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Abstract

In this dissertation, we propose two approaches for three-dimensional (3D) local-

izing and tracking of multiple targets by using images from multiple cameras with

overlapping views. The main challenge is to solve the 3D position estimation problem

and the trajectory assignment problem simultaneously. However, most of the exist-

ing methods solve these problems independently. Unlike single camera multi-target

tracking, it is much more complicated to solve both problems because the relationship

between cameras is also taken into consideration in multi-camera. To tackle this chal-

lenge, we present two approaches: mixed multidimensional assignment approach and

variational inference approach. In the mixed multidimensional assignment approach,

we formulate the data association and 3D trajectory estimation problem as the mixed

optimization problem with discrete and continuous variables and suggest an alterna-

tive optimization scheme which jointly solves the two coupled problems. To handle a

large solution space, we develop an efficient optimization scheme that alternates be-

tween two coupled problems with a reasonable computational load. In this optimiza-

tion formulation, we design a new cost function that describes 3D physical properties

of each target. In the variational inference approach, we establish a maximum a posteri-

ori (MAP) problem over trajectory assignments and 3D positions for given detections

from multiple cameras. To find a solution, we develop an expectation-maximization

scheme, where the probability distributions are designed by following the Boltzmann

distribution of seven terms induced from multi-camera tracking settings.

keywords: 3D localization and tracking, multiple cameras, multiple target tracking,

multidimensional assignment, variational inference, 3D trajectory estimation
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Chapter 1

Introduction

1.1 Background & Challenges

Background

Ambient intelligence (AmI) refers to electronic environments that are sensitive and

responsive to the presence of people. In Wikipedia, in an ambient intelligence world,

devices work in concert to support people in carrying out their everyday life activities,

tasks and rituals in an easy, natural way using information and intelligence that is

hidden in the network connecting these devices. Examples of the application of AmI

research are as follows:

• home automation systems [1, 2]

• distributed virtual communities with autonomous mobile agents [3, 4]

• intelligent city monitoring social threat in urban environment [5]

• interaction between remote patients and health care systems [6]

In order to achieve the AmI, it is necessary to establish a better ”intelligence” through

sharing / cooperation among the various sensors.

1



(a) home automation systems (b) intelligent city

Figure 1.1: Two examples of the application of the ambient intelligence.

Multiple target tracking and localization in 3-dimensional (3D) space is one of the

important issues that must be solved to achieve the ambient intelligence. Localization

and tracking of multiple targets not only provides a higher level of service, but also

enables a high level applications such as behavior understanding and action recogni-

tion. Various sensors can be used for the localization and tracking problem such as

sonar [7], radar [8, 9, 10], and cameras. Among these various sensors, visual sensors

plays an important role. It is because visual sensors have reasonable costs and easy to

transfer and their video contains a wealth of information.

In this dissertation, we have investigated how to combine the data of multiple vi-

sual sensors to achieve better localization and tracking in a 3D space. The advantage of

multiple overlapping cameras is that they can be seen by other cameras even if they are

in one camera. The goal of this dissertation is to achieve robust localization and track-

ing performance even in occlusion situations by combining information from multiple

overlapping cameras.

Challenges

Multi-target localization and tracking problem is well known problem in computer

vision community, a task most often referred to multiple object tracking (MOT) or

equivalently, multi-target tracking (MTT). The goal of general MTT or MOT is to

2



1 2 3 4 5
frame

(a) data association in a single camera

1

1 2 3 4 5

2

3

frame

cam

(b) data association in multiple cameras

Figure 1.2: Comparison of data association problem in a single camera and multiple

cameras. (a) In the single-camera case, the number of possible associations is 6× 6×

5× 5× 5 = 4500, (b) In the multi-camera case, 6× 6× 5× 5× 5× 3× 3× 4× 4×

4× 4× 4× 4× 4× 4 = 2, 654, 208, 000 which increases exponentially.

accurately estimate the position of multiple objects under the following conditions:

• the number of targets is unknown

• their number changes over time

• run automatically without manual initialization

The most challenging issue under these conditions is the automatic detection of the

location of each object and the constant labeling of the unknown number of targets

under missing detection and false detection caused by object occlusion.

In the case of a multi-camera, occlusion can be coped with the fact that the object

can be seen by other cameras even if fully occluded in one camera, but there is still a

more challenging part in some respects. First, the solution space is larger than the so-

lution space of a single camera because the relationship between the different cameras

3



must be considered. As shown in Figure 1.2, if there are thousands of possible associ-

ation numbers in a single camera, then the number of possible associations in a multi-

camera will increase exponentially with billions Although several single camera-based

approaches [11, 12] have proposed methods to obtain a globally optimum in a poly-

nomial time, it is not straightforward to directly apply the existing algorithms to find

solutions in the large problem space. This is because, in the case of multiple cameras,

the relationship between different cameras must also be considered. Therefore, there

is a need for efficient solution space exploration methods and appropriate assumptions

to limit solution space.

Second, the problem of localization of multiple cameras is more challenging than

the problem of localization of single cameras. In the case of a single camera, the lo-

calization problem is the problem of locating the object’s center or bounding boxes on

the image plane. Thus, both the observation and the hidden state to be estimated exist

in the image plane. On the other hand, in a multi-camera situation, it is a problem of

finding the exact 3D position of objects. It is necessary to find the point or volume

of the 3D space from the observation on the image plane. Since 2D-3D ambiguity

exists between the image plane and the 3D space, additional inference framework is

required. In the next subsection, we will discuss how existing methods solved these

multiple camera challenges.

1.2 Related Works

The problem of multiple target localization and tracking in a single camera has been

studied for decades and has been actively studied recently [13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25]. Most of single camera-based methods estimate the 3D position

of people through ground plane assumption that a person stands on a 3D virtual plane.

The ground plane assumption means trajectories on the plane rather than complete

3D trajectories. Nevertheless, several single camera-based methods have attempt to

4



Khan et al., TPAMI 2009.

Ayazoglu et al., ICCV 2011. Hofmann et al., CVPR 2013.

Leal-Taixé et al., CVPR 2012.

Possegger et al., CVPR 2013.

Wu et al., ICCV 2009.

Silhouettes-based approaches Separate data association Unified data association

Figure 1.3: Three categories of existing approaches for multi-camera multi-target

tracking. All figures are copied from the original papers.

solve data association and trajectory estimation simultaneously [18, 26]. Andriyenko

et al. [18] successfully formulates data association as a discrete optimization problem

and trajectory estimation as a continuous optimization problem. However, one of the

main drawbacks of single camera-based approaches is that it suffers from occlusions

because tracking targets may not be observed at all when the targets become severely

occluded.

To overcome the problem of occlusions, multiple camera-based approaches have

attempted to integrate the observations from multiple cameras and given promising

results [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. In multiple camera-

based approaches, one of main challenges is that the tracking and localization problem

should be solved in two domains: time (i.e., temporally) and camera domain (i.e.,

spatially). As shown in Figure 1.3, the multiple camera-based approaches are roughly

categorized into three groups: silhouette-based, separate and unified data association

approaches.

Several silhouette-based approaches take into account observations from multi-

5



ple cameras at each time to generate global probability map called occupancy map

[32, 39], synergy map [33], and volumetric density map [37, 40]. After reconstructing

these global maps, they apply the single camera-based tracking approaches such as

linear programming [12, 39], graph cut [33], and filtering-based single target tracker

[37, 40]. Some separate data association approaches make 3D hypotheses by fusing

object detections from all cameras and solve (temporal) data association problem of the

3D hypotheses [34, 35]. The main disadvantage of the silhouette-based and separate

data association approaches is that although observations from multiple cameras are

spatio-temporally correlated, they do not fully exploit the observations because they

sequentially solve two subproblems in each camera and time domain respectively. In

addition, the error in the first subproblem can be accumulated to the next subproblem

by consecutively solving two subproblems.

In recent years, there has been an increasing interest in the unified data association

approaches solving the multiple target tracking problem in both two domains simul-

taneously [36, 38, 41]. By adopting the tracking-by-detection framework, two com-

binatorial problems are considered at the same time: spatial data association through

cameras and temporal data association between frames. Since the spatio-temporal data

association problem is a well known NP-hard problem even in a small number of cam-

eras or frames (more than 3) [42], it is difficult to make the problem tractable. In [38]

and [36], the spatio-temporal data association problem is formulated as a min-cost

network flow problem with generating a graph among detections and solved it by a

binary integer programming (BIP) solver. Especially, Hofmann et al. [38] solves the

data association problem in spatio-temporal domain, which gives a notable improve-

ment in tracking performance. However, the algorithm complexity of BIP solver grows

exponentially with respect to the number of cameras and the algorithms require a large

memory budget [36, 38]. Yoo et al. [41] extended the multi-hypothesis tracking [43]

to multiple cameras in an online manner.

On the other hand, most of multiple camera-based approaches do not consider se-

6



riously localization problem, i.e., estimating 3D locations of targets from observations

of multiple cameras. 3D locations are determined by a frame-by-frame manner using

observations at the specific frame rather than by exploiting all observations at entire

frames. Wu et al. [34] reconstructs 3D trajectories of flying bats by minimizing the sum

of the stereoscopic reconstruction errors computed for each view. Bredereck et al. [35]

calculates 3D locations by averaging the points triangulated from every camera pairs.

Recent unified data association approaches assume a flat ground plane where 3D lo-

cations are computed along every observation pairs [36] and combinations [38]. They

calculate 3D locations of targets by simply triangulating the observations at each frame

and assuming that people move on a flat ground plane. The ground plane assumption

does not hold when targets are jumping or flying apart from the ground plane (e.g.

tracking heads of people who stand and sit in a 3D space). More importantly, in their

formulation [34, 35, 36, 38], 3D locations are not variables but constants. Finally, they

solve a spatio-temporal data association problem with given 3D locations of targets.

Here, we present an unified data association approach to incorporate not only track-

ing problem but localization problem into a single optimization formulation. In the uni-

fied optimization framework, we focus on exploiting all observations from every cam-

era and frame to find the optimal values of assignment variables for spatio-temporal

data association and 3D location variable for 3D trajectory estimation. Compared to

the previous approaches, relatively accurate 3D trajectories are estimated by combin-

ing the two correlated problems without any assumption on the scene structure. Unfor-

tunately, it is difficult to solve the coupled problem that has two types of optimization

variables and a large solution space. The objective of this paper is to deal with the

coupled optimization issue at the same time and to develop an efficient optimization

scheme requiring reasonable memory budget.

7



(a) Triangulation using multiple calibrated cameras

missing

(b) 2D image-3D space ambiguity

Figure 1.4: The localization issues in overlapping cameras.

1.3 Problem Statements & Contributions

Problem Statements

Most of multi-target tracking methods have utilized the observations detected by object

classifier or background subtraction methods, which is called tracking-by-detection

framework [17, 18, 19, 26, 38, 36]. In the tracking-by-detection framework, tracking

means linking observations from the same object, which is called data association, and

localization indicates predicting states (location, velocity, etc.) of each object, which

is called trajectory estimation. The benefit of the tracking-by-detection framework is

that it is robust to drifting and easy to recover from tracking failure.

By adopting the tracking-by-detection framework, tracking problem in overlap-

ping cameras is still a data association problem like single camera. However, temporal

data association to the time axis as well as spatial data association to the camera axis

must be considered simultaneously. Therefore, the size of the combinatorial space is

much larger than the single camera data association problem considering only the time

axis. The localization problem in overlapping cameras is a problem of estimating three-

dimensional positions from a bounding box detected from multiple cameras. Given cal-

ibration information, each camera can estimate the 3D position through triangulation

(see Figure 1.4(a)). For example, the triangulation can be accomplished through the

following process. One point of each image can be represented by a back-projection

8



line in three-dimensional space. If key-points are defined for the center points of each

bounding box detected in multiple cameras, the key-points are represented by several

back-projection lines in three-dimensional space. It is possible to estimate the posi-

tion with the smallest distance from each back-projection line as a three-dimensional

position. However, it is difficult to estimate the 3D position of a bounding box that is

detected only in one camera (see Figure 1.4(b)). Therefore, it is necessary to deter-

mine the 3D position using the information of the adjacent time. The solution space

that considers both the localization and tracking problem in overlapping cameras will

exist in both discrete space of data association and continuous space of 3D localiza-

tion so the solution space will be enormously large. In this dissertation, we propose two

approaches that simultaneously solving the localization and tracking problems while

efficiently resolves the solution space.

Contributions

We argue that solving localization and tracking problem simultaneously should lead to

an accurate estimation of 3D trajectories by jointly considering two correlated prob-

lems. While exploiting all observations from each camera and frame, we incorporate

localization and tracking problem into a single optimization framework combining

spatio-temporal data association problem for tracking and 3D trajectory estimation

problem for localization. The main contribution of this dissertation will be to describe

two optimization approach solving localizing and tracking problem simultaneously.

First, we present a mixed multidimensional assignment approach that incorporates

both spatio-temporal data association and 3D trajectory estimation in a single objec-

tive function (Chapter 2). To cope with significant increase of search space, we pro-

pose an approximation algorithm to solve the spatio-temporal data association prob-

lem with a reasonable computational load. To express an association corresponding

to a target in the spatio-temporal data association problem, a new representation us-

ing a matrix to represent associations is introduced. We formulate the spatio-temporal
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data association as a multidimensional assignment (MDA) problem of which opti-

mization variables are called assignment matrices. Also, our optimization formulation

handles localization problem for which 3D location variables are introduced to rep-

resent a solution of 3D trajectory estimation problem. Furthermore, we also design a

new cost function that describes the accuracy in 3D reconstruction, motion smooth-

ness, missing detections from cameras, starting/ending zone, trajectory fragments, and

false positives. In particular, the motion smoothness term is designed to model high-

order motion of each object, which can reduce the possibility of ID switches.

Since two different types of optimization variables, i.e., discrete variables for as-

signment matrices and continuous variables for 3D location, are defined on the cost

function, it is not straightforward to solve the joint optimization problem. To handle

this mixed discrete-continuous optimization problem, we adopt an alternative opti-

mization scheme where the assignment variables and the 3D location variables are

alternatively optimized by fixing the other type of variables. For assignment matrices,

the proposed approximation algorithm for the MDA problem iteratively improves a

solution by a random splitting and optimal re-merging. While maintaining a feasible

solution, the new solution is re-constructed by random splitting and optimal merg-

ing of the split assignment matrices. The new solution is evaluated by the proposed

cost function and obtained so as to have a lower cost than the previous one. As the

random splitting and re-merging is repeatedly performed, the new solution eventually

converges to the local minimum. Hence, the proposed splitting/re-merging algorithm

can be considered as a guided random search to find the global optimum through re-

peated random local searches. Given assignment matrices, the problem for 3D loca-

tion variables becomes the traditional least squares problem and can be solved in a

closed-form. To evaluate the performance of 3D trajectory estimation, we present a

new dataset containing the ground truth of 3D head trajectories of each person.

Second, we propose a variational inference approach to solve the localization and

tracking problems simultaneously (Chapter 3). We formulate a maximum a posteriori
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(MAP) problem on joint random variables of trajectory assignments and 3D positions

for given detections from multi-camera 2D images. To tackle difficulties of inference

the posterior distribution, we adopt a variational inference approximation to make the

MAP problem tractable by marginalizing 3D position variable under the assumption

of parametric variational distribution over the 3D position variable. By describing the

variational distribution for the 3D position variable as Gaussian, we obtain a varia-

tional expectation-maximization (V-EM) formulation. In the V-EM, the mean and the

variance of the 3D position variable are estimated in E-step and the assignment prob-

lem is solved as a a min-cost network problem in M-step. The remaining probability

distributions used in the formulation are designed by following the Boltzmann dis-

tribution which are represented by seven terms induced from multi-camera tracking

settings. By formulating and solving the joint localization and tracking problems, we

achieve an accurate estimation of 3D trajectories, while outperforming the state-of-

the-art methods.
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Chapter 2

Mixed Multidimensional Assignment Approach

2.1 Problem Formulation

2.1.1 Problem Statements

Notation. Before explaining the details of the proposed method, Table 2.1 summa-

rizes the notations used in the following sections. To easily notice the characteristic of

the notations, bold capital letters (A,B, ...) are used for discrete sets, while continu-

ous ones are denoted by calligraphic capital letters (A,B, ...). Standard capital letters

(A,B, ...) denote matrices, while standard small letters (a, b, ...) represent variables,

functions and indices. Standard bold letters (a,b, ...) denote vectors and sans-serif

font (A,B, ..., a, b, ...) denotes constants.

Formulation Concepts. Extending the tracking-by-detection framework to multi-camera,

multi-target tracking and localization problem consists of two sub-problems: spatio-

temporal data association and 3D trajectory estimation (see Figure 2.1). Although a

data association problem in single camera aims to link detections from the same object

temporally, data association in multiple cameras includes spatial data association in

addition to (temporal) data association in a single camera. The data association prob-

lem in multiple cameras called spatio-temporal data association is a process of finding

identity labels (IDs) of all detections. Given detections with the same label, a 3D tra-
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Figure 2.1: Example of data association problem and 3D trajectory estimation problem

in multi-target tracking in multi-camera. In data association problem, (a) for every

cameras and frames, each node denotes a detection and has their label (ID). (b) 3D

trajectory estimation problem is to estimate 3D trajectories with the detections which

have the same label. (c) The final labels of all detections and (d) their 3D trajectories

are determined by the proposed optimization framework.
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Table 2.1: Notations. Each block summarize the notation related to constants, detec-

tions, assignments, and trajectory hypotheses, respectively

Symbol Description

F length of sequence in frames

K number of cameras

P number of targets

N number of trajectory hypotheses

Mkt number of detections in camera k and frame t

Ikt set of detection indices in camera k and frame t

D set of all detections

Dkt set of detections in camera k and frame t

dk,t
i the i-th detection in camera k and frame t

A set of assignment matrices

Ap the p-th assignment matrix

At
p the t-th column of the p-th assignment matrix

X set of all trajectory hypotheses

xn the n-th trajectory hypothesis

xt
n the n-th trajectory hypothesis at frame t

sn,en start and end frame indices of xn

jectory estimation problem is defined as the problem of estimating locations of objects

in a 3D Euclidean space. In contrast to the previous literature [34, 35, 36, 38], the ob-

jective of our work is to solve the spatio-temporal data association and 3D trajectory

estimation problem at the same time.

