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ABSTRACT

State Estimation and Tracking Control for Hybrid Systems

by Gluing the Domains

by

Jisu Kim

Department of Electrical and Computer Engineering

College of Engineering

Seoul National University

In this dissertation, we propose a new observer and tracking controller design

approach for a class of hybrid dynamical systems with state jumps. The hybrid

dynamical system exhibits characteristics typical of both continuous-time dynam-

ical system and discrete-time dynamical system. Therefore, it can be modeled as

differential equation of the continuous-time dynamics, difference equation of the

discrete-time dynamics, the interaction between them. Since the interaction of

continuous-time and discrete-time dynamics in a hybrid system leads to rich dy-

namical behavior and unfamiliar phenomena, several challenges are encountered

when we deal with this system.

The observer design considered in this dissertation is to construct a dynamical

system called an observer that estimates the state of a given hybrid dynamical

system (without any input), from an output of the given system. In addition, the

tracking controller design is to construct a dynamical system called a tracking

controller that makes an input for a given hybrid dynamical system (with an
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input) such that the state of the given system tracks a given reference. There many

results of the observer and tracking controller designs for the continuous-time and

discrete-time dynamical systems, but the results for the hybrid dynamical systems

are insufficient. Moreover, the results are applied to some classes of hybrid systems

(switched systems, hormone systems, powertrain systems, and so on) rather than

general hybrid dynamical systems.

The proposed idea dealing with the hybrid dynamical system is to “glue”

the jump set (a part of the domain where the jumps take place) onto its image.

Then, on the “glued” domain, the hybrid dynamical system becomes a continuous-

time dynamical system without any jumps. Especially, for some class of the

system, the continuous-time dynamical system has a smooth vector field via some

notion, “smoothing”. Furthermore, we specify this concept of gluing as a map and

investigate the essential conditions of the map.

By this map, we obtain the “glued” hybrid dynamical system (which is a

continuous-time dynamical system) and it may be possible to construct an ob-

server and/or a tracking controller through conventional methods for continuous-

time dynamical systems. From these constructions, we obtain the observer and

tracking controller for the hybrid system. Especially, the proposed observer does

not require any detection of the state jumps while many previous results does.

Furthermore, the proposed tracking controller does not need to make the state

jump whenever the jumps of the reference happen. Simulation results for exam-

ples including mechanical system with impacts and ripple generator in AC/DC

converter illustrate the effectiveness of the proposed approach.

Keywords: hybrid dynamical system, differentiable manifold, gluing, smoothing,

state estimation, nonlinear observer design, system immersion, tracking control

Student Number: 2010–23252
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In n× n identity matrix

0m×n m× n zero matrix
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(A)ij the (i, j)-th entry of A ∈ Rm×n
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Chapter 1

Introduction

1.1 Research Background

A dynamical system which exhibits both continuous and discrete dynamic behav-

iors is called a hybrid system. There are many kinds of hybrid systems such as

robotic systems with impacts [SK95, PY04, RLS06], electric circuits with switch-

ings, tank systems [SJLS05], hormone systems [KS99, CMS09, CMS12], and sev-

eral cyber-physical systems.

The modeling frameworks that involve the continuous-time dynamics, the dis-

crete events, and the interaction between them have been studied (see, e.g.,[Hen00,

LJS+03, GST09]). Under these frameworks, many attempts on the state estima-

tion and control problems have been made for some classes of hybrid systems such

as switched systems [GMP12, ST14, BMDB12, BBBSV02, SS05, BPU11], power-

train systems [BBBSV01], mechanical systems with impacts [BPU11, BNMM00,

MT01, TBP16, MT16], polyhedral billiards with impacts [FTZ13], ripple dis-

turbance on AC/DC converters [BZLC17] and so on [BvdWHN13, SvdWN14,

SBvdWH14, RS11]. However, general results for these problems still need to be

explored.

For many existing observers, it is required that the jump times of the observer

state coincide with those of the plant state. Similarly, in many existing reference

tracking controllers, the jump times of the plant state and the reference trajectory

should coincide. If they do not coincide, then jump time mismatches occur and

the estimation or tracking errors may be large on the time intervals caused by the

1



2 Chap. 1. Introduction

jump time mismatches.

For the coincidence of jump times, in the case of state estimation problem,

most proposed observers require the state jump time information. However, this

information is usually not given in practice. Although the observers may be able to

detect the jumps of the plant state from an output, the jump detection is another

challenge. Even if it is possible, the detection delay yields additional errors in

the state estimation. In the case of the tracking control, the reference jump time

information may be given. However, in the case when the state jumps are triggered

on particular state values, the jump time mismatch may be unavoidable because

the controller cannot instantaneously change the state to have the particular value

in general. Therefore, the coincidence of jump times is an unrealistic condition in

the state estimation and tracking control problems.

In [FTZ13, SvdWN14, BvdWHN13, MT16], novel methods dealing with the

jump time mismatches are suggested for the tracking control or state estimation

problems. In [FTZ13], a translating mass in a polyhedral billiard is remodeled as

a switched system by adding another reference. In [BvdWHN13], authors propose

a new non-Euclidean distance measure which redefines the distance between two

points and takes the distance between the starting and end points of the jump as

zero. As a result, the new distance measure determines that they are “close” when

they are related by the jump even though they are not actually close. Actually,

this concept begins from the geometric approach studied in [SJLS05]. The result

gives the idea that a hybrid system with jumps of the state may be considered as

a (piecewise) continuous-time dynamical system without any jump. Furthermore,

in [BRS15], the authors propose a class of hybrid systems, which can be changed

into a dynamical system defined on some smooth manifold with boundary having

some smooth vector field.

Inspired by it, for a class of hybrid systems with the state jumps, we propose a

novel observer and controller design approach. The idea is to “glue” the jump set,

where the jumps take place, onto its image, the destinations of the jumps. Then,

the system after “gluing” becomes a continuous-time dynamical system without

any jumps of the state. Therefore, conventional observer or controller design

techniques for continuous-time systems may be applied. While many observers
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for hybrid systems require some assumptions or detection of the time instants

when discrete events occur, our approach does not require them (although more

stringent structural conditions on the hybrid systems may be assumed). In addi-

tion, the tracking controller also does not need to make the state jump whenever

the reference jumps occur. Finally, our concept of gluing, similar to a transforma-

tion, is more intuitive and specific than other results. To delineate the proposed

approach, let us consider a toy system given by

x =

[
x1

x2

]
=

[
ρ cos θ

ρ sin θ

]
,

ẋ =

[
0 1

−1 0

]
x =: Ax when x ∈ {x ∈ R2 : (|ρ| > 0) ∧ (|θ| ≤ π

4 )} =: C,

(1.1.1a)

x+ =

[
1 0

0 −1

]
x =: Fx when x ∈ {x ∈ C : θ = −π

4 } =: D, (1.1.1b)

y = ρ cos 4θ,

where (1.1.1a) is the continuous-time dynamics, (1.1.1b) is the discrete-time dy-

namics involving jumps of the state, and x+ indicates the value of x after the jump.

Note that, in this case, there is no change in the output y when the state jumps

happen because (1.1.1b) implies (ρ, θ) 7→ (ρ,−θ) at D, so that y = ρ cos 4θ =

ρ cos(−4θ) = y+ for θ = −π/4 ∈ D. Thus, if the available information is only

the current output, then we cannot perceive when the discrete events arise (recall

that both ρ and θ are unknown). For this reason, it seems difficult to apply the

observer design methods that are based on the detection of jumps. However, let

us consider a transformation ζ = (ζ1, ζ2) = ψ(x) = ψ̄(ρ, θ) = (ρ cos 4θ, ρ sin 4θ).

Then, the system is transformed into

ζ̇ = 4Aζ =: Āζ for ∥ζ∥ ≠ 0,

y = ζ1 =
[
1 0

]
ζ =: C̄ζ.

(1.1.2)

As we can see, the system (1.1.2) is an LTI system without any jumps of the
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Figure 1.1: True and estimated states of toy system (1.1.1)

state. This is due to the fact that the representations of two points, the starting

point and its destination of each jumps, are the same in the ζ-coordinates, i.e.,

ψ(x) = ψ(x+) for x ∈ D. Furthermore, since the pair (Ā, C̄) is observable, we

can design a Luenberger observer

˙̂
ζ = Āζ̂ + L(C̄ζ̂ − y),

where Ā + LC̄ is Hurwitz. Then, eζ := ζ̂ − ζ converges to zero, and we can

reconstruct x̂ = (x̂1, x̂2) = (ρ̂ cos θ̂, ρ̂ sin θ̂) that is an estimate of x, by a particular

inverse transformation of ψ(x):

ρ̂ = ∥ζ̂∥,

θ̂ =



1
4 arctan

ζ̂2
ζ̂1

if ζ̂1 > 0,
1
4

(
arctan ζ̂2

ζ̂1
+ πsgn(ζ̂2)

)
if ζ̂1 < 0,

π
8 if ζ̂1 = 0 and ζ̂2 > 0,

−π
8 if ζ̂1 = 0 and ζ̂2 < 0,

where sgn(a) is 1 if a ≥ 0 and −1 if a < 0. Figure 1.1 is a simulation result

showing the effectiveness of the proposed estimation strategy.

1.2 Organization and Contributions of the Dissertation

The following outlines this dissertation and briefly presents the contributions of

each chapter.
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Chapter 2. Mathematical Preliminaries

As mathematical preliminaries of the dissertation, this chapter establishes the

concepts and basic facts needed to understand later chapters. The first section

reviews in some detail the differential calculus in Rn. The second section recalls

some notions in differential geometry and important mathematical tools on them

such as manifold with boundary, differential structure, tangent space, vector field,

push-forward, Inverse Function Theorem, Whitney Embedding Theorem, Bound-

ary Flowout Theorem, and so on. The final section is devoted to the viability

theory in ordinary differential equation.

Chapter 3. Reviews of Related Previous Works

This chapter reviews some previous results on the hybrid system. The first sec-

tion deals with gluing the domain of the hybrid systems [SJLS05] and smoothing

the vector field after gluing [BRS15]. Next section presents the viability theory

of hybrid system [ALQ+02]. In the third section, some results of the state es-

timation for the hybrid systems [FTZ13, MT01, MT16, BZLC17] and the com-

mon assumption required by most conventional observers are introduced. The

final section presents some result of the tracking control for the hybrid systems

[FTZ13, SvdWN14, BvdWHN13, SBvdWH14] and their ideas.

Chapter 4. Gluing Domain of Hybrid System

This chapter introduces a framework to deal with the main results of this disser-

tation and proposes a class of the hybrid systems whose the boundaries of the do-

main can be glued. The key to glue the boundaries is the quotient map. However,

since the quotient map and its image are so abstract, a more concrete map, which

is a “gluing function”, is proposed to glue the boundaries. On the framework, the

map gluing the boundaries is obtained as a map defined between two Euclidean

spaces.

Chapter 5. State Estimation Strategy

This chapter deals with the state estimation problem of hybrid dynamical systems

with state-triggered jumps using a gluing function. By the gluing function, we

obtain some continuous-time dynamical system without any state jumps. Then,

as the toy system given in Section 1.1, we may obtain the state observer from the
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conventional observer design methods for the continuous-time dynamical systems

(e.g. Luenberger observers for linear systems, high-gain observer for nonlinear

systems [MT16], nonlinear observers for Lipschitz systems [KS99], and so on).

Parts of this chapter are based on [KCS+14]. The following is a list of the contri-

butions of the chapter.

• We present the conditions of the hybrid dynamical system with an output

guaranteeing that it can be considered as a continuous-time dynamical sys-

tem with an output. In addition, from the observer of this continuous-time

dynamical system, we can obtain the state estimation of the hybrid dynam-

ical system in a graphical sense.

• We investigate some conditions such that, under the conditions, the glued

system is a linear system up to output injection or a Lipschitz continuous

system. Then, we may utilize the convention observer design methods pro-

posed in [BS04] or [KS99].

• Comparing to most previous observer design methods for the hybrid dynam-

ical system, the proposed observer design technique neither requires nor de-

pends on the information of the state jump time instant.

• As a case study, we apply the result to bouncing ball system, mechanical

system with impacts, and rippler generator system.

Chapter 6. Tracking control Strategy

This chapter addresses the tracking control problem of hybrid dynamical systems

with state-triggered jumps using a gluing function. Similar to the state estima-

tion problem, we obtain some continuous-time dynamical system without any

state jumps via the gluing function. Then, we may construct the tracking con-

troller from the conventional controller design techniques for the continuous-time

dynamical systems. Parts of this chapter are based on [KSS16]. The following is

a list of the contributions of the chapter.

• The conditions implying that the hybrid dynamical system with an input

can be changed into a continuous-time dynamical system with an input are
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proposed. Furthermore, from the controller of the continuous-time dynam-

ical system, we may design a tracking controller for the hybrid dynamical

system.

• The conventional controllers of the hybrid dynamical systems require the

coincidence of the reference and state jumps times, while the proposed con-

troller does not.

• As a case study, we apply the result to mechanical system with impacts and

some academic examples.

Chapter 7. Conclusions

This chapter concludes this dissertation with some concluding remarks and further

issues for future research.





Chapter 2

Mathematical Preliminaries

This chapter provides some brief mathematical background. For a full under-

standing of the chapter, the reader is referred to the books [War71, Boo75, Spi65,

Spi99, Mun97, Mun00, Lee12, Wal16, Hir76, Joy09, JdM82, Aub09].

2.1 Calculus in Rn

In this section, we review some facts about partial derivatives from advanced

calculus.

We assume that U ⊂ Rn is an open set and f : U → Rm is a real-valued func-

tion. In addition, let x := (x1, . . . xn) ⊂ U and f(x) := (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

Now we can define the “partial derivative”.

Definition 2.1.1 (Partial derivative). The partial derivative (∂fi/∂xj)p of fi with

respect to xj is the following limit, if it exists:(
∂fi
∂xj

)
p

= lim
h→0

fi(p1, . . . , pj + h, . . . , pn)− fi(p1, . . . , pj , . . . , pn)

h
.

If (∂fi/∂xj) : U → R is defined by (∂fi/∂xj)(p) := (∂fi/∂xj)p, that is, the limit

above exists at each point of U for 1 ≤ j ≤ n. �

Definition 2.1.2 (Differentiable). We say that f is differentiable at p ∈ U if

there is a matrix T ∈ Rm×n such that

lim
v→0n

|f(p+ v)− f(p)− Tv|
|v|

= 0.

9
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We say that the linear matrix T is the Jacobian of f at p and write it as df(p).

�

If df is continuous we say that f is of class C1. It is well known that f is C1

if and only if the partial derivatives (∂fi/∂xj) : U → R exist and are continuous.

We define inductively the notion of a function of class Cr: f is of class of Cr if all

its partial derivatives are of class Cr−1. We say that f is of class C∞ or smooth

if f is of class Cr for all r. Next we define a diffeomorphism.

Definition 2.1.3 (Diffeomorphism). Let A and B be open sets of Rn; let g : A→
B be a one-to-one function. We say that g is a Cr diffeomorphism if g and g−1

are of class Cr. Furthermore, we say that A is Cr diffeomorphic to B. Trivially,

B is Cr diffeomorphic to A also when A is Cr diffeomorphic to B. �

The next theorem, known as the “Inverse Function Theorem”, is also a conve-

nient tool to investigate a local property.

Theorem 2.1.1 (Inverse Function Theorem). Let U be an open set in Rn and Φ :

U → Rn be a Cr function. If rank(dΦ(p)) = n for a point p ∈ U , i.e., the Jacobian

is nonsingular at each point p ∈ U , then there exists an open neighborhood

V ⊂ U of p such that Φ|V : V → Φ(V ) is a Cr diffeomorphism, where Φ|V is the

restriction of Φ to V . �

Now we generalize the notion of differentiability to functions that are defined

on arbitrary subsets of Rn.

Definition 2.1.4 (Class Cr). Let S be a subset of Rn. Consider a function

f : S → Rm. We say that f is class Cr if f may be extended to a function

f̃ : U → Rn that is of class Cr on a open set U of Rn containing S. �

The following lemma shows that f is of class Cr if it is local of class Cr:

Proposition 2.1.2. Let S be a subset of Rn. Consider a function f : S → Rm. If

for each x ∈ S, there is an open neighborhood Ux of x and a function gx : Ux → Rm

of class Cr that agrees with f on Ux ∩ S, then f is of class Cr on S. �

We shall be particularly interested in functions defined on set that are open

in Rn+ := {(x1, . . . , xn) ∈ Rn : x1 ≥ 0} but not open in Rn. In this situation, we

have the following useful result:
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Proposition 2.1.3. Let S be open in Rn+ but not in Rn; let α : S → Rm be of

class Cr. Let α̃ : S̃ → Rm be a Cr extension of α. Then for x ∈ S, the Jacobian

dα̃(x) expends only on the function α and is independent of the extension α̃. We

denote the Jacobian dα̃ on S by dα without ambiguity. �

2.2 Differential Geometry

In order to define the notion of topological manifold, we need the concepts of

topology, topological space, Hausdorff space, homeomorphism, and so on.

Definition 2.2.1 (Topology and Topological space). A topology on a set M is a

collection T of subsets of M, which are called open sets satisfying the following

three axioms:

(a) The empty set and M itself are open.

(b) The union of any number of open sets is open.

(c) The intersection of any finite number of open sets is open.

A set M together with a topology T on M is called a topological space. �

A basis of a topology T on M is a subcollection B ⊂ T such that every open

subset of M can be represented as a union of elements of B. A topological space

is said to be second countable if there is a countable basis of its topology. A

neighborhood of a point p ∈ M is an open subset of M containing p. A Hausdorff

space is a topological space in which any two distinct points have disjoint neigh-

borhoods.

Let M1 and M2 be topological spaces. A map Φ : M1 → M2 is said to

be continuous if the inverse image of any open subset of M2 under Φ is also

an open subset of M1. The map Φ is called a homeomorphism, if it is bijective

and both the map Φ and its inverse map Φ−1 are continuous. We say that M1

is homeomorphic to M2, if there exists a homeomorphism from M1 onto M2.

Furthermore, if M1 is homeomorphic to M2, then M2 is homeomorphic to M1

also, because Φ−1 : M2 → M1 is clearly a homeomorphism when Φ : M1 → M2

is a homeomorphism.
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Figure 2.1: Manifold and coordinate chart.

Now, we introduce the notion of topological manifold.

Definition 2.2.2 (Topological manifold). A second countable Hausdorff space

M is called a topological manifold of dimension n if each point of M has a

neighborhood homeomorphic to an open set in Rn. �

Roughly speaking, a manifold is a topological space that locally resembles a

real Euclidean space. For this reason, we can identify each point of a topological

manifold with a point of a real Euclidean space as follows.

Definition 2.2.3 (Coordinate chart). For a topological manifold M of dimension

n, a coordinate chart of M is a pair (U,ϕ), where U is an open subset of M and

ϕ : U → Û is a homeomorphism from U to an open subset Û = ϕ(U) ⊆ Rn.
By definition of a topological manifold, each point is contained in the domain of

some chart (U,ϕ). Given a chart (U,ϕ), we call the set U a coordinate domain

or a coordinate neighborhood of each of its points. The map ϕ is called a (local)

coordinate map, and the component functions (x1, · · ·xn) of ϕ, defined by ϕ(p) =

(x1(p), · · ·xn(p)), are called local coordinates on U . �

Let (U,ϕ) and (V, φ) be coordinate systems of M with U ∩ V ̸= ∅. Then,

the homeomorphism φ ◦ ϕ−1 : ϕ(U ∩ V ) → φ(U ∩ V ) is called a transition map
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from ϕ to φ on U ∩ V . Two coordinate charts (U,ϕ) and (V, φ) are said to be

Cr related or Cr compatible if both the maps φ ◦ ϕ−1 : ϕ(U ∩ V ) → φ(U ∩ V )

and ϕ ◦ φ−1 : φ(U ∩ V ) → ϕ(U ∩ V ) are Cr. Here r can be a natural number or

∞. A collection A = {(U i, ϕi) : i ∈ I} (I is an index set) of mutually Cr related

coordinate charts of M with
⋃
i∈I
U i =M is called a Cr atlas for M.

Lemma 2.2.1. If A is an Cr atlas for M, then A is contained in a unique

maximal Cr atlas for M. �

From the lemma, the concept of smooth manifold can be defined as follows.

Definition 2.2.4 (Differentiable manifold). A topological manifold M together

with a maximal Cr atlas for M is called a Cr manifold. When r = ∞, we say

that M is a smooth manifold. �

A maximal Cr atlas on M gives a Cr differentiable structure. Thus, we can

define the Cr differentiability of maps between Cr manifolds. Let M1 and M2

be Cr manifolds. A map F : M1 → M2 is said to be differentiable of Cr if, for

each p ∈ M1, there exist two coordinate systems (U,ϕ) of M1 with x ∈ U and

(V, φ) of M2 with F (x) ∈ V such that φ ◦ F ◦ ϕ−1 is of Cr. From the concept

of differentiability for maps between differentiable manifolds, we introduce the

notion of diffeomorphism.

Definition 2.2.5 (Diffeomorphism). Let M1 and M2 be Cr manifolds of the

same dimension. A map F : M1 → M2 is called a Cr diffeomorphism, if it is

bijective and both F and F−1 are differentiable of Cr. If there exists a diffeo-

morphism from M1 onto M2, then we say that M1 is Cr diffeomorphic to M2.

Trivially, M2 is Cr diffeomorphic to M1 also when M1 is Cr diffeomorphic to

M2. �

In many important applications of the differentiable manifolds, we will en-

counter space that would be differentiable manifold except that they have a

“boundary” of some sort. Simple examples of such spaces include closed inter-

vals in R and closed balls in Rn. To accommodate such space, we need to extend

our definition of manifolds.
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Figure 2.2: A manifold with boundary.

Definition 2.2.6 (Topological manifold with boundary). A second countable

Hausdorff space M is called a topological manifold with boundary of dimension n

if each point of M has a neighborhood homeomorphic to an open set in Rn+. �

Definition 2.2.7 (Differentiable manifold with boundary). A topological mani-

fold with boundary M is a Cr n-dimensional manifold with boundary if it satis-

fies all the defining conditions of a Cr manifold, with the exception that we allow

coordinate domains to map onto open sets in Rn+ := {(x1, . . . , xn) ∈ Rn : x1 ≥ 0}.
�

Note that a map from an arbitrary subset A ⊆ Rn to Rk is said to be Cr if

in an open neighborhood of each point of A it admits an extension to a Cr map

defined on an open subset of Rn. If U is an open subset in Rn+, a map F : U → Rk

is Cr when, for each x ∈ U , there exists an open subset Ũ ⊆ Rn containing x and

a Cr map F̃ : Ũ → Rk that agrees with F on Ũ∩Rn+. Therefore, we can define the

atlas of the manifold with boundary and the differentiability of functions between

the manifolds with boundary in the sense just described.

A point p ∈ M is called an interior point of M if there is a coordinate chart

(U,ϕ) such that ϕ(p) ∈ {(x1, . . . , xn) ∈ Rn : x1 > 0}. Otherwise, it called a
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boundary point of M. The boundary of M (the set of all its boundary points) is

denoted by ∂M.

Throughout the rest of this section, M is a smooth n-dimensional manifold

with boundary (unless otherwise noted) and, for a point p ∈ M, C∞(p) denotes

the set of all smooth real-valued functions that can be defined on an open neigh-

borhood of p.

Definition 2.2.8 (Tangent vector and Tangent space). A tangent vector vp to

M at a point p ∈ M is a linear derivation from C∞(p) into R. In other words,

for all φ, ψ ∈ C∞(p) and α, β ∈ R, it holds that

(a) vp(αφ+ βψ) = αvp(φ) + βvp(ψ).

(b) vp(φψ) = φ(p)vp(ψ) + ψ(p)vp(φ).

The tangent space to M at p ∈ M is the set of all tangent vectors to M at p and

denoted by TpM. �

We can observe that TpM is a vector space over the field R with the vector

addition and the scalar multiplication defined as

(vp + wp)(φ) := vp(φ) + wp(φ),

(αvp)(φ) := αvp(φ),

where vp, wp ∈ TpM, φ ∈ C∞(p), and α ∈ R. Moreover, the dimension of TpM
is equal to that of M.

Let us consider p ∈ M. Then there exists a smooth coordinate chart (U,ϕ)

such that p ∈ U . It is well-known that ∂/∂x1|p, . . . , ∂/∂xn|p ∈ TpM defined by

∂/∂xi|p(φ) := ∂(φ◦ϕ−1)
∂xi

|ϕ(p) (for φ ∈ C∞(p)) form a basis for TpM. Thus, it holds

for v ∈ TpM that v =
∑n

i=1 v(ϕi(p))∂/∂x
i|p, which is a coordinate dependent

representation.

Definition 2.2.9 (Differential). If M and Nare smooth manifolds (with bound-

ary) and F : M → N is a smooth map, for each p ∈ M we define a map

dFp : TpM → TF (p)N ,
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called the differential of F at p, as follows. Given v ∈ TpM, we let dFp(v) be the

derivation at F (p) that acts on ψ ∈ C∞(N ) by the rule

dFp(v)(ψ) = v(ψ ◦ F ).

�

Based on the concept of tangent space, a tangent bundle on a smooth manifold

is defined as follows.

Definition 2.2.10 (Vector bundle). Given a smooth manifold M (with bound-

ary) the tangent bundle of M, denoted by TM, is the disjoint union of the tan-

gent spaces at all points of M:

TM =
∐
p∈M

TpM.

�

The tangent bundle comes equipped with a natural projection map π : TM →
M, which sends each vector in TpM to the point p. A section of π is a continuous

right inverse for π, i.e., a continuous map δ : M → TM such that π ◦ δ = IdM.

