.97) 1965(0.97) 1968(0.98)
singletons 2016 1500 1992(0.99) 1993(0.99) 1994(0.99) 1994(0.99) 1994(0.99) 1995(0.99) 1996(0.99)

2016 2000 1992(0.99) 1993(0.99) 1994(0.99) 1994(0.99) 1994(0.99) 1995(0.99) 1996(0.99)
2016 2500 2015(1) 2015(1) 2015(1) 2015(1) 2015(1) 2015(1) 2015(1)

Block width 913 1000 874(0.96) 874(0.96) 877(0.96) 883(0.97) 886(0.97) 888(0.97) 890(0.97)
≥5kb 913 1500 897(0.98) 898(0.98) 899(0.98) 899(0.98) 899(0.98) 900(0.99) 901(0.99)

913 2000 897(0.98) 898(0.98) 899(0.98) 899(0.98) 899(0.98) 900(0.99) 901(0.99)
913 2500 913(1) 913(1) 913(1) 913(1) 913(1) 913(1) 913(1)

Block width 670 1000 641 (0.96) 641 (0.96) 643 (0.96) 648 (0.97) 651 (0.97) 653 (0.97) 654 (0.98)
≥10kb 670 1500 657 (0.98) 658 (0.98) 659 (0.98) 659 (0.98) 659 (0.98) 660 (0.99) 660 (0.99)

670 2000 657 (0.98) 658 (0.98) 659 (0.98) 659 (0.98) 659 (0.98) 660 (0.99) 660 (0.99)
670 2500 670 (1) 670 (1) 670 (1) 670 (1) 670 (1) 670 (1) 670 (1)

* A(B): A is the number of common blocks between the blocks obtained by using the upper limit of sub-task
size (1) and size (2). B is the relative frequency of A over the number of all blocks obtained by using the
upper limit of sub-take size (1). An LD block is declared as a common block found using two sub-task size
limit values if the relative percentage length of common area of two LD block results over the length of the
entire LD block (in both results) is greater than the criterion.
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Figure 3.5: Runtime and memory usage of Big-LD for chromosome 1 through 22 of the 1000G dataset
with the upper limit for sub-task size set as 1,500. (A) The number of SNPs after trimming with a MAF
threshold of 0.05 for each chromosome, (B) The maximum memory usage measured for in A, (C) The
runtime measured for data in A, (D) The number of SNPs after trimming only monomorphic SNPs
for each chromosome, (E) The maximum memory usage measured for data in D, (F) The runtime
measured for data in D, (G) The number of SNPs used in sub-task partitioning for each chromosome,
(H) The memory usage of sub-task partitioning for data in G, (I) The runtime of sub-task partitioning
for data in G.
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Table 3.6: Runtime and memory usage of Big-LD algorithm for the data of non-monomorphic SNPs in chromosome 1 through 22 of the
1000G dataset with the upper limit of sub-task size (λ) of 1,500 and MAF threshold of 0.05

Sub-task partitioning stage using SNPs
with MAF≥0.05

Initial LD block partition stage using SNPs
with MAF≥0.05

(Including Sub-task partitioning step)
Entire LD block partition for SNPs with MAF*

Chr N. of SNPs
Runtime (sec)
Mean (SD)

Memory (Mb)
Mean (SD) N. of SNPs Runtime (sec)**

Mean (SD)
Memory (Mb)
Mean (SD) N. of SNPs Runtime (sec)**

Mean (SD)
Memory (Mb)
Mean (SD)

1 421698 260.11 (3.77) 2567.99 (169.15) 421698 1126.12 (115.07) 4127.51 (14.74) 1050013 354.89 (10.79) 2418.78 (375.04)
2 444212 298.7 (0.59) 3133.62 (281.01) 444212 1271.62 (111.84) 3594.31 (10.35) 1141320 416.06 (28.26) 3869.7 (522.55)
3 391132 304.31 (1.36) 3095.55 (308.15) 391132 1199.91 (100.59) 3824.65 (16.58) 971719 378.4 (22.7) 4686.92 (390.06)
4 405345 342.3 (1.69) 2904.71 (328.01) 405345 1285.29 (102.11) 3845.28 (84.91) 963721 349.43 (20.54) 3604.27 (407.74)
5 347161 44.05 (0.13) 1714.58 (185.19) 347161 821.94 (80.06) 3403.56 (10.18) 866756 364.08 (17.87) 5043.32 (778.22)
6 374593 26.12 (0.23) 1601.44 (176.4) 374593 1071.7 (83.15) 3469.41 (8.91) 895195 385.85 (24.34) 5323.91 (462.87)
7 327658 64.45 (0.27) 1616.74 (132.05) 327658 926.11 (70.92) 3032.25 (18.66) 780368 304.82 (17.17) 5032 (920.53)
8 300957 235.78 (0.77) 2631.32 (183.03) 300957 1100.08 (82.65) 2889.49 (8.26) 743161 272.38 (17.91) 3021.03 (129.27)
9 204681 125.36 (1.42) 3401.54 (350.36) 204681 600.99 (32.61) 1917.02 (59.57) 498001 166.72 (10.15) 1852.17 (284.06)

10 280376 42.25 (1.55) 1478.02 (91.38) 280376 691.31 (51.37) 2694.04 (61.27) 669963 222.36 (13.06) 2197.11 (304.73)
11 273534 45.88 (0.95) 1419.76 (115.74) 273534 721.45 (47.55) 2562.23 (11.17) 662884 551.71 (17.44) 8657.66 (160.12)
12 263325 37.12 (0.76) 2003.45 (52.37) 263325 1695.40 (162.97) 3980.75 (28.07) 644113 230.15 (7.72) 3419.45 (111.11)
13 201555 127.96 (1.47) 2039.73 (220.55) 201555 549.90 (35.95) 1897.75 (6.54) 486334 146.58 (9.27) 1947.23 (275.44)
14 182599 126.77 (0.73) 1948.25 (210.12) 182599 481.66 (28.48) 1744.13 (11.26) 445332 140.19 (7.47) 1661.11 (560.84)
15 161910 110.81 (0.28) 2629.57 (85.28) 161910 443.15 (24.65) 1572.89 (8.03) 397938 121.85 (7.22) 1366.75 (349.85)
16 170315 94.82 (0.31) 1847.07 (198.32) 170315 534.98 (30.43) 1632.96 (8.12) 418929 109.9 (7.71) 1017.97 (313.41)
17 120946 68.83 (0.27) 1720.61 (177.38) 120946 249.8 (19.13) 1121.74 (97.08) 308521 81.85 (5.93) 730.1 (194.9)
18 156310 78.42 (0.39) 1646.62 (177.75) 156310 334.83 (20.68) 1509.35 (3.67) 386250 108.84 (6.38) 1166.86 (272.77)
19 127254 78.43 (0.49) 1731.75 (178.03) 127254 322.46 (24.16) 1464.63 (126.56) 299583 111.17 (3.37) 2016.13 (767.75)
20 118374 58.93 (1.35) 1738.84 (177.34) 118374 218.88 (15.82) 1166.84 (7.52) 294897 71.9 (2.76) 993.58 (290.27)
21 80323 42.06 (0.83) 1392.53 (82.35) 80323 169.85 (9.31) 821.54 (51.89) 182943 43.24 (0.87) 788.81 (235.89)
22 75582 41.42 (0.23) 1208.68 (0.58) 75582 187.64 (12.2) 1679.77 (842.25) 180299 51.74 (2.06) 966.7 (200.04)

Total† 5429840 2654.87 (12.51) 3583.81 5429840 16005.07 (1044.42) 4144.55 13288240 20989.18 (1275.83) 8828.06

* After initial LD block partition stage, SNPs with MAF ¡0.05 are assigned to existing blocks or newly formed blocks.
** Big-LD has been executed adopting CLQ-D implementing a heuristic procedure to reduce run-time.
† The average and standard deviation of the total runtime for chromosome 1 through 22, and the maximum memory usage of all executions.
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Table 3.7: Runtime and memory usage of Big-LD, S-MIG++, and MIG++ for chromosome
22 region of the 1000G dataset

1000G data (MAF ≥ 0.05) 1000G data (MAF > 0)

Runtime (sec) Memory (Mb) Runtime (sec) Memory (Mb)

Big-LD (1) 291.9 3042 322.3 620.1
Big-LD (2)* 207 940.4 261.7 1317.9

S-MIG++ 6414.2 24 35378 25.4
MIG++ 114.6 n/a 3148.5 n/a

* Results obtained by Big-LD adopting CLQ-D algorithm implementing a heuristic proced-
ure to reduce runtime and memory usages.

We did not include Haploview and MATILDE in this comparison since the runtime

for these programs is much longer than that of the other methods. For example, to

run MATILDE for a set of only 1000 SNPs, it takes about 4.33 hours, and to run

Haploview (CI, FGT, SS) for a set of 1500 SNPs, it takes about 0.17 hours.

3.3.3 Comparisons of Big-LD block partition results with
pre-existing methods

Using chromosome 22 data of the 1000G dataset and HapMap dataset, we compared

LD block partition results of Big-LD with those produced by MATILDE [PRFP08],

Haploview (CI, FGT, SS) [BFMD05], MIG++ [TGP14] implemented in PLINK1.9

[CCT+15], and S-MIG++ [TGLP16]. Due to runtime and memory limitations of

Haploview program, we applied the Haploview computation to data divided into

windows of 1500 SNPs shifted every 1000 SNPs and combined the results with

decision rules for the overlapped regions that give priority to the larger block among

two results. For MATILDE, we divided the data into windows of 1000 SNPs and

obtained results for each window. We also ran the program for 500 SNPs located

around each of the break points between windows and then combined results for the

1000 and 500 SNP windows similarly to the rules to combine Haploview results.
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In Table 3.8, we summarize several characteristics of the LD block partition

results obtained by the Big-LD and other methods including the total number of

blocks produced, the average length of blocks meaning the difference in the base

pair (bp) position between the first and the last SNPs in the block, the average num-

ber of SNPs per block, the average r2 over all the pairs of SNPs in a block, and the

average r2 over all the SNP pairs, each of which belongs to two consecutive blocks.

Overall, the Big-LD produces fewer blocks of larger size compared to other meth-

ods. The size discrepancy of LD blocks between the results of Big-LD and the other

methods is larger for 1000G data than for HapMap data. The mean pairwise r2 val-

ues within an LD block produced by Big-LD was slightly lower (0.472 for 1000G

and 0.491 for HapMap) than the means for S-MIG++ (for 1000G), MIG++, and

Haploview-CI, but higher than the means for MATILDE, S-MIG++ (for HapMap),

Haploview-FGT, and Haploview-SS. Especially, the mean of pairwise r2 values

within an LD block produced by Big-LD is much higher than that of MATILDE

(0.491 vs 0.285) for HapMap. On the other hand, average pairwise r2 values across

two consecutive LD blocks obtained by Big-LD was lowest (0.155 for 1000G and

0.141 for HapMap) compared to the other LD block construction methods except

MATILDE. The distribution of pairwise r2 values across two consecutive LD blocks

obtained by Big-LD shows that more than 50% of the values are under 0.1 (Fig-

ure 3.6). The average pairwise D′ values within a LD block is lower than that of the

other methods, moreover the average pairwise D′ values across consecutive blocks

is much lower than that of the other methods (Table 3.8). The distribution of pair-

wise D′ values across two consecutive blocks excluding singleton blocks shows that

the percentage of the values between 0.85 and 0.95 obtained from the results of Big-

LD is much less than the percentage obtained from the other methods (Figure 3.7).

In Figure 3.8, distributions of block lengths are plotted for all LD block partition
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Figure 3.6: Distributions of the average pairwise r2 between SNPs within a same LD block
obtained by each method for chromosome 22 data of (A) 1000G and (B) HapMap datasets,
and of the average pairwise r2 between two SNPs in consecutive LD blocks excluding
singleton blocks for (C) 1000G and (D) HapMap datasets and not excluding singleton blocks
for (E) 1000G and (F) HapMap datasets.

46



Figure 3.7: Distributions of the average pairwise D′ between SNPs within a same LD block
obtained by each method for chromosome 22 data of (A) 1000G and (B) HapMap datasets,
and of the average pairwise D′ between two SNPs in consecutive LD blocks excluding
singleton blocks for (C) 1000G and (D) HapMap datasets and not excluding singleton blocks
for (E) 1000G and (F) HapMap datasets.
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Table 3.8: Summary of LD block partition results obtained for chromosome 22 region of the 1000G and HapMap datasets

Method N. of LD blocks
Size of LD blocks

Mean (SD) r2 within block
Mean(SD)

Average r2

across consecutive blocks
Mean (SD)

D′within block
Mean (SD)

Average D′

across consecutive blocks
Mean (SD)

All
Excluding
singletons Length (kb) N. of SNPs All

Excluding
singletons All

Excluding
singletons

1000G Big-LD 3654 2000 15427 (37001) 36.96 (69.23) 0.472 (0.243) 0.155 (0.156) 0.139 (0.128) 0.898 (0.099) 0.671 (0.278) 0.645 (0.215)
MATILDE 13024 4361 6255 (9205) 15.34 (19.17) 0.466 (0.243) 0.12 (0.222) 0.263 (0.163) 0.919 (0.117) 0.823 (0.265) 0.814 (0.197)
S-MIG++ 11397 5253 5220 (10320) 13.22 (21.02) 0.474 (0.259) 0.217 (0.213) 0.269 (0.166) 0.977 (0.035) 0.711 (0.264) 0.797 (0.167)
MIG++ 11339 4658 5918 (13814) 14.79 (25.78) 0.517 (0.244) 0.181 (0.199) 0.252 (0.161) 0.978 (0.024) 0.711 (0.274) 0.781 (0.171)
Haploview(CI) 11970 4418 6162 (13991) 15.4 (26.03) 0.513 (0.243) 0.214 (0.246) 0.249 (0.157) 0.976 (0.032) 0.733 (0.273) 0.782 (0.169)
Haploview(FGT) 14160 7997 3298 (5619) 8.68 (8.95) 0.434 (0.254) 0.298 (0.237) 0.314 (0.185) 0.961 (0.099) 0.768 (0.24) 0.834 (0.169)
Haploview(SS) 8811 5170 5665 (9345) 13.92 (17.66) 0.377 (0.22) 0.259 (0.26) 0.235 (0.148) 0.919 (0.124) 0.738 (0.258) 0.759 (0.184)

Hapmap Big-LD 2018 1254 19520 (32894) 10.55 (12.85) 0.491 (0.232) 0.141 (0.142) 0.15 (0.127) 0.921 (0.089) 0.669 (0.273) 0.62 (0.23)
MATILDE 1342 411 74364 (102641) 31.78 (32.99) 0.285 (0.18) 0.179 (0.288) 0.093 (0.106) 0.751 (0.19) 0.704 (0.305) 0.467 (0.245)
S-MIG++ 3192 1843 14316(31280) 6.86(8.25) 0.345 (0.21) 0.268 (0.204) 0.245 (0.14) 0.855 (0.188) 0.765 (0.232) 0.73 (0.179)
MIG++ 3644 1678 12718 (25251) 7.13 (8.52) 0.544 (0.233) 0.183 (0.183) 0.212 (0.149) 0.982 (0.023) 0.736 (0.26) 0.709 (0.203)
Haploview(CI) 3643 1671 12871 (27410) 7.19 (8.87) 0.543 (0.233) 0.184 (0.184) 0.212 (0.149) 0.982 (0.023) 0.736 (0.26) 0.708 (0.203)
Haploview(FGT) 3522 2238 9600 (15262) 5.68 (4.69) 0.449 (0.256) 0.258 (0.197) 0.256 (0.169) 0.977 (0.057) 0.726 (0.241) 0.748 (0.209)
Haploview(SS) 2157 1714 14884 (26077) 7.91 (8.3) 0.395 (0.218) 0.184 (0.144) 0.192 (0.134) 0.935 (0.091) 0.644 (0.233) 0.667 (0.21)
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Figure 3.8: Distributions of the length of LD block obtained using chromosome 22 region
of (A) 1000G dataset and (B) HapMap dataset. The length of the LD block is obtained as
the difference of the bp position of starting and ending SNPs of a LD block.
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Table 3.9: Distribution of LD block size (the number of SNPs in each block) obtained for chromosome 22 regions of the 1000G
and HapMap datasets

LDblock size Sum

Method 1 2∼5 6∼10 11∼20 21∼30 31∼40 41∼50 51∼100 101∼200 201∼300 301∼ All
Excluding
singletons

1000G Big-LD 1654 794 232 213 154 92 77 241 139 28 30 3654 2000
MATILDE 8663 1505 951 959 386 211 114 196 39 0 0 13024 4361
S-MIG++ 6144 2695 838 769 369 208 117 195 57 4 1 11397 5253
MIG++ 6681 2273 771 695 335 194 111 195 67 15 2 11339 4658
Haploview(CI) 7552 2067 767 672 327 184 116 198 73 13 1 11970 4418
Haploview(FGT) 6163 4004 1820 1454 469 160 49 39 2 0 0 14160 7997
Haploview(SS) 3641 2138 1014 942 460 246 147 194 28 1 0 8811 5170

Hapmap Big-LD 764 621 239 227 85 35 19 27 1 0 0 2018 1254
MATILDE 931 49 56 81 73 46 32 56 16 2 0 1342 411
S-MIG++ 1349 1164 390 188 57 18 12 14 0 0 0 3192 1843
MIG++ 1966 1015 378 182 55 19 14 15 0 0 0 3644 1678
Haploview(CI) 1972 1008 377 183 55 19 14 15 0 0 0 3643 1671
Haploview(FGT) 1284 1431 552 210 37 5 3 0 0 0 0 3522 2238
Haploview(SS) 443 862 498 252 55 29 5 13 0 0 0 2157 1714
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methods. Table 3.9 reports distributions of the number of SNPs per block for all

LD block partition methods. The LD blocks obtained from the 1000G dataset by

Haploview-CI, MIG++, and S-MIG++ which are based on the LD block definition

of Gabriel et al. [GSN+02] show similar block size distributions. Compared to the

other methods, Haploview-FGT produced more blocks of length up to about 10kb

compared to other methods. Big-LD produces fewer blocks in size groups up until a

certain size (20kb for 1000G and 15kb for HapMap) compared to the other LD block

partition methods. MATILDE produces more LD blocks than Big-LD for 1000G,

but produces fewer blocks than Big-LD for HapMap. Furthermore, especially for

HapMap, Big-LD produces the most LD blocks of size at least 30 SNPs compared

to the other methods except MATILDE.

In Figure 3.9, separate LD heatmaps for an example region on chromosome

22 show LD block boundaries obtained by all methods. This region exemplifies

the case where a big LD block found by Big-LD is split into several small blocks

by MATILDE, Haploview, MIG++, and S-MIG++. The big LD block between

23,250,737bp∼23,644,677bp position found by Big-LD is split into 6∼22 blocks

by other methods for 1000G data and 2∼7 blocks for HapMap data. The average

r2 values between the split consecutive blocks by the other methods are between

0.40∼0.66 for 1000G data and between 0.54∼0.65 for HapMap data (0.19 for MAT-

ILDE). In this example region, LD blocks found in 1000G data by Big-LD are also

observed at similar locations in the HapMap data while there is greater discrepancy

between 1000G and HapMap data results for the other LD block partition methods.

We observed similarly that Big-LD produces large blocks which are usually split by

the other methods. The LD blocks found by Big-LD in the two datasets also exhibit

greater similarity compared to the other methods.