Optimization variables. Mathematically, we introduce two types of variables: an as-

signment (matrix) A and a trajectory hypothesis (vector) x. An assignment matrix is

for the spatio-temporal data association problem and a trajectory hypothesis is for the

3D trajectory estimation problem. First of all, we introduce details of each variable.

Assignments. An assignment A indicates detection indices corresponding a target,
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which is represented as a matrix form,

A = RK×F, [A]k,t = i, i ∈ Ikt, (2.1)

where each entry of a matrix A is determined by the following augmented index set,

Ikt = {0, 1, 2, ...,Mkt}. (2.2)

Here, a dummy index 0 represents a missing or invisible detection and Mkt denotes the

number of detections at the t-th frame of the k-th camera. We treat a trajectory with

length 1 as a false positive. With the dummy index 0, we can express false positive,

frame jump, and missing or invisible detections. In K = 3, F = 5 case, examples of

assignments are as the following matrices: 0 2 1 1 0

0 0 3 0 0

0 2 3 1 0

 : Starts at frame 2 and ends at frame 4

 0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

 : False positive (trajectory length = 1)

 1 2 1 1 2

0 0 0 0 0

2 2 3 3 2

 : Missing detections at cam 2

 1 2 0 1 2

0 0 0 3 2

1 2 0 3 2

 : Missing detections at frame 3.

Trajectory hypotheses. A trajectory hypothesis x represents a sequence of 3D points

of a target. We denote 3D location xt at the t-frame as (xt, yt, zt). Then, the trajectory

hypothesis x is denoted by a column vector concatenating the 3D points,

x = (xs ... xe)T ∈ R3(e−s+1)×1, (2.3)

where s and e are the start and the end frame indices, respectively.

Optimization Formulation. Following the tracking-by-detection framework, we con-

struct a KF-partite hypergraph using detections from all cameras and frames as nodes.
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A set of detections from the k-th camera and the t-th frame is denoted by Dkt whose

element dk,ti ∈ Dkt represents 2D bounding box for the i-th detection at the k-th

camera and the t-th frame. A hyperedge in the KF-partite graph includes at most one

detection in each partite set. The KF-partite graph is defined by

G = (V,E) = (D11 ∪ ... ∪DKF,E), (2.4)

where E denotes a set of all possible hyperedges.

Since an assignment matrix represents a hyperedge, all possible assignment matri-

ces is the same as the hyperedge set E. Given a KF-partite graph, we define a trajectory

hypothesis set X for the 3D trajectory estimation. Letting N be the number of trajec-

tory hypotheses, a trajectory hypothesis set is defined as

X = {x1,x2, ...,xN}. (2.5)

Note that the number N equals to the number of hyperedges |E|. Each trajectory hy-

pothesis x ∈ X represents 3D locations of the corresponding assignment in E. Then,

the 3D trajectory estimation can be seen as the problem of updating trajectory hy-

pothesis vectors in X . On the other hand, the spatio-temporal data association can be

formulated as finding a set of assignment matrices under satisfying two constraints:

non-overlap and union constraints. Letting P be the unknown number of targets, the

set of assignment matrices is defined by

A = {A1, A2, ..., AP}, (2.6)

where each assignment matrix Ap ∈ A does not share a detection with other assign-

ment matrices and assignment matrices in A include all indices of detections. From

the definition of A and X , the final 3D trajectories are derived as,

{xn1 , ...,xnp , ...,xnP
} ⊂ X , (2.7)

where np denotes the trajectory hypothesis’ index corresponding to the p-th assign-

ment Ap.

16



The problem of finding A and X with a minimum cost can be formulated as the

following mixed multidimensional assignment (MMDA) problem:

min
A,X

P∑
p=1

c(Ap,X ) (2.8)

subject to

[Au]k,t 6= [Av]k,t, ∀u 6= v, s.t. [Au]k,t, [Av]k,t > 0, (2.9)

∃Au ∈ A, ∀i ∈ Ikt\{0} s.t. [Au]k,t = i, (2.10)

k = 1, ...,K, t = 1, ...,F,

where c(Ap,X ) denotes the cost function of the p-th object (the cost function will be

defined in Section 2.1.2). The optimization problem in (2.8) is challenging because

of the following three reasons. First, two different types of optimization variables are

mixed; A in discrete domain, X in continuous domain. Next, the cost function is not

even convex or submodular. Lastly, a feasible set satisfying the non-overlap and union

constraints in (2.9) and (2.10) respectively, is defined in combinatorial solution space.

To deal with this kind of problem, we apply an alternative optimization strategy where

only one optimization variable is optimized by fixing the other variable and then the

procedure is repeated by changing the optimizing variable and fixed variable to each

other alternatively. In optimizing A, to deal with the combinatorial solution space, we

propose an iterative algorithm that efficiently finds local optimum in a random search

manner. In optimizing X at continuous domain, the solution is given by a closed-form

via least squared formulation. The details for the optimization will be addressed in

Section 2.2.

2.1.2 Cost Design

In this subsection, we present a cost design for our formulation, which considers 3D

reconstruction accuracy, motion smoothness, and penalty terms (see Figure 2.2). The

penalty terms enforce the trajectories to start and end at the entrance/exit zone, and
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Tracking Area Tracking Area

Low cost High cost

recc

motc

midc

tsec

tfmc

fptc

Figure 2.2: The physical properties of different terms of the cost function. The left

column shows an example with a lower cost value, the right column with a higher cost

value for each individual term.
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prevent the trajectories from having too many missing detections or a short length. A

cost function c(Ap,X ) is a function that maps an Ap and X to a real value. The cost

function can be rewritten as c̃(·) by introducing the reconstruction function r(Ap) that

maps an assignment matrix Ap to a trajectory hypothesis xn as follows:

c(Ap,X ) = c̃(Ap, r(Ap)) = c̃(Ap,xnp), (2.11)

where np is an index corresponding to the p-th assignment matrix among the indices

in X . For simplicity of notations, we omit the index np and p in the following.

Our cost function is a summation of six individual terms: cost for 3D reconstruc-

tion accuracy (crec), cost for motion smoothness (cmot), cost for missing detections

(cmid), cost for starting/ending zone of a trajectory (ctse), cost for trajectory fragments

(ctfm) and cost for false positives (cfpt) defined by,

c̃(A,x) = λrec · crec + λmot · cmot + λmid · cmid

+λtse · ctse + λtfm · ctfm + λfpt · cfpt, (2.12)

where λ indicates the weighting parameter of each cost term.

Cost for 3D Reconstruction Accuracy. At each frame t, the first term crec measures

3D reconstruction error obtained from a 3D point xt and 3D back-projection lines

of assigned detections at each camera. The cost value increases proportionally to the

Euclidean distance between a 3D point and a 3D back-projection line of a detection in

each camera. The crec is defined as a summation of the average of 3D reconstruction

errors εrec over the entire frames. At each frame, 3D reconstruction error εrec is defined

in the sense of mean squared error (MSE). The error εrec(A,x, k, t) at frame t and

camera k is obtained by the distance between 3D point xt and 3D back-projection line

from the detection dk,ti where i = [A]k,t. To prevent that a missed detection has a zero

error, we set a default error term r when a person is visible but not detected. Letting

N(xt) be the index set of visible cameras at a 3D location xt, the cost for the 3D
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reconstruction accuracy is given by

crec(A,x) =

e∑
t=s

∑
k∈N(xt)

εrec(A
t,xt, k)

2

|N(xt)|
, (2.13)

εrec(A
t,xt, k) = (2.14)

dist(Φk(dk,ti ),xt), if [At]k = i, i > 0,

r, if [At]k = 0, k ∈ N(xt),

0, otherwise,

where Φk(d) indicates the back-projection line of a detection d at the k-th camera.

The distance function is modeled as a form of linear equation and thus can be solved

in a closed-form.

Remark 1 Let a back-projection line Φk(d) be x−c
a = y−d

b = z, where the constants

a, b, c, d are constant parameters to determine the back-projection line Φk(d). The

distance function is defined by Euclidean distance between the 3D line and a 3D point

xt = (xt, yt, zt) at the z = zt. The point at z = zt in the back-projection line is

(azt + c, bzt + d, zt). Finally, the distance function dist(Φk(d),xt) in (2.14) can be

rewritten by
∥∥Pxt − q

∥∥ where P =

 −1 0 a

0 −1 b

0 0 0

, q = (c, d, 0)T.

Cost for Motion Smoothness. The cost for motion smoothness measures how much

a trajectory is inconsistent with the natural motion of a person. It is assumed that a

person moves through the shortest path, and in most cases also smooth path. For this

purpose, we adopt a spline-based cost function for a motion model considering motion

curvature term εc as well as average distance εd:

cmot(A,x) = αm · εd + (1− αm) · εc, (2.15)

εd =

e∑
t=s+1

wd(t) ·
∥∥xt − xt−1

∥∥2
, (2.16)

εc =
e−1∑
t=s+1

wc(t) ·
∥∥xt+1 − 2 · xt + xt−1

∥∥2
. (2.17)
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There exists an adjusting weight αm that controls the trade-off between εc and εd.

Note that at each frame t, each term is weighted by the number of average detec-

tions over the consecutive frames. Denoting d(At) for the number of detections for

the assignment A at the t-th frame, their weights are wd(t) = d(At)+d(At−1)
2 and

wc(t) = d(At+1)+d(At)+d(At−1)
3 respectively. The spline-based motion model has been

used in single camera approaches [16, 18], but we have extended it to a multiple cam-

era case by weighting the average numbers of detections.

Cost for Missing Detections. The cost for missing detections is designed to penalize

the case that a person is visible at the established cameras. The cost for missing detec-

tions is proportional to the number of missed detections among the number of visible

cameras. The penalty is given as

cmid(A,x) =
e∑
t=s

(|N(xt)| − d(At)), (2.18)

where the number of visible cameras, |N(xt)|, is always greater than or equal to the

number of detections d(At).

Cost for Starting/Ending Zone Violation. A trajectory is enforced to start and end at

entrance/exit zone, respectively. If a trajectory starts or ends at out of the entrance/exit

zone, we give a penalty in the cost function proportional to the number of detection,

that is,

ctse(A,x) = d(As) · e(xs) + d(Ae) · e(xe), (2.19)

where a function e(xt) is a indicator function that has 1 when xt is out of the en-

trance/exit zone.

Cost for Trajectory Fragments. This cost is to prevent a trivial solution that has many

trajectory fragments rather than connects them. Similar to [13], we give a penalty to the

trajectory whenever it starts or ends, which means that trajectory fragments increases

the cost. The cost is proportional to the number of detection at start/end time,

ctfm(A) = d(As) + d(Ae). (2.20)
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Cost for False Positive Trajectory. The cost for false positive trajectories prevents a

trivial solution that all detection are considered as false positives. We penalize a false

positive trajectory which consists of detections at the frame where a trajectory starts

and ends at the same time (i.e., trajectory length is 1). The cost can be defined as

cfpt(A) =


d(As), if s = e,

0, otherwise.
(2.21)

2.2 Optimization

It is clear that the cost terms described in Section 2.1.2 are defined on both discrete and

continuous domain where an assignment variable A is in discrete space and trajectory

hypothesis x is in continuous space. Unfortunately, it is not trivial to simultaneously

optimize two types of variables A and X in (2.8). In this paper, we adopt an alternative

optimization framework, which optimizes one set of variables under fixing the other set

of variables. Starting from initial solution A0 and X 0, we first find a locally optimal

assignment set A (i.e., spatio-temporal data association problem). Next, fixing the

locally optimal assignment set A, a locally optimal trajectory hypotheses set X is

found (i.e., trajectory estimation problem). This alternative procedure is repeated. To

summarize, starting from the previous solution A(iter−1) and X (iter−1), the proposed

optimization framework alternates solving the following two objective functions:
A(iter) = arg min

A

∑
p

c(Ap,X (iter−1)), (2.22a)

X (iter) = arg min
X

∑
p

c(A(iter)
p ,X ). (2.22b)

First, given trajectory hypotheses set X (iter−1), the problem of finding an assign-

ment set with the minimum cost (2.22a) is the multidimensional assignment problem

(MDA), which is an NP-hard problem when K ≥ 3 or F ≥ 3 [42]. The MDA problem

for data association has been widely studied in multi-target tracking [16] and multi-

sensor fusion problem [42, 44]. It can be solved by using an approximate method such
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as greedy, branch and bound techniques, the Lagrangian relaxation methods [42, 44],

and an iterative algorithm [16]. Unlike the previous works [42, 44, 16], we consider

both multi-target tracking and multi-sensor fusion problem simultaneously. The MDA

problem is formulated for sptio-temporal data association problem that links detec-

tions across both multiple cameras and frames. Furthermore, we present an iterative

algorithm that efficiently solves the sptio-temporal data association problem by a ran-

dom search manner (Details are given in Section 2.2.1). In (2.22b), fixing assignment

set A, the problem for finding 3D trajectories that minimizes the designed cost terms,

can be formulated as minimizing least squared errors of each trajectory hypothesis

x ∈ X and their detections (Details in Section 2.2.2). The complete algorithm is sum-

marized in Algorithm 1. The following subsections describe the detail of each parts.

Algorithm 1 An Overall Optimization Framework

Input: A0, X 0, max iter, max loop

Output: A∗, x∗n1
, ...,x∗np , ...,x

∗
nP∗

1: for iter ← 1, . . . ,max iter do

2: A(iter) = ISR(A(iter−1),X (iter−1),max loop)

3: X (iter) = THU(A(iter),X (iter−1))
end for

4: A∗ = A(max iter)

5: x∗np ← r(A∗p), ∀A∗p ∈ A∗

2.2.1 Spatio-temporal Data Association

Splitting/re-merging. Starting from the assignment set A(iter−1), a new assignment

set A(iter) is calculated by the proposed iterative splitting/re-merging algorithm to

be described in this section. The initial solution of splitting/re-merging Ã(0) is set to
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A(iter−1).1 The key idea of the splitting/re-merging algorithm is that we randomly

split the given assignment set Ã(l−1) into two split assignment sets ÃI and ÃJ, then

optimally re-merge the two split assignment sets to obtain the new solution Ã(l) as

a result. Our splitting/re-merging strategy is designed to find the solution better than

or equal to the previous one. The final assignment set Ã(max loop) is returned after

max loop times of iterations.

Splitting. To split an assignment set into two random assignment sets, we introduce a

pair of binary matrices called a pair of Random Split Masks (RSMs) satisfying

M I +MJ = 1
K×F, (2.23)

[M I]i,j , [M
J]i,j ∈ {0, 1}, i = 1, ...,K, j = 1, ...,F,

where all entries of the matrix 1K×F have 1. By choosing a pair of RSMs M I and MJ,

we split the previous assignment set Ã(l−1) into two groups ÃI and ÃJ.

Remark 2 A pair of RSMs M I and MJ are determined by three components in our

experiments: splitting frame t, a set of splitting cameras K and RSM type c. At each

splitting frame t, we determine a pair of RSMs by randomly choosing a set of splitting

cameras K and RSM type c. Thus, a pair of RSMs are functions of t, K, and c. The

details of each component is described below.

• The splitting frame t is a reference frame where the t-th columns of assignment

matrices are mainly changed. During the iteration l, we sequentially choose the

splitting frame, i.e., from frame 1 to F.

• After choosing the splitting frame t, a set of splitting cameras K is randomly

chosen in powerset of {1, 2, ...,K} excluding empty set and universal set, that

is,

K ∈ 2{1,2,...,K} \ {{∅}, {1, 2, ...,K}}. (2.24)
1To distinguish the notation of inner iterations from that of outer iterations, Ã(l) denotes the assign-

ment set at the l-th inner iteration.
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• Given splitting frame t and set of splitting cameras K, two RSM types are de-

fined: reconstruction and track type. RSM type determines the remaining columns

of M I and MJ except the t-th column. The RSM type is illustrated as follows. In

K = 3, F = 5 case, examples of a pair of RSMsM I andMJ are as the following

matrices:

t = 3, K = {1, 2}, c = reconstruction type,

M I =

 1 1 1 1 1

1 1 1 1 1

1 1 0 1 1

 , MJ =

 0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

 ,

t = 3, K = {1, 2}, c = track type,

M I =

 1 1 1 0 0

1 1 1 0 0

1 1 0 0 0

 , MJ =

 0 0 0 1 1

0 0 0 1 1

0 0 1 1 1

 .

At each splitting frame t, we select a pair of RSMs in a random permutation of

all pairs of RSMs with different K and RSM type . Thus, the number of all pairs

of RSMs is given by F ×(2K − 2)× 2.

Each assignment matrix Ãp ∈ Ã(l−1) is split into two assignment matrices ÃI
p and

ÃJ
p:

ÃI
p = M I ⊗ Ãp, ÃJ

p = MJ ⊗ Ãp, (2.25)

where ⊗ is the Hadamard (or entrywise) product. Multiplying M I and MJ to all as-

signment matrices in Ã(l−1), we finally obtain two assignment sets as follows:

Ã(l−1) = {Ãp}, p = 1, ...,P,

ÃI = {M I ⊗ Ãp}\{OK×F},

ÃJ = {MJ ⊗ Ãp}\{OK×F},

|ÃI| = PI, |ÃJ| = PJ,

where PI, PJ denote the number of elements of each split assignment set respectively

and t denotes the splitting frame of given pair of RSMs. Note that both PI and PJ
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Figure 2.3: An example of a splitting/re-merging in 5 frames and 2 cameras. (a) Ran-

dom split masks (M I: cyan, MJ: light red). (b) Previous assignment set Ã(l−1) =

{A1, A2} (A1: red, A2: blue). (c) Split assignment sets ÃI = {ÃI
1, Ã

I
2}, ÃJ =

{ÃJ
1, Ã

J
2} (ÃI

1, Ã
J
1: red, ÃI

2, Ã
J
2: blue). (d) New assignment set Ã(l) = {ÃI

1 + ÃJ
2, Ã

I
2 +

ÃJ
1} (ÃI

1 + ÃJ
2: red, ÃI

2 + ÃJ
1: blue).
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are less than or equal to P because split assignments might be all-zero column at the

splitting frame t.

