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Abstract

Selectively Sensitive Static Analysis

by Impact Pre-analysis and Machine Learning

Kihong Heo

Department of Computer Science and Engineering

College of Engineering

Seoul National University

In this dissertation, we present general methods to strike a right balance among

soundness, precision, and scalability of static analysis. The key idea is to selectively

apply precision-improving techniques, which risk being unscalable and unsound,

only when they are likely to have benefits. We first propose a general principle

to design an impact pre-analysis that estimates the impact of precision-improving

techniques on the main analysis. Under the guidance of the pre-analysis result, the

main analysis selectively turns on its sensitivity. We also propose machine-learning-

based techniques that learn useful knowledge for the sensitivity from data gener-

ated by static analysis. With the data, we derive a classifier that quickly selects

the effective sensitivity for the main analysis. We implemented these methods on

top of a industrial-strength C static analyzer and the experimental result showed

that this approach effectively balances precision and cost.

Keywords : Programming Language, Static Analysis, Selective

Sensitivity, Pre-analysis, Machine Learning
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Chapter 1

Introduction

1.1 Goal

Static program analysis is a general method for automatically estimating the run-

time behavior of programs before execution. Unlike testing (or dynamic analysis)

which observes real program states by executing the target program with concrete

inputs, static analysis abstracts possible program states without running the pro-

gram. The abstraction may introduce false results that are not feasible in the real

executions, but enables static analysis to handle infinitely many possible states and

inputs for softwares. Hence, nowadays static analyzers are widely used for verifica-

tion of safety-critical softwares, bug-detection, and compiler optimization.

The key factor of a static analyzer’s performance is to choose a right abstrac-

tion of concrete semantics. Performance of static analysis is generally characterized

by soundness (subsumption of concrete semantics), precision (prevention of false

alarms), and scalability (efficiency for large programs). Because no static analysis

can achieve these three properties in a single analyzer, traditional analyses have

fallen into three categories with different abstractions that are suitable for the pur-

poses: 1) sound, precise, yet unscalable analysis for verification, 2) sound, scalable,

yet imprecise analysis for code optimization, 3) precise, scalable, yet unsound anal-

ysis for bug finding.
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Traditionally, tuning the performance of these analyzers requires a large amount

of tedious manual tasks to find a right abstraction. So far there have been many

techniques that guide such abstraction a variety ways, such as context-sensitivity

for function calls [48, 52], relational domain for variable relations [9, 30], and folk-

lore heuristics for unsound analysis (e.g., destructing loops [12,22,58,60]), but their

adaption strategies are mostly too simple-minded and uniform. When it comes to

context-sensitivity, for example, the traditional k-callstring approach [48, 52] uni-

formly distinguishes their k-most recent call sites without any concern for their ef-

fectiveness. (e.g., uniform strategy with a fixed degree k). Therefore the resulting

precise analysis easily sacrifices scalability and detectability without careful con-

sideration.

In this dissertation, we propose general methods to automatically strike a right

balance among soundness, precision, and scalability. The key principle is to selec-

tively apply costly precision-improving techniques that risk being unscalable and

unsound (e.g., context-sensitivity, relational domains, unsound strategies). Given a

program to be analyzed, our methods selectively turn on such precision-improving

techniques only when and where doing so is likely to improve precision without

sacrificing detectability and scalability as far as possible.

1.2 Solution

The research problem is how to automatically select a right abstraction. The se-

lection methods are enabled by the following techniques:

• Selectively X-sensitive analysis by impact pre-analysis [37]: We design

a pre-analysis to estimate the impact of a precision-improving technique X

on the main analysis’s precision. Before the main analysis starts, the impact

pre-analysis analyzes a given target program and selects a cost-effective X-

sensitivity. With the guidance of the impact pre-analysis, the main analysis

applies the X-sensitivity only when it is likely to improve the precision. We

formalize this approach and prove that the analysis always benefits from the
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pre-analysis results. We implemented two instances (context-sensitivity and

relational analysis) in an industrial-strength interval analyzer for full C and

experimentally showed the effectiveness.

• Selectively X-sensitive analysis by learning data generated by im-

pact pre-analysis [18]: We design a method for automatically learning an

effective strategy for X-sensitivity. For some precision-improving techniques

(e.g., relational analysis), the impact pre-analyses are still too costly, so in-

feasible with larger programs. Instead of using the pre-analysis as an online

estimator, we employ it as an offline teacher. The pre-analysis automatically

labels training data in the codebase as positive or negative. Then, we derive

a binary classifier using an off-the-shelf machine learning algorithm. Given

a target program, this classifier quickly estimates the selective X-sensitivity.

We implemented a selectively relational analysis with this method on top of

a static buffer-overflow detector for C programs and showed the effectiveness.

• Selectively unsound analysis by machine learning [19]: We present a

machine-learning-based technique for selectively applying unsoundness. Ex-

isting bug-finding static analyzers are unsound in order to be precise and

scalable in practice. However, they are uniformly unsound and hence at the

risk of missing a large amount of real bugs. By being sound, we can im-

prove the detectability of the analyzer but it often suffers from a large num-

ber of false alarms. Our approach aims to strike a balance between these two

approaches by selectively allowing unsoundness only when it is likely to re-

duce false alarms, while retaining true alarms. We use a machine learning

technique to learn such harmless unsoundness. We implemented our tech-

nique in two static analyzers for full C. One is for a taint analysis for detect-

ing format-string vulnerabilities, and the other is for an interval analysis for

buffer-overflow detection. The experimental results show that our approach

significantly improves the detectability of the original unsound analysis with-

out sacrificing the precision.
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1.3 Outline

The rest of this dissertation is organized by as follows:

• Chapter 3 presents the selectively X-sensitive analysis by impact pre-analysis.

• Chapter 4 presents the selectively X-sensitive analysis by learning the results

of impact pre-analysis.

• Chapter 5 presents the selectively unsound analysis by machine learning.

• Chapter 6 discusses related works and Chapter 7 concludes the dissertation.
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Chapter 2

Preliminaries

2.1 Program

We assume that a program P is represented by a control flow graph (C,→,F, ι)
where C is the finite set of nodes, (→) ⊆ C × C denotes the control flow relation

between nodes, F is the set of procedure ids, and ι ∈ C is the entry node of the

main procedure. The entry node ι does not have predecessors. Each node c ∈ C
has program command cmd(c) that is one of the followings:

lv := e | lv := allocl(e) | assume(x < e)

where l-value expression (lv) and expression (e) are defined as follows:

expression e → n | e+e | lv | &lv

l-value lv → x | ∗e | e[e]

An expression is a numeric value (n), a binary operation of two expressions (e+e),

a l-value expression (lv), or an address of a l-value expression (&lv). A l-value

expression is a variable (x), a dereference of an expression (∗e), or an array access

(e[e]). Command lv := e assigns the value of e to the location of lv . Command

lv := allocl(e) allocates an array of which size is e at allocation site l. Command

assume(x < e) limits the program executions that invalidate condition x < e.
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2.2 Collecting Semantics

The concrete domain D represents a set of reachable states at each control point:

D = C→ 2S

The domain of state S is defined as follows:

S = L→ V

where L is a set of concrete locations and V is a set of concrete values. The col-

lecting semantics of a program is characterized by the least fixpoint of semantic

function F ∈ D→ D:

F (X) = λc ∈ C.fc
( ⋃
c′→c

X(c′)
)

where fc ∈ 2D → 2D is a semantic function for program point c. We follow the

standard definition of the concrete semantic function.

2.3 Abstract Semantics

We abstract the collecting semantics by the following Galois connection [8]:

D −−−→←−−−α
γ

D̂

where the domain D̂ is a set of maps from program points (C) to abstract states

(S):

D̂ = C→ Ŝ

The Galois connection of (α, γ) is defined as pointwise lifting of the Galois con-

nection of (αS, γS):

2S −−−−→←−−−−
αS

γS Ŝ
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The abstract state is a set of maps from abstract locations (L̂) to abstract values

(V):

Ŝ = L̂→ V̂

where
L̂ = Var +Allocsite

V̂ = Ẑ× 2L̂ × 2Allocsite×Ẑ×Ẑ

Ẑ = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}

An abstract location is a variable (Var) or an allocation site (Allocsite). We ab-

stract all elements of an array as its allocation site l. An abstract value is a numeric

value (Ẑ), points-to information (2L̂), or a set of abstract array blocks (2Allocsite×Ẑ×Ẑ).

A set of numeric values is abstracted as an interval. We collect a set of pointees

for the point-to information. An abstract array block is a triple of its allocation

site, offset, and size.

The abstract semantics is characterized as a least fixpoint of abstract semantic

function F̂ ∈ D̂→ D̂:

F̂ (X̂) = λc ∈ C.f̂c
( ⊔
c′→c

X̂(c′)
)

where f̂c ∈ Ŝ→ Ŝ is a abstract semantic function for program point c. The abstract

semantic function is defined as follows:

f̂c(ŝ) =


ŝ[L̂(lv)(ŝ) w7→ V̂(e)(ŝ)] cmd(c) = lv :=e

ŝ[L̂(lv)(ŝ) w7→ ⟨⊥,⊥, {⟨l, [0, 0], V̂(e)(ŝ).1⟩}⟩] cmd(c) = lv := allocl(e)

ŝ[x 7→ ⟨ŝ(x).1 ⊓ [−∞, u
(
V̂(e)(ŝ).1

)
], ŝ(x).2, ŝ(x).3⟩] cmd(c) = assume(x < e)

w7→ denotes the weak update operator1:

ŝ[{l1, · · · , ln}
w7→ v] = ŝ[l1 7→ ŝ(l1) ⊔ v, · · · , ln 7→ ŝ(ln) ⊔ v]

1For brevity, we only consider weak updates. Our implementation supports strong updates and
the extension is straightforward.
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Auxiliary functions V̂(e)(ŝ) and L̂(e)(ŝ) compute abstract values and locations for

each expression and l-value expression.

V̂(e) ∈ Ŝ→ V̂

V̂(n)(ŝ) = ⟨[n, n],⊥,⊥⟩
V̂(e1+e2)(ŝ) = V̂(e1)(ŝ)+̂V̂(e2)(ŝ)
V̂(lv)(ŝ) =

⊔
{ŝ(l) | l ∈ L̂(lv)(ŝ)}

V̂(&lv)(ŝ) = ⟨⊥, L̂(lv)(ŝ),⊥⟩

V̂ computes abstract values for each expression. Integer n evaluates to the corre-

sponding interval [n, n]. For binary operations, we compute the abstract version

of the operations on inductively evaluated abstract values by V̂. We skip the con-

ventional definition of the abstract binary (+̂) and join (⊔) operations. For l-value

expressions, we join all abstract values that associated with the abstract locations

for the l-value expressions. An address of a l-value expression evaluates to the all

abstract locations of the l-value expression.

L̂(lv) ∈ Ŝ→ 2L̂

L̂(x)(ŝ) = {x}
L̂(∗e)(ŝ) = V̂(e)(ŝ).2 ∪ {l | ⟨l,_,_⟩ ∈ V̂(e)(ŝ).3}

L̂(e1[e2])(ŝ) = {l | ⟨l,_,_⟩ ∈ V̂(e1)(ŝ).3}

The abstract location of a variable (x) is the variable itself. A dereference of an

expression (∗e) denotes all the abstract locations involved in the expression: all the

abstract locations in the points-to set and the set of array blocks. An array access

(e1[e2]) denotes a set of all allocation sites of the array blocks evaluated from the

array expression (e1).

Lemma 1 (Soundness) If F̂ is a sound approximation of F then the abstract se-

mantics lfpF̂ is a sound approximation of the concrete semantics lfpF , i.e.,

α ◦ F ⊑ F̂ ◦ α =⇒ α(lfpF ) ⊑ lfpF̂

8



Chapter 3

Selectively X-sensitive Analysis by

Impact Pre-Analysis

3.1 Introduction

Handling procedure calls in static analysis with a right balance between precision

and cost is challenging. To precisely analyze procedure calls and returns, the analy-

sis has to distinguish calls to the same procedure by their different calling contexts.

However, a simple-minded, uniform context-sensitivity at all call sites easily makes

the resulting analysis non cost-effective. For example, imagine a program analysis

for proving the safety of array accesses that uses the k-callstring approach [48,52]

for abstracting calling contexts. The k-callstring approach distinguishes two calls to

the same procedure whenever their k-most recent call sites are different. To make

this context-sensitive analysis cost-effective, we need to tune the k values at the

call sites in a way that we should increase the k value only where the increased

precision contributes to the proof of array-access safety. If we simply use the same

fixed k for all the call sites, the analysis would end up becoming either unneces-

sarily precise and costly, or not precise enough to prove the safety of many array

accesses.
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In this paper, we present a method for performing selective context-sensitive

analysis, which applies the context-sensitivity only when and where doing so is

likely to improve the precision that matters for the analysis’s ultimate goal. Our

method consists of two steps. The first step is a pre-analysis that estimates the be-

havior of the main analysis under the full context-sensitivity (i.e. using ∞-callstrings).

The pre-analysis focuses only on estimating the impact of context-sensitivity on

the main analysis. Hence, it aggressively abstracts the other semantic aspects of

the main analysis. The second step is the main analysis with selective context-

sensitivity. This analysis uses the results of the pre-analysis, selects influential call

sites for precision, and selectively applies context-sensitivity only to these call sites.

Our method can be instantiated with a range of static analyses, and provides a

guideline for designing impact pre-analyses for them, in particular, an efficient way

of implementing those pre-analyses based on graph reachability.

One important feature of our method is that the pre-analysis-guided context-

sensitivity pays off at the subsequent selective context-sensitive analysis. One way

to see the subtlety of this impact realization is to note that the pre-analysis and

the selective main analysis are incomparable in precision: the pre-analysis is more

precise than the main analysis in terms of context sensitivity, but it is worse than

the main analysis in tracking individual program statements. Despite this mis-

match, our guidelines for designing an impact pre-analysis and the resulting selec-

tive context-sensitivity ensure that the selective context-sensitive main analysis is

at least as precise as the fully context-sensitive pre-analysis, as far as given queries

are concerned.

We have implemented our method on an existing industrial-strength interval

analyzer for full C. The method led to the reduction of alarms from 6.6 to 48.3%,

with average 24.4%, compared with the baseline context-insensitive analysis, while

increasing the analysis cost from 9.4 to 50.5%, with average 27.8%.

The general principle behind the design and the use of our impact pre-analysis

can be used for developing other types of selective analyses. We show its applica-

bility by following the same principle and developing a selective relational analysis
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that keeps track of relationships between variables, only when tracking them are

likely to help the main analysis answer given queries. In this case, the impact pre-

analysis is fully relational while it aggressively abstracts other semantic aspects.

The experiments show that our selective relational analysis achieves competitive

cost-precision tradeoffs when applied to real-world benchmark programs.

We summarize the contributions of the paper:

• We present a method for performing selective context-sensitive analysis that

receives guidance from an impact pre-analysis.

• We show that the general idea behind our selective method is not limited to

context-sensitivity. We present a selective relational analysis that is guided

by an impact pre-analysis.

• We experimentally show the effectiveness of selective analyses designed ac-

cording to our method, with real-world C programs.

3.2 Informal Description

We illustrate our approach using the interval domain and the program in Figure

3.1, which is adopted from make-3.76.1. Procedure xmalloc is a wrapper of the

malloc function. It is called twice in procedure multi_glob, once with the argu-

ment size (line 4) and again with an input from the environment (line 6). The

main routine of this program calls procedure f and g. Procedure multi_glob is

called in f and g with different argument values.

The program contains two queries. The first query at line 5 asks whether p

points to a buffer of size larger than 1. The other query at line 7 asks a similar

question, but this time for the pointer variable q. Note that the first query always

holds, but the second query is not necessarily true.

Context-insensitive analysis If we analyze the program using a context-insensitive

interval analysis, we cannot prove the first query. Since the analysis is insensitive
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to calling contexts, it estimates the effect of xmalloc under all the possible in-

puts, and uses this same estimation as the result of every call. Note that an input

to xmalloc at line 6 can be any integer, and the analysis concludes that xmalloc

allocates a buffer of size in [−∞,+∞].

Context-sensitive analysis A natural way to fix this precision issue is to in-

crease the context-sensitivity. One popular approach is k-CFA analysis [48, 52]. It

uses sequences of call sites up to length k to distinguish calling contexts of a pro-

cedure, and analyzes the procedure separately for such distinguished calling con-

texts. For instance, 3-CFA analyzes the procedure xmalloc separately for each of

the following calling contexts:

4 · 10 · 14 4 · 10 · 15 4 · 11 · 16 4 · 11 · 17
6 · 10 · 14 6 · 10 · 15 6 · 11 · 16 6 · 11 · 17

(3.1)

Here a · b · c denotes a sequence of call sites a, b and c (we use the line numbers

as call sites), with a being the most recent call. Note that the 3-CFA analysis

can prove the first query: the analysis analyzes the first four contexts separately

and infers that a buffer of size greater than 1 gets allocated under these calling

contexts.

Need of selective context-sensitivity However, using such a “uniform” context-

sensitivity is not ideal. It is often too expensive to run such an analysis with high

enough k, such as k ≥ 3 that our example needs. More importantly, for many

procedure calls, increasing context-sensitivity does not help—either it does not im-

prove the analysis results of these calls, or the increased precision is not useful for

answering queries. For instance, at the second query, for every k ≥ 0, the k-CFA

analysis concludes that p points to a buffer of size [−∞,+∞]. Also, it is unneces-

sary to analyze g separately for call sites 16 and 17, because those two calls have

the same effect on the query.
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1 char* xmalloc (int n) { return malloc(n); }

2

3 void multi_glob (int size) {

4 p = xmalloc (size);

5 assert (sizeof(p) > 1); // Query 1

6 q = xmalloc (input());

7 assert (sizeof(q) > 1); // Query 2

8 }

9

10 void f (int x) { multi_glob (x); }

11 void g () { multi_glob (4); }

12

13 int main() {

14 f (8);

15 f (16);

16 g ();

17 g ();

18 }

Figure 3.1: Example Program

Our selective context-sensitivity With our approach, an analysis can analyze

procedures with only needed context-sensitivity. It analyzes a procedure separately

for a calling context if doing so is likely to improve the precision of the analysis

and reduce false alarms in its answers for given queries. For the example program,

our analysis first predicts that increasing context-sensitivity is unlikely to help an-

swer the second query (line 7) accurately, but is likely to do so for the first query

(line 5). Next, the analysis finds out that we can bring the full benefit of context-

sensitivity for the first query, by distinguishing only the following four types of

calling contexts of xmalloc:

4 · 10 · 14, 4 · 10 · 15, 4 · 11, all the other contexts (3.2)
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Note that contexts 4·11·16 and 4·11·17 are merged into a single context 4·11. This

merging happens because the analysis figures out that two callers of g (line 16 and

17) do not provide any useful information for resolving the first query. Finally, the

analysis analyzes the given program using the interval domain while distinguishing

calling contexts above and their suffixes (i.e., 10 · 14, 10 · 15, 14, 15, 11). This

selective context-sensitive analysis is able to prove the first query.

Impact pre-analysis Our key idea is to approximate the main analysis under

full context-sensitivity using a pre-analysis, and estimate the impact of context-

sensitivity on the results of the main analysis. This impact pre-analysis uses a sim-

ple abstract domain and transfer functions, and can be run efficiently even with

full context-sensitivity.

For instance, we approximate the interval analysis in this example using a pre-

analysis with two abstract values: ⋆ and ⊤. Here ⊤ means all intervals, and ⋆

intervals of the form [l, u] with 0 ≤ l ≤ u. A typical abstract state in this domain

is [x : ⊤, y : ⋆], which means the following set of states in the interval domain:

{[x : [lx, ux], y : [ly, uy]] | lx ≤ ux ∧ 0 ≤ ly ≤ uy}.

This simple abstract domain of the pre-analysis is chosen because we are interested

in showing the absence of buffer overruns and the analysis proves such properties

only when it finds non-negative intervals for buffer sizes and indices.