In Figure 3.10, we plot the distributions of LD block lengths obtained from
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Figure 3.9: An example of LD heatmaps of the region chr22: 23,251kb∼23,645kb with LD
block partition results obtained from (A) 1000G dataset and (B) HapMap dataset. A solid
triangle represents each LD block. Selected bp position in kb are shown.
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Figure 3.10: The distributions of the length of LD blocks obtained from 1000G and HapMap
chromosome 22 datasets for each method of (A) Big-LD, (B) MATILDE, (C) S-MIG++, (D)
MIG++, (E) Haloview (CI), (F) Haploview (FGT), and (G) Haploview (SS). The length of
the LD block is obtained as the difference of the bp position of starting and ending SNPs of
a LD block.
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Table 3.10: Frequencies of common LD blocks obtained by different LD block partition in chromosome 22 regions of the 1000G and HapMap
datasets

# of LD blocks Common block declaration criteria*

Method 1000G HapMap 90% 80% 70% 60%

Big-LD All 3654 2018 172 (0.05 vs 0.09) 319 (0.09 vs 0.16) 441 (0.12 vs 0.22) 577 (0.16 vs 0.29)
Excluding singletons 2000 1254 150 (0.08 vs 0.12) 297 (0.15 vs 0.24) 419 (0.21 vs 0.33) 555 (0.28 vs 0.44)
Block width>=5kb 904 764 131 (0.14 vs 0.17) 247 (0.27 vs 0.32) 331 (0.37 vs 0.43) 432 (0.48 vs 0.57)
Block width>=10kb 662 560 115 (0.17 vs 0.21) 197 (0.3 vs 0.35) 260 (0.39 vs 0.46) 340 (0.51 vs 0.61)

MATILDE All 13024 1342 279 (0.02 vs 0.21) 295 (0.02 vs 0.22) 311 (0.02 vs 0.23) 334 (0.03 vs 0.25)
Excluding singletons 4361 411 3 (0 vs 0.01) 19 (0 vs 0.05) 35 (0.01 vs 0.09) 58 (0.01 vs 0.14)
Block width>=5kb 1569 382 3 (0 vs 0.01) 18 (0.01 vs 0.05) 28 (0.02 vs 0.07) 48 (0.03 vs 0.13)
Block width>=10kb 816 343 2 (0 vs 0.01) 11 (0.01 vs 0.03) 19 (0.02 vs 0.06) 36 (0.04 vs 0.1)

S-MIG++ All 11397 3192 206 (0.02 vs 0.06) 342 (0.03 vs 0.11) 561 (0.05 vs 0.18) 799 (0.07 vs 0.25)
Excluding singletons 5253 1843 56 (0.01 vs 0.03) 192 (0.04 vs 0.1) 411 (0.08 vs 0.22) 649 (0.12 vs 0.35)
Block width>=5kb 1445 1055 46 (0.03 vs 0.04) 147 (0.1 vs 0.14) 296 (0.2 vs 0.28) 423 (0.29 vs 0.4)
Block width>=10kb 743 604 35 (0.05 vs 0.06) 103 (0.14 vs 0.17) 189 (0.25 vs 0.31) 260 (0.35 vs 0.43)

MIG++ All 11339 3644 429 (0.04 vs 0.12) 650 (0.06 vs 0.18) 867 (0.08 vs 0.24) 1072 (0.09 vs 0.29)
Excluding singletons 4658 1678 141 (0.03 vs 0.08) 362 (0.08 vs 0.22) 579 (0.12 vs 0.35) 784 (0.17 vs 0.47)
Block width>=5kb 1355 816 95 (0.07 vs 0.12) 226 (0.17 vs 0.28) 343 (0.25 vs 0.42) 449 (0.33 vs 0.55)
Block width>=10kb 707 499 53 (0.07 vs 0.11) 133 (0.19 vs 0.27) 201 (0.28 vs 0.4) 266 (0.38 vs 0.53)

Haploview(CI) All 11970 3643 432 (0.04 vs 0.12) 660 (0.06 vs 0.18) 870 (0.07 vs 0.24) 1078 (0.09 vs 0.3)
Excluding singletons 4418 1671 145 (0.03 vs 0.09) 373 (0.08 vs 0.22) 583 (0.13 vs 0.35) 791 (0.18 vs 0.47)
Block width>=5kb 1334 809 98 (0.07 vs 0.12) 234 (0.18 vs 0.29) 344 (0.26 vs 0.43) 456 (0.34 vs 0.56)
Block width>=10kb 704 493 57 (0.08 vs 0.12) 141 (0.2 vs 0.29) 203 (0.29 vs 0.41) 273 (0.39 vs 0.55)

Haploview(FGT) All 14160 3522 258 (0.02 vs 0.07) 466 (0.03 vs 0.13) 701 (0.05 vs 0.2) 977 (0.07 vs 0.28)
Excluding singletons 7997 2238 130 (0.02 vs 0.06) 338 (0.04 vs 0.15) 573 (0.07 vs 0.26) 849 (0.11 vs 0.38)
Block width>=5kb 1622 1077 55 (0.03 vs 0.05) 132 (0.08 vs 0.12) 219 (0.14 vs 0.2) 316 (0.19 vs 0.29)
Block width>=10kb 558 615 28 (0.05 vs 0.05) 59 (0.11 vs 0.1) 98 (0.18 vs 0.16) 133 (0.24 vs 0.22)

Haploview(SS) All 8811 2157 151 (0.02 vs 0.07) 290 (0.03 vs 0.13) 488 (0.06 vs 0.23) 688 (0.08 vs 0.32)
Excluding singletons 5170 1714 106 (0.02 vs 0.06) 245 (0.05 vs 0.14) 443 (0.09 vs 0.26) 643 (0.12 vs 0.38)
Block width>=5kb 1654 1062 67 (0.04 vs 0.06) 146 (0.09 vs 0.14) 273 (0.17 vs 0.26) 385 (0.23 vs 0.36)
Block width>=10kb 817 665 42 (0.05 vs 0.06) 84 (0.1 vs 0.13) 141 (0.17 vs 0.21) 206 (0.25 vs 0.31)

* A (B vs C): A is the number of common blocks according to the common block declaration criteria, B is the relative frequency of the blocks found in the 1000 Genomes Project
Data and the C is the relative frequency of the blocks found in the HapMap data. An LD block is declared as a common block found in two datasets if the relative percentage length
of common area of two LD block results over the length of the entire LD block (in both results) is greater than the criterion.
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Table 3.11: Average of haplotype diversity indices of LD blocks obtained for chromosome
22 regions of the 1000G and HapMap datasets by different LD block partition methods

Method Haplotype diversity index

1000G
Mean (SD)

HapMap
Mean (SD)

Big-LD 0.911 (0.157) 0.985 (0.023)
MATILDE 0.969 (0.076) 0.870 (0.192)
S-MIG++ 0.987 (0.026) 0.994 (0.01)
MIG++ 0.983 (0.037) 0.993 (0.01)
HV CI 0.982 (0.039) 0.993 (0.01)
HV FGT 0.995 (0.008) 0.996 (0.005)
HV SS 0.983 (0.028) 0.992 (0.012)

1000G and HapMap data together for each LD block partition method. In Big-LD,

the number of small blocks of up to 2kb is usually larger in 1000G data compared

to HapMap data while the numbers of blocks greater than 2kb are usually similar

in both datasets. Other LD block partition methods produces more blocks of up to

20 kb from 1000G data than from HapMap data, suggesting the differences in block

partition results for the datasets with different density is greater in the other methods

than in Big-LD. We also examined actual overlap proportions of LD blocks obtained

from both datasets for each method (Table 3.10). The proportion of overlapping LD

blocks in each dataset over the number of all LD blocks produced in each dataset

is larger for Big-LD compared to other methods. This tendency is even stronger

when comparing only the larger blocks. For example, when we use the overlap

declaration criterion of 80% and limit the comparison to the blocks greater than

10kb, the overlap proportions of LD blocks produced by Big-LD are 30% of the

number of such blocks in 1000G data and 35% of the number of blocks in HapMap

data while these overlap proportions are 1∼29% for the other methods.

We also evaluated haplotype diversity measured by the haplotype diversity in-

dex for a block [PBH+01, ZDC+02]. The haplotype diversity index is defined as
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Figure 3.11: Distribution of haplotype diversity index of LD blocks obtained by
different LD block partition methods for the chromosome 22 regions of (A) 1000G
and (B) HapMap datasets.

the ratio of the number of common haplotypes in the block over the total number of

haplotypes within the block. The mean haplotype diversity indices of the blocks ob-

tained by Big-LD for 1000G and HapMap are 0.911 and 0.985, respectively, which

are lower compared to those obtained by the other methods except MATILDE (0.87

for HapMap) (Table 3.11). The distribution of haplotype diversity indices shows

that the haplotype diversity of the blocks obtained by Big-LD decreases as the LD

block size increases (Figure 3.11).
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3.3.4 LD block and recombination hotspots

For the MHC dataset of 50 north-European British semen donors, we obtained the

LD block partition results using Big-LD, MATILDE, three Haploview methods (CI,

FGT, SS), MIG++ and S-MIG++ to compare with the true recombination hotspot

locations obtained by sperm-typing experiment on the same sample of individuals

in the MHC dataset as reported in [JKN01]. For this comparison, we regarded

the region between non-singleton LD blocks as the block boundary regions. Also,

we obtained estimated hotspots from MHC data using sequenceLDhot [Fea06] to

compare with the true recombination hotspot regions.

For sequenceLDhot, we set the criteria to declare hotspots when the log-likelihood

ratio over the background recombination rate is greater than 12. Also, we set the

sliding window option for sequenceLDhot as 2kb windows moving about every

1kb point. In Figure 3.12, the LD heatmap of this region and the block bound-

ary locations or hotspot locations found by all methods are shown along with the

true discovery rate (TDR) defined as the ratio of the number of block boundaries

or hotspots coinciding with the true hotspots over the number of all true hotspots

found by the sperm-typing experiment (total of 6 hotspots). The false discovery

rate (FDR) is defined as the ratio of the number of block boundaries or hotspots

not in the true hotspot regions over the number of all block boundaries or hotspots

found by the given method. Big-LD finds five out of six true hotspots (TDR of

83.3%) and shows low FDR (27.3%). The other LD block partition methods in-

cluding MATILDE, three Haploview methods, and MIG++ yield 100% TDR but

also shows high FDRs greater than 50%. The sequenceLDhot yields lower TDR

(66.7%) than the Big-LD, but shows zero FDR. We also compared LD block parti-

tion results of Big-LD and other methods applied to 1000G and HapMap data with
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Figure 3.12: The LD heatmap of the MHC dataset with true recombination hotspot posi-
tions found by sperm-typing experiments in [JKN01], LD block boundary locations found
by Big-LD, MATILDE, Haploview (CI, FGT, SS), MIG++ and hotspot locations found by
sequenceLDhot. The red bars show LD block boundaries overlapping with true recombin-
ation hotspots and the black bars show LD block boundaries not overlapping with them.
TDR is the number of the true recombination hotspots overlapping with the block bound-
aries found by each method over the number of true recombination hotspots which is 6,
and FDR is the number of non-overlapping block boundaries with the true recombination
hotspots among the ones found by each method over the all block boundaries found by each
method.
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Table 3.12: True and false discovery rates of estimated recombination hotspots ob-
tained from sequenceLDhot by different LD block partition methods

1000G HapMap

TDR* FDR** TDR* FDR**

Big-LD 0.655 (468/714) 0.652 (1305/2000) 0.858 (296/345) 0.734 (921/1255)
MATILDE 0.675 (482/714) 0.858 (3744/4362) 0.406 (140/345) 0.665 (274/412)
S-MIG++ 0.993 (709/714) 0.773 (4059/5253) 0.884 (305/345) 0.812 (1497/1843)
MIG++ 0.978 (698/714) 0.760 (3540/4659) 0.980 (338/345) 0.780 (1309/1679)
Haploview(CI) 0.971 (693/714) 0.764 (3376/4419) 0.980 (338/345) 0.779 (1302/1672)
Haploview(FGT) 0.985 (703/714) 0.837 (6692/7997) 0.991 (342/345) 0.821 (1838/2239)
Haploview(SS) 0.916 (654/714) 0.780 (4035/5170) 0.928 (320/345) 0.779 (1335/1714)
* C (B / A): A is the number of all hotspots found by sequenceLDhot. B is the number of LD block
boundaries obtained by the given method coinciding with the hotspots. C = B / A.
** F (E / D): D is the number of the LD block boundaries obtained by the given method. E is the number
of the LD block boundaries not coinciding with the hotspots. F = E / D.

the recombination hotspot locations obtained for these datasets by sequenceLDhot

to see if the LD block boundaries and estimated recombination hotspot regions co-

incide with each other. Considering the recombination hotspot regions estimated

by the sequenceLDhot as the true hotspot regions, we obtained TDR and FDR sim-

ilarly defined for the MHC dataset analysis (Table 3.12). The TDR for Big-LD

results (65.5% in 1000G and 85.8% in HapMap) is lowest compared to the TDR

for the other methods (67%∼99%) except MATILDE (40% in HapMap) since other

methods produced smaller blocks with more chance to coincide with the estimated

recombination hotspot regions. However, the FDR for Big-LD (65.2% for 1000G

and 73.4% for HapMap) is lowest among all LD block partition methods except

MATILDE (66.5% in HapMap). On average, the distance between consecutive

estimated recombination hotspots is 46,699 kb (99.5 SNPs) for 1000G data and

94,802 kb (38.5 SNPs) for HapMap data, which are twice and four times the dis-

tance between consecutive block boundary positions obtained by Big-LD for 1000G

and HapMap data respectively. LD heatmaps of some example regions compare the
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block boundaries of all partition methods and estimated recombination hotspot po-

sitions obtained by the sequenceLDhot (Figure 3.13).

3.3.5 Multi-SNP association experiments using the results of
different block partition methods

We performed power analysis using simulated data based on part of 1000 Genomes

Project dataset under multi-SNP association models using 7 regions of lung cancer

related genes (CRKL, MIF, GSTT1, ZNRF3, PATZ1, TIMP3, LGALS2). We selec-

ted a big LD block which overlaps each gene region among the blocks produced by

Big-LD. Then we set a 10 causal SNP trait model by randomly selecting 10 causal

SNPs within this block region. The generation model for phenotype Y is set addit-

ively such as Y=
∑10

i=1 βiXi + ε where Xi is the genotype (count of minor alleles)

of the ith causal SNP, βi is the additive effect, and ε is the error with variance σ2.

We choose σ2 values for each model to make the power values be not too low or

high and set βi = 1 for all causal SNPs. We performed two experiments for each

region using two type I error threshold; 1) region-wide Bonferroni correction (0.05

divided by the number of blocks in the test region) and 2) chromosome-wide Bon-

ferroni correction (0.05 divided by the number of blocks in the entire chromosome

22) [McD09]. We simulated N = 1000 datasets under each generation model. We

applied seven multi-SNP analysis methods to each simulated dataset and obtained

the p-values of each statistic. Seven methods include multi-SNP regression based

tests: Wald (quadratic test), LC-B and LC-Z (linear combination tests), MLC-B and

MLC-Z (quadratic test with dimension reduction) (see [YSP+17] for detailed defin-

ition), and the marginal SNP score based tests such as SKAT [BCZ10, KLL+08]

and SKAT-O [LEB+12, WLC+11]. Using the significance level which is Bonfer-

roni corrected for the number of blocks under two scenarios (chromosome-wide
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(1) chr22:48,718,282bp∼48,836,425bp

(2) chr22: 25,975,254bp∼26,235,629bp

Figure 3.13: LD heatmaps of some example regions with LD block boundary marks found
by Big-LD and other LD block partition methods along with the estimated recombination
hotspots regions obtained by sequenceLDhot for (A)1000G dataset and (B) HapMap dataset
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analysis and region-wide analysis), the power of each statistic for each block parti-

tion result has been empirically obtained.

The power results are given in Table 3.13 (region-wide results) and Table 3.14

(chromosome-wide results). We observed that the power of Wald, MLC-B, and

MLC-Z are usually lower when multiple SNP effects are combined over a big LD

block produced by Big-LD. The power of LC-B, LC-Z, SKAT and SKAT-O ob-

tained for the block produce by Big-LD was usually higher than the power based on

other LD block partition methods. The power of the quadratic test Wald and MLC

seemed to be diluted more for Big-LD due to the increased degrees of freedom when

including more SNPs in a block. These results are also consistent with the results

reported in [DLS14].
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Table 3.13: Empirical power of multi-SNP association tests corresponding to adjusted region-wide significance level by Bonferroni method.

Region Method N. of blocks Wald LC-B LC-Z MLC-B MLC-Z SKAT SKAT-O

CRKL Big-LD 1 0.393 0.828 0.832 0.346 0.344 0.845 0.828
21,017,148∼213,153,84 S-MIG++ 82 0.236 0.314 0.312 0.273 0.273 0.309 0.29

(747 SNPs) MIG++ 89 0.304 0.304 0.304 0.304 0.304 0.304 0.304
σ=10 Haploview(CI) 148 0.266 0.266 0.266 0.266 0.266 0.266 0.266

Haploview(FGT) 129 0.263 0.284 0.277 0.263 0.263 0.293 0.263
Haploview(SS) 60 0.23 0.342 0.331 0.264 0.263 0.362 0.321

MIF Big-LD 1 0.427 0.509 0.484 0.701 0.695 0.674 0.764
24,211,980∼24,238,079 S-MIG++ 5 0.355 0.455 0.446 0.495 0.485 0.488 0.573

(67 SNPs) MIG++ 3 0.262 0.519 0.514 0.523 0.537 0.553 0.609
σ=10 Haploview(CI) 3 0.262 0.519 0.514 0.523 0.537 0.553 0.609

Haploview(FGT) 8 0.353 0.486 0.447 0.478 0.484 0.441 0.503
Haploview(SS) 2 0.399 0.585 0.476 0.665 0.68 0.615 0.659

GSTT1 Big-LD 1 0.386 0.92 0.893 0.792 0.794 0.923 0.924
24,344,926∼24,385,697 S-MIG++ 20 0.602 0.618 0.62 0.618 0.62 0.605 0.605

(36 SNPs) MIG++ 15 0.593 0.658 0.651 0.658 0.651 0.638 0.637
σ=25 Haploview(CI) 36 0.552 0.552 0.552 0.552 0.552 0.552 0.552

Haploview(FGT) 36 0.552 0.552 0.552 0.552 0.552 0.552 0.552
Haploview(SS) 17 0.553 0.649 0.615 0.553 0.553 0.635 0.627

ZNRF3 Big-LD 1 0.564 0.936 0.952 0.829 0.825 0.95 0.944
29,523,628∼29,556,739 S-MIG++ 10 0.72 0.754 0.791 0.667 0.667 0.778 0.793

(44 SNPs) MIG++ 11 0.719 0.82 0.82 0.82 0.82 0.808 0.807
σ=14 Haploview(CI) 11 0.719 0.82 0.82 0.82 0.82 0.808 0.807
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Haploview(FGT) 10 0.679 0.729 0.659 0.754 0.731 0.816 0.761
Haploview(SS) 6 0.73 0.757 0.803 0.73 0.73 0.862 0.826

PATZ1 Big-LD 1 0.29 0.934 0.934 0.543 0.55 0.879 0.897
31,535,995∼31,787,234 S-MIG++ 42 0.625 0.633 0.637 0.625 0.625 0.625 0.625

(370 SNPs) MIG++ 27 0.67 0.67 0.67 0.67 0.67 0.67 0.67
σ=15 Haploview(CI) 23 0.686 0.686 0.686 0.686 0.686 0.686 0.686

Haploview(FGT) 110 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Haploview(SS) 69 0.575 0.575 0.575 0.575 0.575 0.575 0.575

TIMP3 Big-LD 1 0.254 0.854 0.858 0.464 0.461 0.865 0.842
33,148,102∼33,237,191 S-MIG++ 21 0.416 0.498 0.502 0.416 0.416 0.497 0.47

(222 SNPs) MIG++ 19 0.504 0.504 0.508 0.504 0.504 0.504 0.504
σ=15 Haploview(CI) 19 0.504 0.504 0.508 0.504 0.504 0.504 0.504

Haploview(FGT) 31 0.3 0.439 0.443 0.38 0.382 0.431 0.41
Haploview(SS) 15 0.39 0.525 0.523 0.39 0.39 0.537 0.485

LGALS1 Big-LD 1 0.255 0.864 0.85 0.523 0.519 0.839 0.836
38,008,395∼38,077,250 S-MIG++ 12 0.254 0.526 0.545 0.441 0.44 0.5 0.52

(117 SNPs) MIG++ 9 0.241 0.564 0.542 0.315 0.318 0.525 0.542
σ=20 Haploview(CI) 9 0.241 0.564 0.542 0.315 0.318 0.525 0.542

Haploview(FGT) 20 0.421 0.462 0.495 0.421 0.421 0.421 0.449
Haploview(SS) 9 0.241 0.524 0.492 0.324 0.322 0.494 0.515

* The significance level adjusted for multiple testing is obtained by 0.05/(N. of blocks)
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Table 3.14: Empirical power of multi-SNP association tests corresponding to adjusted chromosome-wide significance level by Bonferroni
method.

