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Glaucoma has been able to be diagnosed noninvasively by 

analyzing the optic disc thickness with the development of optical 

coherence tomography. However, it is essential to maintain 

proper intraocular pressure through early diagnosis of glaucoma. 

Therefore, it is required to develop a computer-aided diagnosis 

system to accurately and objectively analyze glaucoma of early 

stage. In this paper, we propose deep feature fusion network for 

realizing computer-aided system which can accurately diagnose 

early glaucoma and verify the clinical efficacy through 

performance evaluation using patient images. Deep feature fusion 

network is analyzed by fusing features which are extracted by 
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feature-based classification used in machine learning and by 

deep learning in deep neural network. 

Deep feature fusion network is deep neural network 

composed of heterogeneous features extracted through image 

processing and deep learning. The area and depth features of 

optic nerve defects related to glaucoma were extracted by using 

traditional image processing methods and the features related to 

distinction between glaucoma and normal subjects were 

extracted from the middle layer output of the deep neural 

network. Deep feature fusion network was developed by fusing 

extracted features. 

We analyzed features based on image processing using 

thickness map and deviation map of retinal nerve fiber layer and 

ganglion cell inner plexiform layer in order to extract features 

related to the area of the optic nerve defects. Optic nerve defects 

were segmented in each deviation map by three criteria and the 

area of the defects was calculated about 69 glaucoma patients 

and 79 normal subjects. The performance of the severity indices 

calculated by defects area was evaluated by the area under ROC 

curve (AUC). There were significant differences between 

glaucoma patients and normal subjects in all severity indices (p 
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< 0.0001) and correctly distinguished between glaucoma patients 

and normal subjects (AUC = 0.91 to 0.95). This suggests that 

the area features of optic nerve defects can be used as an 

objective indicator of glaucoma diagnosis. 

We analyzed features based on another image processing 

using retinal nerve fiber layer thickness map and deviation map 

to extract the features related to the depth of the optic nerve 

defects. Depth related index was developed by using the ratio of 

the optic nerve thickness of the normal to the optic nerve 

thickness in the optic nerve defects analyzed by the deviation 

map. 108 early glaucoma patients, 96 moderate glaucoma 

patients, and 111 severe glaucoma patients were analyzed by 

using depth index and the performance was evaluated by AUC. 

There were significant differences between the groups in the 

index (p < 0.001) and the index discriminated between moderate 

glaucoma patients and severe glaucoma patients (AUC = 0.97) 

as well as early glaucoma patients and moderate glaucoma 

patients (AUC = 0.98). It was found that the depth index of the 

optic nerve defects were a significant feature to distinguish the 

degree of glaucoma. 
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Two methods were used to apply thickness map to deep 

learning. One method is deep learning using randomly distributed 

weights in LeNet and the other method is deep learning using 

weights pre-trained by other large image data in VGGNet. We 

analyzed two methods for 316 normal subjects, 226 glaucoma 

patients of early stage, and 246 glaucoma patients of moderate 

and severe stage and evaluated performance through AUC for 

each groups. Deep neural networks learned with LeNet and 

VGGNet distinguished normal subjects not only from glaucoma 

patients (AUC = 0.94, 0.94), but also from glaucoma patients of 

early stage (AUC = 0.88, 0.89). It was found that two deep 

learning methods extract the features related to glaucoma. 

Finally, we developed deep feature fusion network by 

fusing the features extracted from image processing and the 

features extracted by deep learning and compared the 

performance with the previous studies though AUC. Deep feature 

fusion network fusing the features extracted in VGGNet 

correctly distinguished normal subjects not only from glaucoma 

patients (AUC = 0.96), but also from glaucoma patients of early 

stage (AUC = 0.92). This network is superior to the previous 

study (AUC = 0.91, 0.82). It showed excellent performance in 
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distinguishing early glaucoma patients from normal subjects 

particularly. 

These results show that the proposed deep feature fusion 

network provides higher accuracy in diagnosis and early 

diagnosis of glaucoma than any other previous methods. It is 

expected that further accuracy of the features will be improved 

if additional features of demographic information and various 

glaucoma test results are added to deep feature fusion network. 

Deep feature fusion network proposed in this paper is expected 

to be applicable not only to early diagnosis of glaucoma but also 

to analyze progress of glaucoma. 

Keywords: Deep feature fusion network, Glaucoma, Optical 

coherence tomography, Retinal nerve fiber layer thickness map, 

Deep learning 

Student number: 2010-23352 
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1.1. GLAUCOMA 

Glaucoma is an ophthalmic disease caused by the 

degeneration of retinal ganglion cells. Glaucoma causes visual 

field defect as it progresses and ends up with blindness(1). 55% 

of glaucoma patients lost sight in one eye and 18.1% lost sight in 

both eyes(2). In 2010, there will be 60.5 million people with 

glaucoma and 79.6 million by 2020(3). The number of glaucoma 

patients that know to have glaucoma is very small because the 

symptoms don’t represent definitely until glaucoma progresses 

to an advanced stage. So, periodic tests for glaucoma are needed 

because it is difficult to treat when symptoms show up.  

Glaucoma can be classified into two types: open-angle 

glaucoma (OAG) and angle-closure glaucoma (ACG). In patients 

with OAG, there is clogged with a part of the trabecular 

meshwork and increased resistance to aqueous outflow. In this 

case, the angle between iris and cornea is open. On the other 

hand, ACG is a disease caused by the closing of the angle 

between iris and cornea(1, 4). Factors of OAG include increased 

cup disk ratio (CDR), CDR asymmetry, disc hemorrhage and 

increased intraocular pressure(5). There is a high likelihood that 
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OAG will occur due to the family history of glaucoma, black 

people and age. Systemic or topical corticosteroids may cause 

OAG, prescribing should be careful(6). ACG occurs due to the 

shallower anterior chambers of eye, which is common in women, 

aged and Asian(4). 

Glaucoma is a disease that occurs as the damage 

progresses slowly and continuously, so it is difficult to confirm 

at the initial stage. So, it is important to perform various tests for 

accurate diagnosis of glaucoma. The glaucoma tests are 

intraocular pressure test, optic nerve head test, visual field test 

and anterior chamber angle examination. The intraocular 

pressure test is measurement using an anterior tonometer and 

glaucoma is diagnosed when it exceeds 21mmHg(7). The optic 

nerve head test examines the optic disc where the optic nerves 

gather out of the eyeball. As the glaucoma progresses, the optic 

disc is pressed and the shape of optic disc changes and the 

depression of optic disc increases(8). The optic nerve head is 

measured by the ophthalmoscope. The visual field test is a test 

of pushing the button when the object or light is recognized. As 

the glaucoma progresses, the visual field to be viewed becomes 

smaller and the change of the visual field is examined(9).  The 
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gonioscopy examines the anterior chamber angle at the junction 

of the iris and the cornea. It examines whether the angle of the 

anterior chamber is blocked or deteriorates as the glaucoma 

progresses(10). 

Patients with glaucoma know that they have glaucoma as 

their vision field becomes narrower. But when the glaucoma can 

be diagnosed with a visual field test, 30 ~ 50 % of the retinal 

ganglion cells are damaged(11). So, it is important to diagnose 

early glaucoma because glaucoma is a disease which may reach 

to blindness. However, it is very challenging to diagnose 

glaucoma of early stage because various tests are needed to 

diagnose glaucoma. Therefore, there are many studies to develop 

and improve various tests for early glaucoma diagnosis (12-15). 
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1.2. OPTICAL COHERENCE TOMOGRAPHY 

The optical coherence tomography (OCT) is a device that 

examines the microstructure and thickness of the retina and optic 

nerve and diagnoses glaucoma. OCT obtains a high-resolution 

tomographic image using the time difference and magnitude of 

light reflected from a desired tissue(16). OCT is commonly used 

to measure retina and anterior segment eye because the eye has 

a structure with an optically clear pathway(17, 18). OCT is a 

very effective screening device for examining glaucoma because 

it examines the structure and thickness of the optic nerve with 

high resolution and objectively analyzes the statistically 

abnormal portion of the average thickness of normal people(19). 

OCT is classified into time domain OCT (TD-OCT) and 

frequency domain OCT (FD-OCT). And FD-OCT is divided into 

spectral domain OCT (SD-OCT) and swept source OCT (SS-

OCT). TD-OCT is designed to analyze the reflected region 

according to time as the reference mirror moves. Currently, FD-

OCT has been actively studied because of low signal sensitivity 

and slow scan speed limit of TD-OCT(20). FD-OCT is a device 

using the principle of the interferometer in the same way, but it 
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is designed to acquire depth information by detecting the 

wavelength components of the scattered signal in the tissue and 

performing Fourier transformation(21). SD-OCT is a device 

obtaining images by using a spectrometer as a photodetector and 

SS-OCT is a device obtaining images by using one photodetector 

while changing the central wavelength of the light source 

itself(22). 

 SD-OCT can be measured at 5 ~ 7 μm as a current 

device, so it has many advantage in glaucoma diagnosis because 

it can analyze abnormality and progress of retinal layer which 

was not seen in TD-OCT(23). SD-OCT can acquire 3D data 

through fast capture time and further analyze retinal nerve fiber 

layer (RNFL) and retinal ganglion cell layer (RGCL) defects as 

it is able to analyze a wide range of desired area tightly. SD-

OCT has improved accuracy and reproducibility in the diagnosis 

of glaucoma and analysis of progress, but it requires additional 

processing including image processing technology(24). 
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1.3. OBJECTIVE THESIS 

 Glaucoma is a disease that damages the optic nerve and 

results in the loss of vision field. Glaucoma is caused by putting 

pressure on the optic nerve through intraocular pressure 

increase and blood supply blockage. Chronic glaucoma is rarely 

seen and difficult to treat when symptoms are shown. Therefore, 

it is very important to diagnose glaucoma earlier. Analyzing the 

optic nerve loss is needed to diagnose glaucoma accurately. So, 

it is possible to analyze the structure and thickness of the optic 

nerve precisely and find the glaucoma early by measuring the 

depth of the optic nerve through OCT. The development of OCT 

measuring technology has improved the depth and structure to 

measure optic nerve and the resolution of measured images, but 

the method of accurately analyzing the glaucoma using OCT 

image is still insignificant. Thus, it is important to extract 

meaningful features related to glaucoma using images through 

OCT and accurately classify glaucoma patients and normal people 

into the features.  

Thus, the objective of this thesis was to extract useful 

features which are relevant to glaucoma using images acquired 
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with optical coherence tomography and develop the classifier 

that discriminates clearly between normal and glaucoma patients 

using these features. Chapter 2 calculated localized retinal nerve 

fiber layer (RNFL) defects on the ganglion cell inner plexiform 

layer (GCIPL) and RNFL deviation maps and extracted features 

as severity indices according to probability level. Chapter 3 

extracted feature as RNFL defect depth percentage index on the 

RNFL thickness deviation map using the proportion of the RNFL 

defect depth. And Chapter 4 extracted features using deep 

learning which only allows a computer to distinguish between 

normal and glaucoma patients on RNFL thickness deviation maps 

and classified two groups using deep feature fusion network 

developed by the fusion of features in Chapter 2, 3 and 4.  
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CHAPTER 2 

Feature Extraction for Glaucoma 

Diagnosis 1. Severity Index of 

Macular GCIPL and Peripapillary 

RNFL Deviation Maps  
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2.1 INTRODUCTION 

Glaucoma is a progressive optic neuropathy 

characterized by the loss of retinal ganglion cells (RGCs) 

presenting as structural changes of the optic nerve head (ONH) 

and retinal nerve fiber layer (RNFL) with corresponding visual 

field(VF) defects(25). For prevention of functional vision loss 

and maintenance of the quality of life of glaucoma patients, it is 

essential to detect early change by glaucomatous RGC loss. 

Previous study has reported that peripapillary RNFL 

(pRNFL) thickness measurement by Cirrus high-definition (HD) 

spectral-domain (SD) Optical Coherence Tomography (OCT) 

(software version 5.1.0.96; Carl Zeiss Meditec, Dublin, CA, USA) 

is highly effective for detection of localized RNFL defect on red-

free RNFL photography(26). The pRNFL deviation map (Cirrus 

OCT software version 3.0; Carl Zeiss Meditec) has been shown 

to offer a higher diagnostic ability for detection of localized RNFL 

defects than other conventional pRNFL maps such as the clock-

hour map or quadrant map(27-29). 

 Recently the ganglion cell analysis (GCA) algorithm   

was incorporated into Cirrus OCT with the newer software 
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version 6.0 to allow for successful and reproducible 

segmentation of inner macular layers (GCIPL: a combination of 

the ganglion cell layer [GCL] and the inner plexiform layer 

[IPL])(30, 31); its glaucoma diagnostic ability, significantly, has 

been shown to be comparable to those of the pRNFL and ONH 

parameters(32, 33). 

 However, to date, little of the ability of the macular GCIPL 

deviation map in Cirrus OCT for detection of localized RNFL 

defects has been demonstrably determined. Therefore, this 

study was undertaken to compare the ability of the macular 

GCIPL deviation map with that of the pRNFL deviation map for 

detection of localized RNFL defects shown on red-free RNFL 

photography. 
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2.2. METHODS 

2.2.1. Study subjects  

Glaucomatous eyes with localized RNFL defects and 

normal control eyes satisfying the eligibility criteria were 

enrolled from the Glaucoma Clinic of Seoul National University 

Hospital during the period from December 2012 to May 2013. In 

cases where both eyes were eligible, one eye was randomly 

selected. 

The subjects were all aged 18 years or older. All had a 

best-corrected visual acuity (BCVA) of 20/40 or better, a 

spherical-equivalent refractive error within ± 5.00 diopters 

(D), astigmatism within ± 3.00 D, an open anterior chamber 

angle and high-quality red-free RNFL photography. Eyes with 

a history of ocular or systemic diseases possibly affecting the 

peripapillary area (e.g. large peripapillary atrophy, chorioretinal 

coloboma, peripapillary staphyloma) or macula area (e.g. 

epiretinal membrane, age-related macular degeneration, macular 

oedema), amblyopia, uveitis, intra-ocular surgery (excepting 

uncomplicated cataract surgery), diabetes or any other ocular or 

systemic diseases affecting RNFL thickness or VF (e.g. retinal 
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vein occlusion, ischemic optic neuropathy) were excluded. OCT 

images with a signal strength ≤ 6 or with visible eye motion or 

blinking artifacts were excluded as well. 

The glaucomatous eyes had localized RNFL defects on 

red-free RNFL photography with asymptomatic-to-moderate 

glaucomatous VF loss (mean deviation (MD) > -12 dB). 

Glaucomatous VF loss was defined as a pattern standard 

deviation (PSD) outside the 95% normal limits, glaucoma 

hemifield test results outside the normal limits and/or a cluster 

of at least three points with a p-value <0.05 on the pattern 

deviation plot, 1 of each with p < 0.01 affecting the same 

hemifield; also, the cluster could not be contiguous with the blind 

spot and could not cross the horizontal midline, on two 

consecutive VF tests. 

