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ABSTRACT

Digital images suffer from noises that occur throughout the image capturing sys-

tem. Image denoising is an important process to compensate the noises and plenty

of studies have been made in this topic. Due to the ill-posed nature of image de-

noising, classical studies have developed various image prior models. The denoised

image is forced to satisfy some characteristics of nature images that are manually

designed. Recently, many researchers have developed discriminative learning based

methods. The methods learn a mapping function from a noisy image to the denoised

one by a data-driven manner and have shown state-of-the-art performance. In this

respect, this dissertation presents convolutional neural network (CNN) based de-

noising algorithms. While many up-to-date learning based methods minimize only

a pixel-based error and miss some important priors as a result, the proposed algo-

rithms are designed to consider priors of natural images and image processing.

First, a self-committee network (SCN) that can find enhanced restoration re-

sults from the multiple trial of a trained CNN with different but related inputs is

proposed. Specifically, it is noted that the CNN sometimes finds different mapping

functions when the input is transformed by a reversible transform and thus pro-

duces different but related outputs with the original. Hence averaging the outputs

for several different transformed inputs can enhance the results as evidenced by the
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committee machine methods. Unlike the conventional committee approaches that

require several networks, the proposed method needs only a single network. The

transformations for constructing a committee are defined from the image process-

ing priors. The SCN method can improve the performance of CNN based denoising

methods without additional training or fine-tuning.

A framework to apply an image prior in network training is also presented.

Among various prior models, this dissertation employs a non-local self similarity

(NSS) prior, which forms a dominant category of image denoising algorithms. The

proposed block-matching convolutional neural network (BMCNN) first collects and

groups similar patches by block-matching and the denoising network estimates a

denoised patch from the corresponding group. Experimental results show that the

proposed method is superior to state-of-the-art methods and works well on vari-

ous types of images. This dissertation also argues that some up-to-date NSS based

methods can be interpreted as a kind of the BMCNN structure.

Lastly, the proposed frameworks are applied to non-Gaussian denoising problems.

The non-Gaussian noise includes Poisson noise, which is a widely-used artificial

noise model, and real-noises from various cameras. Experimental results show that

the proposed frameworks work well for various types of noise. Moreover, they show

outstanding advantage on real noise, where the noise characteristic is unknown and

there exists a misalignment between a noisy image and its reference image. It is

expected that the proposed framework enables developments of favorable image

enhancement tools for individual real camera.

Key words: Image Denoising, Convolutional Neural Network, Image Prior, Com-

mittee, Non-local Self Similarity, Block Matching, Real Noise
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Chapter 1

Introduction

As high-performance digital devices such as cameras and smartphones are widely

available, a huge number of images are captured everyday. Image capturing system

of a digital device consists of many processing stages until a digital image is produced

from a natural scene. Unfortunately, some stages are usually disturbed by various

kinds of noises and the system produces noisy output. Fig. 1.1 shows the pipeline of

general image capturing system. Moreover, captured digital images can be affected

by additional noises through the transmission and/or storage procedure. Since these

noises degrade the visual quality of the image and disturb image understanding or

computer vision tasks, image denoising is regarded as an essential step, and plenty

of studies [1–32] have been made to solve the problem for decades.

Generally, image denoising is considered as an estimation of the noise-free pixel

value X(i, j) from its noisy observation Y (i, j) and the noise is usually assumed

additive white Gasussian noise (AWGN):

Y (i, j) = X(i, j) + V (i, j) (1.1)
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Figure 1.1: A structure of image capturing system with various noise sources.
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(a) (b)

Figure 1.2: Illustration of (a) noise-free image and (b) corresponding noisy image

with σn = 25.

V (i, j) ∼ N(0, σ2
n), i.i.d. (1.2)

where σn is the standard deviation of noise, named noise level. An example of noise-

free image and corresponding Gaussian noisy image is shown in Fig. 1.2. The AWGN

is regarded as an appropriate model for image noise. Especially, sensor noise caused

in low-light environment and Johnson-Nyquist noise in high temperature, which are

the dominant parts of real noise, follow Gaussian noise model. Moreover, due to the

central limit theorem, it is guaranteed that a sum of many different noises tends to

be Gaussian.

In this dissertation, image denoising methods based on convolutional neural net-

work (CNN) structure are proposed. Unlike previous methods that focus on mini-

mizing error function, the proposed approaches develop frameworks to combine prior

models with CNN structures. First, a committee machine for a trained network is

3



constructed by transforming the input and output of the network. The transforms

are defined from the image processing priors. In addition, a widely-used non-local

self similarity prior of a natural image is employed to train a novel denoising net-

work. In order to combine NSS prior with CNN structure, the proposed approach

takes a group of similar patches as a input of the network rather than a single patch.

This approach is expanded to Poisson noise and real noise from practically captured

images.

1.1 Self - Committee Network based on Image Process-

ing Prior

In this dissertation, a committee approach that works at the inference stage to en-

hance the performance of CNN based image restoration methods is proposed. The

idea of “committee machine” for a vision task was introduced in [33,34], and it was

shown to achive the best performance for MNIST digit classification problem [35].

The main idea of this method is to average the outputs of differently trained net-

works (called member networks) to the same input, which could alleviate the local

minima problem and increase the performance. The proposed method differs from

the conventional committee approaches in constructing the committee members.

Specifically, the proposed method uses only a single network named base network,

and instead of preparing committees as the different networks, the committees are

defined as the outputs of the network with differently transformed inputs. The trans-

forms used for the committee construction are based on the image processing priors

that conventional methods satisfy. The trained network sometimes finds different

feature map for the transformed input and thus produces different output (when
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inverse transformed). Thus several transforms are prepared, and the transformed

inputs are passed through the network and their outputs are used as committees.

The outputs are averaged to be the final output. The proposed method is named

self-committee network (SCN) in the sense that only a single network is used. The

proposed method can improve the performance of the CNN based image restoration

methods without additional training or fine-tuning.

1.2 Image Denoising by a Block-Matching

Convolutional Neural Network

In order to solve the ill-posed image denoising problem, many prior models such

as gradient model [14, 36, 37], Markov random field (MRF) model [15, 38, 39], and

sparse representation model [4, 16, 40] are proposed. Among them, many state-of-

the-art methods are based on observation that natural scenes usually contain many

repeated patterns. Since Buadas et al. [1] introduced a strategy named nonlocal

means filter, plenty of methods [3–5, 7, 16] that estimate ground-truth noise free

patch xp from noisy patch yp using similar patches in the neighborhood of yp have

been developed. The methods are categorized as nonlocal self-similarity (NSS) based

methods and the employment of NSS prior has boosted the performance of image

denoising significantly. Fig. 1.3 illustrates the concepts of neighborhood S(yp) of a

patch yp and similar patches in the neighborhood.

Some researchers, meanwhile, developed neural network based denoising algo-

rithms [2, 9, 30, 31]. They trained networks which take a noisy patch as an input

and estimate a noise-free original patch. Since neural network based algorithms are

data-driven frameworks, they can learn an optimal processing for local regions pro-
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Figure 1.3: Illustration of (a) neighborhood S(yp) (in black) of a patch yp (in red)

and (b) similar patches yp1, yp2 (in blue).

vided that sufficiently large training dataset and deep network are available. The

networks can also adopt priors which are not perceptible by the human eye or diffi-

cult to implement. Moreover, thanks to the development of graphic processing units

(GPU) programming and parallel processing, a neural network (NN) enables much

faster denoising than prior model based methods. However, NN based methods tend

to show inferior performance to NSS based methods for images with regular and

repetitive textures.

In this dissertation, a denoising framework named block-matching convolutional

neural network (BMCNN) is presented. The BMCNN is a combined approach of NSS

prior and CNN structure. Fig. 1.4 - (a), (b) and (c) show the difference between ex-

isting denoising algorithms and the proposed algorithm. As shown in the figures, the

proposed method takes a block of similar noisy patches rather than a single patch
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Figure 1.4: (a), (b), (c) flowcharts of conventional NSS based system, NN based

system and proposed BMCNN respectively and (d) an illustration of block-matching

step.
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as an input of denoising network. The block is constructed by block-matching [3]

that is illustrated in Fig. 1.4 - (d). Uniting the similar patches enables the network

reflecting NSS prior in addition to the local prior that conventional neural networks

can train. Compared to the conventional NSS based algorithms, the BMCNN adopts

a data-driven framework and consequently achieve the better performance. More-

over, it is shown that some conventional methods can be interpreted as a kind of

BMCNN framework.

1.3 Non-Gaussian Noise

Gaussian noise is considered as an appropriate model for image noise. However, in

real cases, an image is corrupted by various noise sources and the noise does not

necessarily follows the Gaussian distribution. Therefore, denoising the non-Gaussian

noise is also an important topic. Especially with high exposures, quantum fluctua-

tions cause noise in the darker part and it is the dominant part of the image noise.

This kind of noise is named shot noise or Poisson noise since it follows the Poisson

distribution. In this respect, many up-to-date studies presented denoising algorithms

for the Poisson denoising [17–22]. Moreover, a number of mixed noise denoising al-

gorithms [23–27] are also proposed in order to consider both Gaussian noise and

Poisson noise consequently.

In this dissertation, it is shown the BMCNN framework achieves favorable per-

formance on non-Gaussian noise denoising. The BMCNN is adopted to two types

of noise: Poisson noise and real noise. In order to train and test the network for

real noise, this dissertation employs the RENOIR dataset [41] which presents a nat-

ural noise dataset from three types of cameras including a mobile phone camera.
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Three denoising networks are trained and tested for each camera separately in this

dissertation. The training and testing of the denoising network follows the similar

procedure to the Gaussian denoising. First, a basic denoising network is trained

without a block matching. Then the final network is trained using the outputs from

the basic network along with noisy images.

1.4 Contribution

Recently, CNN structure have shown favorable performance on image restoration

problems including image denoising. However, up-to-date structures do not consider

obvious priors of natural image or image processing and it limits the capacity of

the network. For this purpose, this dissertation presents new frameworks to adopt

prior models on CNN based denoising. The main contributions of this dissertation

are summarized as follows :

• SCN, a committee machine based method is presented. A committee can be

constructed based on some image processing priors and the performance is

improved.

• BMCNN, a method to combine a NSS prior and CNN structure is proposed.

The network works well on both regular and irregular textures.

• The proposed frameworks are expanded to non-Gaussian denoising problems.

The network shows robust performance on the real images.

• It is proven that adopting priors of natural image and image processing im-

proves the performance of CNN based denoising.