We run this pre-analysis under full context-sensitivity (i.e., ∞-CFA). For our

example program, we obtain a summary of the procedure xmalloc with eight en-

tries, each corresponding to a different context in (3.1). The third column of the

table below shows this summary:
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Size of the allocated buffer in xmalloc

Contexts Main analysis Pre-analysis

4 · 10 · 14 [8, 8] ⋆

4 · 10 · 15 [16, 16] ⋆

4 · 11 · 16 [4, 4] ⋆

4 · 11 · 17 [4, 4] ⋆

6 · 10 · 14 [−∞,+∞] ⊤
6 · 10 · 15 [−∞,+∞] ⊤
6 · 11 · 16 [−∞,+∞] ⊤
6 · 11 · 17 [−∞,+∞] ⊤

The second column of the table shows the results of the interval analysis with

full context-sensitivity. Note that the pre-analysis in this case precisely estimates

the impact of context-sensitivity: it identifies calling contexts (i.e., the first four

contexts in the table) where the interval analysis accurately tracks the size of the

allocated buffer in xmalloc under the full context-sensitivity. In general, our pre-

analysis might lose precision and use ⊤ more often than in the ideal case. However,

even when such approximation occurs, it does so only in a sound manner—if the

pre-analysis computes ⋆ for the size of a buffer, the interval analysis under full

context-sensitivity is guaranteed to compute a non-negative interval.

Use of pre-analysis results Next, from the pre-analysis results, we select call-

ing contexts that help improve the precision regarding given queries. We first iden-

tify queries whose expressions are assigned with ⋆ in the pre-analysis run. In our

example, the pre-analysis assigns ⋆ to the expression sizeof(p) in the first query.

We regard this as a good indication that the interval analysis under full context-

sensitivity is likely to estimate the value of sizeof(p) accurately. Then, for each

query that is judged promising, we consider the slice of the program that con-

tributes to the query. We conclude that all the calls made in the slice should be

tracked precisely. For example, if a slice for a query looks as follows:
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query
f h i
g

• • •
•

•

Then, we derive calling contexts f, g, {h·f, h·g}, and {i·h·f, i·h·g} for procedure f,

g, h, and i, respectively. However, if the slice involves a recursive call, we exclude

the query since otherwise, we need infinitely many different calling contexts. In our

example program, the slice for the first query includes all the execution paths from

lines 11, 14, and 15 to line 5. Note that call-sites 16 and 17 are not included in

the slice, and that all the calling contexts of xmalloc in this slice are: 4 · 10 · 14,
4 · 10 · 15, and 4 · 11. Our analysis decides to distinguish these contexts and their

suffixes.

Impact realization Our method guarantees that the impact estimation under

full context-sensitivity pays off at the subsequent selective context-sensitive anal-

ysis. That is, in our example program, the selective main analysis, which distin-

guishes only the contexts in (3.2), is guaranteed to assign a nonnegative interval

to the expression sizeof(p) at the first query. This guarantee holds because our

selective context-sensitive analysis distinguishes all the calling contexts that matter

for the selected queries (Section 3.5.2) and ensures that undistinguished contexts

are isolated from the distinguished contexts (Section 3.4). For instance, although

the call to xmalloc at line 6 is analyzed in a context-insensitive way, our analysis

ensures that xmalloc in this case returns only to line 6, not to line 4.

Application to relational analysis Behind our approach lies a general princi-

ple for developing a static analysis that selectively uses precision-improving tech-

niques, such as context-sensitivity and relational abstract domains. The principle

is to develop an impact pre-analysis that finds out when and where the main static

analysis under the full precision setting is likely to have an accurate result, and to

choose an appropriate precision setting of the main analysis based on the results

of this pre-analysis.
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For instance, suppose that we want to develop a selective version of the octagon

analysis, which tracks only some relationships between program variables that are

likely to be tracked well by the octagon analysis and also to help the proofs of

given queries. To achieve this goal, we design an impact pre-analysis that aims

at finding when and where the original octagon analysis is likely to infer precise

relationships between program variables. In Section 3.6, we describe this selective

octagon analysis in detail.

3.3 Program Representation

A node c ∈ C in the program is one of the five types:

C = Ce (Entry Nodes) ⊎ Cx (Exit Nodes)

⊎ Cc (Call Nodes) ⊎ Cr (Return Nodes)

⊎ Ci (Internal Nodes)

Each procedure f ∈ F has one entry node and one exit node. Given a node c ∈ C,

fid(c) denotes the procedure enclosing the node. Each call-site in the program is

represented by a pair of call and return nodes. Given a return node c ∈ Cr, we

write callof(c) for the corresponding call node. We denote the set of call edges by

↣:

(↣) = {(c1, c2) | c1 → c2 ∧ c1 ∈ Cc ∧ c2 ∈ Ce}

and the set of return edges by 99K:

(99K) = {(c1, c2) | c1 → c2 ∧ c1 ∈ Cx ∧ c2 ∈ Cr}.

We assume for simplicity that there are no indirect function calls such as calls via

function pointers.
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We associate a primitive command with each node c of our control flow graph,

and denote it by cmd(c). For brevity, we consider simple primitive commands spec-

ified by the following grammar:

cmd → skip | x := e

where e is an arithmetic expression: e→ n | x | e+ e | e− e. We denote the set of

all program variables by Var.

For simplicity, we handle parameter passing and return values of procedures

via simple syntactic encoding. Recall that we represent a call statement x := fp(e)

(where p is a formal parameter of procedure f) with call and return nodes. In our

program, the call node has command p := e, so that the actual parameter e is as-

signed to the formal parameter p. For return values, we assume that each procedure

f has a variable rf and the return value is assigned to rf : that is, we represent

return statement return e of procedure f by rf := e. The return node has com-

mand x := rf , so that the return value is assigned to the original return variable.

We assume that there are no global variables in the program, all parameters and

local variables of procedures are distinct, and there are no recursive procedures.

3.4 Selective Context-Sensitive Analysis with

Context-Sensitivity Parameter K

We consider selective context-sensitive analyses specified by the following data:

(1) a domain S of abstract states, which forms a complete lattice structure (S,⊑
,⊥,⊤,⊔,⊓); (2) an initial abstract state sI ∈ S at the entry of the main procedure;

(3) a monotone abstract semantics of primitive commands JcmdK : S → S; (4) a

context selector K that maps procedures to sets of calling contexts (sequences of

call nodes):

K ∈ F→ ℘(C∗
c).
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For each procedure f , the set K(f) specifies calling contexts that the analysis

should differentiate while analyzing the procedure. We sometimes abuse the no-

tation and denote by K the entire set of calling contexts in K: we write κ ∈ K

for κ ∈
⋃

f∈FK(f).

With the above data, we design a selective context-sensitive analysis as follows.

First, we differentiate nodes with contexts in K, and define a set CK ⊆ C×C∗
c of

context-enriched nodes:

CK = {(c, κ) | c ∈ C ∧ κ ∈ K(fid(c))}.

The control flow relation (→) ⊆ C× C is extended to →K on CK :

Definition 1 (→K) (→K) ⊆ CK×CK is the context-enriched control flow relation:

(c, κ)→K (c′, κ′) iff
c→ c′ ∧ κ′ = κ (c′ ̸∈ Ce ⊎ Cr)

c→ c′ ∧ κ′ = c ::K κ (c ∈ Cc ∧ c′ ∈ Ce)

c→ c′ ∧ κ = callof(c′) ::K κ′ (c ∈ Cx ∧ c′ ∈ Cr)

where (::K) ∈ Cc × C∗
c → C∗

c updates contexts according to K:

c ::K κ =

{
c · κ (c · κ ∈ K)

ϵ otherwise

where ϵ is the empty call sequence.

In our analysis, ϵ is used to represent all the other contexts not included in K, and

we assume that K includes ϵ if it is necessary. For instance, consider a program

where f has three different calling contexts κ1, κ2, and κ3. When the analysis dif-

ferentiates κ1 only, undistinguished contexts κ2 and κ3 are represented by ϵ. Thus,

K(f) = {κ1, ϵ}. Note that our analysis isolates undistinguished contexts from dis-

tinguished ones: ϵ means only κ2 or κ3, not κ1.
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Example 1 The analysis is context-insensitive when K = λf.{ϵ} and fully context-

sensitive when K = λf.C∗
c . Our selective context-sensitive analysis in Section 3.2

uses the following context selector K= {main 7→{ϵ}, f 7→{14, 15}, g 7→{ϵ}, multi_glob 7→
{10 · 14, 10 · 15, 11}, xmalloc 7→{4 · 10 · 14, 4 · 10 · 15, 4 · 11, ϵ}}.

Next, we define the abstract domain D of the analysis:

D = (CK → S) (3.3)

The analysis keeps multiple abstract states at each program node c, one for each

context κ ∈ K(fid(c)). The abstract transfer function F of the analysis works on

CK , and it is defined as follows:

F (X)(c, κ) = Jcmd(c)K(
⊔

(c0,κ0)→K(c,κ)

X(c0, κ0)). (3.4)

The static analysis computes an abstract element X ∈ D satisfying the follow-

ing condition:

sI ⊑ X(ι, ϵ) ∧ ∀(c, κ) ∈ CK . F (X)(c, κ) ⊑ X(c, κ) (3.5)

In general, many X can satisfy the condition in (3.5). Some analyses compute

the least X satisfying (3.5). Other analyses use a widening operator [8],
`

: D ×
D→ D, and compute not necessarily the least, but some solution of (3.5).

Example 2 (Interval Analysis) The interval analysis is a standard example that

uses a widening operator. Let I be the domain of intervals: I = {[l, u] | l, u ∈
Z ∪ {−∞,+∞} ∧ l ≤ u}. Using this domain, we specify the rest of the analysis:

1. The abstract states are ⊥ or functions from program variables to their interval

values: S = {⊥} ∪ (Var→ I)

2. The initial abstract state is: sI(x) = [−∞,+∞].
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3. The abstract semantics of primitive commands is:

JskipK(s) = s, Jx := eK(s) =

{
s[x 7→ JeK(s)] (s ̸= ⊥)
⊥ (s = ⊥)

where JeK is the abstract evaluation of the expression e:

JnK(s) = [n, n], Je1 + e2K(s) = Je1K(s)+ Je2K(s)

JxK(s) = s(x), Je1 − e2K(s) = Je1K(s)− Je2K(s)

4. The last component of the analysis is a widening operator, which is defined

as a pointwise lifting of the following widening operators
`

I : I × I → I for

intervals:

[l, u]
`

I [l
′, u′] = [ite(l′ < l, ite(l′ < 0,−∞, 0), l),

ite(u′ > u,+∞, u)]

where ite(p, a, b) evaluates to a if p is true and b otherwise. The above widen-

ing operator uses 0 as a threshold, which is useful when proving the absence

of buffer overruns.

Queries Queries are triples in Q ⊆ C× S× Var, and they are given as input to

our static analysis. A query (c, s, x) represents an assertion that every reachable

concrete state at node c is over-approximated by the abstract state s. The last

component x describes that the query is concerned with the value of the variable

x. For instance, in the interval analysis, a typical query is

(c, λy. if (y = x) then [0,∞] else ⊤, x)

for some variable x. It asserts that at program node c, the variable x should always

have a non-negative value. Proving the queries or identifying those that are likely

to be violated is the goal of the analysis.
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3.5 Impact Pre-Analysis for Finding K

Suppose that we would like to develop a selective context-sensitive analysis in Sec-

tion 3.4 for a given program and given queries, using one of the existing abstract

domains specified by the following data:

(S, sI ∈ S, J−K : S→ S),

To achieve our aim, we need to construct K a specification on context-sensitivity

for the given program and queries. Once this construction is done, the rest is stan-

dard. The analysis can analyze the program under partial context-sensitivity, using

the induced abstract domain D and transfer function F : D→ D for this program

in (3.3) and (3.4). We assume that the analysis employs the fixpoint algorithm

based on widening operation
`

: D× D→ D.

How should we automatically choose an effective K that balances the precision

and cost of the induced interprocedural analysis? In this section, we give an answer

to this question. In Section 3.5.1, we present an impact pre-analysis, which esti-

mates the behavior of the main analysis (S, sI , J−K) under full context-sensitivity.

In Section 3.5.2, we describe how to use the results of this pre-analysis for con-

structing an effective context selector K. Throughout the section, we fix our main

analysis to (S, sI , J−K).

3.5.1 Designing an Impact Pre-Analysis

An impact pre-analysis for context sensitivity aims at estimating the main analysis

(S, sI , J−K) under full context-sensitivity. It is specified by the following data:

(S♯, s♯I ∈ S♯, J−K♯ : S♯ → S♯, K∞).

This specification and the way that the data are used in our pre-analysis are fairly

standard. S♯ and JcmdK♯ are, respectively, the domain of abstract states and the

abstract semantics of cmd used by the pre-analysis, and s♯I is an initial state.
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K∞ = λf.C∗
c is the context selector for full context-sensitivity. The pre-analysis

uses the abstract domain D♯ = CK∞ → S♯ and the following transfer function

F ♯ : D♯ → D♯ for the given program:

F ♯(X)(c, κ) = Jcmd(c)K♯(
⊔

(c0,κ0)→K∞ (c,κ)

X(c0, κ0)).

It computes the least X satisfying

s♯I ⊑ X(ι, ϵ) ∧ ∀(c, κ) ∈ CK . F ♯(X)(c, κ) ⊑ X(c, κ) (3.6)

What is less standard is the soundness and efficiency conditions for our pre-

analysis, which provides a guideline on the design of these pre-analyses. Let us

discuss these conditions separately.

Soundness condition Intuitively, our soundness condition says that all the com-

ponents of the pre-analysis have to over-approximate the corresponding ones of the

main analysis.1 This is identical to the standard soundness requirement of a static

program analysis, except that the condition is stated not over the concrete seman-

tics of a given program, but over the main analysis. The condition has the following

four requirements:

1. There should be a concretization function γ : S♯ → ℘(S). This function for-

malizes the fact that an abstract state of the pre-analysis means a set of

abstract states of the main analysis.

2. The initial abstract state of the pre-analysis has to overapproximate the ini-

tial state of the main analysis, i.e., sI ∈ γ(s♯I).

1 We design a pre-analysis as an over-approximation of the main analysis, because an under-
approximating pre-analysis would be too optimistic in context selection and the resulting selective
main analysis is hardly cost-effective.
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3. The abstract semantics of commands in the pre-analysis should be sound

with respect to that of the main analysis:

∀s ∈ S, s♯ ∈ S♯. s ∈ γ(s♯) =⇒ JcmdK(s) ∈ γ(JcmdK♯(s♯)).

4. The join operation of the pre-analysis’s abstract domain over-approximates

the widening operation of the main analysis: for all X,Y ∈ D and X♯, Y ♯ ∈
D♯,

(X ∈ γ(X♯) ∧ Y ∈ γ(Y ♯)) =⇒ X
`
Y ∈ γ(X♯ ⊔ Y ♯).

The purpose of our condition is that the impact pre-analysis over-approximates

the fully context-sensitive main analysis:

Lemma 2 Let M ∈ D be the main analysis result, i.e., a solution of (3.5) under

full context-sensitivity (K=K∞). Let P ∈ D♯ be the pre-analysis result, i.e., the

least solution of (3.6). Then, ∀c ∈ C, κ ∈ C∗
c . M(c, κ) ∈ γ(P (c, κ)).

Efficiency condition The next condition is for the efficiency of our pre-analysis.

It consists of two requirements, and ensures that the pre-analysis can be computed

using efficient algorithms:

1. The abstract states are ⊥ or functions from program variables to abstract

values: S♯ = {⊥} ∪ (Var → V), where V is a finite complete lattice (V,⊑v

,⊥v,⊤v,⊔v,⊓v). An initial abstract state is s♯I = λx.⊤v.

2. The abstract semantics of primitive commands has a simple form involving

only join operation and constant abstract value, which is defined as follows:

JskipK♯(s) = s, Jx := eK♯(s) =

{
s[x 7→ JeK♯(s)] (s ̸= ⊥)
⊥ (s = ⊥)

where JeK♯ has the following form: for every s ̸= ⊥,

JeK♯(s) = s(x1) ⊔ . . . ⊔ s(xn) ⊔ v
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for some variables x1, . . . , xn and an abstract value v ∈ V, all of which are

fixed for the given e. We denote these variables and the value by

var(e) = {x1, . . . , xn}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis) We design a pre-

analysis for our interval analysis in Example 2, which satisfies our soundness and

efficiency conditions. The pre-analysis aims at predicting which variables get as-

sociated with non-negative intervals when the program is analyzed by an interval

analysis with full context-sensitivity K∞.

1. Let V = {⊥v,⋆,⊤v} be a lattice such that ⊥v ⊑v ⋆ ⊑v ⊤v. Define the

function γv : {⊥v,⋆,⊤v} → ℘(I) as follows:

γv(⊤v) = I, γv(⋆) = {[a, b] ∈ I | 0 ≤ a}, γv(⊥v) = ∅

This function determines the meaning of each element in V in terms of a

collection of intervals. The only non-trivial case is ⋆, which denotes all non-

negative intervals according to this function. We include such a case because

non-negative intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S♯ = {⊥}∪ (Var→ V). The mean-

ing of abstract states in S♯ is given by γ such that γ(⊥) = {⊥} and, for

s♯ ̸= ⊥,

γ(s♯) = {s ∈ S | s = ⊥ ∨ ∀x ∈ Var. s(x) ∈ γv(s
♯(x))}.

3. Initial abstract state: s♯I = ⊤ = λx.⊤v.

4. Abstract evaluation JeK♯ of expression e: for every s ̸= ⊥,

JnK(s)= ite(n ≥ 0,⋆,⊤v), Je1 + e2K(s)= Je1K(s)⊔v Je2K(s)
JxK(s)= s(x), Je1 − e2K(s)= ⊤v
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The analysis approximately tracks numbers, but distinguishes the non-negative

cases from general ones: non-negative numbers get abstracted to ⋆ by the

analysis, but negative numbers are represented by ⊤v. Observe that the + op-

erator is interpreted as the least upper bound ⊔v, so that e1 + e2 evaluates

to ⋆ only when both e1 and e2 evaluates to ⋆. This implements the intuitive

fact that the addition of two non-negative intervals gives another non-negative

interval. For expressions involving subtractions, the analysis simply produces

⊤v.

Running the pre-analysis via reachability-based algorithm The class of

our pre-analyses enjoys efficient algorithms (e.g., [10, 43]) for computing the least

solution X that satisfies (3.6), even though it is fully context-sensitive. For our

purpose, we provide a variant of the graph reachability-based algorithm in [43].

Our algorithm is specialized for our pre-analysis and is more efficient than the al-

gorithm in [43]. Next, we go through each step of our algorithm while introducing

concepts necessary to understand it. In the rest of this section, we interchangeably

write K for K∞.

First, our algorithm constructs the value-flow graph of the given program, which

is a finite graph (Θ, ↪→) defined as follows:

Θ = C× Var, (↪→) ⊆ Θ×Θ

The node set consists of pairs of program nodes and variables, and (↪→) is the edge

relation between the nodes.
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Definition 2 (↪→) The value-flow relation (↪→) ⊆ (C× Var)× (C× Var) links the

vertices in Θ based on how values of variables flow to other variables in each prim-

itive command:

(c, x) ↪→ (c′, x′) iff
c→ c′ ∧ x = x′ (cmd(c′) = skip)

c→ c′ ∧ x = x′ (cmd(c′) = y := e ∧ y ̸= x′)

c→ c′ ∧ x ∈ var(e) (cmd(c′) = y := e ∧ y = x′)

We can extend the ↪→ to its context-enriched version ↪→K :

Definition 3 (↪→K) The context-enriched value-flow relation (↪→K) ⊆ (CK×Var)×
(CK × Var) links the vertices in CK × Var according to the specification below:

((c, κ), x) ↪→K ((c′, κ′), x′) iff
(c, κ)→K (c′, κ′) ∧ x = x′ (cmd(c′) = skip)

(c, κ)→K (c′, κ′) ∧ x = x′ (y ̸= x′)

(c, κ)→K (c′, κ′) ∧ x ∈ var(e) (y = x′)

(where cmd(c′) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid reachability relation

(↪→†
K) ⊆ Θ×Θ:

Definition 4 (↪→†
K) The reachability relation (↪→†

K) ⊆ Θ×Θ connects two vertices

when one node can reach the other via an interprocedurally-valid path:

(c, x) ↪→†
K (c′, x′) iff

∃κ, κ′. (ι, ϵ)→∗
K (c, κ) ∧ ((c, κ), x) ↪→∗

K ((c′, κ′), x′).