Re-merging. After the random splitting operation, the two split assignment sets are re-

merged so that the re-merged assignment set has a cost smaller than or equal to the

previous cost. For each ÃI
i ∈ ÃI, ÃJ

j ∈ ÃJ, the merged assignment set is obtained

by the summation of two matrices, i.e., A<i,j> = AI
i + AJ

j . The new merging pairs

ÃI
i, Ã

J
j are determined so that they have the minimal cost among all possible merging

combinations between ÃI and ÃJ. Let ψij indicate a binary variable for a merging pair,

which is set to 1 if ÃI
i and ÃJ

j are selected for re-merging; otherwise it is assigned to

0. With binary variables ψ, the re-merging process can be formulated as the following

equation:

min
ψ

PI∑
i=0

PJ∑
j=0

cijψij (2.26)

subject to

PJ∑
j=0

ψij = 1; i = 1, ...,PI,

PI∑
i=0

ψij = 1; j = 1, ...,PJ,

where cij = c(ÃI
i + ÃJ

j ,X ) means a cost of re-merged two assignments ÃI
i and ÃJ

j .

The problem can be solved exactly in polynomial time by the Kuhn-Munkres Hungar-

ian algorithm [45]. The re-merged assignment set Ã(l) is obtained by the optimal ψij∗

of the two-dimensional assignment problem as follows:

Ã(l) = {A<i,j>},∀i, j satisfy ψij∗ = 1, (2.27)

A<i,j> =


ÃI
i + ÃJ

j i, j ≥ 1,

ÃI
i i ≥ 1, j = 0,

ÃJ
j i = 0, j ≥ 1.

(2.28)
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Finally, the new assignment set Ã(l) at the l-th iteration is a set of re-merged assign-

ment between ÃI and ÃJ. Next, we repeat this splitting/re-merging operation until the

predefined maximum number of iterations.

Example of a splitting/re-merging. Consider two people tracked through five frames

and two cameras. Assume that we have a feasible assignment set at the (l− 1)-th iter-

ation Ã(l−1) = {A1, A2} with cost C(l−1) = c(A1,X ) + c(A2,X ) (see Figure 2.3b).

First, let us assume that a pair of RSMs M I and MJ are generated as the following

matrices (see Figure 2.3a),

M I =

 1 1 0 1 1

1 1 1 1 1

 , MJ =

 0 0 1 0 0

0 0 0 0 0

 . (2.29)

By the pair of RSM, the given assignment set Ã(l−1) is split into two groups ÃI =

{ÃI
1, Ã

I
2}, ÃJ = {ÃJ

1, Ã
J
2} (see Figure 2.3c). And their assignment matrices are

ÃI
1=

 1 1 0 1 1

1 1 1 1 1

 , ÃI
2=

 2 2 0 2 2

2 2 2 2 2

 , (2.30)

ÃJ
1=

 0 0 1 0 0

0 0 0 0 0

 , ÃJ
2=

 0 0 2 0 0

0 0 0 0 0

 .

Next, the problem to find optimal merging pairs between the two assignment sets ÃI

and ÃJ can be formulated as the classical two-dimensional assignment problem [46]

to minimize the sum of costs by utilizing the following cost matrix,

C =

 CIJ CI0

C0J C00

 , (2.31)

where the matrix CIJ represent the costs of the re-merging assignments and CI0, C0J,

and C00 are used for the case that assigns to nothing. Specifically, the [CIJ]i,j means

the cost of the re-merging assignment ÃI
i + ÃJ

j given by

CIJ =

 c(ÃI
1 + ÃJ

1,X ) c(ÃI
1 + ÃJ

2,X )

c(ÃI
2 + ÃJ

1,X ) c(ÃI
2 + ÃJ

2,X )

 , (2.32)
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The diagonal terms of matrix CI0 and C0J is c(ÃI
i,X ) and c(ÃJ

j ,X ) respectively. C00

is an all-zero matrix and thus it makes the cost matrix C into a square matrix.

The two-dimensional assignment problem can be solved in a polynomial time by

using the Hungarian algorithm [45]. If c12 + c21 < c11 + c22, the merged assignment

set Ã(l) with the minimal cost is determined by {A<1,2>, A<2,1>} where A<1,2> =

ÃI
1 + ÃJ

2, A<2,1> = ÃI
2 + ÃJ

1 (see Figure 2.3d). Note that the cost of Ã(l) is less than

or equal to that of Ã(l−1), i.e., Cl = c12 + c21 ≤ C(l−1) = c11 + c22. Therefore, the

previous assignment set is maintained if c12 + c21 > c11 + c22. Owing to the descent

search strategy and the randomness of M I,MJ selected in each iteration, the resulting

assignment set must converge to a local optimum as the iteration goes to infinity.

Perturbations. A splitting/re-merging operation is a random search guided by a pair

of RSMs M I,MJ, which finally leads to a lower cost. However, this descent only

strategy might get stuck in a local basin far from the optimum. To escape from a local

basin, we adopt a perturbation technique similar to most of random search method.

Our perturbation is a guided perturbation rather than a random perturbation be-

cause the proposed perturbation is performed under a specific condition. Among three

components to determine a pair of RSMs M I,MJ, the splitting frame t is a crucial

parameter determining the condition for perturbation (see details of RSMs in Remark

2). Choosing a pair of RSMs with splitting frame t means that the t-th column of as-

signment matrices is mainly changed. If all detections are missing at the t-th frame,

there is no information changed by a pair of RSM with splitting frame t. Hence, the

proposed splitting/re-merging with splitting frame t usually returns the original assign-

ment matrix with the t-th all-zero column. It implies that the solution is trapped in a

local minimum. In this case, we perform a perturbation that the re-merging procedure

is skipped after splitting the assignment matrix. This perturbation may increase the

cost value but increase the possibility to escape from a local minimum as usual guided

random search schemes

For this purpose, we modify re-merging cost cij in (2.26). Let a re-merging as-
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signment matrix A<i,j> be a summation of split assignment matrix ÃI
i + ÃJ

j . In the

re-merging step with splitting frame t, we set the re-merging cost to infinity if the t-th

column of re-merging assignment matrix A<i,j> has all-zero values as follows:

cij =


Inf, if At<i,j> = OK×1,

c(ÃI
i + ÃJ

j , X ), otherwise.

(2.33)

Proposed iterative splitting/re-merging with perturbation is summarized in Algorithm

2. In Section 4.3.1, we show that the iterative splitting/re-merging with perturbation

finally achieves a better solution than without perturbation.

Algorithm 2 An Iterative Splitting/Re-merging (ISR) with Perturbation for MDA

Input: A(iter−1), X (iter−1), max loop

Output: A(iter)

1: Initialize Ã(0) ← A(iter−1)

2: for l← 1, . . . ,max loop do

3: Select Random Split Mask M I,MJ

4: for all Ãp ∈ Ã(l−1) do

5: if M I ⊗ Ãp 6= OK×F then

6: ÃI ← ÃI ∪ {ÃI
p}, ÃI

p = M I ⊗ Ãp
end if

7: if MJ ⊗Ap 6= OK×F then

8: ÃJ ← ÃJ ∪ {ÃJ
p}, ÃJ

p = MJ ⊗ Ãp
end if

end for

9: Find optimal assignments ψ∗ij by solving (2.26) with perturbation in (2.33)

10: for all i, j satisfying ψ∗ij = 1 do

11: Ã(l) ← A<i,j> calculated from (2.28)
end for

end for

12: A(iter) = Ã(max loop)
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2.2.2 3D Trajectory Estimation

Recalling the original objective function in (2.8), the goal of 3D trajectory estimation

is to find 3D locations of each target properly describing the six cost terms defined in

Section 2.1.2. Given the assignment set A(iter), the original objective function can be

simplified to the one in (2.22b), which is the problem of finding trajectory hypotheses

setX (iter) with a minimum cost. Using (2.11) and (2.22b), we can rewrite the objective

function for 3D trajectory estimation,

min
xn1 ,.,xnp ,.,xnP

∑
p

c̃(A(iter)
p ,xnp), (2.34)

where np denotes the index of trajectory hypothesis matched to the assignment matrix

Ap. Each trajectory hypothesis is calculated by minimizing the new cost function c̃

consists of six terms in (2.12). Except ctfm and cfpt, the cost terms crec, cmot, cmid

and ctse are affected by the trajectory hypothesis x. However, it is difficult to directly

minimize cmid and ctse w.r.t x since each derivative w.r.t x in not tractable because of

the discrete valued functions in cmid and ctse. Instead, we adopt an alternative method

that finds the new trajectory hypothesis x∗np while fixing the values of the discrete

functions and then updates the values of the discrete functions based on x∗np . The

problem of finding x∗np is given by solving the following objective function,

min
xnp

λrec · crec(A(iter)
p ,xnp) + λmot · cmot(A(iter)

p ,xnp), (2.35)

which can be expressed by a weighted least-squares minimization problem and solved

in a closed-form (see details in Section 2.4.1).

The final trajectories denoted {x∗np |p = 1, ...,P} are optimally estimated by solv-

ing (2.35). The trajectory hypothesis set X (iter) should adequately reflect these final

trajectories so that when we find A(iter+1) at the next iteration, the selected trajec-

tory hypotheses by splitting and re-merging are influenced by the optimally estimated

trajectories {x∗np}. To do that, we perform an update for every trajectory hypotheses

related to {x∗np}. This update does not change the sum of costs itself, but it helps to find
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better assignment matrices A(iter+1) at the next iteration. For each person p and frame

t, we find a trajectory hypothesis set X[p,t] for the update, which is a set of related tra-

jectory hypotheses to x∗np at frame t. To find X[p,t], we define an assignment set A[p,t],

where the t-th column of each assignment matrix is the same as that of Ap ∈ A(iter),

that is,

A[p,t] = {A| At = Atp}. (2.36)

X[p,t] are a set of trajectory hypothesis corresponding to each assignment matrix in

A[p,t], which is given by

X[p,t] = {x| x = r(A), ∀A ∈ A[p,t]}, (2.37)

where r is the reconstruction function which maps an assignment matrix to its trajec-

tory hypothesis.

Since a target might be standing or sitting, 3D location of the target has an ambigu-

ity when the target is detected by only one camera. To handle this ambiguity, we adopt

two different kinds of update rules with respect to the number of detection d(At) at

frame t. The t-th frame of a trajectory hypothesis in X[p,t] is updated with that of the

optimally estimated trajectory x∗np or a newly calculated point, that is,

xt =


x∗tnp , if d(At) > 1,

x∗tnp + ∆x, if d(At) = 1.

(2.38)

∆x denotes a displacement vector for making z-value of x∗tnp = (xtnp , y
t
np , z

t
np) into

ztnp = ẑ, where ẑ is a linearly interpolated z-value from the neighboring frames where

the target is detected at more than two cameras. The displacement vector ∆x is ob-

tained by a back-projection line Φk(d) where d is an associated detection of x∗tnp .

Letting Ψk(d, z′) be a 3D point at z = z′ on the back-projection line Φk(d),

∆x = Ψk(d, ẑ)−Ψk(d, ztnp). (2.39)

In conclusion, we reflect {x∗np} to all trajectory hypotheses related with X[p,t] in

X (iter). For two different assignment matrices Api and Apj , the intuition for this ad-
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ditional update is that if the t-th column of Api is equals to that of Apj , the t-th frame

of trajectory hypotheses xtni and xtnj have the same 3D location. Finally, the newly

updated X (iter) from {x∗np} is helpful to find better assignment matrices A(iter+1) at

the next iteration. The full update procedure is summarized in Algorithm 3.

Algorithm 3 Trajectory Hypotheses Update (THU)

Input: A(iter) = {A1, A2, ..., AP}, X (iter−1)

Output: X (iter)

1: for p← 1, 2, ...,P do

2: i) Update the np-th trajectory hypotheses:

3: xnp ← arg minx c̃(Ap,x) solved by (2.54)

4: ii) Update trajectory hypotheses related to xnp :

5: for t← sp, ..., ep do

6: Find X[p,t] using (2.36,2.37)

7: for all x ∈ X[p,t] do

8: xt ←


xtnp , if d(At) > 1,

xtnp + ∆x, if d(At) = 1.

end for
end for

end for

2.2.3 Initialization

Recalling our overall optimization framework, our method requires an initial feasible

solution A0 and X 0 to alternately optimize each variable. We introduce an initial-

ization method to find an initial point with light computation. Before finding initial

trajectory hypothesis set X 0, we find all possible assignment matrix set E described in

(2.4). For each assignment matrix Apn ∈ E, the corresponding trajectory hypothesis

xn ∈ X 0 is calculated by minimizing only the 3D reconstruction accuracy, that is,

min
xn

crec(Apn ,xn), (2.40)
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where crec(·) has been described in Sec. 2.1.2. The objective function in (2.40) can

be rewritten as a problem minimizing a sum of square errors
∑
t

∑
k

εrec(A
t
pn ,x

t
n, k)2

as shown in (2.13). Since the sum of square errors is independently calculated at each

frame t, we find each 3D point xtn by solving a least squares problem,

min
xtn

∑
k

εrec(A
t
pn ,x

t
n, k)2, (2.41)

which can be solved in a closed-form as in (2.35) (Refer Section 2.4.1). Note that if

a target is detected by only one camera, xtn cannot be determined since it has many

solutions. In this case, xtn is decided by a given z-value, which is set to 0 for fullbody

detection case or average height (1.7 meter in our experiment) for head detection case.

Next, we find an initial assignment set A0 that selects the P people’s trajectories

among the initial trajectory hypotheses in X 0. We propose a greedy approach that

finds initial assignment set A0 in a two-stage. In the first stage, for each frame t,

we find spatial assignment set Ãt where each assignment matrix in Ãt has all-zero

values except the t-th column. Using the xnp ∈ X 0 obtained from (2.40), the spatial

assignment set Ãt = {Ãtp} is obtained by solving the following equation,

min
Ãt

∑
p

(λrec ·crec(Ãtp,xnp) + λmid · cmid(Ãtp,xnp))

+λfpt · (
∑
k

|Dkt| −
∑
p

d(Ãtp)), (2.42)

which is equivalent to minimize 3D reconstruction accuracy, missing detection terms

defined in Sec. 2.1.2 and a penalty term that prevents a trivial solution that none of

detections are selected. The penalty term is proportional to the number of detections

not included in Ãt and |Dkt| denotes the number of detections in camera k and frame

t. Here, we greedily find Ãt starting from Ãt = ∅ by adding an assignment matrix

Ãtp that has a minimum cost in (2.42). The greedy algorithm stops if all detections

at frame t are included in Ãt. In the second stage, for every frame t and t + 1, we

temporally associate Ãt and Ãt+1 by solving a bipartite matching problem. A bipartite

graph is generated where each node denotes a spatial assignment matrix in Ãt and
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Ãt+1 and a weight of each edge is defined by 3D Euclidean distance between two

nodes. The bipartite matching problem is solved by the Hungarian algorithm [45].

Note that for each node in Ãt, we calculate a ratio of the second minimal weight to

the first minimal weight. If a node has a dominant edge that has small distance, the

ratio would be large enough. To find only a reliable edge, each node that has the ratio

smaller than a threshold τ is excluded from the matching problem. To summarize, the

initial assignment set A0 is calculated by finding spatial assignment sets at all frames

Ã1, ..., ÃF and solving bipartite matching problems between Ãt and Ãt+1 at every

frame t and t+ 1.

In our experiment, we use this greedy method not only for the initialization but also

the baseline of our experiments, denoted as “Baseline”. For the initialization, threshold

τ is empirically set to 1.5. On the other hand, for the “Baseline”, long trajectories are

preferred rather than short and fragmented trajectories. Thus, we do not exclude any

node in the bipartite matching, which means that τ is infinite.

2.3 Application: Real-time 3D localizing and tracking sys-

tem

For real surveillance scenario, it needs to achieve satisfactory localizing and track-

ing performance in real-time and online manner. However, it is a challenging problem

because it requires much time to perform object detection tasks simultaneously on

several cameras, and the search space of data association for tracking increases ex-

ponentially in proportion to the number of cameras. The objective of this section is

to develop a real-time scheme to achieve satisfactory performance of 3D-LTP using

multiple cameras. For real-time processing, we parallelize the detection modules that

produce bounding boxes detecting people in each camera. Robust detection perfor-

mance is achieved through validation gating method using region of interest (ROI)

setting and camera calibration. The online multi-camera data association problem is
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Figure 2.4: System overview.

formulated as the multidimensional assignment (MDA) problem between the previous

trajectory and detections of people at each camera. To resolve the huge solution space,

the proposed splitting/re-merging algorithm in Section 2.2 is modified to operate in an

online manner.

2.3.1 System overview

The proposed system is composed of detection module and tracking module as shown

in Figure 2.4. Each frame enters the detection module from the installed multiple cam-

eras and people detection is performed. After the detection procedure, detected bound-

ing boxes of all cameras are transferred to the tracking module. The tracking module

maps the received detections into 3D space and performs multiple people tracking in

3D space. To operate the system in an actual environment, the system is designed so
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as to run in real-time and online using only past and current detections.

2.3.2 Detection

In the proposed system, the goal of detection module is to localize people in the input

frames from the employed cameras in the surveillance scene. As shown in Figure 2.4,

we first perform people detection independently on each frame and provide the detec-

tion results to the tracking module in the form of bounding boxes. Since our system

has K cameras, to operate the whole system in real-time (5 fps), the detection speed

for each camera is at least faster than 5 × K fps. In addition, the detection results

should have a small number of false positives because the false positives will degrade

the tracking accuracy and increase computational complexity in tracking module. To

reduce false positives, we can utilize high-performance detector such as deep network-

based detectors [47, 48, 49]. However, such kind of high-end detectors are hard to be

applied to real-time multi-camera systems due to heavy computational complexity.

In this paper, we adopt a low computational detector based on Aggregated Chan-

nel Feature (ACF) [50], which uses simple hand-crafted features. To compensate the

accuracy of the low computational detector, we propose a validation gating method by

setting region of interest and using camera calibration. The ACF detector extracts 10

channel features from the input image including LUV channels and image gradients.

To cope with various sizes of people, the input image is resized with 10 scales from

0.5 times to 2.0 times and construct image pyramid [50] by extracting channel features

from the resized images. The ACF detects people by performing a binary classifier on

the entire image pyramid using the trained people model.

The original ACF detects people using a full-body model, which is trained using

INRIA pedestrian dataset [51]. The full-body model shows satisfactory performance

in non-crowded scene, but, it has difficulties in detecting people in crowded scenes.