Preperimetric glaucomatous eyes were defined as those 

having a localized wedge-shaped RNFL defect clearly visible on 

red-free RNFL photography with normal standard automated 

perimetry (SAP) results in at least two tests. Normal VF was 

defined as MD and PSD within 95% confidence limits and a 

glaucoma hemifield test result within the normal limits. 
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Normal control eyes were defined as those having an 

intra-ocular pressure (IOP) ≤ 21 mmHg with no history of 

increased IOP, showing an absence of glaucomatous disc 

appearance, no visible RNFL defect on red-free RNFL 

photography and a normal SAP result. 

The study adhered to the tenets of the Declaration of 

Helsinki and was approved by the Institutional Review Board of 

Seoul National University Hospital. Informed consent was 

obtained from all of the subjects. 

2.2.2. Red-free RNFL photography 

The subjects underwent a comprehensive ophthalmic 

examination including a medical history review; measurement of 

BCVA; slit-lamp biomicroscopy; Goldmann applanation 

tonometry (GAT); gonioscopy; dilated fundoscopic examination 

with a 90 (D) lens; and stereoscopic disc photography (SDP), 

red-free RNFL photography and SAP (Humphrey Field Analyzer 

II; Carl Zeiss Meditec). Red-free RNFL photography was 

obtained after dilation of the pupil using a digital fundus camera 

system (CF-60UVi/D60; Canon, Inc, Tokyo, Japan) with a green 

filter inserted to enhance the RNFL(34). Images were saved in 
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a 1600 ｘ 1216-pixel digital imaging and communications in 

medicine format and were stored in the picture archiving 

communication system (PACS) of Seoul National University 

Hospital. 

Localized RNFL defects on red-free RNFL photography 

were defined as having a width at a 1-disc-diameter distance 

from the edge of the disc larger than that of a major retinal vessel, 

diverging in an arcuate or wedge shape and reaching the edge of 

the disc(35). Two masked glaucoma specialists independently 

evaluated the red-free RNFL photography without knowledge of 

clinical information such as OCT or VF test results; discrepancies 

were resolved by adjudication of a third glaucoma specialist. 

2.2.3. Cirrus OCT imaging 

 Using Cirrus OCT (software version 6.0), OCT images 

were acquired by macular scan (macular cube 200 ｘ 200 

protocol) and pRNFL scan (optic disc cube 200 ｘ 200 protocol) 

subsequent to pupil dilation. The macular GCIPL thickness within 

a 6 ｘ 6 ｘ 2 mm (14.13 mm2) elliptical annulus around the 

fovea was measured and computed by GCA algorithm embedded 

in Cirrus OCT software version 6.0. The annulus cube was of 1 
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mm inner vertical diameter, 4 mm outer vertical diameter, 1.2 

mm inner horizontal diameter and 4.8 mm outer horizontal 

diameter, excluding the central portions of the fovea where the 

layers are thin and difficult to defect(30). GCIPL thickness was 

then analyzed according to eight parameters: average, minimum 

and in six sectors (superonasal, superior, superotemporal, 

inferotemporal, inferior, and inferonasal). This computation 

method has been described in detail in previous reports(30, 31). 

The pRNFL thickness within a 3.46-mm diameter circle (256 

A-scan) automatically positioned around the optic disc was 

measured and analyzed in 17 parameters: average, four 

quadrants (superior, inferior, temporal, nasal) and 12 clock-hour 

sectors(36). The RNFL thickness in a 6 ｘ 6 mm2 area around 

the optic disc cube was measured by 200 ｘ 200 axial scans 

(pixels) for generation of the deviation map 

 On the basis of a comparison with the built-in internal 

normative database, the GCIPL and pRNFL thickness values 

were analyzed and then represented on color-coded deviation 

maps composed of 50 ｘ 50 superpixels (200 ｘ 200 pixels). 

The uncolored (grey color) superpixels indicated the normal 

range, whereas yellow- or red- colored superpixels indicated 
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abnormality at the 5% or 1% level, respectively. The GCIPL 

deviation map represented the OCT enface image of the annular 

cube (between the inner and outer rings) of the macula excluding 

the central fovea. The pRNFL deviation map represented the 

OCT enface image of the optic disc that showed the boundaries 

of the cup, disc and 3.46-mm diameter circle. 

2.2.4. Deviation map analysis protocol 

In this study, the GCIPL and pRNFL measurement data 

were exported as image files (file format: JPEG) using the built-

in export function of Cirrus OCT. The deviation map for each file 

was retrieved using a customized image processing program 

written in Matlab R2012a (The Mathworks, Inc., Natick, MA, 

USA). Then, the number of color-coded (yellow or red) 

abnormal superpixels on the GCIPL and pRNFL deviation map 

corresponding to the location of localized RNFL defects visible 

on the red-free RNFL photographs was calculated using the 

same customized Matlab program. The three criteria for 

significantly aberrant superpixels on the GCIPL and pRNFL 

deviation map corresponding to RNFL defect were determined 

arbitrarily as follows: 
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Critetion 1 ∶  Cluster of  contiguous yellow superpixels 

≥ 3 including red superpixel ≥ 1 

Critetion 2 ∶  Cluster of  contiguous yellow superpixels 

≥ 5 including red superpixel ≥ 3 

Critetion 3 ∶  Cluster of  contiguous yellow superpixels 

≥ 10 including red superpixel ≥ 5 

In the case of the macular GCIPL deviation map, we 

excluded from the analysis 1 superpixel around the inner circle 

of the GCIPL scan area considering the possibility of artifact. 

With respect to the pRNFL deviation map, we excluded the nasal 

quadrant (90°) centered on the pRNFL calculation circle (3.46-

mm diameter) as well as three superpixels around the disc 

margin, in the light of the frequency of glaucomatous damage and 

the possibility of artifact (Figure 2.1). 
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Figure 2.1. Calculation of aberrant deviation-map superpixels corresponding to localized retinal nerve fiber layer 

(RNFL) defect using customized Matlab program. (A) Red-free RNFL photography showing inferotemporal 

localized RNF L defect (arrowheads). (B) Aberrant pRNFL deviation-map superpixels corresponding to 

photographic RNFL defect: nasal 90° centered on the pRNFL calculation circle and three superpixels near the disc 
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margin were excluded from the analysis (blue line). The superpixels coded in red and yellow were recognized and 

calculated by the customized image processing program (red superpixels for the area bounded by the green line, 

yellow superpixels for the area bounded by the orange line). (C) Aberrant GCIPL deviation-map superpixels 

corresponding to photographic RNFL defect: 1 superpixel near the inner ring (border) of the GCIPL scan area 

(purple line) was excluded from the analysis (blue line). The superpixels coded in red and yellow were recognized 

and calculated by the customized image processing program (red superpixels for the area bounded by the green line, 

yellow superpixels for the area bounded by the orange line). 
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The number of aberrant superpixels was calculated 

according to the severity index (S1, S2, or S3), which was 

determined in relation to the probability level. S1 represented 

the number of yellow and red superpixels for the p < 0.05 

probability level; S2 indicated the number of only red superpixels 

for the p < 0.01 probability level. As the red superpixels 

represented a more significant abnormality than the yellow 

superpixels, we double-weighted the red superpixels. Therefore, 

S3 represented the number of red superpixels multiplied by 2 

plus the number of yellow superpixels. 

2.2.5. Statistical analysis 

Statistical analysis were performed using SPSS version 

19.0 (SPSS Inc., Chicago, IL, USA) and MedCalc 12.3.0 

(MedCalc Software, Mariakerke, Belgium). The Student t-test 

was used to compare the continuous variables between the 

normal control group and the glaucoma group. Additionally, the 

Pearson chi-square test was used to compare the two groups’ 

categorical variables. Pearson correlation analyses were 

performed to calculate the correlations of the deviation map 

results (the number of aberrant superpixels represented as a 

severity index for each probability level: S1, S2, S3) between 
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the GCIPL and pRNFL. The diagnostic abilities of the deviation 

map algorithms in discriminating glaucomatous eyes with 

localized RNFL defects from normal control eyes were evaluated 

by computing the areas under the receiver operating 

characteristic curves (AUROCs) and comparing the results(37). 

A p-value < 0.05 was considered statistically significant. 
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2.3. RESULTS 

The final study sample included 148 eyes of 148 subjects 

(69 eyes of 69 subjects with localized RNFL defects and 79 eyes 

of 79 normal control subjects). Among those 69 eyes with 

localized RNFL defects, 51 showed perimetric glaucoma (40 

eyes: early stage (MD > -6 dB) of VF loss; 11 eyes:  moderate 

stage (-12 dB < MD ≤ -6 dB) of VF loss) and 18 showed 

preperimetric glaucoma. The ocular and demographic 

characteristics of the subjects are presented in Table 2.1. 

Between the two groups, there were no significant differences in 

mean age, BCVA or spherical equivalent of refraction (all p > 

0.05, Student t-test). However, the sex distribution showed a 

significant discrepancy, in that more females were included in the 

glaucoma group (64%) than in the normal control group (47%) 

(p = 0.039, chi- square test). Moreover, the VF indices (MD, 

PSD) did significantly differ (p < 0.0001, Student t-test). 

Table 2.2 shows the averages of the severity indices for 

the GCIPL and pRNFL deviation maps as determined by the 

number of aberrant superpixels at each probability level. 

Comparing the glaucoma groups and the normal control group, 
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Table 2.1. Demographics and ocular characteristics of normal controls and subjects with glaucoma and localized retinal 

nerve fiber layer (RNFL) defects. 

  
Normal control 

(n = 79) 

Glaucoma 

(n = 69) 
p-value 

Age (y) (mean ± SD) 56.14 ± 12.27 58.19 ± 9.91 0.270* 

Sex (male/female) 42/37 25/44 0.039† 

BCVA ( log MAR) 0.04 ± 0.65 0.04 ± 0.74 0.802* 

SE (diopters) -0.73 ± 1.51 -0.27 ± 1.62 0.143* 

VF Index    

MD (dB) -0.44 ± 1.90 -3.02 ± 3.21 <0.0001* 

 PSD (dB) 2.02 ± 1.08 5.35 ± 3.88 <0.0001* 

Stage of disease    

Preperimetric  18 (26%)  

Early (MD >-6 dB)  40 (58%)  

Moderate (-12 dB < MD ≤ -6 dB)  11 (16%)  

SD = standard deviation, BCVA = best-corrected visual acuity, SE = spherical equivalent, 

VF = visual field, MD = mean deviation, PSD = pattern standard deviation. 

* The comparison was performed using the Student t-test. 
† The comparison was performed using the chi-square test. 
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Table 2.2. Severity index of deviation map of macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary 

retinal nerve fiber layer (pRNFL) computed using a customized Matlab program. 

Criteria 

S1 ( red and yellow superpixels) 
 

S2 (red superpixels only) 
 S3 (red superpixels ｘ 2 ＋ yellow 

superpixels) 

Normal  

control 

(n = 79) 

Glaucoma 

(n = 69) 
p-value 

Normal  

control 

(n = 79) 

Glaucoma 

(n = 69) 
p-value 

Normal  

control 

(n = 79) 

Glaucoma 

(n = 69) 
p-value 

Criterion 1            

 pRNFL 
16.01 ± 

37.77 

196.93 ± 

111.12 
<0.0001 

4.39 ± 

13.11 

111.30 ± 

71.57 
<0.0001 

20.41 ± 

47.99 

308.23 ± 

179.35 
<0.0001 

 GCIPL 
34.66 ± 

69.50 

275.39 ± 

163.52 
<0.0001 

7.76 ± 

17.61 

204.01 ± 

151.27 
<0.0001 

42.42 ± 

85.14 

479.41 ± 

311.80 
<0.0001 

Criterion 2          

 pRNFL 
10.29 ± 

29.91 

192.96 ± 

111.13 
<0.0001 

4.04 ± 

13.10 

111.70 ± 

72.38 
<0.0001 

14.33 ± 

41.87 

304.65 ± 

180.17 
<0.0001 

 GCIPL 
30.22 ± 

66.12 

271.61 ± 

166.48 
<0.0001 

7.13 ± 

16.88 

203.28 ± 

151.28 
<0.0001 

37.34 ± 

81.03 

474.88 ± 

314.79 
<0.0001 

Criterion 3          

 pRNFL 
 8.10 ± 

27.35 

191.57 ± 

110.79 
<0.0001 

3.57 ± 

12.85 

110.03 ± 

71.30 
<0.0001 

11.67 ± 

39.30 

301.59 ± 

179.20 
<0.0001 
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 GCIPL 
26.14 ± 

61.91 

270.28 ± 

167.39 
<0.0001 

6.24 ± 

16.32 

202.68 ± 

151.56 
<0.0001 

32.38 ± 

76.32 

472.96 ± 

315.91 
<0.0001 

S1 = number of yellow and red superpixels with probability level of p < 0.05, S2 = number of only red superpixels with probability level 

of p < 0.01, S3 = number of red super pixels ｘ 2 + number of yellow superpixels, Criterion 1 = Cluster of ≥3 contiguous yellow 

superixels including ≥1 red superpixel; Criterion 2 = Cluster of ≥5 contiguous yellow superixels including ≥3 red superpixel; Criterion 1 

= Cluster of ≥10 contiguous yellow superixels including ≥5 red superpixel. 

* Comparison was performed using Student t-test 
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there were statistically significant differences in all three 

severity indices (S1, S2, S3) for each criterion (all p < 0.0001, 

Student t-test). The severity indices of both deviation maps 

generally decreased according to the change of criterion from 1 

to 3. However, the S2 (number of red superpixels) of both maps 

showed relatively similar values regardless of the criterion. 

With the GCIPL deviation map algorithm, the AUROCs in 

discriminating the glaucomatous eyes with localized RNFL 

defects from the normal control eyes ranged from 0.910 to 0.931 

and for the pRNFL deviation map algorithm, from 0.934 to 0.950, 

according to the criteria and probability levels. In a comparison 

of all of the corresponding severity indices, those for the pRNFL 

deviation map showed larger AUROCs than those for the GCIPL 

deviation map. However, the differences were not statistically 

significant (all p > 0.05; Figure 2.2.). According to the different 

criteria, the AUROCs for S2 (0.931 for Criterion 1, 0.924 for 

Criterion 2 and 0.916 for Criterion 3) and S3 (0.922 for Criterion 

1, 0.917 for Criterion 2 and 0.910 for Criterion 3) of the GCIPL 

deviation map were significantly larger than those for S1 (all p < 

0.05); there was no significant difference between S2 and S3 (all 

p > 0.05). By contrast, there were no significant differences 
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found among the three severity indices of the pRNFL deviation 

map for any of the criteria (all p > 0.05). When matched for fixed 

specificity, the sensitivities of the severity indices of the pRNFL 

deviation map were generally higher than those of the GCIPL 

deviation map, excepting S2 for criteria 2 and 3 (specificity ≥ 

95%; Table 2.3). 