We use the tabulation algorithm in [43] for computing (↪→†
K). While computing

(↪→†
K), the algorithm also collects the set C of reachable nodes:

C = {c | ∃κ. (ι, ϵ)→∗
K (c, κ)}. (3.7)
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Third, our algorithm computes a set Θv of generators for each abstract value v

in V. Generators for v are vertices in Θ whose commands join v in their abstract

semantics:

Θv = {(c, x) | cmd(c) = x := e ∧ const(e) = v}
∪ (if (v = ⊤v) then {(ι, x) | x ∈ Var} else {})

Finally, using (↪→†
K) and Θv, the algorithm constructs PAK :

Definition 5 (PAK) PAK ∈ C→ S♯ is defined as follows:

PAK(c)= if (c ̸∈ C) then ⊥
else λx.

⊔
{v ∈ V |∃(c0, x0)∈Θv.(c0, x0) ↪→†

K (c, x)}.

Then, PAK is the solution of our pre-analysis:

Lemma 3 Let X be the least solution satisfying (3.6). Then, PAK(c) =
⊔

κ∈C∗ X(c, κ).

Our reachability-based algorithm is |V|3-times faster in the worst case than the

RHS algorithm [43]. The algorithm in [43] works on a graph with the following set

of vertices:

Θ′={(c, s) | c ∈ C ∧ s ̸= ⊥ ∧ (∃x.∀y.y ̸= x =⇒ s(y) = ⊥v)}

Note that the set Θ′ is |V|-times larger than set Θ used in our algorithm and the

worst-case time complexity is cubic on the size of the underlying graph [43].

3.5.2 Use of the Pre-Analysis Results

Using the pre-analysis results, we select queries that are likely to benefit from the

increased context-sensitivity of the main analysis. Also, we collect calling contexts

that are worth being distinguished during the main analysis. The collected contexts

are used to construct a context selector K (Definition 10), which instructs how

much context-sensitivity the main analysis should use for each procedure call. This

main analysis with K is guaranteed to benefit from the increased context-sensitivity

(Proposition 1).
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Query selection We first select queries that can benefit from increased context-

sensitivity. Among given queries Q ⊆ C × S × Var about the given program, we

select the following ones:

Q♯={(c, x) ∈ (C× Var) | ∃s ∈ S.
(c, s, x) ∈ Q ∧ ∀s′ ∈ γ(PAK∞(c)). s ⊔ s′ ̸= ⊤}

(3.8)

where PAK∞ : C → S♯ is the pre-analysis result. The first conjunct says that

(c, x) ∈ Q♯ comes from some query (c, s, x) ∈ Q, and the second conjunct ex-

presses that according to the pre-analysis result, the main analysis does not lose

too much information regarding this query. For instance, consider the case of in-

terval analysis. In this case, we are usually interested in checking an assertion

like 1 ≤ x at c, which corresponds to a query (c, s, x) with the abstract state

s = (λz. if (x = z) then [1,∞] else ⊤). Then, the second conjunct in (3.8) becomes

equivalent to PAK∞(c)(x) ⊑ ⋆. That is, we select the query only when the pre-

analysis estimates that the variable x will have at least a non-negative interval in

the main analysis. In the rest of this section, we assume for brevity that there is

only one selected query (cq, xq) ∈ Q♯ in the program.

Building a context selector Next, we construct a context selector K : F →
℘(C∗

c). K is to answer which calling contexts the main analysis should distinguish

in order to achieve most of the benefits of context sensitivity on the given query

(cq, xq). Our construction considers the following proxy of this goal: which contexts

should the pre-analysis distinguish to achieve the same precision on the selected

query (cq, xq) as in the case of the full context-sensitivity? In this subsection, we

will define a context selector K (Definition 10) that answers this question (Propo-

sition 1).

We construct K in two steps. Before giving our construction, we remind the

reader that the impact pre-analysis works on the value-flow graph (Θ, ↪→) of the

program and computes the reachability relation (↪→†
K∞

) ⊆ Θ×Θ over the interproce-

durally-valid paths.
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The first step is to build a program slice that includes all the dependencies of

the query (cq, xq). A query (cq, xq) depends on a vertex (c, x) in the value-flow

graph if there exists an interprocedurally-valid path between (c, x) and (cq, xq) on

the graph (i.e., (c, x) ↪→†
K∞

(cq, xq)). Tracing the dependency backwards from the

query eventually hits vertices with no predecessors. We call such vertices sources

and denote their set by Φ:

Definition 6 (Φ) Sources Φ are vertices in Θ where dependencies begin:

Φ = {(c0, x0) ∈ Θ | ¬(∃(c, x) ∈ Θ. (c, x) ↪→ (c0, x0))}.

We compute the set Φ(cq ,xq) of sources on which the query (cq, xq) depends:

Definition 7 (Φ(cq ,xq)) Sources on which the query (cq, xq) depends:

Φ(cq ,xq) = {(c0, x0) ∈ Φ | (c0, x0) ↪→†
K∞

(cq, xq)}.

Example 4 Consider the control flow graph in Figure 3.2. Node 6 denotes the

query point, i.e., (cq, xq) = (6, z). The gray nodes represent the sources on which

the query depends, i.e., Φ(6,z) = {(1, x), (7, y)}.

For a source (c0, x0) ∈ Φ(cq ,xq) and an initial context κ0 such that (ι, ϵ) →∗
K∞

(c0, κ0), the following interprocedurally-valid path

((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq) (3.9)

represents a dependency path for the query (cq, xq). We denote the set of all de-

pendency paths for the query by Paths(cq ,xq):

Definition 8 (Paths(cq ,xq)) The set of all dependency paths for the query (cq, xq)

is defined as follows:

Paths(cq ,xq) = {((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq)

| (c0, x0) ∈ Φ(cq ,xq) ∧ (ι, ϵ)→∗
K∞

(c0, κ0)}.
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CFG

1x = 1

2call f 3y = x

4call g 5z = y+1

6z > 0?

7y = 10

8call g

m f g h

Calling
Contexts

κ0 2·κ0 {4·2·κ0, 8·κ1} κ1

Context
Selector

K = {m 7→ ϵ, f 7→ {2, ϵ}, g 7→ {4·2, 8}, h 7→ ϵ}

Figure 3.2: Example context selector. Gray and black nodes in CFG are source and
query points, respectively.

Paths(cq ,xq) is the program slice we intend to construct in this step.

Example 5 In Figure 3.2, suppose that κ0 and κ1 are the initial contexts of proce-

dures m and h, respectively. For source (1, x), we find the following dependency path

to the query (6, z):

p1 = ((1, κ0), x) ↪→K∞ ((2, κ0), x) ↪→K∞ ((3, 2 · κ0), y)

↪→K∞((4, 2 · κ0), y) ↪→K∞((5, 4 · 2 · κ0), z) ↪→K∞((6, 4 · 2 · κ0), z)

and, for source (7, y), we find the following path to (6, z):

p2 = ((7, κ1), y) ↪→K∞ ((8, κ1), y) ↪→K∞ ((5, 8 · κ1), z) ↪→K∞ ((6, 8 · κ1), z).

Then, Paths(6,z) = {p1, p2}.

The next step is to compute calling contexts that should be treated precisely.

Consider a dependency path from Paths(cq ,xq):

((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq) (3.10)
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where κ0, κ1, . . . , κq are the calling contexts appeared in the (fully context-sensitive)

pre-analysis. Instead, we are interested in partial contexts that represent the “dif-

ference” between κi and κ0. Intuitively, if κ0 is a suffix of κi, i.e., κi = κ′i · κ0, the

partial context for κi is defined as κ′i. Formally, we define the partial calling con-

texts of κi as κi⊖κ0 = κi−suffix(κi, κ0) where suffix(κ1, κ2) is the longest common

suffix of κ1 and κ2. For example, when κi is a suffix of κ0, we use ϵ as the partial

context for κi: if κ0 = c2 · c1 and κi = c1, then κi ⊖ κ0 = ϵ. Suppose that κi and

κ0 are not a suffix of each other, for instance κ0 = c2 · c1 and κi = c3 · c1. In this

case, κi ⊖ κ0 = c3.

Assumption 1 In general, the above definition of partial contexts requires that the

input program should be well-formed with respect to the query: for a path (3.10) from

a source to the query, every call site, ci ∈ Cc, in that path should not be included

in the initial context κ0. We require this condition because our selective context-

sensitive analysis aims at distinguishing only the calls after passing the sources

of dependency and analyzing context-insensitively those encountered before reaching

those sources, which do not contribute to the query. This well-formedness assump-

tion is not a strong restriction and its violation nearly never happens in practice.

We did not observe any violation of the assumption in our benchmark programs

(Section 5.5). If the program is not well-formed to a query, then we simply ignore

it.

Let us explain the condition with an example. Suppose that κ0 = c3 · c2 · c1 is

the initial context at c0 and κi = c1 is the context at ci. Suppose further that ci is

a call node. Then, our condition requires that ci should not be one of call site c1,

c2, and c3. Formally, the condition is defined as follows:

We say the given program is well-formed with respect to the query (cq, xq) iff for

every (c0, x0) ∈ Φ(cq ,xq) and its valid value-flow path

((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq)
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for all 0 ≤ i ≤ n such that ci ∈ Cc, ci is not included in the initial calling context

κ0; i.e.,

ci ̸∈ κ0 (3.11)

where we write c ∈ κ when there exists some κ′ such that c · κ′ is a suffix of κ.

In summary, for the path in (3.10), collecting contexts

{κ0 ⊖ κ0, . . . , κq ⊖ κ0}

give all the necessary partial calling contexts, where each κi ⊖ κ0 belongs to the

calling contexts of procedure fid(ci). Thus, we define the context selector for the

dependency path (3.10) as follows:

Definition 9 (Kp, Context Selector for Path p) Let p be a dependency path from

a source (c0, x0) to query (cq, xq):

p = ((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq),

where κ0 is an initial context at c0 such that (ι, ϵ) →∗
K∞

(c0, x0). The context se-

lector Kp for the path is defined as,

Kp = λf. {κi ⊖ κ0 | fid(ci) = f ∧ ((ci, κi),_) ∈ p}.

Example 6 From the path p1 in Example 5, the collection of κi is {κ0, 2·κ0, 4·2·κ0}
(see Figure 3.2). Hence, the collection of κi ⊖ κ0 is {ϵ, 2, 4 · 2}, where ϵ belongs to

procedure m, 2 to f, and 4 · 2 to g. Similar for path p2. Thus, Kp1 and Kp2 are:

Kp1 =


m 7→ {ϵ}
f 7→ {2}
g 7→ {4 · 2}

 Kp2 =

[
h 7→ {ϵ}
g 7→ {8}

]

Then, the final context selector K is the union of Kp’s:

33



Definition 10 (K, Context Selector) Let (cq, xq) be a query. The context selec-

tor K ∈ F→ ℘(C∗
c) for our selective analysis is:

K(f) = E(f) ∪
⋃
{Kp(f) | p ∈ Paths(cq ,xq)} (3.12)

where E(f) = {ϵ} if f ̸= fid(cq); and otherwise, E(f) = ∅.

Running selective context-sensitive main analysis Finally, we run the main

analysis with selective context-sensitivity K defined by the result of the impact

pre-analysis. The following proposition states that the pre-analysis-guided context-

sensitivity (K) manages to pay off at the selective main analysis, although the pre-

analysis is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization) Let PAK∞ ∈ C → S♯ be the result of the

impact pre-analysis (Definition 5). Let q ∈ Q♯ be a selected query (3.8). Let K be

the context selector for q (Definition 10) defined using the pre-analysis result PAK∞.

Let MAK ∈ CK → S be the main analysis result with the context selector K. Then,

the selective main analysis is at least as precise as the fully context-sensitive pre-

analysis for the selected query q:

MAK ⊑q PAK∞

where MAK ⊑q PAK∞ iff (q let
= (c, x))

∀κ ∈ K(fid(c)). MAK(κ, c) ∈ γ(⊤[x 7→ PAK∞(c)(x)]).

This impact realization holds thanks to two key properties. First, our selective

context-sensitivity K (Definition 10) distinguishes all the calling contexts that mat-

ter for the queries selected by the pre-analysis. Second, the main analysis designed

in Section 3.4 isolates these distinguished contexts from other undistinguished con-

texts (ϵ), ensuring that spurious flows caused by merging contexts never adversely

affect the precision of the selected query.
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3.6 Application to Selective Relational Analysis

A general principle behind our method is that we can selectively improve the preci-

sion of the analysis by using an impact pre-analysis that estimates the main static

analysis of the maximal precision. In this section, we use the same principle to

develop a selective relational analysis with the octagon domain [30].

Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is not necessarily

true.

A fully relational octagon analysis, which tracks constraints of the form ±x±
y ≤ c (where c ∈ Z ∪ {∞}) between all variables x and y, can prove the first

query. The analysis infers constraints b− a ≤ 0 at line 1 and i− b ≤ −1 at line 3.

Then, combining the two via a closure operation [30], the analysis concludes that

constraint i−a ≤ −1 holds at line 4. More specifically, the fully relational octagon

analysis computes the table (i.e., difference bound matrix [30]) on the left side of

the following:

a b c i

a 0 0 ∞ −1
b 0 0 ∞ −1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

a b c i

a ⋆ ⋆ ⊤ ⋆

b ⋆ ⋆ ⊤ ⋆

c ⊤ ⊤ ⋆ ⊤
i ⊤ ⊤ ⊤ ⋆

(3.13)
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where the bound c in constraint x − y ≤ c is stored at row y and column x in

the table.2 Note that the (a,i) entry of the table stores −1, which means that the

analysis proves i− a ≤ −1 at line 4.

However, this fully relational analysis tracks unnecessary relationships between

variables, which are either irrelevant to the query or not beneficial to the analysis

precision. For instance, it is sufficient to keep only the contraints between a, b,

and i to prove the first query, but the analysis unnecessarily maintains other re-

lationships such as one between a and c. Besides, tracking a relationship between,

for example, i and c does not change the end result of the analysis because the

second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only when doing so is

likely to improve the precision that matters for resolving given queries. To achieve

this goal, we use an impact pre-analysis that aims at estimating the behavior of the

octagon analysis under its fully relational setting. More specifically, like the fully

relational octagon analysis, the pre-analysis tracks constraints of the form ±x±y ≤
a for all variables x and y but approximately tracks the bound; we use one of

two abstract values ⋆ and ⊤ as bound a, rather than all integers and ∞. Here

x + y ≤ ⊤ represents all octagon constraints of the form x + y ≤ c including the

case that c = ∞, whereas x + y ⊑ ⋆ means octagon constraints x + y ≤ c with

integer constant c. This simple abstract domain is chosen because constant bound,

not ∞, proves buffer-overrun properties. For instance, in our example program, the

pre-analysis result at line 4 is the table on the righthand side in (3.13).

Next, using the pre-analysis results, we select variables whose relationships help

improve the precision regarding given queries. We first identify queries (in our ex-

ample, the first query) whose values are evaluated to ⋆ using the pre-analysis re-

sults. Then, for each of selected queries, we do a dependency analysis to find out

the variables whose relationships should be tracked together for the main analysis

to answer query. For instance, consider that the constraint regarding the first query

is i− a ⊑⋆. Our dependency analysis figures out that the constraint was derived
2For simplicity, we consider only constraints of the form x− y ≤ c. In fact, the octagon analysis

tracks constraints of both forms x−y ≤ c and x+y ≤ c and maintains a matrix of size (2×|Var|)2.
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in the pre-analysis by combining two constraints i − b ⊑ ⋆ and b − a ⊑ ⋆ in

its closure operation. Therefore, the dependency analysis concludes that the main

analysis should be able to derive three relationships i − a ⊑ ⋆, i − b ⊑ ⋆, and

b−a ⊑⋆ to prove the first query. Based on this conclusion, our selective octagon

analysis decides to track the relationships between variables a, b, and i.

In the rest of this section, we formalize the key aspects of our selective octagon

analysis.

Selective octagon analysis We first specify selective octagon analyses for the

following simple commands:

cmd → x := y + k | x :=?

where k ∈ Z is a positive integer and ? models arbitrary integers. We use Miné’s

definitions [30] of the octagon domain O and abstract semantics JcmdK : O→ O of

primitive commands; we consider the positive form x and negative form x̄ for each

variable x and represent an octagon domain element o ∈ O by a 2|Var| × 2|Var|
matrix where each entry oxy ∈ Z ∪ {+∞} stores the upper bound of y − x. The

definition of JcmdK for our commands can be found at [30].

With O and JcmdK, we define the domain of packed octagons that assign an

octagon to a subset of variables, which we call pack. An octagon of a pack expresses

only the constraints of the variables in that pack. We call Π ⊆ ℘(Var) of sets of

variables packing configuration, such that
⋃
Π = Var. The packed octagon domain

OΠ(Π) parameterized by packing configuration Π is then defined as OΠ(Π) = Π→
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O. We extend the abstract semantics JcmdK : O→ O of command cmd to JcmdKΠ :

OΠ(Π)→ OΠ(Π) as follows:

JcKΠ(po) = λπ ∈ Π.
Jx := y + kK(po(π)) (c = x := y + k ∧ x ∈ π ∧ y ∈ π)

Jx :=?K(po(π)) (c = x := y + k ∧ x ∈ π ∧ y ̸∈ π)

Jx :=?K(po(π)) (c = x :=? ∧ x ∈ π)

po(π) otherwise

The extended abstract semantics is essentially the same except it forgets all the

relationships of the assignee x (the second case) when the pack is missing one

variable involved in the octagonal constraint. The abstract semantics of program

in D = C → OΠ(Π) is defined as the least fixpoint of abstract transfer function

FΠ : D→ D, which is defined as usual.

The selectivity of the analysis is governed by the configuration Π. For instance,

with Π = {{x} | x ∈ Var}, the analysis degenerates to a non-relational analysis. With

Π = {Var}, the analysis becomes a fully relational analysis. Our goal is to find a

cost-effective Π by using an impact pre-analysis.

Impact pre-analysis Second, we formally define the impact pre-analysis. The

meaning of our abstract values (V = {⋆,⊤}) is described by γV such that γV(⋆) =

Z and γV(⊤) = Z∪{+∞}. The abstract state O♯ = {⊥♯}∪V2|Var|×2|Var| of our pre-

analysis is the set of matrices whose entries are in V. An abstract state o♯ ∈ O♯

denotes a set of octagons: we define γ : O♯ → ℘(O) as follows:

γ(o♯) = {o ∈ O | ∀i, j. oij ∈ γV(o
♯
ij)}
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The abstract semantics JcmdK♯ : O♯ → O♯ of each primitive command cmd of the

pre-analysis is defined as an over-approximation of the abstract semantics of the

main analyses: e.g.,

(
Jx :=?K♯(o♯)

)
ij
=


⋆ (i = j = x or i = j = x̄)

⊤ (i ̸∈ {x, x̄} or j ̸∈ {x, x̄})
o♯ij otherwise

The abstract domain of the pre-analysis is D♯ = C→ O♯ and the pre-analysis result

is defined as the least fixpoint of semantic function F ♯ : D♯ → D♯, which is defined

as usual.

Use of pre-analysis results From the pre-analysis results (lfpF ♯), we construct

Π as follows. Assume that a set Q ⊆ C × Var × Var of relational queries is given

in the program. A query (c, x, y) ∈ Q represents a predicate y− x < 0 at program

point c and we say that o ∈ O proves the query when oxy ≤ −1. We first select a

set Q♯ of queries that are judged promising by the pre-analysis:

Q♯ = {(c, x, y) ∈ Q | (lfpF ♯)(c) ̸= ⊥♯ ∧ (lfpF ♯)(c)xy = ⋆}.