Region Method N. of blocks Wald LC-B LC-Z MLC-B MLC-Z SKAT SKAT-O

CRKL Big-LD 3101 0.248 0.928 0.927 0.347 0.335 0.94 0.908
21,017,148∼213,153,84 S-MIG++ 11397 0.8 0.907 0.905 0.866 0.864 0.862 0.858

(747 SNPs) MIG++ 11339 0.902 0.902 0.902 0.902 0.902 0.902 0.902
σ=5 Haploview(CI) 11970 0.901 0.901 0.904 0.901 0.901 0.901 0.901

Haploview(FGT) 14160 0.88 0.905 0.893 0.887 0.887 0.908 0.88
Haploview(SS) 8811 0.825 0.915 0.905 0.863 0.857 0.908 0.891

MIF Big-LD 3101 0.573 0.375 0.345 0.921 0.912 0.828 0.886
24,211,980∼24,238,079 S-MIG++ 11397 0.672 0.62 0.594 0.831 0.853 0.718 0.803

(67 SNPs) MIG++ 11339 0.47 0.621 0.595 0.831 0.854 0.711 0.768
σ=5 Haploview(CI) 11970 0.467 0.616 0.591 0.831 0.849 0.711 0.764

Haploview(FGT) 14160 0.779 0.761 0.687 0.895 0.894 0.723 0.788
Haploview(SS) 8811 0.657 0.602 0.396 0.918 0.925 0.727 0.746

GSTT1 Big-LD 3101 0.185 0.913 0.862 0.768 0.777 0.908 0.898
24,344,926∼24,385,697 S-MIG++ 11397 0.803 0.826 0.829 0.826 0.829 0.803 0.803

(36 SNPs) MIG++ 11339 0.726 0.83 0.831 0.83 0.831 0.766 0.781
σ=15 Haploview(CI) 11970 0.827 0.827 0.827 0.827 0.827 0.827 0.827

Haploview(FGT) 14160 0.818 0.818 0.818 0.818 0.818 0.818 0.818
Haploview(SS) 8811 0.701 0.856 0.814 0.701 0.701 0.811 0.81

ZNRF3 Big-LD 3101 0.386 0.823 0.862 0.765 0.769 0.88 0.869
29,523,628∼29,556,739 S-MIG++ 11397 0.765 0.782 0.808 0.744 0.732 0.794 0.813

(44 SNPs) MIG++ 11339 0.766 0.836 0.827 0.836 0.827 0.794 0.813
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σ=9 Haploview(CI) 11970 0.762 0.834 0.823 0.834 0.823 0.789 0.81
Haploview(FGT) 14160 0.729 0.685 0.592 0.788 0.786 0.778 0.687
Haploview(SS) 8811 0.685 0.71 0.782 0.767 0.758 0.838 0.78

PATZ1 Big-LD 3101 0.114 0.882 0.89 0.481 0.481 0.884 0.86
31,535,995∼31,787,234 S-MIG++ 11397 0.801 0.83 0.834 0.801 0.801 0.79 0.778

(370 SNPs) MIG++ 11339 0.845 0.845 0.845 0.845 0.845 0.845 0.845
σ=10 Haploview(CI) 11970 0.844 0.844 0.844 0.844 0.844 0.844 0.844

Haploview(FGT) 14160 0.737 0.821 0.831 0.737 0.737 0.771 0.742
Haploview(SS) 8811 0.765 0.847 0.854 0.765 0.765 0.808 0.775

TIMP3 Big-LD 3101 0.114 0.882 0.89 0.481 0.481 0.884 0.86
33,148,102∼33,237,191 S-MIG++ 11397 0.801 0.83 0.834 0.801 0.801 0.79 0.778

(222 SNPs) MIG++ 11339 0.845 0.845 0.845 0.845 0.845 0.845 0.845
σ=8 Haploview(CI) 11970 0.844 0.844 0.844 0.844 0.844 0.844 0.844

Haploview(FGT) 14160 0.737 0.821 0.831 0.737 0.737 0.771 0.742
Haploview(SS) 8811 0.765 0.847 0.854 0.765 0.765 0.808 0.775

LGALS1 Big-LD 3101 0.184 0.953 0.939 0.698 0.703 0.903 0.9
38,008,395∼38,077,250 S-MIG++ 11397 0.718 0.915 0.92 0.873 0.875 0.887 0.888

(117 SNPs) MIG++ 11339 0.381 0.911 0.897 0.752 0.743 0.885 0.892
σ=10 Haploview(CI) 11970 0.377 0.908 0.896 0.748 0.742 0.885 0.889

Haploview(FGT) 14160 0.843 0.895 0.907 0.843 0.843 0.843 0.877
Haploview(SS) 8811 0.455 0.888 0.85 0.779 0.783 0.87 0.874

* The significance level adjusted for multiple testing is obtained by 0.05/(N. of blocks)
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3.4 Discussion

Big-LD occupies much more memory (at most 3042Mb for 1000G chromosome 22

data) compared to S-MIG++ (less than 25Mb for for 1000G chromosome 22 data)

mostly due to the clique finding algorithms in R igraph package. However, Big-

LD can run without problems on high performance computers with more than 4GB

memory.

The LD block partition methods adopting a narrow sense definition of LD

blocks tend to separate SNPs that are in strong LD if they have some SNPs in

between that are in low LD with those “strong LD” SNPs. This case is observed

more often when more SNPs are genotyped in the same region such as with sequen-

cing data. As a result, the existing LD block construction algorithms usually split

large LD block into small blocks as evident in the application to the 1000G dataset.

For Big-LD, the problem of “interruption by low LD SNPs” is less likely to affect

the LD block construction results because Big-LD uses an agglomerative approach

that starts by identifying small communities of SNPs, i.e. the SNPs in each LD bin

region (from starting SNP to ending SNP), and proceeds by merging these com-

munities. By including all SNPs that are located between starting and ending SNPs

of each LD bin in the initial communities of SNPs, low LD SNPs in the middle of a

high LD region do not severely affect the block partition results. Allowing this re-

gion of low LD between strongly associated SNP pairs goes against the criteria for

evaluation of haplotype block construction results suggested by Wall and Pritchard

[WP03]: “absence of holes” (If a pair of SNPs are in strong LD, then both SNPs

should be in strong LD with SNPs that lie in between). When the purpose of hap-

lotype block construction is to find tag SNPs, the presence of holes in the block

region can yield cases where tag SNPs are not capturing the effects of some SNPs
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in the block. When, however, the purpose of haplotype block construction is to find

blocks with low between-block correlation or blocks revealing population genetic

structure such as recombination hotspots, especially with high density sequencing

data, the “absence of holes” principle may not serve the purpose.

We found that SNPs in the LD blocks produced by Big-LD show higher r2

and D′ values when they are in the same block and lower r2 and D′ values when

they are in different blocks. In the three Haploview methods, as well as in MIG++,

S-MIG++, and MATILDE, SNPs in the same block have similar, slightly higher or

lower r2 and D′ values compared to Big-LD, but SNPs in consecutive blocks also

have higher r2 and D′ values. This result shows that Big-LD produces more optim-

ized blocks compared to the other methods in the sense that r2 values are high within

the same block and low between different blocks. In particular, if we want to use

LD block construction results to choose SNP sets for genetic association analysis

using multi-SNP methods where the effects of multiple SNPs are combined, low r2

values between different SNP sets would result in less correlated null statistics cor-

responding to multiple hypotheses. To adjust p-values of the association analysis

results by the genomic significance level using Bonferroni method, the independ-

ence of null hypotheses representing many multi-SNP statistics is needed [McD09].

In our evaluation of the power of various multi-SNP association tests based on vari-

ous LD block construction results, linear combination type or marginal SNP score

based tests usually show better power for big LD block region produced by Big-

LD under multiple causal SNP models, whereas the power of quadratic sum type

tests was lower when the effects of multiple SNPs are quadratically combined over

a large block.

When we compared the LD block partition results obtained using 1000G and

HapMap datasets, we observed that the LD blocks found by Big-LD from two data-
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sets overlap more than the other methods, especially for large size blocks. This

result suggests that Big-LD finds more invariant, less data-dependent big LD blocks

regardless of the marker-density of the data. Also, the difference between the LD

block construction results of Big-LD and the other methods was even greater in

1000G data than in HapMap data. With the dense SNPs in the 1000G data, CLQ-

D usually produces a block LD structure with more LD bins that consist of non-

consecutive SNPs compared to HapMap data (Figure 3.9). Since the ranges of LD

bins are more invariant to the marker-density of genotyped SNPs, Big-LD produces

more invariant big LD blocks by the “bottom-up” type clustering of LD bins. For

the other methods such as MATILDE, Haploview, S-MIG++ or MIG++, the block

partition results are very sensitive to the SNP marker-density and/or the selection of

SNPs.

How the locations of recombination hotspots are related to LD blocks is of

major interest since a recombination hotspot is the one of the main reasons for LD

block formation. In early days, without clear operational definitions for LD block,

researchers found by observing some regions that true recombination hotspot loc-

ations confirmed by sperm-typing experiments coincide with LD block boundaries

found as LD break points [JKN01]. After several LD block definitions were in-

troduced, other researchers found that LD blocks defined in a narrow sense can

be formed without recombination hotspots [WAZ+02]. In our comparisons of LD

block partition results obtained by Big-LD algorithm and the other methods with

the experimentally determined recombination hotspots for the same MHC dataset

used in [JKN01], we found that LD blocks found by Big-LD agree better with the

true recombination hotspots than the existing methods. We also saw better agree-

ment between the LD block locations found by Big-LD and the estimated hotspot

regions obtained by the sequenceLDhot compared to the other LD block partition
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methods. However, the agreement proportions between the results of Big-LD and

sequenceLDhot do not exceed 50% even with relaxed criterion such as 60% overlap

to be declared as a shared LD block. Since the estimated recombination hotspots by

sequenceLDhot for MHC data also did not coincide with the real hotspots perfectly

(lower TDR than Big-LD), more comprehensive data with accurate information on

hotspots for large regions would be helpful to further determine the relationship

between the LD blocks found by Big-LD and recombination hotspots.

Most graph clustering algorithms require presetting the number of clusters be-

fore applying clustering steps [dAH15]. Big-LD does not require prior specification

of the number of clusters. Instead, the clusters are chosen at each step of the greedy

process which picks out a set of independent cliques of the interval graph that do not

overlap each other. It uses an algorithm to choose the maximum weight independent

set of a graph where the vertices are all cliques in the interval graph and the edges

represent the overlap between the intervals covered by each clique. By applying this

process until the remaining genomic regions are all covered by non-overlapping in-

tervals, i.e. the LD blocks, Big-LD can automatically determine how many clusters

should be present in the final partitioning results.

In summary, the new LD block construction method Big-LD produces larger

LD blocks than existing methods since it adopts a wide sense definition for LD

block, which allows a “hole” of low LD SNPs to be present between strongly as-

sociated SNP pairs. Big-LD determines the number of blocks using a maximum

weight independent set selection algorithm. The LD blocks produced by Big-LD

agree better than existing methods with the recombination hotspot locations de-

termined by sperm-typing experiments. The observed average runtime of Big-LD

for 13,288,240 non-monomorphic SNPs from 1000 Genomes Project autosome data

(286 East Asians) is about 5.83 hours, which is a significant improvement over the
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existing methods.
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Chapter 4

Comparisons of linkage disequilibrium
blocks of different populations for positive
selection

4.1 Background

Linkage disequilibrium (LD) is a dependency between alleles at different loci. It

is known that the strength of LD between two loci decreases as the genetic dis-

tance between them increases [PP01, Mor05]. However, actual LD patterns re-

vealed from the analysis of human genetic data show mosaic block-like structures

[JKN01, WAZ+02]. The underlying causes of LD block structure have been attrib-

uted to population genetic phenomena such as mutation, selection, recombination

or genetic drift [MMH+04, Sla08]. Especially, recombination hotspots where the

recombination rates arise rapidly compared to the background rates have been sus-

pected to be one of the major reasons of block formation [Fea06, Mor05].

The distribution of LD over a region has been looked into in relation to posit-

ive selection. The existence of long ranging haplotype (LRH) around an allele has

been suggested as an evidence of positive selection [SRH+02, SVF+07, VKWP06].

The frequency of an allele with higher fitness might have increased rapidly, which

yields a strong extended LD over surrounding variants [SRH+02]. Several statistical

tests have been developed such as LRH [SRH+02], iHS [VKWP06], and XP-EHH

[SVF+07] based on this assumption of the relationship between long range haplo-
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type and positive selection. These methods compare the rate of LD decay around a

single nucleotide polymorphism in contrast to the background decay rates or those

of other ethnic groups. Several loci of possible positive selection have been detec-

ted by these methods based on the SNP datasets in HapMap Phase II [SRH+02] and

1000 Genomes Project [GAS+13] for European, African and East Asian popula-

tions.

Since long range haplotypes are observed in big LD blocks more frequently,

the LD block formation and LRH might provide similar information for positive

selection. In the meantime, denser datasets such as sequenced polymorphism data

tend to show big LD blocks containing discontinuous regions of uncorrelated SNPs

within the block region, which might affect LD decay rates estimated for LRH, iHS

or XP-EHH [SVF+07]. In this study, we examine the LD blocks and LD decay pat-

terns of loci reported for possible positive selection in Sabeti et al. [SVF+07] which

were based on HapMap Phase II data of CEU, AFR and CHB+JPT populations.

We use 1000 Genomes Project data [C+12] of three major population subdivisions

- European (EUR), East Asian (EAS), African (AFR) - to compare LD blocks and

LD decays. We contrast the LD block boundaries of different populations obtained

by a previously developed LD block partition algorithm Big-LD. We also obtain test

results of XP-EHH [SVF+07] and CMS [GAS+13] to compare the LD block based

measures and LD decay based measures. To calculate the XP-EHH rank scores of

the reported sites in Sabeti et al. [SVF+07] for 1000 Genomes Project data, we use

The 1000 Genomes Selection Browser 1.0 [PDL+13]. The CMS scores of the se-

lected sites are obtained from the results reported in Grossman et al. (2013) where

they construct the scores combining five tests including three LRH type measures

(XP-EHH, iHS, ∆iHH) [SVF+07, VKWP06] and two allele frequency based meas-

ures (Fst, ∆DAF) [WC84]. We report that for several candidate regions, LD block
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based comparisons provide independent information on LD structure with possibil-

ity of usage to find positive selection loci.

4.2 Methods

4.2.1 Previous methods: XP-EHH and CMS tests

XP-EHH (Cross-population Extended Haplotype Homozygosity) test detects select-

ive sweeps in which the frequency of selected allele has rapidly increased reaching

near or complete fixation due to positive selection. As a result, long-range haplo-

types are formed near the selected allele [SVF+07]. With respect to comparison

of two populations, XP-EHH test calculates the decay of haplotype homozygosity

(iHH, Integrated Haplotype Score) around the core SNP based on the probability

that randomly chosen two chromosomes are identical (EHH, Extended Haplotype

Homozygosity) for each population. The log of the ratio of iHH of two populations

shows the population differentiation in terms of positive selection [SVF+07].

To calculate the XP-EHH scores of candidate SNPs using the 1000 Genomes Pro-

ject data, we used the 1000 Genomes Selection Browser 1.0 [PDL+13] that provides

diverse summary statistics for signatures of positive selection from the 1000 Gen-

omes Project phase 1 data of CEU, CHB and YRI populations with 97, 85 and 88

individuals, respectively. We obtained the XP-EHH rank scores (negative log of p-

value) and regarded the SNPs of maximum rank scores above 2.0 in one population

compared to the other two populations as the evidence for positive selection.

Grossman et al. [GAS+13] suggested a combined test of multiple tests, CMS, to

detect positive selection. They combined independent five tests optimized to de-

tect different patterns of signatures of selection, iHS, XP-EHH and ∆iHH for long

haplotypes, and Fst and ∆DAF for high-frequency derived allele. The CMS test
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combines the five tests in composite likelihood statistic, and this method is used to

localize signals of natural selection within identified candidate regions. To identify

new candidate regions, Grossman et al. [GAS+13] developed a new genome-wide

CMS test called CMSGW , and found that it has greater power than previous allele

frequency spectrum based statistics and complements long range haplotype based

methods. They applied CMS method to the region that is identified by CMSGW

and previous candidate region identified by long-haplotype methods [FBC+07], and

suggested 412 fine-mapped signals of selection.

4.2.2 Comparison measure of LD block partitions

We calculated a similarity measure to compare LD blocks containing an index SNP

obtained for two different populations. We used a modified version of a similarity

measure for two partition results suggested by Fowlkes and Mallows [FM83]. For

a given index SNP and two populations A and B to be compared, let XA and XB

be the LD block regions (intervals on the chromosome) which include the position

of the index SNP in population A and B, respectively. Let SA and SB be the sets

of SNPs in the data of population A and B, located in the region XA and XB ,

respectively. We denote by xA and xB the total number of SNP pairs in the sets

SA and SB , respectively. In addition, let xAB be the number of pairs of SNPs in

SA which belong to the common region of two LD blocks XA and XB , and xBA

the number of pairs of SNPs in SB which belong to the common region of two LD

blocks XA and XB . Note that xAB and xBA might not be same if the lists of SNPs

of each population are not same. Now the similarity measure s(XA, XB) can be

defined as follows:

s (XA, XB) =

√
xAB

xA
× xBA

xB
.
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4.2.3 Data

We obtained LD block construction results using Big-LD from 1000 Genomes Pro-

ject phase 1 release 3 dataset of East Asian data (EAS, 286 individuals from CHB,

CHS and, JPT populations), European data, (EUR, 379 individuals from TSI, IBS,

FIN, CEU, and GBR populations), and African data (AFR, 246 individuals from

YRI, LWK, and ASW populations) [C+12] for several regions previously reported

as for positive selection in Sabeti et al. [SVF+07]. For the edge selection threshold

for CLQ-D, we use θ = 0.5 Sabeti et al.[SVF+07] suggested 22 regions based on

the long range haplotype tests along with some extra conditions: each suggested

target SNP of selection should be a high-frequency derived allele, differentiated

between populations, and common only in the selected population, and also identi-

fied as functional. Among 22 regions suggested as the strongest candidate regions

for positive selection in Sabeti et al. [SVF+07], we selected 11 regions that are near

16 genes: chr1:169Mb (BLZF1, SLC19A2), chr2:109 Mb (EDAR), chr2:136 Mb

(RAB3GAP1, R3HDM1, LCT), chr2:178Mb (PDE11A), chr4:42Mb (SLC30A9),

chr10:56Mb (PCDH15), chr15:49Mb (SLC24A5), chr15:64Mb (HERC1), chr16:76Mb

(CHST5, ADAT1, KARS), chr17:59Mb (BCAS3), chr22:34Mb (LARGE). There

were 30 individual SNPs which have shown strong evidence for positive selection

within these 16 gene regions. We selected those SNPs as the index SNPs for our in-

vestigation. We used the phased genotype data in those regions after pruning SNPs

with minor allele frequency less than 5% and removing deletions and insertions

(indels).

To calculate the similarity scores of LD blocks in candidate regions, we chose

a region of the LD block that contains each index SNP. If the similarity score calcu-

lated for two LD blocks obtained for two populations containing the index SNP is
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below 0.8 and the ratio of the length of these LD blocks is below 0.8, we concluded

that the LD block formation is different between two populations around the index

SNP.

4.3 Results

In Table 4.1, we present the range and length of LD blocks including the index

SNPs at the candidate positive selection sites for three populations (EAS, EUR,

AFR) with marks for regions with the LD block similarity score<0.8 and LD block

length ratio<0.8. In Table 4.2, we compare the populations detected as positive

selection by different sources for candidate regions: 1) Sabeti et al. [SVF+07]

using XP-EHH combined with extra conditions applied to HapMap Phase II data,

2) Big-LD applied to 1000 Genomes Project data, 3) maximum XP-EHH scores

calculated from 1000 Genomes Positive Selection Brower 1.0, and 4) Grossman et

al. [GAS+13] using CMS statistic applied to 1000 Genomes Project data.

The decision based on LD block comparison using 1000 Genomes Project data-

set agrees with Sabeti et al. (2007) using HapMap dataset at several loci such as

chr2:109 (EDAR), chr2:136 (RAB3GAP1. R3HDM1, LCT), chr10:56 (PCDH15),

chr22:34 (LARGE).

In the region of EDAR gene (chr2:109329354∼109540036), the LD block

including the index SNP rs3827760 found in East Asian populations is 2.3 times

longer than the blocks found in the other populations and the LD block similarity

scores are 0.56 and 0.54 compared to European and Africans, respectively. Also,

the maximum XP-EHH scores between CHB and CEU, and CHB and YRI ob-

tained by the 1000 Genomes Positive Selection Browser are 2.62 and 3.85 respect-

ively. However, this region was not found positively selected by Grossman et al.
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Table 4.1: The LD block regions including the target index SNPs found in the can-
didate regions for positive selection.