9



1.5 Contents

The rest of this dissertation is organized as follows. In chapter 2, researches that

are related to the proposed framework are reviewed. There are three main topics:

image denoising based on image prior models, learning based image restoration, and

non-Gaussian image denoising. Chapter 3 introduces the proposed SCN framework.

Its applications with several image restoration algorithms with experimental results

and discussions are also presented. In chapter 4, the proposed BMCNN is explained

in detail, followed by experimental results and discussion. The proposed frameworks

are expanded to the denoising of Poission noise and real noise in chapter 5. Finally,

this dissertation is concluded in chapter 6.
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Chapter 2

Related Work

2.1 Prior based Image Denoising

Due to the ill-posed nature of image restoration, classical studies have developed

various image prior models. Rudin et al. [14] proposed a gradient-projection model

that minimizes the total variation of the image. Osher et al. [36] also suggested

total-variation problem for image restoration. Their method solved the problem by

an iterative regularization method. Weiss et al. [37] derived that derivates of natu-

ral images show heavy-tailed non-gaussian distributions. Based on the observation,

they designed a maximum-likelihood filter. Chang et al. [28] presented a method

to denoise an image in wavelet domain. Remenyi [42] derived the covariance struc-

ture of white noise in the wavelet domain. Based on the structure, they extended

the wavelet denoising method to the 2D scale-mixing complex wavelet transform

domain. Roth et al. [15] proposed field of experts (FoE) method, which models the

prior probability of an image in terms of a random field with overlapping cliques.

The model is employed as a MRF image priors. Mairai et al. [40] assumed that each
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image patches can be decomposed into a linear combination of a few elements from

a basis set. Based on the assumption, they proposed a sparse coding based image

restoration method.

Among the various types of the image prior models, most state-of-the-art de-

noising methods [1,3,4,7,16] employ nonlocal self-similarity prior of natural images.

The nonlocal means filter [1] uses the patch similarity to design a filter for the

center pixel of patch. Some other algorithms estimate the denoised patch directly

rather than estimating each pixel separately. For the patch denoising, the algorithms

adopt another priors of images. In BM3D algorithm [3], some neighborhood patches

with high similarity are grouped with the reference patch to form a “group”. The

group is transformed to the DCT domain, and the denoising is performed in the

transformed domain. Sujeong et al. [12] adopted wavelet prior model and proposed

wavelet nonlocal means filter algorithm. Dong et al. [4,5] solved the denoising prob-

lem by using the sparsity prior of natural image. Since the matrix formed by similar

patches in a nature image is of low rank, the sparse representation of noisy group

can be a good solution. Gu et al. [7] also considered denoising as a kind of low-rank

matrix approximation problem and introduced weighted nuclear norm minimization

(WNNM) algorithm. In addition to the low-rank nature, they took advantage of the

prior knowledge that large singular value of the low-rank approximation represents

the major components of the image. Therefore the WNNM algorithm adopt the term

that prevents large singular values from shrinking in addition to the conventional nu-

clear norm minimization (NNM) [43] method. Although adopting image prior model

have shown promising quality, they suffer from some drawbacks. First, the model

is manually designed and they involve parameters that a user needs to fix. There-

fore the performance can be limited by human perception. Moreover, the methods
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find the optimal solution that satisfies the prior by solving a complex optimization

problem that yields high computational cost.

2.2 Learning based Image Restoration

Since Lecun et al. [44] showed that their artificial neural network performs very well

in digit classification problem, various learning based algorithms have been developed

for diverse computer vision problems ranging from low to high-level tasks. Schmidt

et al. [45] proposed a cascade of shrinkage fields (CSF). The algorithm unifies the

random field-based model and quadratic optimization into a learning frameworks.

Chen et al. [29] proposed a trainable nonlinear reaction diffusion (TNRD) model.

The model learns parameters for a diffusion model by a gradient descent procedure.

With a dramatic progress of GPU programming and parallel processing, deep

learning based methods have also attracted great attention. In the early stage of this

work, some multilayer perceptrons (MLP) were adopted for image processing. Burger

et al. [2] showed that a plain MLP can compete the state-of-the-art image denoising

methods such as BM3D provided that huge training set, deep network and numerous

neuron are available. Their method was tested on several type of noise: Gaussian

noise, salt-and-pepper noise, compression artifact, etc. Schuler et al. [46] trained the

same structure to remove the artifacts that occur from non-blind image deconvolu-

tion. Meanwhile, many researchers have developed CNN based algorithms. Jain et

al. [9] proposed a CNN for denoising, and discussed its relationship with the MRF

model [47]. Dong et al. [48] proposed a SRCNN, which is a convolutional network for

image super-resolution. Although their network was lightweight, it achieved superior

performance to the conventional non-CNN approaches. They also showed that some
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conventional super-resolution methods such as sparse coding [49] can be regarded as

a special case of deep neural network. Their work was continued to the compression

artifact reduction [50]. Kim et al. [51,52] proposed two algorithms for image super-

resolution. In [51], they presented skip-connection from input to output layer. Since

the input and output are highly correlated in super-resolution problem, learning

their residual results more effective training. In [52], they introduced a network with

repeated convolution layers. Their recursive structure enabled a very deep network

without huge model and prevented exploding/vanishing gradients [53]. Recently,

some techniques such as residual learning [54] and batch normalization [55] have

made considerable contributions in developing CNN based image processing algo-

rithms. The techniques contribute to stabilizing the convergence of the network and

improving the performance. For some examples, Timofte et al. [56] adopted residual

learning for image super-resolution, and Zhang et al. [30] proposed a deep CNN us-

ing both batch normalization and residual learning. The network shows state-of-the

art performance for many restoration problems including gaussian image denoising,

SISR and JPEG image deblocking.

Although deep learning based methods are proven to be effective in many tasks,

they are embedding some limitations. First, the training can be struck in a local

minima and therefore the initial condition of the training affects the performance.

Zhao et al. [57] showed that local minima limits the network performance. Second,

since the training aims to minimize only pixel-based error, the network can miss some

priors. Burger et al. [31] showed that although data-driven training itself provides

promising results, combining some image priors can raise the performance.
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2.3 Non-Gaussian Image Denoising

Poisson noise is the most common assumption for non-Gaussian noise. There have

been many researches to restore images damaged from Poisson noise. Previous stud-

ies can be categorized into 2 categories: Poisson unbiased risk estimate (PURE)

based methods and NSS based methods.

Luisier et al. [17] first introduced PURE, which is statistically estimated the mean

square error between nature image and the processed noisy image. By minimizing the

error with a linear expansion of thresholds (LET) method, the algorithm estimates a

favorable denoised image. They also adopted haar thresholding for exact estimation

in [18]. Li et al. [58] proposed an image deconvolution algorithm. They parameterized

the deconvolution process as a linear combination of LET functions. The parameter

is optimized by minimizing PURE.

NSS prior based methods showed promising results in Poisson noise as well as in

Gaussian noise. Deledalle et al. [20] extended the NLM algorithm to Poisson denois-

ing problem. Bindilatti et al. [32] also proposed a NLM algorithm. Their method

measures patch similarity by stochastic distances instead of the Euclidean distance.

Jin et al. [21] designed a nonlocal filter based on weights optimization. Salmon et

al. [22] constructed a patch cluster based on NSS prior. They adopted a generaliza-

tion of principle component analysis(PCA) for the cluster denoising.

Since a single model cannot cover various noise sources in real cases, many studies

assumed mixed Poisson-Gaussian noise model. Zhang et al. [23] proposed a multi-

scale variance stabilizing transform for mixed process. Foi et al. [27] presented a

method to fit the noise model to the RAW data. Luisier et al. [19] extended the

PURE-LET method to the denoising of mixed noise. Jezierska et al. proposed some

15



approaches for the blind cases, in which the parameters of noise such as variance

is unknown. In [24], they proposed a primal-dual proximal splitting approach based

on the data statistics. In [26], they estimated the parameters such as noise variance

by an iterative algorithm and their study is developed to the EM approach for noise

modeling [25]. Although a mixed noise approximates the major parts of noise well, it

is an artificial noise and, it has different characteristics from a real noise. Therefore,

Anaya et al. [41] presented a natural noise dataset from 3 types of cameras including

a mobile phone camera.
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Chapter 3

Self-Committee Network based

on Image Processing Prior

3.1 Committee Machine

Committee machine [59] is a system that is composed of multiple neural networks,

named member networks or experts. It uses a divide and conquer strategy in which

the outputs of member networks are combined into a single output. Among the exist-

ing cases, ensemble averaging which averages the member outputs is the most simple

and common approach. The structure of an ensemble averaging machine is illustrated

in Fig. 3.1. The resulting committee almost always has improved performance over

any single network since grouping can reduce the variance of the network outputs.

In some existing methods member networks has different structure each other and

in other methods, every member networks share the same structure but they are

trained with different initial conditions. In any cases, up-to-date network committee

based methods need a number of network models.
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Figure 3.1: The structure of a general ensemble averaging committee machine.
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Figure 3.2: The structure of the proposed SCN framework.

3.2 Proposed Algorithm

The key ideas of the proposed method are summarized as follows. Fist, some trans-

formations are applied to an input image, which constructs a group of images for

the given input. The group members are individually passed through the network

and the outputs are inverse transformed to the original image space. Then the final

output is estimated from the group of output images. An example of the proposed

SCN framework is illustrated in Fig. 3.2. In this dissertation, two kinds of image

transformations are considered, which would bring the output with almost the same

performance but different characteristics. Both types of transformations are drawn
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from the priors of image processing.

3.2.1 Flip and/or Rotation (FR)

Training based image restoration algorithms [2,29,30,45,60] aim to learn a mapping

function f(Y ) ∼ X for a degraded image Y and its ground-truth X. In the view

of human visual system (HVS), it is natural that the mapping function should also

work the same for the flipped and/or rotated image, i.e., it is desired that the FR

image of the restored output must be the same as the restored output of the FR

input :

f(g(Y )) = g(f(Y )) (3.1)

where g is the FR operation. Most prior based image restoration methods satisfy this

condition, because the FR operations do not affect the image prior such as gradient

distribution or sparsity.