Next, for each selected query (c, x, y) ∈ Q♯, we compute the pack π(c,x,y) ⊆ Var of

necessary variables using dependency analysis, which is simultaneously done with

the pre-analysis as follows: let V♮ be V×℘(Var) and O♮ be the set of 2|Var|×2|Var|
matrices over V♮. The idea is to over-approximate the involved variables for each

octagon constraint in the second component of V♮. The abstract semantics J·K♮ :

O♮ → O♮ is the same as J·K♯ except that it also maintains the involved variables:

e.g.,

(
Jx :=?K♮(o♮)

)
ij
=


(
⋆, {i, j}

)
(i = j = x or i = j = x̄)

(⊤,Var) (i ̸∈ {x, x̄} or j ̸∈ {x, x̄})
o♮ij otherwise
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Let F ♮ : (C → O♮) → (C → O♮) be the abstract transfer function and lfpF ♮ be

its least fixpoint. Then, the pack π(c,x,y) is defined as S such that
(
(lfpF ♮)(c)

)
xy

=(
⋆, S

)
. Finally, we extract the packing configuration Π using π(c,x,y) as follows:

Π = {π(c,x,y)} ∪ {{z} | z ∈ Var \ π(c,x,y)}. (3.14)

Selective main octagon analysis We run the selective octagon analysis with

the packing configuration in (3.14).

Proposition 2 (Impact Realization) Let π(c,x,y) be the pack for query (c, x, y)

defined by the result of our impact pre-analysis. Let Π be the packing configura-

tion for π(c,x,y), which is defined in (3.14). Let FΠ be the transfer function of the

selective octagon analysis with the Π. Then,
(
(lfpFΠ)(c)(π(c,x,y))

)
xy
̸= +∞.

3.7 Experiments

Selective Context-Sensitive Analysis In experiments, we used Sparrow [54],

a buffer-overrun analyzer that supports the full set of the C language. The baseline

analyzer performs a flow-sensitive and context-insensitive analysis, and tracks both

numeric and pointer values. For numeric values, it uses the interval domain by

default (alternatively, it can use the octagon domain). In addition to the interval

domain, the analysis uses an allocation-site–based heap abstraction for dynamic

memory allocation.

On top of the baseline analyzer, we have implemented our technique: we imple-

mented the impact pre-analysis in Example 3 and extended the baseline analysis to

be selectively context-sensitive. In Section 3.5.2, we considered only one query; in

implementation, the pre-analysis computes a single context selector K that spec-

ifies calling contexts for multiple queries. When analyzing a procedure under dif-

ferent calling contexts, we distinguish allocation sites for each context; that is, an

allocation-site produces different abstract locations under different calling contexts.

We have run the analysis for 10 software packages from the GNU open-source

projects. The analysis is global: the entire program is analyzed starting from the
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main procedure. All experiments were done on a Linux 2.6 system running on a

single core of Intel 3.07GHz box with 24GB of memory.

Table 3.1 presents the performance of our selective context-sensitive analysis

and compares it with the context-insensitive analysis. We measured the analysis

precision by the number of buffer accesses (#alarm) that cannot be proven safe

by the analysis.

The results show that our method leads to a cost-effective improvement of the

analysis precision. In total, the context-insensitive interval analysis points out 12,701

buffer accesses as potential buffer-overrun errors (there is a total of 83,776 buffer

accesses in the 10 programs). Our technique reduces the number down to 9,598

(24.4% reduction). In doing so, our technique increases the total analysis time from

707.1s to 903.6s (27.8% increase).

We observed that passing numeric values through long call chains is not uncom-

mon in the interval analysis of C programs. Our pre-analysis is able to prescribe

such a long call sequence as context-sensitive targets. For instance, in a2ps-4.14,

among 1682 call sequences prescribed by our pre-analysis, 488 call sequences were

of length longer than or equal to 3.

According to our experience, the k-callstrings approach does not scale when it

is used with the interval abstract domain for analyzing C programs. The 2- and

3-callstrings approaches did not stop after 30 minutes for programs over 10KLOC.

Even the 1-callstrings approach was slow and did not scale over 40KLOC. For in-

stance, the 3-callstrings approach succeeded to analyze spell-1.0 in 11.9s (with

30 alarms reported), it did not stop for bc-1.06.

Selective Octagon Analysis We have implemented our selective method on top

of the octagon-analysis version of our baseline analyzer. We compare the perfor-

mance of our selective analysis with an existing octagon analysis based on the syn-

tactic variable packing [30,36]. The syntactic packing approach relates variables to-

gether if they are involved in the same syntactic block [30]. We limited the maxi-

mum pack size by 10 in the syntactic packing strategy, since otherwise the analysis

did not scale.
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Table 3.2 shows our benchmark programs. Note that, although a relational anal-

ysis is a key to proving important numerical properties, it is useful only for specific

target programs and queries [11, 30]. Thus, we first identified a set of benchmark

programs and their buffer-overrun queries whose proofs require relational informa-

tion, and compared the performance of the two analyses on these programs and

queries. Column #Q shows the number of relational queries that we consider in

our experiments. In the experiments, we manually in-lined the functions that are

involved in the proofs of the target queries, so that our selective relational analysis

and the syntactic packing approach are run under context-sensitivity.

The results show that our selective octagon analysis has a competitive precision-

cost balance. Among 135 queries in total, our analysis is able to prove 132 (97.8%)

queries in 3,632.7s. On the other hand, the octagon analysis with syntactic packing

proved 44 (32.6%) queries in 33,840.3s; the syntactic packing heuristic often fails

to prescribe variable relationships necessary to prove queries. Our analysis is even

faster than the counterpart in most cases because it selectively turns on relational

analysis.

One thing to note is that running our pre-analysis is feasible in practice even

though it is fully relational. The bottlenecks of a fully relational octagon analysis

are the memory costs for representing 2|Var| × 2|Var| matrices and the expensive

strong closure operation [30] whose time complexity is cubic in the number of vari-

ables. Thanks to the simplicity of the abstract domain (⋆ or ⊤), we can reduce

the memory cost using a sparse representation for the matrices. For the closure

operation, we use Dijkstra’s algorithm and compute the shortest-path closure [30]

instead of the strong closure. In our experiments, using the shortest-path closure

made no difference in the pre-analysis precision.

3.8 Summary

We proposed a method of designing a selective “X-sensitive” analysis, where the se-

lection is guided by an impact pre-analysis. We followed this approach, presented

two program analyses that selectively apply precision-improving techniques, and

42



demonstrated their effectiveness with experiments in a realistic setting. The first

was a selective context-sensitive analysis that receives guidance from an impact

pre-analysis. Our experiments with realistic benchmarks showed that the method

reduces the number of false alarms of a context-insensitive interval analysis by

24.4%, while increasing the analysis cost by 27.8%. The second example was a se-

lective relational analysis with octagons using the same idea of impact pre-analysis,

and our experiments showed that our selective octagon analysis proves 88 more

queries than the existing one based on the syntactic variable packing and reduces

the analysis cost by 81%. We believe that our approach can be used for develop-

ing other selective analyses as well, e.g., selective flow-sensitive analysis, selective

loop-unrolling, etc.
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Chapter 4

Selectively X-sensitive analysis by

learning data generated by impact

pre-analysis

4.1 Introduction

Relational program analyses track sophisticated relationships among program vari-

ables and enable the automatic verification of complex properties of programs [9,

30]. However, the computational costs of various operations of these analyses are

high so that vanilla implementations of the analyses do not scale even to moderate-

sized programs. For example, transfer functions of the Octagon analysis [30] have a

cubic worst-case time complexity in the number of program variables, which makes

it impossible to analyze large programs.

In this paper, we consider one of the most popular optimizations used by prac-

tical relational program analyses, called variable clustering [2, 30, 37, 57]. Given a

program, an analyzer with this optimization forms multiple relatively-small subsets

of variables, called variable clusters or clusters. Then, it limits the tracked informa-

tion to the relationships among variables within each cluster, not across those clus-

ters. So far strategies based on simple syntactic or semantic criteria have been used
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for clustering variables for a given program, but they are not satisfactory. They are

limited to a specific class of target programs [2, 57] or employ a pre-analysis that

is cheaper than a full relational analysis but frequently takes order-of-magnitude

more time than the non-relational analysis for medium-sized programs [37].

In this paper, we propose a new method for automatically learning a variable-

clustering strategy for the Octagon analysis from a given codebase. When applied

to a program, the learned strategy represents each pair of variables (xi, xj) in the

program by a boolean vector, and maps such a vector to ⊕ or ⊖, where ⊕ signifies

the importance of tracking the relationship between xi and xj . If we view such ⊕-

marked (xi, xj) as an edge of a graph, the variant of Octagon in this paper decides

to track the relationship between variables x and y only when there is a path from

x to y in the graph. According to our experiments, running this strategy for all

variable pairs is quick and results in a good clustering of variables, which makes the

variant of Octagon achieve performance comparable to the non-relational Interval

analysis while enjoying the accuracy of the original Octagon in many cases.

The most important aspect of our learning method is the automatic provision

of labeled data. Although the method is essentially an instance of supervised learn-

ing, it does not require the common unpleasant involvement of humans in super-

vised learning, namely, labeling. Our method takes a codebase consisting of typical

programs of small-to-medium size, and automatically generates labels for pairs of

variables in those programs by using the impact pre-analysis from our previous

work [37], which estimates the impact of tracking relationships among variables

by Octagon on proving queries in given programs. Our method precisely labels a

pair of program variables with ⊕ when the pre-analysis says that the pair should

be tracked. Because this learning occurs offline, we can bear the cost of the pre-

analysis, which is still significantly lower than the cost of the full Octagon analy-

sis. Once labeled data are generated, our method runs an off-the-shelf classification

algorithm, such as decision-tree inference [31], for inferring a classifier for those la-

beled data. This classifier is used to map vector representations of variable pairs
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to ⊕ or ⊖. Conceptually, the inferred classifier is a further approximation of the

pre-analysis, which gets found automatically from a given codebase.

The experimental results show that our method results in the learning of a

cost-effective variable-clustering strategy. We implemented our learning method on

top of a static buffer overflow detector for C programs and tested against open

source benchmarks. In the experiments, our analysis with the learned variable-

clustering strategy scales up to 100KLOC within the two times of the analysis

cost of the Interval analysis. This corresponds to the 33x speed-up of the selective

relational analysis based on the impact pre-analysis [37] (which was already signif-

icantly faster than the original Octagon analysis). The price of speed-up was mere

2% increase of false alarms.

We summarize the contributions of this paper below:

1. We propose a method for automatically learning an effective strategy for

variable-clustering for the Octagon analysis from a given codebase. The method

infers a function that decides, for a program P and a pair of variables (x, y)

in P , whether tracking the relationship between x and y is important. The

learned strategy uses this function to cluster variables in a given program.

2. We show how to automatically generate labeled data from a given codebase

that are needed for learning. Our key idea is to generate such data using the

impact pre-analysis for Octagon from [37]. This use of the pre-analysis means

that our learning step is just the process of finding a further approximation

of the pre-analysis, which avoids expensive computations of the pre-analysis

but keeps its important estimations.

3. We experimentally show the effectiveness of our learning method using a re-

alistic static analyzer for full C and open source benchmarks. Our variant of

Octagon with the learned strategy is 33x faster than the selective relational

analysis based on the impact pre-analysis [37] while increasing false alarms

by only 2%.
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4.2 Informal Explanation

4.2.1 Octagon Analysis with Variable Clustering

We start with informal explanation of our approach using the program in Figure

4.1. The program contains two queries about the relationships between i and vari-

ables a, b inside the loop. The first query i < a is always true because the loop

condition ensures i < b and variables a and b have the same value throughout the

loop. The second query i < c, on the other hand, may become false because c is

set to an unknown input at line 2.

The Octagon analysis [30] discovers program invariants strong enough to prove

the first query in our example. At each program point it infers an invariant of the

form (∧
ij

Lij ≤ xj + xi ≤ Uij

)
∧
(∧

ij

L′
ij ≤ xj − xi ≤ U ′

ij

)
for Lij , L

′
ij ∈ Z∪{−∞} and Uij , U

′
ij ∈ Z∪{∞}. In particular, at the first query of

our program, the analysis infers the following invariant, which we present in the

usual matrix form:

a −a b −b c −c i −i
a 0 ∞ 0 ∞ ∞ ∞ −1 ∞
−a ∞ 0 ∞ 0 ∞ ∞ ∞ ∞
b 0 ∞ 0 ∞ ∞ ∞ −1 ∞
−b ∞ 0 ∞ 0 ∞ ∞ ∞ ∞
c ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
−c ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞
i ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
−i ∞ −1 ∞ −1 ∞ ∞ ∞ 0

(4.1)

The ij-th entry mij of this matrix means an upper bound ej−ei ≤ mij , where

ej and ei are expressions associated with the j-th column and the i-th row of the

matrix respectively and they are variables with or without the minus sign. The
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1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

Figure 4.1: Example program

matrix records −1 and ∞ as upper bounds for i− a and i− c, respectively. Note

that these bounds imply the first query, but not the second.

In practice the Octagon analysis is rarely used without further optimization,

because it usually spends a large amount of computational resources for discovering

unnecessary relationships between program variables, which do not contribute to

proving given queries. In our example, the analysis tracks the relationship between

c and i, although it does not help prove any of the queries.

A standard approach for addressing this inefficiency is to form subsets of vari-

ables, called variable clusters or clusters. According to a pre-defined clustering strat-

egy, the analysis tracks the relationships between only those variables within the

same cluster, not across clusters. In our example, this approach would form two

clusters {a, b, i} and {c} and prevent the Octagon analysis from tracking the un-

necessary relationships between c and the other variables. The success of the ap-

proach lies in finding a good strategy that is able to find effective clusters for a

given program. This is possible as demonstrated in the several previous work [2,

37, 57], but it is highly nontrivial and often requires a large amount of trial and

error of analysis designers.

Our goal is to develop a method for automatically learning a good variable-

clustering strategy for a target class of programs. This automatic learning happens

offline with a collection of typical sample programs from the target class, and the

learned strategy is later applied to any programs in the class, most of which are

not used during learning. We want the learned strategy to form relatively-small
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variable clusters so as to lower the analysis cost and, at the same time, to put

a pair of variables in the same cluster if tracking their relationship by Octagon

is important for proving given queries. For instance, such a strategy would clus-

ter variables of our example program into two groups {a, b, i} and {c}, and make

Octagon compute the following smaller matrix at the first query:

a −a b −b i −i
a 0 ∞ 0 ∞ −1 ∞
−a ∞ 0 ∞ 0 ∞ ∞
b 0 ∞ 0 ∞ −1 ∞
−b ∞ ∞ ∞ 0 ∞ ∞
i ∞ ∞ ∞ ∞ 0 ∞
−i ∞ −1 ∞ −1 ∞ ∞

(4.2)

4.2.2 Automatic Learning of a Variable-Clustering Strategy

In this paper we will present a method for learning a variable-clustering strategy.

Using a given codebase, it infers a function F that maps a tuple (P, (x, y)) of a

program P and variables x, y in P to ⊕ and ⊖. The output ⊕ here means that

tracking the relationship between x and y is likely to be important for proving

queries. The inferred F guides our variant of the Octagon analysis. Given a pro-

gram P , our analysis applies F to every pair of variables in P , and computes the

finest partition of variables that puts every pair (x, y) with the ⊕ mark in the

same group. Then, it analyzes the program P by tracking relationships between

variables within each group in the partition, but not across groups.

Our method for learning takes a codebase that consists of typical programs

in the intended application of the analysis. Then, it automatically synthesizes the

above function F in two steps. First, it generates labeled data automatically from

programs in the codebase by using the impact pre-analysis for Octagon from our

previous work [37]. This is the most salient aspect of our approach; in a similar

supervised-learning task, such labeled data are typically constructed manually, and

avoiding this expensive manual labelling process is considered a big challenge for
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supervised learning. Next, our approach converts labeled data to boolean vectors

marked with ⊕ or ⊖, and runs an off-the-shelf supervised learning algorithm to

infer a classifier, which is used to define F .

Automatic Generation of Labeled Data Labeled data in our case are a col-

lection of triples (P, (x, y), L) where P is a program, (x, y) is a pair of variables

in P , and L ∈ {⊕,⊖} is a label that indicates whether tracking the relationship

between x and y is important. We generate such labeled data automatically from

the programs P1, . . . , PN in the given codebase.

The key idea is to use the impact pre-analysis for Octagon [37], and to con-

vert the results of this pre-analysis to labeled data. Just like the Octagon analysis,

this pre-analysis tracks the relationships between variables, but it aggressively ab-

stracts any numerical information so as to achieve better scalability than Octagon.

The goal of the pre-analysis is to identify, as much as possible, the case that Oc-

tagon would give a precise bound for ±x± y, without running Octagon itself. As

in Octagon, the pre-analysis computes a matrix with rows and columns for vari-

ables with or without the minus sign, but this matrix m♯ contains ⋆ or ⊤, instead

of any numerical values. For instance, when applied to our example program, the

pre-analysis would infer the following matrix at the first query:

a −a b −b c −c i −i
a ⋆ ⊤ ⋆ ⊤ ⊤ ⊤ ⋆ ⊤
−a ⊤ ⋆ ⊤ ⋆ ⊤ ⊤ ⊤ ⊤
b ⋆ ⊤ ⋆ ⊤ ⊤ ⊤ ⋆ ⊤
−b ⊤ ⋆ ⊤ ⋆ ⊤ ⊤ ⊤ ⊤
c ⊤ ⊤ ⊤ ⊤ ⋆ ⊤ ⊤ ⊤
−c ⊤ ⊤ ⊤ ⊤ ⊤ ⋆ ⊤ ⊤
i ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⋆ ⊤
−i ⊤ ⋆ ⊤ ⋆ ⊤ ⊤ ⊤ ⋆

(4.3)
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Each entry of this matrix stores the pre-analysis’s (highly precise on the positive

side) prediction on whether Octagon would put a finite upper bound at the cor-

responding entry of its matrix at the same program point. ⋆ means likely, and ⊤
unlikely. For instance, the above matrix contains ⋆ for the entries for i − b and

b−a, and this means that Octagon is likely to infer finite (thus informative) upper

bounds of i − b and b − a. In fact, this predication is correct because the actual

upper bounds inferred by Octagon are −1 and 0, as can be seen in (4.1).

We convert the results of the impact pre-analysis to labeled data as follows. For

every program P in the given codebase, we first collect all queries Q = {q1, . . . , qk}
that express legal array accesses or the success of assert statements in terms of

upper bounds on ±x± y for some variables x, y. Next, we filter out queries qi ∈ Q

such that the upper bounds associated with qi are not predicted to be finite by

the pre-analysis. Intuitively, the remaining queries are the ones that are likely to

be proved by Octagon according to the prediction of the pre-analysis. Then, for all

remaining queries q′1, . . . , q
′
l, we collect the results m♯

1, . . . ,m
♯
l of the pre-analysis at

these queries, and generate the following labeled data:

DP = {(P, (x, y), L) |

L = ⊕ ⇐⇒ at least one of the entries of some mi for ±x± y has ⋆}.

Notice that we mark (x, y) with ⊕ if tracking the relationship between x and y

is useful for some query q′i. An obvious alternative is to replace some by all, but

we found that this alternative led to the worse performance in our experiments.1

This generation process is applied for all programs P1, . . . , PN in the codebase, and

results in the following labeled data: D =
⋃

1≤i≤N DPi . In our example program,

if the results of the pre-analysis at both queries are the same matrix in (4.3), our

approach picks only the first matrix because the pre-analysis predicts a finite upper
1Because the pre-analysis uses ⋆ cautiously, only a small portion of variable pairs is marked with

⊕ (that is, 5864/258, 165, 546) in our experiments. Replacing “some” by “all” reduces this portion
by half (2230/258, 165, 546) and makes the learning task more difficult.
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bound only for the first query, and it produces the following labeled data from the

first matrix:

{(P, t,⊕) | t ∈ T} ∪ {(P, t,⊖) | t ̸∈ T}

where T = {(a, b), (b, a), (a, i), (i, a), (b, i), (i, b), (a, a), (b, b), (c, c), (i, i)}.

Application of an Off-the-shelf Classification Algorithm Once we generate

labeled data D, we represent each triple in D as a vector of {0, 1} labeled with

⊕ or ⊖, and apply an off-the-shelf classification algorithm, such as decision-tree

inference [31].

The vector representation of each triple in D is based on a set of so called

features, which are syntactic or semantic properties of a variable pair (x, y) under

a program P . Formally, a feature f maps such (P, (x, y)) to 0 or 1. For instance,

f may check whether the variables x and y appear together in an assignment of

the form x = y + c in P , or it may test whether x or y is a global variable.