To investigate the correlation of the severity indices in 

the deviation map algorithm between the GCIPL and pRNFL, 

Pearson correlation analysis was performed. Strongly significant 

correlations were observed in the three indices, regardless of 

the criterion (all p < 0.0001). S3 showed the strongest 

correlations between the GCIPL deviation map and the pRNFL 

deviation map (coefficient of determination (R2) = 0.642 for 

Criterion 1, R2 = 0.653 for Criterion 2 and R2 = 0.654 for 

Criterion 3; all p < 0.0001) compared with S2 (R2 = 0.627 for 

Criterion 1, R2 = 0.629 for Criterion 2 and R2 = 0.626 for     

Criterion 3; all p < 0.0001) and S1 (R2 = 0.615 for Criterion 1, 

R2 = 0.632 for Criterion 2 and R2 = 0.638 for Criterion 3; all p 

< 0.0001; Table 2.4). 
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Figure 2.2. AUROC of severity indices on deviation map for macular ganglion cell-inner plexiform layer (GCIPL) and 

peripapillary retinal nerve fiber layer (pRNFL) by defined criteria. (A) AUROC of S1 on both GCIPL and pRNFL 

deviation map. (B) AUROC of S2 on both deviation maps. (C) AUROC of S3 on both deviation maps. 
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Table 2.3. Areas under receiver operating characteristic curves (AUROCs) and sensitivities at fixed specificities for 

severity indices on deviation map of macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal 

nerve fiber layer (pRNFL). 

 

AUROC ± SE (95% CI) 

 

Sensitivity 

Specificity ≥ 80% 

 

Specificity ≥ 95% 

GCIPL pRNFL p-value* GCIPL pRNFL GCIPL pRNFL 

Criterion 1          

S1 0.915 ± 0.024 

(0.868-0.961) 

0.934 ± 0.023 

(0.889-0.961) 

0.468 87.0 91.3 62.3 75.4 

S2 0.931 ± 0.022 

(0.888-0.974) 

0.943 ± 0.022 

(0.900-0.986) 

0.633 85.5 92.8 79.7 81.2 

S3 0.922 ± 0.023 

(0.878-0.967) 

0.938 ± 0.022 

(0.895-0.982) 

0.526 87.0 92.8 72.5 79.7 

Criterion 2        

S1 0.910 ± 0.025 

(0.860-0.959) 

0.944 ± 0.021 

(0.903-0.985) 

0.133 88.4 92.8 68.1 79.7 

S2 0.924 ± 0.024 

(0.877-0.971) 

0.946 ± 0.021 

(0.906-0.987) 

0.310 85.5 92.8 81.2 79.7 

S3 0.917 ± 0.025 

(0.868-0.965) 

0.946 ± 0.021 

(0.906-0.987) 

0.184 88.4 92.8 72.5 82.6 

Criterion 3        
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S1 0.904 ± 0.027 

(0.851-0.957) 

0.949 ± 0.020 

(0.910-0.989) 

0.063 88.4 92.8 68.1 87.0 

S2 0.916 ± 0.026 

(0.865-0.967) 

0.949 ± 0.020 

(0.891-0.989) 

0.159 85.5 92.8 81.2 78.3 

S3 0.910 ± 0.026 

(0.858-0.962) 

0.950 ± 0.020 

(0.891-0.989) 

0.093 88.4 92.8 72.5 82.6 

AUROC = area under receiver operating characteristic curve, SE = spherical equivalent, S1 = number of yellow and red superpixels 

with probability level of p < 0.05, S2 = number of only red superpixels with probability level of p < 0.01, S3 = number of red super 

pixels ｘ 2 + number of yellow superpixels, , Criterion 1 = Cluster of ≥3 contiguous yellow superixels including ≥1 red superpixel; 

Criterion 2 = Cluster of ≥5 contiguous yellow superixels including ≥3 red superpixel; Criterion 1 = Cluster of ≥10 contiguous 

yellow superixels including ≥5 red superpixel. 

* Comparison was performed by the method of DeLong et al. (1988). 
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Table 2.4. Correlation of severity index of deviation map algorithm between macular ganglion cell-inner plexiform 

layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) by Pearson correlation analysis. 

Criteria 

GCIPL S1 versus 

pRNFL S1 

 GCIPL S2 versus 

pRNFL S2 

 

 

GCIPL S3 versus 

pRNFL S3 

R2 p-value R2 p-value R2 p-value 

Criterion 1 0.615 <0.0001  0.627 <0.0001  0.642 <0.0001 

Criterion 2 0.632 <0.0001 0.629 <0.0001 0.653 <0.0001 

Criterion 3 0.638 <0.0001 0.626 <0.0001 0.654 <0.0001 

R2: Coefficient of determination by Pearson correlation analysis 
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2.4. DISCUSSION 

The present study was designed with the main objective 

of evaluating the diagnostic ability of the GCIPL deviation map in 

Cirrus OCT for detection of localized RNFL defects. The results 

showed that the GCIPL deviation map offers favorable, 

comparable-to-pRNFL diagnostic performance in the detection 

of such defects on red-free RNFL photography. 

In a large proportion of glaucoma patients, RNFL damage 

is known to precede noticeable change of the ONH and VF 

defect(38, 39). Therefore, RNFL assessment is quite helpful for 

early diagnosis of glaucoma. There are various techniques 

available for detecting RNFL defects; they include fundus 

examination, red-free RNFL photography, Heidelberg Retina 

Tomography (HRT) and OCT. Given the recent advances in OCT 

technology, SD-OCT offers objective, reproducible real-time 

measurement of RNFL thickness with a fast scan speed(23, 40, 

41). Notably, Cirrus OCT, a commercial SD-OCT platform, 

generates a pRNFL deviation map that outperforms the 

conventional clock-hour map or quadrant map in RNFL defect 

detection(27-29). For example, Hwang et al. (2013) reported 
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that for 295 eyes with early-stage glaucoma (MD > -6.0 dB), 

the pRNFL deviation map by Cirrus OCT showed a lower 

frequency of misidentification of photographic RNFL defects than 

the clock-hour map(26). 

Meanwhile, the GCA algorithm, recently incorporated into 

Cirrus OCT, provides the macular GCIPL deviation map by 

analyzing the GCIPL thickness for each superpixel in an area 

around the fovea(30, 31). Although there have been a few 

studies on the diagnostic ability of the GCIPL deviation map for 

discriminating glaucomatous eyes from normal control eyes, they 

have shown only whether the GCIPL deviation map detects 

glaucomatous damage or not(32, 33, 42). For example, Sung et 

al. (2013) have reported that the GCIPL deviation map showed 

similar discrimination ability between normal controls and 

patients with preperimetric or early glaucoma and compared with 

pRNFL deviation map by quantifying abnormal superpixels(42). 

However, to our knowledge, there has been no study evaluating 

the ability of GCIPL deviation map to identify localized RNFL 

defect and comparing with that of pRNFL deviation map. 

In the present study, for the purposes of a quantitative 

analysis on the ability to detect localized RNFL defect, we 
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digitized the deviation map results so that the number of 

abnormal superpixels could be counted by a customized image 

processing program. Moreover, we used completely automated 

image processing program for counting the number of abnormal 

superpixels, which entailed the advantage of eliminating the 

counting errors and interobserver variability that would be 

incurred when counting manually or using software requiring 

manual determination of the boundaries of deviated superpixels. 

In our results, all of the severity indices (S1, S2, and S3), 

which represented the number of abnormal superpixels counted 

by the image processing program, were larger in glaucomatous 

eyes with RNFL defects than in normal control eyes (Table 2.1). 

This means that the results of the deviation map corresponded 

well to the RNFL defects visible on red-free RNFL photography. 

As the scan area of the GCIPL deviation map was limited 

to the parafoveal region and included only about 50% of RGC 

population(43), it might not detect RNFL defects located far from 

the fovea. Therefore, we assumed that the ability of the GCIPL 

deviation map for detection of localized RNFL defects might 

prove inferior to that of the pRNFL deviation map that computes 

data on the full 360-degree peripapillary region, including a total 
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sampling of the RGC axons. We found that the AUROCs for 

detection of localized RNFL defects were larger on the pRNFL 

deviation map than on the GCIPL deviation map. However, the 

differences were not statistically significant. This was contrary 

to our earlier expectation (Table 2.3). Determining the exact 

mechanism involved will require further investigation stratified 

by the peripapillary widths and locations of RNFL defects. 

We found that S2, which indicated the number of red 

superpixels (abnormal at the probability level < 0.01) and S3, 

which weighted the number of red superpixels, showed 

significantly larger AUROCs than S1. Therefore, we suggest 

observing red superpixels more closely than yellow ones on the 

deviation map would be better for GCIPL deviation map 

evaluation. 

In addition, the values of sensitivities at fixed specificities 

(specificity > 95%) in this study generally were not high, which 

was ranged from 62.3% to 81.2% on the GCIPL deviation map 

and from 75.4% to 87.0% on the pRNFL deviation map. We 

speculated that this was due to the fact that we included patients 

with mostly early stage of glaucoma (40 eyes; 58%), even with 

preperimetric stage of glaucoma (18 eyes; 26%). Because the 
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diagnostic performance of imaging device is highly affected by 

the severity of disease(44), the relatively low diagnostic 

performance may be related to the early stage of glaucomatous 

damage in study subjects. 

All of the three severity indices were found to be 

significantly and closely correlated between the two deviation 

maps (GCIPL and pRNFL) (Table 2.4). That is, the more 

abnormal superpixels on the GCIPL deviation map corresponded 

to RNFL defects, the more abnormal superpixels on the pRNFL 

deviation map also corresponded to RNFL defects. Considering 

the pathophysiology of the glaucomatous optic neuropathy that 

primarily affected the RGC and their axons (RNFL), we 

cautiously speculated that this result was due to the fact that the 

(glaucomatous) RNFL defect, presenting as abnormal 

superpixels on the pRNFL deviation map, was mostly 

accompanied by the RGC loss presenting as abnormal 

superpixels on the GCIPL deviation map. In this context, we 

supposed that abnormal lesions corresponding to RNFL defect on 

the two deviation maps would tend to coincide. In other words, 

glaucomatous structural damage in these two anatomical lesions 
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would be detected by both GCIPL and pRNFL deviation maps, 

respectively. 

In this study, the assessment of diagnostic ability was 

performed under a case-control design, which included eyes 

with a photographically identifiable (noticeable) RNFL defect 

(the cases) and normal eyes with a perfectly normal RNFL (the 

controls). Because the RNFL defects met certain levels of depth 

and width to qualify as defects on red-free RNFL photography, 

distinctly glaucomatous eyes with prominent structural changes 

were enrolled in the present study. Thus, in this study, the 

diagnostic performance of the deviation map for both scans might 

have been overestimated relative to real clinical practice, in 

which very-early-stage glaucomatous eyes with ambiguous 

RNFL defects are encountered. However, in present study, 

among 69 eyes with localized RNFL defects, 18 (26.1%) showed 

asymptomatic VF loss (preperimetric glaucoma) and 40 (58.0%) 

early-stage VF loss (MD > -6 dB). Considering that 58 of the 

69 eyes (84.1%) showed early-stage VF loss, we supposed that 

the influence of subject selection on the study results was not 

significant. 
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The present study has several limitations. First, as 

aforementioned, we integrated all of the subjects within a 

preperimetric-to-moderate range of glaucoma. Because the 

diagnostic ability was influenced by the disease severity, for 

further, high-precision investigation of the diagnostic accuracies 

of those deviation maps, subgroup analysis according to disease 

severity, with a large number of cases, will be mandatory. Second, 

we excluded diffuse RNFL atrophies and ambiguous RNFL 

defects from consideration, enrolling only patients with localized 

RNFL defects and clear margins. Considering, however, that 

glaucoma patients presenting with solely localized RNFL defects 

represent only a subset of the total glaucoma patient population, 

for more comprehensive evaluation of the utility of the GCIPL 

deviation map for detection of RNFL defects in the clinical field, 

further study involving defects without clear margins is required. 

Third, we excluded eyes with a history of ocular or systemic 

disease possibly affecting the peripapillary area or macula area, 

and all of our OCT images were obtained after dilation of the pupil. 

However, in the real-world clinical setting, OCT is frequently 

performed on eyes with several minor lesions in the macula or 

peripapillary area without pupil dilation. Therefore, the findings 

of this study, in the context of real clinical practice, might be 
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limited. Fourth, the criteria for significantly aberrant superpixels 

corresponding to RNFL defects used in this study were arbitrary, 

lacking any anatomical explanation for the cut-off number of 

superpixels. To compensate for this weakness, we established 

not a single criterion but rather three criteria for the diversity 

and the possibility. Consequently, all the analysis showed 

consistent results, regardless of the criterion. 

These limitations notwithstanding, the present study 

remains significant for its first quantitative comparison of the 

diagnostic abilities of the GCIPL and pRNFL deviation maps in 

detecting localized RNFL defects. A quantitative analysis of the 

respective deviation map algorithms using a customized image 

processing program showed comparable diagnostic 

performances for early-to-moderate-stage glaucomatous eyes, 

though the AU- ROC of the pRNFL deviation map showed 

numerically better values than that of the GCIPL. 
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3.1. INTRODUCTION 

Glaucomatous optic neuropathy is characterized by 

progressive injury of the optic nerve and retinal nerve fiber layer 

(RNFL)(38), the RNFL being one of the most important 

structural parameters for determinations of the presence and 

progression of glaucoma(45, 46). Because the RNFL is a 3-

dimensional (3-D) structure, features and progression patterns 

of RNFL defects are characterized by depth (the vertical element 

on the z-axis(45, 47-50)) and area or angular width (the 

horizontal element on the x-y axis(47, 50-53)). Therefore, 

evaluation of the 2 parameters has been the focus of numerous 

studies(45, 47-53). However, depth is particularly difficult to 

measure accurately with the currently established methods: 

RNFL photography is limited by subjectivity and its qualitative 

nature, and optical coherence tomography (OCT)-derived 

circumpapillary RNFL (cpRNFL) thickness is limited by its 

questionable ability for differentiating the severity of localized 

RNFL defects(45-49). 

Recently, Cirrus high-definition (HD) OCT (Carl Zeiss 

Meditec, Inc., Dublin, CA), one of the commercially available 
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fourth-generation spectral-domain OCT devices, was found to 

enable volumetric analysis of the RNFL by using RNFL 

thicknesses at each superpixel of a color-coded 3-D thickness 

deviation map(51). Whereas the angular width and area of 

defects recently have been evaluated for this method(51-53), 

little is known about the depth. 