The tangent bundle TM has a natural topology and smooth structure that

make in into a 2n-dimensional smooth manifold. With respect to this structure,

the projection map π : TM → M is smooth.

Definition 2.2.11 (Vector field). A vector field f on M is a section of the

projection map π : TM → M. More concretely, a vector field is a continuous

map f : M → TM, usually written p 7→ fp, with the property that π ◦ f = IdM

or equivalently, fp ∈ TpM for each p ∈ M. The vector field f is said to be smooth

if f : M → TM is smooth. �

Using a coordinate chart (U,ϕ) on M , the smooth vector field f on U can be

represented as

f(p) =
n∑
i=1

fi(p)
∂

∂xi

∣∣∣∣∣
p

for all p ∈ U ,
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where n real-valued functions f1, . . ., fn are smooth on U . Note that we can also

define the differential of F when M and N are Cr manifolds and F is Cr map.

Suppose F : M → N is smooth and v is a vector field on M, and suppose

there happens to be a vector field w on N such that, for each p ∈ M,

dFp(vp) = wF (p).

In this case, we say the vector fields v and w are F -related.

Definition 2.2.12 (Pushforward). Suppose M and N are smooth manifolds

(with boundary), and F : M → N is a diffeomorphism. For every smooth vector

field v a vector field on M, there exists a unique smooth vector field on N that

is F -related to v. We denote it by F∗v and call it the pushforward of v by F . �

We omit the proof of the existence of F∗v. Suppose that M and N are

differentiable manifold (with boundary). Given a C1 map F : M → N and a

point p ∈ M, we define the rank of F at p to be the rank of the linear map

dFp : TpM → TF (p)N ; it is the rank of the Jacobian matrix of F in any smooth

chart.

Definition 2.2.13 (Immersion). Suppose that F : M → N is a C1 map. If

its differential is injective at each p ∈ M (rank F = dim M), we say that F is

immersion. When F is smooth, it is called a smooth immersion. �

Now we introduce the Inverse Function Theorem for differentiable manifolds.

Theorem 2.2.2. (Inverse Function Theorem for manifolds). Suppose M and N
are differentiable manifolds, and F : M → N is a Cr map. If p ∈ M is a point

such that dFp is invertible, then there are connected neighborhoods U0 of p and

V0 of F (p) such that F |U0 : U0 → V0 is a Cr diffeomorphism. �

The most important fact about immersion is the following consequence of the

inverse function theorem. It says that an immersion can be placed locally into a

particularly simple canonical form by a change of coordinates. Actually, it can

be applied to constant-rank maps, but we only deal with the case when F is

immersion in this section.
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Theorem 2.2.3. (Rank Theorem). Suppose M and N are differentiable mani-

folds of dimensions m and n, respectively, and F : M → N is a Cr immersion.

For each p ∈ M, there exists Cr charts (U,ϕ) for M centered at p and (V, φ)

for N centered at F (p) ∈ N such that F (U) ⊂ V , in which F has a coordinate

representation of the form

F̂ (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

�

Now we consider the special kind of immersion. To deal with this, we define

some property.

Definition 2.2.14 (Embedding). If M and N are differentiable manifolds (with

boundary), a Cr embedding of M into N is a Cr immersion F : M → N that is

also a topological embedding, i.e., a homeomorphism onto its image F (M) ⊂ N
in the subspace topology. �

Theorem 2.2.4. (Local embedding theorem). Suppose M and N are differen-

tiable manifolds (with boundary), and F : M → N is a Cr map. Then F is a

immersion if and only if each point in M has a open neighborhood U ⊂ M such

that F |U : U → N is a Cr embedding. �

Many familiar manifolds are subsets of other manifold such as a subset of Rn.
Therefore, we define some manifolds, which are subsets of other smooth manifolds.

Definition 2.2.15 (Embedded submanifold). An (embedded) submanifold of the

differentiable manifold M (with boundary) is a subset S ⊂ M that is a manifold

in the subspace topology, endowed with a differential structure with respect to

which the inclusion map S ↪→ N is an embedding. �

Definition 2.2.16 (Properly embedded). An embedded submanifold S ⊂ M is

said to be properly embedded if the inclusion ι : S ↪→ N satisfies that, for every

compact set Y ⊂ M, the preimage ι−1(Y ) is compact. �

Next proposition says embedded submanifolds are modeled locally on some

standard local embedding.
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Proposition 2.2.5. Let M be a differential n-manifold (with boundary) and

S ⊂ M be an embedded k-dimensional submanifold. Then, for each p ∈ S, there

exists a differential chart (U,ϕ) for M such that

ϕ(S ∩ U) = {(x1, . . . , xn) ∈ ϕ(U) : xk+1 = ck+1, . . . , xn = cn},

for some constants ck+1, . . . , cn. �

If M be a differential n-manifold with boundary, then with the subspace

topology, ∂M is a topological (n − 1)-dimensional manifold without boundary

and has a differential structure such that it is a properly embedded submanifold

of M. In addition, the differential structure on ∂M is unique.

In addition, ∂M may be a union of (n − 1)-submanifold of M. To consider

some part of the boundary, which consists of the connected components of the

boundary ∂M, we define the following.

Definition 2.2.17 (Smooth part of boundary). For a smooth n-manifold with

boundary M, Q is a smooth part of the boundary if Q is a union of connected

components of ∂M. �

Note that since ∂M is a smooth (n − 1)-submanifold, Q is also a smooth

(n− 1)-submanifold of M. In addition, Q is open in ∂M and closed in M.

In fact, we can consider an abstract smooth manifold with boundary as a

submanifold of Euclidean space. The following theorem means that every smooth

n-manifold with boundary is diffeomorphic to a properly embedded submanifold

(with or without boundary) of R2n+1.

Theorem 2.2.6. (Whitney Embedding Theorem). Every smooth n-manifold

with or without boundary admits a proper smooth embedding into R2n+1. �

When S is submanifold of M, the tangent space to S can be viewed as a

subspace of the tangent space to M. To make appropriate identifications, consider

the inclusion map ι : S → M. Since the inclusion map ι : S → M is a immersion,

at each point p ∈ S we have an injective linear map dιp : TpS → TpM. In view

of derivations, this injection works in the following way: for any vector v ∈ TpS,
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the image vector ṽ = dιp(v) ∈ TpM acts on differential function on M by

ṽ(ψ) = dιp(v)(ψ) = v(ψ ◦ ι) = v(ψ|S),

where ψ is a differential map on M. By adopting the convention of identifying TpS
with its image under this map, we can consider TpS as a certain linear subspace

of TpM.

Intuitively, the tangent vector v ∈ TpM can be separated into three classes:

it tangent to the boundary, pointing inward, and pointing outward.

Definition 2.2.18 (Inward-pointing and Outward-pointing). Suppose that M
is a differentiable manifold with boundary. If p ∈ ∂M, a tangent vector v ∈
TpM\Tp∂M is said to be inward-pointing if for some ϵ > 0 there exists a Cr

function γ : [0, ϵ) → M such that γ(0) = p and, for ψ ∈ C∞(p), limt↘0
ψ◦γ(t)
t =

v(ψ), and it is outward-pointing if there exists a Cr function γ : (−ϵ, 0] → M
such that γ(0) = p and, for ψ ∈ C∞(p), limt↗0

ψ◦γ(t)
t = v(ψ). �

In fact, the notion of the function γ is a “curve”, which is defined as follows.

Definition 2.2.19 (Curve). If f is a vector field on a differentiable manifold

(with boundary) M, we define a integral curve of f on M to be a differential map

γ : J → M and

dγ

(
d

dt

∣∣∣∣
t0

)
= fγ(t0) for all t0 ∈ J

where J ⊂ R is an interval and d/dt|t0 is the standard coordinate basis vector in

Tt0R. �

Note that J is usually an open interval, but J may have one or two endpoints.

Then, we can interpret derivatives as one-sided derivatives.

Theorem 2.2.7. (Boundary Flowout Theorem). Let M be a smooth manifold

with nonempty boundary, and let f be a smooth vector field on M that is inward-

pointing at each point of p ∈ M. There exist a smooth function δ : ∂M → R+

and a smooth embedding Φ : Pδ → M where Pδ := {(t, p) : (p ∈ ∂M) ∧ (0 ≤
t ≤ δ(p))} ⊂ R × ∂M, such that Φ(Pδ) is a neighborhood of ∂M, and for each

p ∈ ∂M the map t 7→ Φ(t, p) is an integral curve of M starting at p. �
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Now we introduce a quotient topology on some topology space and a quotient

map. In addition, using this concept, we attach manifolds along their boundaries.

Definition 2.2.20 (Quotient topology and Quotient Map). If X is a topological

space, Y is a set, and π : X → Y is a surjective map, the quotient topology on Y

determined by π is defined by declaring a subset U ⊂ Y to be open if and only

if π−1(U) is open in X. If X and Y are topological spaces, a map π : X → Y

is called a quotient map if it is surjective and continuous and Y has the quotient

topology determined by π. �

Definition 2.2.21. (Saturated set and Fiber) If π : X → Y is a map, a subset

U ⊂ X is said to be saturated with respect to π if U is the entire preimage of its

image: U = π−1(π(U)). For y ∈ Y , the fiber of over y is the preimage π−1(y). �

Note that a subset of X is saturated if and only if X is a union of fibers.

Definition 2.2.22 (Quotient space). Suppose that X is a topological space and

∼ is an equivalence relation on X. Let X/ ∼ denote the set of equivalence class

in X, and let π : X → X/ ∼ be the natural projection sending each point to

its equivalence class. Endowed with the quotient topology determined by π, the

space X/ ∼ is called the quotient space of X determined by ∼. �

For example, suppose that X and Y are topological spaces; A ⊂ Y is a closed

subset; and g : A → X is a continuous map. The relation a ∼ g(a) for all a ∈ A

generates an equivalence relation on X
∐
Y , whose quotient space is denoted by

X ∪g Y and called an adjunction space. It is said to be formed by attaching Y to

X along g. Now we are ready to glue the boundaries of the manifolds.

Theorem 2.2.8. (Attaching smooth manifolds along their boundaries). Let M1

and M2 be smooth n-manifolds with nonempty boundaries, and suppose g :

∂M2 → ∂M1 is a diffeomorphism. Then M1 ∪g M2 is a topological manifold

(without boundary), and has a smooth structure such that there are properly

embedded n-submanifolds with boundary M′
1,M′

2 ⊂ M1 ∪g M2 diffeomorphic

to M1 and M2, respectively, and satisfying

M′
1 ∪M′

2 = M1 ∪g M2, M′
1 ∩M′

2 = ∂M′
1 = ∂M′

2.
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Figure 2.3: Gluing and differential structures.

If M1 and M2 are both compact, then M1 ∪g M2 is compact. �

By the theorem, we can obtain a new smooth manifold by gluing the bound-

aries of the disjoint manifolds.

Next theorem deals with the case when the parts of the boundaries are glued.

Theorem 2.2.9. Let M1 and M2 be smooth n-manifolds with nonempty bound-

aries, S1 ⊂ ∂M1 and S2 ⊂ ∂M2 are smooth parts of the respective boundaries,

and g : S2 → S1 is a diffeomorphism. Then M1 ∪g M2 is a topological manifold

with boundary and can be given a smooth structure such that M1 and M2 are

diffeomorphic to some n-dimensional submanifolds of M1 ∪g M2. �

In fact, there are many smooth structures on M1 ∪g M2. However, they

are diffeomorphic by the following theorem. The theorem says that the glued

manifold consists of two smooth manifolds and all possible endowed structures of

the glued domain are diffeomorphic.

Theorem 2.2.10. (Determined up to diffeomorphism). Let M̄ and N̄ be n-

manifolds without boundary. Suppose that M̄ is the union of two closed n-

submanifolds M1 and M2 and N̄ is the union of two closed n-submanifolds N1
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and N2 such that

M1 ∩M2 = ∂M1 = ∂M2 and N1 ∩N2 = ∂N1 = ∂N2.

If M̄ and N̄ are homeomorphic and, for i = 1, 2, Mi and Ni are diffeomorphic,

then M̄ and N̄ are diffeomorphic. �

2.3 Viability Theorems for Ordinary Differential Equa-

tions

In this section, we introduce the basic theorems of viability theory in the

simple framework of ordinary differential equation ẋ = f(x) on a subset K of a

finite dimensional vector space. To guarantee the existence of the solutions, it is

required that, for any state x ∈ K, the velocity is tangent in some sense to K at

x. For this, if K is smooth manifold, we can adopt the notion of the tangent space

of smooth manifold. However, on the boundary of the manifold with boundary,

the element of the tangent space may point outward from K. Therefore, we need

to characterize more generalized the set of the tangent direction.

Definition 2.3.1 (Viable function). Let K be a subset of a finite dimensional

vector space X. We shall say that a function x(·) from [0, T ] to X is viable in K

on [0, T ] if

x(t) ∈ K for all t ∈ [0, T ].

�

Let us describe the dynamics of the system by a map f from some open subset

Ω of X to X. We consider the initial value problem associated with the following

differential equation:

ẋ(t) = f(x(t)) ∀t ∈ [0, T ] (2.3.1)

with the initial condition x(0) = x0.
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Definition 2.3.2 (Viability and Invariance). Let K be a subset of Ω. We shall

say that K is locally viable under f if for any initial state x0 of K, there exists

T > 0 and a viable solution on [0, T ] to differential equation (2.3.1) starting at x0.

It is said to be (globally) viable under f if we can always take T = ∞. The subset

K is said to be invariant under f if for any initial state x0 of K, all solution to

differential equation (2.3.1) are viable in K. �

Definition 2.3.3 (Contingent cone). Let X be a normed space, K be a nonempty

subset of X and x belong to K. The contingent cone to K at x is the set

TK(x) :=

{
v ∈ X : lim inf

h→0+

dK(x+ hv)

h

}
where dK(y) denotes the distance of y to K, defined by

dK(y) := inf
z∈K

|y − z|.

�

In other worlds, v belongs to TK(x) if and only if there exists a sequence of

hn > 0 converging to 0+ and a sequence of vn ∈ X converging to v such that

x+ hnvn ∈ K for all n ≥ 0.

Note that when K is a differentiable manifold, the contingent cone TK(x)

coincides with the tangent space to K at x. In addition, when K is a differentiable

manifold with boundary and x is boundary point, the contingent cone TK(x) is a

subset of the tangent space to K at x.

The following lemma shows right away why this cone will play a crucial role.

Lemma 2.3.1. Let x : [0, T ] → K be a differentiable viable function. Then, it

follows that

ẋ(t) ∈ TK(x(t)) ∀t ∈ [0, T )

�

Definition 2.3.4. Let K be a subset of Ω. We say that K is a viability domain



2.3. Viability Theorems for Ordinary Differential Equations 25

of the map f : Ω → X if

f(x) ∈ TK(x) ∀x ∈ K.

�

Finally, we introduce some viability theorems.

Theorem 2.3.2. (Nagumo). Let us assume that

• K is locally compact;

• f is continuous from K to X.

Then K is locally viable under f if and only if K is a viability domain of f . �

Theorem 2.3.3. Let us consider a subset K of a finite dimensional vector space

X and a map f from K to X. We assume that

• the map f is continuous from K to X;

• there is c > 0 such that |f(x)| ≤ c(|x|+ 1) for all x ∈ K;

• K is a closed viability domain of f .

Then K is globally viable under f (i.e., for every initial state x ∈ K, there exists

a viable solution on [0,∞] to differential equation (2.3.1) starting at x0.) �





Chapter 3

Reviews of Related Previous Works

In this section, related previous works are introduced. The considered previous

works consist of three major topics. First of all, gluing the domain and smoothing

the vector field of the hybrid system are considered in Section 3.1. Secondly, the

viability theory for the hybrid system is introduced in Section 3.2. Finally, as ap-

plications, previous results of state estimation and tracking control are presented

in Section 3.3 and Section 3.4, respectively.

Note that there are many ways to model the hybrid dynamical systems ([LJS+03,

SJLS05, GST09, Bro00, ALQ+02]). In this chapter, to clearly represent the pre-

vious results, each section adopts a different framework. Therefore, to avoid con-

fusion, the reader should be aware that each section is processed with an inde-

pendent notation.

3.1 Gluing Manifolds and Vector Fields

This section consists of two parts. The first part focuses on gluing manifolds.

In this part, we deal with a general manifold and glue the manifolds in a topo-

logical sense. In the second part, we constructs the differential structure and the

smooth vector field on glued manifold. For this, more restrictive conditions are

required.

At first, we introduce a notion of hybridfold proposed in [SJLS05]. To study

this, at first we define a framework.

27
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Definition 3.1.1. An n-dimensional hybrid system is a 6-tupleH = (Q,E,D,X,G, r)

where:

• Q = {1, . . . , k} is a finite set of discrete states, where k ≥ 1 is an integer;

• E ⊂ Q×Q is a collection of edges (according to which jumps occur);

• D = {Di ⊂ {i}×Rd : i ∈ Q} is a collection of domains (in which continuous

state evolutions take place);

• X = {Xi : i ∈ Q} is a collection of vector fields (determining the dynamics

in these domains), such that Xi is Lipschitz on Di;

• G = {Ge : e ∈ E} is a collection of guards (hitting which is triggering the

jumps) where Ge ⊂ Di for each e = (i, j) ∈ E;

• r = {re ⊂ Ge ×Dj : e = (i, j) ∈ E} is a collection of reset relations; a reset

relation re is a map G(e) → Dj , with e = (i, j) ∈ E and we write y = re(x)

instead of (x, y) ∈ re.

�

This definition clearly allows the hybrid system to be a wild object.

Definition 3.1.2. A (forward) hybrid time trajectory is finite or infinite sequence

of intervals τ = {Ii}Ni=0 (N may be ∞) such that

• Ii = [τi, τ
′
i ] with τi ≤ τ ′i = τi+1 for all 0 ≤ i < N , in particular, τ0 = 0;

• when N <∞, either IN = [τN , τ
′
N ] or IN = [τN , τ

′
N ).

For τ = {Ii}Ni=0, let ⟨τ⟩ := {0, 1, . . . , N} (possibly N = ∞), and |τ | :=
∑

i∈⟨τ⟩(τ
′
i−

τi). We say that τ = {Ii}Ni=0 is a prefix of τ̃ = {Ĩi}Ñi=0 and write τ ⊑ τ̃ , if either

they are identical; or N is finite, N ≤ Ñ , Ii = Ĩi for all 0 ≤ i < N , and IN ⊆ ĨN .

�

Next, we define a solution (execution) of the hybrid system.

Definition 3.1.3. An execution of H is a triple ξ = (τ, q, x) where τ is a hybrid

time trajectory; q : ⟨τ⟩ → Q is a map; ξ = {ξi : i ∈ ⟨τ⟩} is a collection of C1

maps such that ξi : Ii → Dq(i) and



3.1. Gluing Manifolds and Vector Fields 29

Figure 3.1: Hybrid system defined in Definition 3.1.1

• ξ̇i(t) = Xq(i)(ξ
i(t)) for all i ∈ ⟨τ⟩ and for all t ∈ Ii;

• (q(j), q(j + 1)) ∈ E for all i ∈ ⟨τ⟩ such that i < N ;

• (ξi(τ ′i), ξ
i+1(τi+1)) ∈ r(q(i),q(i+1)) for all i ∈ ⟨τ⟩ such that i < N . �

Definition 3.1.4. A hybrid system is called deterministic if for every p ∈ D there

exists at most one maximal execution starting from p. It is called non-blocking if

for every p ∈ D there is at least one infinite execution starting from p. �

On the definitions, we impose the following assumptions.

Assumption 3.1.1. A hybrid system H = (Q,E,D,X,G, r) satisfies that

(A1) H is deterministic and non-blocking;

(A2) each domain Di is a connected smooth n-submanifold of Rd for i ∈ Q with

piecewise smooth boundary, and the angle between any two intersecting

smooth components of the boundary is nonzero;

(A3) each guard G(i,j) is a smooth (n−1)-submanifold of the boundary of corre-

sponding domain Di; The boundary of each guard is piecewise smooth (or

possibly empty);
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Figure 3.2: An example of execution

(A4) each reset r(i,j) is a diffeomorphism from its domain G(i,j) onto its image,

which is on a boundary of corresponding domain Dj ;

(A5) The closures of guards and their reset images can intersect only along their

boundaries, and moreover points from such intersections can be only of one

of the four following types (and furthermore, resets preserve types of the

points):

Type I: point belongs to only one set and is internal point for it

Type II: point belongs to only one set and is boundary point for it

Type III: point belongs to exactly two sets and is internal point for them

Type IV: point belongs to exactly two sets and is boundary point for them

(A6) for each edge e = (i, j) ∈ E, on the interior of the guard Ge on domain Di,

vector field Xi points outside of Di and, on the interior of the reset image

re(Ge), vector field Xj points inside Dj ;

(A7) each vector field Xi is a restriction to Di of some smooth vector field (also

denoted by Xi) defined in the neighborhood of Di in Rd; each reset re=(i,j)
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extends to a map r̃e defined in the neighborhood of the guard Ge in Di,

such that r̃e is a diffeomorphism onto its image, which is the neighborhood

of re(Ge) in Dj ; furthermore special consistency condition of maps fm ◦
· · · ◦ f1 = id, for every collection of maps f1, · · · , fm, fm+1 = f1, such that

for each j there exists ∃ej ∈ E with the property that either fj = r̃ej or

fj = r̃−1
ej , and image of fj meets the domain of fj+1;

(A8) In vector field points inside corresponding domain on some boundary point,

then this boundary point is i the image of some reset.

A hybrid system H satisfying the assumptions is called regular. �

This assumption makes sure that everything remains satisfied when time is

reversed.

Note that a manifold is piecewise smooth if, intuitively speaking, it is the

union of finitely many smooth smooth manifold. Since each domain is embedded

into Rd, it inherits from it the standard Riemann structure so the notion of

angle is defined. The non-zero angle requirement eliminates, for instance, “cusps”

in dimension two, but does not eliminate “corners”. Thus domains of hybrid

system can be disks, half-space, rectangles, cubes, etc. In fact, the non zero angle

assumption can be easily relaxed for most of the results.

Given H, define a mp ΦH on a subset of R × D as follows. Let p ∈ D be

arbitrary. By (A1), there exists a unique infinite execution (τ, q, ξ) starting at

p. We will denote it by χ(p). Set ΦH(0, p) = p. Assume that |τ | > 0. For any

0 < t < |τ | there exists a unique j(p, t) ∈ ⟨τ⟩ such that t ∈ [τj , τ
′
j) (even though

there may be multiple j ∈ ⟨τ⟩ for which t ∈ [τj , τ
′
j ]). Then define

ΦH(t, p) = ξj(t)

The function ΦH : (t, p) 7→ ξj(p,t)(t) is called flow. Denote by Ω0 ⊂ R×D maximal

set on which flow ΦH(t, p) is defined.

On the assumption, we define equivalence relation ∼ on domain D =
⋃
i∈QDi

generated by relation p ∼ r̃e(p) for all edges e ∈ E and points p ∈ cl(Ge). Then

denote byMH the quotient space (with quotient topology), obtained by collapsing
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each equivalent class into point, i.e.,

MH = D/ ∼= ∪r̃Di

Denote by π : D → MH the natural projection that maps each point into its

equivalent class.

Definition 3.1.5. MH is called the hybridfold of the regular hybrid system H.�

Theorem 3.1.1. Under Assumption 3.1.1, the following statements hold:

(a) MH is a topological manifold with boundary.

(b) Both MH and its boundary is piecewise smooth.

(c) The restriction πint(D) : int(D) → π(int(D)) is a diffeomorphism.

�

In a viewpoint of gluing manifolds, the above theorem consider more general

case than Theorem 2.2.8 becauseDi is the smooth manifold with piecewise smooth

boundary. However, it just guarantees that, the set after gluing can be not a

smooth manifold but a topological manifold. The idea to make a topological

manifold is based on the following lemma.

Proof. Proof can be founded in [SJLS05].

Lemma 3.1.2. (Gluing homeomorphisms). Suppose h+ : A+ → Rn+ and h− :

A− → Rn− are homeomorphisms, where A+ and A− are disjoint topological spaces.

Let Hs = h−1
s ({0} × Rn−1), for s ∈ {−,+}, and assume that there exists a

homeomorphism g : H+ → H−such that h+|H+ = h− ◦ g. Let A = (A+ ∪A−)/ ∼
be the quotient space, where ∼ is the smallest equivalence class of x ∈ A+ ∪A−.

Then the map h : A→ Rn defined by

h(x/ ∼) =

{
h+(x) if x ∈ A+

h−(x) if x ∈ A−

is a homeomorphism. �
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Figure 3.3: Gluing homeomorphisms along their “common” boundary.

Define the hybridflow ΨH by

ΨH(t, π(p)) := π(ΦH(t, p)).

Note that this possibly set-valued map is defined on Ω = {(t, π(p)) : (t, p) ∈ Ω0}.
The flow ΨH

t (x) = ΨH(t, x) can be set-valued. This occurs when, due to gluing,

the projections of tow disjoint executions of H overlap in the hybrid fold. This

can happen at x = π(p) ∈ MH , where p is a point of type III or IV; since p is

glued to two or more other points, the orbit through x could branch.To deal with

this situation, introduce the following notions.

Definition 3.1.6. Let X be a smooth vector field on a smooth manifold M , with

flow φt(p). We say that q ∈ M is X-reachable from a point p ∈ M if q = φt(p),

for some t > 0. A set S is X-reachable from a point p if there exists a point q ∈ S

such that q is X-reachable from p. �

Definition 3.1.7. A regular hybrid system H is said to be without branching if

for every point p ∈ ∂D of thy III or IV with p/ ∼= {p1, . . . , pm}, where pj ∈ Dij ,

there exists at most on k and at most one l, 1 ≤ k ̸= l ≤ m, such that pk is

Xik -reachable from Dik and Dil is Xil-reachable from pl. �
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Let us define

M(t) := {y ∈MH : ΨH(t, y) is defined}

J(x) := {s ∈ R : ΨH(s, x) is defined}.