In this case, the body parts of people tend to be severely occluded, while the head

parts are relatively less occluded. Therefore, the head detector might show more robust
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Figure 2.5: Example of estimating 3D height of the detected person in world coordi-

nates.

performance than the full body model in a crowded scene. We train the ACF model

for head detection using NLPR Head dataset [52]. The proposed system can select a

proper detection type, head or full-body, to localize people in the input frame according

to the situation of the target scene.

Since the raw detection results usually include a lot of false positives, post-processing

is required to reject falsely detected people. The heights of the detected people in

3D space can be estimated using the camera calibration information. If the estimated

height is outside the pre-determined upper or lower threshold, it is considered as a false

positive. Figure 2.5 presents the process of estimating 3D heights of the detected boxes

in the case of a full-body detector. First, the bottom center and top center coordinates

in the image are converted to 3D world coordinates using camera calibration [53]. At

this time, it is assumed that the z-axis value of the 3D bottom center is 0mm for the full

body detection and 1700mm for the head detection. To estimate the hight of people or

head, we use two lines. ‘Line 1’ is obtained by the line perpendicular to the ground at

the bottom center point. ‘Line 2’ is obtained by the line back-projected from the 2D top

center point in 3D space. The 3D top center coordinate can be estimated as the point at

’Line 1’ where the distance between ’Line 1’ and ’Line 2’ becomes minimum. Using

the z coordinate of the 3D top center point, we can estimate the height of a person in
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Figure 2.6: An example of an iteration of random split and re-merge.

3D space using the 3D top center and bottom center coordinates. The upper and lower

threshold of 3D height are set to 1600 mm and 2200 mm for the full-body model, re-

spectively. For the case of head detection model, they are set to 130 mm and 400 mm,

respectively. If the estimated 3D height is outside of the threshold, it is regarded as a

false positive and rejected from the detections.

In addition, our system can reject false positives by setting the region-of-interest

in the surveillance scene. Detection results outside the area of interest are removed at

this stage because they are often false positives or hard to be used for 3D localization

and tracking.

2.3.3 Tracking

The proposed tracking module estimates 3D trajectories of the current frame from the

detection bounding boxes of the current frame obtained from the detection module.
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In order for the entire system to operate in an online manner, the tracking result of

the current frame must be derived from that of the previous frame and the bounding

boxes of the current frame. In this case, the problem of tracking corresponds to the

problem of assigning the bounding box of each camera to the trajectory generated up

to the previous frame. Since each bounding box is derived from one object, it must

be assigned to only one trajectory. This assignment problem is known to be an NP-

hard problem and so we propose an approximate algorithm to solve the problem with

real-time speed as well as satisfactory performance.

When the number of cameras is K, one assignment is denoted as (K+1)-dimensional

tuple (i0, i1, ..., iK). i0 is the index of the trajectory generated up to the previous frame.

The remaining ik is the index of a detection in the k-th camera, which is assigned to

the i0 trajectory. For example, if K = 3, (1, 3, 2, 1) means that the object having index

3 at 1-st camera, index 2 at 2-nd camera, and index 1 at 3-rd camera, is assigned to

the previous trajectory with index 1. Since a newly appearing object has no previous

trajectory, the index i0 is assigned by 0. That is, (0, 2, 1, 2) means that a new object

is detected by the 3 cameras with indexes 2, 1, 2, respectively. The index of missing

detection is assigned by 0. That is, (2, 1, 3, 0) means that the object to be connected to

2-nd trajectory is missing and not detected at 3-rd camera.

As shown in Figure 2.6 (a), all possible combinations of assignments can be ex-

pressed through (K+1)-dimensional partite hypergraph. The first partite set is a set of

indexes of the previous trajectories and the remaining partite set is a set of indexes of

bounding boxes of each camera. The aforementioned assignments become hyperedges

of the hypergraph. Formally, the set of hyperedges is defined by

E = {(i0, i1, ..., iK)| ik ∈ Ik, k = 0, ...,K}, (2.43)

where Ik means an index set of bounding boxes detected by the k-th camera or trajec-

tories assigned until the previous frame, that is,

Ik = {0, ..., Nk}; k = 0, 1, ...,K. (2.44)
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Nk denotes the number of detections in the k-th camera and the index 0 refers to the

dummy index meaning a missing detection or there is no previous trajectory to be

connected to the detections at the current frame. Adopting the cost function defined

in [54], the cost of each assignment is imposed by considering the five physical char-

acteristics: 3D reconstruction accuracy, motion smoothness, visibility from camera,

starting/ending zone violation, false positive trajectory. The cost function is defined as

c : E→ R. We simply write the cost of assignment (i0, i1, ..., iK) as c(i0,i1,...,iK).

By introducing binary decision variable x, the problem of finding the best assign-

ments among E with disjoint constraints can be formulated as the following multidi-

mensional assignment problem (MDA), i.e.,

min
∑

(i0,i1,...,iK)∈E

c(i0,i1,...,iK)x(i0,i1,...,iK) (2.45)

subject to ∑
(i0,i1,...,iK)∈E,ik:fixed

x(i0,i1,...,iK) = 1,

ik = 1, 2, ..., Nk, k = 1, 2, ...,K,

where x(i0,i1,...,iK) has 1 if the assignment (i0, i1, ..., iK) is selected, otherwise has 0.

The MDA problem in (2.45) is a two-dimensional assignment problem for a single

camera, and a (K + 1) - dimensional assignment problem for K cameras. Then total

number of constraints becomes
∑

kNk. In the case of two-dimensional assignment

problem, there exists an algorithm that can solve in a polynomial-time with Hungar-

ian algorithm [45]. But the MDA problem over three dimensions is NP-hard problem

[42]. Recently, Byeon et al. [54] proposed the iterative split and re-merging algorithm

to solve multi-camera data association problem in a batch setting. Here, we modify

their iterative split and re-merging algorithm to fit an online setting. Figure 2.6 (a)-(c)

shows an example of an iteration of split and re-merging algorithm. Given the previous

solution, we first randomly split into two groups. Next, we re-merge the two groups by

solving the assignment problem between the two groups. The number of valid cases
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for splitting two groups of (K + 1)-partite sets is 2K − 1. Note that the batch approach

in [54] requires T ∗ (2K − 2) number of valid cases for splitting two groups, where T

denotes the number of frames. Among the valid cases, we randomly select one at every

iteration. The problem of finding optimal re-merge pairs are two-dimensional assign-

ment problem, which can be solved in a polynomial time [45]. In our experiments, the

proposed algorithm iterates this process for the given maximum iteration.

2.4 Appendix

2.4.1 Derivation of equation (2.35)

Given assignment matrix A(iter)
p , the problem in (2.35) minimizes the cost terms crec

and cmot with repect to x. The cost term λrec · crec in (2.13) can be rewritten by a

matrix-form,
e∑
t=s

∥∥∥(Ŵ t
r)

1/2(P̂tx
t − q̂t)

∥∥∥2
+ c′, (2.46)

where for each frame t, the matrices P̂t ∈ R3d×3, q̂t ∈ R3d×1, and Ŵt ∈ R3d×3d are

calculated from the 3D back-projection lines of the number of d detections,

P̂ t =


P t1
...

P td(At)

 , q̂t =


qt1
...

qtd(At

 , Ŵ t
r =

λrec
|N(xt)|

I. (2.47)

The motion smoothness term λmot · cmot in (2.15) also can be represented by the

following matrix-form,

e∑
t=s

∥∥∥∥∥∥(Ŵ t
d)

1/2R̂t

 xt−1

xt

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥(Ŵ t
c )

1/2Ŝt


xt−1

xt

xt+1


∥∥∥∥∥∥∥∥∥

2

(2.48)
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where

R̂t = (−I3×3 I3×3) ∈ R3×6, (2.49)

Ŝt = (I3×3 − 2I3×3 I3×3) ∈ R3×9, (2.50)

Ŵ t
d = λmotwd(t) · I3×3, (2.51)

Ŵ t
c = λmotwc(t) · I3×3. (2.52)

By taking in account all frames, concatenated matrices are given by P̂ =

 P̂s

. . .

P̂e

 , q̂ = q̂s

.

.

.

q̂e

 , R̂ =

 R̂s

. . .

R̂e

 , Ŝ =

 Ŝs

. . .

Ŝe

 , Ŵr =

 Ŵs
r

. . .

Ŵe
r

 , Ŵd = Ŵs
d

. . .

Ŵe
d

 , Ŵc =

 Ŵs
c

. . .

Ŵe
c

 . The problem in (2.35) can be rewritten by

the following weighted least-squares minimization problem,

min
x

∥∥∥Ŵ 1/2
r (P̂x− q̂)

∥∥∥2
+
∥∥∥Ŵ 1/2

d (R̂x)
∥∥∥2

+
∥∥∥Ŵ 1/2

c (Ŝx)
∥∥∥2
, (2.53)

which can be solved in a closed-form,

x∗ = (P̂TŴrP̂ + R̂TŴdR̂+ ŜTŴcŜ)−1P̂TŴrq̂. (2.54)
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Chapter 3

Variational Inference Approach

3.1 Problem Formulation

In this section, we formulate a MAP problem to solve the trajectory assignment prob-

lem and 3D position estimation problem (See Figure 3.1). In section 3.1.1, the no-

tations are defined for explaining our formulation. In section 3.1.2, the variational

inference framework is derived to get a tractable MAP formulation.

3.1.1 Notations

Detections. D denotes the set of all detections in all frames and cameras. Each de-

tection di ∈ D is defined by a vector di = (xi, yi, wi, hi, ti, ci) where xi, yi, wi, hi

represent the position and size of a bounding box and ti, ci denote the index of time

(i.e., frame) and camera, respectively.

Generalized index I . A generalized index I ∈ Ω denotes an index set of detections

guessed to come from an object in a frame, where I must include at most one detection

from each camera. All possible combinations are collected as

Ω = {I|ti = tj ∧ ci 6= cj ,∀i, j ∈ I, i 6= j} (3.1)

In the following, we use I to denote a detection hypothesis for an object.
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Cam 1

Cam 3

Cam 2

Frame 1 Frame 2 Frame 3

Detections 3D PositionsTrajectory assignments Trajectories

(a) (b)

Figure 3.1: The problem of data association and 3D localization in multiple cameras.

(a) For the data association problem, a spatial association across cameras and a tempo-

ral association between frames should be calculated. The color of solid circle depicts

the identity of a trajectory assignment. (b) In general, the 3D position is reconstructed

by back-project on from the detection in each camera. Since the altitude (height) of a

target is unknown, the 3D position should be determined by exploiting multiple detec-

tions from multiple cameras and neighbor frames. We argue that the two problems of

data association and 3D localization (object position estimation) are highly correlated.

The problem to assign detections to a trajectory needs to be solved with the problem

of finding the 3D positions of the trajectory assignments.
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Detection hypothesis. The detection hypothesis for an object indexed by I , DI is

defined by,

DI
∆
= {di|i ∈ I}. (3.2)

3D Position variables. 3D position of a target is defined by a random variable xI ∈

R3. xI is associated with DI and the set of all possible xI is denoted by X.

Trajectory assignment variables. A trajectory of a target is indexed by an ordered set

of generalized indices Is associated with the target. The trajectory assignment variable

τ for a target indexed by Is is defined by

τ = (Is, Is+1, ..., Ie), (3.3)

where s and e denote the start and end frames. A set of trajectory assignment variables

is defined by T = {τ0, τ1, ..., τK}. τ0 refers to a set of Is for a fake (phantom etc.) and

τk refers to a set of Is for the k-th target. The T satisfies two constraints: union and

non-overlap constraints.

Union constraint. Each detection hypothesis is involved in one trajectory assignment

τ ∈ T. ⋃
τ∈T

⋃
I∈τ

DI = D (3.4)

Non-overlap constraint. Each trajectory assignment variable τu ∈ T does not share

the same detection with any other τv for u 6= v, i.e.,( ⋃
I∈τu

DI

)
∩

(⋃
I∈τv

DI

)
= ∅. (3.5)

3.1.2 MAP formulation

Given detections D, we formulate the problem of finding optimal trajectory assign-

ments T and 3D positions X that maximize a posterior, which is given by

T∗,X∗ = arg max
T,X

p(T,X|D). (3.6)
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However, solving the MAP problem is difficult. Previous multi-camera approaches

fixed X to the pre-computed one [54, 38, 36, 41] and optimized T with respect to

the given 3D locations. Instead, we consider X as random variables. Then a tractable

optimization problem is formulated via variational approximation of MAP problem.

Adopting variational inference framework [55, Ch.9] that regards X as hidden

variables in p(T,X|D), we introduce a variational distribution q(X) defined over the

3D position variables X. And for any choice of q(X), the following decomposition

holds:

ln p(T|D) = L(q(X),T) +KL(q(X)||p(X|T,D)), (3.7)

L(q(X),T) =

∫
X

q(X) ln
p(T,X|D)

q(X)
(3.8)

KL(q(X)||p(X|T,D)) = −
∫
X

q(X) ln
p(X|T,D)

q(X)
(3.9)

where KL(·) denotes Kullback-Leibler (KL) divergence and L is a lower bound of

which maximum occurs when the KL divergence vanishes.

Variational distribution q(X). We choose a fully factorized form of q(X), i.e.,

q(X) =
∏
I∈Ω

qI(xI), (3.10)

where each factorized distribution qi contributes to approximate p(X|T,D). We as-

sume that the factorized distribution of each 3D hypothesis qI(xI) is parameterized by

Gaussian mean µI and covariance matrix ΣI ,

qI(xI) ∼ N(µI ,ΣI). (3.11)

A set of means and covariance matrices are denoted by µ̂ = {µI |I ∈ Ω} and Σ̂ =

{ΣI |I ∈ Ω} respectively.

Variational Expectation-Maximization (V-EM). To maximize the left-hand side in

(3.7), we have to estimate q(X) as well as maximizing the objective with respect to T,

but it is intractable. Instead, we adopt an expectation-maximization (EM) framework
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that alternately optimize q(X) and T while fixing the other. In the E-step of the k-

th iteration, q(X) is found such that it minimizes the KL-divergence in (3.9) fixing

T = T∗(k−1). Using (3.7), the E-step is equivalent to the problem of finding Gaussian

means and covariance matrices that minimize −L given T∗(k−1), i.e.,

µ̂∗(k), Σ̂∗(k) = arg min
µ̂(k),Σ̂(k)

−L(µ̂(k), Σ̂(k),T∗(k−1)). (3.12)

In the M-step, the lower bound L is maximized with respect to T. By taking the

minus, the M-step is formulated by

T∗(k) = arg min
T(k)

−L(µ̂∗(k), Σ̂∗(k),T(k)). (3.13)

3.2 Optimization

In this section, optimization procedure via V-EM is presented. In section 3.2.1, the

posterior distribution p(T,X|D) is derived to obtain L(·) in (3.8). In section 3.2.2,

Variational EM procedure is described to find the solution iteratively.

3.2.1 Posterior distribution

According to the Bayes rule, the posterior distribution on T and X given D, is propor-

tional to the product of likelihood and prior as

p(T,X|D) ∝ p(D|T,X) · p(T,X). (3.14)

Likelihood: The likelihood p(D|T,X) evaluates how good T and X describe the

observed detections D. For instance, if a detection hypothesis DI is a fake actually,

the likelihood is maximized when it is assigned to τ0. If DI is observed from a true

target, it should be assigned to the best track τ∗ with xI having the minimal observation

error. Following this concept, the likelihood is defined by

p(D|T,X) ∝
∏

τ∈T\{τ0}

∏
I∈τ

ψtar(DI ,xI)
∏
I∈τ0

ψfak(DI) (3.15)
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where ψtar(·) denotes a probability related with 3D observation error between detec-

tions DI and a 3D position xI , whereas ψfak means a probability that the detection

DI be a fake.

Prior: The prior on X and T is obtained by the product of individual priors by assum-

ing that every trajectory moves independently to others:

p(T,X) =
∏
τ∈T

p(τ,X). (3.16)

Each prior is modeled to be proportional to linking probability following Markov

model as

p(τ,X) ∝ ψs(xIs)ψe(xIe)
∏

I,J∈adj(τ)

ψlink(xI ,xJ), (3.17)

where ψlink encodes a linking probability of temporally adjacent I and J within a

trajectory and ψs(x), ψe(x) model the probability of a trajectory starting/ending at the

3D location x.

Probability modeling

We design a probability model using the seven cost terms designed for multi-camera

tracking problem: cost for 3D observation error cobs, missing detection cmid, fake cfak,

frequent starting or ending cfse, starting or ending at non-entrance/exit zone ceez , non-

smoothing motion cmot and jumped frame cjmp, which are defined in the following.

Every probability model ψtar, ψfak, ψlink, ψs, and ψe follows Boltzmann distribution,

which are defined by

− lnψtar = λobs · cobs + λmid · cmid, (3.18)

− lnψfak = λfak · cfak, (3.19)

− lnψlink = λmot · cmot + λjmp · cjmp, (3.20)

− lnψs = − lnψe = λfse · cfse + λeez · ceez, (3.21)

of which costs are explained in the following.
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Target ψtar. In modeling ψtar, the cobs is the cost for observation error which is given

by the mean of distances between each detection di ∈ DI and a 3D position xI . The

cost increases whenever the 3D position xI is far from any detections in DI . The

distance between detection and 3D position is modeled in 3D space. To calculate the

distance in 3D space, we back-project a 2D point of di (e.g. foot or head point) to

3D space which is called a back-projection line. The distance between back-projection

line and 3D position is modeled as a form of linear equation.

cobs(DI ,xI) =
1

|I|
·
∑
i∈I
‖AixI − bi‖2, (3.22)

where Ai and bi are determined by detection di and calculated by using camera pro-

jection matrix. See Section 3.3.1 for the details of calculations of Ai and bi. The cmid

measures how well the number of visible cameras matches the number of actually de-

tected detections. If the number of detections DI is less than the number of visible

cameras of xI , cmid increases, i.e.,

cmid(DI ,xI) = ‖v(xI)− |I|‖ , (3.23)

where v(xI) denotes the number of camera where xI is visible.