Table 4.1 lists all the features that we designed and used for our variant of the

Octagon analysis. Let us denote these features and results of applying them using

the following symbols:

f = {f1, . . . , fm}, f(P, (x, y)) =
(
f1(P, (x, y)), . . . , fm(P, (x, y))

)
∈ {0, 1}m.

The vector representation of triples in D is the following set:

V = {(f(P, (x, y)), L) | (P, (x, y), L) ∈ D} ∈ ℘({0, 1}m × {⊕,⊖})

We apply an off-the-self classification algorithm to the set. In our experiments, the

algorithm for learning a decision tree gave the best classifier for our variant of the

Octagon analysis.
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4.3 Octagon Analysis with Variable Clustering

In this section, we describe a variant of the Octagon analysis that takes not just

a program to be analyzed but also clusters of variables in the program. Such clus-

ters are computed according to some strategy before the analysis is run. Given

a program and variable clusters, this variant Octagon analysis infers relationships

between variables within the same cluster but not across different clusters. Sec-

tion 5.3.2 presents our method for automatically learning a good strategy for form-

ing such variable clusters.

4.3.1 Programs

A program is represented by a control-flow graph (C,→), where C is the set of

program points and (→) ⊆ C × C denotes the control flows of the program. Let

Varn = {x1, . . . , xn} be the set of variables. Each program point c ∈ C has a prim-

itive command working with these variables. When presenting the formal setting

and our results, we mostly assume the following collection of simple primitive com-

mands:

cmd ::= x = k | x = y + k | x = ?

where x, y are program variables, k ∈ Z is an integer, and x = ? is an assignment

of some nondeterministically-chosen integer to x. The Octagon analysis is able to

handle the first two kinds of commands precisely. The last command is usually an

outcome of a preprocessor that replaces a complex assignment such as non-linear

assignment x = y ∗ y + 1 (which cannot be analyzed accurately by the Octagon

analysis) by this overapproximating non-deterministic assignment.

4.3.2 Octagon Analysis

We briefly review the Octagon analysis in [30]. Let Varn = {x1, . . . , xn} be the set

of variables that appear in a program to be analyzed. The analysis aims at finding

the upper and lower bounds of expressions of the forms xi, xi+xj and xi−xj for
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variables xi, xj ∈ Varn. The analysis represents these bounds as a (2n×2n) matrix

m of values in Z ∪ {∞}, which means the following constraint:

∧
(1≤i,j≤n)

∧
(k,l∈{0,1})

((−1)l+1xj − (−1)k+1xi) ≤ m(2i−k)(2j−l)

The abstract domain O of the Octagon analysis consists of all those matrices and

⊥, and uses the following pointwise order: for m,m′ ∈ O,

m ⊑ m′ ⇐⇒ (m = ⊥) ∨ (m ̸= ⊥ ∧m′ ̸= ⊥ ∧ ∀1 ≤ i, j ≤ 2n. (mij ≤ m′
ij)).

This domain is a complete lattice (O,⊑,⊥,⊤,⊔,⊓) where ⊤ is the matrix contain-

ing only ∞ and ⊔ and ⊓ are defined pointwise. The details of the lattice structure

can be found in [30].

Usually multiple abstract elements of O mean constraints with the same set of

solutions. If we fix a set S of solutions and collect in the set M all the abstract

elements with S as their solutions, the set M always contains the least element

according to the ⊑ order. There is a cubic-time algorithm for computing this least

element from any m ∈M . We write m• to denote the result of this algorithm, and

call it strong closure of m.

The abstract semantics of primitive commands JcmdK : O → O is defined in

Figure 4.2. The effects of the first two assignments in the concrete semantics can

be tracked precisely using abstract elements of Octagon. The abstract semantics of

these assignments do such tracking. Jxi = ?Km in the last case computes the strong

closure of m and forgets any bounds involving xi in the resulting abstract element

m•. The analysis computes a pre-fixpoint of the semantic function F : (C→ O)→
(C→ O) (i.e., XI with F (XI)(c) ⊑ XI(c) for all c ∈ C):

F (X)(c) = Jcmd(c)K(
⊔
c′→c

X(c′))

where cmd(c) is the primitive command associated with the program point c.

57



Jxi = kKm = m′ when m′
pq =


−2k p = 2i− 1 ∧ q = 2i

2k p = 2i ∧ q = 2i− 1(
Jxi = ?Km

)
pq

otherwise

Jxi = xj + kKm = m′ when m′
pq =



−k p = 2i− 1 ∧ q = 2j − 1

−k p = 2j ∧ q = 2i

k p = 2j − 1 ∧ q = 2i− 1

k p = 2i ∧ q = 2j(
Jxi = ?Km

)
pq

otherwise

Jxi =?Km = ⊥ when m• = ⊥

Jxi =?Km = m′ when m• ̸= ⊥ and m′
pq =


∞ p ∈ {2i− 1, 2i} ∧ q ̸∈ {2i− 1, 2i}
∞ p ̸∈ {2i− 1, 2i} ∧ q ∈ {2i− 1, 2i}
0 p = q = 2i− 1 ∨ p = q = 2i

(m•)pq otherwise

Figure 4.2: Abstract semantics of some primitive commands in the Octagon anal-
ysis. We show the case that the input m is not ⊥; the abstract semantics always
maps ⊥ to ⊥. Also, in xi = xj + k, we consider only the case that i ̸= j.

4.3.3 Variable Clustering and Partial Octagon Analysis

We use a program analysis that performs the Octagon analysis only partially. This

variant of Octagon is similar to those in [30,37]. This partial Octagon analysis takes

a collection Π of clusters of variables, which are subsets π of variables in Varn

such that
⋃

π∈Π π = Varn. Each π ∈ Π specifies a variable cluster and instructs

the analysis to track relationships between variables in π. Given such a collection

Π, the partial Octagon analysis analyzes the program using the complete lattice

(OΠ,⊑Π,⊥Π,⊤Π,⊔Π,⊓Π) where

OΠ =
∏
π∈Π

Oπ (Oπ is the lattice of Octagon for variables in π).

That is, OΠ consists of families {mπ}π∈Π such that each mπ is an abstract ele-

ment of Octagon used for variables in π, and all lattice operations of OΠ are the
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pointwise extensions of those of Octagon. For the example in Section 5.2, if we

use Π = {{a, b, c, i}}, the partial Octagon analysis uses the same domain as Oc-

tagon’s. But if Π = {{a, b, i}, {c}}, the analysis uses the product of two smaller

abstract domains, one for {a, b, i} and the other for {c}.
The partial Octagon analysis computes a pre-fixpoint of the following FΠ:

FΠ : (C→ OΠ)→ (C→ OΠ), FΠ(X)(c) = Jcmd(c)KΠ(
⊔
c′→c

X(c′)).

Here the abstract semantics Jcmd(c)KΠ : OΠ → OΠ of the command c is defined in

terms of Octagon’s:

(Jxi = ?KΠpo)π =

{
Jxi = ?K(poπ) xi ∈ π

poπ otherwise

(Jxi = kKΠpo)π =

{
Jxi = kK(poπ) xi ∈ π

poπ otherwise

(Jxi = xj + kKΠpo)π =

{
Jxi = xj + kK(poπ) xi, xj ∈ π

Jxi = ?K(poπ) otherwise

The abstract semantics of a command updates the component of an input abstract

state for a cluster π if the command changes any variable in the cluster; otherwise,

it keeps the component. The update is done according to the abstract semantics

of Octagon. Notice that the abstract semantics of xi = xj + k does not track the

relationship xj − xi = k in the π component when xi ∈ π but xj ̸∈ π. Giving

up such relationships makes this partial analysis perform faster than the original

Octagon analysis.

4.4 Learning a Strategy for Clustering Variables

The success of the partial Octagon analysis lies in choosing good clusters of vari-

ables for a given program. Ideally each cluster of variable should be relatively

small, but if tracking the relationship between variables xi and xj is important,
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some cluster should contain both xi and xj . In this section, we present a method

for learning a strategy that chooses such clusters. Our method takes as input a col-

lection of programs, which reflects a typical usage scenario of the partial Octagon

analysis. It then automatically learns a strategy from this collection.

In the section we assume that our method is given {P1, . . . , PN}, and we let

P = {(P1, Q1), . . . , (PN , QN )},

where Qi means a set of queries in Pi. It consists of pairs (c, p) of a program point

c of Pi and a predicate p on variables of Pi, where the predicate express an upper

bound on variables or their differences, such as xi−xj ≤ 1. Another notation that

we adopt is VarP for each program P , which means the set of variables appearing

in P .

4.4.1 Automatic Generation of Labeled Data

The first step of our method is to generate labeled data from the given collection P
of programs and queries. In theory the generation of this labeled data can be done

by running the full Octagon analysis. For every (Pi, Qi) in P, we run the Octagon

analysis for Pi, and collect queries in Qi that are proved by the analysis. Then,

we label a pair of variable (xj , xk) in Pi with ⊕ if (i) a nontrivial2 upper or lower

bound (xi, xk) is computed by the analysis at some program point c in Pi and (ii)

the proof of some query by the analysis depends on this nontrivial upper bound.

Otherwise, we label the pair with ⊖. The main problem with this approach is that

we cannot analyze all the programs in P with Octagon because of the scalability

issue of Octagon.

In order to lessen this scalability issue, we instead run the impact pre-analysis

for Octagon from our previous work [37], and convert its results to labeled data.

Although this pre-analysis is not as cheap as the Interval analysis, it scales far

better than Octagon and enables us to generate labeled data from a wide range

of programs. Our learning method then uses the generated data to find a strategy
2By nontrivial, we mean finite bounds that are neither ∞ nor −∞.
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for clustering variables. The found strategy can be viewed as an approximation of

this pre-analysis that scales as well as the Interval analysis.

Impact Pre-analysis We review the impact pre-analysis from [37], which aims

at quickly predicting the results of running the Octagon analysis on a given pro-

gram P . Let n = |VarP |, the number of variables in P . At each program point

c of P , the pre-analysis computes a (2n × 2n) matrix m♯ with entries in {⋆,⊤}.
Intuitively, such a matrix m♯ records which entries of the matrix m computed by

Octagon are likely to contain nontrivial bounds. If the ij-th entry of m♯ is ⋆,

the ij-th entry of m is likely to be non-∞ according to the prediction of the pre-

analysis. The pre-analysis does not make similar prediction for entries of m♯ with

⊤. Such entries should be understood as the absence of information.

The pre-analysis uses a complete lattice (O♯,⊑♯,⊥♯,⊤♯,⊔♯,⊓♯) where O♯ con-

sists of (2n × 2n) matrices of values in {⋆,⊤}, the order ⊑♯ is the pointwise ex-

tension of the total order ⋆ ⊑ ⊤, and all the other lattice operations are defined

pointwise. There is a Galois connection between the powerset lattice ℘(O) (with

the usual subset order) and O♯:

γ : O♯ → ℘(O), γ(m♯) = {⊥} ∪ {m ∈ O | ∀i, j. (m♯
ij = ⋆ =⇒ mij ̸=∞)},

α : ℘(O)→ O♯, α(M)ij = ⋆ ⇐⇒ (
⊔

M ̸= ⊥ =⇒ (
⊔

M)ij ̸=∞).

The pre-analysis uses the abstract semantics JcmdK♯ : O♯ → O♯ that is derived

from this Galois connection and the abstract semantics of the same command in

Octagon (Figure 4.2). Figure 4.3 shows the results of this derivation.
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Jxi = kK♯m♯ = m♯
1 when (m♯

1)pq =


⋆ p = 2i− 1 ∧ q = 2i

⋆ p = 2i ∧ q = 2i− 1(
Jxi = ?K♯m♯

)
pq

otherwise

Jxi = xj + kK♯m♯ = m♯
1 when (m♯

1)pq =



⋆ p = 2i− 1 ∧ q = 2j − 1

⋆ p = 2j ∧ q = 2i

⋆ p = 2j − 1 ∧ q = 2i− 1

⋆ p = 2i ∧ q = 2j(
Jxi = ?K♯m♯

)
pq

otherwise

Jxi =?K♯m♯ = m♯
1 when (m♯

1)pq =


⊤ p ∈ {2i− 1, 2i} ∧ q ̸∈ {2i− 1, 2i}
⊤ p ̸∈ {2i− 1, 2i} ∧ q ∈ {2i− 1, 2i}
⋆ p = q = 2i− 1 ∨ p = q = 2i

((m♯)•)pq otherwise

Figure 4.3: Abstract semantics of some primitive commands in the impact pre-
analysis. In xi = xj + k, we show only the case that i ̸= j.

Automatic Labeling For every (Pi, Qi) ∈ P, we run the pre-analysis on Pi, and

get an analysis result Xi that maps each program point in Pi to a matrix in O♯.

From such Xi, we generate labeled data D as follows:

Q′
i = {c | ∃p. (c, p) ∈ Qi ∧ the jk entry is about the upper bound claimed in p

∧Xi(c) ̸= ⊥ ∧Xi(c)jk = ⋆},

D =
⋃

1≤i≤N

{(Pi, (xj , xk), L) | L = ⊕ ⇐⇒
∃c ∈ Q′

i.∃l,m ∈ {0, 1}. Xi(c)(2j−l)(2k−m) = ⋆}.

Notice that we label (xj , xk) with ⊕ if tracking their relationship is predicted to

be useful for some query according to the results of the pre-analysis.
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4.4.2 Features and Classifier

The second step of our method is to represent labeled data D as a set of boolean

vectors marked with ⊕ or ⊖, and to run an off-the-shelf algorithm for inferring

a classifier with this set of labeled vectors. The vector representation assumes a

collection of features f = {f1, . . . , fm}, each of which maps a pair (P, (x, y)) of

program P and variable pair (x, y) to 0 or 1. The vector representation is the set

V defined as follows:

f(P, (x, y)) =
(
f1(P, (x, y)), . . . , fm(P, (x, y))

)
∈ {0, 1}m,

V = {(f(P, (x, y)), L) | (P, (x, y), L) ∈ D} ∈ ℘({0, 1}m × {⊕,⊖}).

An off-the-shelf algorithm computes a binary classifier C from V:

C : {0, 1}m → {⊕,⊖}.

In our experiments, V has significantly more vectors marked with ⊖ than those

marked with ⊕. We found that the algorithm for inferring a decision tree [31]

worked the best for our V
Table 4.1 shows the features that we developed for the Octagon analysis and

used in our experiments. These features work for real C programs (not just those in

the small language that we have used so far in the paper), and they are all symmet-

ric in the sense that fi(P, (x, y)) = fi(P, (y, x)). Features 1–6 detect good situations

where the Octagon analysis can track the relationship between variables precisely.

For example, f1(P, (x, y)) = 1 when x and y appear in an assignment x = y+k or

y = x + k for some constant k in the program P . Note that the abstract seman-

tics of these commands in Octagon do not lose any information. The next features

7–11, on the other hand, detect bad situations where the Octagon analysis cannot

track the relationship between variables precisely. For example, f7(P, (x, y)) = 1

when x or y gets multiplied by a constant different from 1 in a command of P , as

in the assignments y = x ∗ 2 and x = y ∗ 2. Notice that these assignments set up

relationships between x and y that can be expressed only approximately by Oc-
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tagon. We have found that detecting both good and bad situations is important

for learning an effective variable-clustering strategy. The remaining features (12–

30) describe various syntactic and semantics properties about program variables

that often appear in typical C programs. For the semantic features, we use the re-

sults of a flow-insensitive analysis that quickly computes approximate information

about pointer aliasing and ranges of numerical variables.

4.4.3 Strategy for Clustering Variables

The last step is to define a strategy that takes a program P , especially one not

seen during learning, and clusters variables in P . Assume that a program P is given

and let VarP be the set of variables in P . Using features f and inferred classifier

C, our strategy computes the finest partition of VarP ,

Π = {π1, . . . , πk} ⊆ ℘(VarP ),

such that for all (x, y) ∈ VarP × VarP , if we let F = C ◦ f , then

F(P, (x, y)) = ⊕ =⇒ x, y ∈ πi for some πi ∈ Π.

The partition Π is the clustering of variables that will be used by the partial Oc-

tagon analysis subsequently. Notice that although the classifier does not indicate

the importance of tracking the relationship between some variables x and z (i.e.,

F(P, (x, z)) = ⊖), Π may put x and z in the same π ∈ Π, if F(P, (x, y)) =

F(P, (y, z)) = ⊕ for some y. Effectively, our construction of Π takes the transi-

tive closure of the raw output of the classifier on variables. In our experiments,

taking this transitive closure was crucial for achieving the desired precision of the

partial Octagon analysis.
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Table 4.1: Features for Relations of Two Variables.

i Description of feature fi(P, (x, y)). k represents a constant.
1 P contains an assignment x = y + k or y = x+ k.
2 P contains a guard x ≤ y + k or y ≤ x+ k.
3 P contains a malloc of the form x = malloc(y) or y = malloc(x).
4 P contains a command x = strlen(y) or y = strlen(x).
5 P sets x to strlen(y) or y to strlen(x) indirectly, as in t = strlen(y);x = t.
6 P contains an expression of the form x[y] or y[x].
7 P contains an expression that multiplies x or y by a constant different from 1.
8 P contains an expression that multiplies x or y by a variable.
9 P contains an expression that divides x or y by a variable.
10 P contains an expression that has x or y as an operand of bitwise operations.
11 P contains an assignment that updates x or y using non-Octagonal expressions.
12 x and y are has the same name in different scopes.
13 x and y are both global variables in P .
14 x or y is a global variable in P .
15 x or y is a field of a structure in P .
16 x and y represent sizes of some arrays in P .
17 x and y are temporary variables in P .
18 x or y is a local variable of a recursive function in P .
19 x or y is tested for the equality with ±1 in P .
20 x and y represent sizes of some global arrays in P .
21 x or y stores the result of a library call in P .
22 x and y are local variables of different functions in P .
23 {x, y} consists of a local var. and the size of a local array in different fun. in P .
24 {x, y} consists of a local var. and a temporary var. in different functions in P .
25 {x, y} consists of a global var. and the size of a local array in P .
26 {x, y} contains a temporary var. and the size of a local array in P .
27 {x, y} consists of local and global variables not accessed by the same fun. in P .
28 x or y is a self-updating global var. in P .
29 The flow-insensitive analysis of P results in a finite interval for x or y.
30 x or y is the size of a constant string in P .
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4.5 Experiments

We describe the experimental evaluation of our method for learning a variable-

clustering strategy. The evaluation aimed to answer the following questions:

1. Effectiveness: How well does the partial Octagon with a learned strategy

perform, compared with the existing Interval and Octagon analyses?

2. Generalization: Does the strategy learned from small programs also work

well for large unseen programs?

3. Feature design: How should we choose a set of features in order to make

our method learn a good strategy?

4. Choice of an off-the-shelf classification algorithm: Our method uses a

classification algorithm for inferring a decision tree by default. How much

does this choice matter for the performance of our method?

We conducted our experiments with a realistic static analyzer and open-source

C benchmarks. We implemented our method on top of Sparrow, a static buffer-

overflow analyzer for real-world C programs [54]. The analyzer performs the com-

bination of the Interval analysis and the pointer analysis based on allocation-site

abstraction with several precision-improving techniques such as fully flow-, field-

sensitivity and selective context-sensitivity [37]. In our experiments, we modified

Sparrow to use the partial Octagon analysis as presented in Section 4.3, instead

of Interval. The partial Octagon was implemented on top of the sparse analysis

framework [36,37], so it is significantly faster than the vanilla Octagon analysis [30].

For the implementation of data structures and abstract operations for Octagon, we

tried the OptOctagons plugin [53] of the Apron framework [20]. For the decision

tree learning, we used Scikit-learn [39]. We used 17 open-source benchmark pro-

grams (Table 4.3) and all the experiments were done on a Ubuntu machine with

Intel Xeon clocked at 2.4GHz cpu and 192GB of main memory.
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4.5.1 Effectiveness

We evaluated the effectiveness of a strategy learned by our method on the cost and

precision of Octagon. We compared the partial Octagon analysis with a learned

variable-clustering strategy with the Interval analysis and the approach for opti-

mizing Octagon in [37]. The approach in [37] also performs the partial Octagon

analysis in Section 4.3 but with a fixed variable-clustering strategy that uses the

impact pre-analysis online (rather than offline as in our case): the strategy runs

the impact pre-analysis on a given program and computes variable clusters of the

program based on the results of the pre-analysis. Table 4.3 shows the results of

our comparison with 17 open-source programs. We used the leave-one-out cross

validation to evaluate our method; for each program P in the table, we applied

our method to the other 16 programs, learned a variable-clustering strategy, and

ran the partial Octagon on P with this strategy.