Then the following theorem represents the properties of the hybridflow.

Theorem 3.1.3. Suppose hybrid system H is regular and without branching.

Then:

(a) For each (t, x) ∈ Ω, ΨH
t (x) is a single point.

(b) For each x ∈ MH , the map t 7→ Ψt(x) is continuous. Moreover, if J(x) is

not a single point, the map is smooth except at (at most) countably many

points in J(x).

(c) Each map ΨH
t is one-to-one.

(d) Whenever bot sides are defined,

ΨH
t Ψ

H
s (x) = ΨH

t+s(x).

(e) For each t ∈ R, there exists an open and dense subset of M(t) on which ΨH
t

is continuous.

�

Two continuous-time dynamical systems can be smoothly attached to one

another along their boundaries to obtain a new continuous-time system (Theorem

8.2.1 in [Hir76]). Distinct hybrid domains were attached to one another using this

construction in [BRS15]. In this case, impose the addition assumptions on the

domains and the vector fields.

For this purposes, it is expedient to define hybrid dynamical system over a

finite disjoint union M =
∐
j∈J Mj where Mj is a connected manifold with

boundary for each j ∈ J ; M is endowed with natural (piecewise-defined) topol-

ogy and smooth structure. This is called smooth hybrid manifolds. Note that
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the dimensions of the constituent manifolds are not required to be equal. Sev-

eral differential-geometric constructions naturally generalize to such space. For

instance, the hybrid tangent bundle is the disjoint union of the tangent bundles

TMj , and the hybrid boundary ∂M is the disjoint union of the boundaries ∂Mj .

Definition 3.1.8. A hybrid dynamical system is specified by a tupleH = (M, F,G,R)

where:

• M =
∐
j∈J Mj is a smooth hybrid manifold;

• F : M → TM is a smooth vector field;

• G ⊂ ∂M is an open subset of ∂M;

• R : G→ M is a smooth map and R(G) is an open subset of ∂M.

�

As in the before section, R and G is called the reset map and the guard,

respectively.

Assumption 3.1.2. F is outward-pointing on G and inward-pointing on R(G).

�

Assumption 3.1.3. G is a diffeomorphism between disjoint portions of the

boundary. �

Under these conditions, we can globally smooth the hybrid transitions using

techniques from differential topology to obtain a single continuous-time dynamical

system. This provides a smooth n-dimensional generalization of the hybridfold

construction in [SJLS05].

Theorem 3.1.4. (Smoothing). Let H = (M, F,G,R) be a hybrid dynami-

cal system with M =
∐
j∈J Mj satisfying Assumptions 3.1.2–3.1.3. Suppose

dim(Mj) = n for all j ∈ J and ∂M = G
∐
R(G). Then the topological quotient

M = ∪RMj may be endowed with the structure of a smooth manifold such that:

• the quotient projection π : M → M restricts to a smooth embedding

πMj : Mj → M for each j ∈ J ;
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• there is a smooth vector field F on M such that any execution x : T → M
of H descends to an integral curve of F on M via π : M → M

∀t ∈ T :
d

dt
π ◦ x(t) = F (π ◦ x(t)).

Note that the execution x : T → M is Φ(t, p) with some p ∈ M. �

Proof. Let S ⊂ G ∩ Mi be a connected component in some domain i ∈ J , and

k ∈ J be the index for which R(S) ⊂ Mk. The assumptions of this Theorem

ensure that Theorem 2.2.8 may be applied to attach Mi to Mk to yield a new

smooth manifold Mik. The hybrid system defined over the domain
∐

Mik∪{Mj :

j ∈ J\{i, k}} and guard G\S satisfies the hypotheses of Theorem 2.2.8, hence we

may inductively attach domains on each connected component that remains in

G\S. This yields a smooth manifold M and vector field F with the required

properties.

3.2 Viability Condition

As shown in Section 2.3, the viability condition guarantees the existence of the

system solution on the considered domain. The viability for the hybrid dynamical

system also was proposed in [ALQ+02]. This section, we introduce some viability

conditions proposed in [ALQ+02]. In [ALQ+02], the authors consider the “impulse

differential inclusion”, whose the flow map and reset map are set-valued maps, but

we consider a case of single-valued maps in this section.

Definition 3.2.1 (Impulse Differential equation). An impulse differential equa-

tion is a collection H = (X, f, J, r), consisting of

• a finite dimensional vector space X, regarded as a domain,

• a map f : X → X, regarded as a differential equation ẋ = f(x),

• a set J ⊂ X regarded as a guard set,

• a map r : X → X, regarded as a impulse equation x+ = r(x).

�
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For this equation, we can define an execution similar to the case of the hybrid

dynamical system of Definition 3.1.1.

Definition 3.2.2 (Run of an impulse differential equation). A run of an impulse

differential equation, H = (X, f, J, r), is a pair, (τ, ξ), consisting of a hybrid

time trajectory τ (defined in Definition 3.1.2) and a collection of C1 functions

ξ = {ξi : i ∈ ⟨τ⟩} with ξi : Ii → X, that satisfies

• Discrete evolution: ξi+1(τi+1) = r(ξi(τ ′i)) for all i ∈ ⟨τ⟩\{N},

• Continuous evolution: if τi < τ ′i , ξ
i(·) is a solution to the differential equa-

tion ẋ = f(x) over the interval [τi, τ ′i ] starting at x(τi), with ξi(t) /∈ J for

all t ∈ [τi, τ
′
i).

�

On the framework, we introduce the notion of viable run.

Definition 3.2.3 (Viable run). A run (r, ξ) of an impulse differential equation

H = (X, f, J, r) is called viable in a set K ⊂ X if ξi(t) ∈ K for all i ∈ ⟨τ⟩ and for

all t ∈ Ii. �

Notice that the definition of a viable run requires the state to remain in the

set K throughout the run, along continuous evolution up until and including the

state before discrete transitions. Based on the notion of a viable run, one can

define a class of sets.

Definition 3.2.4 (Viable set). A set K ⊂ X is called viable under an impulse

differential equation H = (X, f, J,R), if for all x0 ∈ K there exists an infinite run

viable in K. �

Note that an infinite run viable means that its hybrid time trajectory is in-

finite. The conditions characterizing viable sets depend on whether the set J is

open or closed. In this thesis, we just consider the case where J is closed. In this

case, we have the following.

Theorem 3.2.1. Consider an impulse differential equation H = (X, f, J, r) such

that f is locally Lipschitz and J is closed. A closed set K ⊂ X is viable under H

if and only if
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• K ∩ J ⊂ r−1(K),

• f(x) ∈ TK(x) ∀x ∈ K\r−1(K).

�

Proof. Detailed proof can be founded in [ALQ+02].

In words, the conditions of the theorem require that for any state x ∈ K,

whenever a discrete transition has to take place (x ∈ K ∩ J), a transition back

into K is possible (r(x) ∈ K), and, whenever a discrete transition to another point

in K is not possible (r(x) /∈ K), continuous evolution that remains in K has to

be possible (encoded by the local viability condition f(x) ∈ TK(x) for ordinary

differential equation).

Ideally, one would like all runs to be non-Zeno. A condition for a simple case

is given below.

Proposition 3.2.2. Consider an impulse differential equation H = (X, f, J, r)

such that f is locally Lipschitz. Assume that J is closed set and J ⊂ r−1(X). In

addition, r−1(X) ∩ r(X) = ∅ and r(X) is compact. Then, for any x0 ∈ K, there

is non-Zeno and infinite runes of H. �

Proof. Detailed proof can be founded in [ALQ+02].

More general condition is proposed in [ALQ+02] and it is the topic of on-going

research.

3.3 State Estimation

There are some observer design techniques for the hybrid dynamical systems.

Each result has advantages in different classes of the hybrid systems such as

switched systems ([AC01, BBBSV02, Pet05, BPU11, ST14]), mechanical sys-

tems with impacts ([TBP16, MT01, MT16]), polyhedral billiards with impacts

([FTZ13]), powertrain systems ([BBBSV01]), hormone systems ([CMS12]), ripple

disturbance system ([BZLC17]) and so on.
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A common part of most existing observer design methods is that they assume

that the knowledge of the time instants when discrete events occur is obtainable.

These observers are usually composed of the continuous observer and the location

observer (the discrete mode observer). The continuous observer reconstructs the

continuous state of the hybrid system. The location observer detects discrete

events, and uses this information to switch and/or reinitialize the continuous

observer whenever discrete events happen. Therefore, all the listed observer design

techniques need an assumption or detection of the time instants when discrete

events arise. For switched systems, it seems reasonable to switch the continuous

observer whenever discrete mode is changed. However, in the case, where discrete

events just involve instantaneous jumps of the continuous state and the rule of

jumps depends only on the continuous state so that jumps of the state cannot be

detected from only the output information, it would be difficult to apply those

observer design methods without any assumption for the time instants of jumps.

Moreover, even if those hybrid observers can be constructed, delayed detection of

discrete jumps may increase the state estimation error during the delayed time.

Hence, this dissertation made an objective to develop a new approach of the state

observation, which does not require any detection of jumps. To compare with our

approach proposed in Chapter 5, we introduce some results, which are related to

examples considered in Chapter 5.

As mentioned before, many previous observer design approaches require knowl-

edge of jump time instant. For the hybrid system having state jumps, these

observers make jump in its estimate value ([MT01, TBP16, CMS12, BZLC17])

or change their observer dynamics ([FTZ13]) whenever the state jump happens.

These actions maintain or reduce the estimation error even if the discrete events

happen. Of course, it is required that the estimation error decreases when the

system state equation is governed by the continuous-time evolution.

Let us consider a mechanical system with impacts. If its constraints are

independent of time, its impacts happen with losing a fraction of its energy or

with maintaining its energy in general. This kind of passivity helps to construct

an observer (for the velocity) if there is an observer for the system without the
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impact constraints. Let us consider the following simple system:

[
ẋ1

ẋ2

]
=

[
x2

k(x1, x2)

]
when x1 ≥ 0[

x+1

x+2

]
=

[
x1

−γx2

]
when (x1 = 0) ∧ (x2 ≤ 0)

y = x1,

(3.3.1)

where x1 is a position; x2 is a velocity; y is an output; γ ∈ [0, 1] is a restitution

coefficient; k is global Lipschitz. Consider an observer with a state x̂ satisfying

that there exists a positive definite function V : R → R such that with e := x̂− x

and k > 0

V̇ (e) < −kV (e) for all e ̸= 0

when the system (without impacts) is given as
[
ẋ1

ẋ2

]
=

[
x2

k(x1, x2)

]
y = x1.

In this case, we can adopt this observer for the continuous-time evolution of the

hybrid system and update its estimate as x̂+ = (x̂1,−γx̂2) whenever the state

jump occurs. Note that this is possible when we have the knowledge of the jump

time instant. Then, since |e+| ≤ γ|e| ≤ |e|, the estimation error monotonically

decreases when the state flows or jump. In addition, if the state is defined for all

continuous time t ≥ 0, the estimation error goes to zero as time goes to infinity.
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This idea can be also applied to the ripple disturbance system in [BZLC17]:


ṙ

θ̇

ḃ

 =


0

1

0

 when −π
6 ≤ θ ≤ π

6


r+

θ+

b+

 =


r

−θ
b

 when θ = π
6

y = r cos θ + b.

The details are in [BZLC17]. Note that the estimation algorithm without the

knowledge of the jump time instant for the above system is also proposed in

[BZLC17], which estimates the jump time instant and uses the estimate of jump

time instead of the real jump time information.

When impacts of mechanical systems only depend on the position, the jump

time information is available because the output is the position. However, the

jump time information cannot be obtained directly from the output in general.

To overcome the problem, there some results ([BZLC17, MT16, KCS+14]) are

proposed.

The first idea is trivially to estimate the jump time instants using the output

([BZLC17]). Then we can utilize the observer requiring the jump time informa-

tion.

The second idea is to change the hybrid dynamics system into the contin-

uous dynamical system without any discrete events ([SJLS05, BRS15, MT16,

KCS+14]). The observer construction idea is proposed in [KCS+14]. Motivated

this, in [MT16], the observer design technique is proposed for a class of the me-

chanical systems with impacts. Let us consider the simple mechanical system

with impacts in (3.3.1) with γ = 1 and k(x1, x2) = k1x1 + k2x2. In this case,

by taking an auxiliary output y∗ := y2 = x21, we can change the system into the
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following system with (ζ1, ζ2, ζ3) := (y∗, ẏ∗ÿ∗)

ζ̇ =


0 1 0

0 0 1

0 0 0

 ζ +

0

0

1

 k∗(ζ)
y∗ =

[
1 0 0

]
ζ

where k∗(ζ) is a linear commutation of ζ1, ζ2, and ζ3. Since k∗ is a global Lipschitz,

we can design a high gain observer for the above system. Then, we obtain an

estimate ζ̂ for ζ and, from ζ̂, construct an estimate x̂ for x. However, this results

is restrictive and the procedure to obtain the estimate x̂ is ambiguous. In addition,

the estimation error x̂ − x does not converge to zero asymptotically because of

the jump time mismatches between the state and estimate. These problems were

already considered in [KCS+14] and Chapters 4–5 of this dissertation deal with

them in detail.

3.4 Tracking Control

There are some tracking controller design techniques for the hybrid dynam-

ical systems. Each result has advantages in different classes of the hybrid sys-

tems such as switched system ([SG12, dBMS13, SS05]) mechanical systems with

impacts ([BNMM00, BNO97]), polyhedral billiards with impacts ([FTZ13]), hor-

mone systems ([CMS09]) and so on ([RS11, SBvdWH14, BvdWHN13, SvdWN14,

GMP12]).

In the case of the tracking control, a reference, which a plant state should

track, may have jumps. Similar to the state estimation results, many existing

tracking control design techniques require that the plant state jump times and the

reference jump times are coincide; otherwise, jump time mismatches occur and

the tracking errors may be large on the time intervals caused by the jump time

mismatches. To compare with the estimation problem, we can easily obtain the

reference jump time instants because the reference trajectory is given in general.

However, the problem is how to make jump in the plant state. In the estimation

problem, we can make jump in the value of the estimate when we want because the
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estimate depends on the observer construction. However, in the tracking control

problem, the plant state may not be able to jump anytime since the state depends

on the given plant dynamics.

Let us consider a following hybrid system{
ẋ = fp(x, u) when (x, u) ∈ Cp
x+ = gp(x, u) when (x, u) ∈ Dp.

(3.4.1)

The details of this framework are given in [SBvdWH14]. In this case, a input u

may make a jump in a state x anytime since its jump constraint depends on u.

However, its jump constraint may depend on the state x only as the following

system {
ẋ = fp(x, u) when x ∈ Cp
x+ = gp(x) when x ∈ Dp.

(3.4.2)

In this case, the mismatch of the jump times of the reference and state is un-

avoidable. To overcome the this limitation, some results ([FTZ13, SvdWN14,

BvdWHN13, KSS16]) permit the tracking error may be large the vicinity of the

reference jump time instants, but the error decrease except for the region.

In [FTZ13], authors consider a tracking control problem of a translating mass

in a polyhedral billiard. Main idea is to consider the translating mass system with

impacts as a switched system through a novel concept of mirrored images of the

target mass. For that switched system, a tracking controller is proposed, which

is also modeled as a switched system and changes this switching mode whenever

the switching modes of the reference system or plant are changed.

In [SvdWN14], a new notion of error is proposed to clarify in which sense the

approximate trajectory is, at each instant of time, a first-order approximation of

the perturbed trajectory. This notion of error is well-defined even if the trajectory

is not continuous. Therefore, this notion of error naturally is applied to the (local)

tracking problem of hybrid systems with a time varying reference trajectory.

In [BvdWHN13], A new definition of the tracking error which is not sensitive

to jumps of the plant and the reference trajectory is proposed to deal with the

jump time mismatches i.e., d(r, x) = d(g(r), x) for r ∈ D and d(r, x) = d(r, g(x))
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for x ∈ D where d is proposed error function; g is a jump map; D is a set where

state jumps should happen. For details of the definition, refer to [BvdWHN13].

The proposed tracking error is a non-Euclidean distance between the plant and

reference states, where convergence of this distance measure corresponds to the

desired notion of tracking. Since this distance measure incorporates information

on the “closeness” of the reference state and plant state at each time instant, the

tracking problem can be formulated based on the time evolution of the distance

measure evaluated along trajectories of the closed-loop system. This idea is similar

to the proposed idea using “gluing function” in Chapter 4 and Chapter 6, but,

by a geometrical sense, the proposed approach is more intuitive and, by a “glued

system”, gives a more concrete way to construct a tracking controller.



Chapter 4

Gluing Domain of Hybrid System

This chapter introduces a framework to deal with the main results of this thesis

and proposes the conditions guaranteeing that the smooth manifolds with bound-

ary are glued along some part of the boundary. The key to glue the manifold is

the quotient map. However, since the quotient map and its image are so abstract,

in the final section of this chapter, a more concrete framework is proposed. On the

framework, the quotient map is obtained as a map defined between two Euclidean

spaces.

4.1 Frameworks

As shown in Chapter 3, there are many frameworks for the hybrid dynamical

systems. In this section, we introduce frameworks to define a solution of the

system, which are motivated by [SJLS05, BRS15, GST09].

Definition 4.1.1. A hybrid system is a 4-tuple H = (C, f,D, g) such that

H

{
ẋ = f(t, x) when x ∈ C
x+ = g(x) when x ∈ D

with time t ∈ R≥0 and a state x where

• C is flow set, which is a smooth k-manifold with boundary;

• f : R≥0 × C → TC is flow map, which is a time varying vector field on C;

45
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• D is jump set;

• g : D → C ∪ D is jump map.

�

Notice that C may consist of many connected smooth manifolds with bound-

ary. The differential equation, governing the continuous-time evolution when

the state x remains in the flow set C, and the difference equation, determin-

ing the discrete event when x is in the jump set D, are given by the flow map

f : R≥0 × C → TM and the jump map g : D → ∂C, respectively. Note that the

continuous-time dynamics may depend on the time and state. On the other hand,

the discrete events depend only on the state, which are called as state-triggered

jumps in [BvdWHN13].

Next, we recall some notions for the solutions of the hybrid systems. The

following definitions come from [LJS+03, SJLS05, BRS15].

Definition 4.1.2 (Hybrid time trajectory). A hybrid time trajectory is finite or

infinite sequence of intervals τ = {Ii}Ni=0 (N may be ∞) such that

• Ii = [τi, τ
′
i ] with τi ≤ τ ′i = τi+1 for all 0 ≤ i < N , in particular, τ0 = 0,

• when N <∞, either IN = [τN , τ
′
N ] or IN = [τN , τ

′
N ).

For τ = {Ii}Ni=0, let ⟨τ⟩ := {0, 1, . . . , N} (possibly N = ∞), and |τ | :=
∑

i∈⟨τ⟩(τ
′
i−

τi). We say that τ = {Ii}Ni=0 is a prefix of τ̃ = {Ĩi}Ñi=0 and write τ ⊑ τ̃ , if either

they are identical; or N is finite, N ≤ Ñ , Ii = Ĩi for all 0 ≤ i < N , and IN ⊆ ĨN .

�

In the framework, each τ ′i for i ∈ ⟨τ⟩ indicates the time instant of the (i+1)-th

discrete event.

Definition 4.1.3 (Execution). An execution of H excited by an initial condition

x0 ∈ C ∪ D is a pair χ = (τ, ξ) where τ is a hybrid time trajectory and ξ = {ξi :
i ∈ ⟨τ⟩} is a collection of absolutely continuous maps ξi : Ii →C such that

• ξ0(0) = x0,



4.1. Frameworks 47

Figure 4.1: An example of hybrid time trajectory τ = {Ii}5i=0

• dξi( d
dt |s) = f(s, ξi(s)) for all i ∈ ⟨τ⟩ and for almost all s ∈ (τi, τ

′
i),

• g(ξi(τ ′i)) = ξi+1(τi+1) for all i ∈ ⟨τ⟩\{N}.

We say that an execution χ = (τ, ξ) of H is a prefix of another execution χ̃ = (τ̃ , ξ̃)

of H and write χ ⊑ χ̃, if τ ⊑ τ̃ and ξi(t) = ξ̃i(t) for all i ∈ ⟨τ⟩ and t ∈ Ii. We say

that χ is a strict prefix of χ̃, if χ ⊑ χ̃ and χ ̸= χ̃. An execution is called maximal

if it is not a strict prefix of any other executions. An execution is called infinite

if either N = ∞ or |τ | is not finite. Otherwise, it is called finite. An execution is

called Zeno if it is infinite but |τ | <∞. Especially, we say an execution is infinite

in t-direction when it is non-Zeno infinite execution, which means that |τ | is not

finite. For each maximal execution, a state trajectory x : [0, |τ |) → C is given by

x(t) := ξi(t)(t) for each t ∈ [0, |τ |)

where i : [0, |τ |) → ⟨τ⟩ satisfies t ∈ [τi(t), τ
′
i(t)). Note that i(t) is uniquely defined

for each t ∈ [0, |τ |). �

Example 4.1.1. (Bouncing ball system). Let us consider a bouncing ball system

in Figure 4.2. The bouncing ball system is well-known as an example of the hybrid
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Figure 4.2: Bouncing ball system (restitution coefficient= 1).

dynamical system. The ball is accelerated by the gravity and external force. The

gravitational constant is ρ > 0. The acceleration by the external force is given

as u(t). The height and velocity of the ball are x1 and x2, respectively. Suppose

that the coefficient of restitution is 1. Then, the bouncing ball is modeled as

H = (C, f,D, g) such that

ẋ = f(x, t) :=

[
x2

−ρ+ u(t)

]
when x ∈ C := {(x1, x2) ∈ R2 : x1 ≥ 0},

x+= g(x) := −x when x ∈ D := {(x1, x2) ∈ C : (x1 = 0) ∧ (x2 ≤ 0)}.

(4.1.1)

�

4.2 Gluing and Smoothing

For all x ∈ D, the state jump happens as x 7→ x+ = g(x). Let [x] := π(x)

where π : C ∪ D → (C ∪ D)/ ∼ is a natural projection and x ∼ g(x) for all

x ∈ D. Note that ∼ is an equivalence relation on C ∪D and (C ∪ D)/ ∼ is the set
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of equivalence classes in C. Then, there is not any discrete event in [x] because

[x+] = [g(x)] = [x]. Furthermore, for some class of hybrid system, [x] can be

modeled as a solution of continuous-time dynamical system defined on a smooth

manifold (C ∪ D)/ ∼ for a smooth structure.

Assumption 4.2.1. A hybrid system H = (C, f,D, g) satisfies the followings:

• D and G := g(D) are smooth parts of ∂C;

• g is a diffeomorphism from D to its image G;

• D ∩ G = ∅.

�

Note that the jump set D and its image G are included in the boundary of C,

∂C. In addition, since D ⊂ ∂C ⊂ C, the set of the equivalence classes (C ∪ D)/ ∼
is obtained as C/ ∼.

Example 4.2.1. (Bouncing ball system without origin). Consider the bouncing

ball system (4.1.1) without the origin. The system is modeled as H = (C, f,D, g)
such that

ẋ = f(x, t) :=

[
x2

−ρ+ u(t)

]
when x ∈ C := {(x1, x2) ∈ R2 : x1 ≥ 0}\{02},

x+= g(x) := −x when x ∈ D := {(x1, x2) ∈ C : (x1 = 0) ∧ (x2 < 0)}.

(4.2.1)

Then, C/ ∼ is a smooth manifold. �

In the case of the bouncing ball system of Example 4.1.1 satisfying the first

and second assumptions, by the result of [SJLS05], its image π(C) = C/ ∼ can

be topological manifold. However, it cannot be endowed with the structure of

C because of the origin. In general, at [x] ∈ C/ ∼, we construct its structure

by gluing the structures of π−1([x]). However, at the origin of the bouncing ball

domain, we can obtain just one structure from {02} = π−1([02]), which gives the

half structure at [02] although it is an interior point of the topological manifold

C/ ∼. To avoid this case, we impose the third assumption.
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Figure 4.3: Gluing the domain of the bouncing ball system without the origin.

Under Assumption 4.2.1, since the conditions of Theorem 2.2.9 are satisfied,

there exists a smooth structure A on C/ ∼ so that C/ ∼ with A is a smooth

k-manifold. However, its vector field may not be smooth in x. Note that there

are many smooth structures guaranteeing this and they are diffeomorphic by The-

orem 2.2.10. Using this property, among them, we may find a smooth structure

A∗ on C/ ∼ guaranteeing that the glued vector field is smooth. The following

assumption on the flow map f guarantees the existence of the smooth structure

A∗.

Assumption 4.2.2. A hybrid system H = (C, f,D, g) satisfies the followings:

• f is independent of t and f is smooth;

• f is outward-pointing on D and inward-pointing on G.

�

Under the above assumption, we can apply Theorem 2.2.10 to the considered

case.

Theorem 4.2.1. (Gluing and Smoothing). Suppose that hybrid system H =

(C, f,D, g) defined in Theorem 4.1.1 satisfies Assumptions 4.2.1–4.2.2. Then there
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Figure 4.4: The glued manifold is determined up to diffeomorphism.

exist a smooth structure A∗ on C/ ∼ and a vector field fπ : C/ ∼→ T (C/ ∼) on

C/ ∼ with A∗ such that C/ ∼ with A∗ is a smooth k-smooth manifold (with

boundary) and

dπx(f(x)) = fπ(π(x)) for all x ∈ C. (4.2.2)

�

The idea of the theorem is to glue the charts of two points in π−1([x]), which

generated by f .