The main purpose of this study was to quantify the depth 

of localized and diffuse RNFL defects on a Cirrus HD OCT 

deviation map according to their severity on red-free fundus 

photography. Additionally, its discriminating ability was 

compared with that of cpRNFL thickness.
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3.2. METHODS 

 This investigation is based on the RNFL Defect 

Evaluation Study, an ongoing study of glaucoma and healthy 

individuals at Seoul National University Hospital (SNUH). This 

study was conducted in accordance with the ethical standards of 

the Declaration of Helsinki (1964) and was approved by the 

institutional review board of SNUH. Informed consent was 

obtained from all of the subjects. 

3.2.1. Subjects  

All of the subjects, both glaucomatous and healthy, were 

enrolled consecutively between July 2009 and December 2012 

at SNUH. The glaucoma subjects visited the Glaucoma Clinic of 

SNUH, and the healthy subjects visited the SNUH Outpatient 

Department for regular health check-ups, spectacle 

prescriptions, and minor ocular- surface diseases (e.g., dry eye 

syndrome) to provide data on RNFL thicknesses representing 

the upper 95th percentile range of age-matched healthy subjects. 

All of the subjects underwent a full ophthalmic 

examination, including measurement of visual acuity and 
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refraction, intraocular pressure (IOP) assessment, gonioscopy, 

fundus examination, standard automated perimetry (Humphrey C 

30-2 SITA-Standard visual field [VF]; Carl Zeiss Meditec, Inc. 

Dublin, CA), disc stereophotography and red-free fundus 

photography using a digital fundus camera (VX-10, Tokyo, 

Japan), and Cirrus HD OCT. The OCT and photography were 

conducted within a 2-month period. 

The glaucomatous eyes included in the study had 1 or 

more of the forms of glaucoma that cause optic disc changes with 

the VF defect typical of the disease. Glaucomatous optic disc 

change was defined as either a cup-to-disc asymmetry between 

fellow eyes of more than 0.3, rim narrowing, notching, excavation, 

or RNFL defect. Glaucomatous VF defect was defined as 

manifesting a pattern standard deviation outside the 95% normal 

confidence limits, glaucoma hemifield test results outside the 

normal limits, a cluster of 3 or more nonedged points with a P 

value of less than 0.05 on a pattern deviation plot on 2 

consecutive standard automated perimetry assessments 

(Humphrey C 30-2 SITA standard VF; Carl Zeiss Meditec, Inc.), 

or a combination thereof(54). Only reliable perimetric results 

with less than 20% fixation loss and less than 33% false-positive 
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or false-negative results were included in the analysis. The 

healthy eyes had a normal optic disc appearance and VF on 

standard automated perimetry without glaucomatous optic disc 

or VF change as described above, no history of IOP more than 

21 mmHg, and open angles by gonioscopy. 

All of the subjects were 30 years of age or older and had 

a visual acuity of 20/40 or better and a spherical refractive error 

within the ＋3.0- to -6.0-diopter range. The following 

exclusion criteria were applied: a history of ocular intervention 

other than cataract extraction before or at the time of the imaging 

tests; any ocular or neurologic disease, including diabetes 

mellitus, which could have caused VF defect, disc anomaly, or 

increased IOP; and poor photographic quality or unacceptable 

quality of OCT image, as described below. If both eyes fulfilled 

the inclusion criteria, 1 eye was selected randomly. 

3.2.2. Red-free fundus photography imaging 

Red-free fundus photographs were obtained after 

maximum pupil dilation. Sixty-degree wide-angle views of the 

optic disc, carefully focused on the retina using the built-in 

split-line focusing device and centered between the fovea and 
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the optic disc, were obtained and reviewed on a liquid crystal 

display monitor. Two independent observers evaluated the 

photographs in a random order and masked fashion. They 

classified the red-free RNFL photographs of the glaucomatous 

eyes as showing one of the following: no visible RNFL defect, 

localized defect, diffuse defect, or ambiguous information. This 

method has been described in detail elsewhere(47, 48). After 

excluding subjects with ambiguous information or no visible 

defect, those classified by both observers as having either 

diffuse or localized RNFL defects were included in this study. 

Subjects about whom the 2 observers disagreed were classified 

as ambiguous and were excluded from further analysis. In the 

case of glaucoma subjects having RNFL defects satisfying the 

above-noted criteria in both the superior and inferior hemifields, 

1 hemifield was selected randomly to avoid bias in the depth 

determination(52). 

The RNFL defect severity was classified into 3 grades 

based on an evaluation of the brightness and texture of the RNFL 

and the degree of blood vessel obscuration (Figure 3.1): grade 1 

(G1), mild defect; grade 2 (G2), moderate defect; and grade 3 

(G3), severe defect. Grade 1 indicates that fine RNFL striations 
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are visible and only large vessels are clearly visible, G2 indicates 

that RNFL striations are barely detectable and even small 

vessels are clearly visible, and G3 indicates that RNFL texture 

is not at all visible. This method has been described in detail 

elsewhere(45, 47, 48). Interobserver discrepancies were 

resolved by adjudication of a third experienced observer. The 

measurements showed good interobserver and intraobserver 

agreement (intraobserver intraclass correlation coefficient 

values 0.88, 0.87; interobserver intraclass correlation coefficient, 

0.84). 
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Figure 3.1. Retinal nerve fiber layer (RNFL) defects shown on the superior hemifield on red-free fundus photographs 

(red arrows), in Cirrus high-density optical coherence tomography-derived circular diagrams of circumpapillary 
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RNFL (cpRNFL) thicknesses (black arrows), and on RNFL thickness deviation maps (blue arrows). Cases of (A) 

grade 1 (G1), (B) grade 2 (G2), and(C) grade 3 RNFL defects showing mild, moderate, and severe RNFL loss, 

respectively. The RNFL defect depth percentage index (RDPI) values using the RNFL thickness deviation map showed 

notable differences among the 3 groups, whereas the cpRNFL thicknesses of the G1 and G2 groups did not show 

remarkable differences. I = inferior; N =- nasal; S = superior; T = temporal
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3.2.3. Optical coherence tomography retinal nerve fiber 

layer imaging 

 The principles of spectral-domain OCT have been 

discussed in detail elsewhere(55, 56). After pupillary dilation to 

a minimum diameter of 5 mm, an optic disc cube scan in a 6×6-

mm2 para- papillary area (200×200 pixels) was obtained using 

Cirrus HD OCT (version 6.0). Each pixel was coded either yellow 

or red if the RNFL measurement was less than the lower 5% or 

1% percentile range, respectively, on the RNFL thickness 

deviation map. 

The system also calculates the RNFL thickness at each 

point on a set-diameter (3.46-mm) circle consisting of 256 A-

scans that were positioned automatically around the optic disc, 

thus generating a circular diagram of average RNFL thickness of 

four 90○ RNFL quadrants and twelve 30○ RNFL clock-hour 

sectors. Only scans of good image quality, as defined by the 

following criteria, were used: signal strength of 6 or more 

(maximum, 10), no algorithm segmentation failure in the 

peripapillary RNFL extracted B-scan, and no saccadic or motion 
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artifacts as detected by line- scanning ophthalmoscopy overlaid 

with OCT enface images. 

3.2.4. Measuring depth of retinal nerve fiber layer defects 

on cirrus high-definition optical coherence tomography 

derived deviation map 

For both the glaucoma and healthy subjects, RNFL 

thicknesses of 200×200 pixels on the RNFL thickness map were 

obtained as an Excel file (Microsoft Corp. Redmond, WA) using 

the Advanced Extraction analysis ability of Cirrus HD OCT. Then, 

thicknesses of 50×50 superpixels were obtained by averaging 

those of 4×4 pixels and were superimposed on those of the 

RNFL thickness deviation map by 1 examiner masked to the 

subjects’ identities and test results using Matlab R2012a (The 

MathWorks, Inc. Natick, MA; Figure 3.2). We found that 2 

superpixels of the 4 lateral (right, left, upper, and lower) areas 

of the deviation map were not assessable because they were not 

coded in red or yellow on areas corresponding to the RNFL 

defects (Figure 3.2A). Therefore, 46×46 superpixels of RNFL 

thicknesses and deviation map images were obtained after 

removing the 2 superpixels of the 4 lateral areas, and those 
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located within the blue empty circle, representing the margin of 

the optic disc or b zone parapapillary atrophy, if present, were 

removed (Figure 3.2B). An observer masked to the subjects’ 

identities and test results outlined the margin with reference to 

the optic disc photographs. The left-eye data were converted to 

the right-eye format. 

The inclusion criteria for RNFL defects on the deviation 

map were as follows(51, 52): 10 or more superpixels colored 

red or yellow extending 3 or more superpixels away from the 

margin of the optic disc or b zone parapapillary atrophy and 1 or 

more superpixels located within the region between the margin 

of the optic disc or b zone parapapillary atrophy and 1.73 mm 

from the disc center. An RNFL defect depth percentage index 

(RDPI) was derived for measurement of the proportion of the 

RNFL defect depth (as a percentage) according to the following 

equation: 100×(1-[summation of thicknesses of RNFL defects 

{red or yellow superpixels}/summation of RNFL thicknesses of 

upper 95th percentile range of age-matched healthy subjects in 

areas corresponding to RNFL defects]) (Figure 3.2B). If there 

were 2 or more isolated defects meeting the above-noted 
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inclusion criteria, only the defect having the largest number of 

superpixels was determined automatically by the Matlab program. 
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Figure 3.2. Measurement of the depth of retinal nerve fiber layer 

(RNFL) defect on a spectral-domain optical coherence 

tomography (OCT)-derived RNFL thickness deviation map. A 

magnified view of the inferotemporal quadrant of the image is 

shown on the right. A, Two superpixels of the 4 lateral (right, 

left, upper, and lower) areas of the deviation map composed of 

50ｘ50 superpixels were not assessable. Note that 2 superpixels 

corresponding to the RNFL defect were not coded in red or 
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yellow (blue arrowheads). B, After removing the 2 superpixels 

of the 4 lateral areas, 46ｘ46 superpixels of RNFL thicknesses 

superimposed on the deviation map were obtained, and those 

corresponding to optic disc and βzone parapapillary atrophy 

(blue empty circle) on the deviation map were removed. The 

RNF L defect depth percentage index values were derived by the 

equation 100ｘ(1-[summation of RNFL thicknesses of RNFL 

defects {red or yellow superpixels}/summation of thicknesses of 

upper 95th percentile range age-matched healthy subjects in 

areas corresponding to RNFL defects]). 
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3.2.5. Data analysis 

The regression model analyses were used to estimate the 

upper 95th percentile RNFL thickness values of the age-

matched healthy subjects using the same format as that used for 

the normative Cirrus HD OCT reference values(57). The 1-way 

analysis of variance (ANOVA) was used to compare the OCT-

derived parameters according to the severity of the RNFL defect 

on red-free fundus photography. Results with statistical 

significance also were provided after Bonferroni correction 

based on the number of comparisons. Receiver operating 

characteristic curves were calculated to compare the usefulness 

of RDPI and cpRNFL thickness in discriminating RNFL defect 

severity on red-free fundus photography. An area under the 

receiver operating characteristic curve (AUROC) was compared 

using the method described by DeLong et al(37). All of the 

analyses were performed using Medcalc software version 10.0 

(Medcalc Software, Mariakerke, Belgium) and SPSS for Windows 

version 20.0 (SPSS, Inc., Chicago, IL). A value of P < 0.05 was 

accepted as statistically significant. 
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3.3. RESULTS 

Initially, 613 eyes of 613 subjects (385 glaucoma 

patients and 228 healthy subjects) were enrolled in the study. Of 

the 385 glaucomatous eyes, 9 with no visible RNFL defect and 

26 with ambiguous information were excluded, thus leaving 350 

with localized and diffuse RNFL defects for further evaluation by 

Cirrus HD OCT. Of these 350 glaucomatous eyes, 22 with 

unacceptable Cirrus HD OCT scans and 13 that did not meet the 

inclusion criteria for RNFL defect on the deviation map were 

excluded. Among the 228 healthy eyes, 11 with unacceptable 

Cirrus HD OCT scans were excluded. Therefore, a total of 532 

eyes of 532 subjects (315 glaucomatous eyes with localized or 

diffuse RNFL defects and 217 healthy eyes) finally were 

selected for analysis. 

The mean age of the healthy subjects, 55.0±14.2 years, 

was not significantly different from that of the glaucoma subjects, 

56.6±11.1 years (P = 0.1332, unpaired t test; Figure 3.3, 

available at www.aaojournal.org; Table 1). The mean values of 

refraction and of optic disc area were —0.57±1.4 diopters and 

2.1±0.4 mm2, respectively, and the male-to-female ratio was 
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99:118. All of   the healthy subjects’ RNFL thicknesses on the 

thickness map passed a normality test (P < 0.05, Kolmogorov-

Smirnov test); the mean thickness values are plotted in Figure 

3.4A (available at www.aaojournal.org). The RNFL thicknesses 

decreased with age in most areas of the RNFL thickness map on 

regression analysis (P < 0.05; Figure 3.4B, available at 

www.aaojournal.org). No other factors, including refraction and 

optic disc area, showed a significant correlation with thickness in 

most areas of the map (P > 0.05; data not shown). 

The glaucoma subjects’ baseline characteristics 

according to RNFL defect severity on red-free fundus 

photography are provided in Table 3.1. The mean age, sex, type 

of glaucoma, laterality, spherical error, IOP at the time of testing, 

optic disc area, and signal strength of Cirrus HD OCT did not 

significantly differ by defect severity (P > 0.05). The VF mean 

deviation and average RNFL thickness of the Cirrus HD OCT 

decreased, and the VF pattern standard deviation increased as 

the defect severity increased. The RNFL defects more commonly 

were located in the superior area in G1 and in the inferior area 

in G3. Group 3 had a larger proportion of the diffuse defects than 

G1 and G2 (Table 3.1).
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Table 3.1. Baseline Characteristics of Glaucoma Subjects 

 All 

(n = 315) 

Grade 1 

(n = 108) 

Grade 2 

(n = 96) 

Grade 3 

(n = 111) P Value 

Age (yrs) 56.6±11.1 55.5±10.5 57.2±11.6 57.5±11.2 0.292* 

Sex ratio (male/female) 164/151 59/49 47/49 58/53 0.720† 

Diagnosis (n)     0.4728† 

Open-angle glaucoma with normal tension 256 94 78 84  

Open-angle glaucoma with high tension 40 10 12 18  

Chronic angle-closure glaucoma 16 4 5 7  

Pseudoexfoliation glaucoma 3 0 1 2  

Laterality (right/left) 154/161 47/61 50/46 57/54 0.385† 

Spherical error (diopters) -1.0±1.9 -1.0±1.8 -1.0±1.9 -1.0±2.0 0.995* 

IOP (mmHg) 13.9±2.8 13.6±2.8 13.8±2.9 14.2±2.8 0.438* 

VF MD (dB) -6.2±5.8 -3.9±3.6 -5.1±4.8 -9.5±6.9 <0.001* 

VF PSD (dB) 6.1±4.3 4.3±3.8 5.3±3.5 8.4±4.3 <0.001* 

Location of RNFL defect (superior/inferior) 156/159 78/30 46/50 32/79 <0.0001† 

Type of RNFL defect (localized /diffuse) 235/80 87/21 79/17 69/42 0.0009† 

Optic disc area (mm2) 2.1±0.5 2.2±0.5 2.1±0.5 2.1±0.5 0.241* 

Signal strength of Cirrus high-density OCT 7.5±0.9 7.7±0.9 7.5±0.9 7.5±0.9 0.150* 

Average RNFL thickness by Cirrus high-density 

OCT (μm) 
73.4±11.8 78.3±10.7 75.3±10.0 67.1±11.4 <0.001* 
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IOP = intraocular pressure at time of testing; MD = mean deviation; PSD = pattern standard deviation; RNFL = retinal nerve fiber layer; OCT 

= optical coherence tomography; VF = visual field. 