The results show that the partial Octagon with a learned strategy strikes the

right balance between precision and cost. In total, the Interval analysis reports

7,406 alarms from the benchmark set.3 The existing approach for partial Octagon [37]

reduced the number of alarms by 252, but increased the analysis time by 62x.

Meanwhile, our learning-based approach for partial Octagon reduced the number

of alarms by 240 while increasing the analysis time by 2x.

We point out that in some programs, the precision of our approach was incom-

parable with that of the approach in [37]. For instance, for spell-1.0, our ap-

proach is less precise than that of [37] because some usage patterns of variables in

spell-1.0 do not appear in other programs. On the other hand, for httptunnel-3.3,

our approach produces better results because the impact pre-analysis of [37] uses

⋆ conservatively and fails to identify some important relationships between vari-

ables.
3In practice, eliminating these false alarms is extremely challenging in a sound yet non-domain-

specific static analyzer for full C. The false alarms arise from a variety of reasons, e.g., recursive
calls, unknown library calls, complex loops, etc.
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Table 4.2: Characteristics of the benchmark programs. LOC reports lines of code
before preprocessing. Var reports the number of program variables (more precisely,
abstract locations).

Program LOC Var
brutefir-1.0f 103 54
consolcalculator-1.0 298 165
id3-0.15 512 527
spell-1.0 2,213 450
mp3rename-0.6 2,466 332
irmp3-0.5.3.1 3,797 523
barcode-0.96 4,460 1,738
httptunnel-3.3 6,174 1,622
e2ps-4.34 6,222 1,437
bc-1.06 13,093 1,891
less-382 23,822 3,682
bison-2.5 56,361 14,610
pies-1.2 66,196 9,472
icecast-server-1.3.12 68,564 6,183
raptor-1.4.21 76,378 8,889
dico-2.0 84,333 4,349
lsh-2.0.4 110,898 18,880

4.5.2 Generalization

Although the impact pre-analysis scales far better than Octagon, it is still too ex-

pensive to be used routinely for large programs (> 100 KLOC). Therefore, in order

for our approach to scale, the variable-clustering strategy learned from a codebase

of small programs needs to be effective for large unseen programs. Whether this

need is met or not depends on whether our learning method generalize information

from small programs to large programs well.

To evaluate this generalization capability of our learning method, we divided

the benchmark set into small (< 60 KLOC) and large (> 60 KLOC) programs,
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learned a variable-clustering strategy from the group of small programs, and eval-

uated its performance on that of large programs.

Table 4.4 shows the results. Columns labeled Small report the performance

of our approach learned from the small programs. All reports the performance of

the strategy used in Section 4.5.1 (i.e., the strategy learned with all benchmark

programs except for each target program). In our experiments, Small had the same

precision as All with negligibly increase in analysis time (4%). These results show

that the information learned from small programs is general enough to infer the

useful properties about large programs.

4.5.3 Feature Design

We identified top ten features that are most important to learn an effective variable-

clustering strategy for Octagon. We applied our method to all the 17 programs so

as to learn a decision tree, and measured the relative importance of features by

computing their Gini index [5] with the tree. Intuitively, the Gini index shows how

much each feature helps a learned decision tree to classify variable pairs as ⊕ or

⊖. Thus, features with high Gini index are located in the upper part of the tree.

According to the results, the ten most important features are 30, 15, 18, 16,

29, 6, 24, 23, 1, and 21 in Table 4.1. We found that many of the top ten fea-

tures are negative and describe situations where the precise tracking of variable

relationships by Octagon is unnecessary. For instance, feature 30 (size of constant

string) and 29 (finite interval) represent variable pairs whose relationships can be

precisely captured even with the Interval analysis. Using Octagon for such pairs is

overkill. Initially, we conjectured that positive features, which describe situations

where the Octagon analysis is effective, would be the most important for learning a

good strategy. However, data show that effectively ruling out unnecessary variable

relationships is the key to learning a good variable-clustering strategy for Octagon.
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4.5.4 Choice of an Off-the-shelf Classification Algorithm

Our learning method uses an off-the-shelf algorithm for inferring a decision tree.

In order to see the importance of this default choice, we replaced the decision-tree

algorithm by logistic regression [32], which is another popular supervised learning

algorithm and infers a linear classifier from labeled data. Such linear classifiers are

usually far simpler than nonlinear ones such as a decision tree. We then repeated

the leave-one-out cross validation described in Section 4.5.1.

In this experiment, the new partial Octagon analysis with linear classifiers proved

the same number of queries as before, but it was significantly slower than the anal-

ysis with decision trees. Changing regularization in logistic regression from nothing

to L1 or L2 and varying regularization strengths (10−3, 10−4 and 10−5) did not

remove this slowdown. We observed that in all of these cases, inferred linear clas-

sifiers labeled too many variable pairs with ⊕ and led to unnecessarily big clusters

of variables. Such big clusters increased the analysis time of the partial Octagon

with decision trees by 10x–12x. Such an observation indicates that a linear classi-

fier is not expressive enough to identify important variable pairs for the Octagon

analysis.

4.6 Summary

In this chapter we proposed a method for learning a variable-clustering strategy for

the Octagon analysis from a codebase. One notable aspect of our method is that it

generates labeled data automatically from a given codebase by running the impact

pre-analysis for Octagon [37]. The labeled data are then fed to an off-the-shelf clas-

sification algorithm (in particular, decision-tree inference in our implementation),

which infers a classifier that can identify important variable pairs from a new un-

seen program, whose relationships should be tracked by the Octagon analysis. This

classifier forms the core of the strategy that is returned by our learning method.

Our experiments show that the partial Octagon analysis with the learned strategy

scales up to 100KLOC and is 33x faster than the one with the impact pre-analysis
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(which itself is significantly faster than the original Octagon analysis), while in-

creasing false alarms by only 2%.
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Table 4.3: Comparison of performance of the Interval analysis and two partial Oc-
tagon analyses, one with a fixed strategy based on the impact pre-analysis and
the other with a learned strategy. #Alarms reports the number of buffer-overflow
alarms reported by the interval analysis (Itv), the partial Octagon analysis with
a fixed strategy (Impt) and that with a learned strategy (ML). Time shows the
analysis time in seconds, where, in X(Y), X means the total time (including that
for clustering and the time for main analysis) and Y shows the time spent by the
strategy for clustering variables.

#Alarms Time(s)
Program Itv Impt ML Itv Impt ML
brutefir-1.0f 4 0 0 0 0 ( 0) 0 ( 0)
consolcalculator-1.0 20 10 10 0 0 ( 0) 0 ( 0)
id3-0.15 15 6 6 0 0 ( 0) 1 ( 0)
spell-1.0 20 8 17 0 1 ( 1) 1 ( 0)
mp3rename-0.6 33 3 3 0 1 ( 0) 1 ( 0)
irmp3-0.5.3.1 2 0 0 1 2 ( 0) 3 ( 1)
barcode-0.96 235 215 215 2 9 ( 7) 6 ( 1)
httptunnel-3.3 52 29 27 3 35 ( 32) 5 ( 1)
e2ps-4.34 119 58 58 3 6 ( 3) 3 ( 0)
bc-1.06 371 364 364 14 252 ( 238) 16 ( 1)
less-382 625 620 625 83 2,354 ( 2,271) 87 ( 4)
bison-2.5 1,988 1,955 1,955 137 4,827 ( 4,685) 237 ( 79)
pies-1.2 795 785 785 49 14,942 (14,891) 95 ( 43)
icecast-server-1.3.12 239 232 232 51 109 ( 55) 107 ( 42)
raptor-1.4.21 2,156 2,148 2,148 242 17,844 (17,604) 345 (104)
dico-2.0 402 396 396 38 156 ( 117) 51 ( 24)
lsh-2.0.4 330 325 325 33 139 ( 106) 251 (218)
Total 7,406 7,154 7,166 656 40,677 (40,011) 1,207 (519)
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Table 4.4: Generalization performance.

#Alarms Time(s)
Program Itv All Small Itv All Small
pies-1.2 795 785 785 49 95 ( 43) 98 ( 43)
icecast-server-1.3.12 239 232 232 51 113 ( 42) 99 ( 42)
raptor-1.4.21 2,156 2,148 2,148 242 345 (104) 388 (104)
dico-2.0 402 396 396 38 61 ( 24) 62 ( 24)
lsh-2.0.4 330 325 325 33 251 (218) 251 (218)
Total 3,922 3,886 3,886 413 864 (432) 899 (432)
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Chapter 5

Selectively Unsound Analysis by

Machine Learning

5.1 Introduction

Any realistic bug-finding static analyzers are designed to be unsound. Ideally, a

static analyzer is expected to be sound, precise, and scalable; that is, it should be

able to consider all program executions and hence do not miss any intended bug

while avoiding false positives and scaling to large programs. In reality, however,

achieving the three at the same time is extremely challenging, and therefore ex-

isting commercial static analysis tools (e.g., [1]) and published static bug-finders

(e.g., [12,22,58–60]) trade soundness in order to obtain acceptable performance in

precision and scalability.

To our knowledge, all of the existing unsound analysis tools are uniformly un-

sound. For instance, since loops and unknown library calls are major sources of im-

precision in static analysis, most static bug-finding tools compromise soundness in

analyzing them (e.g., [12,22,58–60]); loops are unrolled for a fixed number of times

and subsequent loop iterations are ignored entirely, and unknown library calls are

considered as pre-defined behaviors such as skip. All of these approaches are uni-
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formly unsound in that they ignore every loop and library call in a given program

regardless of their different circumstances or properties.

However, this uniform approach to unsoundness has a considerable drawback;

it causes the analysis to miss a significant amount of real bugs. For instance, our

taint analysis for detecting format-string vulnerabilities ignores the possible data

flows of all unknown library calls in the program and therefore only report 5 false

alarms in the 13 benchmark C programs (Section 5.5). However, it only managed

to detect 16 bugs among the 106 potentially detectable format-string bugs. In other

words, this unsound analysis has low false positive rate (FPR = #False Alarms
#All Alarms ) but

it has high false negative rate (FNR = #Missing Bugs
#All Bugs ).

On the other hand, a simple-minded, uniformly sound analysis poses the op-

posite problem; it has low FNR at the cost of high FPR. For example, a simple

solution to decrease the FNR of the unsound taint analysis is to modify the anal-

ysis to consider the potential data flows of every unknown library call in the pro-

gram. This uniformly sound analysis is able to find all 106 bugs in the benchmark

programs. However, it reports 276 false alarms too.

Our work is to reduce the FNR of an unsound bug-finder while maintaining

the original (low) FPR by being selectively unsound only when it is likely to be

harmless. For example, we unsoundly analyze library calls only when it is likely

to reduce FPR while maintaining low FNR. With our approach, the selectively

unsound taint analysis reports 92 real bugs (among 106) with 27 false alarms only.

We achieve this by using a machine learning technique that is specialized for

anomaly detection [46]. Our key insight is that the program components (e.g., loops

and library calls) that produce false alarms are alike, predictable, and sharing some

common properties. Meanwhile, the real bugs are often caused by different reasons

that are atypical and unpredictable in their own ways (Section 5.3.2) [41]. Based

on this observation, we aim to capture the common characteristics of the harm-

less and precision-decreasing program components by using one-class support vec-

tor machines. The entire learning process in our approach (i.e. generating labelled
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data and learning a classifier) is fully automatic once a codebase with known bugs

is given.

The experimental results show that our method effectively reduces false neg-

atives of the baseline analyzer without sacrificing its precision. We evaluated our

method with two realistic static analyzers for C and open-source benchmarks. The

first experiment is done with a taint analysis for finding out format-string bugs.

In our benchmarks with 106 bugs, the baseline, uniformly unsound analysis de-

tects 16 bugs with 5 false alarms (FPR: 24%, FNR: 85%). Uniformly improving

the soundness impairs the precision too much: it reports 106 real bugs with 276

false alarms (FPR: 72%). Our selectively unsound analysis maintains the original

precision while greatly decreasing the number of false negatives: it reports 92 bugs

with 27 false alarms (FPR: 23%, FNR: 13%). The second experiment is done with

an interval analysis for buffer-overflow detection, where we control the soundness

for both loops and library calls. In the benchmarks with 138 bugs, the uniformly

unsound analysis detects 33 bugs with 104 false alarms (FPR: 76%, FNR: 76%).

The uniformly sound analysis detects 118 bugs with 677 false alarms (FPR: 85%).

Our selectively unsound analysis detects 96 bugs with 266 false alarms (FPR: 73%,

FNR: 30%).

To summarize, our contributions are as follows:

• We present a new approach of selectively employing unsoundness in static

analysis. All of the existing bug-finding static analyzers are uniformly un-

sound.

• We present a machine-learning technique that can automatically tune a static

analysis to be selectively unsound. Our technique is based on anomaly detec-

tion with automatic generation of labelled data.

• We demonstrate the effectiveness of the technique by experiments with two

bug-finding static analyzers for C.
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str = "hello world”;

for(i=0; str[i]; i++) // buffer access 1

skip;

size = positive_input();

for(i=0; i<size; i++)

skip;

... = str[i]; // buffer access 2

Figure 5.1: Example program

5.2 Overview

We illustrate our approach using a static analysis with the interval domain. The

goal of the analysis is to detect buffer overflow bugs in a program. For simplicity,

we only concern with loops in this section, which could be a potential cause of the

buffer overflow bugs.

Consider a simple program in Figure 5.1. In the program, there are two loops

and two buffer-access expressions. The first loop iterates over a constant string

until the null value in the string is found. In the loop, buffer access 1 is always

safe, since i is guaranteed to be smaller than the length of str inside the loop.

On the other hand, buffer access 2 is not always safe, because the index i has the

value of size after the second loop, which can be an arbitrary value due to the

external input and may cause a buffer overflow.

5.2.1 Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every loop. That is, all the

loops in the given program are unrolled for a fixed number of times, and subse-

quent loop iterations are ignored during the analysis. From the perspective of such

an unsound analysis, the example program is treated as follows.

78



str = "hello world”;

i = 0;

if (str[i]) // buffer access 1

skip;

size = positive_input();

i = 0;

if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-statement. The anal-

ysis does not report a false alarm for buffer access 1, since the value of i remains

as [0, 0]. However, it also fails to report a true alarm for buffer access 2; the value

of i is approximated to [0, 0], hence the analysis considers the buffer access to be

safe.

5.2.2 Uniformly Sound Analysis

On the other hand, a sound interval analysis can detect the bug at buffer access 2

with a false alarm at buffer access 1. Inside the first loop, the analysis conserva-

tively approximates the value of i to [0,+∞], since this value is not refined by

the loop condition str[i]. It is because the interval domain cannot capture non-

convex properties (e.g. i ̸= 11, where 11 is the null index of str). Thus, the anal-

ysis reports an alarm for buffer access 1 as a potential buffer overflow error, which

is a false alarm that we want to avoid. Meanwhile, the variable i in the second

loop is upper bounded by size whose range is approximated as [0,+∞] due to the

unknown input value. Therefore the analyzer reports an alarm for buffer access 2,

which is a true alarm in this case.
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5.2.3 Selectively Unsound Analysis

Our selectively unsound analyzer applies unsoundness only to the loops that are

likely to remove false alarms only. In the example program in Figure 5.1, we ignore

the first loop since analyzing it soundly results in reporting a false alarm at buffer

access 1. The second loop, on the other hand, needs to be analyzed soundly, since

it has the possibility of causing an actual buffer overflow. The selectively unsound

analysis on the given program corresponds to analyzing the following program.

str = "hello world”;

i = 0;

if(str[i]) // buffer access 1

skip;

size = positive_input();

for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop. By being unsound

for the first loop and sound for the second loop, the analysis is able to report the

true alarm for buffer access 2 while avoiding the false alarm for buffer access 1.

5.2.4 Our Learning Approach

We achieve the selectively unsound analysis via machine learning-based anomaly

detection. Assume that we have a codebase and a set of features. The codebase is

a set of programs in which all the bugs are found and their locations are annotated

so that we can classify alarms into true or false alarms. Then, we need to decide

which set of program components to apply unsoundness selectively. In our example,

it is the set of loops in the program we want to analyze. The features in this case

describe general characteristics of the loops.
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The learning phase consists of three steps.

1. We collect harmless loops from the codebase. A loop is harmless if unsoundly

analyzing the loop does not cause to miss real bugs but reduces false alarms.

For simplicity, we assume there is only one program in the codebase, and the

program contains n loops. When analyzed soundly, it reports certain number

of true alarms and false alarms. Then, we examine each loop by replacing it

with an if-statement (i.e., unrolling) one by one and compare the result to

that of the original program. If the replacement of a loop makes the number

of true alarms remain same, but makes the number of false alarms decrease,

we consider the loop to be harmless. We collect all the loops satisfying the

condition.

2. Next, we represent the loops as feature vectors. Once all the harmless loops

in the codebase are collected, we create a feature vector for each loop using

the set f = {f1, f2, . . . , fk} where fi is a predicate over loops. For example,

f1 may indicate whether a loop has a conditional statement containing nulls.

3. Finally, having the generated feature vectors as training data, we learn a clas-

sifier that can distinguish such harmless loops. We use one-class classification

algorithm [46] for learning the classifier that requires only positive examples

(i.e., harmless loops). We use the anomaly detection algorithm to learn the

common characteristics and regularities of the harmless loops.

In the testing phase, the classifier takes the feature vectors of all the loops in

a new program as an input. If the classifier considers a loop to be harmless, then

the loop is analyzed unsoundly, meaning that it is unrolled once and replaced with

an if-statement. Otherwise, if the classifier considers a loop to be harmful (i.e.,

anomaly), then the loop is analyzed soundly.

5.3 Our Technique

Our goal is to find harmless components and selectively employ unsoundness only

to them. In this section, we describe how to build a selectively unsound static an-
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alyzer in detail. First, we introduce a parameterized static analysis that applies

unsoundness only to certain program components. Then, we explain how to learn

a statistical model from an existing codebase, which is used to derive a soundness

parameter.

5.3.1 Parameterized Static Analysis

Our analysis employs a parameterized strategy for selecting the set of program

components that will be analyzed soundly. This is a variant of the well-known set-

ting for the parameterized static analysis [26, 38], except the parameter controls

the soundness of the analysis, not the precision.

Let P ∈ Pgm be a program that we want to analyze. CP is the set of program

points in P . JP is the set of program components such as the set of loops, the set

of library calls, or the set of other operations in P . In the rest of this section, we

omit the subscript P from CP and JP when there is no confusion.

The selectively unsound static analyzer is a function

F : Pgm × ℘(J)→ ℘(C)

which is parameterized by the soundness parameter π ∈ ℘(J) (i.e. a set of program

components). Given a program P and its parameter π, the analyzer outputs alarms

(i.e. a set of program points).

A soundness parameter π ∈ ℘(J) is a set of program components which need to

be analyzed soundly. In other words, it selects the program components that are

likely to produce true alarms as a result of detecting real bugs in the program. For

instance, when J = {j1, · · · , jn} is the set of loops in the program P , ji ∈ π means

that the ith loop in the program is not considered to be harmless; we analyze the

loop as it is rather than unrolling the loop once and ignoring all the subsequent

loop iterations.

We want to find a good soundness parameter which allows the analyzer to ap-

ply costly soundness only to the necessary components which are not harmless.

Let 1 be the parameter where every component is selected and 0 be the param-
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eter where no component is selected. Then, F (P,1) denotes the analysis that is

fully sound, which can detect the maximum number of the real bugs along with

lots of false alarms. F (P,0) means the fully unsound analysis, reporting the mini-

mum number of false alarms with risk of missing many real bugs. For our analysis,

it is important to find a proper parameter which strikes the balance between 1 and

0, reporting false alarms as few as possible while detecting most of the real bugs.

5.3.2 Learning a Classifier

We want to build a classifier which can predict whether a given program compo-

nent is harmless or not. The classifier in our approach exploits general properties

of harmless components and uses the information for new, unseen programs.