Proof of Theorem 4.2.1. By Theorem 2.2.7, for each i ∈ {D,G}, we can find a

smooth function δi : i → R+ and a smooth embedding Φi : Pδi → C where

Pδi := {(t, x) : (x ∈ i) ∧ (0 ≤ t ≤ δi(x))} ⊂ R × i such that Φi(Pδi) is a

neighborhood of i. In addition, for each x ∈ D the map t 7→ ΦD(t, x) is an

integral curve of −f starting at x and for each x ∈ G the map t 7→ ΦG(t, x) is an

integral curve of f starting at x.

At first, show that C/ ∼ is a topological k-manifold. To show that it locally

resembles a real Euclidean space, assume y ∈ C/ ∼. Then, there exists x ∈ C such



52 Chap. 4. Gluing Domain of Hybrid System

that y = π(x).

If x is not identified with any other points, x ∈ C\(D ∪ G) because D and

G are closed sets in C. In this case, we can take a coordinate chart (U,ϕ) such

that U ∩ (D ∪ G) = ∅, so that π|U is a homeomorphism. Then, ϕ ◦ π|U−1 is a

homeomorphism from an open neighborhood π(U) of y to an open neighborhood

ϕ(U) of Rk.

If x ∈ D ∪ G, without loss of generality, we can take x1 ∈ D and x2 ∈ G such

that x2 = g(x1) and

π(x1) = π(x2) = y.

Since D and G are closed sets in C and C is Hausdorff space, we can find coordinate

charts (U1, ϕ1) and (U2, ϕ2) at x1 and x2, respectively, satisfying that

• U1 ∩ G = ∅ and U2 ∩ D = ∅;

• U1 ∩ U2 = ∅;

• U1 ⊂ ΦD(PδD) and U2 ⊂ ΦG(PδG ).

Then, we define φ : U1 ∪ U2 → R× (D ∪ G) by

φ(x) :=

{
(−t, g(xD)) when x = ΦD(t, xD) ∈ U1,

(t, xG) when x = ΦG(t, xG) ∈ U2.

Then the restriction of φ to U1 or U2 is a topological embedding with closed image,

from which it follows easily that φ is a closed map. In addition, since π(U1∪U2) is

an open and D and G are smooth (k−1)-manifolds, π(U1∪U2) is a homeomorphic

to an open set in Rk. Therefore, C/ ∼ is a locally Euclidean space.

Since C/ ∼ is the union of the second-countable open subsets π(C\(D ∪ G))
and π(ΦD(PδD)∪ΦG(PδG )), it is second countable. In addition, any two fibers in

C can be separated by saturated open subsets, so C/ ∼ is Hausdorff. Therefore,

it is a topological k-manifold.

Now construct charts for a smooth structure guaranteeing (4.2.2) as follows:

• (π(U), ϕ ◦ π−1|π(U)) for y ∈ π(C\(D ∪ G)) ⊂ C/ ∼ where (U, φ) is a chart of

C\(D ∪ G) at π−1(y);
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• (π(U1 ∪ U2), ϕ
′ ◦ φ ◦ π−1|π(U1∪U2)) for y ∈ π(D ∪ G) ⊂ C/ ∼ where (φ(U1 ∪

U2), ϕ
′) is a chart of R × G at (0, x2) (note that U1, U2, φ, x2 are obtained

as above).

It is straightforward to check that they are all smoothly compatible and thus

define a smooth structure on C/ ∼. Let fπ(y) := dπx(f(x)) where y = π(x)

and x /∈ D. Then, it is trivially smooth on y ∈ π(C\(D ∪ G)). In addition, for

y ∈ π(D ∪ G) with a coordinate (y1, . . . , yk) it holds that

dπxDf(xD) =
∂

∂y1

∣∣∣∣
y

= dπxGf(xG)

where (xD, xG) ∈ D × G and π(xD) = π(xG) = y, which implies fπ is a smooth

vector field on C/ ∼.

By this theorem, for a hybrid dynamical system H satisfying Assumptions 4.2.1–

4.2.2, we can obtain a continuous-time dynamical system on C/ ∼ with a smooth

vector field fπ i.e.,

ẏ = fπ(y) on C/ ∼ (4.2.3)

such that, for a state trajectory x(t) of H starting x0,

[x(t)] = y(t) for all t ∈ [0, |τ |)

where y(t) is a solution to (4.2.3) starting [x0] (which is a integral curve of fπ on

C/ ∼).

4.3 Frameworks in Rn and Gluing Function

To deal with state estimation and tracking control problems in next two chap-

ters, we need to a metric to measure the estimation and tracking errors. As a

simple expedient, we consider the system whose the domain is embedded in Rn, so

that we adopt the norm of Euclidean space as a metric. The following assumption

includes this and the essential parts of Assumption 4.2.1–4.2.2.
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Assumption 4.3.1. The hybrid system H = (C, f,D, g) satisfies that

• the flow set C is a smooth k-submanifold of Rn with boundary;

• the jump set D and its image G := g(D) are smooth parts of ∂C;

• g is a diffeomorphism from D to its image G;

• D ∩ G = ∅;

• the flow map f is independent of t;

• f is outward-pointing on D and inward-pointing on G.

�

By the definition of the submanifold, we say that C ⊂ Rn is a smooth k-

submanifold of Rn with boundary (0 < k ≤ n) if, for each x ∈ C, there are an

open neighborhood U of x in Rn, an open subset V of Rn, and a diffeomorphism

α : U → V such that

α(U ∩ C) = {(v1, . . . , vn) ∈ V : v1 ≥ 0, vk+1 = · · · = vn = 0}.

Trivially, we say that D ⊂ Rn is a smooth 0-submanifold of Rn with boundary

if, for each x ∈ D, there exists an open neighborhood U of x in Rn such that

U ∩ D = {x}.

Note that since C is a smooth k-submanifold of Rn with boundary, the vector

field f can be specified as a vector of Rn.

When f is smooth, by Theorem 4.2.1, we obtain a system (4.2.3). However,

the system is abstract. Therefore, to specify the system, we also embed the

domain C/ ∼ of the system into Euclidean space via Theorem 2.2.6.

Theorem 4.3.1. Suppose that the hybrid system H = (C, f,D, g) defined in

Theorem 4.1.1 satisfies Assumption 4.3.1 and that f is smooth. Then there exist

a smooth function Ψ : C → R2k+1 such that Ψ(C) is a smooth k-submanifold of

R2k+1 and diffeomorphic to C/ ∼. In addition, there exists a smooth vector field
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Figure 4.5: Gluing the domain in Example 4.3.1.

fΨ : Ψ(C) → R2k+1 on Ψ(C) such that

dΨx(f(x)) = fΨ(Ψ(x)) for all x ∈ C. (4.3.1)

�

Proof of Theorem 4.3.1. The proof is trivial by Theorem 4.2.1 and 2.2.6. By the

theorem, we obtain a proper smooth embedding s : C/ ∼→ R2k+1. Then, by

using Ψ := s ◦ π, we can obtain (4.2.3) as a system in R2k+1. Notice that fΨ is a

pushforward of fπ by a smooth embedding s.

Example 4.3.1. Let us consider the following simple hybrid system H = (C, f,D, g)

H

 ẋ = 1 =: f(x) when x ∈ {x ∈ R : |x| ≤ 3} =: C

x+ = −x =: g(x) when x ∈ {3} =: D.

It is easy to check that the hybrid system H satisfies Assumption 4.3.1.

Via an equivalence relation ∼ generated by 3 ∼ −3, we can define the canon-

ical projection π : [−3, 3] → [−3, 3]/ ∼ such that π(x) = [x] for all x ∈ [−3, 3]

where [x] is the equivalence class of x and [−3, 3]/ ∼ is the set of all equivalent

classes (i.e., [−3, 3]/ ∼:= {[x] : x ∈ [−3, 3]}). Since π is surjective map, we can

construct the quotient topology on [−3, 3]/ ∼ determined by π. Note that, by the

definition of the quotient topology, a subset U ⊂ [−3, 3]/ ∼ is open if and only if

π−1(U) is open in [−3, 3]. Consider two open sets U1 and U2 in [−3, 3]/ ∼ defined
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()
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Figure 4.6: Coordinate charts for the glued domain in Example 4.3.1.

as

U1 := {[x] ∈ [−3, 3]/ ∼: 0 ≤ |x| < 3},

U2 := {[x] ∈ [−3, 3]/ ∼: 0 < |x| ≤ 3}.

Then, for each i ∈ {1, 2}, we can construct a map ϕi : Ui → R on Ui as

ϕ1([x]) = x,

ϕ2([x]) = x− 3
x

|x|
.

such that A = {(U1, ϕ1), (U2, ϕ2)} is a C∞ atlas for [−3, 3]/ ∼. Therefore,

[−3, 3]/ ∼ with A is a smooth 1-dimensional manifold. In addition, we can take

a vector field fπ on [−3, 3]/ ∼ as

fπ([x]) =
∂

∂ti

∣∣∣∣
[x]

for all [x] ∈ Ui ⊂ [−3, 3]/ ∼ and for all i ∈ {1, 2}

where ∂
∂ti

∣∣∣
[x]

(φ) :=
∂(φ◦ϕ−1

i )
∂ti

∣∣∣
ϕi([x])

for all φ := C∞([x]).



4.3. Frameworks in Rn and Gluing Function 57

Note that fπ : [−3, 3]/ ∼→ T ([−3, 3]/ ∼) is well-defined and it is a smooth

vector field satisfying that

dπx(f(x)) = fπ([3]) for all x ∈ [−3, 3].

Now we construct a smooth embedding s : [−3, 3]/ ∼→ R4. Let consider

functions ρ1 : [−3, 3]/ ∼→ [0, 1] and ρ2 : [−3, 3]/ ∼→ [0, 1] such that

• ρ1 and ρ2 are smooth;

• ρ1([x]) = 0 ⇔ [x] /∈ U1;

• ρ2([x]) = 0 ⇔ [x] /∈ U2;

• ρ1([x]) = 1 ⇔ [x] ∈ {[x] ∈ [−3, 3]/ ∼: 0 ≤ |x| ≤ 2};

• ρ2([x]) = 1 ⇔ [x] ∈ {[x] ∈ [−3, 3]/ ∼: 1 ≤ |x| ≤ 3}.

Note that these functions alway exist. For example, we can construct as

ρ1([x]) :=


1 if 0 ≤ |x| ≤ 2,

e−1/(|x|−3)2

e−1/(|x|−3)2+e−1/(|x|−2)2
if 2 < |x| < 3,

0 if |x| = 3,

ρ2([x]) :=


0 if |x| = 0,

e−1/(|x|)2

e−1/(|x|)2+e−1/(|x|−1)2
if 0 < |x| < 1,

1 if 1 ≤ |x| ≤ 3,

which are general bump functions (see Figure 4.7). Define a function s : [−3, 3]/ ∼→
R4 as

s([x]) := (ρ1([x])ϕ1([x]), ρ2([x])ϕ2([x]), ρ1([x]), ρ2([x])).

Since this map is an injective immersion and [−3, 3]/ ∼ is compact, s : [−3, 3]/ ∼→
R4 is a smooth embedding. In addition, by Lemma 6.13 in [Lee12], we find a pro-

jection πv : (x1, x2, x3, x4) 7→ (x1, x2, x3) is an injective immersion of s([−3, 3]/ ∼)

into R3. Therefore, we can take Ψ := πv ◦ s ◦ π proposed in Theorem 4.3.1 and
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Figure 4.7: Examples of ρ1 (above) and ρ2 (below).

its explicit form is obtained as

Ψ(x) =




x

e−1/(|x|)2

e−1/(|x|)2+e−1/(|x|−1)2
(x− 3 x

|x|)

1

 if 0 < |x| < 1,


x

x− 3 x
|x|

1

 if 1 < |x| < 2,


e−1/(|x|−3)2

e−1/(|x|−3)2+e−1/(|x|−2)2
x

x− 3 x
|x|

e−1/(|x|−3)2

e−1/(|x|−3)2+e−1/(|x|−2)2

 if 2 < |x| < 3,


0

0

1

 if |x| = 0,


x

x− 3 x
|x|

1

 if |x| = 1 or |x| = 2,


0

0

0

 if |x| = 3.
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Figure 4.8: The glued domain Ψ([−3, 3]) in R3

�

By Theorem 4.3.1, we obtain a continuous-time dynamical system on Ψ(C) ⊂
R2k+1

ζ̇ = fΨ(ζ) (4.3.2)

where

• Ψ(C) is a smooth k-submanifold with boundary of R2k+1;

• fΨ : Ψ(C) → R2k+1 is a smooth vector field on Ψ(C);

• dΨx(f(x)) = fΨ(Ψ(x)) for all x ∈ C;

• Ψ(x(t)) = ζ(t) for all t ∈ [0, |τ |) where x(t) is a state trajectory of H and

ζ(t) is a solution of (4.3.2) with Ψ(x(0)) = ζ(0).

Therefore, if we have the system (4.3.2) and its solution, we can obtain the

execution of H through preimage of Ψ. Thus, the property of the hybrid system

H may be investigated through system (4.3.2) such as viability and stability.

Furthermore, this function can be utilized as a transformation to construct state

observer and tracking controller.
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Although the map Ψ exists under the proposed assumptions, obtaining it is

not easy because the procedure is abstract and there is no systematic method

to construct it. Therefore, we propose a relaxed condition to glue the hybrid

dynamics.

Definition 4.3.1. A function ψ : C → Rm (m ≥ k) is called a gluing function of

the system H = (C, f,D, g) if it satisfies the following conditions:

(G1) ψ(x) = ψ(g(x)) for all x ∈ D;

(G2) ψ|C\D is injective;

(G3) ψ is of class C1;

(G4) ψ is a immersion;

(G5) for all U ⊂ ψ(C), if ψ−1(U) is open, U is open in ψ(C).

We call ψ(C) a glued domain and denote it by Cψ. �

Notice that the gluing function is one of the quotient maps and local C1 whose

image is a subset of Rm.

The gluing function has the essential properties (G1) and (G2) of the natural

projection. In addition, by (G3) and (G4), the gluing function is a local C1

embedding in Euclidean space. Note that, except on the glued region, its C1

structures is preserved. The condition (G5) preserves the topology of C/ ∼ so

that a pathological case like Figure 4.9 is excluded.

Suppose that when k < n there exists there exists a smooth map ϕ : Rn →
Rn−k such that ϕ(x) = 0n−k for all x ∈ C where 0n−k is a regular value1 of ϕ.

Then, a tangent space at x can be characterized as ker(drC(x)). Therefore, since

f is a vector field on C, if k < n, drC(x)f(t, x) = 0 for all (t, x) ∈ R≥0 × C. In

addition the condition (G4) can be replaced as the following condition:

• rank(dψ(x)) = n for any x ∈ C if k = n;

1Since 0n−k is a regular value of ϕ, all points x in pre-image ϕ−1(0n−k) are regular points.
This means that, for x ∈ ϕ−1(0n−k), dϕ(x) always has full row rank.
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Figure 4.9: An example of pathological cases where C = {(x1, x2) ∈ R2 :
(|x1| ≥ 1) ∧ (x2 = 0)}, D = {(−1, 0)}, g(x) = −x, and G =
{(1, 0)}.

• dψ(x)v ̸= 0m for each x ∈ C and for each non-zero vector v ∈ ker(drC(x)) if

k < n.

The above condition is independent of the local charts to check whether ψ is

immersion or not.

If there exists a gluing function ψ of H, then the state trajectory x(t) can be

expressed on the glued domain Cψ as

ζ(t) := ψ(x(t)) ∈ Cψ. (4.3.3)

Since all the discontinuities of x(t) are “glued" by (G1), ζ(t) is continuous with

respect to t. In this sense, we call ζ(t) the glued trajectory of x(t) by ψ.

We now define an inverse gluing function induced from ψ. Actually, ψ−1 on

ψ(C) cannot be defined due to (G1). However, ψ|C\D is bijective onto its image

ψ(C\D) by (G2), and we have that Cψ = ψ(C) = ψ(C\D) ∪ ψ(D) = ψ(C\D)

because ψ(D) = ψ(G) by (G1) and ψ(G) ⊂ ψ(C\D) by D ∩ G = ∅. Hence, we

obtain the inverse gluing function from Cψ to C by (we abuse notation by writing
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it as ψ−1)

ψ−1(ζ) :=ψ|−1
C\D(ζ) for all ζ ∈ Cψ. (4.3.4)

Example 4.3.2. (Gluing for bouncing ball system). Consider the bouncing ball

system in Example 4.2.1. Suppose that there is no external force (i.e.,u(t) ≡ 0)

and the mechanical energy of the ball E(x) := mρx1 +
1
2mx

2
2 remains in (δ, δ)

where m is the mass of the ball and δ > δ > 0. Note that we restrict the domain

in this example because we see the change of the domain in the following figures.

Then, the bouncing ball is modeled as

ẋ = f(x) :=

[
x2

−ρ

]
when x ∈ C := {(x1, x2) ∈ R2 : (x1 ≥ 0) ∧ (δ < E(x) < δ)},

x+= g(x) := −x when x ∈ D := {(x1, x2) ∈ C : (x1 = 0) ∧ (x2 < 0)},

(4.3.5)

which satisfies Assumption 4.3.1.

There may be many gluing functions of (4.2.1), but there is no systematic

way to design them yet. However, the geometrical properties of the domain may

help to find them. We introduce two gluing functions.

a) Doubling in R2

The first idea is to make the corresponding angle double in the polar coordinates

proposed in [Sha09, KCS+14]. Let ψ1 : C → R2, (x1, x2) = (ρ cos θ, ρ sin θ) 7→
(ζ1, ζ2) = (ρ cos 2θ, ρ sin 2θ). By straightforward calculations, we have

ψ1(x) =

 x21−x22
|x|

2x1x2
|x|

 ,
dψ1(x) =

 x31+3x1x22
|x|3

−3x21x2−x32
|x|3

2x32
|x|3

2x31
|x|3

 .
(4.3.6)

Since ψ1(x) = (x2, 0) = ψ1(g(x)) for all x ∈ D, (G1) holds. The condition (G2)
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Figure 4.10: Domains of the bouncing ball system before gluing C (left) and
after gluing Cψ1 (right) when δ= 0.1, δ = 4, and ρ = 1.

and (G3) are trivially satisfied. In addition, we have that, for all x ∈ C,

det(dψ1(x)) =
2(x61 + x62) + 6x21x

2
2(x

2
1 + x22)

|x|6

=
2(x41 + x42 − x21x

2
2) + 6x21x

2
2

|x|4
=

2(x21 + x22)
2

|x|4
= 2,

which guarantees (G4). Therefore, ψ1 is a gluing function. Thus, in a similar

fashion to (4.3.4), we can also define ψ−1
1 : Cψ1 → C as

ψ−1
1 (ζ) :=

 √
1
2 |ζ|(|ζ|+ ζ1)

sgn(ζ2)
√

1
2 |ζ|(|ζ| −ζ1)

 ,
which is the function halving the corresponding angle where sgn(ζ2) is 1 if ζ2 ≥ 0

and −1 if ζ2 < 0.

b) Dragging in R3

The gluing function ψ1 is intuitive, but its expression is complex. The second

gluing function has simple form. The idea is to embed the domain in R3 and

to glue D and G together by dragging them onto the vertical axis. As one of
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Figure 4.11: Domains of the bouncing ball system before gluing C (left) and
after gluing Cψ2 (right) when δ= 0.1, δ = 4, and ρ = 1.

the functions realizing it, we suggest a function ψ2 : C → R3, x = (x1, x2) 7→
ζ = (ζ1, ζ2, ζ3) = (x21, 2x1x2, 2x

2
2), which is proposed as a state immersion for a

mechanical system with impacts in [MT16]. Since ψ2(x) = (0, 0, 2x22) = ψ2(g(x))

for all x ∈ D, (G1) is satisfied. It can be easily checked that (G2) and (G3) also

hold. Finally, we have that

rank(dψ(x)) = rank




2x1 0

2x2 2x1

0 4x2


 = 2 for all x ∈ C.

and (G4) holds. Accordingly, ψ2 is a gluing function. Figure 4.11 illustrates the

domain C and the glued domain Cψ2 . The inverse gluing function of ψ2 is obtained

as

ψ−1
2 (ζ) =

 √
ζ1

sgn(ζ2)
√

ζ3
2

 for all ζ ∈ Cψ2 .

�

The above example, we glue the domain of the bouncing ball system. However,

it may be not the realization of the quotient map π we want. Let us consider the

pushforward of f by ψ2. In fact, since ψ2 is not a diffeomorphism, we cannot
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define the pushforward in Definition 2.2.12 strictly. However, in a local sense,

we can consider the pushforward and, for x ∈ D, the vector field f(x) gives two

candidates dψ2(x)f(x) and dψ2(g(x))f(g(x)) for the vector field at ψ2(x). Since

dψ2(x)f(x) =


2x1 0

2x2 2x1

0 4x2


[
x2

−ρ

]
=


2x1x2

2x22 − 2ρx1

−4ρx2


and

dψ2(g(x))f(g(x)) =


−2x1 0

−2x2 −2x1

0 −4x2


[
−x2
−ρ

]
=


2x1x2

2x22 + 2ρx1

4ρx2

 ,
it follows that

dψ2(x)f(x) ̸= dψ2(g(x))f(g(x)),

which implies that the vector field on Cψ2 is not continuous.

In fact, the proposed gluing function just glues the domain in a topological

sense. Therefore, the vector field on the glued region may be not differentiable

and even it may be discontinuous. At least to guarantee the continuity of the

vector field on the glued domain, the gluing function ψ naturally should satisfy

that

dψ(x)f(x) = dψ(g(x))f(g(x)) for all x ∈ D, (4.3.7)

which is denoted by the vector field matching condition. Note that there exists

a gluing function ψ : C → R2k+1 satisfying the vector field matching condition

(4.3.7) under some assumptions by Theorem 4.3.1.

Example 4.3.3. (Vector field matching condition of bouncing ball system). Con-

sider the gluing functions ψ1 and ψ2 in Example 4.3.2. These two gluing functions

do not satisfy the vector field matching condition (4.3.7). However, for each case,

we can find another gluing function satisfying the vector field (4.3.7).

a) Doubling in R2
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Suppose that g = 1. Then, we propose another gluing function ψ3 := ψ1◦φ where

φ(x) :=

[
x1

1
3x

3
2 + x1x2

]
,

which is obtain the following preprocessor.

At first we have that, for all x = (0, x2) ∈ D,

dψ1(x) = dψ1(φ(x)) =

[
0 1

−2 0

]

and

dψ1(g(x)) = dψ1(φ(g(x))) = −dψ1(φ(x)),

which are verified by computation. Then, since

d(ψ1 ◦ φ)(x)f(x) = dψ1(φ(x))dφ(x)f(x),

and

d(ψ1 ◦ φ)(g(x))f(g(x)) = dψ1(φ(g(x)))dφ(g(x))f(g(x))

= −dψ1(φ(x))dφ(g(x))f(g(x)),

in order to make these two the same so that the vector matching condition (4.3.7)

holds, it is enough to have that dφ(x)f(x) = −dφ(g(x))f(g(x)). Motivated by

this fact, we propose a partial differential equation for the function φ as

dφ(x)f(x) =

[
x2

−x1

]
for all x ∈ C, (4.3.8)

and its solution is given by

φ(x) =

[
x1

1
3x

3
2 + x1x2

]
, (4.3.9)
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Figure 4.12: Domains of the bouncing ball system before gluing C (left) and
after gluing Cψ3 (right) when δ= 0.1, δ = 4, and ρ = 1.

whose inverse φ−1 : φ(C) → C is also given by Cardano’s formula

φ−1(x̄) =

 x̄1
3

√
3
2 x̄2 +

√
d(x̄) + 3

√
3
2 x̄2 −

√
d(x̄)

 ,
where x̄ = (x̄1, x̄2) ∈ φ(C) and d(x̄) := x̄31 + (32 x̄2)

2. Finally, it can be shown that

ψ3 = ψ1 ◦ φ and ψ−1
3 = φ−1 ◦ ψ̃−1

1 are well-defined on C and on ψ3(C) = Cψ3 ,

respectively, and ψ3 is a gluing function satisfying the vector field matching con-

dition (4.3.7). (Note that it satisfies the condition (G1) since g(φ(x)) = φ(g(x))

on D so that ψ3(g(x)) = ψ1(φ(g(x))) = ψ1(g(φ(x))) = ψ1(φ(x)) = ψ(x), ∀x ∈ D.)

Figure 4.12 illustrates the domain C and the glued domain Cψ3 .

b) Dragging in R3

As shown after Example 4.3.2, ψ2 does not satisfy the vector field matching con-

dition. However, motivated by this function, we can a function ψ4 : R2 → R3,

x = (x1, x2) → ζ = (ζ1, ζ2, ζ3) = (x21, 2x1x2, 2x
2
2 + 4ρx1). Since ψ4(x) =

(0, 0, 2x22) = ψ4(g(x)) for all x ∈ D, (G1) is satisfied. It can be easily checked
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that (G2) and (G3) also hold. Furthermore, we obtain that

rank(dψ4(x)) = rank




2x1 0

2x2 2x1

4ρ 4x2


 = 2 for all x ∈ C,

which implies that (G4) holds. Finally, for all x ∈ D, since

dψ4(x)f(x) =


2x1x2

2x22 − 2ρx1

0

 =


0

2x22

0


and

dψ4(g(x))f(g(x)) =


2x1x2

2x22 + 2ρx1

0

 =


0

2x22

0

 ,
we obtain that

dψ4(x)f(x) = dψ4(g(x))f(g(x))

and ψ4 is a gluing function satisfying the vector field matching condition (4.3.7).

Figure 4.13 illustrates the domain C and the glued domain Cψ4 . The inverse gluing

function is given as

ψ4
−1(ζ) =

 √
ζ1

sgn(ζ2)

√
ζ3−4ρ

√
ζ1

2

 for all ζ ∈ Cψ4 .