Significant values are in boldface. 

*One-way analysis of variance with Bonferroni correction. 
†Chi-square test. 
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Table 3.2 and Figure 3.5 show the Cirrus OCT-derived 

RDPI and cpRNFL thicknesses according to the RNFL defect 

severity on red-free fundus photography. For the superior 

hemifield, the RDPIs of G1, G2, and G3 were 55.9±3.3%, 

62.4±1.9%, and 67.4±1.6%, respectively. Similarly, for the 

inferior hemifield, the RDPIs of G1, G2, and G3 were 56.0±3.4%, 

64.0±3.1%, and 68.6±2.0%, respectively. The RDPIs increased 

with increasing RNFL defect severity, both before and after post 

hoc analysis with Bonferroni correction for both the superior and 

inferior hemifields (P < 0.05, 1-way ANOVA test with 

Bonferroni correction; Table 3.2, Figure 3.5). With regard to the 

cpRNFL thicknesses, significant differences were observed 

among the 3 subgroups in all areas except the 2- and 4-o’clock 

sectors (P < 0.05, 1-way ANOVA; Table 3.2). Post hoc analysis 

revealed that G2 and G3 were significantly different in all areas 

except the 1-, 2-, and 4-o’clock sectors (P < 0.05, 1- way 

ANOVA test with Bonferroni correction). However, G1 and G2 

did not differ in any areas except the superior and inferior 

hemifields and the 7-, 11-, and 12-o’clock sectors (P > 0.05, 

1-way ANOVA with Bonferroni correction). 
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Table 3.2. Optical Coherence Tomography-Derived Circumpapillary Retinal Nerve Fiber Layer (RNFL) Thicknesses 

and RNFL Defect Depth Percentage Index According to RNFL Defect Severity. 

 Grade 1 Grade 2 Grade 3 P Value* Post Hoc 

Superior RNFL      

 No. 78 46 32   

 RDPI (%) 55.9±3.3 62.4±1.9 67.4±1.6 <0.001 G1<G2<G3 

Average RNFL (μm) 78.2±10.7 74.9±9.9 67.5±12.5 <0.001 G1, G2>G3 

Superior RNFL (μm) 94.9±16.2 87.7±13.2 70.3±15.5 <0.001 G1>G2>G3 

10-o’clock RNFL (μm) 64.6±11.5 66.0±14.2 52.7±16.5 <0.001 G1, G2>G3 

11-o’clock RNFL (μm) 86.8±10.8 80.5±15.2 56.0±12.0 <0.001 G1>G2>G3 

12-o’clock RNFL (μm) 111.1±23.9 92.0±20.1 72.6±23.2 <0.001 G1>G2>G3 

1-o’clock RNFL (μm) 94.1±22.2 90.4±19.8 82.1±20.7 0.020 G1>G3 

2-o’clock RNFL (μm) 73.6±15.1 70.6±13.0 67.5±11.5 0.096  

Inferior RNFL      

No. 30 50 79   

RDPI (%) 56.0±3.4 64.0±3.1 68.6±2.0 <0.001 G1<G2<G3 

Average RNFL (μm) 78.4±10.9 75.7±10.2 66.8±1.0 <0.001 G1, G2>G3 

Inferior RNFL (μm) 92.6±11.1 83.4±13.3 65.1±13.4 <0.001 G1>G2>G3 

4-o’clock RNFL (μm) 59.5±8.7 60.4±10.0 57.0±8.6 0.103  

5-o’clock RNFL (μm) 81.2±13.3 81.0±16.1 70.2±17.1 <0.001 G1, G2>G3 

6-o’clock RNFL (μm) 98.0±17.4 90.8±23.0 66.6T21.0 <0.001 G1, G2>G3 
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7-o’clock RNFL (μm) 98.5±18.2 77.5±16.4 55.9T12.0 <0.001 G1>G2>G3 

8-o’clock RNFL (μm) 64.9±15.4 57.5±14.5 51.9T14.0 <0.001 G1, G2> 

G3 

RDPI = retinal nerve fiber layer defect depth percentage index; RNFL = retinal nerve fiber layer.  

Data are mean ± standard deviation unless otherwise indicated. 

*One-way analysis of variance with Bonferroni correction. Significant values are in boldface. 
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Figure 3.3. Box-and-whisker plots showing the distribution of 

optical coherence tomography-measured retinal nerve fiber 

layer (RNFL) defect depth percentage index (RDPI) values 

according to the severity of the RNFL defect. The RDPI value 

increase with increasing severity of the RNFL defect in both (A) 

superior and (B) inferior RNFL hemifields.
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Table 3.3 provides the AUROCs of the RDPIs and 

cpRNFL thicknesses in the superior and inferior areas. For the 

superior hemifield, the cpRNFL thickness parameter with the 

largest AUROC for discriminating G1 from G2 was the 12-

o’clock sector (0.674), and that for discriminating G2 from G3 

was the 11-o’clock sector (0.904). For the inferior hemifield, 

the 7-o’clock sector had the largest AUROC (0.794, G1 vs. G2; 

0.870, G2 vs. G3). The AUROCs of the RDPIs (0.969 and 0.975 

in the superior and inferior hemifields, respectively) were larger 

than those of all of the cpRNFL thickness parameters for 

discriminating between G1 and G2 (P < 0.05; Table 3.3; Figure 

3.1A, B). For discriminating G2 from G3, the AUROCs of the 

RDPIs (0.961 and 0.891 in the superior and inferior hemifields, 

respectively) were larger than the cpRNFL thicknesses in all 

areas except the inferior quadrant and the 6-, 7-, and 11-

o’clock sectors (P < 0.05; Table 3.3). The RDPI cutoff points 

showing the best ability in discriminating between G1 and G2 

were 60.1% and 59.8% in the superior and inferior hemifields, 

respectively; those for discriminating G2 from G3 were 64.5% 

and 66.4% in the superior and inferior hemifields, respectively. 
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Table 3.3. Area under the Receiver Operating Characteristic Curves of the Optical Coherence Tomography-Derived 

Circumpapillary Retinal Nerve Fiber Layer (RNFL) Thickness and RNFL Defect Depth Percentage Index for 

Discriminating of RNFL Defects According to Severity. 

 Grade 1 vs. Grade 2  Grade 2 vs. Grade 3 

 Area Under the Receiver 

Operating Characteristic Curve 

(Standard Error) 

P Value* Area Under the Receiver 

Operating Characteristic Curve 

(Standard Error) 

P Value* 

Superior RNFL      

RDPI 0.969 (0.0164) - 0.961 (0.0190) - 

Average RNFL 0.572 (0.0536) <0.0001 0.667 (0.0670) <0.0001 

Superior RNFL 0.637 (0.0514) <0.0001 0.819 (0.0538) 0.0102 

10-o’clock RNFL 0.561 (0.0557) <0.0001 0.758 (0.0571) 0.0006 

11-o’clock RNFL 0.664 (0.0537) <0.0001 0.904 (0.0350) 0.1342 

12-o’clock RNFL 0.674 (0.0501) <0.0001 0.723 (0.0623) 0.0001 

1-o’clock RNFL 0.541 (0.0534) <0.0001 0.624 (0.0671) <0.0001 

2-o’clock RNFL 0.543 (0.0543) <0.0001 0.565 (0.0662) <0.0001 

Inferior RNFL     

RDPI 0.975 (0.0140) - 0.891 (0.0318) - 

Average RNFL 0.597 (0.0681) 0.0001 0.715 (0.0458) 0.0018 

Inferior RNFL 0.727 (0.0585) 0.0002 0.830 (0.0346) 0.2099 
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4-o’clock RNFL 0.515 (0.0676) <0.0001 0.589 (0.0520) <0.0001 

5-o’clock RNFL 0.522 (0.0669) <0.0001 0.682 (0.0464) 0.0005 

6-o’clock RNFL 0.605 (0.0640) <0.0001 0.793 (0.0395) 0.0506 

7-o’clock RNFL 0.794 (0.0509) 0.0015 0.870 (0.0306) 0.3642 

8-o’clock RNFL 0.616 (0.0659) <0.0001 0.646 (0.0494) <0.0001 

RDPI = retinal nerve fiber layer defect depth percentage index. 

*Pairwise comparison of the area under the receiver operating characteristic curve values between the RDPI and each 

circumpapillary RNFL thickness parameter. Significant values are in boldface. 



69 

 

3.4. DISCUSSION 

In this study, the RDPI using the RNFL thickness 

deviation map showed an excellent correlation with the RNFL 

defect severity on red-free RNFL photography. Furthermore, 

this parameter demonstrated a discriminating ability superior to 

that of the circular diagram of the cpRNFL thicknesses, 

especially in discriminating between mild and moderate RNFL 

defects. The RDPI cutoff value for discriminating between mild 

and moderate RNFL defects was approximately 60%, and that for 

discriminating between moderate and severe defects was 

approximately 65%. This suggests that a novel parameter using 

3-D volumetric analysis of the Cirrus HD OCT-derived RNFL 

thickness deviation map can be the practical standard for 

objective differentiation of RNFL defect depth. 

For its effectiveness in quantitatively obtaining optimal 

RNFL thickness measurement, OCT has drawn attention as 

potential complement to RNFL photography, the conventional 

method. A recent study by Jeoung et al(48) showed that 

objective assessment of the severity of diffuse RNFL atrophy 

was possible using Stratus OCT-derived cpRNFL thickness. 
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However, with the third-generation time-domain Stratus OCT 

used in their study, 3-D volumetric assessment of the RNFL was 

not possible. Moreover, their analysis did not include localized 

RNFL defects that may be of relatively smaller area and angular 

width than diffuse defects(48, 49, 51). In the present study, the 

proportion of localized defects in the mild and moderate severity 

subgroups (G1 and G2) was larger than that in the severe 

subgroup (G3). This suggests that relatively large numbers of 

RNFL defects of G1 and G2 may have smaller angular widths than 

those of circumpapillary circular diagram, which cannot be 

smaller than 30○ (Figure 3.1A, B). For these defects, 

thicknesses of healthy RNFLs can be included, thus diminishing 

the discriminating ability of the circular diagram. Meanwhile, a 

new parameter used in the present study, the RDPI, is based on 

each superpixel of a 6×6-mm2 RNFL thickness deviation map 

with a relatively small measurement area of approximately 0.014 

mm2; thus, the possibility of including a healthy RNFL is 

minimized, even for small mild to moderate defects. These 

differences in the present study’s design might have 

contributed to its different results compared with the study by 

Jeoung et al. The discriminating ability of the cpRNFL 
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thicknesses for mild (G1) and moderate (G2) defects in the 

present study (largest AUROCs, 0.674 and 0.794 for superior 

and inferior hemifields, respectively) were lower than those in 

the study by Jeoung et al (largest AUROCs, 0.820 and 0.922), 

whereas those for moderate (G2) and severe (G3) defects in the 

present study (largest AUROCs, 0.904 and 0.870) were similar 

to those of Jeoung et al (largest AUROCs, 0.861 and 0.899). 

Therefore, the advantage of the RDPI over cpRNFL thickness 

was notable in discriminating between mild and moderate defects, 

not in discriminating between moderate and severe defects. This 

issue is also related closely to the correlation between the area 

and depth of RNFL defects(51). Because the present study 

demonstrated that quantification of defect depth, as well as 

area(51), is possible using the RNFL thickness deviation map, 

further studies evaluating the correlation between these 2 

parameters perhaps will yield clues to the sensitive parameter to 

detect RNFL progression according to the RNFL defect severity. 

For measurement of RNFL defect depth, the RDPI was 

derived according to the ratio of the RNFL defect thickness to 

the thickness of the upper 95th percentile range of age-matched 

healthy subjects in areas corresponding to the RNFL defects. 
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This approach has advantages over the use of absolute values of 

RNFL thickness because age and the circumferential location of 

the optic nerve head, which can influence absolute thickness 

values as well as defect severity, can be adjusted by using RDPI. 

In this study, the mean RDPIs of mild (G1) and severe 

(G3) RNFL defects were approximately 56% and 68%, 

respectively. This result is comparable with those of Quigley and 

Addicks(58), Hood and Kardon(59), and Hood et al(60, 61) that 

clinical detection of the RNFL defect was possible after loss of 

50% of the neural tissue in primate eyes(58), and residual RNFL 

thickness after complete loss of axons is approximately 33% of 

the healthy thickness because of vessels and glial cells(59-61). 

The ability of RDPI to identify glaucoma, as well as RNFL 

defect, may be of clinical importance. When compared with 

average cpRNFL thickness in discriminating between 217 

healthy eyes and 315 glaucomatous eyes, the RDPI showed 

superior performance (RDPI AUROC, 0.957 vs. average cpRNFL 

thickness AUROC, 0.915; P = 0.0336; data not shown). This 

suggests that the RDPI may provide a useful alternative to 

determine the presence of glaucoma. Further studies using a 
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separate control group of healthy subjects are warranted to 

clarify this issue. 

We used the RNFL grading system proposed by Quigley 

et al(45) using red-free fundus photography as the reference 

standard. This method has an advantage over other grading 

systems(62) and methods (e.g., confocal scanning laser 

ophthalmoscopy RNFL photography(52)) in that no reference set 

is required and a relatively larger scan area is obtained. 

Additionally, the present results showed good intraobserver and 

interobserver agreement in the determined defect severities, in 

accordance with several previous studies that have used this 

method(47, 48). 

In conclusion, the RDPI, a novel parameter using the 

Cirrus HD OCT-derived RNFL thickness deviation map, can be 

useful in objectively quantifying RNFL defect depth. This 

parameter has an advantage over cpRNFL thickness in 

discriminating between mild and moderate RNFL defects, not in 

discriminating between moderate and severe defects. 
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4.1. INTRODUCTION 

Glaucoma is a disease which is caused by abnormalities 

of optic nerve through elevated intraocular pressure (IOP) and 

impaired blood supply(38). Patients with glaucoma suffer from 

vision loss according to defects in the optic nerve. Many patients 

notice they have visual field defects after optic nerve defects 

have already progressed(11). Therefore, glaucoma diagnosis of 

early stage is important. However, it is very challenging to 

diagnose glaucoma of early stage because glaucoma occurs for 

several reasons and progresses slowly. 