Fake ψfak. The cost cfak(DI) for a fake DI is proportional to the number of false

positives in DI , i.e., cfak(DI) = |I|

Linkψlink. The cmot models the tendency that a target tends to move through a shortest

path. cmot(xI ,xJ) is proportional to Euclidean distance between xI and xJ , i.e.,

cmot(xI ,xJ) = (
|I|+ |J |

2
) · ‖xI − xJ‖2, (3.24)

In addition to cmot, the cost for linking increases if I and J are temporally apart

(jumped), which is given by

cjmp = (
|I|+ |J |

2
) ·∆tIJ , (3.25)

where ∆tIJ refers to the number of jumped frames between frames of I and J .
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Starting/ending ψs,ψe. The cost to the starting or ending of a trajectory is defined by

two aspects; First, each trajectories has a cost whenever it starts or ends, i.e., cfse = |I|
2 ,

which implies that a cost is given to a short trajectory, i.e., the frequently starting or

ending trajectory. Second, every trajectory is enforced to start and end at entrance/exit

zone, e.g., locations near doorways. Hence, the cost is given to a starting or ending out

of entrance/exit zone as

ceez(xI) =
|I|
2
· u(xI), (3.26)

where u(xI) is an indicator function that has 0 when xI is in entrance/exit zone and 1

otherwise.

3.2.2 V-EM algorithm

The proposed variational EM algorithm alternately optimize (3.12) and (3.13) using

the lower bound derived from (3.8). Since q(X) follows Gaussian distribution and is

fully factorized, the lower bound is decomposed to a posterior term G on p(T,X|D)

and an entropy termH on q(X) from (3.8) as

−L(µ̂(k), Σ̂(k),T(k)) = G −H, (3.27)

such that

G =
∑

τ∈T(k)\{τ0}

g(µ̂(k)
τ , Σ̂(k)

τ ), H =
∑
I∈Ω

h(Σ
(k)
I ). (3.28)

The µ̂(k)
τ and Σ̂

(k)
τ are a set of all means and covariance matrices of 3D positions in τ

at the k-th iteration. And the entropy term H for Gaussian distribution can be easily

derived as h(Σ
(k)
I ) = 1

2 ln
(

(2πe)3 ·
∣∣∣Σ(k)

I

∣∣∣).

Using (3.14-3.21), the posterior term g for τ is derived by integrating log-posterior

model (details are given in Section 3.3.2). In derivation, it is intractable to integrate

the functions v(xI) in (3.23) and u(xI) in (3.26). Instead, we use the zeroth-order

approximation of each function at the recently obtained mean of xI , i.e., xI = µ
∗(k−1)
I

in the E-step or xI = µ∗(k) in the M-step. As shown in Section 3.3.2, the posterior
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term g for τ is obtained by

g(µ̂(k)
τ , Σ̂(k)

τ ) = gsI(µ
(k)
Is ,Σ

(k)
Is ) + geI(µ

(k)
Ie ,Σ

(k)
Ie ) +

∑
I∈τ

gI(µ
(k)
I ,Σ

(k)
I )+

∑
I,J∈adj(τ)

gIJ(µ
(k)
I , µ

(k)
J ,Σ

(k)
I ,Σ

(k)
J ), (3.29)

where

gsI = geI =
|I|
2
·
(
λfse + λeez · u(µ

∗(k−1)
I )

)
, (3.30)

gI = λobs ·

(
1

|I|
∑
i∈I

tr(AiΣ
(k)
I ATi )+

∥∥∥Aiµ(k)
I − bi

∥∥∥2
)

+ λmid ·
(
v(µ
∗(k−1)
I )− |I|

)
,

(3.31)

gIJ = λmot ·
(
|I|+ |J |

2

)
·
(
tr(Σ

(k)
I + Σ

(k)
J ) +

∥∥∥µ(k)
I − µ

(k)
J

∥∥∥2
)
. (3.32)

Note that u(µ
∗(k−1)
I ) and v(µ

∗(k−1)
I ) are valid in E-step and they are replaced by

u(µ
∗(k)
I ) and v(µ

∗(k)
I ) in M-step.

E-step

In the k-th iteration, for the fixed T(k) = T ∗(k−1) in (3.27), the optimal mean and

covariance matrix of each xI is found by minimizing the minus of lower bound in

(3.27). Each τ ∈ T∗(k−1)\{τ0} is independent to the others and the optimal mean for

each τ is derived by,

µ̂∗(k)
τ = arg min

µ̂
(k)
τ

g(µ̂(k)
τ , Σ̂(k)

τ ),

= arg min
µ̂
(k)
τ

λobs ·
∑
I∈τ

1

|I|
∑
i∈I

∥∥∥Aiµ(k)
I − bi

∥∥∥2
+

λmot ·
∑

I,J∈adj(τ)

(
|I|+ |J |

2

)
·
∥∥∥µ(k)

I − µ
(k)
J

∥∥∥2

(3.33)
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which is the weighted least square problem that has a closed-form solution. For co-

variance matrix Σ
(k)
I , taking the gradient of L w.r.t. Σ

(k)
I equal to zero, leads to

Σ
∗(k)
I =

(
2 · λobs
|I|

∑
i∈I

AT
i Ai + λmot · wmot · I3×3

)−1

(3.34)

where

wmot =


|Iprev|+ |I| , if I is a start index,

|Inext|+ |I| , if I is an end index,

|Iprev|+ 2 · |I|+ |Inext| , otherwise,

(3.35)

whereas Iprev and Inext are the previous index and the next index, respectively. See

Section 3.3.3 for the details of derivations of (3.33 - 3.35).

For the case that the length of trajectory equals to 1, the optimal mean and covari-

ance matrix of xI in (3.33) and (3.34) is obtained as follows:
µ
∗(k)
I = (

∑
i∈I

AT
i Ai)

−1(
∑
i∈I

AT
i bi)

Σ
∗(k)
I =

(
2 · λobs|I|

∑
i∈I

ATi Ai

)−1 (3.36)

Note that the inverse term is not available when
∑
i∈I

AT
i Ai is a singular matrix in the

case of |I| = 1. This means that 3D position of a target cannot be determined when

the target is detected by only one camera. Our key idea to resolve this problem is

to introduce a virtual back-projection line making
∑
i∈I

AT
i Ai non-singular. The virtual

back-projection line is induced from the nearest trajectory to the back-projection line

of detection di at the corresponding frame. To find the nearest trajectory, for each

τ ∈ T∗(k−1)\{τ0}, the 3D point of τ at frame ti where di is detected, is defined by

µ
∗(k−1)

I(τ,ti)
. If the point does not exist due to missing detection, a prediction is performed

to find the unobserved 3D point. For the prediction, we use autoregressive model [56]

which is one of linear regression model using Hankel matrix. The coefficients of vir-

tual back-projection line, AI,τ and bI,τ , are obtained by the tangent line at the point

µ
∗(k−1)

I(τ,ti)
. Using AI,τ and bI,τ , the distance from a point x to the virtual line is given
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by ‖AI,τx− bI,τ‖ similar to (3.22). The nearest trajectory τ∗ is obtained by

τ∗ = arg min
τ

min
x
‖Aix− bi‖2 + ‖AI,τx− bI,τ‖2. (3.37)

Using τ∗, the formula of µ∗I and Σ∗I in (3.36) for |I| = 1 are changed by
µ
∗(k)
I = (AT

i Ai +AT
I,τ∗AI,τ∗)

−1(AT
i bi +AT

I,τ∗bI,τ∗),

Σ
∗(k)
I =

(
2 · λobs|I| (ATi Ai +AT

I,τ∗AI,τ∗)
)−1

.

(3.38)

Although µ(k)
I ,Σ

(k)
I for I ∈ τ0 are not influenced by minimizing (3.27), the opti-

mal µ∗(k)
I and Σ

∗(k)
I are calculated by using (3.38). These updates do not change the

posterior probability, but it helps to find better T∗(k) in the M-step.

M-step

In the M-step, T(k) is optimized by fixing every µ∗(k)
I and Σ

∗(k)
I . Thus, The entropy

termH(Σ
∗(k)
I ) in (3.27) is a constant. Using this fact, the M-step in (3.13) is equivalent

to the problem of

T∗(k) = arg min
T(k)

∑
τ∈T(k)\{τ0}

g(µ̂∗(k)
τ , Σ̂∗(k)

τ ), (3.39)

where g(·) is given in (3.29). By introducing binary variables f , the problem in (3.39)

can be re-written as an integer linear program:

min
f

∑
I∈Ω

csIf
s
I +

∑
I∈Ω

ceIf
e
I +

∑
I∈Ω

cIfI +
∑
I,J

cIJfIJ (3.40)

subject to

fsI , f
e
I , fI , fIJ ∈ {0, 1}, (3.41)

fsI +
∑
J∈Ω

fJI =fI = feI +
∑
J∈Ω

fIJ , (3.42)∑
I∈Ωi

fI ≤ 1, i = 1, ..., |D| , (3.43)
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where fsI and feI have value 1 if I is at the start and end frames in T(k) respectively.

fI = 1 encodes the fact whether I is in T(k) and fIJ = 1 if I and J are adjacent in

any trajectory association variable. By using (3.32), the terms in (3.40) are changed by

the following equations,

csI = gsI(µ
∗(k)
I ,Σ

∗(k)
I ),

ceI = geI(µ
∗(k)
I ,Σ

∗(k)
I ),

cI = gI(µ
∗(k)
I ,Σ

∗(k)
I ),

cIJ = gIJ(µ
∗(k)
I , µ

∗(k)
J ,Σ

∗(k)
I ,Σ

∗(k)
J ). (3.44)

As shown in (3.41-3.43), there exist three constraints: unit capacity, flow conservation,

non-overlap detection constraints. The unit capacity in (3.41) means that the maximum

amount of flow at every edge is 1. The flow conservation constraint in (3.42) means

that the amount of flow incoming to I is the same as the amount of flow outgoing

from I . Lastly, non-overlap detection constraint in (3.43) is based on the fact that each

trajectory assignment variable does not share the same detection, which is defined in

(3.5). The conflict index set Ωi of detection di is defined by a set of all Is that have the

same i as an element, i.e. {I ∈ Ω| s.t. ∃i ∈ I}. non-overlap detection constraint in

(3.43) is that the amount of flows passing into every conflict index I ∈ Ωi is at most 1,

which arises specially in multi-camera setting.

If the non-overlap detection constraint is satisfied for all f (e.g. a single camera

case), the integer linear program in (3.40) is equivalent to the minimum cost flow

problem [13]. The solution of the minimum cost flow problem is found in a polynomial

time by using push relabeling algorithm [13] or successive shortest path algorithm [12,

11]. With non-overlap detection constraint, the integer linear program can be solved

by the branch-and-bound algorithm implemented with Gurobi Optimization Library

[57].
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3.3 Appendix

3.3.1 Derivation of equation (3.12)

Given the (k − 1)-th trajectory assignment T∗(k−1), we show that the problem of

finding q that minimizes KL divergence equals to the problem of finding means and

covariance matrices that maximize the lower bound L. Starting from the problem of

finding q(k)(X) given the T∗(k−1),

q∗(k)(X) = arg min
q(k)(X)

KL
(
q(k)(X)||p(X|T∗(k−1),D)

)
. (3.45)

By the definition of KL divergence,

KL
(
q(k)(X)||p(X|T∗(k−1),D)

)
= −

∫
X

q(k)(X) · ln p(X|T
∗(k−1),D)

q(X)
, (3.46)

= −
∫
X

q(k)(X) · ln p(X,T
∗(k−1)|D)

q(X)
+ ln p(T∗(k−1)|D) ·

∫
X

q(X), (3.47)

= −
∫
X

q(k)(X) · ln p(X,T
∗(k−1)|D)

q(X)
+ ln p(T∗(k−1)|D). (3.48)

Assuming q(X) follows a Gaussian distribution, q(X) is represented by its mean vec-

tor and covariance matrix;∫
X

q(k)(X) · ln p(X,T
∗(k−1)|D)

q(X)
= L(µ̂(k), Σ̂(k),T∗(k−1)). (3.49)

Since the term ln p(T∗(k−1)|D) in is a constant w.r.t X, the problem in (3.45) is equiv-

alent to

µ̂∗(k), Σ̂∗(k) = arg min
µ̂(k),Σ̂(k)

−L(µ̂(k), Σ̂(k),T∗(k−1)). (3.50)

3.3.2 Derivation of equation (3.27-3.32)

Starting from the definition of the lower bound,

−L(q(X),T) = −
∫
X

q(X) · ln p(T,X|D)

q(X)
. (3.51)

56



According to the Bayes rule,

−L(q(X),T) = −
∫
X

q(X) · (ln p(T,X) + ln p(D|T,X)− ln p(D))

+

∫
X

q(X) ln q(X), (3.52)

where the likelihood and prior are defined in (3.14-3.17) as follows:

ln p(D|X,T) =
∑

τ∈T\{τ0}

∑
I∈τ

(lnψtar(DI ,xI)− lnψfak(DI)), (3.53)

ln p(X,T) =
∑

τ∈T\{τ0}

lnψs(xIs) + lnψe(xIe) +
∑

I,J∈adj(τ)

ψlink(xI ,xJ)

 .

(3.54)

Substituting (3.53,3.54) to (3.52), the lower bound is decomposed into a likelihood+prior

term G, an entropy termH, and a constant,

−L(q(X),T) = G(q(X),T)−H(q(X)) + ln p(D). (3.55)

Assuming that q(X) is factorized as
∏
I∈Ω

qI(xI), G andH are defined as

G(q(X),T) =
∑

τ∈T\{τ0}

(
gsI(qIs(xIs)) + geI(qIe(xIe)) +

∑
I∈τ

gI(qI(xI))

+
∑

I,J∈adj(τ)

gIJ(qI(xI), qJ(xJ))

 , (3.56)

H(q(X)) =
∑
I∈Ω

hI(qI(xI)), (3.57)
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where

gsI(qIs(xIs)) = −
∫
qIs(xIs) · lnψs(xIs)dxIs

=

∫
qIs(xIs) · (λfsecfse + λeezceez)dxIs , (3.58)

geI(qIe(xIe)) = −
∫
qIe(xIe) · lnψe(xIe)dxIe

=

∫
qIe(xIe) · (λfsecfse + λeezceez)dxIe , (3.59)

gI(qI(xI)) = −
∫
qI(xI) · (lnψtar(DI ,xI)− lnψfak(DI)) dxI

=

∫
qI · (λobscobs + λmidcmid + λfakcfak)dxI , (3.60)

gIJ(qI(xI), qJ(xJ)) = −
∫∫

qI(xI)qJ(xJ)ψlink(xI ,xI)dxIdxJ

=

∫∫
qIqJ(λmotcmot + λjmpcjmp)dxIdxJ , (3.61)

hI(qI(xI)) = −
∫
qI(xI) · ln(qI(xI))dxI . (3.62)

Using the definitions of probability model in Section 3.2.1, the seven integral terms

in (3.58 - 3.61) are given by

λobs

∫
qI(xI) · cobs(DI ,xI) dxI =

λobs
|I|
· E(

∑
i∈I
‖AixI − bi‖2), (3.63)

λfak

∫
qI(xI) · cfak dxI = λfak · |I| , (3.64)

λmid
∫
qI(xI) · cmid(DI ,xI) dxI = λmid ·

(∫
qI(xI) · v(xI) dxI − |I|

)
, (3.65)

λmot
∫∫

qI(xI)qJ(xJ) · cmot(xI ,xJ) dxIdxJ = λmot

(
|I|+|J |

2

)
E(‖xI − xJ‖2), (3.66)

λjmp

∫
qI(xI) · cjmp dxI = λjmp

(
|I|+ |J |

2

)
∆tIJ , (3.67)

λfse

∫
qI(xI) · cfse dxI = λfse

(
|I|
2

)
, (3.68)

λeez

∫
qI(xI) · ceez(xI) dxI = λeez

(
|I|
2

)(∫
qI(xI) · u(xI) dxI

)
. (3.69)

Assuming that each x follows a Gaussian distribution, the expectation terms in (3.63),
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(3.66) and the entropy term are calculated by

E(
∑
i∈I
‖AixI − bi‖2) =

∑
i∈I

(
tr(AiΣIA

T
i ) + ‖AiµI − bi‖2

)
, (3.70)

E(‖xI − xJ‖2) = tr(ΣI + ΣJ) + ‖µI − µJ‖2, (3.71)

hI(qI(xI)) =
1

2
ln
(

(2πe)3 · |ΣI |
)
. (3.72)

where tr denotes the trace operation.

Note that the integrals of v in (3.65) and u in (3.69) are intractable. Instead, we

use the zeroth-order Taylor-series approximation of each function at the recently ob-

tained mean µ∗I , i.e., v(xI) ≈ v(µ∗I), u(xI) ≈ u(µ∗I). By substituting (3.63-3.72) to

(3.58-3.62), we can express the lower bound L as a function of means and covariance

matrices of x. The lower bound in (3.55) is rewritten by

−L(µ̂, Σ̂,T) = G(µ̂, Σ̂,T) +H(Σ̂) + ln p(D). (3.73)

Similarly, the terms in (3.58-3.62) become

gsI = geI = λfse ·
|I|
2

+ λeez ·
|I|
2
u(µ∗I), (3.74)

gI(µI ,ΣI) = λobs ·

(
1

|I|
∑
i∈I

tr(AiΣIA
T
i )+‖AiµI − bi‖2

)

+ λmid · (v(µ∗I)− |I|) + λfak · |I| , (3.75)

gIJ(µI ,ΣI , µJ ,ΣJ) = λmot ·
(
|I|+ |J |

2

)(
tr(ΣI + ΣJ) + ‖µI − µJ‖2

)
+ λjmp ·

(
|I|+ |J |

2

)
∆tIJ , (3.76)

hI(ΣI) =
1

2
ln
(

(2πe)3 · |ΣI |
)
. (3.77)

3.3.3 Deriving optimal mean and covariance matrix (3.33-3.35)

For each τ , we derive the optimal mean µ̂∗τ that maximize L. The terms related to µ̂τ

are summarized as the following weighted least square problem;

µ̂∗τ = arg min
µ̂τ

λobs ·
∑
I∈τ

1
|I|
∑
i∈I
‖AiµI − bi‖2 + λmot ·

∑
I,J∈adj(τ)

(
|I|+|J |

2

)
· ‖µI − µJ‖

2.