However, it does not hold for the CNN based image restoration methods. Al-

though they augment training data by FR operations [29, 30], it does not force

the trained convolution filters to be spatially symmetric, which is needed for FR

invariance. Therefore, they produce different results for the FR images and thus

it is worth to construct FR committees, where specific operations are summarized

in Table. 3.1. In detail, operations {gk} make member inputs {gk(Y )} and their

corresponding member outputs {g−1
k (f(gk(Y )))}. The final output is obtained by

averaging the member ouputs

;

X̂FR,I =

∑
k∈K g−1

k (f(gk(Y )))

|K| (3.2)

where K is a subset of {1, 2, ...8} and |K| is the size of K.
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Table 3.1: 8 FR operations employed to constitute the committee

k Discription

1 Original

2 FlipUD

3 Rotation (90◦)

4 Rotation (90◦)+FlipUD

5 Rotation (180◦)

6 Rotation (180◦)+FlipUD

7 Rotation (−90◦)

8 Rotation (−90◦)+FlipUD

3.2.2 Linearity

Some image degradation models such as noise-free blurring or image downsampling

are assumed as a linear model, Y = XHV whereH is a blur kernel and V is a resizing

matrix. Therefore, it is natural that their corresponding restoration problems, i.e.

deblurring or SISR, are also linear:

f(αY + β) = αf(Y ) + β (3.3)

for any scalar α and β.

However, the neural network assumes that the mapping function is non-linear and

the network contains bias term in every neuron and non-linear activation functions

such as rectified linear unit (ReLU). As a result, (3.3) does not hold for neural

network based algorithms, which will produce different outputs for the scaled and/or

biased inputs (even when they are restored by removing the bias and rescaled). Hence

20



a committee can be constructed for the member of inputs with several different α

and β, i.e., the output is obtained as

X̂L =

∑
α,β x̂α,β∑
α,β 1

(3.4)

where

x̂α,β =
f(αY + β)− β

α
. (3.5)

However, it is difficult to freely set the α and β in the noisy environments

Y = XHV + N where N is the noise, because the scaling α changes the noise

characteristics. Assuming that the noise distribution is zero mean and symmetric,

just two member networks such that {(α, β)} = {(1, 0), (−1, 1)} are available for

the noisy environment in order not to scale the noise component. Specifically, the

output is obtained as

X̂I =
f(Y ) + (1− f(1− Y ))

2
(3.6)

which maintain the range of input pixel values, on which the network is trained and

works best.

Since the linearity and FR invariance are independent property, they can also

cooperate to make a larger committee as

X̂Full =

∑
α,β

∑
k∈K g−1

k (f(gk(αY + β)))− β∑
α,β α |K| (3.7)

3.3 Experimental Results

In this section, experiments for two types of the image restoration are conducted

: conducted experiments for two types of the image restoration : Gaussian image

denoising and SISR. The performance is evaluated by the peak signal-to-noise ratio
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Table 3.2: 6 types of committee that are evaluated

Committee

Name
Discription

� of

Members

SCN-F Original+Flip (K = {1, 2}) 2

SCN-R Original+Rotation (K = {1, 3, 5, 7}) 4

SCN-FR Original+FR (K = {1 ∼ 8}) 8

SCN-I Original+Inversion 2

SCN-Full Original+FR+Inversion 16

SCN-L Original+Linear (for SR only) 3

(PSNR) [61] and improved PSNR (IPSNR) compared to the base network. We test

6 types of committees that are summarized in Table. 3.2.

3.3.1 Experiments on image denoising network

For Gaussian image denoising, DnCNN [30] is employed as a base network because

of its promising performance and short run-time on GPU. The test set is shown in

Fig. 3.3, which is consisted of 12 images that are widely used for the test of image

denoising. Fig. 3.4 summarizes the average IPSNR for various noise levels and Table.

3.3 shows the PSNR results on overall test images with σ = 30.

The results suggest the followings

• The employment of additional committee always improves the performance.

• The information of an image is severely distorted in a high noise level. There-

fore, only a single network is hard to be optimal and adding the committees

is more beneficial at higher noise level.
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Figure 3.3: The 12 test images used in the experiments
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Figure 3.4: Average IPSNR curves for various SCN structures
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Table 3.3: Individual PSNR results for gaussian denoising.

Method DnCNN SCN-F SCN-R SCN-FR SCN-I SCN-Full

σ = 30

Cameraman 29.24 29.26 29.28 29.28 29.28 29.30

Lena 31.62 31.66 31.67 31.68 31.66 31.69

Barbara 28.84 28.89 28.93 28.94 28.91 28.96

Boat 29.36 29.38 29.40 29.40 29.38 29.41

Couple 29.20 29.22 29.24 29.25 29.23 39.25

Fingerprint 26.61 26.64 26.66 26.67 26.71 26.73

Hill 29.24 29.26 29.26 29.27 29.26 29.27

House 32.38 32.43 32.43 32.44 32.42 33.45

Jetplane 31.12 31.15 31.17 31.17 31.18 31.19

Man 29.23 29.25 29.26 29.27 29.24 29.26

Montage 31.82 31.89 31.93 31.95 31.87 31.94

Peppers 29.86 29.89 29.91 29.91 29.95 29.98

Average 29.87 29.91 29.93 29.94 29.92 29.95
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Figure 3.5: The comparison of some features in the original image and inverted

image. (a) Input image, (b) features in the first layer, and (c) features in the 13-th

layer.

In order to analyze the improvement in view of the feature space, we extracted

feature maps from an original image and its inverted one as illustrated in Fig. 3.5.

As shown in Fig. 3.5 - (b), low-level feature maps of an inverted image are similar
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to the inversion of the original feature maps. However, the high-level features show

somewhat different characteristics. The original feature map and inverted image

feature map are similar in some cases (in the first and third row) but in other cases,

they show weak correlation (in the second and fourth row). Moreover, the output of

the inverted image would be re-inverted to the original image space and therefore, the

two feature maps are distinct in the end. It implies that the function of a committee

is expanding the feature maps and enables more accurate process, rather than just

augmenting the input.

3.3.2 Experiments on a single image super-resolution network

The proposed SCN framework is also tested for a SISR. In order to show the robust-

ness to the base network, SRCNN [60] is used as a base network. For testing, two

test datasets (Set 5 and Set 14) with three scaling factors (2, 3 and 4) are adopted.

Four committees as shown in Table. 3.2 are tested: SCN-FR, SCN-I, SCN-L, and

SCN-Full. For SCN-L, we set the parameters α and β to

α ∈ {max(X)−min(X), 1, 1
max(X)−min(X)} (3.8)

β = (1− α)mean(X). (3.9)

By using these values, the mean pixel value is maintained and the pixel value satu-

ration is prevented. Table 3.4 lists the average PSNRs of different committees and

Fig. 3.6 presents an example. As shown in the results, the committee is beneficial for

various the image restoration tasks and network formulations. Since the activation

function (ReLU) keeps the linearity in a large range, scaling and shifting the input

do not show notable difference. On the other hand, the inversion reverses the signs

of the feature maps and thus draws out informations that are discarded from the
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original network. Hence the SCN-I generally yields higher PSNR than the SCN-L,

which is just a scaling based committee.

Table 3.4: Average PSNR results for super-resolution

Dataset
Upscaling

Factor
SRCNN SCN-FR SCN-L SCN-I SCN-Full

Set5

2 36.71 36.91 36.72 36.81 36.92

3 32.83 32.97 32.84 32.89 32.98

4 30.51 30.63 30.53 30.60 30.64

Set14

2 32.54 32.66 32.55 32.60 32.67

3 29.34 29.45 29.35 29.39 29.45

4 27.52 27.58 27.53 27.57 27.59
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Figure 3.6: ”Butterfly” image results with their PSNR
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Chapter 4

Image Denoising by a

Block-Matching Convolutional

Neural Network

4.1 Block Matching Convolutional Neural Network

In this section, the proposed approach to combine NSS prior and CNN structure

for image denoising problem is presented. This section concentrates on additive

Gaussian noise model. That is, the proposed BMCNN estimates the original image

X from its noisy observation Y = X+V , where V ∼ N(0, σ2), i.i.d.. The overview of

BMCNN is illustrated in Fig. 4.1. First, an existing denoising method is applied to

the noisy image. The denoised image is regraded as a pilot signal for block matching.

That is, the proposed algorithm finds a group of similar patches from the input

and pilot images, which is denoised by a CNN. Finally, the denoised patches are

aggregated to form the output image.
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Figure 4.1: The flowchart of proposed BMCNN denoising algorithm.

4.1.1 Patch Extraction and Block Matching

Many up-to-date denoising methods are the patch-based ones, which denoise the

image patch by patch. In the patch-based methods, the overlapping patch {yp} of

size Npatch × Npatch are extracted from Y , centered at the pixel position p. Then,

each patch is denoised and merged together to form an output image. In general,

this approach yields the best performance when all possible overlapping patches

are processed, i.e., when the patches are extracted with the stride 1. However, this

is obviously computationally demanding and thus many previous studies [2, 3, 7]

suggested to use some larger strides that decrease computations while not much

degrading the performance.

In the conventional NSS based algorithm [3], they first find similar patches to yp

based on the dissimilarity measure defined as

d(yp, yq) = ‖yp − yq‖2. (4.1)

Specifically, the k patches nearest to yp including itself are selected and stacked,
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which forms a 3D block {Yp} of size Npatch ×Npatch × k. Then the block is denoised

in the 3D transform domain. However, it is also shown in [3] that the noise affects

the block matching performance too much. Specifically, the distance with the noisy

observation is a non-central chi-squared random variable with the mean

E(d(yp, yq)) = d(xp, xq) + 2σ2N2
patch (4.2)

and variance

V (d(yp, yq)) = 8σ2N2
patch(σ

2 + d(xp, xq)) (4.3)

where xp and xq are clean image patches that corresnpond to yp and yq respectively.

As shown, the variance grows with O(σ4), and thus the block matching results are

likely to depend more on the noise distribution as the σ gets larger. This problem

is somewhat alleviated by the two-step approach: the first step is to denoise the 3D

block as stated above, and the second step is to aggregate the similar patches again

by using the denoised patch as a reference. Then the denoised and original patches

are stacked together to be denoised again.

In this respect, the proposed algorithm also uses a denoised patch to find its

similar patches from the noisy and denoised image. Precisely, an existing algorithm

is adopted as a preprocessing step. The preprocessing step finds a denoised image

X̂basic, which is named pilot image and used for the patch aggregation step as follows:

• Block-matching is performed on X̂basic. Since the preprocessing attenuates the

noise, the block-matching on the pilot image provides more accurate results.

• The group is formed by stacking both the similar patches in the pilot image

and the corresponding noisy patches. Since some information can be lost by

denoising, noisy input patch can help reconstructing the details of the image.
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Figure 4.2: The architecture of the denoising network

For most cases, DnCNN [30] is used to find the pilot image because of its promising

denoising performance and short run-time on GPU. BM3D algorithm is also used

as a preprocessing step, which shows almost the same performance on the average.