�

Now we come back the proposed frameworks. The following lemma is useful in

further chapters dealing with the state estimation and tracking control problems

of the hybrid system.

Lemma 4.3.2. Suppose there exists a gluing function ψ of H. Then, for any

compact set M ⊂ C satisfying that M∩D = ∅ or M∩ G = ∅, it holds that ψ
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Figure 4.13: Domains of the bouncing ball system before gluing C (left) and
after gluing Cψ4 (right) when δ= 0.1, δ = 4, and ρ = 1.

is injective on M and, for all (x, y) ∈ M×M, there exists L > 0 such that

|x− y| ≤ L|ψ(x)− ψ(y)| (4.3.10)

�

Proof of Lemma 4.3.2. If M∩D = ∅, then M ⊂ C\D and, by (G2), ψ is injective

on M. Next we consider the case when M ∩ G = ∅. Suppose that there are

x, y ∈ M ⊂ C\G such that x ̸= y and ψ(x) = ψ(y). Due to (G2), at least one

should be in D. Without loss of generality, we have that x ∈ D ∩ (C\G) and

y ∈ C\G. We first consider the case when y is also included in D. Then, by

(G1), it holds that ψ(g(x)) = ψ(g(y)), which implies that x = y because g and

ψ are injective on D and g(D) = G ⊂ C\D, respectively. This is a contradiction.

Secondly, consider the case when y is not included in D. Then, it follows from

(G1) that ψ(x) = ψ(x′) = ψ(y) where x′ := g(x) ∈ G and x′ ̸= y ∈ C\(D ∪ G),
which is also a contradiction because x′, y ∈ C\D and, by (G2), ψ is injective on

C\D. Therefore, ψ is injective on M whenever M∩D = ∅ or M∩G = ∅.
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Next, to show (4.3.10), it is enough to check that

inf
x ̸=y

x,y∈M

|ψ(x)− ψ(y)|
|x− y|

> 0.

Suppose that there exist sequences {xi} and {yi} in M such that

lim
i→∞

|ψ(xi)− ψ(yi)|
|xi − yi|

= 0. (4.3.11)

Since M ⊂ Rn is compact, by Bolzano-Weierstrass theorem, without loss of gen-

erality, we may assume that {xi} and {yi} converge to some points x′ and y′ in

M, respectively. If x′ ̸= y′, then ψ(x′) = ψ(y′), which contradicts to injectivity of

ψ on M. Therefore, x′ = y′. Since C is a smooth manifold with boundary, there

exists a coordinate chart (U,ϕ) at x′ ∈ M. Then, there exists k∗ > 0 such that

xi, yi ∈ U for all i > k∗. Since ψ is C1, ψϕ := ψ ◦ϕ−1 is C1. Let xi := ϕ−1(xk∗+i)

and yi := ϕ−1(yk∗+i). By the definition of the Jacobian,

lim
i→∞

|ψϕ(xi)− ψϕ(yi) + dψϕ(ϕ
−1(x′))(xi − yi)|

|xi − yi|
= lim

i→∞
|dψϕ(ϕ−1(x′))wi| = 0,

where wi :=
xi−yi
|xi−yi| ∈ Rk, which can be a tangent vector of at x′. Since wi is

bounded in Rk, we can take a subsequence converging to w ∈ Rk. Then, it follows

that dψϕ(ϕ
−1(x′))w, which is a contradiction to the fact that ψ is immersion by

(G4).

Since the gluing function ψ : C → Rm is a local C1 embedding, we can utilize

the Inverse Function Theorem. Then for x ∈ C there exists an open neighborhood

U ⊂ C such that ψ|U is injective and ψ|−1
U : ψ(U) → C is C1.



Chapter 5

State Estimation Strategy

In this chapter, we suggest a new state estimation strategy using the gluing func-

tion, which does not require any detection of the time instants when the state

jumps.

5.1 Standing Assumptions

To deal with the state estimation problem, we need to define an output be-

cause we should estimate the state from the output. For example, an output of

the bouncing ball system in Example 4.2.1 may be either the height x1 or the

velocity x2.

Definition 5.1.1. A hybrid system H = (C, f,D, g) with an output y = h(x) is

denoted by Hh := (C, f,D, g, h) where h : C → Rq is an output map. �

We impose the following additional assumptions on Hh under consideration.

Assumption 5.1.1. The system Hh = (C, f,D, g, h) satisfies that

(E1) f is locally Lipschitz;

(E2) h is continuous and

h(x) = h(g(x)) for all x ∈ D. (5.1.1)

�
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We impose (E1) to guarantee the existence and uniqueness of the local flow

starting at each point in C\D. Under (E3), since there is no jump in the output

value when the state jump occurs, it may be difficult to detect the state jumps

from the mere observation of the output. Therefore, the previous observers, re-

quiring the jump time information, may not be applied. We call (5.1.1) an out-

put matching condition. Note that the bouncing ball system with the output

y = h(x) = x1 satisfies the assumptions. Another example is a ripple disturbance

arising in AC/DC converters proposed in [BZLC17].

To consider the state estimation problem, we restrict an interested region

where the state trajectory remains as a compact set K ⊂ C. The following

assumptions are imposed on K.

Assumption 5.1.2. For H = (C, f,D, g), there exists a compact subset K ⊂ C
such that

(E3) g(K ∩ D) = K ∩ G;

(E4) f(x) ∈ TK(x) for x ∈ K\D;

(E5) there are smooth maps rD : Rn → R and rG : Rn → R such that DK :=

K ∩ D = {x ∈ K : rD(x) = 0}, GK := K ∩ G = {x ∈ K : rG(x) = 0},
K ⊂ {x ∈ Rn : (rD(x) ≤ 0) ∧ (rG(x) ≥ 0)}, and

{
∇rD(x) · f(x) > 0 for all x ∈ DK ;

∇rG(x) · f(x) > 0 for all x ∈ GK ;

where 0 is a regular value of rD and rG . �

We impose (E3–4) to make K as an invariant set. Note that, DK and GK are

compact because K is compact and D and G are closed in C. In addition, (E5)

implies that there are two hypersurfaces in Rn such that the intersections of them

and K are DK and GK , respectively.

Example 5.1.1. (Invariant set of bouncing ball system). Consider the bouncing

ball system satisfying Assumption 4.3.1 in Example 4.2.1. Suppose that u(t) ≡ 0

and let E(x) := mρx1 +
1
2mx

2
2. Then, we can take a compact set K := {x ∈ C :

E(x) ∈ [δ, δ]} satisfying Assumption 5.1.2 where 0 < δ < δ. �
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The following example is a ripple generation model of a three-phase system

suggested as a practical example of hybrid system in [BZLC17].

Example 5.1.2. (Ripple disturbance). Let us consider a ripple disturbance in

AC/DC converters in Section 3.3. The disturbance is modeled as a system Hh =

(C, f,D, g, h) with x := (r, θ, b) such as


ṙ

θ̇

ḃ

 = f(x) :=


0

1

0

 when x ∈ C := {x = (r, θ, b) ∈ R3 : (r > 0) ∧ (−π
6 ≤ θ ≤ π

6 )}


r+

θ+

b+

 = g(x) :=


r

−θ
b

 when x ∈ D := {x = (r, θ, b) ∈ C : θ = π
6 }

y = h(x) =: r cos θ + b.

Note that C is a smooth 3-manifold manifold with boundary and D and G = g(D)

are smooth parts of ∂C. Since, for each x ∈ D, h(x) = r cos(π6 )+ b =
√
3
2 r+ b and

h(g(x)) = r cos(−π
6 ) + b =

√
3
2 r + b, the output matching condition (E2) holds.

In addition, the other conditions in Assumption 4.3.1 and Assumption 5.1.1 are

satisfied. Finally, for r > r > 0 and b > b > 0, the set K := {x = (r, θ, b) ∈ C :

(r ≤ r ≤ r) ∧ (b ≤ b ≤ b)} satisfies Assumption 5.1.2. �

Lemma 5.1.1. Under Assumption 4.3.1, (E1), and (E3–4), the execution starting

K is infinite in t-direction and unique. �

Proof of Lemma 5.1.1. It follows from Proposition 3 in [ALQ+02] that each max-

imal execution is non-blocking in t-direction and remains in K. Next, since g is

injective on DK and f is locally Lipschitz, its jump and flow are defined uniquely.

In addition, by assumption, we have that f(x) /∈ TC(x) for all x ∈ DK , which

implies that the state must jump on DK . From this, we obtain that either the

continuous-time evolution or discrete event happens at each point but not both.

Therefore, it follows that there is at most one maximal execution for each initial

condition.

The condition (E5) is imposed to show that the state cannot stay in D and
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G by flowing. Actually, this fact also comes from the final condition in Assump-

tion 4.3.1. Nevertheless, we adopt (E5) for a brief proof.

Lemma 5.1.2. Consider H satisfying Assumption 4.3.1, (E1), and (E3–5). Let

OG(ϵ) := {x ∈ K : dG(x) < ϵ} and OD(ϵ) := {x ∈ K : dD(x) < ϵ}. Then,

there exists a class-K function α such that, for sufficiently small ϵ > 0, each state

trajectory x(t) starting on K satisfies that

x(t) /∈ OG(ϵ) ∪ OD(ϵ) for all t ∈ τα(ϵ) := R≥0\
⋃N
i=0 Bτi(α(ϵ))

where τ = {Ii}Ni=0 is the hybrid time trajectory corresponding to x(t) such that

Ii=[τi,τ
′
i ] and x(t) ∈ G implies that t ∈ {τi}Ni=0. �

Proof of Lemma 5.1.2. Define w(x) := ∇rG(x) · f(x) for x ∈ K. Then, by (E5),

w(x) > 0 for all x ∈ GK . Moreover, w(·) is uniformly continuous on K, because

rG is smooth, f is locally Lipschitz, and K is compact. Consequently, µ :=

infx∈GK w(x) is positive by the compactness of GK and there exists ϵ1 > 0 such

that if (x1, x2) ∈ K ×K and |x1 − x2| < ϵ1, then

|w(x1)− w(x2)| <
µ

2
.

If x ∈ OG(ϵ1), by the definition, there exists xG ∈ GK such that |x − xG | < ϵ1

and, from the above equation, we have that

−µ
2
< w(x)− w(xG) <

µ

2
.

Then, by the definition of µ, it follows that w(x) > µ
2 for all x ∈ OG(ϵ1).

Next, since rG is smooth, it is Lipschitz on the compact set C with a Lipschitz

constant L > 0. Moreover, by (E5), it is satisfied that rG(x) > 0 if x ∈ K\GK

and rG(x) = 0 if x ∈ GK . From this fact, we obtain that

rG(x) = |rG(x)| = |rG(x)− rG(xG)| ≤ L|x− xG | for all (x, xG) ∈ K × GK .

Therefore, if x ∈ OG(ϵ), then rG(x) ≤ Lϵ. By contraposition, if rG(x) > Lϵ, then

x /∈ OG(ϵ).
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For a state trajectory x(t), let τ be its hybrid time trajectory. Then, we

have that x(τi) ∈ GK and rG(x(τi)) = 0 for i = 1, . . . , N . Let α1(ϵ) := 2L
µ ϵ.

We first claim that, for all ϵ < ϵ1, x(t) escapes from OG(ϵ) at least once before

t = τi + α1(ϵ). Suppose that x(t) remains in OG(ϵ) for all t ∈ [τi, tϵ] where

tϵ ∈ [τi + α1(ϵ), τ
′
i). Then, since x(t) ∈ OG(ϵ) ⊂ OG(ϵ1) for t ∈ [τi, tϵ], it holds

that w(x(t)) > µ
2 and

rG(x(tϵ)) = rG(x(tϵ))− rG(x(τi)) =

∫ tϵ

τi

w(x(s))ds >
µ

2
|tϵ − τi| ≥

µ

2
α1(ϵ) = Lϵ.

This implies that x(tϵ) /∈ OG(ϵ), which is a contraction.

Since rG(x(t)) increases when x(t) ∈ OG(ϵ1), x(t) cannot return to OG(ϵ)

again. Therefore, we obtain that x(t) /∈ OG(ϵ) for all t ∈ [τi + α1(ϵ), τ
′
i) and for

all i = 1, . . . , N . Since the same result can be obtained for the case when i = 0,

it follows that

x(t) /∈ OG(ϵ) for all t ∈
N⋃
i=0

[τi + α1(ϵ), τ
′
i).

In a similar way, there exist ϵ2 > 0 and class-K function α2 such that, for ϵ < ϵ2,

x(t) /∈ OD(ϵ) for all t ∈

{ ⋃N−1
i=0 (τi, τ

′
i − α2(ϵ)] ∪ (τN ,∞) if N <∞,⋃N

i=0 (τi, τ
′
i − α2(ϵ)] if N = ∞.

Finally, take α(·) := max (α1(·), α2(·)) and consider ϵ < min(ϵ1, ϵ2). Then, x(t) /∈
OG(ϵ) ∪ OD(ϵ) for all t ∈ τα(ϵ).

From this lemma, it follows that for any K the state remains near DK ∪ GK

only at the time in the vicinity of each jump time instant.

5.2 State Estimation

For a given Hh, suppose that Assumption 4.3.1 and Assumption 5.1.1 hold

and that there exists a gluing function ψ of H. Under the vector field matching

condition (4.3.7), the vector field at ζ ∈ ψ(D) is also uniquely defined. Then, the

vector field at ζ ∈ Cψ can be represented as dψ(x)f(x) where ψ(x) = ζ. By (G2),

for each ζ ∈ Cψ, we can find x through the inverse gluing function ψ−1 in (4.3.4).
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Accordingly, for all ζ ∈ Cψ, the vector field is obtained as

fψ(ζ) := dψ(ψ−1(ζ))f(ψ−1(ζ)), (5.2.1)

which is a function of ζ. By the Inverse Function Theorem, ψ−1 is C1 on Cψ\ψ(D).

Therefore, fψ is also continuous under the vector field matching condition (4.3.7),

because f is continuous and, by (G3), dψ is continuous. Similarly, we obtain the

output map on Cψ as

hψ(ζ) := h(ψ−1(ζ)) ζ ∈ Cψ, (5.2.2)

which is also continuous because of the continuity of h and output matching

condition (5.1.1) in (E2). Then, ψ changes Hh into the following continuous-time

system:

ζ̇ = fψ(ζ), ζ ∈ Cψ ⊂ Rm, (5.2.3a)

y = hψ(ζ). (5.2.3b)

Let us consider a solution to (5.2.3a) starting from ζ0 ∈ ψ(K). We claim that

it is unique and identical to the glued trajectory ζ(t) = ψ(x(t)) in (4.3.3) where

x(t) is the state trajectory of H with the initial condition x0 := ψ−1(ζ0) ∈ K.

We first have that ζ(t) is a solution to (5.2.3a), because it is satisfied that ζ̇(t) =

dψ(x(t))f(x(t)) = dψ(ψ−1(ζ(t)))f(ψ−1(ζ(t))) for all t ≥ 0. In addition, if there

is another solution ζ ′(t) to (5.2.3a), it follows from the Inverse Function Theorem

that ψ−1(ζ ′(t)) provides another state trajectory of H, which contradicts the fact

that the state trajectory starting at a point of K is unique from Lemma 5.1.1.

Note that, since the solution to (5.2.3a) starting K is unique and equal to ζ(t),

we denote it by ζ(t) for convenience. Lastly, since each execution starting at a

point of K is non-blocking in t-direction and remains in K, x(t) is defined on K

for all t ≥ 0, which implies that ψ(K) is invariant under fψ.

The system (5.2.3) is a continuous-time system without any discrete events

and we call it a glued system of Hh by ψ. If the glued system is of the form

that admits a conventional observer design method for continuous-time systems,
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then we can design an observer and obtain an estimate ζ̂(t) for ζ(t) = ψ(x(t)).

Through the inverse gluing function ψ−1 : Cψ → C in (4.3.4), we may also obtain

an estimate for x(t). However, since the estimate ζ̂(t) can be defined on Rm, it may

be out of the domain Cψ of the inverse gluing function ψ−1 (i.e., ζ̂(t) ∈ Rm\Cψ).

To deal with this, we introduce a projection map Πψ(K) : Rm → K ⊂ C satisfying

that

Πψ(K)(ζ) ∈ arg min
ζ′∈ψ(K)

|ζ − ζ ′| for all ζ ∈ Rm. (5.2.4)

Finally, let

x̂(t) := ψ−1(Πψ(K)(ζ̂(t))). (5.2.5)

Then, x̂(t) becomes an estimate for the state trajectory x(t) on K. Obviously, the

proposed idea does not require any detection of the jumps of x(t). The following

theorem justifies the idea.

Remark 5.2.1. There may be many projection maps satisfying (5.2.4). There-

fore, it is still a matter of choice. However, in this paper, we suppose that ζ̂(t) is

an asymptotic estimate of ζ(t). In this case, whatever we choose, Πψ(K)(ζ̂(t)) is

another asymptotic estimate of ζ(t). Therefore, we can take any of them. �

Theorem 5.2.1. Suppose that Assumption 4.3.1 and Assumptions 5.1.1–5.1.2

hold and that there exist a gluing function ψ satisfying (4.3.7). Also suppose that

an asymptotic observer of (5.2.3) for all ζ(0) ∈ ψ(K) exists in the sense that, for

each γ > 0, there is Tζ ≥ 0 such that

|ζ(t)− ζ̂(t)| < γ for all t > Tζ .

Then, there exists an observer of Hh for the state trajectory starting on K in the

sense that, for sufficiently small ϵ > 0, there is T ≥ 0 such that

|x(t)− x̂(t)| < ϵ for all t ∈ τα(ϵ) ∩ (T,∞),

where x(0) ∈ K and x̂(t) is in (5.2.5). �
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Proof of Theorem 5.2.1. We obtain that K\OD(ϵ) is compact for all ϵ > 0, be-

cause K is compact and OD(ϵ) is open relative to K. From Lemma 4.3.2, for

each (x, x′) ∈ K\OD(ϵ) ×K\OD(ϵ), there exists L1(ϵ) > 0 such that |x − x′| ≤
L1|ψ(x) − ψ(x′)|. Similarly, for each (x, x′) ∈ K\OG(ϵ) ×K\OG(ϵ), there exists

L2(ϵ) > 0 such that |x− x′| ≤ L2|ψ(x)− ψ(x′)|. Finally, take L := max(L1, L2).

Consider a sufficiently small ϵ > 0 satisfying OD(ϵ) ∩ OG(ϵ) = ∅ and the

condition given in Lemma 5.1.2. By the asymptotic observer of (5.2.3), for γ =

ϵ
2L > 0, there is Tζ ≥ 0 such that

|ζ(t)−Πψ(K)(ζ̂(t))| ≤ |ζ(t)− ζ̂(t)|+ |ζ̂(t)−Πψ(K)(ζ̂(t))| < 2γ =
ϵ

L

for all t > Tζ . Note that, from the definition of Πψ(K), it holds that |ζ̂(t) −
Πψ(K)(ζ̂(t))| ≤ |ζ̂(t)− ζ(t)|.

For all t ∈ τα(ϵ), since x(t) ∈ K\(OD(ϵ) ∪ OG(ϵ)) = K\OD(ϵ) ∩ K\OG(ϵ)

and x̂(t) ∈ K = K\OD(ϵ) ∪K\OG(ϵ), it follows that
(
x(t), x̂(t)

)
∈
(
K\OD(ϵ)×

K\OD(ϵ)
)
∪
(
K\OG(ϵ) ×K\OG(ϵ)

)
. As a result, we obtain that |x(t) − x̂(t)| ≤

L1|ζ(t) − Πψ(K)(ζ̂(t))| < L1
ϵ
L ≤ ϵ for the case when

(
x(t), x̂(t)

)
∈ K\OD(ϵ) ×

K\OD(ϵ) and that |x(t)− x̂(t)| ≤ L2|ζ(t)− Πψ(K)(ζ̂(t))| < L2
ϵ
L ≤ ϵ for the case

when
(
x(t), x̂(t)

)
∈ K\OG(ϵ)×K\OG(ϵ). Therefore, by taking T := Tζ , we obtain

that |x(t)− x̂(t)| < ϵ for all t ∈ τα(ϵ) ∩ (T,∞).

Example 5.2.1. (Observer design for the bouncing ball system) Consider the

bouncing ball system in Example 5.1.1 with the output y = x1, which means that

the output is the height and the ball is accelerated only by gravity. Then, the

system is described by

ẋ = f(x) =

[
x2

−ρ

]
when x ∈ C, (5.2.6)

x+ = g(x) = −x when x ∈ D,

y = h(x) = x1,

where C and D are given in (4.2.1). Take K := {x ∈ C : δ ≤ E(x) ≤ δ} for some

0 < δ ≤ δ. Note that E(x) := mρx1 +
1
2mx

2
2 and suppose that the mass m is
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1. It is trivial that the system satisfies Assumption 4.3.1, Assumption 5.1.1, and

Assumption 5.1.2. Let us take the gluing function as ψ := ψ4 in Example 4.3.3,

which satisfies the vector field matching condition (4.3.7). Recall that the inverse

gluing function is given as

ψ−1(ζ) =

 √
ζ1

sgn(ζ2)

√
ζ3−4ρ

√
ζ1

2

 for all ζ ∈ Cψ.

Through the gluing function, we obtain the functions

fψ(ζ) =


ζ2

ζ3 − 6ρ
√
ζ1

0

 ,
hψ(ζ) =

√
ζ1,

and the following continuous-time dynamical system,

ζ̇ =


0 1 0

0 0 1

0 0 0

 ζ +


0

−6ρ

0

√ζ1 =: Aζ +B
√
ζ1,

y =
√
ζ1,

(5.2.7)

for ζ ∈ ψ(K). We propose the following observer for (5.2.7),

˙̂
ζ = Aζ̂ + L(Cζ̂ − y2) +By, (5.2.8)

where C =
[
1 0 0

]
and A+LC is Hurwitz. Let ζe := ζ̂−ζ. Then, the dynamics

of ζe results in

ζ̇e = (A+ LC)ζe,

because y2 = Cζ. Therefore, ζe converges to zero exponentially and, by Theorem
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5.2.1, we obtain an estimate

x̂ = ψ−1(Πψ(K)(ζ̂)) =: ψ−1(ζ̄1, ζ̄2, ζ̄3) =

 √
ζ̄1

sgn(ζ̄2)

√
ζ̄3−4ρ

√
ζ̄1

2

 . (5.2.9)

A simulation result is reported in Figure 5.1. �

Remark 5.2.2. In Example 5.2.1, if ρ = 0, the proposed gluing function is the

same as the state immersion given in [MT16] and the observer designs are similar.

However, the proposed observer in Example 5.2.1 is still valid even if ρ > 0. �

Remark 5.2.3. Most conventional observers for hybrid system employ constraint

sets in which the estimate may jump. This is necessary to catch up the state jump.

The proposed observer may have the constraint set D ∪ G, because the inverse

gluing function ψ−1 is not continuous on ψ(D ∪ G). Specifically, the proposed

estimate can jump from D to G via g or reversely jump via g−1 from G to D
to reduce the estimation error. The former is the common property that most

existing observers have, but the latter is novel one. �

Corollary 5.2.2. (Estimation in a graphical sense). The following statement

reinterprets Theorem 5.2.1 in a graphical sense: under the assumptions of Theo-

rem 5.2.1, for sufficiently small ϵ∗ > 0, there exists T ∗ > 0 such that

(a) for each t > T ∗, there exists s > 0 satisfying that |(t, x(t))− (s, x̂(s))| < ϵ∗,

(b) for each t > T ∗, there exists s > 0 satisfying that |(s, x(s))− (t, x̂(t))| < ϵ∗.

�

Proof of Corollary 5.2.2. If x(t) has a finite number of jumps (i.e. N <∞), then

it follows from Theorem 5.2.1 for the case where ϵ = ϵ∗ that (a) and (b) are true

by taking T ∗ := max(τN + α(ϵ∗), T ) and s := t. Now, we prove the case when

N = ∞.

(a) Let ϵ := min
(
ϵ∗

4 , α
−1( ϵ

∗

2 ), α
−1( ϵ

∗

4M )
)

where M := supx∈K |f(x)|. If ϵ∗ is

sufficiently small, by Theorem 5.2.1, there exists T > 0 such that |x(t)− x̂(t)| < ϵ

for t ∈ τα(ϵ) ∩ (T,∞). Trivially, it holds that T ∈ [τj , τ
′
j) for the unique j ∈ ⟨τ⟩.

We set Ta := τ ′j and show that (a) holds when T ∗ = Ta. We divide t > Ta into



5.2. State Estimation 81

time [sec]

0 5 10 15 20 25 30
-50

0

50

ζ1

ζ̂1
ζ̄1

time [sec]

0 5 10 15 20 25 30

-40

0
ζ2

ζ̂2
ζ̄2

time [sec]

0 5 10 15 20 25 30
0

20

40

ζ3

ζ̂3
ζ̄3

time [sec]

0 5 10 15 20 25 30
0

5

10
x̂1

x1

time [sec]

0 5 10 15 20 25 30
-5

0

5
x̂2

x2

Figure 5.1: A simulation result of Example 5.2.1 when ρ = 1, x0 = (2,−3),
and L = [−1.80 − 0.95 − 0.15]⊤. The first three: ζ is a state
of (5.2.7) and ζ̂ is an estimate of ζ obtained from (5.2.8). ζ̄ is an
approximated projection of ζ̂ to ψ(K). The last two: x is a state
of (5.2.6) and x̂ is an estimate of x obtained from (5.2.9).
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three cases: Case 1: t ∈ (Ta,∞) ∩ τα(ϵ), Case 2: t ∈ [τi, τi + α(ϵ)) for i > j, and

Case 3: t ∈ (τ ′i − α(ϵ), τ ′i) for i > j.