(3.78)
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We show that each term can be rewritten by a matrix form. The inner summation of

the first term is rewritten as

λobs
|I|

∑
i∈I
‖AiµI − bi‖2 =

∥∥∥(W r
I )1/2 (ÂIµI − b̂I)

∥∥∥2
(3.79)

where

W r
I =

λobs
|I|
· I ∈ R3|I|×3|I|, ÂI =


Ai1

...

Ai|I|

 ∈ R3|I|×3, b̂I =


bi1

...

bi|I|

 ∈ R3|I|×1.

(3.80)

Substituting (3.79) to (3.78), the first term is also rewritten as the following equation;

λobs ·
∑
I∈τ

1

|I|
∑
i∈I
‖AiµI − bi‖2 =

∥∥∥Ŵ 1/2
obs (Âµτ − b̂)

∥∥∥2
, (3.81)

where µτ is a concatenated vector of means s.t. µτ =
[
µTI1 . . . µ

T
I|τ |

]T
and

Ŵobs =


W r
I1

. . .

W r
I|τ |

 , Â =


ÂI1

. . .

ÂI|τ |

 , b̂I =


bI1

...

bI|τ |

 .
(3.82)

On the other hand, the second term is rewritten as

λmot ·
∑

I,J∈adj(τ)

(
|I|+ |J |

2

)
· ‖µI − µJ‖

2 =
∥∥∥Ŵ 1/2

mot(Ĉ · µτ )
∥∥∥2
, (3.83)

where Wm
I = λmot

(
|I|+|J |

2

)
· I3×3 such that J denote the index adjacent to I ,

Ŵmot =


Wm
I1

. . .

Wm
I|τ |−1

 ∈ R3(|τ |−1)×3(|τ |−1),

Ĉ =


−I3×3 I3×3

. . .

−I3×3 I3×3

 ∈ R3(|τ |−1)×3|τ |. (3.84)
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Substituting (3.81) and (3.83) to (3.78), we have

µ̂∗τ = arg min
µ

∥∥∥Ŵ 1/2
obs (Âµ− b̂)

∥∥∥2
+
∥∥∥Ŵ 1/2

mot(Ĉµ)
∥∥∥2
, (3.85)

which can be solved in a closed-form;

µ̂∗τ = (ÂTŴobsÂ+ ĈTŴmotĈ)−1ÂTŴobsb̂. (3.86)

When the length of τ is 1, the second term
∥∥∥Ŵ 1/2

mot(Ĉµ)
∥∥∥2

vanishes. Thus µ̂∗τ becomes

µ̂∗τ = (ÂTÂ)−1ÂTb̂. (3.87)

Next, we derive the optimal covariance Σ∗I that maximizes L. In the lower bound

L, the terms related to ΣI are three;

λobs
|I|

∑
i∈I

tr(AiΣIA
T
i ) +

1

2
λmot · wmot · tr(ΣI)−

1

2
ln |ΣI |, (3.88)

where

wmot =


|Iprev|+ |I| , if I is a start index,

|Inext|+ |I| , if I is an end index,

|Iprev|+ 2 · |I|+ |Inext| , otherwise.

(3.89)

Taking partial derivative of L w.r.t ΣI , we have the following equation;

∂L
∂ΣI

=
∂

∂ΣI

(
λobs
|I|

∑
i∈I

tr(AiΣIA
T
i ) +

1

2
λmot · wmot · tr(ΣI)−

1

2
ln |ΣI |

)
.

(3.90)

Using the matrix derivative lemmas,

∂
∑
i∈I

tr(AiΣIA
T
i )

∂ΣI
=

∂
∑
i∈I

tr(ΣIA
T
i Ai)

∂ΣI
=
∑
i∈I

AT
i Ai,

∂tr(ΣI)

∂ΣI
= I3×3,

∂ ln |ΣI |
∂ΣI

= Σ−1
I , (3.91)

the derivative becomes

∂L
∂ΣI

=
λobs
|I|

∑
i∈I

AT
i Ai +

1

2
λmot · wmot · I3×3 −

1

2
Σ−1
I = 0. (3.92)
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Taking an inverse, we finally have the equation,

Σ∗I =

(
2 · λobs
|I|

∑
i∈I

AT
i Ai + λmot · wmot · I3×3

)−1

. (3.93)

3.3.4 Definition of A and b in (3.22)

Let a back-projection line Φ(d) of detection d be x−c
a = y−d

b = z, where the constants

a, b, c, d are constant parameters determined by using a 2D point of the detection d

and its corresponding camera projection matrix. We define the 3D Euclidean distance

at the same z-value as the distance between a back-projection line Φ and a 3D point x.

If the 3D position x = (x′, y′, z′)T, the point xΦ at z = z′ in the back-projection line

is (az′ + c, bz′ + d, z′)T. Finally, the distance between xΦ and x can be rewritten as

a form of linear equation, i.e.,

‖x− xΦ‖ =
∥∥∥(x′, y′, z′)T − (az′ + c, bz′ + d, z′)T

∥∥∥ (3.94)

=
∥∥∥(x′ − az′ − c, y′ − bz′ − d, 0)T

∥∥∥ (3.95)

= ‖Ax− b‖ , (3.96)

where A =

 1 0 −a

0 1 −b

0 0 0

, b =

 c

d

0

.
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Chapter 4

Experiments

4.1 Datasets

4.1.1 PETS 2009

The IEEE International Workshop on Performance Evaluation of Tracking and Surveil-

lance (PETS) has provided several datasets in various surveillance setting since the

year 2000. Each PETS dataset was used as a benchmark dataset, such as tracking,

detection and people counting. Among the PETS datasets the PETS 2009 dataset pro-

posed in year 2009 is still actively used in the computer vision community. Spcifically,

it has been widely used as a set of benchmark data for tracking multiple people in both

single camera [58, 18, 17, 35] and a multi-camera setup [38, 36, 54, 41]. The PETS

2009 dataset was recorded at the campus of the University of Reading, UK. A total

of eight calibrated cameras monitored the overlapping space and were synchronized

in time. There exists a static obstacle (e.g. a light pole in the middle) which makes

consistent labeling hard.

The PETS 2009 dataset consists of three sequences for tracking scenario with dif-

ferent density of people; from low density, S2.L1, S2.L2, and S2.L3. In the case of

the S2.L1 sequence, eight cameras were recorded, and the S2.L2, and S2.L3 sequences

were recorded in four cameras. However, The PETS organizers did not disclose the
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(a) S2.L1 sequence
View 001 View 005 View 007 GT

View 001 View 002 View 003

View 001 View 002 View 003 GT

GT

(b) S2.L2 sequence

View 001 View 005 View 007 GT

View 001 View 002 View 003

View 001 View 002 View 003 GT

GT

(c) S2.L3 sequence

Figure 4.1: An overview of the PETS 2009 dataset.

video corresponding to the camera 2 for S2.L1 for reasons of cross validation. Some

example frames from three sequences are shown in Figure 4.1. In each sequence, peo-

ple move in a relatively constant direction from relatively irregular S2.L1 to S2.L3.

The PETS 2009 organizers do not publish the ground truth because it is planned

as a challenge. We have utilized the bounding boxes annotated by Milan et al. [58] 1.

To evaluate performance in a 3D space, we moved 2D foot positions (assumed bottom

center of each bounding box) to a 3D ground plane using camera calibration informa-

tion.

4.1.2 PSN-University

Existing multi-camera datasets, such as the PETS2009 dataset, assume a situation

where the full body is visible. In reality, however, there are many cases where people
1http://www.milanton.de/data/
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Cam 8

Cam 1 Cam 2 Cam 3 GT

Cam 1 Cam 2 Cam 3 GT

Cam 1 Cam 2 Cam 3 GT

(a) standing sequence

Cam 8

Cam 1 Cam 2 Cam 3 GT

Cam 1 Cam 2 Cam 3 GT

Cam 1 Cam 2 Cam 3 GT

(b) sitting sequence

Cam 8

Cam 1 Cam 2 Cam 3 GT

Cam 1 Cam 2 Cam 3 GT

Cam 1 Cam 2 Cam 3 GT

(c) standing & sitting sequence

Figure 4.2: An overview of the PSN-University dataset.

are not fully visible to the whole body by various structures. Contrast to the previous

multi-camera datasets, we have constructed a new multi-camera dataset that includes

both occlusion by static obstacles (e.g. chairs, desks) as well as mutual occlusion by

people. The ultimate goal of the proposed new dataset is to solve the 3W problem

(Who, Where, What). That is, we create a perception sensor network (PSN) that knows

who is doing what and where. The dataset was recorded in a university lecture room

where students move around or sit. Thus the dataset is called PSN-University. The

goal of this dataset is to localize 3D positions of all students, track them, identify their

faces, and recognize their actions.

For 3D localizing and tracking (Where) task, the main purpose is to estimate 3D lo-

cations of heads. The PSN-University dataset consists of three sequences of standing,

sitting, and standing & sitting (See Figure 4.2). The main challenge is to handle the

different heights and poses (e.g. standing, sitting) of the students. The video was cap-
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PETS2009 S2.L1 795 7 med med 8

PETS2009 S2.L2 436 7 med high 4

PETS2009 S2.L3 240 7 med high 4

PSN-University standing 177 3 high med 4

PSN-University sitting 292 3 high med 4

PSN-University standing & sitting 330 3 high med 4

Table 4.1: Summary of datasets

tured using four synchronized cameras with a 10 mega-pixel 3648 × 2752 resolution

at 3 fps. This is for high-level analysis such as face recognition and action recognition.

For the ground truth trajectories, we annotate the human head of each camera. For

accurate head coordinates, we put markers on people’s heads. In order to create the 3D

ground truth trajectory, we used the calibration information to estimate each person’s

3D head coordinates (See the forth column of Figure 4.2). The 3D head coordinates of

each person were triangulated by several cameras. All detections, the ground truth of

3D trajectories, evaluation scripts and camera calibrations used in our experiments are

publicly available2.

4.2 Evaluation Metrics

To quantitatively evaluate localization and tracking performance, we adopted widely

used metrics for multiple target tracking evaluation: MOTA, MOTP [59] and MT, ML,

PT, IDS, FM [60].

MOTA, MOTP. The multiple object tracking accuracy (MOTA) evaluates the overall
2http://sites.google.com/site/byeonmoonsub/home/mcmtt
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Table 4.2: Parameters of mixed multidimensional assignment approach

Dataset λrec λmot λmid λtse λtfm λfpt

PETS 2009 1/202 1/502 102 102 202 12.52

PSN-Univ. 1/202 1/802 122 102 202 12.52

performance of a multi-target tracking by looking at missed targets, false alarms, and

identity switches. The multiple object tracking precision (MOTP), on the other hand,

averages the localization error between the estimated and the ground truth trajectory.

We calculated the MOTA and the MOTP using a 3D world coordinate. The matching

criterion between the estimated trajectory and the ground truth trajectory is the distance

between them in a 3D world coordinate. The estimated trajectory matches the ground

truth only if the distance is less than a threshold (set to 1 meter in our experiments).

MT, ML, PT, IDS, FM. Each abbreviation stands for the number of trajectories mostly

tracked (MT) and mostly lost (ML); the number of fragments (FM); and identity

switches (IDS). Each ground truth trajectory is classified as MT if it is successfully

tracked over 80%, ML if tracked less than 20%.

Recall, Precision. Other metric including recall (Rcll) and precision (Prcn) are also

presented.

4.3 Results and Discussion

4.3.1 Mixed Multidimensional Assignment Approach

Parameter Settings

As we discussed in Section 2.1.2, the parameters for cost function need to be set. We

empirically found each parameters but the most of them were fixed to prevent overfit

a specific sequence. Table 4.2 shows the parameter setting for weights of each cost

term in (2.12). Although two dataset have different properties such as resolution, in-
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max_loop

Figure 4.3: Correlation between a cost value and tracking accuracy on PSN-University

sitting sequence at FNR 50%. The proposed scheme without perturbation moves to a

solution decreasing a cost value (red dashed). To escape from a local basin, we adopts

perturbation that allows a cost increase (red solid). The proposed scheme with pertur-

bation outperforms without perturbation (blue, green).

door/outdoor, and the number of targets, the only two parameters λmot and λmid are

different; λmot related to moved distance per a frame is trivially dependent on a fram-

erate of recoded video. λmid is relevant to the density of people in the scene, since it

penalized missed detections. In addition, we set r = 300 mm and αm = 0.5 for all

experiments, which indicates the diameter of a person and a weight of motion smooth-

ness defined in (2.13) and (2.15) respectively. The maximum number of iterations

max iter and max loop is set to 2 and 5× (F ×(2K − 2)× 2) respectively.

Investigation of Perturbation & Convergence

Purturbation. To investigate the effect of purturbation, we used the PSN-University

sitting sequence at FNR 50% (see Figure 4.3). For this purpose, two optimization
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Table 4.3: Comparison the proposed splitting/re-mering strategy with the optimal val-

ues.

Trajectory # T K Detection# Optimal Value Proposed

885 5 2 10 92.6401 92.6401

1770 5 2 20 91.5869 91.5869

910 5 2 16 135.4429 135.4429

11186 5 2 20 84.9256 84.9256

54722 5 2 20 134.9607 134.9607

80200 5 2 20 170.1519 177.5030

180665 5 3 30 150.7589 150.7589

291074 5 3 30 134.6287 134.6287

148436 5 3 30 148.1003 148.1003

826348 5 4 29 163.0143 163.0143

schemes were evaluated depending on whether purturbation is used or not. The pro-

posed scheme without perturbation moves to a solution decreasing a cost value only

(red dashed), whereas the proposed scheme with perturbation allows a cost increase

(red solid). Nevertheless, the proposed scheme with perturbation finally found a lower

cost solution. There was a significant difference between tracking performances by the

two optimization schemes. In this exepriment, the proposed scheme without perturba-

tion was stuck in a local basin and finally converged to the local basin (green and blue

dashed). In contrast, the proposed scheme with perturbation significantly outperforms

the proposed scheme without perturbation. These results support that the perturbation

is helpful to escape from a local basin.

Convergence. We have conducted experiments to illustrate the convergence of the

splitting/re-merging. To evaluate the convergence, we made Synthesized dataset where

optimums can be calculated. The Synthesized dataset was constructed by randomly

sampling from the PSN-University standing sequence. Since the MDA problem is NP-

hard, the solution space of the MDA problem exponentially increases when the num-

ber of cameras, frames, and people increases. In our experiment, we set K = 4,F = 5

69



and assume two people are moving. Using the Synthesized dataset, we evaluated the

convergence to the optimum by our method. To calculate the optimum, we generated

all possible assignment matrices and trajectory hypotheses, calculated their costs, and

solved the MDA problem by a BIP solver3. Table 4.3 shows the comparison of our

solutions with the optimal values. Note that the number of possible assignments expo-

nentially increases with order of O((P + 1)KF) in K cameras, F frames, and P people

case although we restrict possible candidates whose locations are close to each other.

In most cases, our method finds the optimum by iteratively improving the initial solu-

tion as shown in Table 4.3.

Quantitative and Qualitative Evaluation

We report the results of four methods: “Proposed-MMDA”, “Proposed-MMDA (w/o

THU)”, [38], “Baseline”. For a fair comparison, they are evaluated with the same de-

tection results as an input. We report the tracking result of greedy spatial and temporal

data association method as “Baseline” in our experiments (see Details in Sec 2.2.3).

The method of Hofmann et al. [38] has a difficulty in directly applying head detection

results as an input since the algorithm needs to be set 3D coordinates of each combi-

nation of detections. Although the 3D coordinate of the person detected by a single

camera can be estimated with ground plane assumption in full body case, it is difficult

to determine its location in head case because the height of the person is unknown.

Therefore, we assumed that the person has an approximate height (1700 millimeters in

our experiments). Instead of the height assumption, we have also experimented with

ignoring the case detected in one camera only. Unfortunately, resulting trajectories are

frequently split because in many cases people are detected in one camera when oc-

clusions occur. In order to show the importance of the trajectory hypothesis update

process, we also reported the tracking performance when the trajectory hypothesis up-

date process was not performed (denoted as Proposed-MMDA (w/o THU)).
3we used the Gurobi optimization library at http://www.gurobi.com
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Proposed-MMDA (w/o THU)

(a) Standing (b) Sitting (c) Standing & sitting
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Hofmann et al. Proposed-MMDA Baseline

Figure 4.4: Quantitative evaluation for MOTA, IDS and Recall in the PSN-University

dataset for increasing false negative rate (FNR).
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Proposed-MMDA (w/o THU)

(a) Standing (b) Sitting (c) Standing & sitting
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Hofmann et al. Proposed-MMDA Baseline

Figure 4.5: Quantitative evaluation for MOTA, IDS and Recall in the PSN-University

dataset for increasing false positive rate (FPR).
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PSN-University. Two sets of experiments on PSN-University were conducted: using

hand-labeled detections and state-of-the-art detectors [50, 61]. First, we did not use

any detectors to decouple the tracking performance from the detection performance.

Instead, to evaluate the tracking performance depending on the detection performance,

we added false negatives (missing detections) and false positives (false detections) to

the hand-labeled detections. To simulate false negatives, we removed true detections

randomly, where we changed the false negative rate (FNR) from 0% to 50%. To create

false positives, we made false detections at random locations chosen uniformly, where

we changed the false positive rate from 0% to 20% of true detections.

We plot the tendency of MOTP, MOTA, and IDS by increasing FNR (see Figure

4.4) and FPR (see Figure 4.5). Note that the “Baseline” method in 0% FNR and 0%

FPR even achieved over 85% MOTA, but tracking performance is significantly de-

graded for increasing detector errors. It can be seen that problem becomes the more

challenging by adding the more detector errors.

The proposed method shows clear advantages in 3D localization accuracy when

increasing missing detections, achieving the best MOTP in all three sequences (see

Figure 4.4). Since we optimize each 3D trajectory hypotheses in our unified optimiza-

tion framework, it significantly improves localization performance. In addition, the

improvement of localization finally increases MOTA and IDS. The proposed method

outperforms against the state-of-the-art method [38] with more than 5% and 10% gain

in MOTA, while achieving minimal IDS in 50% FNR.