But the DnCNN and BM3D lead to somewhat different results for the individual

image as will be explained in the experiment section.

4.1.2 Network Structure

In CNN based methods, designing a network structure is an essential step that

determines the performance. Simonyan et al. [62] pointed out that deep networks

consisting of small convolutional filters with the size 3 × 3 can achieve favorable

performance in many computer vision tasks. Based on this principle, the DnCNN [30]

employed only 3× 3 filters, and the proposed denoising network is also consisted of

3× 3 filters, with residual learning and batch normalization. The architecture of the

network is illustrated in Fig. 4.2.

In the proposed algorithm, the depth is set to 17, and the network is composed

of three types of layers. The first layer generates 64 low-level feature maps using 64
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filters of size 3 × 3 × 2k, for the k patches from the input and another k patches

from the preprocessed image. Then, the feature maps are processed by a rectified

linear unit (ReLU). The layers except for the first and the last layer (layer 2 ∼ 16)

contain batch normalization between the convolution filters and ReLU operation.

The batch normalization for feature maps is proven to offer some merits in many

previous works [55, 63, 64], such as the alleviation of internal covariate shift. All

the convolution operations for these layers use 64 filters of size 3 × 3 × 64. The

last layer consists of only a convolution layer. The layer uses a single 3 × 3 × 64

filter to construct the output from the processed feature maps. In this dissertation,

the network adopts the residual learning, i.e., f(Y ) = V [54] . Hence, the output

of the last layer is the estimated noise component of the input and the denoised

patch is obtained by subtracting the output from the input. These layers can also

be categorized into three stages as follows.

Feature Extraction

At the first stage (layer 1 ∼ 6), the features of the patches are extracted. Figs.

4.3(a)∼(c) show the function of the stage. The first layer transforms the input

patches into the low-level feature maps including the edges, and then the follow-

ing layers generate gradually higher-level-features. The output of this stage contains

complicated features and some features about the noise components.

Feature Refinement

The second stage (layer 7 ∼ 11) processes the feature maps to construct the target

feature maps. In existing networks [48, 50], the refinement stage filters the noise

component out because the main objective is to acquire a clean image. On the other
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(a) (b) (c) (d) (e) (f)

Figure 4.3: Feature maps from the denoising network. (a) Patches in an input image,

(b) the output of the first conv layer, (c) the output of the feature extraction stage

(at the same time, the input to the feature processing stage), (d) the output of the

feature processing stage (at the same time, the input to the reconstruction stage),

(e) the input of the last layer, (f) the output residual patch.
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hands, the target of the proposed denoising algorithm is a noise patch. Hence, the

refined feature maps are comprised of the noise components as shown in Fig. 4.3(d).

Reconstruction

The last stage (layer 12 ∼ 17) makes the residual patch from the noise feature

maps. The stage can be considered the inverse of the feature extraction stage in

that the layers in the reconstruction stage gradually constructs lower-level features

from high level feature maps as shown in Figs. 4.3(d)∼(f). Despite all the layers

share the similar form, they contribute different operations throughout the network.

It gives some intuitions in designing an end-to-end network for image processing.

4.1.3 Patch aggregation

In order to obtain the denoised image, it is straightforward to place the denoised

patches x̂p at the locations of their noisy counterparts yp. However, as suggested in

Sec. 4.1.1, the step size Nstep is smaller than the patch size Npatch, which yields an

overcomplete result consequently. In other words, each pixel is estimated in multiple

patches. Hence, a patch aggregation step that computes the appropriate value of

x̃(i, j) from a number of estimates x̂p(i, j) for different p is required. The simplest

method for the aggregation is simply taking the mean value of the estimates as

x̃(i, j) =

∑
(i,j)∈x̂p

x̂p(i, j)∑
(i,j)∈x̂p

1
. (4.4)

However, in some studies [2, 46], it is shown that weighting the patches x̂p with

a simple Gaussian window improves the aggregation results. Hence BMCNN also

employ the Gaussian weighted aggregation

x̃(i, j) =

∑
(i,j)∈x̂p

wp(i, j)x̂p(i, j)∑
(i,j)∈x̂p

wp(i, j)
(4.5)
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where the weights are determined as

wp(i, j) =
1√
2πσ2

w

exp−|p− (i, j)|2
2σ2

w

(4.6)

where σw is the parameter for weighting.

4.1.4 Connection with Traditional NSS based Denoising

In this subsection, it is explained that the proposed BMCNN structure can be con-

sidered a generalization of conventional NSS based algorithms. Most existing NSS

based denoising algorithms [3–5,7,10] share the similar structure: they extract groups

of similar patches by block matching, denoise the groups separately, and aggregate

the patches to form the output image. Among the procedures, group denoising is

the most distinguishing part for individual algorithm. In this sense, the analysis is

focused on the group denoising stage. The group denoising stages of state-of-the-art

algorithms are illustrated in Fig. 4.4.

In BM3D, the input group is first projected to another domain by a 3D trans-

form. Specifically, they perform a 2D tranform to the patches followed by a 1D

transform into the third dimension. Since the transform coefficients are often used

as features in many image processing algorithms, the 3D transform corresponds to

feature extraction stage. Also, as all the transforms employed in the BM3D (2D

discrete cosine transform (DCT), 2D Bior transform and 1D Haar transform) are

linear and the parameters are fixed, the entire 3D transform can be considered a

convolution network with a single layer of large filter size. In many studies on deep

neural network [62, 65], it has been shown that a convolution layer with large re-

ceptive field can be replaced by a series of small convolution layers. As a result, the

feature extraction operator which involves a series of convolution can be viewed as a

36



Noisy 

Group

2D-transform

(Intra patch)

1D-transform

(Inter patch)

3D Filtering

(Hard-Thresholding / 

Wiener Filtering)2D-inverse 

transform

(Intra patch)

1D-inverse 

transform

(Inter patch)

Denoised 

Group

Feature Extraction

Reconstruction

Feature 

Processing

(a)

Noisy 

Group

Denoised 

Group

Feature Extraction

Reconstruction

Feature 

Refinement

SVD
Weight

Estimation

Soft  

thresholding
Estimation

(b)

Figure 4.4: The group denoising schemes of (a) BM3D and (b) WNNM.
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generalization of the 3D transform. After the transform, a 3D collaborative filtering

is applied to the transformed group. Since the filtering attenuates the noise compo-

nents from each coefficient, it corresponds to the feature refinement operation that

maps noisy features to the denoised ones. The BM3D employs hard-thresholding

and Wiener filtering for the refinement, where both are one-to-one non-linear map-

ping. In this sense, the collaborative filtering behaves as a special case of non-linear

mapping with 1× 1 receptive field that can be implemented using neural network.

WNNM [7] transforms the matrix by singular value decomposition (SVD). The

transformation can be viewed as a feature extraction operation that draws some

features like basis or singluar value from the matrix. The SVD is relatively a complex

operation compared to the multiplication by a constant matrix such as DCT or FFT.

In an early work of the neural network [66], however, it has been explained that an

optimal solution to an autoencoder is strongly related with the SVD. In other word,

the SVD decomposition [U,Σ, V ] = SV D({Yp}) and the reunion {X̂p} = U Σ̂V T

can be successfully replaced by the encoder and decoder of an autoencoder network.

Therefore the proposed feature extraction and patch reconstruction operator can

be considered a generalization of SVD. The singular values are refined by soft-

thresholding whose weights are determined from the singular value itself. Therefore,

like the 3D filtering in BM3D, the soft thresholding with the weight estimation

behaves as a special case of one-to-one non-linear mapping.

In summary, BMCNN and many NSS based methods follow the same process,

i.e., block matching followed by feature extraction and processing in a certain do-

main by non-linear mappings. However, unlike manually deciding the parameters

and non-linear mapping in the existing methods, the proposed BMCNN learns the

corresponding procedures and performs denoising in a data-driven manner. It enables
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finding the optimal or at least suboptimal processing beyond the human design. Fur-

thermore, the BMCNN trains an end-to-end mapping that consists of all operations

rather than considering the operations separately.

4.2 Experiments

4.2.1 Training Methodology

The proposed denoising network is implemented using the Caffe package [67]. Train-

ing a network is to find an optimal mapping function

x̂p = F ({Wi}, yp) (4.7)

where Wi is the weight matrix including the bias for the i-th layer. This is achieved

by minimizing a cost function

L({Wi}) = 1

Nsample

∑
d(x̂p, xp) + λr({Wi}) (4.8)

where Nsample is the total number of the training samples, d(x̂p, xp) is the distance

between the estimated result x̂p and its ground truth xp, r({Wi}) is a regularization

term designed to enforce the sparseness, and λ is the weight for the regularization

term. Zhao et al [57] proposed several loss functions for neural networks, among

which we employ the L1 norm for the distance

d(x̂p, xp) =
∑
k

|x̂p[k]− xp[k]| (4.9)

because of its simplicity for implementation in addition to its promising performance

for image restoration. The objective function is minimized using Adam, which is

known as an efficient stochastic optimization method [68]. In detail, Adam solver
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updates (W )i by the formula

(mt)i = β1(mt−1)i + (1− β1)(�L(Wt))i, (4.10)

(vt)i = β1(vt−1)i + (1− β1)(�L(Wt))
2
i , (4.11)

(Wt+1)i = (Wt)i − α

√
1− (β2)t

1− (β1)t
(mt)i√
(vt)i + ε

(4.12)

where β1 and β2 are training parameters, α is the learning rate, and ε is a term to

avoid zero division. In the proposed algorithm, the parameters are set as: λ = 0.0002,

α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 1e−8. The initial values of (W0)i are set by

Xavier initialization [69]. In Caffe, the Xavier initialization draws the values from

the distribution

(W0)i ∼ N

(
0,

1

(Nin)i

)
(4.13)

where (Nin)i is the number of neurons feeding into the layer. The bias of every

convolution layer is initialized to a constant value 0.2. The BMCNN models are

trained for three noise levels: σ = 15, 25 and 50.

4.2.2 Training and Test Data

Recent studies [29, 30] show that less than million training samples are sufficient

to learn a favorable network. Following these works, 400 images from the Berkeley

Segmentation dataset (BSDS) [70] are used for the training. All the images are

cropped to the size of 180 × 180 and data augmentation techniques like flip and

rotation are applied. From all the images, training samples are extracted by the

procedure in Sec. 4.1.1, i.e., the block size and the stride is set as 20 × 20 × 4 and

20 respectively. The total number of the training samples is 259,200.