SNPid Gene Pop Size Length Start End
(N. of SNPs) (bp) (Mb) (Mb)

chr1:169 rs1028180, BLZF1, SLC19A2 EAS* 635 282075 169.171 169.454
rs3862937 EUR† 938 365025 169.089 169.454

AFR 352 141309 169.309 169.45
chr2:109 rs3827760 EDAR EAS*† 208 210683 109.329 109.54

EUR 204 92371 109.448 109.54
AFR 317 91091 109.449 109.54

chr2:136 rs17261772 RAB3GAP1 EAS 182 181594 135.758 135.94
EUR*† 623 531335 135.758 136.29
AFR† 1282 630221 135.757 136.387

chr2:136 rs1446585 R3HDM1 EAS† 705 605274 135.942 136.547
EUR* 517 496045 136.291 136.787
AFR 186 92777 136.387 136.48

chr2:136 rs4988235 LCT EAS 382 219400 136.555 136.775
EUR*† 517 496045 136.291 136.787
AFR 483 153973 136.495 136.649

chr2:178 rs3770005 PDE11A EAS* 266 79774 178.471 178.551
EUR*† 670 318757 178.221 178.54
AFR 356 65771 178.473 178.539

chr4:42 rs1047626, rs2660326, SLC30A9 EAS* 30 104697 41.983 42.088
rs3827590, rs3827591, EUR† 442 211512 41.976 42.188
rs4861155 AFR 389 121939 41.985 42.107

chr10:56 rs16905686, rs4935502 PCDH15 EAS*† 161 90039 55.87 55.96
EUR 176 29452 55.947 55.976
AFR 124 25948 55.944 55.97

chr15:49 rs1426654 SLC24A5 EAS 110 127548 48.39 48.517
EUR* NA NA NA NA
AFR 166 128270 48.39 48.518

chr15:64 rs10851731, rs2229749, HERC1 EAS*† 303 355711 63.781 64.136
rs2272209, rs2228511, EUR 425 244328 63.893 64.137
rs6494428, rs16947373 AFR† 850 346577 63.791 64.137

chr16:76 rs2242406, rs3743599, CHST5, ADAT1, EAS* 265 177956 75.522 75.7
rs6834 KARS EUR† 540 314622 75.523 75.837

AFR* 661 175976 75.524 75.7
chr17:59 rs9303429 BCAS3 EAS† 396 350394 58.882 59.232

EUR* 395 221876 58.813 59.035
AFR 200 71975 58.902 58.974

chr17:59 rs6504005, rs6504010 BCAS3 EAS† 396 350394 58.882 59.232
EUR* 395 221876 58.813 59.035
AFR 116 54127 58.977 59.032

chr22:34 rs1573662 LARGE EAS 27 19725 34.27 34.29
EUR 38 16503 34.28 34.297
AFR*† 92 24976 34.28 34.305

chr22:34 rs5999077 LARGE EAS 44 23079 34.129 34.152
EUR† 77 29462 34.122 34.151
AFR*† 108 25825 34.123 34.149

chr22:34 rs1013337 LARGE EAS 223 70921 34.153 34.224
EUR 300 74788 34.152 34.227
AFR* 249 73454 34.152 34.226

* Positive selection suggested by Sabeti et al. [SVF+07].
† LD block similarity score<0.8 and LD block length ratio<0.8.
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Table 4.2: Comparisons of populations suggested for positive selection by different
sources

Populations on selection

Region rsID (bp) Gene XP-EHH

[SVF+07]
Big-LD

1000G

Positive

Selection

Browser 1.0

CMS

[GAS+13]

chr1:169088679∼169453703 rs1028180 (169345868) BLZF1 CHB+JPT EUR - -

rs3862937 (169436678) SLC19A2

chr2:109329354∼109540036 rs3827760 (109513601) EDAR CHB+JPT EAS CHB -

chr2:135756506∼136786651 rs17261772 (135911422) RAB3GAP1 CEU EUR CEU CEU

rs1446585 (136407479) R3HDM1

rs4988235 (136608646) LCT

chr2:178220864∼178550624 rs3770005 (178528874) PDE11A CEU, EUR CEU, CHB -

CHB+JPT

chr4:41976129∼42187640 rs1047626 (42003671) SLC30A9 CHB+JPT EUR CHB YRI

rs2660326 (42007071)

rs3827590 (42031437)

rs3827591 (42031472)

rs4861155 (42032024)

chr10:55869622∼55976483 rs16905686 (55949151) PCDH15 CHB+JPT EAS CHB CHB+JPT

rs4935502 (55955444)

chr15:48389924∼48518193 rs1426654 (48426484) SLC24A5 EUR NA CEU CEU

chr15:63780762∼64137238 rs10851731 (63922752) HERC1 CHB+JPT EAS, AFR CHB CHB+JPT

rs2229749 (63937209)

rs2272209 (63953153)

rs2228511 (63954029)

rs6494428 (63991725)

rs16947373 (63998315)

chr16:75522322∼75837352 rs2242406 (75574030) CHST5 CHB+JPT, EUR - CHB+JPT

rs3743599 (75646576) ADAT1 YRI

rs6834 (75661803) KARS

chr17:58813056∼59232365 rs9303429 (58965400) BCAS3 CEU EAS CEU, CHB CEU

rs6504005 (58986037)

rs6504010 (59018306)

chr22:34121523∼34226847 rs1573662 (34289111) LARGE YRI AFR YRI YRI

rs5999077 (34134109)

rs1013337 (34211302)
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[GAS+13]. The EDAR gene encodes the key receptors for the ligands in ectodys-

plasin (EDA) pathway [BHP+08, SVF+07]. Several studies found the evidence

of positive selection in this region based on allele frequency spectrum [WHC+07].

Other studies found the evidence of positive selection based on the population dif-

ferentiation [AER+04] along with the haplotype structure [SVF+07] in this region.

EDAR is known to have a role in development of hair follicles, teeth and exo-

crine glands [BHP+08, SVF+07]. The index SNP rs3827760 in EDAR region is

a non-synonymous SNP which substitutes a valine to alanine at position 370 of

the amino sequence (V370A). In 1000 Genomes Project dataset, the frequency of

V370A is near fixation (87%) in East Asian whereas the frequency is l.1% and 0.3%

in European and African populations.

RAB3GAP1, R3HDM1, and LCT genes all are located in the chr2:136 region.

In this region, the LD block containing the index SNP rs4988235 near LCT gene in

European populations is 2.3 and 3.2 times longer than the blocks in East Asian and

African populations, and the LD block similarity scores are 0.46 and 0.49 compared

to East Asian and African populations, respectively. In the region covered by LD

blocks constructed by Big-LD (chr2:135756506∼136786651), the maximum XP-

EHH scores between CEU and CHB, and between CEU and YRI obtained by 1000

Genomes Selection Browser 1.0 are 4.50 and 5.07 respectively. Also Grossman

et al. [GAS+13] found evidence for positive selection in this region using CMS

statistic. Mutations in LCT gene are associated with congenital lactase deficiency

[SVF+07].

In the PCDH15 region, the LD block length for East Asian populations is three

times the blocks in the other two populations and the LD block similarity scores of

East Asians are 0.19 and 0.29 compared to the other two populations. In the region

of LD blocks containing index SNPs (chr10:55869622∼55976483), the maximum
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XP-EHH scores between CHB and CEU, and between CHB and YRI are 2.92 and

2.90 respectively, and this region overlaps with the candidate region of positive

selection in CHB+JPT population detected by CMS statistic [GAS+13]. The role of

PCDH15 is for retinal and cochlear function [AER+04] and development of inner-

year hair cells [GAS+13]. The frequency of the derived allele of rs16905686 in East

Asian is 84% whereas it is 13% in the other two populations.

The LD block including rs1573662 in the LARGE gene region is 1.3∼1.5

times longer in African populations than in the other two populations. The LD

block similarity scores of African populations are 0.74 compared to Europeans and

0.14 compared to East Asians for the region including the index SNP rs1573662.

In the region of LD blocks containing index SNPs (chr22:34121523∼34226847),

the maximum XP-EHH scores between YRI and CEU, and between YRI and CHB

obtained by 1000 Genomes Selection Browser 1.0 are 2.99 and 2.10 respectively.

Also, this region overlaps with the candidate region of positive selection in YRI

population detected by CMS statistic [GAS+13]. The region of LARGE gene is

well known to be linked to the Lassa fever virus [AST+12]. In Lassa, Nigeria,

the 20% of the population is exposed to this disease [AST+12, SVF+07]. Many

researchers have hypothesized that the Lassa fever epidemic pressured the selec-

tion at LARGE [AST+12, RB03, SVF+07]. The frequency of the derived allele of

rs1573662 is 24% in Africans, but is 0.4% in Europeans. The allele is not observed

in East Asians.

The SLC24A5 gene region is known to have a role in pigmentation and skin

colors [SVF+07]. In European populations of 1000 Genomes Project data, the

frequency of the derived allele of the index SNP rs1426654 approaches 99.7%

whereas it is observed to be 1.2% and 7.4% of East Asians and Africans. Be-

cause of low minor allele frequency of the SNPs in the region around the index

81



SNP in European populations, we could not detect the LD block containing the in-

dex SNP for this population. In the region that contains the index SNP rs1426654

(chr15:48389924∼48518193), the maximum XP-EHH scores between CEU and

CHB, and between CEU and YRI obtained by 1000 Genomes Selection Browser 1.0

are 4.19 and 3.36 respectively. This region, also, overlaps with the region of positive

selected in CEU population found by Grossman et al. [GAS+13]. Some findings

based on LD block comparisons were inconsistent with the results reported by Sa-

beti et al. [SVF+07]. Our results indicate that populations different from the previ-

ously suggested population as positively selected for regions of BLZF1-SLC19A2

and CHST5-ADAT1-KARS and HERC1. In HERC1 region, the LD blocks con-

taining the index SNPs are found to have shorter lengths only in Europeans. On

the other hand, the LD heatmaps show that the overall LD between the SNPs in

the region is stronger in EAS than in the other populations, while the blocks are

formed rather similarly for three populations (Figure 4.1A). The LD decay plot of

the index SNP rs16947373 shows that the SNPs strongly linked to the index SNP

are observed to be located at similar distance in three populations yet they are more

frequent in EAS population (Figure 4.1B). The XP-EHH score plot of all SNPs in

this region clearly shows that in the CHB population SNPs show strong signals for

LD decay rates (Figure 4.1C). The maximum XP-EHH scores between CHB and

CEU, and between CHB and YRI obtained for this region are 3.06 and 2.28 respect-

ively. Also, this region overlaps with the candidate region of positive selection in

CHB-JPT population detected by CMS statistic [GAS+13]. This case shows that

the differences in the strength of LD may result in similar LD block formations

between different populations by Big-LD but also different values for the LD decay

measures. For BLZF1-SLC19A2 region, and CHST5-ADAT1-KARS region, the

maximum XH-EHH scores obtained for 1000 Genomes Project did not indicate any
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Figure 4.1: (A) LD heatmaps of HERC1 region for three populations. LD block boundaries are
marked by solid lines and the index SNPs in this region is marked in red. (B) LD decay map around
the index SNP rs16947373. The r2 values of the SNPs away from the index SNP (red vertical line) is
plotted from the centre. The LD block containing the index SNP is marked in blue vertical line. (C)
XP-EHH rank score plot obtained from the 1000 Genomes Selection Browser 1.0
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particular population in the aspect of positive selection. For CMS statistic, CHB-

JPT was suggested as positively selected in CHST5-ADAT1-KARS region, which is

also inconsistent with the LD block analysis or findings of Sabeti et al. [SVF+07].

In SLC30A9 region, the LD block found in European populations is the longest

while the East Asian population has been suggested as positive selection in Sabeti

et al. [SVF+07]. The LD block similarity scores of Europeans are 0.55 and 0.42

compared to East Asians and Africans, respectively. The LD heatmaps show that

the block formed around the index SNPs in European populations is longer com-

pared to the other populations (Figure 4.2A). However, the LD decay of index SNP

rs4861155 (Figure 4.2B) and the XP-EHH score plot for this region (Figure 4.2C)

show that the LD decay is slower in East Asian populations. In the results of the

1000 Genomes Selection Browser 1.0, the XP-EHH scores of four SNPs among the

suggested five index SNPs do not show the significant signal of positive selection.

However, these index SNPs belong to one of the candidate regions suggested by

Grossman et al. [GAS+13] for the selection in YRI. The frequencies of the derived

allele of the index SNP rs1047626 are 95% and 76% in East Asian and European

populations, and 11% in African populations. In other studies, possible positive se-

lection in East Asians for SLC30A9 has been also suggested [EEM+15, ZLT+15].

SLC30A9 encodes the Zinc transporter protein ZNT9 and has been suggested to

be positively selected in relation to the zinc distribution in soils and crops in dif-

ferent geographical regions [ZLT+15]. The LD block based analysis, LRH based

results and a combined statistic CMS suggest different population as positive selec-

tion, which might be due to complex population history calling for more elaborated

analysis. In PDE11A region, LD block based comparisons indicate that European

is possibly positively selected while East Asian and European both have been sug-

gested as positively selected in this region by Sabeti et al. [SVF+07]. The LD
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Figure 4.2: (A) LD heatmaps of SLC30A9 region for three populations. LD block boundaries are
marked by solid lines and the index SNPs in this region is marked in red. (B) LD decay map around
the index SNP rs4861155. The r2 values of the SNPs away from the index SNP (red vertical line) is
plotted from the centre. The LD block containing the index SNP is marked in blue vertical line. (C)
XP-EHH rank score plot obtained from the 1000 Genomes Selection Browser 1.0
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Figure 4.3: (A) LD heatmaps of PDE11A region for three populations. LD block boundaries are
marked by solid lines and the index SNPs in this region is marked in red. (B) LD decay map around
the index SNP rs3770005. The r2 values of the SNPs away from the index SNP (red vertical line) is
plotted from the centre. The LD block containing the index SNP is marked in blue vertical line. (C)
XP-EHH rank score plot obtained from the 1000 Genomes Selection Browser 1.0
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heatmaps show an LD block is formed in wider range in European populations

(Figure 4.3A). Meanwhile, the LD decay plot shows stronger LD for surrounding

SNPs with the index SNP rs3770005 in CHB and CEU (Figure 4.3B, 4.3C). The

frequencies of derived alleles of the index SNP are 70% and 72% in East Asian and

European populations, but it is 9.8% in African populations. In the LD block region

(chr2:178220864∼178550624) which contains index SNP rs3770005 constructed

by Big-LD, the maximum XP-EHH scores obtained by 1000 Genomes Selection

Browser 1.0 between CEU and YRI, and between CHB and YRI are 2.94 and 3.20

respectively. This region does not overlap with any of the candidate regions sug-

gested by Grossman et al. [GAS+13]. The mutations in PDE11A cause Cushing

disease and adrenocortical hyperplasia [Str08].

In BCAS3 region, the LD block found in East Asian populations is the longest

and the LD block similarity scores are 0.27 and 0.36 compared to European and

African populations, but Sabeti et al. [SVF+07] suggested European population

as for the positive selection. When we examined the LD heatmaps, we found the

LD patterns in both European and Asian are similar (Figure 4.4A). In this region,

we could observe that the LD decay of three index SNPs is slower in East Asian

and European populations, with slowest decay in East Asians (Figure 4.4B). The

frequencies of rs9303429 allele are 87% and 83% in East Asian and European pop-

ulations while it is 19% in Africans. In the LD block region containing index SNPs,

the maximum XP-EHH scores from 1000 Genomes Selection Browser 1.0 between

CEU and YRI, and between CHB and YRI are 4.75 and 6.00 respectively. Fig-

ure 4.4C shows the results of 1000 Genomes Selection Browser 1.0 in this region,

and similar patterns between the CEU and CHB populations in the XP-EHH scores

plots can be observed. On the other hand, this region overlaps the region of positive

selection in CEU population suggested by Grossman et al. [GAS+13]. The BCAS3
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Figure 4.4: (A) LD heatmaps of BCAS3 region for three populations. LD block boundaries are
marked by solid lines and the index SNPs in this region is marked in red. (B) LD decay map around
the index SNP rs65504005. The r2 values of the SNPs away from the index SNP (red vertical line) is
plotted from the centre. The LD block containing the index SNP is marked in blue vertical line. (C)
XP-EHH rank score plot obtained from the 1000 Genomes Selection Browser 1.0
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gene is a protein coding gene and related to the estrogen response. This gene is amp-

lified and over-expressed in breast cancer cells [BMW+02], and has been reported

for association with breast cancer and coronary artery diseases [BHG+16].

4.4 Conclusions

We examined the LD block structures attained by the LD block construction al-

gorithm Big-LD in the regions including selected candidate loci of positive selection

suggested in Sabeti et al. [SVF+07] using the 1000 Genomes Project data of three

populations (East Asian, European, and African). We could find LD block patterns

in genes EDAR, LCT, PCDH15, and LARGE consistent with the results in Sabeti

et al. [SVF+07] and confirm the positive selection in these loci. We observed that

in HERC1, SLC30A9, PDE11A and BCAS3 regions, the LD block based analysis

provides different information worth considering in detection of positive selection.

Based on all evidences from this study, we suggest that SLC30A9, PDE11A and

BCAS3 regions have been positively selected in both European and East Asians

with possible discrepancy between two populations.

Big-LD algorithm provides information about LD structure of multiple non-

consecutive SNPs in strong LD by constructing LD blocks that contain “holes”

[WP03]. This information can add extra contribution to the findings drawn from

LD decay analysis or allele frequency analysis. To investigate positive selection

with greater power, we might want to combine LD block comparison method with

the other statistical tests which designate a single-SNP as a core of selection pro-

cedure.
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Chapter 5

Sparse hypergraph partitioning

5.1 Motivation and background

The Big-LD algorithm is designed to partition SNP sequence data into blocks. The

SNP sequence data have a particular characteristic such that SNPs are ordered by

their positions in the chromosome. In addition, due to population genetic theory,

there is little chance that distant SNPs are in strong LD. If we represent SNPs by a

graph based on their pairwise LD, distant SNPs are usually not joined by an edge

and this restricts the number of edges.

In this chapter, we try to generalize the clustering problem of SNP sequence

data to the situation of a general dataset without any positional ordering, but with

the community membership or common attributes information available. In the

Big-LD algorithm, consecutive SNPs in the range of clusters are designated by an

interval, and an interval graph is constructed based on the overlap between those

intervals. For a general clustering problem not considering the ordering of the ob-

jects, the concept of intervals cannot be applied. Instead of intervals, the community

membership and their overlap structures can be modeled by a hypergraph using hy-

peredges.

In the case of the Big-LD algorithm for SNP sequence data, the number of

intervals is smaller than the total number of SNPs. Hence, the interval graph has

fewer vertices, resulting in the rapid computation of Big-LD execution. This shows

the benefit of the multi-level modeling approach used for Big-LD. For a generalized
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clustering problem with community membership information, we will assume that

the number of hyperedges is less than or equal to the number of vertices. We call

such a hypergraph a “sparse hypergraph” in this study.

When we focus on common attributes or memberships of objects rather than

the pairwise relationships as we did for Big-LD regarding LD bins, the hypergraph

modeling can represent the data structure naturally. For example, co-authorship

networks can be modeled as a simple graph, where vertices represent authors and

two vertices are joined by an edge if they have a co-author relationship [New04]. On

the other hand, using a hypergraph, we can model the information of co-authors by

representing the co-authors of a work by a hyperedge [HZPJ]. For genetic data, we

can group genes, proteins, or phenotypes sharing common biological properties and

represent them by hypergraphs [GDG14, THK09, KHZ14, RPT10]. Social media

information, such as social tagging systems, can be transformed into a hypergraph

by grouping objects having common attributes and used for social network analysis

or recommendation system design [ZL10, TBCH11, BTC+10].

Attempts have been made to partition data using hypergraph modeling. The

multi-level approach is the one of the most widely used hypergraph partitioning

strategies, and this approach consists of three phases: coarsening, initial partition-

ing, and uncoarsening. This method has been applied to various problems such

as VLSI (very-large-scale integration) design circuits [KAKS99, AHK98, LJ15,

KK98b, AHK98, KK00, KAKS99, LJ15, CDKU12]. Another approach is spectral

clustering. Shi and Malik [SM00] suggested a spectral clustering algorithm based

on the normalized cut approach which operates on an undirected graph to solve the

problems of image segmentation. Generalized spectral clustering techniques for hy-

pergraphs have been suggested by Zhou et al. [ZHS06]. A hypergraph can be trans-

formed into an undirected graph by joining every two vertices in the same hyperedge
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by an edge, then a spectral clustering algorithm can be applied to the vertex set of

the hypergraph [OB12, ALZM+05]. Bulò and Pelillo [BP09] applied a game theory

by considering the hypergraph clustering problem as a multi-player non-cooperative

clustering game. Liu et al. [LLY15] suggested an algorithm, called dense subgraph

partitioning (DSP), which partitions a hypergraph by detecting dense subgraphs in

a greedy manner and the number of partitions are automatically decided. However,

most hypergraph clustering methods require parameters such as the number of par-

titions (multi-level approach [AHK98, KK98b, KK00, Kar03, KAKS99], spectral

approach [ZHS06, OB12, ALZM+05]), or impose the constraints such as the bal-

ance of the weights of clusters (multi-level approach [KK98b, KAKS99, AHK98,

LJ15]) or the size of hyperedges (game theory approach [BP09], spectral approach

[OB12, ALZM+05]). There exist cases that need a pre-decided number of clusters,

size of hyperedges, or balanced size of hyperedges of input data. However, when we

attempt to cluster real-world data, methods with such limitations might not always

produce desirable results. In the problem of partitioning SNP sequences into LD

blocks, limiting the size of LD bins or LD blocks or imposing a balance between

the sizes of LD bins or LD blocks might twist the big LD block structures we intend

to find.

In this chapter, we develop several hypergraph partitioning algorithms without

constraints on the size of hyperedges, number of final partitions, and balance between

sizes of partitions assuming the hypergraph is sparse in that the number of edges is

less than the number of vertices.
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5.2 Related works

A large number of hypergraph partitioning methods have been developed. In this

section, we review the multi-level hypergraph partitioning method and the spec-

tral hypergraph partitioning method that are regarded as the most widely used and

important k-way partitioning methods. We also review the DSP method that de-

cides the number of partitions automatically in contrast to the k-way partitioning

method. In addition, k-clique clustering is reviewed, which is used to find over-

lapping clusters in networks, and in this work, we suggest a notion of “max-clique

adjacency” based on the “k-clique adjacency” related to k-cliques.