When the targets move in z-direction such as sitting and sit.&stand. sequences,

it is difficult for other methods [38] and “Proposed-MMDA (w/o THU)” to robustly

localize 3D position of the targets, especially when a target is detected by only one

camera. Note that the proposed method finds 3D positions robustly by fusing observa-

tions across multiple cameras within multiple frames, thereby achieving a small loss

of tracking performance. Our method degrades 3.2% in sitting and 0.9% in sit.&stand.

sequence, whereas the method of Hofmann et al. [38] degrades 15.5% in sitting and
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Table 4.4: Quantitative evaluation on the PSN-University dataset using a head detector

as an input. we also reported the number for recall and precision of the used detector

by averaging over all visible cameras.

Dataset Method MOTA↑ MOTP↑ Rcll↑ Prcn↑ IDS↓ FM↓ GT MT↑ PT↓

Proposed-MMDA 90.1% 85.6% 96.6% 94.4% 10 6 10 100% 0%

PSN-Univ. Proposed-MMDA (w/o THU) 89.5% 82.0% 93.4% 97.4% 17 16 10 90% 10%

standing Hofmann et al. [38] 88.1% 82.3% 91.5% 97.1% 9 12 10 90% 10%

Baseline 67.0% 85.0% 73.4% 98.5% 65 68 10 10% 90%

Detection (Head) - - 79.4% 95.1% - - - - -

Proposed-MMDA 88.2% 89.1% 95.1% 93.9% 12 4 10 100% 0%

PSN-Univ. Proposed-MMDA (w/o THU) 85.0% 87.0% 93.8% 92.1% 14 14 10 100% 0%

sitting Hofmann et al. [38] 84.5% 88.0% 92.9% 92.4% 12 10 10 100% 0%

Baseline 68.4% 89.1% 76.8% 95.4% 85 85 10 60% 40%

Detection (Head) - - 82.8% 93.1% - - - - -

Proposed-MMDA 75.6% 85.4% 93.0% 84.9% 21 10 10 100% 0%

PSN-Univ. Proposed-MMDA (w/o THU) 77.2% 84.8% 90.2% 88.4% 29 27 10 90% 10%

sit.&stand. Hofmann et al. [38] 77.1% 86.4% 89.1% 88.8% 18 19 10 80% 20%

Baseline 69.8% 87.4% 78.1% 95.8% 120 131 10 60% 40%

Detection (Head) - - 75.1% 90.5% - - - - -
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(a) standing sequence

(b) sitting sequence

(c) sitting&standing sequence

Figure 4.6: Qualitative results of mixed multidimensional assignment approach us-

ing a head detector as an input. (top to bottom) PSN-University standing, sitting, and

sit.&stand. sequences.

8.7% in sit.&stand. sequence.

Similarly, most of the compared methods decreases their overall tracking perfor-

mance as increasing false detections, which increases IDSs and decreases MOTA (see

Figure 4.5). Since the proposed method finds the more realistic trajectories taking ac-

count into their physical properties, “fake trajectories” can be constructed rather plau-

sibly describing false detections. In fact, a MOTA decrease of the proposed method

was larger than that of the method of Hofmann et al. [38] in sitting and sit.&stand.

sequences. Nevertheless, the proposed method robustly maintains its tracking perfor-

mance, achieving best MOTP and IDS.
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Table 4.5: Quantitative evaluation on PETS 2009 dataset using a full body detector

as an input. we also reported the number for recall and precision of the used detector

by averaging over all visible cameras. * mark denotes that the results are copied from

tables of the paper.

Dataset Method Rcll Prcn MOTA MOTP IDS FM MT PT ML

Proposed-MMDA 99.5% 99.6% 99.0% 77.2% 5 2 100.0% 0.0% 0.0%

PETS 2009 Proposed-MMDA (w/o THU) 99.1% 99.1% 98.1% 77.6% 3 0 100.0% 0.0% 0.0%

S2.L1 Hofmann et al. [38]* - - 99.4% 83.0% 1 2 100.0% 0.0% 0.0%

Yoo et al. [41]* - - 99.5% 78.1% 0 0 100.0% 0.0% 0.0%

Baseline (3) 97.8% 83.8% 89.8% 74.4% 63 23 100.0% 0.0% 0.0%

Detection (FullBody) 85.6% 96.0% - - - - - - -

Proposed-MMDA 89.9% 93.1% 81.5% 70.8% 142 88 78.4% 17.6% 4.1%

PETS 2009 Proposed-MMDA (w/o THU) 89.8% 91.6% 79.8% 69.8% 147 94 79.7% 16.2% 4.1%

S2.L2 Hofmann et al. [38]* - - 79.7% 74.2% 132 129 69.8% 27.9% 2.3%

Yoo et al. [41]* - - 72.9% 63.1% 246 132 73.0% 24.3% 2.7%

Baseline (3) 85.1% 90.6% 71.0% 70.3% 437 302 70.3% 27.0% 2.7%

Detection (FullBody) 65.0% 94.1% - - - - - - -

Proposed-MMDA 72.5% 93.8% 66.6% 66.7% 36 24 43.2% 34.1% 22.7%

PETS 2009 Proposed-MMDA (w/o THU) 72.5% 91.6% 64.5% 57.2% 43 28 45.5% 29.5% 25.0%

S2.L3 Hofmann et al.[38] - - 65.4% 73.9% 116 88 40.9% 34.1% 25.0%

Yoo et al. [41] - - 54.5% 57.0% 101 78 34.1% 56.8% 9.1%

Baseline (3) 69.9% 89.9% 57.5% 62.1% 150 104 31.8% 50.0% 18.2%

Detection (FullBody) 40.4% 99.6% - - - - - - -

In Table 4.4, we also report the results when the current state-of-the-art detector

is used [50]. The classifier of Dollar et al. [50] was trained for a head-shoulder de-

tector using positive samples from NLPR dataset [52] and negative samples from IN-

RIA dataset [51]. Note that detection performance at each sequence was about recall

80% and over precision 90%, i.e., FNR 20% and FPR 10%. Especially, the proposed

method improved Recall metric significantly from the input detections after linking

the detections of each person and filling the missing gap of the detections. As a result,

the proposed method reported the best performance in terms of MT, Recall, and FM

metric, which mostly tracked 10 people at each sequence (see also Figure 4.6 for a

visual illustration).
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(a) S2.L1 sequence

(b) S2.L2 sequence

(c) S2.L3 sequence

Figure 4.7: Qualitative results of mixed multidimensional assignment approach using

a fullbody detector as an input. (top to bottom) PETS 2009 S2.L1, S2.L2, and S2.L3

sequences.
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PETS2009. We evaluated our method on three sequences in the PETS 2009 benchmark

dataset [62], where the deformable part model (DPM) [61] were used for the detec-

tion of full body (see Figure 4.7 for a visual illustration). For a fair comparison with

state-of-the-art methods [38, 41], we adopted the same ground truth provided by Milan

et al. [58] and used the same number of cameras. The 3D trajectories of the ground

truth are defined on ground plane i.e., 2D Euclidean space, Z = 0, therefore we pro-

jected to the ground plane with reference to the “View 001”. As shown in Table 4.5,

the proposed method achieved comparable performance at S2.L1 sequence and out-

performed the state-of-the-art methods at S2.L2 and S2.L3, recording the best MOTA.

Note that by using multiple cameras, “Baseline” method also achieved MOTA 89.0%

and MT 100% in low density sequence such as S2.L1 sequence. We also note that the

proposed method fixed the parameters of algorithm along three sequences in contrast

to the methods of Hofmann et al. [38] and Yoo et al. [41].

Application: Real-time 3D localizing and tracking system (3DLTS)

Figure 4.8 shows that qualitative visualizations of the proposed system on the PETS

2009 S2.L1 and the PSN-University standing sequences. The full body model was

used in the PETS 2009 dataset and head model in the PSN-University dataset. To

evaluate the quantitative performance, we used the PETS 2009 dataset, which is a

public benchmark dataset. In order to calculate the performance and computation time

of the whole system, the overall performance evaluation was performed by changing

the meta parameters such as engaged cameras and maximum number of iterations

(max iter). Next, we compared with other state-of-the-art methods.

System overall performance. In order to evaluate overall system performance, algo-

rithm speed and tracking performance were measured for various system configura-

tions (engaged cameras andmax iter). First, we performed a comparative experiment

on the maximum number of iterations max iter of the proposed tracking algorithm.

The proposed tracking algorithm is an iterative algorithm that iteratively performs ran-
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Figure 4.8: Qualitative results of real-time 3D localizing and tracking system for the

PETS 2009 S2.L1 (Left) and the PSN-University standing sequence (Right).
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Table 4.6: Dependency of max iter for 4 cameras on the PETS 2009 S2.L1.

Method FPS MOTP↑ MOTA↑

Proposed-3DLTS (max iter 25) 5.24 76.9% 92.0%

Proposed-3DLTS (max iter 50) 5.20 77.3% 95.6%

Proposed-3DLTS (max iter 75) 5.18 77.3% 95.8%

Proposed-3DLTS (max iter 100) 5.05 77.3% 95.9%

Proposed-3DLTS (max iter 150) 4.98 77.3% 96.1%

Proposed-3DLTS (max iter 200) 4.87 77.3% 96.1%

Table 4.7: Computational time (four cameras and max iter = 100).

w/o OpenMP w/ OpenMP

Detection 285.70 ms (96.4%) 184.5 ms (93.2%)

Feature Extraction 220.85 ms (74.5%) 155.29 ms (78.4%)

Classifying 63.71 ms (21.5%) 27.86 ms (14.1%)

Post-Processing & Etc 1.14 ms (0.4%) 1.35 ms (0.7%)

Tracking 10.82 ms (3.6%) 13.42 ms (6.8%)

Total 3.37FPS 5.05 FPS

dom split and re-merging to improve the initial solution to a better solution. Table 4.6

shows the relationship between tracking performance and system speed according to

max iter for four cameras. If max iter is large, the tracking performance, that is,

MOTA and MOTP, increases. When max iter becomes larger than a specific value,

the performance is no longer improved and the solution converges as shown in Ta-

ble 4.6. In addition, the number of max iter until the solution converges sufficiently,

is related to the size of the problem space. If the number of cameras increases, the

max iter value should be higher. Therefore, we need to determine the appropriate

max iter and camera numbers for the trade-off between real-time speed and satisfac-

tory performance.

Computational time. The proposed system achieves a real-time speed (>5 FPS) with

satisfactory performance at max iter = 100 for four cameras. Table 4.7 shows the

computational time required for the detection and tracking module for the case of four
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Table 4.8: Quantitative evaluation of real-time 3D localizing and tracking system for

the PETS 2009 S2.L1. Also shown in parentheses is the number of cameras.

Method FPS O/B MOTP↑ MOTA↑ MT↑ ML↓ Rcll↑ Prcn↑

Proposed-3DLTS (3) 5.49 Online 73.9% 95.0% 100.0% 0.0% 97.1% 98.6%

Proposed-3DLTS (4) 5.05 Online 77.3% 95.9% 100.0% 0.0% 98.1% 98.4%

Proposed-3DLTS (5) 3.69 Online 77.7% 96.6% 100.0% 0.0% 98.2% 98.8%

Yoo et al.[41] (3) <1 Online 72.9% 98.9% 100.0% 0.0% - -

Hofmann et al.[38] (3) <0.82 Batch 74.7% 99.0% 100.0% 0.0% 99.6% 99.5%

cameras and max iter = 100. Detection module occupies 96.4% of the total time and

occupies most of the time. In particular, the feature extraction using image pyramid

occupies 74.5%, which is a bottleneck of the proposed system. With simple parallel

processing with OpenMP, the detection time was reduced by 35.4% compared to the

previous one, resulting in real-time performance. The proposed tracking module occu-

pies only 7% of the total time and shows fast performance at 74.5 FPS in 4 cameras.

In Table 4.8, we compared our method to state-of-the-art batch methods [38] as well

as the online method [41]. We used three configurations for the proposed scheme: 1)

max iter=100, 3 cameras; 2) max iter=100, 4 cameras; 3) max iter=500, 5 cam-

eras. Although the online approach is difficult to recover from missing detections be-

cause it only uses inputs up to the current frame, the proposed scheme achieves com-

petitive performance to the state-of-the-art batch methods. In addition, the proposed

method shows real-time performance that is five times faster than the existing online

method [41]. Other state-of-the-art methods [38, 41] are based on detections using de-

formable part model (DPM) [61]. DPM takes over 0.6s to process one frame and is

therefore not suitable for real-time applications.
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4.3.2 Variational Inference Approach

Parameters

Our probabilistic model shown in (3.18-3.21) contains some predefined weighting pa-

rameters. Each parameter is empirically found but most of them were fixed regardless

of the kind of sequences. Even though two datasets are different in resolution, in-

door/outdoor, number of targets and many other aspects, only λmot and λmid were set

to different values depending on the video characteristics. This λmot is related to the

frame rate of a recoded video, where a lower frame rate leads to a lower λmot. On the

other hand, λmid is correlated with the density of the people because it penalizes the

missed detections that occur more often in crowded scenes. In our experiments, λmot

was set to 1/1602 for PSN-University and 1/1002 for PETS 2009. In PSN-University,

λmid was fixed to 102 in all sequences. In PETS 2009, λmid was set to 102 for S2.L1,

82 for S2.L2 and 72 for S2.L3. The other weight parameters were fixed as follows:

λobs = 1/202, λfse = 202, λeez = 102, λfak = 142, λjmp = 32.

Convergence

First, we analyze the convergence trends of MOTP and MOTA in the proposed expectation-

maximization framework. In the E-step, 3D positions of given trajectory assignments

are updated. Based on the new 3D positions, the new trajectory assignments are ob-

tained in the M-step. As shown in Figure 4.9, the tracking performance mainly in-

creases in the M-step, which is influenced by the improved accuracy of the 3D position

estimation in E-step. In most cases, the algorithm converged within 5-10 iterations.
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Figure 4.9: Convergence trends of MOTP and MOTA on the PSN-University sitting

sequence at FNR 50%.
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Robustness Evaluation in PSN-University

To show the tendency of tracking performance depending on detection performance,

false negatives (missing detection) and false positives (false detections) were added to

the hand-labeled detections. To simulate the false negatives of a detector, true detec-

tions were randomly removed to increase the false negative rate (FNR) from 0% to

50%. To create the false positives of a detector, false detections were made at random

locations to adjust the false positive rate (FPR) from 0% to 20%.

By changing the FNR (see Figure 4.10) and the FPR (see Figure 4.11), we com-

pared our method to the state-of-the art methods [38] and “Proposed-MMDA (w/o

THU)”. Note that the method of Hofmann et al. [38] needs to use 3D coordinates of

each combination of detections. However, it is impossible to determine 3D position

from 2D detection in a single camera if the height of the person is unknown. For this

case, 3D positions are calculated under the assumption of person’s height. In our ex-

periments, we assume the person’s height be 1700 millimeters. For both FNR and FPR

cases, our method has clear advantages in 3D localization accuracy, outperforming

[38] in terms of MOTP. By increasing the FNR (see Figure 4.10), the tracking perfor-

mance degrades with decreasing MOTA and MOTP and increasing IDS+FM. In most

cases, our method is more robust against false positives and negatives than Hofmann

et al. [38] and is comparable to “Proposed-MMDA (w/o THU)” in terms of MOTA.

In terms of FM and IDS, our method is mostly better than “Proposed-MMDA (w/o

THU)”. In terms of the performance degradation due to increase of FPR, our method

is better than “Proposed-MMDA (w/o THU)”.
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(a) Standing (b) Sitting (c) Standing & sitting
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Hofmann et al. Proposed-MMDA (w/o THU)Proposed-VI

Figure 4.10: Robustness evaluation against increase of false negative rate (FNR). The

evaluation was conducted for MOTP, MOTA, and IDS+FM using the PSN-University

dataset.
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(a) Standing (b) Sitting (c) Standing & sitting
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Figure 4.11: Robustness evaluation against increase of false positive rate (FPR). The

evaluation was conducted for MOTP, MOTA, and IDS+FM using the PSN-University

dataset.
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Benchmark evaluation in PETS 2009

The proposed method has been compared with the state-of-the-art methods [38, 41].

In tracking-by-detection framework, tracking performance is highly dependent on de-

tection performance. For a fair comparison, all methods are evaluated with the same

detections obtained using [61], and ground truth trajectories annotated by [18]. The

ground truth includes the 2D trajectories of the foot positions on the ground plane.

Thus, the estimated 3D trajectories were projected to z = 0 plane for evaluation. In

Table 4.9, we report average recall and precision of detections used in our experiments.

The density of people in S2.L3 is highest and that of S2.L2 is higher than that of S2.L1.

As the density increases, the recall performance deteriorates, which leads to the in-

crease of missing detections. Therefore, S2.L2 and S2.L3 are more challenging than

S2.L1.

In S2.L2 and S2.L3 sequences, MOTA and MOTP of the proposed method are

much better than the state-of-the-art methods [38, 41]. In S2.L1 sequence, tracking

performance tends to be saturated since the average recall is over 85%. Compared to

other methods using predefined 3D position [38, 41], our method shows that the per-

formance of MOTA as well as MOTP is improved in all sequences. This implies that

the estimation accuracy of 3D position is improved owing to the effect of the proposed

variational expectation(position estimation) and maximization (trajectory assignment)

framework. For other metrics such as MT, ML, IDS, and FM metrics, the proposed

method is still competitive. For reference, Figure 4.12 illustrates the qualitative perfor-

mance of our method. We can see that even in a high density scene, our method shows

a satisfactory performance.
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Table 4.9: Quantitative evaluation on PETS 2009 dataset. * mark denotes that the re-

sults are copied from tables of the paper. Also shown in parentheses is the number of

cameras.