The algorithm is tested on standard images that is shown in 3.3. The set contains

4 images of size 256×256 (Cameraman, House, Peppers and Montage), and 8 images
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of size 512×512 (Lena, Barbara, Boat, Fingerprint, Man, Couple, Hill and Jetplane).

Note that the test set contains both repetitive patterns and irregularly textured

images.

4.2.3 Comparision with the State-of-the-Art Methods

In this section, the performance of the proposed BMCNN is evaluated and compared

with the state-of-the-art denoising methods, including NSS based methods (BM3D

[3], NCSR [4], and WNNM [7]) and training based methods (MLP [2], TNRD [29],

and DnCNN [30]). All the experiments are performed on the same machine - Intel

3.4GHz dual core processor, nVidia GTX 780ti GPU and 16GB memory.

Quantitave and Qualitative Evaluation

The PSNRs of denoised images are listed in Table 4.1. It can be seen that the

proposed BMCNN yields the highest average PSNR for every noise level. It shows

that the PSNR is improved by 0.1∼0.2dB compared to DnCNN. Especially, there are

large performance gains in the case of images with regular and repetitive structure,

such as Barbara and Fingerprint, which are the images that the NSS based methods

perform better than the learning based methods. In this sense, it is believed that

adopting the patch aggregation brings the advantages of NSS to the learning based

method.

In addition to the PSNR, four metrics - structural similarity (SSIM) [71], weighted

SNR (WSNR) [72], information fidelity criterion (IFC) [73] and visual information

fidelity (VIF) [74] based on the diverse HVS prior are also adopted to analyze the

performance from various aspects. Table 4.2 summarizes the average metrics for

σ = 25. Since the training aims to minimize the error, learning based DnCNN shows
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superior performance to prior based WNNM in WSNR and SSIM, which are based

on the difference and correlation respectively. WNNM, on the other hands, shows

advantages in information based IFC and VIF. Since prior based methods are in-

clined to recover general image parts such as edges, it can preserve more informations

than learning based methods. The proposed BMCNN combines the prior and train-

ing and therefore, shows the best performance in every metrics. Figs. 4.5 and 4.6

illustrate the visual results. The NSS based methods tend to blur the complex parts

like the stalk of a fruit and the learning based methods often miss details on the

repetitive parts such as the stripes of fingerprint. In contrast, the BMCNN recovers

the textures in both types of regions.
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Table 4.1: PSNR of different denoising methods. The best results are highlighted in

bold.

Method BM3D NCSR WNNM MLP TNRD DnCNN BMCNN

σ = 15

Cameraman 31.91 32.01 32.17 - 32.18 32.61 32.73

Lena 34.22 34.11 34.35 - 34.23 34.59 34.61

Barbara 33.07 33.03 33.56 - 32.11 32.60 33.08

Boat 32.12 32.04 32.25 - 32.14 32.41 32.42

Couple 32.08 31.94 32.13 - 31.89 32.40 32.41

Fingerprint 30.30 30.45 30.56 - 30.14 30.39 30.41

Hill 31.87 31.90 32.00 - 31.89 32.13 32.08

House 35.01 35.04 35.19 - 34.63 35.11 35.16

Jetplane 34.09 34.11 34.38 - 34.28 34.55 34.53

Man 31.88 31.92 32.07 - 32.18 32.42 32.39

Montage 35.11 34.89 35.65 - 35.02 35.52 35.97

Peppers 32.68 32.65 32.93 - 32.96 33.21 33.32

Average 32.86 32.84 33.10 - 32.82 33.16 33.26
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σ = 25

Cameraman 29.44 29.47 29.64 29.59 29.69 30.11 30.20

Lena 32.06 31.95 32.27 32.28 32.05 32.48 32.53

Barbara 30.64 30.57 31.16 29.51 29.33 29.94 30.58

Boat 29.86 29.68 30.00 29.94 29.89 30.21 30.25

Couple 29.69 29.46 29.78 29.72 29.69 30.10 30.12

Fingerprint 27.71 27.84 27.96 27.66 27.33 27.64 28.01

Hill 29.82 29.68 29.96 29.83 29.77 29.99 30.00

House 32.95 32.98 33.33 32.66 32.64 33.23 33.32

Jetplane 31.63 31.62 31.89 31.87 31.77 32.06 32.17

Man 29.56 29.56 29.73 29.83 29.81 30.06 30.06

Montage 32.34 31.84 32.47 32.09 32.27 32.97 33.47

Peppers 30.21 29.96 30.45 30.45 30.51 30.80 30.93

Average 30.49 30.38 30.72 30.44 30.39 30.80 30.97
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σ = 50

Cameraman 26.18 26.15 26.47 26.37 26.56 26.99 27.02

Lena 29.05 28.97 29.32 29.28 28.94 29.42 29.56

Barbara 27.08 26.93 27.70 25.26 25.69 26.13 26.84

Boat 26.72 26.50 26.89 27.04 26.85 27.17 27.19

Couple 26.42 26.19 26.59 26.68 26.48 26.88 26.91

Fingerprint 24.55 24.52 24.79 24.21 23.70 24.14 24.65

Hill 27.05 26.87 27.12 27.37 27.11 27.31 27.33

House 29.70 29.69 30.25 29.82 29.40 30.08 30.25

Jetplane 28.31 28.23 28.61 28.56 28.43 28.74 28.88

Man 26.73 26.62 26.91 27.05 26.94 27.18 27.17

Montage 27.65 27.62 27.97 28.06 28.12 29.03 29.50

Peppers 26.69 26.64 26.97 26.71 27.05 27.30 27.45

Average 27.18 27.08 27.47 27.20 27.11 27.53 27.73
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(a) Original (b) BM3D (c) NCSR (d) WNNM

(e) MLP (f) TNRD (g) DnCNN (h) BMCNN

Figure 4.5: Denoising result of the Fingerprint image with σ = 25.

(a) Original (b) BM3D (c) NCSR (d) WNNM

(e) MLP (f) TNRD (g) DnCNN (h) BMCNN

Figure 4.6: Denoising result of the Peppers image with σ = 50.
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Table 4.2: The average results of WSNR, SSIM, IFC, VIF of various denoising meth-

ods with σ = 25.

Methods BM3D NCSR WNNM MLP TNRD DnCNN BMCNN

WSNR 39.82 39.58 40.02 39.88 39.73 40.15 40.26

SSIM 0.8632 0.8610 0.8673 0.8653 0.8618 0.8718 0.8738

IFC 2.465 2.427 2.532 2.452 2.397 2.520 2.597

VIF 0.4350 0.4486 0.4541 0.4296 0.4174 0.4446 0.4555

Table 4.3: Run time (in seconds) of various denoising methods of size 256×256 with

σ = 25.

Methods BM3D NCSR WNNM MLP TNRD DnCNN BMCNN

256× 256 0.87 190.3 179.9 2.238 0.038 0.053 2.135

512× 512 3.77 847.9 778.1 7.797 0.134 0.203 8.030

Run Time

Table 4.3 shows the average run-times of the denoising methods for the images of

sizes 256 × 256 and 512 × 512. For TNRD, DnCNN and BMCNN, the times on

GPU are computed. As shown, many conventional NSS based methods need very

long times, which is mainly due to the complex optimization and/or matrix decom-

position. On the other hand, since the BM3D consists of simple linear transform

and non-linear filtering, it is much faster than the NCSR and WNNM. Since the

BMCNN also consists of convolution and simple ReLU function, its computational

cost is also less than the WNNM and NCSR. The BMCNN is, however, slower than
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other learning based approaches for three main reasons. First, proposed algorithm

is a two-step approach that uses another end-to-end denoising algorithm as a pre-

processing step. Therefore the computational cost is doubled. Second, the BMCNN

contains a block matching step, which is difficult to be implement with GPU. In

the proposed algorithm, the block matching step takes almost half of the run-time.

Finally, the BMCNN is a patch-based algorithm with the stride less than the patch

size. Hence, a pixel is processed multiple times and the overall run-time increases.

Although the proposed algorithm is slower for these reasons, it is still competitive

considering that it is much faster than the conventional NSS based methods and

that it provides higher PSNR than others.

4.2.4 Effects of Network Formulation

In this subsection, some settings of the BMCNN are modified to investigate the

relations between the settings and performance. All the additional experiments are

made with σ = 25.

NSS Prior

In this section, the main idea is to take the NSS prior into account by adopting

the block matching, i.e., by using the aggregated similar patches as the input to the

CNN. In order to show the effect of NSS prior, an additional experiment is made:

a network that estimates a denoised patch using only two patches as the input ,

specifically a noisy patch and the corresponding pilot patch without further aggre-

gation is trained. The network is named as woBMCNN, and its PSNR results are

summarized in Table. 4.4. The result validates that the performance gain is owing

to the block matching rather than two-step denoising. Interestingly, the woBMCNN
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does not perform better than DnCNN, which is used as the preprocessing. Actually,

the woBMCNN can be interpreted as a deeper network with similar network formu-

lation and a skip connection [75]. However, since the DnCNN is already a favorable

network and the performance with the formulation is saturated, the deeper network

can hardly perform better. On the other hands, the BMCNN encodes additional

information to the network, which is shown to play an important role.

Table 4.4: PSNR results of BMCNN, woBMCNN and their base preprocessing-

DnCNN.

BMCNN woBMCNN DnCNN

Cameraman 30.20 30.08 30.11

Lena 32.53 32.45 32.48

Barbara 30.58 29.91 29.94

Boat 30.25 30.17 30.21

Couple 30.12 30.09 30.10

Fingerprint 28.01 27.61 27.64

Hill 30.00 29.96 29.99

House 33.32 33.20 33.23

Jetplane 32.17 32.02 32.06

Man 30.06 30.04 30.06

Montage 33.47 33.02 32.97

Peppers 30.93 30.81 30.80

Average 30.97 30.78 30.80

49



Table 4.5: PSNR results of BMCNN with various patch sizes.

10× 10 20× 20 40× 40

Cameraman 28.82 30.20 30.00

Lena 30.42 32.53 32.39

Barbara 29.05 30.58 29.72

Boat 29.01 30.25 30.07

Couple 28.89 30.12 29.97

Fingerprint 27.24 28.01 27.51

Hill 28.83 30.00 29.89

House 30.85 33.32 33.11

Jetplane 30.20 32.17 31.96

Man 28.84 30.06 29.96

Montage 30.47 33.47 32.72

Peppers 29.31 30.93 30.67

Average 29.33 30.97 30.66

Patch Size

In many patch-based algorithms, the patch size is an important parameter that

affects the performance. In this sense, this dissertation trains three networks with

patch size 10× 10, 20× 20 (base) and 40× 40. Table 4.5 shows that 20× 20 patch

works better than other sizes. Moreover, networks of patch size 10× 10 and 40× 40

work even worse than its preprocessing.