5.2.1 Multi-level hypergraph partitioning

Multi-level hypergraph partitioning is one of the most widely used hypergraph clus-

tering methods in fields such as VLSI design and data mining [KK98b, AHK98,

KK00, KAKS99, LJ15, CDKU12]. There are two approaches in multi-level hyper-

graph partitioning: recursive bisection [KAKS99, AHK98, LJ15], and direct k-way

partitioning [KK98b, KK00]. The goal of both methods is to partition the vertices

of a hypergraph into k parts, such that objective functions are optimized under the

requirement about the weight of each partition. The recursive bisection approach

generates a bipartition of the original hypergraph, and then recursively applies the

bisecting procedure to each part independently. The direct k-way partitioning cal-

culates k partitions of a hypergraph directly. Basically, this method aims to partition

the vertex set into k parts of equal weights as close as possible.

The multi-level hypergraph partitioning method consists of three phases: coarsen-

ing, initial partitioning, and uncoarsening. During the coarsening phase, hyper-

graphs are successively contracted by merging two or more vertices, and a sequence
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of successively smaller hypergraphs are constructed. The purpose of the coarsening

stage is to reduce the sizes of hyperedges, and this helps to refine hyperedges with

a large number of vertices when they belong to different partitions. There are a

number of schemes for merging vertices to obtain the next level hypergraph, and we

introduce most representative approaches : edge-coarsening, hyperedge-coarsening,

and first-choice edge coarsening.

Edge coarsening is the simplest way to merge the vertices connected by hy-

peredges. In this scheme, for each vertex v the algorithm visits, unmatched ver-

tices that belong to hyperedges incident to v are selected and pairs of vertices with

the largest weight are chosen as a group [KAKS99]. In the hyperedge-coarsening

scheme, an independent set of hyperedges is selected and the vertices in each hy-

peredge are contracted together. First, all hyperedges are sorted by non-increasing

order of hyperedge weights. The algorithm visits hyperedges in that order, and se-

lects a hyperedge that does not share any vertex with already selected hyperedges.

All the vertices in the selected hyperedge are contracted together. Because more

than two vertices are grouped, this approach speeds up the coarsening phases [KAKS99].

In addition to the hyperedge-coarsening procedure, for each hyperedge we can

merge vertices that do not belong to the already contracted hyperedges. This scheme

is named modified hyperedge-coarsening [KAKS99]. Edge and hyperedge coarsen-

ing both find independent groups for contracting. These approaches may destroy

the natural cluster structure in the hypergraph, so the first-choice edge-coarsening

scheme was developed to overcome this problem. The first-choice edge-coarsening

scheme adopts a relaxed requirement compared with the edge-coarsening scheme

in that a vertex can be matched with an already matched vertex by breaking the

existing tie if the new pair of vertices is connected with the largest weight [Kar03].

During the initial partitioning phase, bisections or k-way partitions of the smal-
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ler hypergraphs are computed. Since the coarsest hypergraph constructed by the

coarsening phase has few vertices, the execution time for partitioning tends to be

small. Since the coarsest hypergraph may not reflect the structure of the original

hypergraph, the algorithm finds partitions that have small cut and also satisfy a bal-

ancing constraint. One method of initial partitioning is to find a random bisection

that satisfies the balance constraint. Another method is to start from a randomly

selected vertex seed and then grow the part by assigning vertices around the vertex

seed to the part until the part contains half of the vertices [Kar03].

During the uncoarsening phase, the partitioning of coarser hypergraphs is pro-

jected to the next-level finer hypergraph, and a reduction in the number of hy-

peredges cut by partitions is implemented using a refinement algorithm. The Fiduccia–

Mattheyses (FM) algorithm [FM88], which is the basis of the various refinement

algorithms, is an iterative method. In each iteration, it detects a subset of vertices in

each partition to move them to other partitions to improve the quality of partitioning

[KAKS99].

The hMETIS is one of the most widely used programs to partition a hypergraph

into k parts using multi-level hypergraph partitioning methods. It contains both re-

cursive bisection methods (shmetis and hmetis) and direct k-way partitioning (kh-

metis) [KAKS99, KK98b]. The program provides options for various coarsening,

uncoarsening and refinement schemes based on the FM algorithm.

5.2.2 Spectral clustering

Another k-way hypergraph clustering method is the spectral clustering approach. To

solve the image segmentation problem, Shi and Malik [SM00] suggested a spectral

clustering method based on simple graphs that minimizes normalized cut by solving

the generalized eigenvalue system. A simple graph G = (V (G), E(G)) can be
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partitioned into two disjoint sets A and B, and the nomalized cut is defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V (G))
+

cut(A,B)

assoc(B, V (G))

such that cut(A,B) =
∑

u∈A,v∈B w′
G(u, v) and assoc(A, V (G)) =

∑
u∈A,v∈V (G)

w′
G(u, v) where w′

G(u, v) is the edge weight between u and v. The exact minimizing

normalized cut is NP-complete, however we can find an approximate solution by

solving the generalized eigenvalue system. Let d(vi) =
∑

vj∈V (G)w
′
G(vi, vj) be

the total connection from a vertex vi to all other vertices, D be a |V (G)| × |V (G)|

diagonal matrix with D[i, i] = d(vi), and W be a |V (G)| × |V (G)| matrix with

W[i, j] = w′
G(vi, vj). Then, the eigenvector associated with the second smallest

eigenvalue of the eigenvalue system

D− 1
2 (D−W)D− 1

2 z = λz,

where z = D
1
2y, is the real valued solution to our normalized cut problem.

For hypergraph partitioning, a generalized version of the normalized cut for a

simple graph can be defined, and we can formulate the optimization problem for

hypergraph partitioning in a similar manner to the spectral partitioning of a graph.

To obtain k-way partitions, the K-means algorithm [HW79] can simply be run on a

matrix whose columns are k eigenvectors associated with the k smallest eigenvalues

[ZHS06]. On the other hand, we can partition a hypergraph by transforming the

hypergraph H into a graph G where V (G) = V (H) and vi, vj ∈ V (G) are joined

by an edge if and only if {vi, vj} ⊂ e for e ∈ E(H). Then we can apply the spectral

clustering method for graphs and obtain the partitioning results [OB12, ALZM+05].
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5.2.3 Dense subgraph partitioning

DSP [LLY15] is a method to partition a hypergraph (or graph) with positive edge

weights into dense subgraphs. DSP is non-parametric partitioning and automatically

decides the number of partitions. The density of a hypergraph H = (V (H), E(H))

is defined to be ρ(H) = w′(H)
|V (H)| where w′(H) =

∑
e∈E(H)w

′
H(e). Then there is a

maximal densest subgraph of H that is called the core subgraph denoted as CS(H).

For two subsets U, S ∈ V (H), the conditional total weight of an induced subgraph

H[U ] conditioned on an induced subgraph H[S] is defined as w′(H[U ]|H[S]) =

w′(HU∪S) − w′(H[S]), and the conditional density of H[U ] conditioned on H[S]

is defined as ρ(H[U ]|H[S]) = w′(H[U ]|H[S])
|U | . A conditional core subgraph condi-

tioned on a subgraph H[S], denoted as CCS(H|H[S]), is the maximal subgraph

whose conditional density reaches a maximum.

DSP is a method to sequentially partition a given hypergraph into a sequence

of disjoint conditional core subgraphs. That is, we first find a core subgraph H[V1]

of H and find a disjoint partition of the core subgraph whose density is equal to

the density of the core subgraph, then we detect a conditional core subgraph H[V2]

conditioned on H[V1] and find the disjoint partition of H[V2] whose conditional

density is equal to the conditional density of H[V2]. After we find a partition P1,

we repeat the same procedure on the graph H(V \ P1) and similarly find another

partition P2. In this way, the disjoint partitions of H can be found by repeating the

procedure.

5.2.4 k-clique clustering

Numerous studies have investigated the clustering methods related to the notion of

cliques. We review the k-clique clustering that has been the motive for the concept
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of max-clique adjacency in this study. The concept of k-clique is utilized to reveal

the overlapping structures of communities in real-world networks [PDFV05]. A

k-clique is a complete subgraph of k vertices. There are few notions related to

k-cliques [DPV05].

• Two k-cliques are k-clique adjacent if two k-cliques share k − 1 vertices.

• A k-clique chain is the union of a sequence of adjacent k-cliques.

• Two k-cliques are k-clique-connected if they belong to a k-clique chain.

• A k-clique percolation cluster is a maximal k-clique-connected subgraph

The k-clique community (k-clique percolation cluster) finding algorithm sug-

gested in [PDFV05] is as follows.

We first detect all maximal cliques C1, ..., Cn of a graph (or network) G. Then an

n×n clique-clique overlap matrix M is constructed such that M [i, j] is the number

of common vertices of maximal cliques Ci and Cj , and diagonal entries are the sizes

of the maximal cliques. To find k-clique communities, we first need to delete every

non-diagonal entry of M smaller than k− 1 and every diagonal entry of M smaller

than k. A k-clique community is the union of maximal cliques that corresponds

to the vertices of connected components of a graph whose adjacency matrix is the

modified M . This method is used for an undirected graph with unweighted edges.

For an edge-weighted graph, we can set a threshold w∗ to keep edges with weights

greater than the given threshold. Increasing k or w∗ makes the communities smaller

but more cohesive.
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5.3 Hypergraph partitioning algorithms

5.3.1 Algorithm overview

We propose several new hypergraph partitioning algorithms for sparse hypergraphs

using a multi-level approach. The algorithms consist of three phases.

(1) Construct an edge-weighted line graph of a hypergraph.

(2) Detect “dense sets” of the line graph based on the notion of maximal cliques.

(3) Construct an intersection graph with the dense-set information, and compose

final clusters by finding the maximum weight independent set (MWIS) of the inter-

section graph.

For the Big-LD algorithm to partition SNP sequence data, we can consider

any clique of the interval graph as a candidate for LD block because the union of

incident intervals always forms a block. For a general partitioning problem where

the ordering of the vertices does not matter and the resulting partitions need not be

consecutive, we introduce a new method to suggest candidates for clusters.

For the second phase, we define the edge-density of a graph as the ratio of

the number of edges in the graph to the number of vertices. A subgraph of the

graph with relatively higher edge-density can be regarded as a candidate cluster

subject to consideration. For hypergraph clustering, we find “dense sets” that are the

vertex sets of a subgraph with relatively higher edge density. To decide the scope of

dense set, we suggest the notion of max-clique adjacency and near-maximal clique

analogous to k-clique adjacency introduced in section 5.2. We propose two different

algorithms to detect the dense sets of the line graph, STRONG-CLQ and RELAXED-

CLQ, for the second phase. STRONG-CLQ considers only maximal cliques and

near-maximal cliques as dense sets, while RELAXED-CLQ allows more expanded

dense sets including maximal cliques, near-maximal cliques, and merged maximal
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cliques that are max-clique adjacent.

For the third phase, we propose two different methods to construct an inter-

section graph. We find dense sets of the line graph in the second phase. The union

of hyperedges corresponding to the vertices of a dense set (denoted by the “can-

didate vertex set”) of the line graph can be considered as a candidate cluster. The

family of candidate vertex sets of a hypergraph can be taken as a vertex set of an

intersection graph, and the family of dense sets can also be taken as a vertex set of

an intersection graph. We propose two algorithms: CSET-CLST and QSET-CLST.

The first clustering algorithm is based on the intersection graph of the family of the

candidate vertex sets and the second algorithm is based on the intersection graph of

the family of the dense sets of a line graph.

The definitions of the suggested notions and details of the algorithms are stated

in later sections (5.3.2∼5.3.4).

5.3.2 Construction of the line graph of a hypergraph

Let H be the hypergraph in consideration for clustering (here, by clustering we

mean partitioning). For a hypergraph H , we construct an edge-weighted line graph

L(H) where the set of vertices of L(H) is the hyperedge set E(H). For each edge

(ei, ej) ∈ E(L(H)), we define its edge weight as

√
|ei ∩ ej |
|ei|

× |ei ∩ ej |
|ej |

,

that is called an Ochiai coefficient [Och57, SS+63] or Otsuka coefficient [Pet68].

If two hyperedges are represented as vectors, the Ochiai coefficient is identical to

cosine similarity. The Ochiai coefficients emphasize similarity between two sets

[CH69].
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Algorithm 5.1: ADJLH : Implements a hypergraph into a matrix in terms of
Ochiai coefficient

input : A list of hyperedges {e1, ..., em} of H
output: A matrix representing H

1 A← m×m matrix;
2 for i ∈ {1, ...,m− 1} do
3 for j ≥ i do
4 if j > i then
5 A[i, j]←

√
|ei∩ej |
|ei| ×

|ei∩ej |
|ej | ;

6 A[j, i]← A[i, j];
7 else
8 A[i, i]← 0;

Definition 8. A graph is bipartite if its vertex set can be partitioned into two subsets

A and B so that every edge has one end in A and one end in B; such a partition

(A,B) is called a bipartition of the graph, and A and B its parts. If a bipartite

graph G with bipartition (A,B) is simple and every vertex in A is joined to every

vertex in Y , then G is called a complete bipartite graph and denoted by K|A|,|B|.

Observation 1. For a hypergraph H = (V (H), E(H)), a complete bipartite graph

Kk,l cannot be a line graph of the hypergraph H if lk > |V (H)|.

Proof. Suppose that there exist a hypergraph H = (V (H), E(H)) and its line graph

is a complete bipartite graph Kk,l where lk > |V (H)|. Let (A,B) be a bipartition

of the complete bipartite graph Kl,k where A = {v1, ..., vk} and B = {w1, ..., wl}.

We denote by ei (respectively fi) the hyperedge corresponding to vi (respectively

wj). Since every vertex in B is adjacent to every vertex in A, ei ∩ fj ̸= ∅ for each

1 ≤ i ≤ k, 1 ≤ j ≤ l. Since there is no edge between any pair of vertices in A,

ei ∩ ej = ∅ if i ̸= j. Thus, |fj | ≥ |
⋃k

i=1(ei ∩ fj)| =
∑k

i=1 |ei ∩ fj | ≥ k. Since

fi ∩ fj = ∅ for i ̸= j, |
⋃l

j=1 fj | =
∑l

j=1 |fj | ≥ kl > |V (H)| and we reach a

contradiction.
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5.3.3 Listing the dense sets of the line graph

For the edge-weighted line graph L(H) of the hypergraph H , we now find “dense

sets” based on the maximal cliques of the line graph to compose candidate clusters.

These dense sets will become the vertices of an intersection graph constructed in the

next procedure (5.3.4). Note that two hyperedges are joined by an edge even if they

share relatively few elements in the previous line graph construction procedure. If

we consider all edges, edges with relatively low weights might distort the underlying

clustering structure and generate undesired candidate clusters. In addition, edge

density affects the time complexity of the algorithm that finds the maximal cliques.

Thus, to find reliable candidate clusters effectively, we introduce a threshold θ of

the edge weight for valid edges. Before finding the “dense sets” of the line graph,

we prune edges by deleting edges with weights below the threshold θ and let L′(H)

denote the line graph obtained by pruning the edges.

Now, we find all maximal cliques of the graph L′(H) using the Bron–Kerbosh

algorithm [BK73] suggested in [ELS10]. We define the edge density of a graph G

as |E(G)|/
(|V (G)|

2

)
. Clearly, the edge density of a maximal clique is 1. In max-

imal cliques, every pair of vertices is joined by an edge with weights above a given

threshold θ, hence a maximal clique can be regarded as a strong cohesive com-

munity. However, it might be too strict to consider only maximal cliques as candid-

ate clusters. In addition to the maximal cliques, if we could find more flexible yet

reliable candidate clusters, it would improve the quality of the clustering results.

To find “dense sets” that are not maximal cliques but still sufficiently dense,

we introduce the notions of max-clique adjacency and near-maximal clique by bor-

rowing the notion of k-clique adjacency.

Definition 9. (Max-clique adjacency) Two maximal cliques Q′ and Q′′ of a graph
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G are max-clique adjacent if the two maximal cliques share min(|Q′|, |Q′′|) − 1

vertices.

Definition 10. (Near-maximal clique) A subset S of V (G) is the near-maximal

clique of G if the set S is a sub-clique of a maximal clique Q with size |Q| − 1, or

a union of two maximal cliques Q′ and Q′′ that are max-clique adjacent.

We can obtain sufficient dense sets of L′(H) by finding near-maximal cliques.

Theorem 1. For a near-maximal clique Q of a graph G, the edge density of G[Q]

is greater than or equal to 2
3 , and less than or equal to 1.

Proof. For a sub-clique Qs of Q, the edge density of G[Qs] is clearly 1. Now

suppose a near-maximal clique Q is the union of maximal cliques Q′ and Q′′ with

|Q′| = p and |Q′′| = q, and p ≤ q. Then all possible numbers of edges in Q is(
q+1
2

)
and the number of edges in Q is (p− 1) +

(
q
2

)
. The edge weight of G[Q] is

(p− 1) +
(
q
2

)(
q+1
2

) =
2(p− 1) + q(q − 1)

(q + 1)q

≥ 2(q − 1) + q(q − 1)

(q + 1)q

=
q2 + q − 2

q2 + q
= 1− 2

q2 + q
≥ 2

3

The execution time of the algorithms based on a graph depends on the num-

ber of vertices of the graph. For each maximal clique Q, at least |Q| near-maximal

cliques can be generated and it might cause increased time complexity since the in-

tersection graph constructed in the next procedure takes all the dense sets we found

as vertices. Therefore, we establish rules about which near-maximal cliques must
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be included in the pool of dense sets so that we take only selected near-maximal

cliques as the dense sets instead of all near-maximal cliques

Rule 1. For a maximal clique Q = {e1, ..., ek}, we take a sub-clique Q − {ei} as

a dense-set if a vertex ei ∈ Q satisfies the property that the mean of weights on the

edges in L(H)[Q− {ei}] is maximized among e1, ..., ek.

Rule 2. For a pair of maximal cliques Q′ and Q′′ satisfying Q′∩Q′′| = |Q′|−1, we

take the union of these two maximal cliques as a dense set if the mean of weights

on the edges joining the vertex in Q′ − Q′′ and the vertices in Q′ ∩ Q′′ is greater

than or equal to the mean of weights of edges in the maximal clique Q′′.

In this work, we compose a family of dense sets in L′(H) using two different

algorithms STRONG-CLQ and RELAXED-CLQ.

The algorithm STRONG-CLQ takes the following entities as dense sets. We call

vertex sets of this kind “strong dense sets”

(1) maximal-cliques

(2) near-maximal cliques obtained according to Rule 1 and Rule 2

To find more “relaxed” dense sets than the dense sets based on the near-maximal

cliques, we merge a number of maximal cliques of which all pairs are max-clique

adjacent. We construct a graph whose vertex set is the set of all maximal cliques

and two vertices are adjacent if corresponding maximal cliques are max-clique ad-

jacent. Then we find all cliques of the constructed graph using the algorithm of

Tsukiyama et al. [TIAS77], denoted by CLIQUES, implemented in the R igraph

package [CN06].

The algorithm RELAXED-CLQ takes the following entities as a dense-set. We

call vertex sets of this kind “relaxed dense sets”

(1) maximal cliques
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(2) sub-cliques (near-maximal cliques) obtained by Rule 1

(3) the union of maximal cliques that are pairwise max-clique adjacent

We used the modified Bron–Kerbosh algorithm [ELS10] called MAXCLIQUES

to find all maximal cliques of a given graph. This algorithm was implemented in

the R igraph package [CN06]. The algorithm to find sub-cliques satisfying Rule 1 is

denoted as SUB-CLIQUES, and the algorithm to find all the pairs of max-clique adja-

cent maximal cliques is named ADJCLIQUES. The three algorithm MAXCLIQUES,

SUB-CLIQUES, and ADJCLIQUES are utilized in both algorithms STRONG-CLQ and

RELAXED-CLQ. For convenience, we define sub-functions EDGEWEIGHTIN(Q)

and EDGEWEIGHTBW(A,B) that calculate the mean of weights of the edges in a

maximal clique Q in a given graph, and the mean of weights on the edges between

two vertex sets A and B in a given graph, respectively.

Observation 2. For maximal cliques of a graph G, Q1, ..., Qn such that |Q1| ≥

... ≥ |Qn|, if every pair of maximal cliques is max-clique adjacent, then,

Q1 ∩Q2 = Q2 − {v2} and Q2 \Q1 = {v2} for some v2 ∈ Q2

Q1 ∩Q2 ∩Q3 = Q3 − {v3} and Q3 \ (Q1 ∪Q2) = {v3} for some v3 ∈ Q3

...⋂n
l=1Ql = Qn − {vn} and Qn \

⋃n−1
l=1 Ql = {vn}

Proof. By the induction hypothesis,
⋂k

l=1Ql = Qk \ {vk} for some vk ∈ Qk.