Dataset Method MOTA↑ MOTP↑ IDS↓ FM↓ MT↑ ML↓ Rcll↑ Prcn↑

Proposed-VI 98.3% 78.1% 3 1 100.0% 0.0% 99.8% 98.6%

PETS 2009 Hofmann et al.[38] 99.0% 74.7% 3 1 100.0% 0.0% 99.6% 99.5%

S2.L1 Yoo et al.[41]* 99.5% 78.1% 0 0 100.0% 0.0% - -

Baseline 89.8% 74.4% 63 23 100.0% 0.0% 97.8% 83.8%

Detection [61] - - - - - - 85.6% 96.0%

Proposed-VI 86.5% 73.7% 57 38 79.7% 5.4% 91.3% 95.8%

PETS 2009 Hofmann et al.[38] 85.2% 72.2% 68 53 74.3% 4.1% 89.3% 96.4%

S2.L2 Yoo et al.[41]* 72.9% 63.1% 246 132 73.0% 2.7% - -

Baseline 71.0% 70.3% 437 302 70.3% 2.7% 85.1% 90.6%

Detection [61] - - - - - - 65.0% 94.1%

Proposed-VI 64.6% 62.3% 44 27 43.2% 18.2% 74.0% 90.2%

PETS 2009 Hofmann et al.[38] 62.1% 59.7% 26 15 43.2% 27.3% 68.8% 92.1%

S2.L3 Yoo et al.[41]* 54.5% 57.0% 101 78 34.1% 9.1 % - -

Baseline 57.5% 62.1% 150 104 31.8% 18.2% 69.9% 89.9%

Detection [61] - - - - - - 40.4% 99.6%

88



(a) S2.L1 sequence

(b) S2.L2 sequence

(c) S2.L3 sequence

Figure 4.12: Qualitative results of variational inference approach for the PETS 2009

dataset.
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Benchmark evaluation in PSN-University

The benchmark experiments were conducted using actual detections for PSN-university

(see Figure 4.13). The PSN-University dataset is a challenging dataset because it is a

classroom environment, where the desk is covering the lower body part of the person,

and the students sitting or standing are mixed together to include the uncertainty of

the bounding box position. Since full body detection is difficult in the PSN-University

dataset, we use head detection as in [54]. The proposed method estimates the proba-

bility distribution of each person’s 3D head and their assignment variables together.

The average recall and precision for all cameras in the head detector used in the ex-

periment are shown in the Table 4.10. We compared the proposed method with the

state-of-the-art method [38] and a baseline method based on separate data association.

The baseline method is a two-step approach in which the inter-camera association is

obtained in a greedy manner and the inter-frame association is achieved by bipartite

matching between the inter-camera associations. As shown in the below table, the pro-

posed method in all three sequences achieved a higher MOTA than other unified data

association approaches as well as the baseline. Especially in sitting and sitting & stand-

ing sequence, the variation of the z-value of the 3D trajectory is large because a person

is seated or standing in a classroom chair. The proposed method improved the MOTA

metric by 9% for sitting sequence and 15% for sitting & standing sequence. At the

same time, IDS and FM also achieved the best performance. Note that the parentheses

in the tables denote the best performance in each column.

Table 4.11 shows three tracking performance of the PSN-University dataset: Proposed-

VI, without the additional update (AU) in E-step and the initial solution. In sitting

sequence, the proposed method improves the MOTA by 12% compared to the ini-

tial solution by performing an additional update, but only 3% improvement from the

initial solution when not doing the AU in E-step. Therefore, it is important to update

the means and covariance matrices for unselected detection indices in the trajectory

assignment. If the unselected detection indices are not updated, the means and covari-
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Table 4.10: Quantitative evaluation on the PSN-University using a head detector as an

input. we also reported the number for recall and precision of the used detector by

averaging over all visible cameras.

Dataset Method MOTA↑ MOTP↑ Rcll↑ Prcn↑ IDS↓ FM↓ GT MT↑ PT↓

Proposed-VI 92.6 % 83.0% 95.4% 98.0% 12 6 10 100% 0%

PSN-Univ. Hofmann et al. [38] 88.1% 82.3% 91.5% 97.1% 9 12 10 90% 10%

standing Baseline 67.0% 85.0% 73.4% 98.5% 65 68 10 10% 90%

Detection (Head) - - 79.4% 95.1% - - - - -

Proposed-VI 93.4 % 88.2% 95.1% 99.0% 13 7 10 100% 0%

PSN-Univ. Hofmann et al. [38] 84.5% 88.0% 92.9% 92.4% 12 10 10 100% 0%

sitting Baseline 68.4% 89.1% 76.8% 95.4% 85 85 10 60% 40%

Detection (Head) - - 82.8% 93.1% - - - - -

Proposed-VI 92.3% 87.5% 93.3% 99.2% 7 10 10 100% 0%

PSN-Univ. Hofmann et al. [38] 77.1% 86.4% 89.1% 88.8% 18 19 10 80% 20%

sit.&stand. Baseline 69.8% 87.4% 78.1% 95.8% 120 131 10 60% 40%

Detection (Head) - - 75.1% 90.5% - - - - -

ance matrices of the selected trajectory assignments are optimized. Thus, it is easily

stuck in the current trajectory assignment, which becomes harder to select better tra-

jectory assignments in the M-step.
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Table 4.11: Self-comparisons of variational inference approach for the PSN-University

dataset whether additional update (AU) is performed.

Dataset Method MOTA↑ MOTP↑ Rcll↑ Prcn↑ IDS↓ FM↓ GT MT↑ PT↓

PSN-Univ. Proposed-VI 92.6 % 83.0% 95.4% 98.0% 12 6 10 100% 0%

standing Proposed-VI (w/o AU) 77.5% 86.3% 80.1% 98.9% 21 21 10 70% 30%

Initial 73.6% 85.9% 75.7% 99.9% 25 23 10 60% 40%

PSN-Univ. Proposed-VI 93.4 % 88.2% 95.1% 99.0% 13 7 10 100% 0%

sitting Proposed-VI (w/o AU) 84.6% 89.0% 87.0% 98.5% 19 14 10 80% 20%

Initial 81.5% 89.9% 83.2% 99.5% 24 26 10 80% 20%

PSN-Univ. Proposed-VI 92.3% 87.5% 93.3% 99.2% 7 10 10 100% 0%

sit.&stand. Proposed-VI (w/o AU) 86.8% 87.4% 88.5% 99.1% 22 21 10 90% 10%

Initial 80.8% 87.5% 82.8% 99.5% 38 40 10 70% 30%

(a) standing sequence

(b) standing sequence

(c) standing sequence

Figure 4.13: Qualitative results of variational inference approach for the PSN-

University dataset.
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Table 4.12: Quantitative comparisons of the proposed two approaches (MMDA and

VI) on the PETS 2009 dataset.

Dataset Method MOTA↑ MOTP↑ Rcll↑ Prcn↑ IDS↓ FM↓ MT↑ ML↓

PETS 2009 Proposed-VI 98.3% 78.1% 99.8% 98.6% 3 1 100.0% 0.0%

S2.L1 Proposed-MMDA 99.0% 77.2% 99.5% 99.6% 5 2 100.0% 0.0%

Hofmann et al. [38] 99.0% 74.7% 99.6% 99.5% 3 1 100.0% 0.0%

PETS 2009 Proposed-VI 86.5% 73.7% 91.3% 95.8% 57 38 79.7% 5.4%

S2.L2 Proposed-MMDA 81.5% 70.8% 89.9% 93.1% 142 88 78.4% 4.1%

Hofmann et al. [38] 85.2% 72.2% 89.3% 96.4% 68 53 74.3% 4.1%

PETS 2009 Proposed-VI 64.6% 62.3% 74.0% 90.2% 44 27 43.2% 18.2%

S2.L3 Proposed-MMDA 66.6% 66.7% 72.5% 93.8% 36 24 43.2% 22.7%

Hofmann et al. [38] 62.1% 59.7% 68.8% 92.1% 26 15 43.2% 27.3%

4.3.3 Comparisons of Two Approaches

PETS 2009

Table 4.12 shows the results of evaluating the two proposed frameworks in the three

sequences of the PETS 2009 dataset. The deformable part model (DPM) [61] was used

for full body detection. In PETS 2009, there was a different method for state-of-the-art

performance per sequence. In case of S2.L1 sequence with low density, all three meth-

ods showed performance close to perfect MOTA (100%). By contrast, S2.L2 and S2.L3

sequences have highly density. From the viewpoint of MOTA and MOTP metric, the VI

approach in S2.L2 and the MMDA approach in S2.L3 showed the best performance re-

spectively. These performance differences are related to the behavioral trends of each

sequence. In the case of S2.L2 sequence, people move freely irregularly, whereas in

S2.L3 sequence, very dense people move in a certain direction. Therefore, the MMDA

approach using constant velocity motion dynamics showed some performance advan-

tage in the case of S2.L3 sequence where people move at a constant speed. In the

case of S2.L2, on the other hand, the VI approach using the simpler motion dynamics

showed better performance than the MMDA approach.
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Figure 4.14: Robustness evaluation of the proposed two approaches (MMDA and VI)

against increase of false negative rate (FNR). The evaluation was conducted for MOTP,

MOTA, and IDS+FM using the PSN-University dataset.

PSN-University

In the experiments using ground truth detection, we can confirm that the two proposed

approaches (MMDA and VI) clearly outperform Hofmann et al. [38] which is the

existing state-of-the-art method (see Figure 4.14 and 4.15). First, in the experiments

conducted by adjusting the false negative rate (FNR), MOTA and MOTP metrics of the

MMDA approach showed better than those of the VI in most cases (see Figure 4.14).

Especially in the case of MOTP metric, the VI approach using the second derivative

of the trajectory is better than the MMDA approach using only the first derivative. In

case of IDS and FM, the MMDA approach performed better than the VI approach for

standing and sitting sequences, and the VI approach achieved better performance than
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Figure 4.15: Robustness evaluation of the proposed two approaches (MMDA and VI)

against increase of false positive rate (FPR). The evaluation was conducted for MOTP,

MOTA, and IDS+FM using the PSN-University dataset.

95



Table 4.13: Quantitative comparisons of the proposed two approaches (MMDA and

VI) on the PSN-University dataset using a head detector as an input.

Dataset Method MOTA↑ MOTP↑ Rcll↑ Prcn↑ IDS↓ FM↓ MT↑ PT↓

PSN-Univ. Proposed-VI 92.6 % 83.0% 95.4% 98.0% 12 6 100% 0%

standing Proposed-MMDA 90.1% 85.6% 96.6% 94.4% 10 6 100% 0%

Hofmann et al. [38] 88.1% 82.3% 91.5% 97.1% 9 12 90% 10%

PSN-Univ. Proposed-VI 93.4 % 88.2 % 95.1% 99.0% 13 7 100% 0%

sitting Proposed-MMDA 88.2% 89.1% 95.1% 93.9% 12 4 100% 0%

Hofmann et al. [38] 84.5% 88.0% 92.9% 92.4% 12 10 100% 0%

PSN-Univ. Proposed-VI 92.3% 87.5% 93.3% 99.2% 7 10 100% 0%

sit.&stand. Proposed-MMDA 75.6% 85.4% 93.0% 84.9% 21 10 100% 0%

Hofmann et al. [38] 77.1% 86.4% 89.1% 88.8% 18 19 80% 20%

the MMDA approach for standing & sitting sequence. In the case of the experiment

adjusting false positive rate (FPR), the MMDA approach method performed better in

the case of the MOTP as in the FNR experiment (see Figure 4.15). This phenomenon

suggests that motion model of the MMDA approach is more degradation in false de-

tection as it attempts to describe higher-order motion. The tendency of IDS and FM

was the same as the experiment with adjusting FNR. For the standing and sitting se-

quences, the MMDA approach performed better and the VI approach achieved better

performance for the standing & sitting sequence.

As shown in Table 4.13, we also report the results when the state-of-the-art detec-

tor is used for detecting heads [50]. Two frameworks outperform the state-of-the-art

method as the experiments using ground truth detections. When using the actual de-

tections, the VI approach showed better overall tracking performance than the MMDA

approach. This is because the uncertainty in the three-dimensional space increases due

to the 2D position noise, i.e., the noise of the bounding box. The VI approach, which

treats the position of objects in 3D space as a probability distribution, seems more

robust to such noise than the MMDA approach that treats it as a three dimensional

deterministic point.
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Summary

Both of the proposed approaches have outperformed the state-of-the-art method [38]

in most experiments. In the PSN-University dataset experiments using ground truth

detection, the MMDA approach achieved better performance than the VI approach.

In experiments using real detection, the VI approach achieved better performance than

the MMDA approach in all sequences of PSN-University and S2.L2 sequence of PETS

2009. In real detection, the 3D ambiguity increases with the noise of the bounding

box. Therefore, the VI approach models the 3D position with probability distribution

showed better performance.
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Chapter 5

Conclusion

5.1 Concluding Remarks

In this dissertation, we have proposed two approaches to solve the spatio-temporal data

association and 3D localization problem at the same time. In the mixed multidimen-

sional assignment approach, we have shown that the two coupled problems are formu-

lated as a minimization of the proposed discrete-continuous cost function that models

physical properties of a trajectory. The proposed alternative optimization scheme effi-

ciently minimizes the resulting non-convex and non-submodular cost function by alter-

nately optimizing two different type of objective variables. In the spatio-temporal data

association, the approximation algorithm of the multidimensional assignment (MDA)

problem iteratively improves a feasible solution by two operations: random splitting

and optimal merging. Experimental results show that the proposed method achieves

accurate 3D trajectories of interesting targets and robust tracking performance against

the state-of-the-art methods.

In variational inference approach, we have formulated the two problems as a maxi-

mum a posterior (MAP) problem on highly correlated variables, i.e., trajectory assign-

ments and 3D positions. In addition, the intractable MAP problem has been analyti-

cally solved through a variational approximation framework. The variational expectation-
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maximization (V-EM) scheme derived in the variational framework could effectively

find the optimal solution owing to the explicit formula describing the probabilistic

properties of the multi-camera settings.

5.2 Future Work

Although many technological advances have been made in multi-camera multi-target

tracking over the last several years, tracking each object in 3D space is not com-

pletely solved. The two proposed approaches achieve the state-of-the-art performance

for multi-camera multi-target tracking problems respectively. Finally, we will point out

the remaining limitations of the proposed models and discuss how to improve tracking

performance and apply them to other application applications.

One of the most desirable directions for improving tracking performance is to ex-

tract more features from the image. The proposed methods are based solely on geo-

metric information using calibration information from multiple cameras. For example,

we use geometric clues that the bounding box corresponding to the same person is

near the three-dimensional location or that the motion of the adjacent frame in the

three-dimensional space moves smoothly (see details in Section 2.1.2). Obviously, ex-

tracting more clues from the image with this geographic information can help track

each trajectory accurately.

Appearance feature is one of the additional features that can be used with geo-

metric information in the proposed methods. In the multi-target tracking problem, the

appearance is used mainly on the assumption that appearance does not change much

over time. Most of single-camera based approaches have modeled these assumptions as

a cost function or a probability distribution, and have used them for tracking multiple

objects. In addition, some methods adopt online appearance learning scheme [63, 64].

In multiple cameras, appearance in time as well as appearance in different cameras

should be considered. However, it is difficult to obtain the inter-camera appearance
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similarity of the same person with the assumption that the appearance does not change

much. This is because the appearance with different viewpoints changes drastically.

Therefore, 3D appearance modeling [65] or view-invariant appearance feature extrac-

tion [66, 67] can be one solution. It is important to note that the performance of the

person re-identification problem has been improved notably using deep convolutional

neural networks (CNN).

Next, another piece of information that can be extracted from an image is motion

information. Since detections used as an input of currently proposed methods is pro-

cessed based on an independent frame, motion information between frames is lost.

Therefore, we can use optical flow as an additional observation to the proposed meth-

ods. On the other hand, tracklet-based approaches [68, 69, 70] use motion to connect

sufficiently reliable detections to short trajectories and use these short trajectories as

the unit of association. Extending the proposed methods to these tracklet-based meth-

ods can not only focus on solving longer-term data associations, but it can also help

reduce computational complexity.

Similarly, another approach that can be complemented is the combination with

silhouette-based approaches [33, 37, 71]. The silhouette-based approaches find the sil-

houette of each camera and to fuse it in various ways, such as creating a 3D volume or

creating a synergy map. The silhouette-based approaches have the challenge of solv-

ing the “ghost effect” where no real object exists but false positives. This is basically

because the silhouette has a 2D-3D ambiguity. If the silhouette of different objects si-

multaneously affect the 3D reconstruction, the 3D reconstruction is also made in the

region where the actual object does not exist. If the data association based method and

the silhouette based method are combined, it is expected that the trajectories of the

accurate three dimensional volume can be found while reducing the “ghost effect”.

One of the additional applications of the proposed method could be a robot or au-

tomobile for autonomous driving. Since the overlapping area may be smaller than the

current setting, the view-invariant appearance feature and the geometry feature should
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be combined well. Applications in the other direction utilize the proposed optimiza-

tion framework for new problems. A typical example is to track multiple object poses

[72, 73]. In the problem of tracking multiple object poses, we also combine the prob-

lem of associating each person’s parts on the time axis and the localization problem of

estimating the position of each part. Therefore, it is expected that the proposed frame-

work can be extended and applied to various type of applications.
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초록

본논문에서는겹쳐진영역을바라보는다중카메라의영상에서다중물체추적

및 3차원 위치 추정을 위한 통합 프레임웍을 제안한다. 이 때 주요한 문제는 3차원

위치 추정 문제와 궤적 할당 문제를 동시에 해결 하는 것이다. 하지만 대부분의 기

존의방법들은추적과위치추정문제를각각독립적으로분리해서풀고자하였다.

왜냐하면단일카메라다중물체추적과는달리다중카메라에서는카메라간의관

계도 고려해야 하기 때문에 두 가지 문제를 모두 해결하는 것이 훨씬 더 복잡하기

때문이다.제안하는방법은다중카메라에서의데이터연관문제와 3차원위치추정

문제를동시에해결하는두가지접근방식을제안한다.첫번째는혼합다중할당

접근 방법이고 두 번째는 베이지안 변분 추론 접근 방법이다. 먼저, 혼합 다중 할

당접근방법에서는시공간데이터연계문제와 3D궤적추정문제의두가지결합

문제를공동으로해결하고자한다.이때큰솔루션공간을다루기위해제안하는프

레임웍은 두 결합 문제를 번갈아 가며 합리적인 계산 부하로 최적화하는 효율적인

프레임웍이다. 두 번째로 베이지안 변분 추론 접근 방법에서는 다중 카메라로부터

탐지된 관측 값들에 대한 궤적 할당과 3차원 위치의 사후 확률을 최대화한다. 이때

3차원 위치를 확률 분포로 나타내어 3차원 공간의 불확정성이 존재하는 경우에 더

강인한추적성능을달성하였다.사후확률최대화를위해볼츠만분포를따르는다

중카메라추적을위한 7가지요소들을디자인하고이사후확률로부터해를구하기

위한기대값최대화기법을개발하였다.
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