Burger et al. [2] revealed that a larger patch contains more information, and thus

the neural network can learn more accurate objective function with larger training
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(a) 10× 10 (b) 20× 20 (c) 40× 40

Error : 0.0515 Error : 0.0672 Error : 0.1813

Figure 4.7: The illustration of block matching results for various patch sizes. The

first row shows reference patches, the second row shows the 3rd-similar patches to

the references and the third row shows the difference of the first and the second row.

The error is defined as the average value of the difference.

patches. On the contrary, it is difficult to train the mapping function reasonably

with small patches. But the large patch degrades the block matching performance,

because it becomes more difficult to find well matched patches as the patch size

increases. Fig. 4.7 shows the block matching result and the error for several patch

sizes. For the 10×10 and 20×20 patches, the block-matching finds almost the same

patches and the error is very small. However in the case of 40 × 40 patch, decent

portion of the patch does not fit well and the error becomes so big. Conventional
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NSS based algorithms including [3] and [5] also prefer small patches whose sizes are

around 10×10 for these reasons. To conclude, 20×20 is considered the proper patch

size that satisfies both CNN and NSS prior.

Table 4.6: PSNR and run time results of BMCNN with various stride.

5 10 15 20

Cameraman 30.21 30.20 30.20 30.18

Lena 32.53 32.53 32.52 32.51

Barbara 30.58 30.58 30.56 30.49

Boat 30.25 30.25 30.25 30.24

Couple 30.12 30.12 30.12 30.11

Fingerprint 28.03 28.01 28.01 27.97

Hill 30.00 30.00 30.00 30.00

House 33.32 33.32 33.32 33.30

Jetplane 32.17 32.17 32.16 32.16

Man 30.06 30.06 30.05 30.05

Montage 33.49 33.47 33.45 33.40

Peppers 30.94 30.93 30.93 30.92

Average PSNR 30.98 30.97 30.96 30.94

Average time(256× 256) 4.271 2.151 1.765 1.603

Average time(512× 512) 16.79 8.101 6.492 5.777
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Stride

Since the proposed method is patch-based, its performance depends on the stride

value to divide the input images into the patches. With a small stride, each pixel

appears in many patches, which means that every pixel is processed multiple times.

It definitely increases computational costs but has the possiblity of performance

improvement. The proposed BMCNN is tested with various stride values and the

results are summarized in the Table 4.6. From the result, it is determined that a

stride value around the half of the patch size shows reasonable performance for both

the run time and the PSNR.

Pilot Signal

In this subsection, an experiment is conducted to show how the different prepro-

cessing methods (other than DnCNN in the previous experiments) affect the the

overall performance. For the experiment, BM3D [3] algorithm is employed due to its

NSS based nature and reasonable run time. Table 4.7 shows the denoising perfor-

mance with different preprocessing methods and two interesting characteristics can

be found.

• The performance on the individual image depends on the preprocessing method.

BMCNN-BM3D shows better performance on Barbara, Fingerprint andHouse,

where NSS based WNNM performed better than the CNN based DnCNN.

• However, the overall performance shows negligible difference. It implies the

overall performance of the denoising network depends on the network formu-

lation, not the preprocessing.
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Table 4.7: PSNR of BMCNN results with two different preprocessing.

BMCNN-DnCNN BMCNN-BM3D

Cameraman 30.20 30.03

Lena 32.53 32.49

Barbara 30.58 31.23

Boat 30.25 30.16

Couple 30.12 30.02

Fingerprint 28.02 28.06

Hill 30.00 30.05

House 33.32 33.43

Jetplane 32.17 32.14

Man 30.06 29.94

Montage 33.47 33.31

Peppers 30.93 30.78

Average 30.97 30.97
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Chapter 5

Applications: Denoising of

Non-Gaussian Noise

’

In this section previously presented BMCNN framework is extended to non-

Gaussian noise cases. First, this dissertation proposes a BMCNN-based image de-

noising method for Poisson noise, which is another type of artificial noise. Then

experiments in real noise cases, which are very practical problems, are presented.

The SCN framework is also adopted to the real noise.

5.1 Denoising of Poisson Noise

5.1.1 Poisson Noise

Poisson noise an widely-used noise model along with the Gaussian noise, which shows

distinguishable characteristic. Above all, Poisson noise is a data-dependent noise

model whereas Gaussian noise is independent to the pixel value. In detail, noisy
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(a) Original (b) Peak = 1

(c) Peak = 2 (d) Peak = 5

(e) Peak = 10 (f) Peak = 20

Figure 5.1: An example of the Poisson noise
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observation Y (i, j) with an ground-truth image pixel X(i, j) follows the Poisson

distribution :

P (Y (i, j)|X(i, j)) =
(X(i, j))Y (i,j)

(Y (i, j))!
exp(−X(i, j)) (5.1)

where Y (i, j) is a non-negative integer. The signal-to-noise ratio of each pixel is

√
X(i, j) and it implies that lower intensity in the image yields a stronger noise.

Hence the power of Poisson noise is generally defined by the maximal value ofX(i, j),

named peak value. Fig. 5.1 shows an example of a Poisson noisy image with several

peak values.

5.1.2 Training Criteria

The BMCNN for Poisson noise is implemented in two-step framework which is same

to the BMCNN for Gaussian noise illustrated in Fig. 4.1. : the first step estimates the

pilot signal for the block matching, and the second step calculates the final result.

There are two main differences. First, since this is the first CNN based approach for

Poisson denoising, network for the first step as well as the second step is trained.

It also helps analyzing the effect of NSS prior on the Poisson denoising. Second, in

this section, a blind denoising network which covers not only a single noise level but

a wide range of noise is trained. For this purpose, the training dataset consists of

pairs of noisy image and ground truth image with peak values of [1, 2, 5, 10, 20].

The training dataset is constructed from the BSDS set [70], which is cropped

to the size of 180 × 180. For the first step, 45 × 45 size patches are extracted with

stride 45 and block matching is not applied. The patches are augmented by the

FR operation and the total number of the training sample is 256,000. The DB for

the second step is constructed by the block-matching on the pilot image similar to
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the Gaussian noise case. the block size and the stride is set to 20 × 20 × 4 and

20 respectively. The rest parameters including network structure, learning rate are

same to that is described in Section. 4.1.

5.1.3 Experiments

In this subsection, a subjective and objective comparison of the BMCNN method

with other state-of-the-art approaches for Poisson denoising - PURE-LET [17] and

Poisson nonlocal means filter (PNL) [20] - is presented. The performance of Poisson

DnCNN, the first step to construct the pilot signal, is also presented. Among the

methods, DnCNN and BMCNN are blind algorithm whereas PURE-LET and PNL

are non-blind algorithm, which assumes that the peak value is known and parameters

are fixed according the peak value. Table. 5.1 shows the PSNR results of different

methods and Figs. 5.2-5.4 illustrates the visual comparisons. As one can see, neural

network based DnCNN and BMCNN achieve better PSNR results than conventional

prior-based methods, although they are not aware of the noise parameter. However,

image prior shows its meaningfulness in two aspects. First, the proposed BMCNN

method shows better performance than DnCNN, which is a plain CNN method.

Moreover, the PSNR difference between BMCNN and DnCNN is larger in higher

peak value, which implies weaker noise. With a very strong noise, even a denoised

image is still noisy. For example, the average PSNR of a denoised image, whose

original peak value is 1 is about 22dB. The value is similar to the PSNR of a

Gaussian-noisy image with σ = 20. Therefore the block matching is erroneous and

the improvement from DnCNN is restricted in low peak value cases. Second, the PNL

algorithm shows the best performance in Barbara, which is dominated by repetitive

texture. In detail, DnCNN is better in low peak values less than 5 and PNL shows
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outstanding performance in high peak values, where more accurate patch similarity

is available. Interestingly, BMCNN shows worse performance in Barbara image than

DnCNN. The reason is illustrated in Fig. 5.4. Although the block matching tries

to make use of the NSS prior and improve the performance in regular structures,

most textures are already blurred out in the first step. Therefore, the pilot signal

cannot provide the accurate block matching and the resulting BMCNN produces

over-smooth textures.

(a) Ground Truth (b) Noisy (c) PURE-LET

(d) Poisson NL (e) DnCNN (f) BMCNN

Figure 5.2: Denoising result of the Jetplane with peak value = 1.
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(a) Ground Truth (b) Noisy (c) PURE-LET

(d) Poisson NL (e) DnCNN (f) BMCNN

Figure 5.3: Denoising result of the Fingerprint with peak value = 5.

(a) Ground Truth (b) Noisy (c) PURE-LET

(d) Poisson NL (e) DnCNN (f) BMCNN

Figure 5.4: Denoising result of the Barbara with peak value = 50.
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Table 5.1: PSNR of different denoising methods. The best results are highlighted in

bold.