Thus Qk+1 \
⋂k

l=1Ql = Qk+1 \ (Qk − {vk}) = Qk+1 \ Qk. Since Qk and Qk+1

are max-clique adjacent, Qk+1 \ Qk = {vk+1} for some vk+1 ∈ Qk+1. Since

Qk+1 \Qk = {vk+1}, Qk+1 = (Qk+1 ∩Qk) ∪ {vk+1}. Now
⋂k+1

l=1 Ql = Qk+1 ∩⋂k
l=1Ql = Qk+1 ∩ (Qk − {vk}) = Qk+1 − {vk+1}
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Algorithm 5.2: SUB-CLIQUES : Find sub-cliques of each maximal clique
satisfying Rule 1

input : A set of all maximal cliques T in L(H) obtained by MAXCLIQUES
output: A list of all sub-cliques L

1 L← ∅;
2 for Q ∈ T do
3 s← |Q|;
4 for e ∈ Q do
5 we ← EDGEWEIGHTBW({e}, Q− {e}
6 if we = min{we|e ∈ Q} then
7 add the set Q− {e} to a list L

Algorithm 5.3: ADJCLIQUES : Find all pairs of maximal cliques that are
max-clique adjacent

input : A set of all maximal cliques T in L(H)
output: A list M of pairs of maximal cliques that are max-clique adjacent

1 M ← ∅;;
2 for i ∈ {1, ..., t} do
3 for j ∈ {1, ..., t} − {i} do
4 if |Qi ∩Qj | = |Qj | − 1 then
5 M ← {Qi, Qj}
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Algorithm 5.4: STRONG-CLQ : Find strong dense sets in a given
graph

input : An m×m adjacent matrix A of a line graph L(H)
output: A family SD of strong dense sets of vertices in L(H)

1 for i ∈ {1, ...,m} do
2 for j ∈ {j + 1, ...,m} do
3 if A[i, j] < θ then
4 A[i, j]← 0;
5 A[j, i]← 0;

6 CL← MAXCLIQUES(A);
7 add all maximal cliques in CL to SD;
8 add SUB-CLIQUES(CL) to SD;
9 AC ← ADJCLIQUES;

10 for (Qi, Qj) ∈ AC do
11 wi ← EDGEWEIGHTIN(Qi);
12 wj ← EDGEWEIGHTBW(Qj −Qi, Qj ∩Qi);
13 if wi < wj then
14 add Qi ∪Qj to SD;

Algorithm 5.5: RELAXED-CLQ : Find relaxed dense sets in a given
graph

input : An m×m adjacent matrix A of a line graph L(H)
output: A family RD of relaxed dense set of vertices in L(H)
/* CLIQUES(AC, k) : Find all cliques size of at

least k of a graph whose edge list is AC */

1 for i ∈ {1, ...,m} do
2 for j ∈ {j + 1, ...,m} do
3 if A[i, j] < θ then
4 A[i, j]← 0;
5 A[j, i]← 0;

6 CL← MAXCLIQUES(A);
7 add all maximal cliques in CL to RD;
8 add SUB-CLIQUES(CL) to RD;
9 AC ← ADJCLIQUES;

10 add CLIQUES(AC, 2) to RD;
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5.3.4 Finding the MWIS of the intersection graph

In the previous procedure, we listed the dense sets of the line graph L′(H). Let

Q = {Q1, ..., Qk} be a family of dense sets in L′(H). The union of hyperedges

corresponding to each dense set can be regarded as a candidate cluster of the hy-

pergraph, and we call these sets “candidate vertex sets”, abbreviated to ”Csets”.

For the family of dense sets Q = {Q1, ..., Qk}, we can find a family of Csets,

C = {C1, ..., Ck} where Ci =
⋃

e∈Qi
e. With the family of Csets C and the family

of dense sets Q, we can construct intersection graphs IC and IQ, respectively. We

assign the same weight
∑

e∈Qi
w′

H(e)

|Ci| to Qi and Ci as the vertex weight for IQ and

IC , respectively.

To find the MWIS of the intersection graph IC or IQ, we use the greedy al-

gorithm GWMIN suggested by Sakai et al. [STY03]. We can determine final

clusters using the MWIS of both intersection graphs IC and IQ, yet there is some

difference in the details of the procedures.

Before we introduce the details of the remaining procedures of our algorithms,

we first observe the difference between the two algorithms based on IC and IQ. Note

that when two dense sets Qi and Qj are not adjacent in IQ, the two corresponding

Csets Ci and Cj might share vertices of V (H), and hence the edge-density of IC

is greater than or equal to that of IC . When we choose a vertex of the intersection

graph during the procedure of GWMIN, more vertices might be removed from the

intersection graph in the case of IC . Therefore, the MWIS of IC might be much

smaller than that of IQ and, as a result, many vertices might remain after we take

clusters by choosing the Csets in MWIS of IC . To avoid this problem, we apply a

recursive procedure for the algorithm using IC .

Clustering on IC . We find the MWIS of the intersection graph IC using GWMIN.
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Each Cset in MWIS is taken as a cluster. Then we update the hyperedges of the

original hypergraph by removing the vertices that belong to taken clusters. With

these updated hyperedges, we repeat the whole procedure again until every vertex of

the hypergraph is assigned to a cluster or remains as a singleton. For the remaining

singletons, we can assign them to the already constructed clusters. The singleton

assignment rule (SGTAPPEND) is as follows.

Let Π = {P1, ..., Pk} be a set of found clusters, and let s ∈ V (H) be the singleton

which do not belong to any Pi ∈ Π. We calculate pi = maxs∈e{|Pi ∩ e|} for

each Pi, and assign the singleton v to the cluster with max{p1, · · · , pk}. If there

are more than two clusters Px1 , · · · , Pxt with max{p1, · · · , pk}, we calculate qxi =∑
s∈e |Pxi ∩ e| for each Pxi and assign the singleton v to the cluster with max{qx1 ,

· · · , qxt}.

Clustering on IQ. We find the MWIS of the intersection graph IQ using GWMIN

and we take Csets that correspond to the dense sets in the MWIS. However, as we

observed, for the two vertices Qi and Qj in MWIS, corresponding sets Ci and Cj

of C might intersect. To find distinct partitions, we order the MWIS from maximum

weights to minimum weights and then take corresponding sets in C as clusters ac-

cording to that order, except already taken vertices. For the remaining vertices that

are not taken as a member of a cluster, we can assign the vertices to a proper cluster

by applying the previous singleton assignment rule.

For convenience, we call the algorithms used to find clusters by detecting the

MWIS of intersection graph IC and IQ CSET-CLST and QSET-CLST, respectively.

In summary, we can apply one of four different algorithms to partition a sparse

hypergraph.

• PSHSC: CSET-CLST combined with STRONG-CLQ.
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• PSHRC: CSET-CLST combined with RELAXED-CLQ.

• PSHSQ: QSET-CLST combined with STRONG-CLQ.

• PSHRQ: QSET-CLST combined with RELAXED-CLQ.

Theorem 2. The algorithms PSHSC, PSHRC, PSHSQ, and PSHRQ are all con-

vergent.

Given a hypergraph H , when we construct an intersection graph of the family

of candidate clusters, the size of the MWIS of the intersection graph is at least 1.

For the repetitive algorithms PSHSC and PSHRC, at least one or more of vertices

in V (H) must be taken as cluster members in each iteration. Thus, the size of the

vertex set of a hypergraph is monotone decreasing after each iteration and, therefore,

the algorithms PSHSC and PSHRC are convergent. For the algorithms PSHSQ

and PSHRQ, there must be at least one cluster detected by MWIS, and hence they

are convergent.

Algorithm 5.6: GWMIN [STY03] : Greedy algorithm to find MWIS
input : A vertex weighted graph IF
output: A maximum weight independent set M in IF

1 M ← ∅; i← 0; Ii ← IF ;
2 while V (Ii) ̸= ∅ do
3 Choose a vertex, say vi, maximizes the function w(u)/[dIi(u) + 1] in

Ii;
4 M ← I ∪ {vi}; Ii ← Gi[V (Ii)−N+

Ii
(vi)];

5 i← i+ 1 ;
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Algorithm 5.7: CSET-CLST

input : A hypergraph H , boolen appendSGT
output: A list of clusters Final

1 V s← V (H);
2 Hs← E(H);
3 Final← ∅;
4 while |Hs| ≠ 0 do
5 A← ADJLH(Hs);
6 if A = 0 then
7 break;

8 Q ← STRONG-CLQ(A)
9 (or Q ← RELAXED-CLQ(A));

10 C ← ∅;
11 for Qi ∈ Q do
12 Ci ←

⋃
e∈Qi

e;
13 add Ci to C;

14 A← k × k zero matrix (adjacency matrix of IC);
15 for i ∈ {1, ..., k − 1} do
16 for j ∈ {i+ 1, ..., k − 1} do
17 if |Ci ∩ Cj | ≠ ∅ then
18 A[i, j]← 1; A[j, i]← 1;

19 for Ci ∈ C do
20 wV (IC)(Ci)←

∑
eik ,eil∈Qi

A[ik, il]/|Ci|;

21 M ← GWMIN(IC) add M to Final;
22 V s← V s−

⋃
S ∈MS;

23 for e ∈ Hs do
24 e← e ∩ V s

25 remove all empty hyperedges in Hs from Hs;

26 SGT ← V s;
27 if SGT ̸= ∅ then
28 if appendSGT = true then
29 for v ∈ SGT do
30 SGTAPPEND(v);

31 else
32 add SGT to Final
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Algorithm 5.8: QSET-CLST

input : A hypergraph H , boolen appendSGT
output: A list of clusters Final

1 V s← V (H) ; Hs← E(H);
2 Final← ∅;
3 A← ADJLH(Hs);
4 if A = 0 then
5 break;

6 Q ← STRONG-CLQ(A) (or QRELAXED-CLQ(A));
7 C ← ∅;
8 for Qi ∈ Q do
9 Ci ←

⋃
e∈Qi

e;
10 add Ci to C;

11 A← k × k zero matrix (adjacency matrix of IQ);
12 for i ∈ {1, ..., k − 1} do
13 for j ∈ {i+ 1, ..., k − 1} do
14 if |Qi ∩Qj | ≠ ∅ then
15 A[i, j]← 1; A[j, i]← 1;

16 for Qi ∈ Q do
17 wV (IQ)(Qi)←

∑
eik ,eil∈Qi

A[ik, il]/|Ci|;

18 M ← GWMIN(IQ);
19 while M ̸= ∅ do
20 choose Q ∈M if w(Q) = max{w(Q′)|Q′ ∈M};
21 if

⋃
e∈Q e ∩ V s ̸= ∅ then

22 add
⋃

e∈Q e ∩ V s to Final

23 else
24 remove Q from M

25 V s← V s−
⋃
Final

26 SGT ← V s;
27 if SGT ̸= ∅ then
28 if appendSGT = true then
29 for v ∈ SGT do
30 SGTAPPEND(v);

31 else
32 add SGT to Final
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5.4 Experiments

5.4.1 Simulations

Simulating the hypergraph with cluster structure

We generate various hypergraphs that have an underlying cluster structure. For a

hypergraph that has an underlying cluster structure, we can consider three types of

hyperedges: a hyperedge that fully belongs to a cluster (type 1); a hyperedge that

does not fully belong to, but is certainly associated with a specific cluster (type 2);

and a hyperedge that is not associated with any cluster (type 3). For this, we use

six different parameters for the number of vertices (n), the number of hyperedges

(m), the number of hypergraphs (k), the ratio of the number of hyperedges of type 1

and 2 over the number of all hyperedges (p), the ratio of the number of hyperedges

of type 1 over the number of hyperedges type 1 and 2 (q), and the probability of

each vertex of a hyperedge of type 2 being chosen among the vertices belonging to

the associated cluster (r). We generate 100 hypergraphs for each n=100, 200, 500,

1000, 2000, 5000, and 10000. For each n, the number of hyperedges m is randomly

chosen between 0.2n and n to construct sparse hypergraphs. The parameter k is

randomly selected between max(0.02m, 2) and min(0.2m, 0.1n). Each parameter,

p, q, and r, is randomly chosen between 0.85 and 0.99. The detailed procedure to

generate a simulated hypergraph is as follows.

STEP 1. For a fixed number n, randomly select the value of other parameters m, k,

p, q, r according to the above conditions.

STEP 2. Partition 1, ..., n into k parts A1, ..., Ak such that the size of each part is

between 0.5n/k and 1.5n/k.

STEP 3. Let E1, E2, and E3 be the sets of hyperedges of type 1, 2, and 3 respect-

ively. Then |E1 ∪ E2| = np and E3 = n − np. For each cluster Ai, randomly

113



choose a number ai of hyperedges associated with the cluster Ai such that |ai|must

be at least ⌈0.8× |E1 ∪ E2|/k⌉

STEP 4. To construct hyperedges that are associated with a cluster Ai, we compose

⌈aiq + 0.5⌉ hyperedges of type 1 and ai − ⌈aiq + 0.5⌉ hyperedges of type 2. Ran-

domly choose vertices of each hyperedge of type 1 among the vertices in a cluster

Ai such that the size of the hyperedge must be between 3 and |Ai|. For a hyperedge

of type 2, choose the size of the hyperedges between 3 and Ai and select each vertex

from Ai and {1, ..., n} \Ai with probabilities of r and 1− r, respectively.

STEP 5. To compose hyperedges of type 3, randomly decide the size of each hy-

peredge between 3 and max{|A1|, ..., |Ak|} and randomly select the vertices from

1, ..., n as the number of decided size.

Execution of algorithms for simulated data

We obtained the results of the clustering algorithms PSHSC, PSHRC, PSHSQ, and

PSHRQ for simulated data. We also obtained the results of the hMETIS program

[KK98a, KK98b] as a multi-level hypergraph clustering for comparisons. To run

algorithms PSHSC, PSHRC, PSHSQ, and PSHRQ, we set the threshold θ =

0.5 to delete edges with low weights. In addition, we utilized the rule to assign

singletons to already constructed cluster as stated in section 5.3.4. In the hMETIS

program package, we run the shmetis program because it is the program in which

the options for coarsening, initial partitioning, and uncoarsening phase are already

set as options that perform reasonably well for all types of experimental data. We

only need to set the imbalance parameter UBfactor and the desired number of

parts Npart for shmetis. For a bisection, the size of each part will be between

50−UBfactor
100 × n and 50+UBfactor

100 × n, and for 2k-way partitioning, each part can

contain (50−UBfactor
100 )k × n to (50+UBfactor

100 )k × n. We set UBfactor = 20 for
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stable execution. Since we already know the true number of the underlying clusters,

k, we set Npart = 0.5k, k, 1.5k, and 2k (the results are denoted as hMETIS0.5K,

hMETISK, hMETIS1.5K, and hMETIS2K, respectively).

5.4.2 Quality measures

We evaluate the performance of the clustering algorithms in terms of the density of

the detected clusters and the agreement of the resulting clusters with the underlying

cluster structure. We used the fitness measure, connectivity measure, conductance

measure, hyperedge cut, scaled cost, absorption, partitioning cost, and connectivity

measure, to show how similar the vertices in a cluster are.

First, we introduce some notions about partitioning of a hypergraph.

Let Π = {P1, P2, ..., Pk} be a partition of a hypergraph H . A vertex v ∈ V is

said to be assigned to a part π if v ∈ π. A hyperedge e ∈ E is said to be associated

with the part π ∈ Π if e ∩ π ̸= ∅. The connectivity degree of a hyperedge e is the

number of parts connected to e and is denoted by λe(H,Π). A hyperedge is said to

be a cut if its connectivity degree is more than 1.

The fitness measure [HKKM98], the conductance measure [LLM10], and the

connectivity measure [HKKM98] are local measures that show the quality of each

partition (or its vertices,) we calculate the measures of each cluster of obtained

partitioning results, and then average the values.

A. The fitness measure [HKKM98] is the ratio of weights of edges that are within the

cluster and weights of edges that are connected to the cluster. The fitness function

that measures the goodness of a cluster S is defined as

fitness(S) =

∑
e⊂S w′

H(e)∑
|e∩S|>0w

′
H(e)
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In our experiments, we set the w′
H(e) = |e|.

B. The conductance measure [LLM10] is the ratio between the number of edges

inside the cluster and the number of edges leaving the cluster. The conductance

ϕ(S) of a cluster S is ϕ(S) = cs/min(V ol(S), V ol(V \S)), where cS is the number

of external edges, and V ol(S) =
∑

u∈S dH(u), where dH(u) is the degree of vertex

u.

C. The connectivity measure [HKKM98] is the percentage of edges inside the cluster

that each vertex is associated with. The connectivity function of vertex v in cluster

S is defined as

connectivity(v, S) =
|{e|e ⊂ S, v ∈ e}|
|{e|e ⊂ S}|

The vertices with high connectivity measure can be considered to belong to the

cluster. For a given hypergraph clustering result, we calculate the connectivity meas-

ure for each vertex and the part associated with the vertex, and then calculate the

mean of all the obtained connectivity measures. If |{e|e ⊂ S}| = 0 for a cluster,

we except the measure of the cluster when calculating the mean of the connectivity

measure.

The partitioning cost, the hyperedge cut, the scaled cost [CSZ94], and the ab-

sorption [SS95] are the global measures that show the quality of the whole clustering

results.

D. Given a hypergraph H with a partition Π, we can define the partitioning cost of

Π as

C(H,Π) =
∑
e∈E

(w′
H(e) · (λe(H,Π)− 1))

E. The hyperedge cut is the number of the hyperedges connected to multiple parti-

tions. The hMETIS algorithms are designed to try to minimize the hyperedge cut of

a hypergraph.
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F. The scaled cost [CSZ94] is defined as

1

n(k − 1)

k∑
i=1

|{e|e ∩ Pi ̸= ∅, and e ⊈ Pi}|
|Pi|

where Π = {P1, ..., Pk} is the partition of a hypergraph. The low scaled cost guar-

antees the lower cut and more balanced partition sizes, and also the scaled cost is

optimized for the partitions in which the smaller-sized partitions have smaller edge

cuts [CSZ94].

G. The Absorption [SS95] is defined as

k∑
i=1

∑
e∈E(H),e∩Pi ̸=∅

|e ∩ Pi| − 1

|e| − 1

where Π = {P1, ..., Pk} is the partition of a hypergraph.

The Rand index and the adjusted Rand index are the cluster validation meas-

ures used to show how well the clustering results represent the inherent cluster struc-

ture of the data.

H. The Rand index [Ran71] is the measure of the similarity between two cluster-

ing results. In this study, we generate the simulated hypergraph that contains an

underlying clustering structure. By comparing the clustering results with underly-

ing clustering structure using the Rand index, we can evaluate the performance of

the suggested algorithm. If we let a = |{(vi, vj)|vi, vj ∈ Xk, vi, vj ∈ Yl}| and

b = |{(vi, vj)|vi ∈ Xk1 , vj ∈ Xk2 , vi ∈ Yl1 , vj ∈ Yl2}| for for two clustering

results X = {X1, X2, ..., Xp} and Y = {Y1, Y2, ..., Yq}, then the Rand index RI is

RI =
a+ b(

n
2

) .
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I. The adjusted form of the Rand Index, the Adjusted Rand Index [HA85], is defined

as ARI = Index−ExpectedIndex
MaxIndex−ExpectedIndex , i.e.,

ARI =

∑
ij

(nij

2

)
− [

∑
i

(
ai
2

)∑
j

(bj
2

)
]/
(
n
2

)
1
2 [
∑

i

(
ai
2

)
+
∑

j

(bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(bj
2

)
]/
(
n
2

)
where nij = |Xi ∩ Yj |, ai =

∑
i ni·, and bj =

∑
j n·j . Then the adjusted Rand

index is expected to be zero for independent clusters and can be at most 1.

J. For each clustering result for a simulated hypergraph, we calculate the differ-

ence between the number of clusters of partitioning results and the number of true

underlying clusters k, denoted by |k − N.clst|.

5.4.3 Results

We implemented our algorithms (PSHSC, PSHRC, PSHSQ, and PSHRQ) in R

[R C17]. In order to speed up the execution of algorithms, we used R library pack-

age Rcpp [EF11, Edd13] to integrate R and C++. For the modified Bron–Kerbosch

algorithm [BK73, ELS10] that finds all maximal cliques in a graph, required in

RELAXED-CLQ and STRONG-CLQ implementation, we used the R library igraph

package [CN06]. For the algorithm to find all cliques in the graph, required in

RELAXED-CLQ, we used the method of Tsukiyama et al. [TIAS77] implemen-

ted in R library igraph package. We obtained the clustering results of the simula-

tion hypergraphs using the algorithms and the program hMETIS [KK98a, KK98b].