Features

We define features to capture common properties of program components. Features

are either syntactic or semantic properties of program components, which have ei-

ther binary or numeric values. For simplicity, we assume them to be binary prop-

erties: fi : J → {0, 1}. Given a set of features, we can derive a feature vector for

each program component. Suppose that we have n features: f = {f1, . . . , fn}. With

the set of features, each program component j ∈ J can be represented as a feature

vector f(j) = ⟨f1(j), . . . , fn(j)⟩.
Our approach requires analysis designers to come up with a set of features for

each parameterized static analysis F . In Section 5.4, we discuss how to construct

program features with two case studies for loops and library calls.

Learning Process

A classifier is defined as a function

C : {0, 1}n → {0, 1}
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which takes a feature vector of a program component as an input. It returns 1 if

it considers the component to be harmless or 0, otherwise.

We define a model M : Pgm → ℘(J) that is used to derive a soundness param-

eter for a given program as follows:

M(P ) = {j ∈ J | C(f(j)) = 0}.

The model collects the program components that are potentially harmful, which

may cause real bugs. With the model, we run the static analysis for a new, unseen

program P as follows:

F (P,M(P )).

That is, we first obtain the soundness parameter M(P ) from the model and in-

stantiate the static analysis with the parameter. As a result, the analysis becomes

sound for the program components that are selected by the parameter from the

model and unsound for the others.

We learn the model with One-Class Support Vector Machine (OC-SVM) [46].

OC-SVM is an unsupervised algorithm that learns a model for anomaly detection:

classifying new data as similar or different to its training data. Our intuition is

that harmless program components tend to be typical, sharing common proper-

ties, whereas harmful components are atypical, therefore difficult to be character-

ized. It is because bugs in the real world are introduced unexpectedly by nature.

In addition, collecting examples for all kinds of bugs is infeasible, whereas collect-

ing and generalizing the characteristics of harmless components is relatively easy

to achieve. Therefore, we use this one-class classification method; it only requires

positive examples (e.g., harmless loops) that are expected to share some regular-

ities, learns such regularities, and classifies new data as similar or different to its

training data.

Note that the characteristics of harmless components are largely determined by

the design choices of a given static analysis (e.g., abstract domain), whereas that
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of harmful components are not affected by the analysis design. For example, for

an interval analysis of C programs, the following loops are typically harmless:

• Loops iterating over constant strings:

str=‘‘hello world’’;

for(i=0; str[i]; i++) // false alarm

...

As explained before, analyzing such loops soundly is likely to cause false

alarms, rather than detecting true bugs, because of the non-disjunctive lim-

itation of the interval domain.

• Loops involving variable relationships:

p=malloc(len);

for (i = 0; i < len; i++)

p[i] = ... // false alarm

Sound analysis of this kind of loops is likely to produce false alarms because

of the non-relational limitation of the interval domain. The analysis cannot

track the relationship between the value of len, the value of i, and the size

of buffer p.

Generating Training Data

From an existing codebase, we generate training data for learning the classifier.

The training dataset is composed of a set of feature vectors. Note that we only

collect the feature vectors of harmless components, because OC-SVM is designed

to learn the regularities of positive examples. The positive examples in our case

are the harmless components.

The codebase of the system is a set of annotated programs

P = {(P1, B1), . . . , (Pn, Bn)},
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Algorithm 1 Training data generation
1: T := ∅
2: for all (Pi, Bi) ∈ P do
3: Ai = F (Pi,1)

4: (At, Af ) := (Ai ∩Bi, Ai \Bi)

5: for all j ∈ JPi do
6: A′

i = F (Pi,1 \ {j})
7: (A′

t, A
′
f ) = (A′

i ∩Bi, A
′
i \Bi)

8: if |A′
t| = |At| ∧ |A′

f | < |Af | then
9: T := T ∪ {f(j)}

10: end if
11: end for
12: end for

in which each program Pi is associated with a set of buggy program points Bi ⊆
CPi . Once all the programs in the codebase is annotated accordingly, we can auto-

matically generate training data for the classifier. We first applies unsoundness to

each component one by one, runs the analysis, and collects the feature vectors from

all the harmless components in the given codebase. We consider a program com-

ponent to be harmless if the number of true alarms remains same and the number

of false alarms is decreased, when analyzed unsoundly.

The algorithm for generating training data is shown in Algorithm 1. For each

program Pi in the codebase, we run the fully sound static analysis and classify the

output alarms Ai into true alarms At and false alarms Af (line 3 and 4). Then, for

each program component j ∈ JPi , we run the static analysis without the jth com-

ponent (i.e. 1 \ {j}) (line 6). The component j is considered to be harmless when

the analysis which is unsound for j still captures all the real bugs (i.e. |A′
t| = |At|)

but reports fewer false alarms (i.e. |A′
f | < |Af |) compared to the fully sound anal-

ysis (line 8). We collect feature vectors from all the harmless program components

into the training set T ⊆ {0, 1}n.
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5.4 Instance Analyses

In this section, we present a generic static analysis that is selectively unsound for

loops and library calls as well as a set of features for them. We have chosen loops

and library calls because they are the main sources of false alarms from real-world

static analyzers and thus often made unsound in practice (e.g. [12, 22, 58–60]). In

the analysis, loops are unrolled for a fixed number of times and library calls are

simply ignored as skips. Our aim is to selectively unroll and ignore loops and li-

brary calls, respectively, only when doing so is harmless.

We present two instances of the analysis, one for an interval analysis and the

other for a taint analysis. The interval analysis is used to find out possible buffer-

overflow errors, and the taint analysis is for detecting format string vulnerabilities

(i.e. uses of unchecked user input as format string parameters of certain C func-

tions such as printf). The soundness of these instance analyses is tuned by our

technique (Section 5.3), where we used the same set of features designed for the

generic analysis.

In Section 5.4.1, we define the generic analysis with features. Section 5.4.2 and

Section 5.4.3 present two instances, namely the interval analysis and the taint anal-

ysis.

5.4.1 A Generic, Selectively Unsound Static Analysis

Abstract Semantics

We consider a family of static analyses whose soundness is parametric for loops

and library calls. Consider the following simple imperative language:

C → L := E | C1;C2 | if E C1 C2

| whilel E C | L := libl()

E → n | L | allocl(E) | &L | E1 + E2

L → x | ∗E | E1 [E2]
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Fπ(L := E, s) = s[L(L, s) 7→ V(E, s)]

Fπ(C1;C2, s) = Fπ(C2, Fπ(C1, s))

Fπ(if E C1 C2, s) = Fπ(C1) ⊔ Fπ(C2)

Fπ(whilel E C, s) =

{
fix(λX.s ⊔ Fπ(C,X)) if l ∈ π

Fπ(C, s) otherwise

Fπ(L := libl(), s) =

{
s[L(L, s) 7→ ⊤] if l ∈ π

s otherwise

Figure 5.2: Static analysis selectively unsound for loops and library calls

A command is an assignment, sequence, if statement, while statement, or a call to

an unknown library function. In the program, loops and library calls are labelled

and the set of labels forms J in Section 5.3.1. The parameter space is the set of all

subsets of program labels, i.e., ℘(J). We assume that labels in the program are all

distinct. An expression is an integer (n), l-value expression (L), array allocation

(allocl(E)) where E is the size of the array to be allocated and l is the label for

the allocation site, address-of expression (&L), or compound expression (E + E).

An l-value expression is a variable (x) or array access expression (E1 [E2]).

The abstract semantics of the analysis is defined in Figure 5.2. The analysis is

parameterized by π ∈ ℘(J), a set of labels, and is unsound for loops and library

calls not included in π. The abstract semantics is defined by the semantic function

Fπ : C × S → S, where S is the domain of abstract states mapping abstract loca-

tions to abstract values, i.e., S = L → V. The analysis is generic in that abstract

locations (L) and values (V) are unspecified. They will be given for each analysis

instance in subsequent subsections. We assume that the abstract domain is accom-

panied by two functions L : L × S → ℘(L) and V : E × S → V, which compute

abstract locations and values of given l-value and r-value expressions, respectively.

The abstract semantics is standard except for the selective treatment of sound-

ness. For a loop statement (whilel E C), the analysis applies the usual (sound)

fixed point computation (fix is a pre-fixpoint operator) when the label l is included

in the parameter π. When a loop is not included in π, the analysis ignores the loop
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L = Var + AllocSite
V = I× ℘(L)× ℘(A)
I = {⊥} ∪ {[l, u] | l, u ∈ Z ∪ {±∞}}
A = L× I× I

L(x, s) = {x}
L(∗E, s) = V(E, s).2

L(E1[E2], s) = {a | ⟨a,_,_⟩ ∈ V(E1, s).3}

V(n, s) = ⟨[n, n], ∅, ∅⟩
V(L, s) =

⊔
{s(l) | l ∈ L(L, s)}

V(allocl(E), s) = ⟨⊥, {l}, {⟨l, [0, 0],V(E, s).1⟩}⟩
V(&L, s) = ⟨⊥,L(L, s), ∅⟩

V(E1 + E2, s) = V(E1, s) +̂ V(E2, s)

Figure 5.3: Abstract domain and semantics for interval analysis

and execute the body C only once (i.e. unrolling the loop once). For unknown li-

brary calls, the analysis conservatively updates the return location L when l is

chosen, i.e., l ∈ π. Otherwise, we completely ignore the effect of the library call.

Thus, π determines how soundly we analyze the program with respect to loops and

unknown library calls. For instance, when π = J, the analysis is maximally con-

servative for loops and library calls, and when π = ∅, the analysis is completely

unsound and ignores all of the loops and library calls in the program.

Features

We have designed a set of features for loops and library calls, which can be used

for instantiating the generic analysis above. We examined open-source C programs

and identified 37 features (Table 5.1 and 5.2) that describe common characteristics

of loops and library calls in typical C programs.

The features are classified into syntactic and semantic features. A syntactic fea-

ture describes a property that can be checked by a simple syntax analysis. For ex-
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L = Var + AllocSite
V = {⊥,⊤} × ℘(L)

L(x, s) = {x}
L(E1[E2], s) = V(E1, s).2

V(n, s) =

{
⟨⊤, ∅⟩ if n ∈ T
⟨⊥, ∅⟩ otherwise

V(L, s) =
⊔
{s(l) | l ∈ L(L, s)}

V(allocl(E), s) = ⟨⊥, {l}⟩
V(&L, s) = ⟨⊥,L(L, s)⟩

V(E1 + E2, s) = V(E1, s) ⊔ V(E2, s)

Figure 5.4: Abstract domain and semantics for taint analysis

ample, a syntactic feature characterizes loops whose conditional expressions involve

constant values, or library calls whose return type is an integer. A semantic feature

describes a property that requires a (yet simple) data-flow analysis. For instance, a

semantic feature for loops describes that the loop condition involves an expression

whose value depends on some external input of the program:

c = input(); // external input

b = c;

while (a < b) { ... }

To figure out that the value of b comes from the external input, we need to track

the data-flow of the external value. Each feature is either binary or numeric, where

all the numeric features are normalized to a real number between 0 and 1 based

on relative quantities within a single program.

We designed those features with generality in mind so that the features can be

reused for different analyses as much as possible. Note that the features in Table

5.1 and 5.2 are not dependent on a particular static analysis, but describe rather

general, syntactic and semantic program properties. We use the same set of fea-
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tures for the interval and taint analyses and show that we can effectively tune the

soundness of both analyses with the single set of features as shown in Section 5.5.

5.4.2 Instantiation 1: Interval Analysis

We first instantiate the generic analysis with the interval domain and use it to find

out potential buffer-overflow errors in the program.

The generic analysis left out the definitions of abstract locations (L), abstract

values (V), and the evaluation functions for them (L and V). These definitions for

the interval analysis are given in Figure 5.3. An abstract location is either a vari-

able or an allocation-site. An abstract value is a tuple of an interval (I), which

is an abstraction of set of numeric values, a points-to set (℘(L)) and a set of ab-

stract arrays (℘(A)). Abstract array ⟨a, o, s⟩ has the abstract location(a ∈ L), offset

(o ∈ I), and size (s ∈ I). The evaluation function L takes an l-value expression and

an abstract state, and computes the set of abstract locations that the l-value de-

notes. The function V(E, s) evaluates to the abstract value of E under s. In the

definition, we write V(E, s).n for the nth component of the abstract value of V(E).

The analysis reports a buffer-overflow alarm when the index of an array can

be greater than its size according to the analysis results. For example, consider

an expression arr[idx]. Suppose the analysis concludes that arr has an array of

⟨l, [0, 0], [5, 10]⟩ (i.e. an array of size [5, 10]) and the interval value of idx is [3, 7].

The analysis raises an alarm at the array expression because the index value may

exceed the size of the array (e.g. when the size is 5 and the index is 7).

5.4.3 Instantiation 2: Taint Analysis

The second instance is a taint analysis for detecting format string vulnerabilities

in C programs. The abstract domain and semantics are given in Figure 5.4. The

analysis combines a taint analysis and a pointer analysis, and therefore an abstract

location is still either a variable or an allocation-site. An abstract value is a tuple

of a taint value and a points-to set. The taint domain consists of two abstract

values: ⊤ is used to indicate that the value is tainted and ⊥ represents untainted
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values. For simplicity, we model taint sources by a particular set T ⊆ Z of integers;

constant integer n generates a taint value ⊤ if n ∈ T. In actual implementation, ⊤
is produced by function calls that receives user input such as fgets. The analysis

reports an alarm whenever a taint value is involved in a format string parameter

of functions.

5.5 Experiments

We empirically show the effectiveness of our approach on selectively applying un-

soundness only to harmless program components. We design the experiments to

address the following questions:

• Effectiveness of Our Approach: How much is the selectively unsound anal-

ysis better than the fully sound or fully unsound analyses?

• Efficacy of OC-SVM: Does the one-class classification algorithm outper-

form two-class classification algorithms?

• Feature Design: How should we choose a set of features to effectively pre-

dict harmless program components?

• Time Cost: How does our technique affect cost of analysis?

5.5.1 Setting

Implementation

We have implemented our method on top of a static analyzer for full C. It is a

generic analyzer that tracks all of numeric, pointer, array, and string values with

flow-, field-, and context-sensitivity. The baseline analyzer is unsound by design to

achieve a precise bug-finder; it ignores complex operations (e.g., bitwise operations

and weak updates) and filters out reported alarms that are unlikely to be true.

We modified the baseline analyzer and created two instance analyzers, an in-

terval analysis and a taint analysis, as described in Section 5.4. For each analysis,
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we built a fully sound version (Sound), a uniformly unsound version (Uniform),

and a selectively unsound version (Selective) with respect to the soundness pa-

rameter in Section 5.4. In the interval analysis for buffer-overflow errors, Uniform

is set to be uniformly unsound for every loop and library call, and Selective is

selectively unsound for them. In the taint analysis for format string vulnerabili-

ties, Uniform is uniformly unsound for all the library calls (but not for loops),

and Selective is selectively unsound for them.

To implement the OC-SVM classifier, we used scikit-learn machine-learning pack-

age [47] with the default setting of the algorithm (specifically, we used the radial

basis function (RBF) kernel with γ = 0.1 and ν = 0.1).

Benchmark

Our experiments were performed on 36 programs whose buggy program points are

known. They are the programs from open source software packages or previous

work on static analysis evaluations [27, 63]. Table 5.3 and 5.4 contain the list of

the benchmark programs for the interval and the taint analysis, respectively. SM-

X, BIND-X, and FTP-X are model programs from [63], which contain buffer over-

flow vulnerabilities. Most of the bugs in the benchmarks are reported as critical

vulnerabilities by authorities such as CVE [7]. In total, our benchmark programs

have 138 real buffer-overflow bugs and 106 real format string bugs.

5.5.2 Effectiveness of Our Approach

We evaluate the effectiveness of our approach by comparing precision of Selec-

tive to that of the other analyzers, Sound and Uniform. We use cross-validation,

a model validation technique for assessing how the results of a statistical analy-

sis will generalize to new data. We show the results from three types of cross-

validation: leave-one-out, 2-fold, and 3-fold cross-validation.
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Leave-one-out Cross-validation

This is one of the most common types of cross-validation, which uses one obser-

vation as the validation set and the remaining observations as the training set.

In case of the interval analysis, for example, among the 23 benchmark programs,

one program is used for validating and measuring the effectiveness of the learned

model, and the other remaining 22 programs are used for training.

Table 5.3 shows the results of the leave-one-out cross-validation for the in-

terval analysis. We measured the number of true (T) and false (F) alarms from

Sound, Uniform, and Selective. In terms of true alarms, Sound detects 118

real bugs (FNR: 14.5%) in the programs. While Uniform detects only 33 bugs

(FNR: 76.1%), Selective effectively detects 100 bugs (FNR: 27.5%). Meanwhile,

Sound reports 677 false alarms (FPR: 85.2%).1 Uniform, on the other hand,

reports 104 false alarms (FPR : 75.9%), which indicates 573 alarms can be po-

tentially removable by being unsound for loops and library calls. Among the 573

alarms, Selective can remove 72.1% (413/573) of them (FPR:72.5%).

Table 5.4 shows the results for the taint analysis. In total, Sound detects all

of the 106 real format-string bugs in the programs, while Uniform detects only

16 bugs (FNR: 84.9%). On the contrary, Selective effectively detects 92 bugs

(FNR: 13.2%). Meanwhile, Sound, Uniform, and Selective report 273, 5, and

28 false alarms, respectively. That is, among 273 false alarms, which can be poten-

tially removable by being unsound for library calls, Selective can remove 89.7%

(245/273) of them.

The result implies that selectively applying unsoundness is also crucial for re-

ducing FPR of the analysis. For the interval analysis, the FPR is 85.2% for Sound

and 75.9% for Uniform, whereas 72.5% for Selective on average. For the taint

analysis, the FPR is 72.0% for Sound, 23.3% for Selective, 23.8% for Uni-

form on average.
1 In practice, eliminating these false alarms is extremely challenging in domain-unaware static

analysis, because they arise from a variety of reasons: e.g., large recursive call cycles, unknown
library calls, complex loops, heap abstractions, etc.
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Figure 5.5: Performance with different training and test data

Two- and Three-fold Cross-validation

Next, we evaluate the performance of the interval analysis with 2-fold and 3-fold

cross-validation. The benchmark is randomly divided into 2 or 3 subsets that are

equal size. Then, one of them is used as the validation set and the others as the

training sets. We repeated this process ten times and reported the number of alarms

for each trial.

Figure 5.5 shows the number of true and false alarms for each trial of 2-fold and

3-fold cross-validation. The numbers are normalized with respect to the number of

alarms produced by Sound. In total, Sound reported 486 true alarms and 3,696

false alarms. Selective detected 427 (87.9%) true alarms, whereas Uniform de-

tected only 129 (26.5%) true alarms in the 2-fold cross-validation. Compared to

Sound, Selective reduced 1,812 (49.0%) false alarms, while Uniform reduced

3,216 (87.0%). During the 3-fold cross-validation, Sound reported 399 true alarms

and 2,119 false alarms. In terms of true alarms, Selective detected 352 (88.2%)

true alarms, whereas Uniform managed to detect only 119 (29.8%) true alarms.

As for false alarms, among 1,769 (83.5%) false alarms that are reduced by Uni-

form, Selective was able to reduce 1,150 (54.3%).
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5.5.3 Efficacy of OC-SVM

In this section, we justify the use of OC-SVM for learning common properties of

harmless program components. We compare the performance of Selective whose

classifier is learned by OC-SVM to that of three other analyzers with a binary

classifier and two random classifiers, respectively.

Let Binary be the analyzer with a binary classifier. We use C-SVM for the bi-

nary classifier, which is a support vector machine-based binary classification algo-

rithm [3]. It learns two classes of training data (i.e. a set of harmless components

and the complement set), and then decides whether a new input is harmless or

not. In these experiments, we used the interval analyzer with leave-one-out cross

validation.

RandA and RandB are the analyzers with random classifiers that are built

and used for the comparison. RandA randomly classifies components as harmless

with the probability of 0.5. Stochastically, a half of loops and library calls are se-

lected as harmless. RandB randomly classifies components as harmless with the

same probability of the OC-SVM. We ran each analyzer 10 times and measured

the number of alarms for each trial.