Method Noisy PURE-LET Poisson NL DnCNN BMCNN

Peak value = 1

Cameraman 6.61 19.82 19.97 21.71 21.70

Lena 6.24 22.40 22.58 23.85 23.93

Barbara 6.43 20.31 20.56 21.12 21.16

Boat 6.17 21.28 20.90 22.02 22.10

Couple 6.30 21.27 20.98 22.00 22.04

Fingerprint 5.93 17.19 16.31 17.25 17.31

Hill 6.45 22.38 22.20 23.11 23.20

House 5.98 21.34 21.29 22.76 22.79

Jetplane 5.42 21.32 20.63 22.40 22.62

Man 6.51 21.74 21.91 22.81 22.91

Montage 7.20 19.31 20.00 21.89 21.75

Peppers 6.34 19.30 19.78 20.94 20.90

Average 6.30 20.64 20.59 21.82 21.87
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Method Noisy PURE-LET Poisson NL DnCNN BMCNN

Peak V alue = 2

Cameraman 8.79 20.89 21.16 22.87 22.77

Lena 8.37 23.49 24.21 25.33 25.41

Barbara 8.56 21.21 21.69 22.02 22.04

Boat 8.30 22.32 22.18 23.42 23.44

Couple 8.38 22.36 22.25 23.20 23.20

Fingerprint 8.10 18.29 17.31 18.71 18.94

Hill 8.54 23.53 23.60 24.26 24.31

House 8.11 22.60 23.36 24.79 24.88

Jetplane 7.77 22.53 22.34 24.00 24.17

Man 8.59 22.81 23.27 23.97 24.00

Montage 9.38 21.18 21.47 23.67 23.67

Peppers 8.45 20.39 21.22 22.82 22.86

Average 8.45 21.80 22.00 23.25 23.31
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Method Noisy PURE-LET Poisson NL DnCNN BMCNN

Peak V alue = 5

Cameraman 11.74 22.67 21.08 25.19 25.09

Lena 11.35 25.30 26.28 27.42 27.47

Barbara 11.61 22.32 23.31 23.09 23.03

Boat 11.21 23.75 23.91 25.15 25.21

Couple 11.31 23.50 23.76 24.84 24.83

Fingerprint 11.13 20.06 19.70 20.98 21.42

Hill 11.61 24.81 25.07 25.83 25.83

House 11.09 24.05 25.54 27.10 27.17

Jetplane 10.92 24.05 24.38 25.94 26.08

Man 11.62 24.22 24.71 25.54 25.57

Montage 12.49 23.62 24.40 26.05 26.21

Peppers 11.48 22.12 22.63 25.13 25.25

Average 11.46 23.37 23.73 25.19 25.27
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Method Noisy PURE-LET Poisson NL DnCNN BMCNN

Peak V alue = 10

Cameraman 14.09 24.10 25.09 26.36 26.32

Lena 13.82 26.69 27.72 28.77 28.88

Barbara 14.11 23.18 24.95 23.94 23.86

Boat 13.61 24.71 25.32 26.35 26.48

Couple 13.80 24.54 25.07 26.32 26.32

Fingerprint 13.58 21.41 21.67 22.50 23.04

Hill 14.19 25.71 26.14 27.05 27.04

House 13.55 25.75 27.40 28.85 29.00

Jetplane 13.33 25.67 25.92 27.26 27.50

Man 14.12 25.32 25.86 26.73 26.76

Montage 14.05 25.65 26.38 26.70 28.05

Peppers 13.94 23.94 25.23 26.74 26.82

Average 13.93 24.72 25.56 26.46 26.67
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Method Noisy PURE-LET Poisson NL DnCNN BMCNN

Peak V alue = 20

Cameraman 16.60 25.64 26.62 27.24 27.61

Lena 16.48 27.94 29.27 30.34 30.38

Barbara 16.80 24.35 26.92 25.05 24.81

Boat 16.19 26.15 26.80 27.78 27.88

Couple 16.47 26.05 26.58 27.89 27.82

Fingerprint 16.22 22.93 23.60 24.40 24.83

Hill 16.94 27.10 25.35 28.33 28.29

House 16.17 27.52 29.07 30.30 30.50

Jetplane 15.75 27.21 27.61 29.00 29.14

Man 16.82 26.58 27.03 28.04 28.01

Montage 17.69 26.95 28.05 24.90 29.24

Peppers 16.55 26.06 27.16 28.34 28.43

Average 16.56 26.21 27.00 27.63 28.08
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5.2 Denoising of Real Noise

Up-to-date studies of image deonising assume various noise models. Recently, a

mixed model also attracts attention since a single model is insufficient to repre-

sent the real cases, where an image is disrupted by multiple noise sources. However,

a noise from the model is an artificial noise in the end, and it would have different

characteristics to the noise that occurs in a real case. From this aspect, this section

presents a denoising algorithm for a real noise.

5.2.1 Real Noise Database

In real cases, low-light conditions yield severe degradation in a captured image due

to insufficient exposure time and small sensor size. Recently presented RENOIR [41]

dataset provides a real low-light image noise dataset from this aspect. The image is

composed of pairs of noisy image, which is obtained with high light sensitivity and

short exposure time and reference image, which is obtained with low light sensitivity

and long exposure time. An image captured with long exposure time tends to be

blurry due to object motion or camera shivering. However, it contains much less noise

and the blur is negligible when capturing a static scene using a tripod. Therefore,

long exposure image is a good approximation for the ground truth image. Fig. 5.5

shows an example of the dataset.

In this dissertation, all the image is resized by a scale factor of 1/6 for the follow-

ing reasons. First, the image size is about 18 Mpixels in maximum and it is so huge

that implementing deep network with the image can cause out of memory problems.

Second, although a tripod is used to prevent shivering, there exists a displacement

between a reference image and a corresponding noisy image. The displacement is
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(a) Reference (b) Noisy

Figure 5.5: An example of the RENOIR dataset. First row : full images, second row

: cropped region of the original images, third row : cropped region of the resized

images. The sizes of regions in second row and third row are same.
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amount to 4 pixels in horizontal and vertical simultaneously in maximum. Therefore

the error between a denoised image and a reference image can be mainly due to the

misalignment rather than noise. However, the displacement is one pixel in maximum

in down-sampled image and its effect can be compensated. Although the experiments

are constructed for the low-resolution image as a result of resizing, it is believed that

the denoising algorithms would show similar results for higher-resolution images.

The RENOIR dataset is composed of images that are captured from three dif-

ferent cameras : a compact digital camera (Canon S90), a DSLR (Canon T3i), and

a mobile phone camera (Xiaomi Mi3). In this dissertation, a individual BMCNN de-

noising network is trained and tested for each camera model. The dataset contains

40 scenes per camera. Among them, 35 scenes (Scene 1∼35) are used as a training

set and remaining 5 scenes (Scene 36∼40) constitute test set.

5.2.2 Training Criteria

The training criteria for the Real noise is similar to the Poisson noise case described

in Subsection. 5.1.2. The only difference is that real images are RGB color images

where the images used for the Poisson noise experiments are grayscale images. Since

color image denoising needs to analyze the multiple channel simultaneously, it needs

more information than grayscale image denoising. Therefore, the training patch for

the first step is set to 50× 50× 3, which is three channel and spatially larger than

the Poisson case. However, increasing the patch size of the second step may not be

favorable as shown in 4.2.4. Hence the block size is 20 × 20 × 12, where 4 patches

are stacked by the channel direction.
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5.2.3 Experiments

The proposed BMCNN algorithm is compared with some state-of-the-art image

denoising methods: BM3D [3] and DnCNN [30]. There exist two DnCNN networks

in this experiments. The first one is the first step of the BMCNN algorithm, which

is trained from the training set (Scene 1∼35) of the real image dataset. The second

one is that trained for a Gaussian noise case, which shows if a denoising network

for the artificial noise works well for real images. For distinction, the first network

is named DnCNN-Real and the second one is named DnCNN-Art. The BMCNN

and DnCNNs are trained in a blind procedure. In detail, images with a diversity of

noises compose the training set and as a result, the trained network is suitable for a

wide range of noises, including a noise with unknown characteristics. Therefore, the

networks are applied to the test set directly The BM3D, on the other hands, is a

non-blind algorithm which needs a noise level as an input parameter. Hence for the

fair comparison, a noise level estimation algorithm [76] is applied as a preprocessing

step. The estimated noise variance is provided for the BM3D algorithm.

Table. 5.2, 5.3 and 5.4 summarize the average performance and run time of

the denoising algorithms for each camera model. In real cases, each camera has

distinct model and the noise characteristic is different from time to time. Therefore

the denoising results show case-by-case characteristic. However, one can also find a

general tendency.

First, since the real noise is comprised of various types of noise, the noise level es-

timation [76] which estimates the variance of Gaussian noise returns the smaller value

than ground-truth error variance. Therefore, the resulting BM3D acts as a weak de-

noiser which results a small change from the input signal. As a result, BM3D shows
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its advantages on WSNR and IFC, which place emphasis on the detail conservation.

Second, although DnCNN-Art is trained for the Gaussian noise cases, it can com-

pete with DnCNN-Real, which is trained for each camera model. In detail, DnCNN-

Art shows better performance than DnCNN-Real for every metric in S90 dataset

whereas DnCNN-Real takes advantages in Mi3 dataset. In Ti3, DnCNN-Art is bet-

ter in the view of WSNR, SSIM and IFC. It also implies that Gaussian model is

quite reasonable model for real noise.

Finally, proposed BMCNN shows the best performance for the most cases. In

the view of PSNR, which is the most general metric for image processing, BMCNN

is always the best algorithm. Fig. 5.6 - 5.11 illustrate the results for various im-

ages and shows how BMCNN upbuilds its first step, DnCNN-Real. Fig. 5.8 and 5.9

present that DnCNN-Real method makes unwanted artifacts on smooth regions in

S90 dataset. The reason can be inferred from Fig. 5.12. As shown, S90 dataset con-

tains large amount of rough surfaces where artifact-like textures are present. Hence

the DnCNN-Real network that is trained from the S90 dataset tends to reconstruct

detailed textures and makes the noisy output. Since the BMCNN groups similar

patches, the noise in the individual patch is canceled out and therefore, the network

estimates clean output successfully even when DnCNN-Real fails.

Moreover, although the training dataset are downsampled, there still exist small

sub-pixel displacements. In order to deal with varying displacement, DnCNN-Real

tends to smooth the image. On the other hands, BMCNN can compensate such

displacements by combining a number of non-local patches. Hence the BMCNN

prevents over-smoothing and it yields better results.
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(a) Reference (b) Noisy

(c) BM3D (d) DnCNN-Art

(e) DnCNN-Real (g) BMCNN

Figure 5.6: Denoising results of scene 36 of T3i dataset.
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(a) Reference (b) Noisy

(c) BM3D (d) DnCNN-Art

(e) DnCNN-Real (f) BMCNN

Figure 5.7: Denoising results of scene 40 of T3i dataset.
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(a) Reference (b) Noisy

(c) BM3D (d) DnCNN-Art

(e) DnCNN-Real (f) BMCNN

Figure 5.8: Denoising results of scene 39 of S90 dataset.
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(a) Reference (b) Noisy

(c) BM3D (d) DnCNN-Art

(e) DnCNN-Real (f) BMCNN

Figure 5.9: Denoising results of scene 40 of S90 dataset.
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(a) Reference (b) Noisy

(c) BM3D (d) DnCNN-Art

(e) DnCNN-Real (f) BMCNN

Figure 5.10: Denoising results of scene 36 of Mi3 dataset.
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(a) Reference (b) Noisy

(c) BM3D (d) DnCNN-Art

(e) DnCNN-Real (f) BMCNN

Figure 5.11: Denoising results of scene 38 of Mi3 dataset.
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Table 5.2: Average PSNR, WSNR, SSIM, IFC, VIF, and run time of different de-

noising methods for T3i camera.