For hMETIS, we used four different Npart parameters (hMETIS0.5K, hMETISK,

hMETIS1.5K, and hMETIS2K). We calculated the local quality measures (fitness,

conductance, and connectivity), global quality measures (scaled cost, absorption,

partitioning cost, and hyperedge cut), and validation measures (Rand index, adjus-

ted Rand index, and |k − N.clst|).
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In Table 5.1, we summarize the mean of every quality measure for each method

and n. The high fitness measure of a part shows that the partition has more weight

for the edges within a part. The fitness values of hMETIS0.5K are highest for every

n, and the values of PSHRQ are next highest except for the case of n = 200. Most

of the fitness values of hMETIS are higher than those of PSHSC and PSHRC,

but lower than those of PSHSQ and PSHRQ. The fitness values tend to decrease

as n increases. The lower conductance measure of a part means that the number

of edges associated with the part but not fully contained in the part is relatively

small compared with the number of edges fully contained in the part. For the entire

range of n, the conductance measures of hMETIS0.5K are lowest. The conductance

values of hMETISK are lower than the values of PSHSQ and PSHRQ for n =

100. However, as n increases, the conductance values of PSHSQ and PSHRQ

are lower than hMETISK especially for n ≥ 1000. The conductance values of

PSHSC and PSHRC are lower than hMETIS2K and hMETIS1.5K in general. The

high connectivity measure of a vertex in a part captures that a vertex of a cluster is

better connected with the vertices in the part than outside the part. The connectivity

values of PSHSC and PSHRC are highest for the entire range of n, and that of

PSHSQ and PSHRQ are next highest. On the other hand, the connectivity values

of hMETIS0.5K are lowest while the fitness and conductance values are better than

with the other methods.

The lower scaled cost means that the partitions have smaller edge cuts and bal-

anced sizes. For n ≤ 1000, the scaled cost values of hMETIS0.5K are significantly

lower than the other methods, but for large n ≥ 2000, the metrics of all methods are

similar. The absorption measure shows the sum of the ratio of the number of vertices

in both an edge and a part over the number of vertices in an edge, and absorption

values for all methods are similar in the entire range of n. The partitioning cost is
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a measure of the weight and number of edges that are divided by the partitions, and

the hyperedge cut is the measure of the number of edges that are split by the parti-

tions. The partitioning cost values of hMETIS0.5K and hMETISK are lower than

those of our algorithms. The hyperedge cut values of hMETIS0.5K is lowest, and

hyperedge cut values of PSHSC and PSHRC are next lowest, and those of PSHSQ

and PSHRQ are also lower than hMETISK for n ≥ 2000, while the hyperedge cut

values of hMETISK are lower than those of our four algorithms for n ≤ 200.

The higher Rand index and adjusted Rand index show the agreement of a

partitioning result with the true underlying cluster structure. The four algorithms

PSHSC, PSHRC, PSHSQ, and PSHRQ have similar values for the Rand index

and adjusted Rand index, but hMETIS methods show significantly lower values than

those of our algorithms. It is notable that the Rand index and adjusted Rand index

measures of hMETIS0.5K are lowest, and even worse than those of hMETIS2K.

Since our algorithms do not specify the number of final clusters, the differences

in the number of parts between underlying clusters and results of our algorithms

are higher than that between underlying clusters and results of hMETISK. How-

ever, the number of detected clusters using our algorithms, especially for PSHSQ

and PSHRQ, remained in a reasonable range even for a large n. For n = 10000,

the mean of the number of underlying clusters (k) was 541, while the mean of

|k − N.clst| was 43.6 and 38.4 for PSHSQ and PSHRQ, respectively.

The results show that every quality measure of PSHRC is slightly better than

PSHSC, and that every quality measure of PSHSQ is slightly better than PSHRQ.

The algorithms PSHSQ and PSHRQ that implement QSET-CLST show signific-

antly higher quality metrics than the algorithms PSHRC and PSHSC that imple-

ment CSET-CLST in terms of fitness, conductance, scaled cost, partitioning cost,

and |k − N.clst|. On the other hand, PSHRC and PSHSC showed better qual-
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Table 5.1: Summary of quality measures for each method and the number of vertices in a hypergraph (n)

n method fitness conductance connectivity scaledcost absorption
paritioning
cost

hyperedge
cut Rand

adjusted
Rand |k − N.clst|

100 PSHSC 0.515 0.164 0.534 0.0074 55.13 23.3 10.3 0.979 0.939 1.9
100 PSHRC 0.533 0.150 0.533 0.0070 55.21 22.7 9.9 0.981 0.945 1.7
100 PSHSQ 0.577 0.070 0.530 0.0042 55.49 19.6 9.7 0.985 0.955 0.9
100 PSHRQ 0.580 0.066 0.530 0.0042 55.50 19.7 9.8 0.985 0.956 0.8
100 hMETISK 0.557 0.059 0.470 0.0047 55.92 18.5 9.6 0.953 0.865 0.0
100 hMETIS0.5K 0.759 0.023 0.313 0.0022 57.31 8.0 4.9 0.814 0.565 2.5
100 hMETIS1.5K 0.273 0.136 0.400 0.0095 54.24 38.2 22.5 0.915 0.760 2.5
100 hMETIS2K 0.123 0.221 0.336 0.0145 52.39 59.4 33.6 0.879 0.641 5.1
200 PSHSC 0.395 0.180 0.521 0.0055 111.13 78.7 24.5 0.983 0.935 3.5
200 PSHRC 0.404 0.167 0.520 0.0052 111.31 78.3 23.6 0.983 0.938 3.2
200 PSHSQ 0.441 0.087 0.509 0.0028 112.15 65.5 25.0 0.988 0.954 1.2
200 PSHRQ 0.434 0.086 0.503 0.0028 112.13 66.6 25.7 0.987 0.952 1.1
200 hMETISK 0.445 0.089 0.448 0.0030 113.24 59.6 22.3 0.966 0.848 0.0
200 hMETIS0.5K 0.657 0.037 0.301 0.0015 119.26 31.2 11.2 0.878 0.576 5.3
200 hMETIS1.5K 0.219 0.181 0.399 0.0057 109.70 99.5 46.7 0.952 0.794 5.3
200 hMETIS2K 0.109 0.273 0.350 0.0083 106.24 139.3 65.1 0.935 0.714 10.6
500 PSHSC 0.347 0.204 0.524 0.0026 266.50 268.4 53.8 0.994 0.950 8.5
500 PSHRC 0.356 0.189 0.524 0.0024 267.18 263.9 52.3 0.994 0.953 7.5
500 PSHSQ 0.366 0.105 0.505 0.0014 268.40 245.6 62.4 0.996 0.965 2.9
500 PSHRQ 0.370 0.100 0.503 0.0014 268.51 246.2 62.7 0.996 0.965 2.4
500 hMETISK 0.351 0.110 0.415 0.0016 271.01 225.4 59.7 0.978 0.816 0.0
500 hMETIS0.5K 0.541 0.052 0.285 0.0008 277.62 134.5 28.3 0.922 0.569 11.6
500 hMETIS1.5K 0.178 0.198 0.386 0.0027 263.21 327.7 113.5 0.979 0.818 11.8
500 hMETIS2K 0.095 0.262 0.340 0.0037 255.32 424.0 154.5 0.972 0.749 23.4

1000 PSHSC 0.285 0.235 0.527 0.0018 568.97 781.8 125.1 0.996 0.954 16.1
1000 PSHRC 0.293 0.217 0.526 0.0017 570.81 771.7 122.2 0.996 0.957 13.9
1000 PSHSQ 0.298 0.125 0.491 0.0010 573.19 737.8 152.6 0.996 0.960 3.7
1000 PSHRQ 0.299 0.122 0.488 0.0010 573.00 743.7 155.5 0.996 0.959 3.1
1000 hMETISK 0.269 0.148 0.389 0.0011 579.19 661.9 144.5 0.983 0.760 0.0
1000 hMETIS0.5K 0.422 0.078 0.276 0.0006 593.96 459.7 72.4 0.954 0.540 24.7
1000 hMETIS1.5K 0.146 0.224 0.378 0.0016 560.93 876.4 249.3 0.988 0.785 24.9
1000 hMETIS2K 0.087 0.292 0.355 0.0021 543.63 1084.3 320.9 0.986 0.738 49.3
2000 PSHSC 0.290 0.247 0.542 0.0007 1085.69 1531.2 204.3 0.999 0.960 36.6
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2000 PSHRC 0.300 0.233 0.542 0.0007 1088.37 1514.2 194.8 0.999 0.965 32.1
2000 PSHSQ 0.327 0.137 0.524 0.0005 1093.67 1476.8 225.5 0.999 0.970 11.2
2000 PSHRQ 0.330 0.133 0.522 0.0004 1094.15 1480.0 224.8 0.999 0.970 9.8
2000 hMETISK 0.269 0.157 0.394 0.0005 1100.46 1407.9 259.7 0.993 0.752 0.0
2000 hMETIS0.5K 0.406 0.091 0.280 0.0003 1126.50 1042.5 117.9 0.979 0.536 54.6
2000 hMETIS1.5K 0.148 0.238 0.388 0.0008 1066.39 1797.4 456.0 0.995 0.765 54.8
2000 hMETIS2K 0.088 0.305 0.365 0.0010 1030.98 2182.3 604.8 0.994 0.716 108.9
5000 PSHSC 0.250 0.268 0.532 0.0004 2634.82 4501.8 541.9 0.999 0.957 89.7
5000 PSHRC 0.258 0.255 0.532 0.0004 2640.84 4471.6 524.0 0.999 0.960 80.1
5000 PSHSQ 0.283 0.138 0.506 0.0002 2654.26 4336.7 640.8 1.000 0.968 23.6
5000 PSHRQ 0.285 0.135 0.504 0.0002 2655.28 4340.3 640.1 1.000 0.968 20.5
5000 hMETISK 0.233 0.157 0.376 0.0002 2674.42 4059.6 672.7 0.996 0.714 0.0
5000 hMETIS0.5K 0.356 0.096 0.274 0.0002 2730.96 3192.3 304.4 0.989 0.516 128.4
5000 hMETIS1.5K 0.130 0.235 0.365 0.0003 2597.74 4995.4 1126.8 0.997 0.728 128.0
5000 hMETIS2K 0.080 0.297 0.346 0.0004 2514.99 5938.5 1464.1 0.997 0.693 255.1

10000 PSHSC 0.261 0.275 0.534 0.0002 5819.35 9509.6 1220.9 1.000 0.956 183.7
10000 PSHRC 0.269 0.260 0.533 0.0002 5831.21 9450.4 1190.1 1.000 0.959 164.1
10000 PSHSQ 0.293 0.147 0.512 0.0001 5866.36 9086.4 1421.1 1.000 0.968 43.6
10000 PSHRQ 0.294 0.144 0.509 0.0001 5865.48 9133.7 1437.1 1.000 0.967 38.4
10000 hMETISK 0.232 0.175 0.376 0.0001 5898.07 8754.8 1505.3 0.998 0.689 0.0
10000 hMETIS0.5K 0.347 0.110 0.274 0.0001 6018.85 7245.9 707.8 0.994 0.491 270.4
10000 hMETIS1.5K 0.129 0.255 0.366 0.0002 5724.96 10583.5 2522.6 0.998 0.707 268.4
10000 hMETIS2K 0.079 0.321 0.348 0.0002 5537.56 12487.6 3229.5 0.998 0.675 535.8

122



ity metrics than PSHSQ and PSHRQ in terms of connectivity and hyperedge cut.

The algorithms that implement RELAXED-CLQ showed slightly higher quality met-

rics than the algorithms that implement STRONG-CLQ if the other conditions are

identical. In particular, PSHRC shows values that were better than or equal to

PSHSC for almost all quality measures except connectivity, and differences in the

connectivity are insignificant.

For hMETIS, the results of hMETIS0.5K (hMETIS with Npart = 0.5k) show

the best quality metrics in terms of fitness, conductance, scaled cost, absorption,

partitioning cost, and hyperedge cut, that are better than not only the other hMETIS

results but also all the experimental results. However, the connectivity, Rand index,

and adjusted Rand index of the hMETIS0.5K reveal the worst metrics for all n. All

quality metrics worsen as the Npart increases from k to 2k.

As n increases, the metrics of fitness, and scaled cost tend to decrease, and

the metrics of conductance, absorption, partitioning cost, and hyperedge cut also

show a tendency to increase in all methods, which is expected since the number

and sizes of edges, and clusters also increase as n increases. Our algorithms auto-

matically decide the number of partitions, and the differences between the true

number of clusters and the number of detected clusters tend to increase as the n

increases. Meanwhile, the connectivity of partitioning results obtained by our al-

gorithms (PSHSC, PSHRC, PSHSQ, and PSHRQ) do not decrease as much as

the values of hMETIS.

In Table 5.2, we summarize the mean of every quality measure for each method.

The average metrics of fitness, conductance, scaled cost, partitioning cost, Rand

measure, adjusted Rand measure, and |k − N.clst| for PSHRQ and PSHSQ are

better than those for PSHRC and PSHSC, although the average metrics of con-

nectivity and hyperedge cut for PSHRC and PSHSC are slightly better than those
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Table 5.2: Summary of every quality measure for each method

method fitness conductance connectivity scaledcost absorption
paritioning

cost
hyperedge

cut Rand
adjusted

Rand |k − N.clst|

PSHSC 0.335 0.225 0.530 0.003 1505.94 2385.0 311.5 0.993 0.950 48.55
PSHRC 0.345 0.210 0.530 0.003 1509.28 2367.5 302.4 0.993 0.954 43.22
PSHSQ 0.369 0.116 0.511 0.001 1517.64 2281.2 362.4 0.995 0.963 12.43
PSHRQ 0.370 0.112 0.509 0.001 1517.72 2290.1 365.1 0.995 0.963 10.86

hMETISK 0.337 0.128 0.410 0.002 1527.47 2169.7 382.0 0.981 0.778 0.01
hMETIS0.5K 0.493 0.071 0.286 0.001 1597.60 1773.3 182.4 0.935 0.541 72.77
hMETIS1.5K 0.175 0.210 0.383 0.003 1482.45 2674.0 648.2 0.975 0.765 70.81

hMETIS2K 0.094 0.281 0.349 0.004 1434.44 3187.9 838.9 0.966 0.704 141.16
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for the PSHRQ and the PSHSQ. Among the two algorithms PSHRQ and PSHSQ,

PSHRQ shows slightly better performance than PSHSQ. The number of clusters

detected by PSHSQ and PSHRQ are not exactly the same as the number of true

underlying clusters compared with the results of hMETIS using Npart = k, but

the quality measures of the clustering results of those two methods show better per-

formance metrics on average.

Figure 5.1 shows the local quality measures for various edge densities. The

fitness values of our algorithms are slightly increased as the edge density increases.

The fitness values of PSHRQ and PSHSQ are slightly higher than PSHSC, PSHRC,

and hMETISK, and the values of hMETIS2K is highest among all methods. The

conductance values of PSHRQ and PSHSQ retain the relatively lower values for

all edge densities except hMETIS0.5K, and the values of PSHSC and PSHRC

decrease as the edge density increases, but is still higher than for PSHRQ and

PSHSQ. When we take Npart as the greater number than the number of true un-

derlying clusters, the conductance values rapidly increase as the edge density in-

creases. The connectivity values of our algorithms are relatively higher than those

of all hMETIS methods, and also have a tendency to increase as the edge density

increases. The fitness values and conductance values of the hMETI0.5K are better

than any other methods, but the connectivity values were quite a lot worse than any

other methods, even including hMETIS1.5K and hMETIS2K.

Figure 5.2 shows the global quality measures for the various edge densities.

As the edge density increases, all global quality metrics tend to increase. In all edge

density ranges,the global quality measures of our four algorithms and hMETISK

are quite similar.

The Figure 5.3 shows the validation quality measures for the various edge dens-

ity values. Undoubtedly, |k − N.clst| is lowest for hMETISK, yet we can see that
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Figure 5.1: Local quality measures (fitness, conductance, and connectivity) for the various
edge densities
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Figure 5.2: Global quality measures (scaled cost, absorption, partitioning cost, and
hyperedge cut) for the various edge densities

127



R
a

n
d

a
d

ju
s
te

d
 R

a
n

d
|k

−
N

 o
f c

ls
t|

0.
2−

0.
3

0.
3−

0.
4

0.
4−

0.
5

0.
5−

0.
6

0.
6−

0.
7

0.
7−

0.
8

0.
8−

0.
9

0.
9−

1

0.900

0.925

0.950

0.975

1.000

0.5

0.6

0.7

0.8

0.9

0

50

100

150

200

Edge Density

va
lu

e

Method

PSHSC

PSHRC

PSHSQ

PSHRQ

hMETISK

hMETIS0.5K

hMETIS1.5K

hMETIS2K

Figure 5.3: Validation quality measures (Rand index, adjusted Rand index, and
|k − N.clst|) for the various edge densities
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Table 5.3: Mean of running times of our algorithms (PSHSC, PSHRC, PSHSQ, and
PSHRQ) for each n

PSHSC PSHRC PSHSQ PSHRQ
n Mean SD Mean SD Mean SD Mean SD

100 0.85 0.46 0.72 0.42 0.27 0.12 0.20 0.09
200 1.12 0.58 1.00 0.49 0.49 0.20 0.44 0.21
500 1.92 0.86 1.89 0.86 1.53 0.80 1.57 0.90
1000 4.54 2.41 4.89 2.83 5.71 3.57 6.18 3.99
2000 12.28 7.38 13.98 8.74 19.01 10.89 20.79 12.27
5000 60.25 38.31 70.96 46.07 105.36 61.17 115.79 68.82
10000 268.04 179.35 319.87 217.79 486.32 294.33 538.34 332.14

the values |k − N.clst| of the two algorithms PSHSQ and PSHRQ are quite a

lot lower than those of the the other methods (PSHSC, PSHRC, hMETIS0.5K,

hMETIS1.5K, and hMETIS2K) in all edge density ranges. In all edge density

ranges, the Rand index and adjusted Rand index of our algorithms maintain high

values. The differences in adjusted Rand index between our algorithms (PSHSC,

PSHRC, PSHSQ, and PSHRQ) and hMETIS methods are larger than the differ-

ences in Rand index. The Rand index and adjusted Rand index of hMETIS0.5K are

greatly far lower than those of our four algorithms (PSHSC, PSHRC, PSHSQ, and

PSHRQ).

Figure 5.4 and Table 5.3 shows the mean and standard deviation (SD) of run-

ning times of our algorithms (PSHSC, PSHRC, PSHSQ, and PSHRQ) for each n.

It is observed that the running times for n > 2000 rapidly increase. All algorithms

contain a procedure to detect all maximal cliques in the line graph of a given hyper-

graph, and the complexity of the procedure exponentially increases as n increases.

The two algorithms PSHSQ and PSHRQ need nearly twice as much running time

as the other two algorithms PSHRC and PSHSC for large n > 2000, while the run-

ning times of PSHSQ and PSHRQ are shorter than those of PSHRC and PSHSC

for small n ≥ 500. Figure 5.5 shows that trend of running times as the edge density
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increases for each n. The running times tend to increase as the edge density in-

creases even if the number of vertices are equal. We can observe that the algorithms

PSHSQ and PSHRQ were affected by the edge density more than the other meth-

ods. For hypergraphs with n = 10000 and edge density from 0.8 to 1, the average

running times of the algorithm PSHRQ are greater than 800 seconds, while it takes

about 100 seconds for hypergraphs of edge density near 0.2. For all n, PSHRQ

and PSHRC take longer running times than PSHSQ and PSHSC, relatively, since

PSHRQ and PSHRC detect all cliques of the intersection graph. However, for the

case n = 10000 and edge density is between 0.9 and 1, the difference of the mean of

running time was only about 100 seconds. The hMETIS method we used (shmetis)

is quite a fast program and every execution was completed in under 20 seconds.

However, for the hypergraph with unknown cluster numbers and large n, it required

repetitive executions to find an optimized solution.

5.5 Detecting protein complexes in PPI networks

5.5.1 Motivation

In this section, we attempt to predict protein complexes in a protein–protein in-

teraction (PPI) network using the newly developed hypergraph clustering methods.

Proteins are vital biomolecular components of organisms involved in vast and vari-

ous functions occurring in cells. Thus, understanding protein functions is the key

to understanding biological systems at the molecular level of life [NLC08]. Since

proteins interact with each other in the regulation process for biological functions,

rather than work as isolated entities, it has been a crucial issue in the study of pro-

teomics to find protein complexes. PPIs can be represented using a graph (called

a PPI network), where vertices represent proteins and two vertices are joined by
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an edge if the corresponding two proteins interact. It has been revealed that func-

tional complexes of proteins generally correspond to dense subgraphs of networks

[TDN+02]. Thus, protein complexes can be detected by analyzing topological and

structural properties of PPI networks. Moreover, owing to the development of se-

quencing technologies, large volumes of PPI networks have been integrated from

the various datasets. There have been numerous attempts to detect protein com-

plexes using computational methods to complement experimental methods which

has several limitations in terms of time and cost, especially for large-scale PPI net-

works [JZL+14].