In Case 1, take s = t. Then, it holds that |(t, x(t))−(s, x̂(s))| = |x(t)−x̂(t)| <
ϵ ≤ ϵ∗

4 < ϵ∗. In Case 2, take s = τi+α(ϵ). Then, we have that |s− t| ≤ α(ϵ) ≤ ϵ∗

2

and

|x(t)− x̂(s)| ≤ |x(t)− x(τi + α(ϵ))|+ |x(τi + α(ϵ))− x̂(τi + α(ϵ))|

< Mα(ϵ) + ϵ

≤ ϵ∗

2
.

Therefore, it follows that |(t, x(t)) − (s, x̂(s))| < ϵ∗. Similarly, in Case 3, it is

satisfied that |(t, x(t))− (s, x̂(s))| < ϵ∗ when we take s = τi − α(ϵ).

(b) Consider the sufficiently small ϵ∗ satisfying the condition of ϵ given in

Theorem 5.2.1. Note that OD(ϵ
∗) ∩ OG(ϵ

∗) = ∅. As shown in the proof of

Theorem 5.2.1, by Lemma 4.3.2, we can take L1(ϵ
∗) > 0 and L2(ϵ

∗) > 0 such that

|x−x′| < L1|ψ(x)−ψ(x′)| for all x, x′ ∈ K\OD(ϵ
∗) and |x−x′| < L2|ψ(x)−ψ(x′)|

for all x, x′ ∈ K\OG(ϵ
∗).

Let ϵ := min
(
ϵ∗, α−1( ϵ

∗

4 ), α
−1( ϵ∗

4LMψ ), α
−1( ϵ

∗

2M )
)

whereMψ := maxx∈K |dψ(x)f(x)|
and L := 2 ·max(L1, L2). Then, by Theorem 5.2.1, there exist Tζ > 0 and T > 0

such that |ζ(t) − Πψ(K)(ζ̂(t))| < 2γ = ϵ∗

2L for t > Tζ and |x(t) − x̂(t)| < ϵ

for t ∈ τα(ϵ) ∩ (T,∞). Trivially, there exists the unique j ∈ ⟨τ⟩ such that

max(Tζ , T ) ∈ [τj , τ
′
j). We set Tb := τ ′j + α(ϵ) and show that (b) holds when

T ∗ = Tb. We divide t > Tb into three cases: Case 1: t ∈ (Tb,∞) ∩ τα(ϵ), Case

2: t ∈ (Tb,∞)\τα(ϵ) and x̂(t) ∈ K\OD(ϵ
∗), and Case 3: t ∈ (Tb,∞)\τα(ϵ) and

x̂(t) ∈ K\OG(ϵ
∗).

In Case 1, take s = t. Then, |(s, x(s))− (t, x̂(t))| = |x(t)− x̂(t)| < ϵ ≤ ϵ∗. In

Case 2, let s = τi∗ + α(ϵ) where i∗ is the positive integer (larger than j + 1) such

that t ∈ (τi∗ − α(ϵ), τi∗ + α(ϵ)). Since |s − t| < 2α(ϵ) ≤ ϵ∗

2 , we just show that
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|x(s)− x̂(t)| ≤ ϵ∗

2 for the proof of this case. Since t > Tζ , it is satisfied that

|ζ(s)−Πψ(K)(ζ̂(t))| ≤ |ζ(τi∗ + α(ϵ))− ζ(t)|+ |ζ(t)−Πψ(K)(ζ̂(t))|

< 2Mψα(ϵ) +
ϵ∗

2L

≤ ϵ∗

L
.

In addition, since |x(s) − x(τi∗)| = |x(τi∗ + α(ϵ)) − x(τi∗)| ≤ Mα(ϵ) ≤ ϵ∗

2 and

x(τi∗) ∈ G, we have that x(s) ∈ OG(ϵ
∗) ⊂ K\OD(ϵ

∗). Therefore, it follows that

|x(s)− x̂(t)| < L1|ψ(x(s))− ψ(x̂(t))| < L1|ζ(s)−Πψ(K)(ζ̂(t))| <
ϵ∗

2
.

In a similar way, we can prove Case 3 by setting s := τi∗ − α(ϵ).

Finally, let T ∗ :=max(Ta, Tb). Then the proof is complete.

5.3 Observer with Linearized Error Dynamics

In this section and next section, we deal with the observer design for the glued

system. Since the glued system is a continuous-time system, we may apply con-

ventional observer design techniques proposed for the continuous-time systems.

However, most of them require the additional properties of fψ and hψ such as

linearity, smoothness, or Lipschitz continuity. Therefore, we investigate the con-

dition to guarantee such properties and propose the observer designs for the glued

system.

We first propose the condition for the existence of the gluing function which

guarantees that the glued system becomes a linear system with output injection.

To simplify the presentation, we only consider the case when the output dimension

is 1. The idea is related to the conventional technique proposed in [BS04, MT16].

For the system Hh, suppose that f and h are smooth and that there exists a

positive integer m ≥ k such that

Lifh(x) = Lifh(xg)|xg=g(x) for all 0 ≤ i ≤ m and for all x ∈ D.

This implies that the output trajectory is of class Cm with respect to t. From
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the above condition, we may obtain the gluing function we desire. In fact, this

condition is restrictive, but can be relaxed by introducing an auxiliary output

y∗ = h∗(x) := φ(h(x)) such that φ : h(C) → R is injective and smooth.

Assumption 5.3.1. f and h are smooth and the output dimension is 1 (q = 1).

In addition, there exist an injective smooth function φ : h(C) → R and an integer

m not smaller than the manifold dimension k of C such that with h∗ = φ ◦ h

(I1) Lifh
∗(x) = Lifh

∗(xg)|xg=g(x) for 1 ≤ i ≤ m and for all x ∈ D,

(I2) there exists a smooth solution a1(h∗), . . . , am(h∗) to the differential equation

Lmf h
∗ = am(h

∗) + Lfam−1(h
∗) + · · ·+ Lm−1

f a1(h
∗).

�

Theorem 5.3.1. Suppose that Assumptions 4.3.1, 5.1.1, and 5.3.1 hold. If

ψ(x) := (h∗(x), Lfh
∗(x)−a1(y∗)|y∗=h∗(x), · · · , Lm−1

f h∗(x)−
∑m−1

i=1 Lm−i−1
f ai(y

∗)|y∗=h∗(x))
satisfies (G2) and (G4), then ψ is a gluing function satisfying (4.3.7). Further-

more, the glued system is

ζ̇1 = ζ2 + a1(ζ1)

...

ζ̇m−1 = ζm + am−1(ζ1)

ζ̇m = am(ζ1)

y∗ = φ(y) = ζ1.

�

Proof of Theorem 5.3.1. Since a1, . . . , am−1, f , and h∗ are smooth, (G3) holds. In

addition, by (E3) and (I1), we obtain that (G1) also holds and that ψ is a gluing

function satisfying (4.3.7). By the construction, it follows that the equations for

ζ̇1, . . . , ζ̇m−1 hold. Finally, we have that ζ̇m = am(ζ1) using (I2). �

Remark 5.3.1. In Theorem 5.3.1, the glued system is a linear systems up to
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Figure 5.2: One-degree of freedom system having impacts.

output injection. In this case, we can design the observer for Hh as

ζ̂ = Aζ̂ + L(Cζ̂ − y∗) + a(y∗)

where A :=


0 1 · · · 0
... · · · . . . 0

0 · · · 0 1

0 · · · 0 0

, C :=
[
1 0 · · · 0

]
, a(y∗) :=


a1(y

∗)
...

am(y
∗)

, and

A + LC is Hurwitz. Notice that we use the auxiliary output y∗ = φ(y) because

h∗ = φ ◦ h. �

Example 5.3.1. (One-degree of freedom system with impact). Consider the

simple mechanical system with impact in Figure 5.2. Suppose that the impacts is

modeled perfectly elastic and that its initial condition is in some compact set not

including the origin. In addition, the output is the position. Then, the system
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Hh = (C, f,D, g, h) and interested domain K are obtained as

ẋ = f(x) :=

[
x2

−cx1

]
when x ∈ C := {(x1, x2) ∈ R2 : (x1 ≥ 0) ∧ (|x| > 0)},

x+= g(x) := −x when x ∈ D := {(x1, x2) ∈ C : (x1 = 0) ∧ (x2 < 0)},
y = h(x) := x1,

(5.3.1)

and K := {x ∈ C : δ ≤ M(x) := 1
2cx

2
1 +

1
2x

2
2 ≤ δ} with 0 < δ < δ, respectively,

where x1 is the position and x2 is the velocity.

At first, φ(y) := y. Then, since

Lfh(x) = x2 and Lfh(xg)|xg=g(x) = −x2,

(I1) is not satisfied. To cope with this, take φ(y) := y2, which is injective and

smooth. Then, with h∗ := φ ◦ h, since

Lfh
∗(x) = x1x2 and Lfh∗(xg)|xg=g(x) = (−x1)(−x2),

it follows that

Lfh
∗(x) = Lfh

∗(xg)|xg=g(x).

In addition, since

L2
fh

∗(x) = −2cx21 + 2x22 and L2
fh

∗(xg)|xg=g(x) = −2c(−x1)2 + 2(−x2)2

we obtain that

L2
fh

∗(x) = L2
fh

∗(xg)|xg=g(x).
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Finally, since

L3
fh

∗(x) = −4cx1x2 − 4cx1x2 and L3
fh

∗(xg)|xg=g(x) = −4c(−x1)(−x2)− 4c(−x1)(−x2),

(I2) holds. To summarize, we have that

Lfh
∗ = 2x1x2,

L2
fh

∗ = −2cx21 + 2x22,

L3
fh

∗ = −8cx1x2

and the equation

L3
fh

∗ = −4cLfh
∗,

holds, which implies (I2) with a1 = a3 = 0 and a2(y
∗) = −4cy∗. Therefore, by

Theorem 5.3.1, we can take ψ(x) := (x21, 2x1x2, 2cx
2
1 + 2x22), which satisfies (G2)

and (G4), and the vector field matching condition (4.3.7) holds. Figure 5.3 depicts

the interested domain K and the glued one ψ(K). The inverse gluing function is

obtained as

ψ−1(ζ) =

 √
ζ1

sgn(ζ2)
√

1
2ζ3 − ζ1

 for all ζ ∈ Cψ.

With ζ := ψ(x), the glued system is written as

ζ̇1 = ζ2

ζ̇2 = ζ3 − 4cζ1

ζ̇3 = 0

y∗ = ζ1 = y2,
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Mechanical system domain before gluing
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Mechanical system domain after gluing
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Figure 5.3: Domains of the one-degree of freedom system (5.3.1) before gluing
K (left) and after gluing ψ(K) using ψ = (x21, 2x1x2, 2cx

2
1 +2x22)

(right) when δ= 0.01, δ = 4, and c = 1.

and the proposed observer is following:

ζ̂ = Aζ̂ + L(Cζ̂ − y∗) + a(y∗)

=


0 1 0

0 0 1

0 0 0

 ζ̂ + L
([

1 0 0
]
ζ̂ − y2

)
+


0

−4cy2

0

 (5.3.2)

where A+ LC is Hurwitz. In fact, it needs a projection map (5.2.4) to obtain x̂

from ζ̂. The process finding it is omitted here. A simulation result is shown in

Figure 5.4. Note that this observer form is also proposed in [MT16]. �

Although we relax the condition by introducing the auxiliary output, it is still

restrictive. Therefore, we propose a less restrictive condition.

5.4 Observer for Lipschitz Continuous Systems

If the glued system is Lipschitz continuous, which means fψ and hψ are Lips-

chitz continuous on the domain, we may employ an observer proposed in [KE03].

However, fψ and hψ are complicated functions of ζ in general. In addition, it is
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Figure 5.4: A simulation result of Example 5.3.1 when c = 1. The state of
(5.3.1) is x = (x1, x2) and its estimate is x̂ = (x̂1, x̂2) obtained
from (5.3.2) when L = [−1.8 − 0.95 − 0.15]⊤.
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tedious tasks to obtain them as the functions of ζ from the equations (5.2.1) and

(5.2.2). Therefore, it is difficult to check their Lipschitz continuities through fψ

and hψ and we propose the conditions guaranteeing Lipschitz continuity of the

glued system without explicitly obtaining them. We first impose some additional

conditions on f , h, and ψ.

Assumption 5.4.1. Suppose that f and h are of class C1 and that k = n.

Moreover, under Assumption 4.3.1 and Assumption 5.1.1, there exists a C2 gluing

function ψ : C → Rn satisfying the vector field matching condition (4.3.7). �

Notice that C is a smooth n-manifold with boundary embedded in Rn and the

gluing function is a local C2 embedding from Rn to Rn.

Theorem 5.4.1. Under Assumption 4.3.1, Assumptions 5.1.1–5.1.2, and As-

sumption 5.4.1, fψ and hψ defined in (5.2.1) and (5.2.2) are Lipschitz contin-

uous on ψ(K). �

Proof of Theorem 5.4.1. Take ζ ∈ C. Then, either ζ ∈ C\ψ(D) or ζ ∈ C ∩ ψ(D)

is satisfied. At first, consider the case when ζ ∈ C\ψ(D) and take x := ψ−1(ζ).

Since ψ is a local C2 embedding, there exists an open neighborhood U of x in C
such that ψ|U : U → Rn is a C2 diffeomorphism. Therefore, since dψ and f are

C1, fψ(ζ) = dψ(ψ−1(ζ))f(ψ−1(ζ)) is C1 on ζ(U). Notice that C1 means there

exists an open neighborhood of the domain so that its extension is C1. Therefore,

fψ is locally Lipschitz at ζ ∈ C\ψ(D).

Secondly, consider the case when ζ ∈ ψ(D) and take y := ψ−1(ζ) and x :=

g−1(y). Then, there exist Ux and Uy such that ψ1 := ψ|Ux and ψ2 := ψ|Uy are C2

diffeomorphism. Since ζ is interior point of Cψ, there exists an open ball V such

that V ⊂ ψ(Ux∪Uy). Let us consider ζ1, ζ2 ∈ V . Then, without loss of generality,

the one of the following three cases holds:

• ζ1, ζ2 ∈ ψ(Ux).

• ζ1, ζ2 ∈ ψ(Uy).

• ζ1 ∈ ψ(Ux) and ζ2 ∈ ψ(Uy).
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For the first and second case, it follow from the before claim that, for some L > 0,

|fψ(ζ1)− fψ(ζ2)| ≤ L|ζ1 − ζ2|. (5.4.1)

Since V is divided into two regions ψ(Ux) ∩ V and ψ(Uy) ∩ V by ψ(D) and

the last case implies that ζ1 and ζ2 are placed at the different regions, there exists

at least one ζ∗ ∈ ψ(D) ∩ l(ζ1, ζ2) ∩ V , where l(ζ1, ζ2) is the line segment whose

end points are ζ1 and ζ2. Note that since V is a open ball, ζ∗ is always in V . Let

x∗ := g−1(ψ−1(ζ∗)). Then, for some L0(ζ), L1(ζ), L2(ζ) > 0,

|fψ(ζ1)− fψ(ζ2)| ≤ |fψ(ζ1)− dψ(x∗)f(x∗)|+ |dψ(g(x∗))f(g(x∗))− fψ(ζ2)|

= |dψ(ψ−1
1 (ζ1))f(ψ

−1
1 (ζ1))− dψ(ψ−1

1 (ζ∗))f(ψ−1
1 (ζ∗))|

+ |dψ(ψ−1
2 (ζ∗))f(ψ−1

2 (ζ∗))− dψ(ψ−1
2 (ζ2))f(ψ

−1
2 (ζ2))|

≤ L0(ζ)
(
|ψ−1

1 (ζ1)− ψ−1
1 (ζ∗)|+ |ψ−1

2 (ζ∗)− ψ−1
2 (ζ2)|

)
≤ L0(ζ) (L1(ζ)|ζ1 − ζ∗|+ L2(ζ)|ζ∗ − ζ2|)

≤ L0(ζ) ·max(L1(ζ), L2(ζ))|ζ1 − ζ2|.

(5.4.2)

Consequently, by (5.4.1)-(5.4.2), fψ is locally Lipschitz at every ζ ∈ ψ(D) on Cψ.

Therefore fψ is locally Lipschitz on Cψ.

Since K is compact and ψ is C2, ψ(K) is also compact. Therefore, it follows

that fψ is Lipschitz continuous on ψ(K) ⊂ Cψ. In the similar way, we can show

that hψ is also Lipschitz continuous on ψ(K).

By using the theorem, we propose another observer design approach for the

bouncing ball system in Example 5.2.1 via the gluing function ψ3 in Example 4.3.3.

Example 5.4.1. Consider the bouncing ball system with an output (5.2.6) in

Example 5.2.1 and take a gluing function as ψ := ψ3 in Example 4.3.3. Since

ψ satisfies the vector field matching condition (4.3.7), the glued system on Cψ is
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obtained as

ζ̇ = fψ(ζ) := dψ
(
ψ−1(ζ)

)
f
(
ψ−1(ζ)

)
,

y = hψ(ζ) := h
(
ψ−1(ζ)

)
=
√

1
2∥ζ∥(∥ζ∥+ ζ1).

(5.4.3)

Note that we omit the concrete expression of fψ(ζ) in (5.4.3) because it is complex.

However, since the system trivially satisfies Assumption 5.4.1, by Theorem 5.4.1,

we obtain its Lipschitz continuity without the expression.

Now we employ the observer presented in [KE03], which requires Lipschitz

continuities of fψ and hψ on ψ(K), and a certain observability property. Let

us check the observability in the following sense: the system (5.4.3) is said to

be observable in ψ(K), if there exists a class-K function κ such that, for all

(ζ1, ζ2) ∈ ψ(K)× ψ(K),

∥Y1(t)− Y2(t)∥(−∞,0] ≥ κ
(
∥ζ1 − ζ2∥

)
,

where ∥ · ∥(−∞,0] is L2-norm on (−∞, 0]; Yi(t) := eσthψ
(
ζi(t)

)
; ζi(t) is a solution

starting at ζi; σ > 0 is a constant. Since ψ(K) is compact, according to the

results in [KE03], it is enough to check, for any ζ1, ζ2 ∈ ψ(K) such that ζ1 ̸= ζ2,

two functions Y1(·) and Y2(·) are not the same on (−∞, 0]. Pick two different ζ1

and ζ2 in ψ(K), and let x1 = ψ−1(ζ1) and x2 = ψ−1(ζ2). Then, x1 ̸= x2 in K\D.

It is then clear from the behavior of the bouncing ball that, for each xi ∈ K, its

state trajectory xi(·) is defined on (−∞, 0] and h(x1(·)) ̸= h(x2(·) on (−∞, 0].

Thus, at some t ∈ (−∞, 0], we have Y1(t) = eσth(x1(t)) ̸= eσth(x2(t)) = Y2(t).

Hence, the system (5.4.3) is observable in ψ(K).

Following the recipe of [KE03], the observer for the system (5.4.3) is con-

structed as follows1:

1. Choose a positive integer l and construct a controllable matrix pair (F, b)

with F ∈ Rl×l and b ∈ Rl×1 where F is sufficiently stable; for our case, we

1See [KE03, Lin99] for more details.
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have chosen

F =


−1 0 0

−2
√
2 −2 0

−2
√
2 −4 −2

 , b =


√
2

2

2

 .

2. Choose design parameters T0 > 0, ε > 0, and d > 0.

3. Consider a grid set (of the interval d) in ψ(K) defined as {ζ = [di, dj]⊤ ∈
ψ(K) : i ∈ Z, j ∈ Z}, and let ζi, i = 1, · · · ,M , be the elements of the set

where M is the cardinality of the set.

4. Compute qi :=
∫ 0
−T0 e

−Ftbhψ
(
ζi(t)

)
dt for i = 1, · · · ,M where ζi(t) is the

solution of (5.4.3) with the initial condition ζi.

5. Define a function Q : Rl → Rn where n is the dimension of (5.4.3):

Q(z) :=

∑M
i=1 ζ

i/
[
ε+ ∥qi − z∥

]n+2∑M
i=1 1/

[
ε+ ∥qi − z∥

]n+2 .

6. The observer is then now constructed as

ż(t) = Fz(t) + by(t),

ζ̂(t) = Q
(
z(t)

)
,

x̂(t) = ψ−1
(
ΠCψ(ζ̂(t))

)
.

For this, the explicit form of (5.4.3) may not be necessary because one can

solve xi(t) starting at ψ−1(ζi) in C using (5.2.6) and compute qi correspondingly,

or convert xi(t) into ζi(t) by ψ.

According to [KE03], the estimate ζ̂(t) approximates the true glued flow ζ(t)

with the accuracy γ ≈ max1≤i≤M ∥Q(qi)− ζi∥ in the sense that

lim sup
t→∞

∥ζ(t)− ζ̂(t)∥ ≤ γ,

and the accuracy depends on the design parameters. In fact, γ can be made suffi-
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Figure 5.5: Real and estimated states of the bouncing ball system

ciently small by taking ε and d to be small enough. Finally, x̂(t) reconstructs the

true flow x(t) on C with the estimation accuracy ϵ ≈ max1≤i≤M ∥ψ−1(Q(qi)) −
ψ−1(ζi)∥. For our case of (5.4.3) with (δ, δ) = (0.5, 5), we set (T0, ε, d) =

(30, 10−6, 0.1) which determines the observer accuracy ϵ ≈ 7.2 × 10−13 and a

simulation result is illustrated in Figure 5.5. �

In addition, we also construct an observer for a simplified version of the ripple

disturbance introduced in Example 5.1.2.

Example 5.4.2. Consider a hybrid system with linear mappings given by

ẋ = Ax when x ∈ C,

x+ = Jx when x ∈ D,

y = Hx,

(5.4.4)

where A =

[
0 1

−1 0

]
, J =

[
1 0

0 −1

]
, H =

[
1 0

]
, C = {x ∈ R2 : (|x| >

0) ∧ (h1x ≥ 0) ∧ (h2x ≥ 0)}, D = {x ∈ C : h1x = 0}, h1 = [
√
3, 1], and
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h2 = [
√
3,−1]. Take K := {x ∈ C : 1 ≤ |x| ≤ 3}. The output matching condition

(E3) holds, because HJx = x1 = Hx. The other conditions in Assumption 4.3.1

and Assumptions 5.1.1–5.1.2 can be easily checked.

Intuitively, we construct a gluing function ψ of the system (5.4.4), which

makes the corresponding angle be tripled in polar coordinates. Then, ψ : C → R2,

(x1, x2) = (ρ cos θ, ρ sin θ) 7→ (ζ1, ζ2) = (ρ cos 3θ, ρ sin 3θ) such that 02 /∈ C. By

straightforward calculations, we have

ψ(x) =

 4x31
|x|2 − 3x1

− 4x32
|x|2 + 3x2

 ,
dψ(x) =

 x41+6x21x
2
2−3x42

|x|4
−8x31x2
|x|4

8x1x32
|x|4

3x41−6x21x
2
2−x42

|x|4

 .
Trivially, (G3) is satisfied. Moreover, since C does not contain the origin, it is not

difficult to check that ψ satisfies (G4). Finally, (G1-2) hold because we can find

Ce and De by taking rD(x) := −h1x and rG(x) := h2x.

Furthermore, for all x ∈ De, since

dψ(x)Ax = dψ(x)

[
x2

−x1

]
=

[
0

6x1

]

and

dψ(Jx)AJx = dψ(Jx)

[
−x2
−x1

]
=

[
0

6x1

]
,

it holds that

dψ(x)Ax = dψ(Jx)AJx,

which guarantees 4.3.7. Therefore, Assumption 5.4.1 holds.

Then, by Theorem 5.4.1, the glued system of (5.4.4) by ψ is a Lipschitz

continuous on ψ(K). In fact, the glued system is obtained as, for all ζ ∈ Cψ =
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Figure 5.6: Real and estimated states of the system (5.4.4)

R2\02,

ζ̇ = fψ(ζ) =

[
0 3

−3 0

]
ζ,

y = hψ(ζ) = |ζ|Re

(
3

√
ζ1 + i|ζ2|

|ζ|

)
,

(5.4.5)

where i is the imaginary unit. We construct an observer for the glued system

with the interested domain ψ(K) via a similar way of Example 5.4.1. The detail

is omitted in this case.

Then, we obtain an estimate ζ̂(t) for ζ(t) in the glued domain and an estimate

x̂(t) := ψ−1(Πψ(K)(ζ̂(t))) for x(t) in the original domain. A simulation result is

illustrated in Figure 5.6. �

Remark 5.4.1. In Example 5.1.2 with b ≡ 0, by taking (x1, x2) = (r cos θ, r sin θ),

the ripple generator can be considered as the system (5.4.4) with h1 = [1,
√
3]

and h2 = [1,−
√
3]. For this case, we can also develop a similar observer design

approach. �
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In fact, the observer designs proposed in [KE03] require that the system is

Lipschitz continuous and have some additional properties. For example, the nu-

merical observer in [KE03] can be applied, when the glued system is Lipschitz con-

tinuous and satisfies an observability condition defined in [KE03]. In this case,

the observability condition of the glued system can be easily checked through a

modified condition of the hybrid system.





Chapter 6

Tracking Control Strategy

The gluing function is useful in constructing tracking controllers as well as the

state observers. In this section, we deal with the state tracking control problem.

The goal is to obtain a controller which steers the state trajectory to track a given

reference.

6.1 Standing Assumptions

To deal with the tracking control problem, we first need to define input. For

example, an input of the bouncing ball system in Example 4.1.1 may be external

force.

Definition 6.1.1. A hybrid system H = (C, f,D, g) with an input vector field

ω(x, u) is denoted by Hω := (C, f,D, g, ω) such that

Hω

{
ẋ = f(x) + ω(x, u) when x ∈ C
x+ = g(x) when x ∈ D

where ω : C × U → TC is an input map and U is a subset of Rq. �

Assumption 6.1.1. The hybrid system Hω = (C, f,D, g, ω) satisfies that

(C1) f is locally Lipschitz;

(C2) w is locally Lipschitz.