Spectral domain optical coherence tomography (SD-OCT) 

examinations is very important for glaucoma diagnosis because 

SD-OCT can measure the optic nerve thickness in the region of 

interest such as peripapillary retinal nerve fiber layer (pRNFL) 

and ganglion cell-inner plexiform layer (GCIPL) and can analyze 

whether the measured thickness is statistically abnormal 

compared with that of the normal person(23). However, the 

processing techniques such as image processing, machine 

learning are necessary for precise analysis of these measured 

results. Previous researches studied that glaucoma can be 

classified by machine learning using features such as thickness 
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average in quadrants, pRNFL symmetry, rim area, disc area, 

average cup-disk ratio, vertical dup-disk ration and cup 

volume(63-65). But, these researches used only the overall 

features in the thickness map and did not reflect information that 

affects glaucoma in the thickness map. 

Therefore, deep feature fusion network (DFFN) were 

developed by fusing feature to analyze glaucoma accurately in 

this study. Deep learning was trained with the thickness map data, 

which allowed computer to extract meaningful features for 

glaucoma diagnosis directly. And DFFN and other method were 

evaluated by the accuracy and area under receiver operating 

characteristic curve (AUROC).  
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4.2. METHODS 

4.2.1. Study subjects 

 All study subjects underwent a complete ophthalmic 

examination including visual acuity and refraction assessment, 

slit-lamp biomicroscopy, gonioscopy, Goldmann applanation 

tonometry (Haag-Streit, Koniz, Switzerland), dilated 

stereoscopic examination of the optic disc, digital color stereo 

disc photography, red-free RNFL photography, and Cirrus HD-

OCT using the Optic Disc Cube 200 × 200 protocol. The patients 

also underwent central corneal thickness measurement 

(Orbscan™ 73 II, Bausch & Lomb Surgical, Rochester, NY, USA) 

and axial-length measurement (IOL Master™ ver. 5, Carl-Zeiss 

Meditec, Dublin, CA, USA) at the baseline examination. 

We retrospectively recruited glaucoma patients with 

various severities of visual field (VF) loss representative of 

different degrees of glaucomatous optic neuropathy in primary 

open-angle glaucoma (POAG). Glaucoma was diagnosed, 

irrespective of untreated intraocular pressure (IOP) level, when 

certain characteristic changes (i.e., localized or diffuse 
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neuroretinal rim thinning, RNFL defect) were present in the optic 

disc and/or retina, as visible on stereo disc photography images 

or red-free RNFL photographs. The patients were divided into 

three groups based on their standard automated perimetry 

(Humphrey VF Analyzer™ 30-2 SITA-Standard strategy; Carl 

Zeiss Meditec, Inc., Dublin, CA, USA) results: an early glaucoma 

group (VF MD better than -6 dB) and a mild-or-severe 

glaucoma group (VF MD worse than -6 dB). A glaucomatous VF 

defect was diagnosed when at least two consecutive VF tests 

yielded a glaucoma hemifield test result outside the normal limits. 

The defect was diagnosed when at least two consecutive VF 

tests bore three or more contiguous test points of P < 0.01, at 

least one of which was of P < 0.05, within the same hemifield on 

a pattern deviation plot. These tests also required reliability 

indices better than 15%.  

The exclusion criteria were: (1) spherical refraction less 

than -6 diopters (D) and greater than +3 D, (2) the existence 

of any type of glaucoma other than POAG, (3) diseases in the 

external eyes or retina, and (4) a history of intraocular surgery 

besides cataract surgery. We also excluded the following eyes: 

those with an optic disc torsion of more than 15° 16 or a tilt ratio 
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(minimum-to-maximum optic disc diameter) less than 0.75 17, 

and those with any abnormalities in the circumpapillary region, 

including marked peripapillary atrophy, that affected the scan 

ring where the OCT average RNFL thickness measurements 

were obtained. Whether or not to exclude the patient has been 

determined by an experienced examiner (YKK). In cases where 

both eyes were eligible, one eye was selected randomly. 

In addition, the normal eyes in our study met the following 

criteria: (1) baseline IOP lower than 22 mmHg, and no history of 

IOP elevation; (2) no glaucomatous optic disc on the SDP image; 

(3) no RNFL defects on the red-free fundus image; 4) normal 

visual field on 30-2 threshold test. 

4.2.2. OCT imaging 

The pupil in the qualifying eye of each participant was 

dilated using 1% tropicamide and 2.5% phenylephrine eye drops 

10–15 min prior to scanning. All scans were acquired using the 

Optic Disc Cube 200 × 200 protocol of Cirrus HD-OCT™; this 

protocol is designed to position the cube scan on the ONH, and is 

primarily utilized in glaucoma analysis. After the subject was 

seated and properly aligned, the iris was brought into view using 
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a mouse-driven alignment system, and the line-scanning 

ophthalmoscopic image was focused, adjusting for refractive 

error. The ONH was then centered on the live image, after which 

the centering (Z-offset) and enhancement (polarization) were 

optimized. The laser then scanned a 6 mm × 6 mm area, capturing 

a cube of data consisting of 200 A-scans from 200 linear B-

scans (40,000 points) in about 1.5 seconds (27,000 A-

scans/sec). The ONH parameters were automatically measured 

by a Carl Zeiss Meditec analysis algorithm developed for Cirrus 

HD-OCT (version 6.0). Only good-quality scans (signal 

strength ≥ 7, without RNFL discontinuity or misalignment, 

without involuntary saccade or blinking artifacts, without RNFL 

algorithm segmentation failure) were used in the analysis. None 

was removed due to ONH algorithm failure. 

The pRNFL thickness values were converted to color 

values according to thickness on the thickness map. The pRNFL 

thickness values were analyzed and then represented on color-

coded deviation maps composed of 50 ｘ 50 superpixels (200 

ｘ 200 pixels) on the basis of a comparison with the built-in 

internal normative database. The uncolored (grey color) 

superpixels indicated the normal range, whereas yellow- or 
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red- colored superpixels indicated abnormality at the 5% or 1% 

level, respectively. The pRNFL deviation map represented the 

OCT enface image of the optic disc that showed the boundaries 

of the cup, disc and 3.46-mm diameter circle.  

4.2.3. Deep Feature Fusion Network 

 Deep Feature Fusion Network (DFFN) is machine 

learning algorithm that fuses features extracted by deep learning 

and hand crafted. DFFN was used to analyze facial recognition 

and answer prediction(66, 67). Glaucoma was analyzed to DFFN 

that fuses hand crafted features in Chapter 2, 3 and features 

extracted by deep learning. Deep learning algorithm was selected 

for convolutional neural network (CNN) which is used to analyze 

images and videos. In this study, glaucoma is analyzed more 

precisely by fusing the features selected by the computer 

learned to deep learning algorithm and the features selected 

manually through DFFN. 

 Hand crafted features were extracted by applying the 

method analyzed in Chapter 2 and Chapter 3. The features 

selected in Chapter 2 were analyzed in the deviation map and the 

thickness map. Since three severity indices extracted according 
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to three criteria, nine features were extracted through Chapter 

2. One RNFL defect depth percentage index (RDPI) was selected 

because the feature extracted through Chapter 3 is the ratio of 

the thickness of the normal person to the thickness of the 

thickness map in the region detected as defects in the deviation 

map.  

 Deep learning is a machine learning algorithm that allows 

the computer to directly learn the images to be analyzed in the 

deep neural network architecture and extract the appropriate 

features automatically. CNN is a popular deep learning algorithm 

used in images and videos. It consists of convolutional layer, 

pooling layer and fully connected layer(68). Convolutional layer 

is a step of extracting the features between pixels in an image 

and acts as a filter for detecting features in image processing. 

Pooling layer selects meaningful values such as average value 

and maximum value among features extracted from convolutional 

layer. Fully connected layer combines all the features extracted 

from the convolutional layer and the pooling layer and analyzes 

the relationship between each feature. Since the deep learning 

algorithm is computationally expensive and the extracted 

features are likely to be over-fitted, CNN method is analyzed in 
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two ways for medical images with small data. One method is to 

learn from the weights set randomly with a deep learning 

network having small depth. Another method is to learn in a deep 

learning network having deeper depth where weights are 

calculated and analyzed for other images similar to medical 

images(69). 

 In the first method analyzing with randomly set weights, 

LeNet was used. LeNet networks consists of two convolutional 

layers, two pooling layers and three fully connected layers(70). 

Since the image size using this network should be 32 X 32 gray 

scale image, the thickness map was converted. The thickness 

map is a color map according to the optic nerve thickness of 0 ~ 

370 μm. So, the value of each pixel of the thickness map was 

converted to the optic nerve thickness and this value was 

converted into the value of 0 ~ 255 which can represent the 

image. And the full size of the image was resized to 32 X 32 and 

made into an image that can be learned by LeNet. Since the 

amount of data must be large to be able to be learned better, 

augmentation is performed in which the amount of image data is 

multiplied by the image containing the Gaussian noise. And the 



84 

 

weights before learned was used as a random Gaussian 

distribution and a rectified linear unit (ReLU) was added to the 

convolutional layer and the fully connected layer to be learned 

better nonlinearly(71). The last features calculated from the 

fully connected layer were classified into groups using the 

softmax function. Learning rate and momentum parameters were 

selected in order to find the best learning condition. Since last 

fully connected layer should have three classes (normal, early 

glaucoma, mild or severe glaucoma), other fully connected layers 

had 120 and 50 features according to the changed ratio.  And it 

was judged whether learning was successful by changing the loss 

value according to epoch. Learning rate parameter varied from 

0.1 to 0.0001 and momentum parameter varied with 0.5, 0.7 and 

0.9. 

The learning method using pre-trained deep neural 

network is called transfer learning. This method is to train the 

fully connected layer or the last layer of convolutional layer in 

the deep neural network architecture trained for the other large 

amount of image data. In the transfer learning, fully connected 

layers that were changed in the network were trained at the 

learning rate which is about 1/10 of the learning rate when 
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training the previous data and convolutional layers were trained 

to about 1/100 of the learning rate. This method was analyzed to 

VGGNet which consists of 13 convolutional layers, 5 pooling 

layers and 3 fully connected layers(72). VGGNet network was 

pre-trained by ImageNet. ImageNet is image data most 

commonly used for deep learning as 100,000 image data(73, 74). 

Since the image size should be match the previously trained 

image size in order to be learned by VGGNet, the thickness map 

was resized into RGB image of 96 X 96 X 3 and the amount of 

data increased through image augmentation that adds Gaussian 

noise as it was trained in LeNet. Also, ReLU was used next to 

convolutional layer and fully connected layer to make network 

learning well. The final analysis was used to the softmax function 

and the network was trained at learning rate varied from 0.001 

to 0.0001. Since last fully connected layer should have three 

classes (normal, early glaucoma, mild or severe glaucoma), other 

fully connected layers had 1024 and 120 features according to 

the changed ratio. And two transfer learning methods was 

studied and compared, one is to change fully connected layers 

and the other is to change convolutional layers and fully 

connected layers.  
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DFFN was analyzed by fusing features selected to deep 

learning and hand crafted (Figure 4.1). The features extracted 

by deep learning were analyzed by extracting the features of two 

kinds of fully connected layers in LeNet and VGGNet 

respectively. DFFN was analyzed by using artificial neural 

network (ANN) classifier with these features(67). ANN 

classifier is a common learning model associated with 

mathematical algorithm that interpret and recognize a pattern. 

ANN classifier has been discovered to use nonlinear data with 

several features and to investigate the performance of features 

in an automated pattern recognition system(75). ANN classifier 

was analyzed according to hidden layer and analyzed by 5-fold 

cross validation(76). 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝑛(𝑥) =  
𝑒𝑥𝑛

∑ 𝑒𝑥𝑘𝑁
𝑘=1

, 𝑛 ∈ {1,2,3, … , 𝑁} 
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Figure 4.1. Description of Deep Feature Fusion Network
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4.2.4. Statistical analysis 

Statistical analysis was performed to calculate AUROC 

and accuracy for each method. Each analysis method was 

evaluated to how glaucoma group, which combines early 

glaucoma and mild or severe glaucoma group, and normal group 

are precisely distinguished as the performance of the diagnosis 

of glaucoma. Also, each analysis method was evaluated to how 

early glaucoma group and normal group are correctly classified 

as the performance of the early diagnosis of glaucoma. Analysis 

Methods included machine learning analysis with features 

extracted from previous studies and machine learning analysis 

with features extracted from Chapter 2, Chapter 3 and deep 

learning analysis using thickness map and DFFN fusing features 

extracted by deep learning analysis and from Chapter 2, Chapter 

3. Deep learning analysis was evaluated about LeNet, VGGNet 

respectively. 

Accuracy was calculated by whether the groups last 

selected by machine learning and deep learning were matched 

with ground truth groups as following equation. AUROC was 

calculated as the area of the receiver operating characteristic 
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(ROC) curve which was plotted with specificity and sensitivity 

calculated by following equation using the results from the 

analysis methods. The results analyzed by machine learning and 

deep learning were finally calculated by using softmax function 

as probability of each group and selected as the group with the 

highest probability. So the results analyzed to AUROC were used 

as the probability selecting normal group. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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4.3. RESULTS 

 This study included 788 eyes of 788 subjects (472 eyes 

of 472 subjects with glaucoma and 316 eyes of 316 normal 

subjects). Among 472 eyes of glaucoma patients, 226 eyes 

showed glaucoma of early stage and 246 eyes showed glaucoma 

of mild or severe stage. The demographic and ocular 

characteristics of the subjects are presented in Table 4.1. The 

t-test was performed by combining the two groups of the three 

groups to see if there were significant differences between the 

two groups. 

 There were significant differences in mean age and 

central corneal thickness (CCT) between normal subjects and 

glaucoma subjects of early stage (p = 0.007, p = 0.009), but no 

significant differences were found between other groups. Gender 

and spherical equivalent did not significantly differ any groups. 

Intraocular pressure (IOP) and axial length showed significant 

differences between glaucoma subjects of early stage and mild 

or severe stage (p = 0.031, p = 0.005) and not between other 

groups. Visual field (VF) mean deviation (MD) and VF pattern 
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standard deviation (PSD) had significant differences among all 

three groups (p < 0.001). 