Figure 5.6 compares the number of true and false alarms produced by Se-

lective, Binary, RandA, and RandB for 10 trials. Binary reports more true

alarms than Selective; Binary reports 103 true alarms, whereas Selective re-

ports 96 true alarms. However, using Binary considerably sacrifices the precision;

it reports 573 false alarms, whereas Selective reports only 266. The results from

RandA and RandB are also inferior to Selective; RandA reports 387.5 false

alarms and 70.5 true alarms, and RandB reports 267.2 false alarms with 79.4 true

alarms on average.

The result shows Selective clearly outperforms the other classifiers. Selec-

tive is more precise than Binary, indicating that the anomaly detection by OC-

SVM is more suitable to find harmless components than the binary classification.

Also, Selective always detects more bugs and reports less false alarms than other

analyzers with the random classifiers. Despite the fact that RandB detects more
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Figure 5.6: Comparison between Selective, Binary, RandA, and RandB

bugs than RandA, it is still insignificant since both of them are much more im-

precise than our system.

5.5.4 Feature Design

Wining Features

The learned classifier tells us which feature is most useful for learning harmless

unsoundness. The features we used capture general characteristics of harmless pro-

gram components. In order to determine the ordering of features, we used infor-

mation gain which is the expected reduction in entropy when a feature is used to

classify training examples (in classification, low entropy, i.e., impure data, is pre-

ferred) [31].

The results show that harmless loops tend to have pointers iteratively access-

ing (PtrInc) arrays (Array) or strings (FinString) with loop conditions that com-

pare array contents with null (Null) or constant values (Const). These features col-

lectively describe loops like the first example loop in Section 5.2. The result also
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shows that most harmless library calls for the interval analysis return integer val-

ues (Int) and manipulate strings (CString). This is because our interval analyzer

aggressively abstracts string values, so unsound treatment of string libraries (e.g.,

strlen, strcat) is likely to improve the analysis precision. For the taint analysis,

the results show that library calls with less arguments (#Args) and abstract loca-

tions (#AbsLoc) (e.g., random, strlen) are likely to be irrelevant to propagation

of user inputs compared to ones with more arguments (e.g., fread, recv).

Different Feature Sets

We measured the performance of the classifier with less features in three ways: 1)

with syntactic features only; 2) with semantic features only; and 3) with randomly-

chosen half of the features. For the interval analyzer, the classifier learned with

only syntactic features reported 1% more bugs but 26% more false alarms than

the classifier with all features, the classifier with only semantic features reported

1% more false alarms and missed 41% more bugs, and the classifier with half of

the features reported 17% more false alarms and missed 1% more bugs on average.

5.5.5 Time Cost

We measured how long it takes to run each analysis on our benchmark programs

and compare it with the time that our selective unsound analysis takes. For the

benchmark programs in Table 5.3, the sound interval analysis Sound took 42.1 sec-

onds for analyzing all the listed programs, Uniform only took 27.7 seconds, reduc-

ing the total time by 14.4 seconds (34.2%). Selective took 33.8 seconds, reducing

the total time by 8.3 seconds (19.7%). RandA and RandB took longer than Se-

lective: 35.4 and 37.5 seconds, respectively. In summary, Selective takes less

time than Sound, RandA, and RandB.

5.5.6 Discussion

As addressed in the experiments, our technique may miss some true alarms which

can be detected by the fully sound analysis or fail to avoid some false alarms which
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are not reported by the fully unsound analysis. In this section, we discuss why

these limitations occur and how to overcome.

Remaining False Alarms

Compared to the fully unsound analysis, our technique reports more false alarms.

It is mainly because reporting the false alarms is inevitable in order to detect true

alarms. Consider the following example program excerpted from SM-5:

1 size = 10 + positive_input();

2 arr = malloc(size);

3

4 for(i = 0; i < size; i++){

5 arr[i] = ... // buffer access 1

6 arr[i+1] = ... // buffer access 2

7 }

By soundly analyzing the loop, the analysis reports an alarm for the buffer-overflow

bug at line 6 at the cost of a false alarm at line 5. The unsound analysis removes

the false alarm, but it also fails to report the true alarm. Our selective method

may decide to analyze such a loop soundly in order to detect the bug, even though

reporting the false alarm is inevitable.

We found that these inevitable false alarms are the primary reason for Selec-

tive to report more false alarms compared to Uniform. For example, when ana-

lyzing SM-5 in our benchmark programs, five among six false alarms are inevitable.

In order to remove such false alarms in a harmless way, we need a more fine-grained

parameter space for soundness so that we can apply different degrees of soundness

to different statements in a single loop, which would be an interesting future di-

rection to investigate.
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Missing True Alarms

Compared to the fully sound analysis, our technique reports less true alarms. It

is mainly because the bugs are involved in typically-harmless loops. Consider the

following code snippet from man-1.5h1:

1 char arr[10] = ‘‘string’’;

2 size = positive_input();

3 for (i = 0; i < size; i ++)

4 skip;

5 arr[i] = 0; // buffer access 1

6

7 for(i = 0; arr[i]; i++) // buffer access 2

8 skip;

The two buffer access expressions both contain buffer overflow bugs. However, our

technique detects the first bug, but not the second. It is because it classifies the

second loop as harmless–it learns that loops that iterate constant strings are likely

to be harmless.

However, we found that most of the missing bugs share the root causes with

other bugs detected by our technique. For instance, in the above example, fixing

the first bug at line 5 automatically fixes the second one. In our case, therefore,

missing true alarms is in fact not a huge drawback in terms of practicability.

5.6 Summary

In this chapter, we presented a novel approach for employing unsoundness in static

analysis. Unlike existing uniformly unsound analyses, our technique selectively ap-

plies unsoundness only when it is likely to be harmless (i.e. reducing the number

of false alarms while retaining true alarms). We proposed a learning-based method

for automatically tuning the soundness of static analysis in such a harmless way.

The experimental results showed that the technique is effectively applicable to two
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bug-finding static analyzers and reduces their false negative rates while retaining

their original precision.
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Table 5.3: The number of alarms in interval analysis

Sound Selective Uniform

Program LOC Bug T F T F T F
SM-1 0.5K 28 28 18 28 15 13 5
SM-2 0.8K 2 2 16 1 4 0 0
SM-3 0.7K 3 3 3 3 3 0 0
SM-4 0.7K 10 10 6 10 6 6 0
SM-5 1.7K 3 3 6 3 6 0 0
SM-6 0.4K 1 0 0 0 0 0 0
SM-7 1.1K 2 2 32 0 2 0 0
BIND-1 1.2K 1 1 35 1 33 0 0
BIND-2 1.7K 1 1 45 0 41 0 0
BIND-3 0.5K 1 1 4 0 1 0 0
BIND-4 1.1K 2 2 0 0 0 0 0
FTP-1 0.8K 4 4 13 4 3 0 0
FTP-2 1.5K 1 1 7 1 6 0 3
FTP-3 1.5K 24 24 25 23 17 7 12
polymorph-0.4.0 0.7K 10 10 6 3 6 0 6
ncompress-4.2.4 1.9K 12 0 10 4 0 0 0
129.compress 2.0K 7 7 34 7 14 4 7
spell-1.0 2.2K 1 0 0 0 0 0 0
man-1.5h1 4.7K 6 5 60 1 28 0 13
256.bzip2 4.7K 3 3 149 3 21 3 21
gzip-1.2.4a 8.2K 13 11 87 8 34 0 24
bc-1.06 17.0K 2 0 57 0 10 0 9
sed-4.0.8 25.9K 1 0 64 0 14 0 4
Total 138 118 677 100 264 33 104
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Table 5.4: The number of alarms in taint analysis

Sound Selective Uniform

Program LOC Bug T F T F T F
mp3rename-0.6 0.6K 1 1 0 1 0 1 0
ghostscript-8.71 1.5K 2 2 0 2 0 2 0
uni2ascii-4.14 5.7K 7 7 0 7 0 7 0
pal-0.4.3 7.4K 3 3 0 0 0 0 0
shntool-3.0.1 16.3K 1 1 10 1 1 1 0
sdop-0.61 23.9K 65 65 78 65 0 0 0
latex2rtf-2.3.8 28.7K 2 2 9 2 8 0 1
rrdtool-1.4.8 34.8K 1 1 12 1 1 1 0
daemon-0.6.4 58.4K 1 1 7 1 1 1 0
rplay-3.3.2 61.0K 3 3 7 2 4 1 2
urjtag-0.10 64.2K 12 12 78 6 0 0 0
a2ps-4.14 64.6K 6 6 26 3 12 1 0
dico-2.0 84.3K 2 2 46 1 1 1 2
Total 106 106 273 92 28 16 5
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Chapter 6

Related Work

6.1 Parametric Static Analysis

In Chapter 3, our approach suggests novel techniques for analysis-parameter infer-

ence [26, 33, 38, 62]. There are many parameters to tune in static analysis, to im-

prove either precision or scalability. The problem is how to find a set of minimal,

or at least sufficient, parameters for the goal. Liang et al. [26] use machine learn-

ing to find a minimal context-sensitivity for given queries. Guided by the number

of queries each analysis run has proven, the machine learning algorithm infers a

minimal k value for each function. However, they study the minimal abstraction

itself and provide no practical solutions for selective context-sensitivity. Zhang et

al. [62] present a technique for finding the optimum abstraction, a cheapest ab-

straction that proves the query, but it is applicable only to disjunctive analyses.

Naik et al. [33] use a dynamic analysis to select an appropriate parameter for a

given query, while we use a static pre-analysis for parameter selection.

In Chapter 5, our work uses a parametric static analysis in a novel way, where

the parameters specify the degree of soundness, not only the precision setting of the

analysis. The existing parametric static analyses have been focused on balancing

the precision and the cost of static analysis [33,37,38,62]. They infer a cost-effective

abstraction for a newly given program by iterative refinements [33,62], impact pre-
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analyses [37], or learning from a codebase [38]. On the other hand, our goal is to

find a soundness parameter striking the right balance between existing fully sound

and unsound approaches. Furthermore, the existing techniques for deriving static

analysis parameters (e.g., [33,37,62]) cannot be used for our purpose since it is sim-

ply impossible to automatically judge truth and falsehood of alarms. We address

this problem by designing a supervised learning method that learns a strategy from

a given codebase with known bugs. Because we have labelled data, using the learn-

ing algorithm via black-box optimization [38] is inappropriate. Instead, we use an

off-the-shelf learning method, which uses the gradient-based optimization algorithm

and works much faster than the black-box optimization approach.

6.2 Goal-directed Static Analysis

While refinement-based analyses [15, 40, 55] are similar to our approach (in that

they use a “pre-analysis” to adjust the main analysis precision), there is a fun-

damental difference in their techniques. Refinement-based approaches (e.g., client-

driven analysis [15]) start with an imprecise analysis and refines the abstraction

in response to client queries. On the other hand, our approach starts with a pre-

analysis that estimates the impact of the most precise main analysis. As a result,

our approach provides a precision guarantee, which does not hold in the refinement-

based techniques. Furthermore, the principle behind our approach is general; it is

applicable to a range of static analyses (such as interval and octagon analyses) with

various precision axes (such as context-sensitivity and relational analysis). Existing

refinement-based analyses have been special for pointer analyses [15, 40,55].

Our approach is orthogonal to demand-driven analyses [17,55,56]. While demand-

driven analyses aim to reduce analysis costs by computing only the partial solu-

tion necessary to answer given queries, we compute the exhaustive solution with

an abstraction tailored to the queries (our analysis is run once for the entire set

of queries). Both approach can complement each other.
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6.3 Data-driven Static Analysis

Recently there have been a large amount of research activities for developing data-

driven approaches to challenging program analysis problems, such as specification

inference [42,45], invariant generation [13,34,44,49–51], acceleration of abstraction

refinement [14], and smart report of analysis results [28,35,61]. In particular, Oh et

al. [38] considered the problem of automatically learning analysis parameters from

a codebase, which determine the heuristics used by the analysis. They formulated

this parameter learning as a blackbox optimization problem, and proposed to use

Bayesian optimization for solving the problem. Initially we followed this blackbox

approach [38], and tried Bayesian optimization to learn a good variable-clustering

strategy with our features. In the experiment, we learned the strategy from the

small programs as in Section 4.5.2 and chose the top 200 variable pairs which are

enough to make a good clustering as precise as our strategy; the learning process

was too costly with larger training programs and more variable pairs. This initial

attempt was a total failure. The learning process tried only 384 parameters and

reduced 14 false alarms even during the learning phase for a whole week, while

our strategy reduced 240 false alarms. Unlike the optimization problems for the

analyses in [38], our problem was too difficult for Bayesian optimization to solve.

We conjecture that this was due to the lack of smoothness in the objective function

of our problem. This failure led to the approach in this paper, where we replaced

the blackbox optimization by a much easier supervised-learning problem.

6.4 Context-sensitivity and Relational Analysis

Most of the previous context-sensitive analysis techniques assign contexts to calls

in a uniform manner. The k-callstring approach (or k-CFA) [48,52] and its flexible

variants [16], k-object sensitivity [29], and type sensitivity [4] are such cases. All

these techniques generate calling contexts according to a single fixed policy and do

not explore how to tune their parameters (for example, different k values at each

call site) for target queries. The hybrid context-sensitivity [23], which employs mul-
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tiple policies of assigning contexts in a single analysis, still does not tailor those

policies to the program to analyze. There are also other approaches to context-

sensitivity based on function summaries like [43], but here we do not discuss them

as it is by itself a challenge to design a summary-based analysis with abstract do-

mains of infinite height.

The scalability issue of the Octagon analysis is well-known, and there have been

various attempts to optimize the analysis [36,53]. Oh et al. [36] exploited the data

dependencies of a program and removed unnecessary propagation of information

between program points during Octagon’s fixpoint computation. Singh et al. [53]

designed better algorithms for Octagon’s core operators and implemented a new li-

brary for Octagon called OptOctagons, which has been incorporated in the Apron

framework [20]. These approaches are orthogonal to our approach, and all of these

three can be used together as in our implementation. We point out that although

the techniques from these approaches [36,53] improve the performance of Octagon

significantly, without additionally making Octagon partial with good variable clus-

ters, they were not enough to make Octagon scale large programs in our exper-

iments. This is understandable because the techniques keep the precision of the

original Octagon while making Octagon partial does not.

Existing variable-clustering strategies for the Octagon analysis use a simple syn-

tactic criterion for clustering variables [2] (such as selecting variable pairs that ap-

pear in particular kinds of commands and forming one cluster for each syntactic

block), or a pre-analysis that attempts to identify important variable pairs for Oc-

tagon [37]. When applied to large general-purpose programs (not designed for em-

bedded systems), the syntactic criterion led to ineffective variable clusters, which

made the subsequent partial Octagon analysis slow and fail to achieve the desired

precision [37]. The approach based on the pre-analysis [37], on the other hand, has

an issue with the cost of the pre-analysis itself; it is cheaper than that of Octagon,

but it is still expensive as we showed in the paper. In a sense, our approach auto-

matically learns fast approximation of the pre-analysis from the results of running

the pre-analysis on programs in a given codebase. In our experiments, this ap-
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proximation (which we called strategy) was 33x faster than the pre-analysis while

decreasing the number of proved queries by 2% only.

6.5 Unsoundness in Static Analysis

Existing unsound static analyses are all uniformly unsound (e.g., [12, 22, 58–60]).

In addition to their unsound handling of every loop and library call in a given

program, they consider only a specific branch of all conditional statements in a

program [22], deactivate all recursive calls [58,59], or ignore all the possible inter-

procedural aliasing [22, 58, 59]. As shown in this paper, these uniform approaches

have a considerable drawback; it significantly impairs the capability of detecting

real bugs. This paper is the first to tackle this problem and presents a novel ap-

proach of selectively employing unsoundness only when it is likely to be harmless.

Mangal et al. proposed an interactive system to control the unsoundness of

static analysis online based on the user feedback [28]. They define a probabilistic

Datalog analysis with “hard” and (unsound) “soft” rules, where the goal of the anal-

ysis is to find a solution that satisfies all of the hard rules while maximizing the

weight of the satisfied soft rules. The feedback from analysis users is encoded as

soft rules, and based on the feedback, the analysis is re-run and produces a report

that optimizes the updated constraints. In our setting (non-Datalog), however, it is

not straightforward to tune the unsoundness from user feedbacks. Instead, our ap-

proach automatically learns harmless unsoundness and selectively applies unsound

strategies depending on the different circumstances.

Our goal is different from the existing work on unsoundness by Christakis et

al. [6], which empirically evaluated the impact of unsoundness in a static analyzer

using runtime checking. They instrumented programs with the unsound assump-

tions of the analyzer and check whether the assumptions are violated at runtime.

On the contrary, we introduce a new notion of selective unsoundness and evaluate

its impact in terms of the number of true alarms and false alarms reported.

Our approach is orthogonal to statistical post-processing of alarms [21, 24, 25].

The post-processing (e.g. ranking) approach aims to remove false positives (re-
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ported false alarms). Instead, our approach aims to remove false negatives (unre-

ported true alarms). From the undiscerning, uniformly unsound analysis that will

have too many unreported true alarms, we tune it to be selectively unsound. These

post-processing systems are also complementary to our approach. Because in prac-

tice any realistic bug-finding static analyzer cannot but be unsound (for the anal-

ysis precision and scalability), our technique provides a guide on how to design an

unsound one. The existing post-processing techniques (e.g. ranking) can be anyway

applied to the results from such selectively unsound static analyzers.
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Chapter 7

Conclusion

We proposed selectively sensitive static analysis to balance among soundness, pre-

cision, and scalability of a static analyzer. The technical contribution of this disser-

tation is to design methods to select when and where the analysis turns on precise-

yet-costly techniques.

• We proposed a general principle to design an impact pre-analysis. The pre-

analysis estimates the impact of a precision-improving technique. Following

this principle, we presented two program analyses that selectively apply precision-

improving techniques, and demonstrated their effectiveness with experiments

in a realistic setting. The first was a selective context-sensitive analysis that

receives guidance from an impact pre-analysis. The experiments with realistic

benchmarks showed that the method reduces a number of false alarms while

only reasonably increasing the analysis cost.

• We proposed a method for learning a selection strategy for precision-improving

techniques from the impact pre-analysis results on a codebase. Our method

generates labeled data automatically from a given codebase by running the

impact pre-analysis. The labeled data are then fed to an off-the-shelf classi-

fication algorithm, which infers a classifier that can identify important parts

of a new unseen program, whose sensitivity should be turned on. Our experi-
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ments show that this combination of pre-analysis and machine learning scales

up well and is much faster than the one with only the impact pre-analysis.

• We proposed a method for learning a strategy for unsoundness heuristics.

Given a codebase with known bugs and a static analyzer, we automatically

generate labelled data and derive a classifier that captures the common char-

acteristics of the harmless yet precision-decreasing program components. The

experimental results showed that the technique is effectively applicable to two

bug-finding static analyzers and reduces their false negative rates while re-

taining their original precision.
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초 록

이 학위 논문에서는 정적 분석 성능을 결정짓는 세 가지 축인 안전성 (soundness),

정확도 (precision), 확장성 (scalability) 을 최대한 달성할 수 있는 방법을 제시한다.

정적 분석에는 여러가지 정확도 상승 기법들이 있지만, 무턱대고 적용할 시에는 분

석이 심각하게 느려지거나 실제 실행 의미를 지나치게 많이 놓치는 문제가 있다. 이

논문의 핵심은, 이렇게 정확하지만 비용이 큰 분석 기법이 꼭 필요한 곳만을 선별해

내는 기술이다. 먼저, 정확도 상승 기법이 꼭 필요한 부분을 예측하는 또 다른 정적

분석인 예비 분석을 제시한다. 본 분석은 이 예비 분석의 결과를 바탕으로 정확도 상

승 기법을 선별적으로 적용함으로서 효율적으로 분석을 할 수 있다. 또한, 기계학습

을 이용하여 과거 분석 결과를 학습함으로써 더욱 효율적으로 선별할수 있는 기법을

제시한다. 학습에 쓰이는 데이터는 앞서 제시한 예비 분석과 본 분석을 여러 학습 프

로그램에 미리 적용한 결과로부터 자동으로 얻어 낸다. 여기서 제시한 방법들은 실제

C 소스 코드 분석기에 적용하여 그 효과를 실험적으로 입증했다.

주요어 : 프로그래밍 언어, 정적 분석, 선별, 예비 분석, 기계 학습

학 번 : 2009-20919
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