�

99
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Next a reference the state trajectory should track satisfies the following as-

sumption.

Assumption 6.1.2. For the hybrid system with an input Hω = (C, f,D, g, ω),
the reference r(t) satisfies that

(C3) r(t) is a state trajectory of Hω under the input u = ur(t) such that the

execution is infinite in t-direction starting some initial point r0 ∈ C where

ur : R≥0 → U is piecewise continuous;

(C4) there exists a compact set R ⊂ C such that r(t) ∈ R all t ≥ 0.

�

Since the state remains in C and may jump on D via g, it is natural that the

reference should be in C and may jump on D via g. To guarantees this, (C1)

is adopted. Now we consider a closed-loop system under the following dynamic

state-feedback controller

η̇ = fc(t, x, η)

u = uc(t, x, η)

where η ∈ Rnc is the controller state (or u = uc(t, x) in a static controller case).

The closed-loop hybrid system with its state xcl := (x, η) ∈ Rn+nc is described as

Hcl


ẋcl = fcl(t, xcl) :=

[
f(x) + ω(x, uc(t, x, η))

fc(t, x, η)

]
when xcl ∈ Ccl := C × Rnc ,

x+cl = gcl(xcl) :=

[
g(x)

η

]
when xcl ∈ Dcl := D × Rnc .

(6.1.1)

In the static controller case, the closed-loop system is obtained as

Hcl

{
ẋ = fcl(t, x) := f(x) + ω(x, uc(t, x)) when x ∈ C,

x+ = gcl(x) := g(x) when x ∈ D,

because xcl = x. The objective is to construct (fc, uc) making x(t) track r(t)

where x(t) is the plant state part of the state trajectory of Hcl.
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6.2 Tracking Control

Suppose that there exists a gluing function of H satisfying the vector field

matching condition (4.3.7) and consider vector fields on Cψ. Then, if the condition

dψ(x)ω(x, u) = dψ(g(x))ω(g(x), u) for all (x, u) ∈ D × U (6.2.1)

is satisfied, we can take the tangent vector at ψ(x) ∈ Cψ as dψ(x)(f(x)+ω(x, u)).

We call (6.2.1) an input matching condition.

In addition, we obtain the glued system as, for all ζ ∈ Cψ ⊂ Rm,

ζ̇ = dψ(ψ−1(ζ))(f(ψ−1(ζ)) + ω(ψ−1(ζ), u))

=: fψ(ζ) + ωψ(ζ, u)
(6.2.2)

Note that, fψ and ωψ are continuous by (C1), (G3), (4.3.7), (6.2.1), and the

Inverse Function Theorem.

Next, we define a glued reference by ψ as

ζr(t) := ψ(r(t)) for all t ≥ 0. (6.2.3)

Then, ζr(t) is continuous and it is a solution to (6.2.2) when u = ur(t). For (6.2.2)

and (6.2.3), we first suppose that there is a dynamic (or static) feedback controller

of the form

η̇ = fψc (t, ζr, ζ, η)

u = uψc (t, ζr, ζ, η)
(6.2.4)

with its state η ∈ Rnc (or u = uψc (t, ζr, ζ) if it is a static controller). In this case,

the closed-loop system becomes

ζ̇ = fψ(ζ) + ωψ(ζ, uψc (t, ζr(t), ζ, η))

η̇ = fψc (t, ζr(t), ζ, η).
(6.2.5)

Assumption 6.2.1. For a given Hω, there exists a gluing function ψ satisfying
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(4.3.7) and (6.2.1). In addition, for the given glued reference ζr(t) in (6.2.3), there

is a controller (6.2.4) such that

(C5) fψc : R≥0 × Cψ × Cψ ×Rnc → Rnc and uψc : R≥0 × Cψ × Cψ ×Rnc → Rp are

locally Lipschitz in (ζr, ζ, η) and piecewise continuous in t;

(C6) there exists Vψ × Zψ × E ⊂ Cψ × Cψ × Rnc such that, for each solution

(ζ(t), η(t)) of the closed-loop system (6.2.5) starting on Vψ × E ,

(ζ(t), η(t)) ∈ Zψ × Rnc and uψc (t, ζr(t), ζ(t), η(t)) ∈ U for all t ≥ 0;

(C7) it holds that

{
f(x) + ω(x, u) /∈ TC(x) for all (x, u) ∈ (Z ∩ D)× U ,

f(x) + ω(x, u) ∈ TC(x) for all (x, u) ∈ (Z ∩ G)× U ,

where Z := ψ−1(Zψ). �

From (C6), the solution is well-defined for all t ≥ 0. In addition, by (C5), the

solution is uniquely defined when it flows. Note that there is a solution trajectory

on glued domain such that the trajectory, obtained by detaching through ψ−1,

has the jumps from G to D, which cannot be a solution to the hybrid system. To

exclude this case, we impose the condition (C7).

Through the controller in Assumption 6.2.1, we design a controller for Hω as

η̇ = fc(t, x, η) := fψc (t, ψ(r(t)), ψ(x), η),

u = uc(t, x, η) := uψc (t, ψ(r(t)), ψ(x), η).
(6.2.6)

Then, the closed-loop hybrid system of Hω with (6.2.6) is described as Hcl in

(6.1.1).

Theorem 6.2.1. Under Assumption 4.3.1 and (C1–7), for each (x0, η0) ∈ ψ−1(Vψ)×
E , the maximal execution of Hcl is infinite in t-direction and unique. Furthermore,

suppose that, for each solution to (6.2.5) starting at (ζ0, η0) ∈ Vψ × E and each
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γ > 0, there is Tζ ≥ 0 such that

|ζ(t)− ζr(t)| < γ for all t > Tζ . (6.2.7)

Then, for each state trajectory xcl(t) = (x(t), η(t)) of Hcl starting at (x0, η0) ∈
ψ−1(Vψ)×E and for each ϵ > 0, there exists T > 0 such that |x(t)− r(t)| < ϵ for

all t ∈ {t > T : infθ∈D∪G |r(t)− θ| ≥ ϵ}. �

Proof of Theorem 6.2.1. We first show the state trajectory (x(t), η(t)) is infinite

in t-direction. Let us take (x0, η0) ∈ ψ−1(Vψ) × E . Then, by (C6), there exists

a solution (ζ(t), η(t)) starting at (ψ(x0), η0), which is well-defined for all t ≥ 0.

Therefore, it follows from the Inverse Function Theorem of manifolds and (C7)

that (ψ−1(ζ(t)), η(t)) provides an infinite in t-direction execution of Hcl starting

at (x0, η0).

Secondly, we show that the execution is unique. Since ψ(r(t)) is continuous

and ψ is class of C1, it follows from (C5) that fc and uc of (6.2.6) are locally

Lipschitz in (x, η) and piecewise continuous in t. Then, by (C1–2), it follows

that fcl of (6.1.1) is piecewise continuous in t and locally Lipschitz in (x, η).

Consequently, the flow is uniquely defined before it meets (Z ∩D)×Rnc . On this

set, by (C7), it will be defined not by flowing but by jumping to the unique point

via gcl.

Finally, for ϵ > 0, find T (ϵ) > 0 such that |x(t)− r(t)| < ϵ for all t ∈ {t > T :

infθ∈D∪G |r(t)− θ| ≥ ϵ}. Since ζr(t) ∈ ψ(R) for all t ≥ 0 and ψ(R) is a compact

subset of Cψ, there exists γ > 0 such that Rψ
γ := {ζ ∈ Cψ : dψ(R)(ζ) ≤ γ} is a

compact subset of Cψ. Then, by (G5) and the following lemma, Rγ := ψ−1(Rγ)

is a compact subset of C.

Lemma 6.2.2. Suppose that under Assumption 4.3.1 there exists a gluing func-

tion ψ. Then, ψ is a proper map. �

Proof of Lemma 6.2.2. Let us consider a compact subset Kψ ⊂ Cψ. By (G5), we

have that a subset W ⊂ Cψ is closed if and only if ψ−1(W ) is closed in C. Since

D∪G is closed in C and D∪G = ψ−1(ψ(D∪G)), it follows that ψ(D∪G) is closed
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in Cψ. Take K ′ := Kψ ∩ ψ(D ∪ G). Then, K ′ is compact because it is closed

subset of a compact set Kψ.

Now show that ψ−1(K ′) ∩ D is compact. Let us consider an open cover

∪α∈A{Uα} of ψ−1(K ′)∩D . Then, we construct a collection of open sets ∪α∈A{Vα}
as follows:

• Zα := Uα ∩ (C\G) (it is an open set in C because G is closed in C);

• Vα := Zα∪Wα for all α ∈ A where Wα is an open neighborhood of g(Uα∩D)

satisfying that Wα ∩ D ∩ G = g(Uα ∩ D);

Note that Wα always exists because G is a smooth part of ∂C. In addition, since

ψ−1(ψ(Vα)) = Vα, by (G5), ψ(Vα) is open in Cψ. Thus, ∪α∈A{ψ(Vα)} is an open

cover of K ′. Therefore, since K ′ are compact, there exists a finite set B ⊂ A such

that ∪α∈B{ψ(Vα)} is a finite open cover of K ′. Then, it follows that ∪α∈B{Vα}
is a finite open cover of ψ−1(K ′)∩D. By the definition of Vα and Wα, we obtain

that ∪α∈B{Uα} is a finite open cover of ψ−1(K ′) ∩D. Therefore, ψ−1(K ′) ∩D is

compact. Similarly, we can show that ψ−1(K ′) ∩ G is also compact.

Since DK := ψ−1(K ′) ∩ D and GK := ψ−1(K ′) ∩ G are compact, we can take

an ϵ > 0 such that

OK
D ∩ OK

D = ∅

where OK
D := {x ∈ K : dDK (x) < ϵ} and OK

G := {x ∈ K : dGK (x) < ϵ}. Since OK
D

and OK
G are open in K, KD := K\OK

D and KG := K\OK
G are closed. In addition

KD ∪KG = K. Since ψ|KD is a C1 embedding, ψ(KD) is a closed subset of the

compact set Kψ, so that ψ(KD) is compact. Similarly, we have that ψ(KG) is a

compact. Since ψ|KD and ψ|KG are C1 embeddings and their images are compact,

we obtain that KG and KD are compact. Therefore, we have that K = KD ∪KG

is compact.

It follows from (6.2.7) that, for x(t), there exists t1 such that x(t) and r(t) are

included in the compact set Rγ all t ≥ t1. Since D ∩ G = ∅ and Rγ is compact,

we can take ϵ∗ > 0 such that OD(ϵ
∗) ∩ OG(ϵ

∗) = ∅ where

• OD(ϵ) := {x ∈ Rγ : dD(x) < ϵ};
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• OD(ϵ) := {x ∈ Rγ : dG(x) < ϵ}.

Then, it follows that Rγ = (Rγ\OD(ϵ))∪(Rγ\OG(ϵ)) if ϵ ≤ ϵ∗. Let δ := min(ϵ, ϵ∗).

Then, by Lemma 4.3.2, it holds that ψ|Rγ\OD(δ) is injective and there exists L1 > 0

such that

|x1 − x2| ≤ L1|ψ(x1)− ψ(x2)|

for (x1, x2) ∈ Rγ\OD(δ)×Rγ\OD(δ). Likewise, ψ|Rγ\OG(δ) is injective and there

exists L2 > 0 such that

|x1 − x2| ≤ L2|ψ(x1)− ψ(x2)|

for (x1, x2) ∈ Rγ\OG(δ) × Rγ\OG(δ). Let L := max(L1, L2). By (6.2.7), there

exists T > t1 > 0 such that |ψ(x(t))− ζr(t)| < min( δL , γ) for all t > T . Moreover,

it is satisfied that r(t) ∈ Rγ\(OD(ϵ) ∪ OG(ϵ)) = (Rγ\OD(ϵ)) ∩ (Rγ\OG(ϵ)) ⊂
(Rγ\OD(δ)) ∩ (Rγ\OG(δ)) when infθ∈D∪G |r(t) − θ| ≥ ϵ. Since x(t) ∈ Rγ =

(Rγ\OD(δ)) ∪ (Rγ\OG(δ)), the one of the following conditions holds:

• (x(t), r(t)) ∈ Rγ\OD(δ) × Rγ\OD(δ) and |x(t) − r(t)| ≤ L1|ψ(x(t)) −
ψ(r(t))| < δ.

• (x(t), r(t)) ∈ Rγ\OG(δ) × Rγ\OG(δ) and |x(t) − r(t)| ≤ L2|ψ(x(t)) −
ψ(r(t))| < δ.

Therefore, it holds that |x(t)− r(t)| < δ ≤ ϵ for t ∈ {t > T : infθ∈D∪G |r(t)− θ| ≥
ϵ}.

Remark 6.2.1. Sufficient conditions for the asymptotic tracking controller of the

glued system are well-known. For example, the condition relying on Lyapunov

function is that there exist C1 function V : Cψ × Cψ × Rnc → R≥0, functions
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α1, α2 ∈ K, and scalar c < 0 such that

α1(|ζ − ζr|) ≤ V (z) ≤ α2(|ζ − ζr|)

dV (z)


fψ(ζr) + ωψ(ζr, ur(t))

fψ(ζ) + ωψ(ζ, uψc (t, ζr, ζ, η))

fψc (t, ζr, ζ, η)

 ≤ cV (z)

for all z := (ζr, ζ, η) ∈ Cψ × Cψ × Rnc and for all t ≥ 0. �

Example 6.2.1. Consider Hω given by

ẋ =

[
0 1

0 0

]
x+

[
0

1

]
u =: Ax+Bu when x ∈ {x ∈ R2 : |x1| ≤ π} =: C,

x+ =

[
−1 0

0 1

]
x =: Jx when x ∈ {x ∈ C : x1 = π} =: D,

where x = (x1, x2). Note that the system satisfies Assumption 4.3.1 and As-

sumption 6.1.1. The reference to be considered is a state trajectory starting from

r0 = (0, 5) under u = ur(t) where ur(t) is piecewise continuous and
∫ t
0 ur(s)ds ≤ 1

for all t ≥ 0. It implies that r(t) =: (r1(t), r2(t)) ∈ [−π, π] × [4, 6] for all t ≥ 0.

Therefore, Assumption 6.1.2 holds.

Finding a suitable gluing function for the system is based on the insight of

making the set C like a rolled paper in R3. For this purpose, we take ψ : C → R3,

(x1, x2) 7→ (cosx1, sinx1, x2). It is easily checked that ψ is of class C1 and satisfies

(G1–3) and (G5). In addition, we have that

rank
(
dψ(x)

)
= rank



− sinx1 0

cosx1 0

0 1


 = 2 for all x ∈ C,

which implies that (G4) also holds. Therefore, ψ is a gluing function of H. More-
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over, since

dψ(x)Ax = (0,−x2, 0) = dψ(Jx)AJx for all x ∈ D,

dψ(x)B = (0, 0, 1) = dψ(Jx)B for all x ∈ D,

the condition (6.2.1) holds and we obtain a continuous glued system (6.2.2) as

ζ̇1 = −ζ2ζ3,

ζ̇2 = ζ1ζ3,

ζ̇3 = u,

where ζ = (ζ1, ζ2, ζ3) ∈ Cψ. Note that a glued reference ζr(t) = ψ(r(t)) is a

solution to the above system when u = ur(t).

For the system and the reference, we propose a static tracking controller sat-

isfying (C5) as

uψc (t, ζr, ζ) = ur(t)− ζ2ζr1 + ζ1ζr2 − k(ζ3 − ζr3)

with ζ(0) ∈ Vψ := {ζ ∈ Cψ : 2(1− ζ1ζr1 − ζ2ζr2) + (ζ3 − ζr3)
2 < 4} where k > 0.

Take z = (z1, z2, z3) := (1− ζ1ζr1 − ζ2ζr2, ζ2ζr1 − ζ1ζr2, ζ3 − ζr3) and V (z) := z⊤z.

In fact, z1 = 1 − cos(x1 − r1) and z2 = sin(x1 − r1). Therefore, it follows that

z21 + z22 = 2z1 and V (z) = 2z1 + z23 . Then, from the dynamics of z

ż1 = z2z3,

ż2 = (1− z1)z3,

ż3 = −z2 − kz3,

we have that V̇ = −2kz23 . Since V is non-increasing as t increases, we obtain

that z3(t) = |ζ3(t) − ζr3(t)| ≤
√
V (z(0)) < 2. Moreover, since |ζr3(t) − 5| ≤ 1,

it follows that ζ(t) ∈ {ζ ∈ Cψ : |ζ3 − 5| ≤ 3} =: Zψ and (C6) holds. For

Z := ψ−1(Zψ) = [−π, π]×[2, 8], (C7) trivially holds. Therefore, Assumption 6.2.1

is satisfied. In addition, by LaSalle’s theorem, z2, z3 → 0 and z22 = z1(2− z1) → 0

as t → ∞. Since V (z(t)) ≤ V (z(0)) < 4 = V |z=(2,0,0), we obtain that z1 → 0.
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Figure 6.1: State and reference trajectories of Hω in Examples 6.2.1 under
(6.2.8) when x0 = (−2, 6), r0 = (0, 5), ur(t) = − sin t, and k = 1.

Therefore, it is concluded that |ζ(t) − ζr(t)| → 0 as t → ∞. Figure 6.1 shows a

simulation result under

u = uc(t, r, x) = uψc (t, ψ(r), ψ(x))

= ur(t)− sin (x1 − r1)− k(x2 − r2)
(6.2.8)

with the initial condition x0 belonging to V = ψ−1(Vψ) = {(x1, x2) ∈ C :

−2 cos(x1 − r1(0)) + (x2 − r2(0))
2 < 2}. �

6.3 Using Discontinuous Feedback to Counteract Dy-

namics Jumps

In fact, finding gluing functions of Hω satisfying (6.2.1) may not be a trivial

task. If (6.2.1) does not hold, the system in the glued domain may have dis-

continuous vector fields under a continuous feedback control (even though state

jumps disappear), and may be regarded as a (state-triggered) switched system.
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Nevertheless, there is a possibility to counteract the discontinuity by feedback

control in some cases. This possibility is exploited in this section.

Consider the plant of which the flow map is modeled by an input affine form,

f(x) + ω(x, u) =: a(x) + b(x)u

where a and b are locally Lipschitz. Then, the condition (6.2.1) holds when the

conditions

dψ(x)a(x) = dψ(g(x))a(g(x)) for all x ∈ D, (6.3.1)

dψ(x)b(x) = dψ(g(x))b(g(x)) for all x ∈ D, (6.3.2)

hold. In general, the gluing function satisfying both (6.3.1) and (6.3.2) is difficult

to find. Furthermore, it may not exist. However, the condition (6.2.1) may be

relaxed through a feedback. Suppose that there exist C1 functions γ(x) : C →
Rp×p and κ(x) : C → Rp such that, for x ∈ C, γ(x) is invertible and

dψ(x)a(x) + dψ(x)b(x)γ(x)κ(x) = dψ(g(x))a(g(x)) + dψ(x)b(x)γ(x)κ(g(x))

(6.3.3)

dψ(x)b(x)γ(x) = dψ(g(x))b(g(x))γ(g(x)). (6.3.4)

We call (6.3.3) and (6.3.4) relaxed vector field matching condition and relaxed

input matching condition, respectively. Under these conditions, we obtain that

dψ(x)f(x, u) = dψ(x)a(x) + dψ(x)b(x)u

= dψ(x)a(x) + dψ(x)b(x)γ(x)κ(x) + dψ(x)b(x)γ(x)(γ(x)−1u− κ(x)).

Via ψ−1 in (4.3.4), the glued system is described as

fψ(ζ, u) =: aψκγ(ζ) + bψγ (ζ)(γ
−ψ(ζ)u− κψ(ζ)), (6.3.5)
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where

aψκγ(ζ) := dψ(ψ−1(ζ))a(ψ−1(ζ)) + bψγ (ζ)κ
ψ(ζ),

bψγ (ζ) := dψ(ψ−1(ζ))b(ψ−1(ζ))γψ(ζ),

κψ(ζ) := κ(ψ−1(ζ)),

γψ(ζ) := γ(ψ−1(ζ)),

γ−ψ(ζ) := γ(ψ−1(ζ))−1.

By (G3), (6.3.3)–(6.3.4), and Lemma 4.3.2, aψκγ and bψγ are continuous. On the

other hand, γ−ψ(ζ) and κψ(ζ) may have discontinuities for ζ ∈ ψ(D) by the def-

inition (4.3.4), which cause discontinuities in (6.3.5). However, such discontinu-

ities can be canceled by the discontinuous feedback

u = γψ(ζ)v + κψ(ζ).

After these operations, we obtain the (feedback) continuous form

ζ̇ = aψκγ(ζ) + bψγ (ζ)v for ζ ∈ Cψ. (6.3.6)

Note that ζr(t) is a solution to (6.3.6) when v = γ−ψ(ζr(t))(ur(t)− κψ(ζr(t))) =:

vr(t). Since aψκγ and bψγ are continuous, we may proceed as in the previous section

to find a tracking controller (fψc , v
ψ
c ) for (6.3.6) with the resulting closed-loop

system

ζ̇r = aψκγ(ζr) + bψγ (ζr)vr(t),

ζ̇ = aψκγ(ζ) + bψγ (ζ)v
ψ
c (t, ζr, ζ, η),

η̇ = fψc (t, ζr, ζ, η).

Then, a tracking controller (fc, uc) for Hω is obtained as follows:

fc(t, x, η) := fψc (t, ψ(r(t)), ψ(x), η),

uc(t, x, η) := γ(x)
(
vψc (t, ψ(r(t)), ψ(x), η) + κ(x)

)
.

(6.3.7)
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Remark 6.3.1. For (6.3.7), we can also apply Theorem 6.2.1 by taking uψc (t, ζr, ζ, η) :=

γψ(ζ)(vψc (t, ζr, ζ, η)+κ
ψ(ζ)). In this case, uψc may not be locally Lipschitz because

of κψ(ζ) and γψ(ζ). However, the condition on uψc in (C3) can be replaced by

the condition on vψc that vψc : R≥0 × Cψ × Cψ ×Rnc → Rp are locally Lipschitz in

(ζr, ζ, η) and piecewise continuous in t. �

Example 6.3.1. Consider a second-order hybrid system with the state x =

(x1, x2)

ẋ =

[
a11 a12

a21 a22

]
x+

[
0

b

]
u

=: Ax+Bu when x ∈ C = {x ∈ R2 : (x1 ≥ 0) ∧ (|x| > 0)},
(6.3.8)

x+ = −x when x ∈ D = {x ∈ C : (x1 = 0) ∧ (x2 < 0)},

where a12 > 0 and b ̸= 0. Notice that the system satisfies Assumption 4.3.1 and

Assumption 6.1.1. Suppose that the reference r(t) satisfies Assumption 6.1.2.

We first consider the following system in R3 whose behavior is the same as

(6.3.8), for which a gluing function is sought for. Indeed, with x̄ = (x, p), the

system is defined as

˙̄x = f̄(x̄) + b̄(x̄)u =

[
A 0

0 0

]
x̄+

[
B

0

]
u when x̄ ∈ C̄ := C × {−1, 1},

(6.3.9)

x̄+ = ḡ(x̄) := −x̄ when x̄ ∈ D̄ := D × {−1, 1}.

Note that the first 2-elements of the state trajectory of (6.3.9) and the state

trajectory of (6.3.8) coincide. We say that the system is a twins system1 for

(6.3.8).

We take the reference r̄(t) := (r(t), pr(t)), which is a state trajectory of (6.3.9)

when r̄0 := (r0, 1) and u = ur(t). This system and reference also satisfy Assump-

1In [Pek14], a projection-based modeling having a similar role to the glued system of the
twins system is proposed for unilaterally constrained Hamiltonian systems.
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Figure 6.2: Process of the proposed gluing method for (6.3.8), where green
dash-lines are instances of state jumps and blue dot-lines mean
links between points which should be glued.
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tion 4.3.1 and Assumptions6.1.1–6.1.2. For this system, we can take a gluing

function ψ(x̄) = px. Moreover, the condition (6.3.1) holds because, for x̄ ∈ D̄,

dψ(x̄)f̄(x̄) =
[
pI2 x

] [A 0

0 0

]
x̄ = Apx

and

dψ(ḡ(x̄))f̄(ḡ(x̄)) =
[
−pI2 −x

] [A 0

0 0

]
(−x̄) = Apx.

However, the condition (6.3.2) does not hold, because, for x̄ ∈ D̄, dψ(x̄)b̄(x̄) = pB

and dψ(ḡ(x̄))b̄(ḡ(x̄)) = −pB are not the same.

Take γ(x̄) := p (and κ(x̄) := 0). Note that γ(x̄) is continuously differentiable

and non-zero for x̄ ∈ C̄. Then, since

dψ(x̄)b̄(x̄)γ(x̄) =
[
pI2 x

] [B
0

]
p = B

and

dψ(ḡ(x̄))b̄(ḡ(x̄))γ(g(x̄)) =
[
−pI2 −x

] [B
0

]
(−p) = B

for x̄ ∈ D̄, the relaxed input matching condition (6.3.4) is satisfied.