 When LeNet was trained from randomly distributed 

weights, learning rate and momentum were changed and selected 

parameter ranges trained well about loss and accuracy according 

to epoch. The loss according to epoch about each parameters 

was plotted in Figure 4.2. In Figure 4.1A, the learning rate is 0.1 

where trained data are over-fitted because the loss converges 

too quickly and only local features are extracted. In Figure 4.2D, 

the learning rate is 0.0001 where the loss decreases slowly and 

was not over-fitted, but converges at a large loss, resulting in 

poor accuracy. In Figure 4.2B, 4.2C, learning rates were 0.01 and 

0.001 where the loss decreases appropriately and converges to 

nearly 0. So, LeNet was trained to learning rate between 0.01 

and 0.001 and was selected by learning rate with the best 

accuracy. For the momentum value, the degree of change of the 

loss value was not large according to momentum and the 

momentum with the best accuracy was found. 
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Table 4.1. Demographic Data of Study Subjects According to the Stages of Glaucoma 

  
Normal [A] 

(n = 316) 

Early [B] 

(n = 226) 

Mild-or-Severe 

[C] 

(n = 246) 

P' 

[A-B] 

P'' 

[A-C] 

P''' 

[B-C] 

Age (yrs) 62.5 ± 14.9 59.1 ± 13.7 61.9 ± 15.5 0.007† 0.642† 0.039† 

Gender  

(male / female) 
158 / 158 121 / 105 130 / 116 0.416‡ 0.503‡ 0.880‡ 

Spherical 

equivalent (D) 
-0.81 ± 2.51 -0.89 ± 2.53 -0.73 ± 2.85 0.716† 0.996† 0.993† 

Intraocular 

pressure (mmHg) 
14.6 ± 3.5 14.2 ± 3.3 14.9 ± 3.7 0.180† 0.326† 0.031† 

CCT (mm) 542.5 ± 31.1 535.2 ± 32.8 537.2 ± 34.3 0.009† 0.056† 0.519† 

Axial length 

(mm) 
24.5 ± 1.71 24.3 ± 1.69 24.8 ± 2.11 0.178† 0.063† 0.005† 

VF MD 

(decibels) 
-0.2 ± 0.8 -6.2 ± 3.9 -15.7 ± 3.7 <0.001† <0.001† <0.001† 

VF PSD 

(decibels) 
0.51 ± 0.21 6.81 ± 2.97 9.09 ± 5.17 <0.001† <0.001† <0.001† 

Values are mean ± standard deviation. 

D, diopters; CCT, central corneal thickness; VF, visual field;  

MD, mean deviation; PSD, pattern standard deviation. 
† student t test., ‡ chi-square test 
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Figure 4.2. Graph of training loss and accuracy according to 

epoch at various learning rates. (A) learning rate = 0.1, (B) 

learning rate = 0.01, (C) learning rate = 0.001, (D) learning rate 

= 0.0001 
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The accuracy of training and testing according to epoch 

while the learning rate was varied from 0.01 to 0.001, momentum 

was changed 0.3, 0.5 and 0.7 was analyzed. When LeNet is 

trained, the accuracy gradually increased and reached almost 

100%, but the tested accuracy converged to a constant value 

from the moment when it went up with the first time. The ROC 

curve using the test results when convergence was achieved. 

The AUROC and accuracy for glaucoma subjects and normal 

subjects were calculated as shown in Table 4.2 by plotting ROC 

curves for learning rate, momentum and trained data respectively. 

Also, the AUROC and accuracy for glaucoma subjects of early 

stage and normal subjects were calculated as shown in Table 4.3 

by plotting ROC curves respectively. The accuracy classifying 

glaucoma subjects and normal subjects when trained data was 

original data and learning rate was 0.001 and momentum was 0.9 

was highest to 86.68% and AUROC was highest to 0.9387 when 

trained data was original data and learning rate was 0.001 and 

momentum was 0.5. And the accuracy and AUROC dividing 

glaucoma subjects of early stage and normal subjects were 

highest to 81.18%, 0.8811 when trained data was original data 

and learning rate was 0.001 and momentum was 0.9. Totally, 
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when LeNet is trained by original data and at 0.001 of learning 

rate and at 0.9 of momentum had the best performance.  

In transfer learning with VGGNet, the learning rate was 

changed from 0.001 to 0.0001 because VGGNet was trained at 

0.01 of learning rate to ImageNet and set to the most appropriate 

learning rate and evaluated according to trained data and changed 

layers. When trained with VGGNet like LeNet, the accuracy 

gradually increased to nearly 100%, but the tested accuracy 

converged to a constant value from the moment when it went up 

with the first time. The accuracy and AUROC distinguishing 

between glaucoma subjects and normal subjects were calculated 

according to trained data, learning rate, changed layer in Table 

4.5. Also, the accuracy and AUROC for glaucoma subjects of 

early stage and normal subjects were calculated for each in Table 

4.5. The accuracy and AUROC splitting glaucoma subjects and 

normal subjects was highest to 87.69%, 0.9353 when trained 

data was original data and changed layers were convolutional 

layers and fully connected layers and learning rate was 0.0001. 

And the accuracy and AUROC classifying glaucoma subjects of 

early stage and normal subjects were highest to 83.39%, 0.8880 

when trained data was original data and changed layers were 
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convolutional layers and fully connected layers and learning rate 

is 0.0001. Overall performance was best when VGGNet was 

trained by original data and at 0.0001 of learning rate and 

convolutional layers and fully connected layers were changed. 
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Table 4.2. Accuracy and area under receiver operating characteristic curve (AUROC) of LeNet trained on various 

hyper-parameter distinguishing between normal subjects and glaucoma subjects. 

Hyper-parameter 

Accuracy (%) AUROC 

Original Data Augmented Data Original Data Augmented Data 

Learning rate  Momentum     

0.001 0.5 85.79 84.77 0.9387 0.9133 

0.001 0.7 85.15 85.91 0.9297 0.9292 

0.001 0.9 86.68 83.88 0.9377 0.9076 

0.003 0.5 83.50 86.42 0.9093 0.9206 

0.003 0.7 85.41 85.28 0.9178 0.9161 

0.003 0.9 85.66 82.87 0.9237 0.9009 

0.005 0.5 85.15 85.53 0.9166 0.9139 

0.005 0.7 84.77 84.26 0.9208 0.9010 

0.005 0.9 84.52 84.01 0.9100 0.9157 

0.007 0.5 84.39 84.39 0.9134 0.9059 

0.007 0.7 83.50 83.63 0.9102 0.9034 

0.007 0.9 81.47 83.88 0.8922 0.8993 

0.01 0.5 83.76 84.90 0.9035 0.9044 

0.01 0.7 84.26 83.88 0.9050 0.9053 

0.01 0.9 86.04 85.28 0.9264 0.8976 

AUROC = area under receiver operating characteristic curve 
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Table 4.3. Accuracy and area under receiver operating characteristic curve (AUROC) of LeNet trained on various 

hyper-parameter distinguishing between normal subjects and glaucoma subjects of early stage. 

Hyper-parameter 

Accuracy (%) AUROC 

Original Data Augmented Data Original Data Augmented Data 

Learning rate Momentum     

0.001 0.5 79.70 77.68 0.8806 0.8528 

0.001 0.7 78.60 78.97 0.8632 0.8712 

0.001 0.9 81.18 77.31 0.8811 0.8350 

0.003 0.5 76.20 79.34 0.8362 0.8533 

0.003 0.7 78.78 79.34 0.8505 0.8587 

0.003 0.9 79.52 75.65 0.8586 0.8294 

0.005 0.5 78.23 80.26 0.8521 0.8514 

0.005 0.7 77.49 77.68 0.8587 0.8395 

0.005 0.9 77.31 76.38 0.8427 0.8492 

0.007 0.5 77.12 77.31 0.8426 0.8367 

0.007 0.7 77.12 76.01 0.8373 0.8339 

0.007 0.9 74.35 77.49 0.8110 0.8374 

0.01 0.5 76.20 77.31 0.8321 0.8373 

0.01 0.7 77.31 77.49 0.8429 0.8359 

0.01 0.9 80.07 77.12 0.8710 0.8347 

AUROC = area under receiver operating characteristic curve 
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Table 4.4. Accuracy and area under receiver operating characteristic curve (AUROC) of VGGNet trained on various 

hyper-parameter distinguishing between normal subjects and glaucoma subjects. 

Hyper-parameter 

Accuracy (%) AUROC 

Original Data Augmented Data Original Data Augmented Data 

Convolutional layers &  

Fully connected layer 

    

Learning rate - 0.0001 87.69 86.80 0.9353 0.9312 

Learning rate - 0.0003 86.55 86.80 0.9294 0.9292 

Learning rate - 0.0005 86.29 86.68 0.9290 0.9280 

Learning rate - 0.0007 86.68 86.80 0.9282 0.9284 

Learning rate - 0.001 86.80 87.56 0.9293 0.9297 

Fully Connected layers     

Learning rate - 0.0001 85.91 86.17 0.9306 0.9273 

Learning rate - 0.0003 86.55 84.90 0.9294 0.9205 

Learning rate - 0.0005 86.17 85.03 0.9242 0.9180 

Learning rate - 0.0007 84.77 84.52 0.9201 0.9184 

Learning rate - 0.001 84.77 84.39 0.9192 0.9183 

AUROC = area under receiver operating characteristic curve 
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Table 4.5. Accuracy and area under receiver operating characteristic curve (AUROC) of VGGNet trained on various 

hyper-parameter distinguishing between normal subjects and glaucoma subjects of early stage. 

Hyper-parameter 

Accuracy (%) AUROC 

Original Data Augmented Data Original Data Augmented Data 

Convolutional layers &  

Fully connected layer 

    

Learning rate - 0.0001 83.39 82.29 0.8880 0.8829 

Learning rate - 0.0003 81.92 81.92 0.8794 0.8804 

Learning rate - 0.0005 81.18 82.29 0.8808 0.8791 

Learning rate - 0.0007 82.29 82.29 0.8787 0.8781 

Learning rate - 0.001 82.29 83.21 0.8809 0.8823 

Fully Connected layers     

Learning rate - 0.0001 81.37 80.81 0.8770 0.8726 

Learning rate - 0.0003 81.55 78.78 0.8746 0.8593 

Learning rate - 0.0005 81.00 79.15 0.8676 0.8555 

Learning rate - 0.0007 78.60 78.23 0.8594 0.8560 

Learning rate - 0.001 78.60 78.86 0.8564 0.8550 

AUROC = area under receiver operating characteristic curve 



101 

 

 In DFFN, features included features extracted by test 

data from first and second fully connected layer when LeNet and 

VGGNet were trained to most well performance respectively. 

The accuracy and AUROC were calculated for DFFN that fused 

features extracted from Chapter 2, Chapter 3 and features 

extracted by deep learning in Table 4.6. Table 4.6 also shows 

results that were trained by features in previous studies. In 

Figure 4.3, ROC curves about all analysis algorithm were plotted. 

The accuracy and AUROC were 82.49%, 0.9053 about features 

extracted in previous studies and 85.79%, 0.9240 about features 

extracted in Chapter 2, Chapter 3 distinguishing between normal 

subjects and glaucoma subjects. And the accuracy and AUROC 

were 75.46%, 0.8241 about features extracted in previous 

studies and 80.26%, 0.8682 about features extracted in Chapter 

2, Chapter 3 distinguishing between normal subjects and 

glaucoma subjects of early stage. 

In DFFN, the accuracy and AUROC were 87.56%, 0.9418 

when features included features extracted by the first fully 

connected layer of LeNet and 85.41%, 0.9320 when features 

included features extracted by the second fully connected layer 

of LeNet discriminating between glaucoma subjects and normal 
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subjects. In addition, the accuracy and AUROC were 82.66%, 

0.8925 when features included features extracted by the first 

fully connected layer of LeNet and 79.15%, 0.8708 when 

features included features extracted by the second fully 

connected layer of LeNet discriminating between glaucoma 

subjects and normal subjects. And the accuracy and AUROC 

were 86.68%, 0.9435 when features included features extracted 

by the first fully connected layer of VGGNet and 88.45%, 0.9555 

when features included features extracted by the second fully 

connected layer of VGGNet discriminating between glaucoma 

subjects and normal subjects. In addition, the accuracy and 

AUROC were 83.39%, 0.9117 when features included features 

extracted by the first fully connected layer of VGGNet and 

84.50%, 0.9204 when features included features extracted by 

the second fully connected layer of VGGNet discriminating 

between glaucoma subjects and normal subjects. 
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Table 4.6. Accuracy and area under receiver operating characteristic curve (AUROC) of various machine learning 

algorithm distinguishing between normal subjects and glaucoma subjects and discriminating between normal subjects 

and glaucoma subjects of early stage. 

 Normal vs Glaucoma Normal vs Early Glaucoma 

Accuracy (%) AUROC Accuracy (%) AUROC 

Previous research 82.49 0.9053 75.46 0.8241 

Chapter 2,3 85.79 0.9240 80.26 0.8682 

Deep learning (LeNet) 86.68 0.9377 81.18 0.8811 

Deep learning (VGGNet) 87.69 0.9353 83.39 0.8880 

DFFN (fc1 of LeNet) 87.56 0.9418 82.66 0.8925 

DFFN (fc2 of LeNet) 85.41 0.9320 79.15 0.8708 

DFFN (fc1 of VGGNet) 86.68 0.9435 83.39 0.9117 

DFFN (fc2 of VGGNet) 88.45 0.9555 84.50 0.9204 

AUROC = area under receiver operating characteristic curve, DFFN = deep feature fusion network, fc = fully connected layer 
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Figure 4.3. Receiver operating characteristic curve (AUROC) of various machine learning algorithm (A) distinguishing 

between normal subjects and glaucoma subjects and (B) discriminating between normal subjects and glaucoma 

subjects of early stage.
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4.4. DISCUSSION 

In this study, the computer was directly learned and 

analyzed by deep learning and DFFN was developed by fusing 

and analyzing the features extracted from deep learning and 

other chapters for accurate glaucoma diagnosis. The machine 

learning algorithms which were trained by features in previous 

researches and by DFFN and deep learning were evaluated by 

the accuracy and AUROC. DFFN didn’t only classify into 

glaucoma subjects and normal subjects most accurately than any 

other machine learning algorithm, but also classified into 

glaucoma subjects of early stage and normal subjects most 

accurately than any other machine learning algorithm.  

It is important to set hyper-parameters before training, 

when LeNet was trained by randomly distributed weights. So, 

learning rate and momentum were used variously and set to best 

trained range through the loss. When the learning rate is too high, 

the loss converged to nearly zero quickly but features were 

selected locally and tested data were over-fitted. On the 

contrary, when the learning rate is too low, the loss converged 

slowly but bigger than zero and features were not trained 
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accurately.  However, when the learning rate is appropriate, the 

loss value converged to nearly zero slowly which indicates that 

the learning rate is from 0.01 to 0.001. And there was no 

significant differences to the loss about momentum because the 

direction of the loss was similar to the overall trained direction.  

The three group were trained close to 100% when was 

trained by LeNet, but tested data could not be divided accurately. 