Method Noisy BM3D DnCNN-Art DnCNN-Real BMCNN

PSNR 38.98 39.89 40.96 42.10 43.27

WSNR 35.96 39.88 39.40 39.39 40.38

SSIM 0.8601 0.9875 0.9894 0.9869 0.9931

IFC 2.784 5.028 4.523 3.648 4.851

VIF 0.4555 0.7904 0.8420 0.8852 0.8670

Run Time - 16.97 0.324 0.819 12.98

Table 5.3: Average PSNR, WSNR, SSIM, IFC, VIF, and run time of different de-

noising methods for S90 camera.

Method Noisy BM3D DnCNN-Art DnCNN-Real BMCNN

PSNR 37.57 38.04 38.53 33.42 39.01

WSNR 36.53 45.04 44.28 29.05 44.98

SSIM 0.7939 0.9839 0.9876 0.9697 0.9866

IFC 3.897 7.871 7.032 6.141 8.224

VIF 0.4749 0.8758 0.9157 0.8047 0.8866

Run Time - 8.642 0.157 0.604 8.371
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Table 5.4: Average PSNR, WSNR, SSIM, IFC, VIF, and run time of different de-

noising methods for Mi3 camera.

Method Noisy BM3D DnCNN-Art DnCNN-Real BMCNN

PSNR 31.80 31.91 33.10 35.10 35.88

WSNR 28.49 31.63 30.60 32.79 33.24

SSIM 0.8202 0.9765 0.9682 0.9695 0.9796

IFC 3.423 6.332 4.762 4.980 6.600

VIF 0.5038 0.8269 0.8355 0.8913 0.8420

Run Time - 6.954 0.107 0.541 8.124

(a) S90 (b) T3i

Figure 5.12: Examples of background surface in S90 and T3i dataset.
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Effect of SCN

In this subsection, an additional experiment is conducted to show whether the SCN

structure can further improve the performance on real images. Every network that

is tested on the real camera dataset - DnCNN-Art, DnCNN-Real, BMCNN is em-

ployed as a base network to construct a committee - SCN-Art, SCN-Real, SCN-BM

respectively. In order to construct a committee, SCN-FR in 3.2 is employed for all

experiments.

Table 5.5 shows the PSNR results of the base network and its corresponding

committee. In most cases, adopting SCN improves the PSNR. Especially, BMCNN

and DnCNN-Real experience drastic PSNR gain by SCN method in T3i and S90

dataset respectively. Fig. 5.13 illustrates how the SCN method improves the per-

formance of BMCNN on T3i dataset. T3i, which is a DSLR camera, is easy to be

shaken when its shutter is pressed compared to the other cameras which uses elec-

tronic shutters. Therefore, scenes in T3i training set often suffer from misalignment

between the noisy image and the reference image. Although the BMCNN compen-

sates the misalignment and the result can preserve details, it often yields unwanted

displacement. By SCN framework, that displacement is canceled out while maintain

detail. As mentioned above, S90 training set contains artifact-like textures and the

trained DnCNN is prone to reconstruct unwanted artifact on the smooth regions.

Fig. 5.14 illustrates that the artifacts are canceled out by using the SCN framework.

As shown, the SCN method improves the performance of the denoising network

in the real cases. In detail, SCN can compensate the difficulties of the networks that

arise from the incompleteness of the training dataset. It yields larger PSNR gain

over the base network compared to the Gaussian noise denoising cases. From this
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experiment, the SCN is expected to be an effective structure when treating a difficult

task, where it is hard to train an optimal neural network.

Table 5.5: Average PSNR, WSNR, SSIM, IFC, and VIF of different denoising meth-

ods for various cameras.

T3i DnCNN-Art SCN-Art DnCNN-Real SCN-Real BMCNN SCN-BM

PSNR 40.96 41.08 42.10 42.33 43.27 43.92

WSNR 39.40 39.55 39.39 39.55 40.38 40.70

SSIM 0.9894 0.9897 0.9869 0.9872 0.9931 0.9937

IFC 4.523 4.628 3.648 3.736 4.851 4.971

VIF 0.8420 0.8504 0.8852 0.8956 0.8670 0.8836

T3i DnCNN-Art SCN-Art DnCNN-Real SCN-Real BMCNN SCN-BM

PSNR 38.53 38.67 33.42 33.75 39.01 39.08

WSNR 44.28 44.56 29.05 29.44 44.98 45.02

SSIM 0.9876 0.9881 0.9697 0.9721 0.9866 0.9867

IFC 7.032 7.203 6.141 6.308 8.224 8.247

VIF 0.9157 0.9243 0.8047 0.8215 0.8866 0.8878

T3i DnCNN-Art SCN-Art DnCNN-Real SCN-Real BMCNN SCN-BM

PSNR 33.10 33.16 35.10 35.27 35.88 35.90

WSNR 30.60 30.73 32.79 33.01 33.24 33.29

SSIM 0.9682 0.9687 0.9695 0.9704 0.9796 0.9798

IFC 4.762 4.857 4.980 5.128 6.600 6.614

VIF 0.8355 0.8447 0.8913 0.9063 0.8420 0.8429
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(a) Reference (b) Noisy

(c) BMCNN (d) SCN-BM

Figure 5.13: An illustration of the effect of the SCN on T3i-38 scene
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(a) Reference (b) Noisy

(c) DnCNN-Real (d) SCN-Real

Figure 5.14: An illustration of the effect of the SCN on S90-39 scene
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Chapter 6

Conclusions

In this dissertation, algorithms for the image denoising based on the convolutional

neural network have been proposed. The proposed algorithms employs the prior

models to the existing network structures.

First, a self-committee method to improve the performance of CNN based image

restoration algorithms is presented. Unlike the existing approaches that use several

differently trained networks as the committee members, a single network is employed

and the outputs of transformed inputs are used as the committee member. The

transforms used to construct the committee are based on the image processing priors.

The transfomed inputs induce different feature maps from the original, and thus

produces the outputs with different characteristics. Hence averaging the outputs

from differently transformed inputs could enhance the restoration performances.

Experiments show that the proposed method enhances the performance of state-of-

the-art image denoising and SISR networks.

A framework that combines two dominant approaches in up-to-date image de-

noising algorithms, i.e., the NSS prior based methods and CNN based methods,
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is also proposed. Specifically, a CNN that estimates the noise component from a

group of nonlocal similar patches is trained. Unlike the conventional NSS based

methods, the proposed denoiser is trained with vast data to learn the optimal map-

ping function and thus achieves better performance. The BMCNN also shows better

performance than the existing CNN based method especially in the case of images

with regular structure, because the BMCNN considers NSS in addition to the local

characteristics.

The proposed algorithms are extended to the non-Gaussian noises: Poisson noise

and real noise. Experiments have shown that the BMCNN shows the best perfor-

mance regardless of the noise type. Especially, conventional CNN based methods

can fail on the real noise case where the ground-truth image is unavailable and the

reference image, which plays a role of a label, is noisy and shows displacement with

the input noisy image. Block-matching step and the SCN structure assist the CNN

network to compensate these problems and achieve robust performance.
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초록

디지털 영상 취득 과정에서 다양한 잡음이 발생하고 그로 인해 영상의 화질이 저하된

다. 영상 잡음 제거는 이러한 잡음을 보정하는 중요한 과정으로, 따라서 다양한 연구가

이루어지고 있다. 잡음 제거는 대표적인 불량조건문제이기 때문에 고전적인 연구는 영

상 프라이어 (prior) 에 관한 다양한 모델을 이용하는 잡음 제거 방법을 개발해 왔다.

이러한 알고리즘들에서 결과 영상은 개발자가 설계한 영상의 특성을 따르는 방향으로

복원된다. 최근에는 학습 기반의 영상 잡음 제거 알고리즘도 많이 개발되었다. 이 방법

들은 데이터 주도 (data-driven) 방식을 통해 잡음 영상으로부터 복원 영상을 얻어내는

함수를 학습하는 방식으로, 현재 여러 잡음 제거 알고리즘 중 가장 뛰어난 성능을 보이

고 있다. 본 논문에서는 컨벌루션 신경망 (CNN)을 기반으로 한 잡음 제거 알고리즘을

제안한다. 기존의학습기반방법들은픽셀 오차를 최소화하는데에만 집중하면서영상

의 특성은 고려하지 못하는 데 반해, 제안하는 알고리즘은 영상 프라이어를 고려하여

보다 개선된 결과를 얻도록 한다. 첫 번째로, 기존의 CNN을 여러 개의 변형된 입력

영상에 적용하여 보다 향상된 복원 영상을 얻을 수 있도록 하는 자가위원회 네트워크

방법을 제안한다. 일반적인 가역변환을 겪은 영상을 입력으로 받을 때, CNN 이 만드는

복원 함수는 다른 특성을 갖고, 그에 따라 원본 영상을 입력으로 받는 것과 유사하지만

다른 결과를 생성하게 된다. 기존의 커미트 머신(Committee machine) 방법들로부터

알려져 있듯이 이 결과 영상들을 종합하여 보다 개선된 복원 영상을 얻을 수 있다. 기존

의 위원회 기반 방법들은 여러 개의 다른 네트워크를 사용하는 반면, 제안하는 방법은
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하나의 네트워크로부터 위원회를 구성한다. 위원회 구성에 사용하는 가역변환은 영상

처리의 특성으로부터 결정된다. 제안하는 자가위원회 네트워크는 별도의 학습 없이도

기존 CNN의 성능을 향상시킨다.

두 번째로, 영상 프라이어를 네트워크 학습에 적용하는 방법을 제안한다. 다양한 프

라이어 중 본 논문에서는 잡음 제거에 가장 널리 사용되는 비국부적 자가유사성 (NSS)

프라이어를적용한다.제안하는 BMCNN방법은블록매칭을통해유사한패치들을결

합하여하나의원본패치를예측한다. BMCNN방법은다양한특성을가진영상들에서

기존의 방법들보다 뛰어난 성능을 보였다. 또한, 기존의 NSS 기반 방법들은 BMCNN

의 구조로 해석될 수 있다.

세 번째로, 가우시안 잡음 이외의 잡음 모델에 대해서도 제안하는 방법들을 적용

시킨다. 본 논문에서는 푸아송 잡음과 실제 카메라로부터 촬영한 영상의 Real 잡음에

대한 실험을 구성한다. 제안하는 방법은 다양한 잡음 모델에 대해 좋은 성능을 보였다.

잡음의 특성이 명확하지 않고 영상 좌표의 어긋남이 존재하는 Real 잡음의 경우 특히

뛰어난 성능을 보였다.

주요어: 영상 잡음 제거, 컨벌루션 신경망, 영상 특성, 커미트 머신, 비국부적 자가유사

성, Real 잡음
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