We obtain that āψγ (ζ) = Aζ due to px = ζ. In addition, since the inverse

gluing function in (4.3.4) is obtained as

ψ−1(ζ) := sgn(ζ)


ζ1

ζ2

1

 for ζ = (ζ1, ζ2) ∈ C̄ψ = R2\02,

we have that γψ(ζ) = sgn(ζ) and b̄ψγ (ζ) = B, where sgn(ζ) is ζ1/|ζ1| if ζ1 ̸= 0

and ζ2/|ζ2| otherwise. Moreover, since
(
γψ(ζ)

)2
= 1, we obtain that γ−ψ(ζ) =
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γψ(ζ) = sgn(ζ). Then, the vector field (6.3.5) on the glued domain is derived as

ζ̇ = Aζ +Bsgn(ζ)u for ζ ∈ C̄ψ,

which can be seen as a (state-triggered) switched system, because sgn(ζ) is piece-

wise continuous on C̄ψ. However, since sgn(ζ) is invertible on C̄ψ, its discontinu-

ity can be canceled by input. Since (A,B) is controllable, we can make a state

tracking control law for (6.3.6) as

vψc (t, ζr, ζ) = Kc(ζ − ζr) + vr(t) for |ζ(0)− ζr(0)| < ϵ

where A + BKc is Hurwitz and ϵ is designed as a function of r0 and A + BKc

to guarantee that ζ(t) ̸= 02 for all t ≥ 0. Then, through (6.3.7), we can find the

local tracking control law for (6.3.9)

u = uc(t, x̄)

= γ(x̄)vψc (t, ψ(r̄(t)), ψ(x̄))

= pvψc (t, pr(t)r(t), px)

= p
(
Kc(px− pr(t)r(t)) + pr(t)ur(t)

)
= Kc(x− pr(t)r(t)p) + pr(t)ur(t)p

(6.3.10)

with the constraint that |p(0)x(0)−pr(0)r(0)| = |x0−r0| < ϵ. For the simulation,

we take

A =

[
0 1

0 0

]
, B =

[
0

1

]
, r0 = (0, 6), ur(t) =

{
−3 if mod(t, 10) ∈ [0, 4),

−2 otherwise,

(6.3.11)

and illustrate the result in Figure 6.3. �

Remark 6.3.2. In Example 6.3.1, the system (6.3.8) can represent the bouncing

ball system when

A =

[
0 1

0 0

]
, B =

[
0

1

]
, u = −ρ+ v,
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Figure 6.3: (a) and (b) depict reference and plant state trajectories and (c)
shows reference input ur(t) and control input uc(t) for (6.3.11)
where x0 = (3, 8) and the control law is (6.3.10) with Kc =
[−0.6, − 1.55].
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where v is the control acceleration and ρ is the gravity constant. In this case, the

controller form is similar to the one proposed in [FTZ13]. �

Example 6.3.2. Consider Hω with an input given by

ẋ =

[
x22 + 1

0

]
+

[
0

1

]
u =: a(x) + bu when x ∈ {x ∈ R2 : |x1| ≤

π

2
} =: C,

x+ = −x =: g(x) when x ∈ {x ∈ C : x1 =
π

2
} =: D,

(6.3.12)

where x = (x1, x2), U = {u ∈ R : |u| ≤ M}, and M > 0 is sufficiently large.

Note that Assumption 4.3.1 and Assumption 6.1.1 hold. Suppose that a reference

r(t) =: (r1(t), r2(t)) satisfies Assumption 6.1.2 and r2(t) does not converge to

zero.

Intuitively, we wanted to glue the set D to G like a Mobius strip in R3; that

is, it is like the rolled paper but the point (π/2, x2) is glued to (−π/2,−x2) not

to (−π/2, x2). However, this work may be rather complicated. Instead, we first

consider the following twins system for (6.3.12) to find a simple gluing function.

Indeed, with x̄ = (x, p), the system is defined as

˙̄x = ā(x̄) + b̄u :=


x22 + 1

0

0

+


0

1

0

u when x̄ ∈ C̄ := C × {−1, 1},

x̄+ = ḡ(x̄) := −x̄ when x̄ ∈ D̄ := D × {−1, 1},

(6.3.13)

in which, the initial condition is x̄0 = (x0, 1). Note that the first 2-elements of

the state trajectory to (6.3.13) and the state trajectory to (6.3.12) coincide.

Note that the reference r̄(t) := (r(t), pr(t)) is a state trajectory to (6.3.13)

when the initial condition is r̄0 := (r0, 1) and u = ur(t). For (6.3.13), we can take

a gluing function ψ(x̄) = (cos(x1 − π
2 p), sin(x1 −

π
2 p), px2). Then, the vector field
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Figure 6.4: Process of the proposed gluing method for (6.3.12).
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matching condition (6.3.1) holds because, for all x̄ = (x1, x2, p) ∈ D̄,

dψ(x̄)ā(x̄) =


− sin(x1 − π

2 p) 0 ∗
cos(x1 − π

2 p) 0 ∗
0 p ∗



x22 + 1

0

0



=


− sin(−x1 + π

2 p) 0 ∗
cos(−x1 + π

2 p) 0 ∗
0 −p ∗



(−x2)2 + 1

0

0


= dψ(ḡ(x̄))ā(ḡ(x̄)). (6.3.14)

However, the input matching condition (6.3.2) does not hold, since

dψ(x̄)b̄ =


0

0

p

 and dψ(ḡ(x̄))b̄ =


0

0

−p

 for all x̄ ∈ D̄.

So, let us take γ(x̄) := p. Note that γ(x̄) is of class C1 and non zero for x̄ ∈ C̄.

Since it holds that

dψ(x̄)b̄γ(x̄) =


0

0

p2

 = dψ(ḡ(x̄))b̄γ(g(x̄)) (6.3.15)

for all x̄ ∈ D̄, (6.3.4) is satisfied. Then, because ζ23 = x22, by (6.3.14) and (6.3.15),

we obtain that

āψ(ζ) =


−ζ2(ζ23 + 1)

ζ1(ζ
2
3 + 1)

0

 and b̄ψγ (ζ) =


0

0

1


where ψ(x̄) =: ζ = (ζ1, ζ2, ζ3). Fortunately, we can find a tracking controller for

(āψ, b̄ψγ ) as

vψc (t, ζr, ζ) = vr(t)− (ζ2ζr1 − ζ1ζr2)(ζ3 + ζr3)− kζe3

where ζe = (ζe1, ζe2, ζe3) := ζ − ζr and k > 0. Let us take z = (z1, z2, z3) :=
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(1− ζ1ζr1 − ζ2ζr2, ζ2ζr1 − ζ1ζr2, ζ3 − ζr3) and V (z) := z⊤z. Then, it follows from

Barbalat’s lemma that |ζe(t)| → 0 as t → ∞ and, when |ψ(x̄0)− ψ(r̄0)| < 2, the

controller for (6.3.13) is given by

u = uc(t, r̄, x̄) = γ(x̄)vψc (t, ψ(r̄), ψ(x̄)). (6.3.16)

A simulation result is illustrated in Figure 6.5. �

6.4 Output Tracking Controller for Normal Form

In this section, we consider a output tracking control problem for a class of

hybrid systems. To deal with the problem, we define a hybrid system with input

and output.

Definition 6.4.1. A hybrid system H = (C, f,D, g) with input and output is

denoted by Hh
ω := (C, f,D, g, ω, h) such that

Hh
ω


ẋ = f(x) + ω(x)u when x ∈ C
x+ = g(x) when x ∈ D
y = h(x),

where h : C → R is an output map and ω : C → TC is an input map. �

To simplify the presentation, we only consider the case of the single input and

single output system. In addition, we assume that the flow is an input affine.

Under the basic Assumption 4.3.1, we impose the flow, input, and output map.

Assumption 6.4.1. The flow map f , input map ω, and output map h are smooth.

Furthermore, ω : C → TC is not outward-pointing and not inward-pointing on

D ∪ G. �

The main idea of this section is to find a normal form via an auxiliary output.

The introduction of the auxiliary output to consider the hybrid dynamical system

as the continuous-time dynamical system are proposed in Section 5.3 and [MT16].

Assumption 6.4.2. For Hh
ω, there exist a smooth map φ : R → R and a positive

integer ρ, 1 ≤ ρ ≤ n, such that with h∗ = φ ◦ h
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Figure 6.5: (a) and (b) depict the first 2-elements of the state and reference
trajectories and (c) shows the control and reference inputs of
(6.3.13) under (6.3.16) when x0 = (1, 1), r0 = (0, 0), ur(t) ≡ 1,
and k = 1.
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• LωL
i−1
f h∗(x) = 0 for all i = 1, . . . ρ− 1 and for all ∀x ∈ C;

• LωL
ρ−1
f h∗(x) ̸= 0 for all x ∈ C;

• Lifh
∗(x) = Lifh

∗(xg)|xg=g(x) for all i = 0, . . . , ρ and for all x ∈ D.

�

Note that y∗ = φ(y) can be regarded as an auxiliary output. The first

and second conditions come from the definition of the relative degree ρ of the

system. The third condition guarantees that the auxiliary output trajectory

y∗(t) = h∗(x(t)) is differentiable up to ρ-th order with respect to t. Let ζ =

T2(x) := (h(x), . . . , Lρ−1
f h∗(x)). By the definition, this map is C1 and immersion.

It is well-known that, if ρ = n, then for every x ∈ C, a neighborhood N of

x exists such that the map T (x) = T2(x), restricted to N , is a diffeomorphism

on N . Moreover, when ρ < n, for every x ∈ C, a neighborhood N of x in C and

continuously differentiable functions ϕ1(x), . . . , ϕn−ρ(x) exists such that

∂ϕi
∂x

ω(x) = 0 for 1 ≤ i ≤ n− ρ, ∀x ∈ N

and the map T (x) = (T1(x), T2(x)), restricted to N , is a diffeomorphism on N

where T1(x) := (ϕ1(x), . . . , ϕn−ρ(x)).

Assumption 6.4.3. If ρ = n, then T2(x) is injective on C\D. If ρ < n, then

T (x) is injective on C\D. �

Suppose that Assumption 4.3.1 and Assumptions 6.4.1–6.4.3 hold. Similar to

the change of variables, via z = (η, ζ) := T (x), the system Hh
ω = (C, f,D, g, ω, h)
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is changed into

η̇ = f0(η, ζ)

ζ̇ = Acζ +Bc[L
ρ
fh

∗(x) + LωL
ρ−1
f h∗(x)u]

(η, ζ) ∈ T (C)

η+ =


ϕ1(g(x))

...

ϕn−ρ(g(x))


ζ+ = ζ

(η, ζ) ∈ T (D)

y∗ = ϕ(h(x)) = Ccζ

where

Ac =



0 1 0 . . . 0

0 0 1 . . . 0
...

. . .
...

... 0 1

0 . . . . . . 0 0


ρ×ρ

, Bc =



0

0
...

0

1


ρ×1

, Cc

[
1 0 . . . 0 0

]
1×ρ

.

For the system, the state feedback control

u =
1

LωL
ρ−1
f h∗(x)

[−Lρfh
∗(x) + v] (6.4.1)

converts the external (continuous-time) dynamics into a chain of ρ integrator,

y(ρ) = v, and makes the remaining internal hybrid dynamics unobservable from

the auxiliary output.

Let us consider a output reference yr(t) which is bounded and differentiable

up to ρ-order. Then, y∗r (t) := φ(yr(t)) is also differentiable up to ρ-order and it

is an output to the system

ζ̇r = Acζr +Bcy
∗(ρ)
r (t) (6.4.2)

y∗ = Ccζr (6.4.3)

Under the feedback (6.4.1), we can construct an output tracking dynamic
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controller as

ẋc = Acxc +Bcv + L(Ccxc − y∗)

v = K(xc − ζr) + y∗(ρ)r (t)
(6.4.4)

where L and K are designed to make that Ac +BcK and Ac +LCc are Hurwitz.

Then the closed-loop system Hh
ω with (6.4.2) is

η̇ = f0(η, ζ)

ζ̇ = Acζ +Bc(K(xc − ζr) + y
∗(ρ)
r (t))

ζ̇r = Acζr +Bcy
∗(ρ)
r (t)

ẋc = Acxc +Bc(K(xc − ζr) + y
∗(ρ)
r (t)) + LCc(xc − ζ)

(η, ζ) ∈ T (C)

η+ =


ϕ1(g(x))

...

ϕn−ρ(g(x))


ζ+ = ζ

ζ+r = ζr

x+c = x+

(η, ζ) ∈ T (D).

y∗ = φ(h(x)) = Ccζ

Let e =
[
e⊤r e⊤o

]⊤
:=
[
ζ⊤r − ζ⊤ x⊤c − ζ⊤

]⊤
. Since ζr, ζ, xc do not jump when-

ever the discrete events of the system occur, the dynamics of the error e is ob-

tained as the continuous-time dynamics

ėr = Acer +BcK(er − eo)

ėo = Aceo + LCceo.

From the above dynamics, we have that e → 0 as time goes to infinity. Conse-

quently, it follows that |y∗r (t)− φ(y(t))| → 0.
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However, if ρ < n, then there is the internal dynamics of the system

η̇ = f0(η, ζ) (η, ζ) ∈ T (C)

η+ =


ϕ1(g(x))

...

ϕn−ρ(g(x))

 =


ϕ1(g(T

−1(z)))
...

ϕn−ρ(g(T
−1(z)))

 (η, ζ) ∈ T (D).

where T−1(z) := (T |C\D)−1(z). To prevent the diverge of the internal state, we

need to impose the additional assumption on this dynamics.

Assumption 6.4.4. For any Cρ bounded input function uη(t) ∈ Rρ remaining

on T2(C), the execution of the hybrid dynamics

η̇ = f0(η, uη(t)) (η, uη(t)) ∈ T (C)

η+ =


ϕ1(g(T

−1([η⊤ uη(t)
⊤]⊤)))

...

ϕn−ρ(g(T
−1([η⊤ uη(t)

⊤]⊤)))

 (η, uη(t)) ∈ T (D).

is bounded. �

Under this assumption, the internal state η does not blow up and the closed-

loop system is well-defined for all t ≥ 0. Therefore, we have that |y∗r (t)−φ(y(t))| →
0 as t→ ∞.

Note that, as t → ∞, |y∗r (t) − φ(y(t))| = |φ(yr)(t) − φ(y(t))| → 0 does not

always imply |yr(t) − y(t)| → 0 because φ may not be a homeomorphism. If

φ restricted to h(C) is a homeomorphic to its image φ(h(C)), we obtain that

|yr(t) − y(t)| → 0 as time goes to infinity. However, it is not general because of

the third condition of Assumption 6.4.2. When i = 0, the condition means that

φ(h(x)) = φ(h(g(x))) for all x ∈ D.

From the above condition, at least to guarantee the injectivity of φ on C, it is

necessary that

h(x) = h(g(x)) for all x ∈ D,
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which means that the output trajectory is continuous with respect to t.

Example 6.4.1. Let us consider a simple hybrid system Hh
ω

ẋ = Fx+


−2

1

1

+Wu =: f(x) + ω(x)u when x ∈ {x ∈ R3 : |x3| ≤ 1} =: C

x+ = Gx =: g(x) when x ∈ {x ∈ C : x3 = 1} =: D.

y = Hx =: h(x)

where

F :=


1 2 0

−1 −1 −1

0 0 0

 ,W :=


−1

1

0

 , G =


1 0 4

0 1 −2

0 0 −1

 , H =
[
1 1 1

]
.

It is easy to check that Assumption 4.3.1 and Assumption 6.4.1 hold. Let φ(y) :=

y. Then, it follows that, for all x ∈ C,

Lωh
∗(x) = HW = 0

which implies the first condition of Assumption 6.4.2 with ρ = 2. Furthermore, it

holds that, for all x ∈ C,

LωLfh
∗(x) = HFW = 1
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which implies the second condition of Assumption 6.4.2. Finally, since, for x ∈ D,

h∗(x) = Hx = x1 + x2 + 1

Lfh
∗(x) = H(Fx−


−2

1

1

) = HFx = x2 − 1

L2
fh

∗(x) = HF (Fx−


−2

1

1

) = −x1 − x2 − 1

and

h∗(xg)|xg=g(x) = HGx = x1 + x2 + 1

Lfh
∗(xg)|xg=g(x) = H(FGx−


−2

1

1

) = HFGx = x2 − 1

L2
fh

∗(xg)|xg=g(x) = HF (FGx−


−2

1

1

) = HF 2Gx = −x1 − x2 − 1

the third condition of Assumption 6.4.2 is also satisfied. Therefore, Assump-

tion 6.4.2 hold.

Take η = ϕ(x) := x3. Then it follows that

∂ϕ

∂x
ω(x) =

[
0 0 1

]
−1

1

0

 = 0 for all x ∈ C.

Moreover, since T (x) :=
[
ϕ(x) Hx FHx

]⊤
=
[
x3 x1 + x2 + x3 x2 − x3

]⊤
is injective on C, Assumption 6.4.3 holds. By the change of variables via z =
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[η ζ1 ζ2]
⊤ := T (x), the system is changed into

η̇ = 1 when η ∈ [−1, 1]

ζ̇1 = ζ2

ζ̇2 = −ζ1 + u

η+ = −η when η ∈ {1}.

ζ+1 = ζ1

ζ+2 = ζ2

In this case, the flow set T (C) = {(η, ζ1, ζ2) ∈ R3 : η ∈ [−1, 1]} and jump set

T (D) = {(η, ζ1, ζ2) ∈ R3 : η = 1} only depend on η. The internal dynamics is

obtained as
η̇ = 1 when η ∈ [−1, 1]

η+ = −η when η ∈ {1}

which trivially satisfies Assumption 6.4.4.

Let us consider an output reference yr(t), which is bounded and C2 function.

In addition, take ζr := (yr, ẏr). Then, we can construct an output tracking

controller in (6.4.4) as

ẋc = Acxc +Bcv + L (Ccxc − y) :=

[
0 1

0 0

]
xc +

[
0

1

]
v + L

([
1 0

]
xc − y

)
v = K(xc − ζr) + ÿr(t),

where Ac + LCc and Ac + BcK are Hurwitz. Note that, since T is injective on

R3, we have that |y(t)− yr(t)| converges to zero as time goes to infinity. �





Chapter 7

Conclusions

In this chapter, we summarizes the whole contents of the dissertation that have

been addressed so far, and provides some future works. We have dealt with three

kinds of problems for hybrid dynamical system as listed below.

• Gluing boundaries and smoothing vector field

We considered a hybrid dynamical system whose domain is a smooth man-

ifold with boundary and discrete-time dynamics happens on the boundary.

In this situation, we proposed the idea eliminating this discrete-time dy-

namics by gluing the boundaries. Through this idea, the hybrid dynamical

system may become to a continuous-time dynamical system. The problems

were how to glue the boundaries of the domain and how to specify the glued

domain and the continuous-time dynamics on the glued domain. At first, we

glued the boundaries using the quotient map. In addition, by the Boundary

Flowout Theorem, we obtained the glued domain and smooth vector field.

However, the process was so complex and the glued domain was abstract,

we introduced a notion of gluing function which is intuitive because it just

glues the domain on Euclidean space in a topological sense.

• State estimation problem for hybrid dynamical system

We considered the state estimation problem of hybrid dynamical systems

with state-triggered jumps using a gluing function. Via the gluing function,

we might change the hybrid dynamical system into some continuous-time

dynamical system without any state jumps and design the state observer
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from conventional observer design methods for the continuous-time dynam-

ical systems such as Luenberger observers, high-gain observer, and so on.

From an estimate of these observer, we constructed a state estimate of the

hybrid dynamical system. Most previous observer design approaches for

the hybrid dynamical systems require knowledge of the state jump time in-

stants, but the proposed observer design technique does not.

• Tracking control problem for hybrid dynamical system

We also considered the state tracking control problem of hybrid dynamical

systems with state-triggered jumps using a gluing function. By similar way

to the estimation problem, we might obtain some continuous-time dynam-

ical system without any state jumps from a given hybrid dynamical sys-

tem. Then, via conventional tracking controller design techniques for the

continuous-time dynamical systems, we constructed a tracking controller for

the hybrid dynamical system. Many previous tracking controller of the hy-

brid dynamical systems should make the state jump whenever the reference

jumps occur while the proposed tracking controller need not do.

Some further issues for future research related to the topics of this dissertation

are listed as follows.

• Under some condition, the gluing function always exists but not easily ob-

tainable. Therefore, the problems of determining gluing functions system-

atically needs further research.

• In the estimation problem, we embed the glued domain in some Euclidean

space and construct observer in the Euclidean space. Therefore, a state

estimate may not be in the glued domain where the inverse gluing function

is well-defined. To solve this problem, we employ a projection map but it is

restrictive. The state estimation approach not using the projection map is

the topic of on-going research.

• In fact, we use the gluing function as a transformation to consider the hybrid

dynamical system as a continuous-time dynamical system, so we may apply

this approach in the opposite direction. i.e., the concept of “detecting”
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needs to be considered because it may change a complex continuous-time

dynamical system into a simple hybrid dynamical system.
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국문초록

State Estimation and Tracking Control for Hybrid
Systems by Gluing the Domains

상태변수 영역 접합을 통한 하이브리드 시스템의

상태변수 추정 및 추종 제어

본논문은하이브리드동적시스템 (hybrid dynamical system)에대한상태변수

추정 (state estimation)과추종제어기 (tracking controller)설계문제를다루고있

다. 하이브리드동적시스템은미분방정식 (differential equation)으로모델링되는

연속시간동역학 (continuous-time dynamics)과차분방정식 (difference equation)

으로모델링되는이산시간동역학 (discrete-time dynamics)이혼합된시스템이다.

일반적으로 하이브리드 동적 시스템은 연속 시간 동역학과 이산 시간 동역학이 상

호 의존적이기 때문에, 그 특성이 복잡하여 다루기 힘든 시스템으로 알려져 있다.

본 논문에서 다루는 상태변수 추정 문제란 주어진 시스템의 모델링 정보와

실시간 출력 정보를 활용하여 대상 시스템의 상태변수를 추정하는 것이며, 추종

제어기 설계 문제란 주어진 시스템 모델링 정보와 실시간 상태변수 정보를 가지

고 상태변수를 주어진 레퍼런스 궤적 (reference trajectory)으로 추종하게 만드는

제어 입력을 설계하는 것이다. 연속 시간 동역학을 갖는 연속 시간 동적 시스템

(continuous-time dynamical system)과 이산 시간 동역학을 갖는 이산 시간 동적

시스템 (discrete-time dynamical system)에 대해서는 상태 변수 추정과 추종 제어

기 설계에 대한 많은 결과가 알려져 있지만, 하이브리드 동적 시스템에 대해서는

그 결과가 미미하며, 존재하는 결과들은 일반적인 하이브리드 동적 시스템을 다

루기보단, 스위치드 시스템 (swithced system)이나 생체 호르몬 모델, 파워트레인

시스템 (powertrain system) 등 특정 하이브리드 동적 시스템에을 다루고 있다.

본 논문에서는 먼저 하이브리드 동적 시스템을 쉽게 다루기 위한 글루잉 (glu-

ing)이란기술소개한다. 상태변수가일정한값에도달했을때만이산시간동역학

이발생하는시스템 (hybrid system with state-triggered jumps)에대하여,이기술

은 시스템의 상태변수 영역 접합을 통해 하이브리드 동적 시스템이 내재하고 있는

이산 시간 동역학을 제거한다. 따라서, 하이브리드 동적 시스템을 연속 시간 동적

시스템으로 리모델링할 수 있게 한다. 그리고, 특정 시스템에 대해서 그 리모델링
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된 연속 시간 동역학을 상태변수에 대한 매끄러운 함수 (smooth function)로 만드

는 기술 (smoothing)을 소개한다. 이 기술들은 미분 다양체 (differential manifold)

와 미분 위상 (differential topology) 등과 같은 수학적 이론에 기반하기 때문에, 본

학위 논문에서는 미분 다양체와 벡터장 (vector field)으로 모델링되는 하이브리드

동적 시스템에 대하여 이 기술들의 사용을 다룬다.

본 논문에서는 특히 글루잉 기술에 집중한다. 글루잉을 통해 얻어지는 리모델

링된 연속 시간 동적 시스템은 추상적인 미분 다양체와 벡터장으로 주어지기 때문

에, 그것을 유클리드 공간 (Euclidean space)에 매장함 (embedding)으로써 시스템

을 구체화한다. 그리고 시스템 변환으로써 의미를 가질 수 있는 글루잉을 보장하

는 함수의 필수적인 조건을 제시한다. 특히, 글루잉을 통해 매장된 시스템은 연속

시간 동적 시스템이기 때문에, 연속 시간 동적 시스템들에 대해서 개발된 다양한

기존의 관측기와 추종 제어기 설계 기술을 이용하여, 하이브리드 동적 시스템의

관측기와 추종 제어기를 설계할 수 있다.

기존에존재하는대다수의하이브리드동적시스템의상태변수관측기의경우,

하이브리드동적특성을가지며,관측기의이산동역학과추정대상시스템의이산

시간동역학이동시에일어나야한다는한계가있다. 따라서기존의추정기의경우,

추정시스템의이산시간동역학발생시간정보를요구하거나그시간을측정혹은

추정하는구조를가지게되는데,이는그시간정보를추정하는추가적인추정기를

필요로 하며 측정 시간 지연에 취약하다. 반면, 글루잉을 통해 설계된 상태변수

추정기는 이산 시간 동역학 발생 시간 정보를 추정하거나 요구하지 않기 때문에

추가적인추정기가불필요하고측정시간지연에도강인하다. 또한,글루잉기법을

통해 설계된 추종 제어기는, 시스템 상태변수와 레퍼런스의 불연속점이 발생하는

시간들의 불일치로 인해 발생하는 추종 오차에 취약한 기존의 제어기와 달리, 이

오차에 대해 강인한 특성을 가진다.

마지막으로, 충돌이있는기계시스템이나 AC/DC변환기의외란발생기와같

은실제예제들과이론적예제들을통해글루잉기법의적용과상태변수관측기및

추종 제어기 설계를 연습하고, 시뮬레이션을 통해 상태변수 추정과 레퍼런스 추종

결과를 확인한다.

주요어 : 하이브리드 동적 시스템, 미분 다양체, 글루잉, 스무딩, 상태변수 추정,

비선형 관측기 설계, 추적 제어
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