Because features trained by LeNet were found to global features 

for the first time and to local features at end. In other words, 

local features among the 400 features extracted by LeNet 

affected the over-fitted results. The accuracy for normal 

subjects and glaucoma subjects of early stage was more 

inaccurate because features extracted by LeNet were selected 

to classify between normal subjects and glaucoma subjects of 

mild or severe stage. In order to enhance accuracy, LeNet should 

be trained more accurately about between normal group and 

glaucoma subjects of early stage. The accuracy according to the 

momentum was not changed as significantly as according to the 

learning rate because direction of the loss was similar to the 

overall trained direction. But the momentum is slightly valid for 

features trained and shows the differences in accuracy. When 
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trained according to the trained data, there were slight 

differences in the accuracy and AUROC trained by various 

hyper-parameters. 

The loss and accuracy according to epoch when network 

was learned by trained VGGNet was similar to when network was 

learned by LeNet from randomly distributed weights. But the 

accuracy and AUROC of network trained by VGGNet was better 

than that of network trained by LeNet as a whole, which shows 

that it is better to train with transfer learning. However, the 

accuracy and AUROC of two learning methods were not 

significantly different, which shows that features trained by 

transfer learning were found for global features at the beginning 

and some of features found for local features at the end like when 

trained by LeNet. Among the 4608 features extracted by 

VGGNet, specific features existing in the only trained data 

affected the accuracy of tested data. The accuracy for normal 

subjects and glaucoma subjects of early stage was more 

inaccurate because features extracted by VGGNet were selected 

to classify between normal subjects and glaucoma subjects of 

mild or severe stage like LeNet. When the network was trained 

by VGGNet according to trained data, the accuracy and AUROC 
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didn’t have much differences between original data and 

augmented data. That is because the weights of VGGNet were 

already affected by Gaussian noise when trained by ImageNet. 

And glaucoma subjects and normal subjects were classified 

similarly according to changed layers, but glaucoma subjects of 

early stage and normal subjects were more divided at network 

changed by the convolutional layers and fully connected layers. 

These results shows that the features classifying between 

glaucoma subjects of early stage and normal subjects was 

slightly different from the features trained by ImageNet in the 

convolutional layers and pooling layers. 

The accuracy and AUROC of network trained by DFFN 

were highest than those of network trained by deep learning and 

features extracted by other chapters, which is because DFFN 

had more different features analyzing glaucoma subjects and 

normal subjects(67). And that DFFN had more complicated 

features extracted by using the information between thickness 

map pixels than that extracted simply in the previous researches 

is the reason why the accuracy and AUROC of DFFN were better 

than that of the previous researches(65). But features extracted 

by VGGNet classified more accurately than that extracted by 
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LeNet, which is because the features extracted by LeNet had 

more specific features to over-fit the thickness map data. 

There was difference in accuracy about trained data and 

tested data because features were extracted effectively for only 

train data by deep learning. Since the train data was not many 

enough to be trained accurately, the thickness map data should 

increase in order to enhance glaucoma diagnosis accuracy. In 

addition, when data are collected at hospitals and other facilities, 

data are more likely to be unbalanced because of the greater 

number of glaucoma patients of mild of severe stage rather than 

normal or glaucoma patients of early stage. Therefore, this 

problem can be solved by the augmentation adding the Gaussian 

noise and flipping or rotation and if the amount of data increased 

evenly, the accuracy can be improved(77). Also, in order to 

enhance the accuracy, pre-trained data needs to be more similar 

to the thickness map than ImageNet when transfer learning 

method is used and the thickness map data need to be trained 

with deeper neural network like GoogLeNet or ResNet(78, 79). 

Since the glaucoma diagnosis is confirmed by several tests, it is 

possible to diagnose more accurate glaucoma if DFFN can fuse 
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features extracted by the thickness map data as well as the visual 

field test data, IOP, demographic data. 

Glaucoma can be diagnosed accurately through DFFN 

fusing the features extracted by deep learning in this study. We 

developed DFFN that can be analyzed by using various test 

results and demographic data and made a stepping stone for 

future research. This will allow us to accurately diagnose 

glaucoma as well as early glaucoma using OCT. 
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CHAPTER 5 

Thesis Summary and Future Work 
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5.1. THESIS SUMMARY AND CONTRIBUTION 

We developed the deep feature fusion network (DFFN) 

using the retinal nerve fiber layer (RNFL) optical coherence 

tomography (OCT) thickness map for accurate glaucoma 

diagnosis. Since DFFN is network fusing features trained by deep 

learning and hand-crafted features extracted manually, studies 

extracting features which affects glaucoma diagnosis are 

conducted. We extracted features using the area and depth of the 

defects on the thickness map and deviation map. And we 

developed deep learning algorithm which allowed only computer 

to directly extract features related to glaucoma. We distinguished 

between normal subjects and glaucoma subjects of early stage 

as well as between normal subjects and glaucoma subjects using 

DFFN fusing features extracted by method in Chapter 2, 3 and 

deep learning and evaluated DFFN using the accuracy and the 

area under receiver operating characteristic curve (AUROC).  

Chapter 2 calculated localized RNFL defects on the 

ganglion cell inner plexiform layer (GCIPL) and RNFL deviation 

maps and extracted features as severity indices according to 

probability levels. All of the severity indices calculated by image 
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processing had significantly difference between glaucomatous 

eyes and normal eyes. We found that the AUROCs for detection 

of localized RNFL defects were larger on the pRNFL deviation 

map than on the GCIPL deviation map, but the differences were 

not statistically significant. In the detection of glaucomatous eyes 

with localized RNFL defects, indices calculated in the macular 

GCIPL thickness map deviation map showed a level of diagnostic 

performance comparable to that of indices calculated in the RNFL 

thickness deviation map. 

 Chapter 3 segmented RNFL defects on the deviation map 

according to inclusion criteria and extracted feature as RNFL 

defect depth percentage index (RDPI) on the RNFL thickness 

deviation map using the proportion of the RNFL defect depth. 

The RDPI, a new parameter using RNFL thickness deviation map, 

can be a useful adjunct tool for objective quantification of RNFL 

defect depth. This parameter has an advantage over RNFL 

thickness in discriminating between mild and moderate RNFL 

defects, not in discriminating between moderate and severe 

defects. 
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Chapter 4 extracted features using deep learning which 

allows computer to distinguish between normal subjects and 

glaucoma patients on RNFL thickness maps. RNFL Thickness 

map was trained in two ways for deep learning: one is to be 

trained with LeNet from randomly distributed weights and the 

other is to be transfer learned with VGGNet from weights pre-

trained by ImageNet. When training RNFL thickness maps with 

deep learning, we conducted data augmentation for deep neural 

network to be trained accurately and selected the most 

appropriate hyper-parameters through the loss and accuracy 

according to epoch. We developed DFFN fusing features 

extracted by Chapter 2, 3 and deep learning and evaluated 

performances with previous studies. DFFN fusing features 

including features extracted by VGGNet discriminated between 

glaucoma subjects of early stage and normal subjects as well as 

between glaucoma subjects and normal subjects most accurately 

than other previous studies.   
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5.2. FUTURE WORK 

DFFN developed in this study can classify more 

accurately if meaningful features are more accurately extracted 

manually and by deep learning. Anatomical features like area, 

angle, and correlation with GCIPL thickness map extracted 

meaningfully will be analyzed more accurately on the RNFL 

thickness map. Hand crafted features extracted on the red-free 

fundus images and visual field tests by using other image 

processing will be extracted more correctly. And it can be 

important to use demographic data as meaningful features 

affecting glaucoma. 

The amount of RNFL thickness map data to be trained 

must be large enough to be trained with deep neural network 

more accurately. It is necessary for doctors to get data from the 

hospital or other facilities and classify data into glaucoma. Also, 

it is important to augment image data such as various noises 

addition, image flipping, image rotation and hue, saturation, and 

lightness (HSL) color space transformation. If amount data are 

big enough to be trained with deep learning, deeper network like 

ResNet or GoogLeNet can be trained more correctly. And if deep 
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neural network is trained with image data similar to RNFL 

thickness map, better deep neural architecture will be build.  

DFFN which is cascaded or trained parallel with deep 

learning and machine learning can be greatly improved. DFFN 

can be studied in distinguishing between glaucoma patients of 

early stage and normal subjects and analyzing progression of 

glaucoma. And if glaucoma is classified by using DFFN accurately, 

the study analyzing factor of glaucoma on RNFL thickness map 

can be developed by using features of DFFN.  
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Abstract in Korean 

국문 초록  

광간섭 단층 촬영술의 발전에 따라 시신경 두께에 대한 

분석을 통해 녹내장의 비침습적 진단이 가능해졌다. 그러나 

녹내장의 특성 상 조기진단을 통한 적절한 안압의 유지가 

필수적임에 따라 녹내장을 조기에 정확하고 객관적으로 분석하기 

위한 컴퓨터 보조진단 시스템의 개발이 요구되고 있다. 본 논문은 

조기 녹내장을 정확하게 진단할 수 있는 컴퓨터 보조 시스템을 

구현하는 방법으로 기존 기계학습에서 사용되어온 특징기반 

분류법과 최근 관심이 고조되고 있는 심층신경망(deep neural 

network)에서 심층학습(deep learning)에 의해 생성된 특징을 

통합한 “특징 융합 심층신경망”을 제안하고 실제 정상인과 환자 

영상을 이용한 성능 평가를 통해 임상적 유효성을 검증하였다.  

특징 융합 심층신경망은 영상처리(image processing)와 

심층학습을 통해서 추출된 이질적인 특징들을 통합하여 구성한 

심층신경망이다. 녹내장과 관련된 시신경 결함 부분의 넓이와 깊이 

특징들은 전통적인 영상처리 기법을 통해 추출하였고, 심층학습을 

통해서는 녹내장과 정상인의 구별과 관련된 특징들을 신경망의 
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중간단(middle layer) 출력에서 추출하였다. 이렇게 추출한 

특징들을 통합하여 특징 융합 심층신경망을 구성하였다. 

 영상처리 기반 특징의 첫 번째로 시신경 결함 부분의 

넓이에 관련된 특징을 추출하기 위해서 시신경 유두 주변의 망막 

신경 섬유층과 황반 주변의 신경세포절 속얼기층을 촬영한 두께 

이미지와 두께 편차 이미지를 이용해서 분석하였다. 69 명의 녹내장 

환자들과 79 명의 정상인에 대해서 세 가지 기준에 의해서 각각의 

두께 편차 이미지에서 시신경의 결함 부분을 찾아냈고 그 영역의 

넓이를 계산했다. 넓이를 통해서 계산된 심각 지표들의 성능을 

ROC 곡선 아래면적(AUC)을 통해서 평가하였다. 모든 심각 

지표들에 대해서 녹내장 환자들과 정상인들 간에 두드러진 차이를 

보였고(p < 0.0001), 녹내장 환자들과 정상인들을 정확히 

구분하였다(AUC = 0.91~0.95). 이를 통해서 시신경 결함 부분의 

넓이 특징들이 녹내장 진단의 객관적인 지표로 이용될 수 있음을 

알 수 있었다. 

두 번째 영상처리 기반 특징으로 시신경 결함 부분의 

깊이에 관련된 특징을 추출하기 위해서 시신경 유두 주변의 망막 

신경 섬유층을 촬영한 두께 이미지와 두께 편차 이미지를 

분석하였다. 두께 편차 이미지로 분석된 결함 부분에 대해서 

정상인의 시신경 두께와 분석된 부분의 시신경 두께의 비를 
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이용하여 깊이에 관련된 지표를 개발하였다. 이 지표를 이용하여 

108 명의 초기 녹내장과 96 명의 중기 녹내장, 그리고 111 명의 

말기 녹내장 환자들에 대해서 분석하였고 지표의 성능을 ROC 곡선 

아래면적을 통해서 평가하였다. 이 때, 지표에 대해서 각 집단들 

간의 두드러진 차이가 있었고(p < 0.001), 초기 녹내장과 중기 

녹내장 환자들을 잘 구분할 수 있을 뿐만 아니라(AUC = 0.98), 

중기 녹내장 환자들과 말기 녹내장 환자들도 잘 구분할 수 

있었다(AUC = 0.97). 이를 통해 시신경 결함 부분의 깊이 특징이 

녹내장의 정도를 구분하는 데 의미 있는 지표임을 알 수 있었다. 

 시신경 두께 영상을 심층학습에 적용하기 위해서 두 가지 

방법을 이용하였는데 한 가지 방법은 LeNet 신경망에 무작위로 

분포되어 있는 가중치를 이용하여 심층학습하는 방법이고 다른 한 

가지 방법은 VGGNet 신경망을 다른 방대한 이미지 데이터에 미리 

학습을 한 가중치를 이용하여 심층학습하는 방법이다. 316 명의 

정상인과 226 명의 초기 녹내장, 그리고 246 명의 중말기 녹내장 

환자들에 대해서 두 가지 방법으로 학습하였고 각각에 대해서 

ROC 곡선 아래면적으로 성능을 평가하였다. LeNet 과 VGGNet 으로 

학습한 신경망 모두 정상인들과 녹내장 환자들을 잘 구분할 수 

있을 뿐만 아니라(AUC = 0.94, 0.94), 초기 녹내장 환자들도 

정확히 구분하였다(AUC = 0.88, 0.89). 이를 통해서 심층학습을 
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통해서 분석한 두 방법 모두 녹내장에 관련된 특징들을 잘 

추출함을 알 수 있었다. 

최종적으로 영상처리를 통해서 추출한 특징들과 

심층학습으로 추출했던 특징들을 통합하여 특징 융합 심층신경망을 

개발하였고 이를 ROC 곡선 아래면적으로 기존 연구들과 성능을 

비교하였다. VGGNet 신경망으로 추출한 특징으로 융합한 특징 

융합 심층 신경망이 다른 신경망들보다 정상인들과 녹내장 

환자들을 정확히 구분할 뿐만 아니라(AUC = 0.96), 초기 녹내장 

환자들도 정확히 구분하였다(AUC = 0.92). 이는 기존 연구 결과 

(AUC = 0.91, 0.82)에 비해서 뛰어난 성능을 보였으며 특히, 초기 

녹내장과 정상인을 구분하는 데 뛰어난 성능을 보였다. 

 이러한 결과를 통해 본 논문에서 제안한 특징 융합 

심층신경망이 기존 방법에 비해 녹내장의 진단 및 초기 진단에 

높은 정확도를 제공함을 확인하였다. 추후 인구통계학 정보들과 

녹내장에 관련된 여러 검사들의 특징들을 특징 융합 심층신경망에 

추가 적용한다면 정확도를 더욱 향상시킬 수 있을 것으로 예상된다. 

본 논문에서 제안한 특징 융합 심층신경망은 녹내장 조기 진단 

뿐만 아니라 녹내장의 진행 정도를 분석하는 데에도 적용할 수 

있을 것으로 기대된다. 
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