Many methods have been developed to predict protein complexes in a PPI net-

work based on the graph-theoretical approaches [BH03, RG11, APF+06, AUASM+06,

LFTN05, CNS+08, MTXY08, ADHJ09, ROP10, EZB12, LWC09, TK16]. There

are roughly two types of methods that predict protein complexes in PPI networks.

First, some of existing methods first detect locally dense subgraphs of a PPI net-

work, and then merge the subgraphs according to the predefined rules [APF+06,

ADHJ09, TK16, LFTN05, ROP10, LWC09]. The other methods search for a core

vertex or initial clusters and then expand the core by adding highly connected nodes

[BH03, RG11, AUASM+06, MTXY08]. We can consider the relatively denser sub-

graphs of the PPI networks, such as stars (set of a vertex and its neighbors) or

cliques, as hyperedges and predict the protein complexes by merging them using

the developed hypergraph clustering methods. Since one of the topological fea-

tures of a PPI network is that a PPI network is a scale-free network in which the

degree distribution follows a power law [JZL+14], we can effectively detect dense

sub-networks and construct a hypergraph.
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5.5.2 Methods

To apply the newly developed hypergraph clustering to PPI network analysis, we

construct hyperedges from a PPI network in two ways: the first is to consider each

vertex and its neighborhood (star) as a hyperedge and the second is to consider

every maximal clique in a PPI network as a hyperedge. For the given PPI network,

let Hnbd and Hclique be the hypergraphs constructed using the notion of neighbor-

hood and clique, respectively. We applied PSHSC and PSHSQ algorithms to the

PPI network data and compared the results. Since a protein can be involved in

more than one functional module [JZL+14], we developed a modified version of

the PSHSQ algorithm (denoted by PSHSQ-OVL) that allows clusters to overlap.

To allow clusters to overlap, we skip the refinement procedures of QSETCLUS-

TERING of the PSHSQ algorithm and take all clusters corresponding to the MWIS

detected by the GWMIN algorithm as resulting clusters.

To compare with existing methods, we obtained the results of four methods

MCODE [BH03], CFinder [APF+06], PE-WCC [EZB12], and NCmine [TK16].

MCODE [BH03] detects locally dense subgraphs of a PPI network. The method

first assigns weights to vertices based on the local neighborhood density and then,

starting with the seed protein, expands the cluster to dense sub-networks by adding

connected vertices with weights above a given threshold. CFinder [APF+06] util-

izes the notion of k-clique percolation and detects densely interconnected modules

of PPI networks. PE-WCC [EZB12] first scores each edge in PPI networks by estim-

ating the reliability of the PPI using the topological properties of the proteins joined

by the edge and their neighborhood. After removing interactions with low weights,

the algorithm detects complexes using a weighted clustering coefficient. NCmine

[TK16] assigns a weight to each vertex based on degree centrality. Starting from the
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vertex of highest weight, a local cluster of a vertex is selected to include the vertex

and the subset of its neighbors with the edge density of the subgraph corresponding

to this cluster exceeding a given threshold. Then overlapped clusters are merged if

they satisfy the given conditions.

To estimate the degree of overlap between a predicted protein complex and a

known protein complex, we used the Jaccard index defined as

Acc(Cp, Ck) =
|Cp ∩ Ck|
|Cp ∪ Ck|

where Cp and Ck are the predicted and known protein complexes, respectively. If

Acc(Cp, Ck) > 0.5, the predicted protein complex Cp is matched with the known

protein complex Ck. To evaluate the performance of the prediction, we calculate

the recall (Rec) and the precision (Prec) defined as follows:

Rec =
NMK

NK

Prec =
NMP

NP

Where NMK and NMP are the number of matching known complexes and the num-

ber of matching predicted complexes, respectively, and NK and NP are the number

of known complexes and the number of predicted complexes, respectively.

For evaluation data, we used the Saccharomyces cerevisiae (yeast) PPI net-

works of the DIP dataset [XRS+00] containing of 5017 proteins and 23115 interac-

tions (released Oct. 1, 2014). For reference dataset of protein complexes, we used

CYC2008 dataset [PWT+08] that contains 408 protein complexes.
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Table 5.4: Parameters that show the best performance of each method for predicting
protein complexes in the DIP dataset regarding precision and recall.

Method Parameter Value

MCODE degree cutoff 2
node score cutoff 0.1
K-core 3

CFinder k 4
PE-WCC join parameter 0.5

overlap threshold 0.8
NCmine cliqueness threshold 0.8

merge threshold 0.8
dCliqueness threshold 0.2

PSHSC θ 0.8
PSHSQ θ 0.9
PSHSQ-ovl θ 0.9

5.5.3 Results

For MCODE, the maximum depth is set to 100, the degree of cutoff is set from 2 to

4, increased by 1, the node score cutoff is set to 0.1 or 0.2, and the K-core is set to 2

or 3. For CFinder, k is set to 3 or 4. For PE-WCC, the join parameter is set from 0.4

to 0.6, increased by 0.1, and the overlap threshold is set from 0.6 to 0.8, increased

by 0.1. For NCmine, the cliqueness threshold is set from 0.4 to 0.8, increased by

0.2, the merge threshold is set from 0.4 to 0.8, increased by 0.2, the dCliqueness

threshold is set from 0.2 or 0.4, and the cluster size threshold is set to 3.

For PSH methods (PSHSC, PSHSQ, and PSHSQ-OVL), the edge weight

threshold (θ) for valid edges in a line graph of the constructed hypergraph is set

from 0.6 to 0.9. Since the minimum size of the cluster detected by CFinder and

PE-WCC is 3, for pair comparisons, we only consider the predicted and known

complexes of a minimum size of 3. Among the protein complexes in the CYC2008

dataset, the number of known complexes of a minimum size of 3 is 149.

Figure 5.6 shows the recall and the precision calculated from the results ob-

tained by existing methods and our PSH methods. MCODE, CFinder, PSHSC(Hclique),
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Figure 5.6: Recall and precision calculated from clustering results of existing methods (MCODE,
CFinder, PE-WCC, and NCmine) and PSH methods (PSHSC, PSHSQ, and PSHSQ-OVL applied
for Hnbd and Hclique).

Table 5.5: Comparisions of results obtained using the best parameters for each method.

Method
N. of matching

complexes
N. of predicted

complexes
Precision Recall

Cluster size
Mean (SD)

MCODE 12 34 0.353 0.081 12.62 (14.23)
CFinder 35 131 0.267 0.235 12.18 (28.08)
PE-WCC 78 1488 0.052 0.523 8.26 (6.26)
NCmine 62 1101 0.056 0.416 5.59 (2.07)
PSHSC (Hnbd) 15 213 0.070 0.101 5.72 (2.84)
PSHSQ (Hnbd) 14 305 0.046 0.094 12.49 (19.23)
PSHSQ-ovl (Hnbd) 69 3107 0.022 0.463 14.59 (18.63)
PSHSC (Hclique) 22 59 0.373 0.148 5.98 (2.48)
PSHSQ (Hclique) 30 194 0.155 0.201 7.58 (6.67)
PSHSQ-ovl (Hclique) 65 2825 0.023 0.436 4.73 (0.98)
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and PSHSQ(Hclique) show better precision values than PE-WCC, NCmine, all

PSH methods applied for Hnbd, and PSHSQ-OVL(Hclique). Meanwhile, PE-WCC,

NCmine, and PSHSQ-OVL applied for Hclique and Hnbd show high recall values

above 0.4 and, in particular, the recall values of PE-WCC are highest. Except for

PE-WCC, the recall values of PSHSQ-OVL are largest; however, the precision val-

ues of this method are the smallest. PSHSC and PSHSQ applied for Hclique give

relatively reasonable results, but PSH methods based on Hnbd show poor perform-

ance compared with the other methods.

For each method, we select one combination of parameters regarding the recall

and the precision values (Table 5.4). The summary of best results of each method are

shown in Table 5.5. The numbers of predicted complexes by MCODE, CFinder, and

PSHSC(Hclique) are lower than the number of the known protein complexes, and

the numbers of predicted complexes by PE-WCC, NCmine, PSHSQ-OVL(Hnbd),

PSHSQ-OVL(Hclique) are much greater than the number of the known protein com-

plexes. The method that detects the most matching complexes is PE-WCC, and

PSHSQ-OVL(Hnbd) and PSHSQ-OVL(Hclique) follow. PSHSC and PSHSQ for

Hclique predict fewer complexes than for Hnbd; nonetheless, the number of match-

ing predicted complexes for Hclique by those methods are greater than for Hnbd. The

mean and standard deviation of complex size are 8.83 and 9.26, respectively. The

average cluster sizes of NCmine, PSHSC(Hnbd), PSHSC(Hclique), and PSHSQ-

OVL(Hclique) are smaller than the average known complex size. Meanwhile, the

average cluster sizes of MCODE, CFinder, PSHSQ(Hnbd), PSHSQ-OVL(Hnbd)

are larger than the average known protein complex size.
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5.5.4 Discussion

We applied several existing methods and our hypergraph clustering methods, PSH

methods, to DIP yeast datasets and evaluated their performance using the reference

dataset CYC2008 which contains the information of known protein complexes. The

PSH methods showed much better performance for Hclique than for Hnbd. In par-

ticular, PSHSC(Hclique) showed the highest precision. PSHSQ-OVL detected the

greatest number of known complexes, except for PE-WCC; however, they predicted

too many complexes resulting in low precision. With this analysis, we could con-

firm that our algorithms can be used as a tool for detecting protein complexes with

similar performance compared with other methods. Since our methods obtain the

results only based on the topological structure of PPI networks, unlike the other

methods that assign weights to vertices or edges to evaluate the centrality of pro-

teins or reliability of PPIs, we expect to improve the performance of PSH methods

on PPI networks by assigning weights to vertices or edges, and this remains for fu-

ture study. By using a strategy such as rejecting unreliable clusters, the algorithms

may be improved to detect overlapping protein complexes with higher precision.

5.6 Conclusions

The Big-LD algorithm is a method for partitioning the SNP sequence data into LD

blocks. The algorithm captures the structure of the SNP sequence data using graph

modeling and, based on that information, it finds clusters of unknown numbers and

sizes. In the real word, there are many problems, such as the lack of pre-defined

information in SNP sequence data, that make it more difficult to find the cluster

solutions. For the data that have an underlying small community, information can

be modeled using hypergraphs. However, most of the existing partitioning methods
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of a hypergraph require pre-determined parameters such as the number of clusters.

When we do not know the exact number of clusters a priori, we need additional

treatment such as repeating the execution of the algorithm for a range of parameters

to find the best solution.

In this context, we proposed new hypergraph partitioning algorithms (PSHSC,

PSHRC, PSHSQ and PSHRQ) by generalizing the Big-LD algorithm. The new

algorithms can be applied to sparse hypergraphs with unknown cluster structures.

In the simulation study, we proved that the new algorithms are especially powerful

in finding the hidden clustering structure of a sparse hypergraph. Although the al-

gorithms tend to generate more clusters than the number of true underlying clusters,

a high level of Rand index and adjusted Rand index show that the algorithms dis-

cover the true boundaries of the underlying clusters quite well.

In particular, the two algorithms PSHSQ and PSHRQ show the best-balanced

performance regarding the local, global, and validation quality measures. The res-

ults of the two algorithms are better than the results of hMETIS (with Npart of true

cluster numbers) in terms of the local quality measures and the cluster validation

measures. In addition, the number of partitions obtained by PSHSQ and PSHRQ

was quite close to the number of true underlying clusters.

Two algorithms, PSHSC and PSHRC, showed good performance in detecting

clusters with high connectivity. In other words, each vertex in a part constructed by

PSHSC and PSHRC is well associated with edges in the part. In addition, they are

faster than the other two algorithms, PSHSQ and PSHRQ.

Our algorithms consume more time for an execution compared with hMETIS;

however, they require only one execution to find the underlying clustering structure

while hMETIS requires additional treatment to find the true number of clusters if

it is not known. In addition, for a very large number of vertices (n = 10000), the
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execution of our algorithm is completed within a reasonable time (under 15 min).

Since new algorithms do not preset any parameters about the underlying true

structure of the input data, our algorithms may not be very efficient at obtaining

clusters of balanced sizes or a specific number. Our algorithms are designed for

disjoint partitioning of the data, but we can obtain overlapping clusters by modify-

ing the algorithm QSET-CLST by skipping the refinement procedures that remove

overlaps.

For real-world data such as social network data (for example, co-authorship

data or social tagging data) and biological network data (for example, SNP data, PPI

network data, or gene–disease relation data), the algorithms suggested in this study

may provide tools to reveal unknown structural characteristics. With the DIP yeast

PPI network datasets, we confirmed that our algorithms can be used as a detection

tool for protein complexes. In this application, we modified the PSHSQ algorithm

to allow overlapping clusters (PSHSQ-OVL), and more matching complexes were

detected by PSHSQ-OVL than the other PSH methods. We expect to improve the

performance by adopting strategies to evaluate the centrality or reliability of the

proteins or PPIs in a PPI network. In addition, we could develop more accurate

versions of the algorithms that allow overlapping clusters by adding strategies to

select reliable clusters.
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Chapter 6

Conclusions

In this chapter, we summarize and discuss the findings of the thesis research. The

research problem was clustering SNPs in SNP sequence data. The notion of cliques

in the graph theory was used to determine SNP clusters in which every pair of SNPs

is in strong LD. The CLQ algorithm assigned priority to the largest clique in the

given data. The CLQ-D algorithm prioritized the maximal cliques in which the

ratio of the number of SNPs to the physical range between the starting and end-

ing SNPs. The CLQ algorithm has been implemented in multi-marker association

methods [YSB13]. The CLQ-D algorithm modified from the CLQ algorithm has

been used as a multi-level algorithm to identify hidden LD block structures of SNP

sequence data. Cliques can be used for the first-level strategy to find SNP cluster,

LD-bins, CLQ-D algorithm, but also for the second-level strategy to detect over-

lapping LD-bin structures of the interval graphs to identify LD blocks of SNP se-

quence data. With this multi-level strategy, LD blocks that allow “holes” [WP03] in

the blocks can be identified. This approach is different from previously developed

methods based on the statistical approach or haplotype pattern analysis. Moreover,

the sparsity of data from the constructed graph model and the multi-level strategy

facilitate the reduction of runtime and memory usage. This approach was imple-

mented into the Big-LD algorithm. We showed that the LD block boundaries found

by this algorithm are more invariant for the changes in the marker density compared

to previous methods.

The underlying causes of LD block structure have been attributed to population
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genetic phenomena, such as mutations, selection, recombination, or genetic drift.

Presently, the LD block boundaries identified by the Big-LD algorithm displayed

better agreement with the recombination hotspots compared to previous methods. It

would be interesting to investigate the relationships between positive selection and

big LD blocks identified by the Big-LD algorithm, since the long-range haplotypes

are observed in big LD blocks more frequently, and because the long-range haplo-

types provide evidence of positive selection. We analyzed big LD block patterns

in the regions previously suggested [SVF+07] to include candidate loci for positive

selection. We provided evidence that the SLC30A9, PDE11A, and BCAS3 regions

have been positively selected in both European and East Asians. Furthermore, the

Big-LD algorithm was implicated as a useful detection tool of positive selection

when comparing different populations. In future studies, the use of the Big-LD al-

gorithm along with other statistically-based methods of positive selection detection

could led to the development of a new method that will complement the previous

methods.

The CLQ, CLQ-D, and Big-LD algorithms are novel means to partition SNP

sequence data. The algorithms automatically determine the number of clusters and

reveal the hidden structure. Analogous to the Big-LD algorithm, which is special-

ized for SNP data, we developed a new clustering (partitioning) algorithm based

on a sparse hypergraph. We suggest that the four algorithms—PSHSC, PSHRC,

PSHSQ, and PSHRQ—have different strategies (scope of candidate clusters and

construction of intersection graphs) for sparse hypergraph clustering. In a simula-

tion study, the algorithms partitioned sparse hypergraphs into high-quality clusters

that were locally and globally balanced. The algorithms were effective at discern-

ing the underlying true partitioning structure of hypergraphs. Our algorithms can be

used to find structural characteristics of data with unordered data points, especially
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for genetic data including protein-protein-interaction network data and gene-disease

association data. We applied these algorithms to predict protein complexes in PPI

network data set and confirmed their value as a clustering tool for protein com-

plexes. In addition to the proposed algorithms in this research, we foresee some

improvement in detecting overlapping clusters (such as protein complexes), which

will be the subject of future reseach.

144



Chapter A

Coding correction algorithm

The sign of the correlation rij between two SNPs changes if we switch the risk

allele and base allele for one of two SNPs. For example, if we replace Xiwith a

new genotype variable X ′
i = 2 − Xi, then the genotype of Xi =0, 1, 2 becomes

X ′
i =2, 1, 0, respectively under an additive model. When this change is applied, the

correlation between the genotype X ′
i and Xj becomes −rij for i ̸= j. This coding

change will also change the sign of beta estimates β̂i if β̂i ̸= 0. To make most

pairwise correlations positive for SNPs in the joint analysis, we apply the Wang and

Elston SNP recoding algorithm [WE07], which is as follows:

Step 1. Obtain the number of negatively correlated SNPs for each SNP i and denote

it as ni for i = 1, 2, · · · ,m, i.e. ni =
∑m

j=1,j ̸=i I(rij < 0) where I is an indicator

function.

Step 2. Select the SNP with the max{ni}, then switch the risk and base allele for

the genotype of that SNP.

Step 3. Iterate Steps 1-2 with updated correlations from the updated genotypes until

max{ni} < 2/m.
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국문초록

클러스터링은 데이터의 의미있는 패턴을 밝혀내는 방법으로써 가장 널리 쓰이

는 수단 중 하나이다. 최근 염기서열 데이터의 양이 방대하게 늘어나면서, 각

데이터의 구조에 적합한 효과적인 클러스터링 툴을 개발하는 것이 유전체학의

주요한과제로대두되었다. 본고에서는그래프이론을기반으로하여 SNP데이

터를 분할하는 알고리즘 CLQ 와 CLQ-D를 개발하였다. 또한, 이 알고리즘들을

이용하여 SNP데이터의클러스터링결과를얻은후,이결과를인터벌그래프로

모델링하여 SNP 서열 데이터의 LD 블록을 탐지하는 알고리즘 Big-LD 를 개발

하였다. 희박한 그래프란 그래프 내의 변의 수가 생성가능한 변의 수보다 훨씬

적은 그래프이다. 생물학적, 사회학적, 그리고 인터넷 네트워크 데이터와 같은

실세계데이터가희박한그래프로모델링될수있다. SNP클러스터링알고리즘

CLQ, CLQ-D와 LD블록탐지알고리즘 Big-LD는주어진 SNP데이터를그래프

로 모델링 하는데, 이 때 모델링 된 그래프는 SNP 데이터의 특수한 구조적 성격

으로 인해 희박한 그래프의 구조를 갖게 된다. 이는 실행 시간 및 메모리 사용

측면에서알고리즘이효율적으로동작할수있도록한다. 특히, Big-LD알고리즘

은 “hole”을 포함하는 특별한 형태의 LD 블록을 탐지할 수 있으며, 이는 이전에

개발되었던방법들이탐지되지않던구조이다. 본고에서는 Big-LD알고리즘을

HapMap phase 3 데이터와 1000 Genomes Project의 phase 1 데이터에 적용하여

각 데이터의 LD 블록 구조를 탐지하고, 이 결과를 이용하여 규모가 큰 LD 블록

구조와생물학적현상간의관련성을연구하였다. Big-LD알고리즘으로탐지된

LD 블록의 경계는 다른 방법으로 탐지된 LD 블록 경계과 비교해 보았을 때, 더

높은 비율로 유전자의 재조합이 빈번하게 일어나는 핫스폿의 위치와 일치한다.

또한 양성 선택 현상과 관련하여 인종간의 LD 블록 구조의 비교 분석을 시행하

였으며, 이를 통해 선행 연구에서 양성 선택의 후보 위치로 제시되었던 유전자

지역들에 대하여 추가적인 근거를 제시하였다. 본고에서는 SNP 데이터를 LD
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블록으로 나누는 Big-LD 알고리즘을 일반화함으로써 희박한 하이퍼그래프를

클러스터링하는네가지의알고리즘—PSHSC, PSHRC, PSHSQ, PSHRQ—을제

안하였다. 모의실험을 통하여, 제안한 알고리즘이 모의생성된 하이퍼그래프의

실제클러스터구조에매우근접할뿐만아니라,전역적,지역적성능측정수치로

볼때우수한클러스터링결과를생성함을보였다. 또한실세계데이터인효모단

백질-단백질상호작용네트워크데이터에하이퍼그래프클러스터링알고리즘을

적용하여단백질복합체를예측하는실험을통하여생물학적네트워크데이터를

클러스터링하는툴로서의잠재성을확인하였다.

주요어 : 하이퍼 그래프, 클러스터링, 최대가중치독립집합, 완전부분그래프,

연관비평형,연관비평형블록,단일염기다형성,양성선택

학번 : 2009-21501
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