

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Path Planning for Efficient Deployment and

Collection of a Marsupial Robot Team

Marsupial 로봇 팀의 효율적인 배치 및 회수를 위한

경로 계획에 관한 연구

BY

HUNSUE LEE

AUGUST 2017

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Path Planning for Efficient Deployment and

Collection of a Marsupial Robot Team

Marsupial 로봇 팀의 효율적인 배치 및 회수를 위한

경로 계획에 관한 연구

BY

HUNSUE LEE

AUGUST 2017

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Path Planning for Efficient Deployment and Collection

of a Marsupial Robot Team

Marsupial 로봇 팀의 효율적인 배치 및 회수를 위한

경로 계획에 관한 연구

지도교수 이 범 희

이 논문을 공학박사 학위논문으로 제출함

2017 년 6 월

서울대학교 대학원

전기정보 공학부

이 훈 수

이훈수의 공학박사 학위논문을 인준함

2017 년 6 월

위 원 장 조 동 일

부위원장 이 범 희

위 원 서 승 우

위 원 심 형 보

위 원 지 상 훈

Abstract

This dissertation presents time-efficient approaches to path planning for initial

deployment and collection of a heterogeneous marsupial robot team consists of

a large-scale carrier robot and multiple mobile robots. Although much research

has been conducted about task allocation and path planning of multi-robot

systems, the path planning problems for deployment and collection of a marsu-

pial robot team have not been fully addressed. The objectives of the problems

are to minimize the duration that mobile robots require to reach their assigned

task locations and return from those locations. Taking the small mobile robot’s

energy constraint into account, a large-scale carrier robot, which is faster than

a mobile robot, is considered for efficient deployment and collection. The car-

rier robot oversees transporting, deploying, and retrieving of mobile robots,

whereas the mobile robots are responsible for carrying out given tasks such as

reconnaissance and search and rescue. The path planning methods are intro-

duced in both an open space without obstacles and a roadmap graph which

avoids obstacles. For the both cases, determining optimal path requires enor-

mous search space whose computational complexity is equivalent to solving a

combinatorial optimization problem. To reduce the amount of computation,

both task locations and mobile robots to be collected are divided into a num-

ber of clusters according to their geographical adjacency and their energies.

Next, the cluster are sorted based on the location of the carrier robot. Then,

i

an efficient path for the carrier robot can be generated by traveling to each

deploying and loading location relevant to each cluster. The feasibility of the

proposed algorithms is demonstrated through several simulations in various en-

vironments including three-dimensional space and dynamic task environment.

Finally, the performance of the proposed algorithms is also demonstrated by

comparing with other simple methods.

Keywords: Multi-robot systems, multi-robot path planning, marsupial robot,

deployment, collection, energy constraint

Student Number: 2012-30227

ii

Contents

Abstract i

Chapter 1 Introduction 1

1.1 Background and motivation . 1

1.1.1 Multi-robot system . 1

1.1.2 Marsupial robot team . 3

1.2 Contributions of the thesis . 9

Chapter 2 Related Work 13

2.1 Multi-robot path planning . 14

2.2 Multi-robot exploration . 14

2.3 Multi-robot task allocation . 15

2.4 Simultaneous localization and mapping 15

2.5 Motion planning of collective swarm 16

2.6 Marsupial robot team . 18

2.6.1 Multi-robot deployment 18

2.6.2 Marsupial robot . 19

iii

2.7 Robot collection . 23

2.8 Roadmap generation . 24

2.8.1 Geometric algorithms . 24

2.8.2 Sampling-based algorithms 25

2.9 Novelty of the thesis . 26

Chapter 3 Preliminaries 27

3.1 Notation . 27

3.2 Assumptions . 29

3.3 Clustering algorithm . 30

3.4 Minimum bounded circle and sphere of a cluster 32

Chapter 4 Deployment of a Marsupial Robot Team 35

4.1 Problem definition . 35

4.2 Complexity analysis . 37

4.3 Optimal deployment path planning for two tasks 38

4.3.1 Deployment for two tasks in 2D space 39

4.3.2 Deployment for two tasks in 3D space 41

4.4 Path planning algorithm of a marsupial robot team for deployment 42

4.5 Simulation result . 49

4.5.1 Simulation setup . 49

4.5.2 Deployment scenarios in 2D space 50

4.5.3 Deployment scenarios in 3D space 57

4.5.4 Deployment in a dynamic environment 60

4.6 Performance evaluation . 62

iv

4.6.1 Computation time . 62

4.6.2 Efficiency of the path . 64

Chapter 5 Collection of a Marsupial Robot Team 67

5.1 Problem definition . 68

5.2 Complexity analysis . 70

5.3 Optimal collection path planning for two rovers 71

5.3.1 Collection for two rovers in 2D space 71

5.3.2 Collection for two rovers in 3D space 75

5.4 Path planning algorithm of a marsupial robot team for collection 76

5.5 Simulation result . 83

5.5.1 Collection scenarios in 2D space 83

5.5.2 Collection scenarios in 3D space 88

5.5.3 Collection in a dynamic environment 91

5.6 Performance evaluation . 93

5.6.1 Computation time . 93

5.6.2 Efficiency of the path . 95

Chapter 6 Deployment of a Marsupial Robot Team using a

Graph 99

6.1 Problem definition . 99

6.2 Framework . 101

6.3 Probabilistic roadmap generation 102

6.3.1 Global PRM . 103

6.3.2 Local PRM . 105

v

6.4 Path planning strategy . 105

6.4.1 Clustering scheme . 106

6.4.2 Determining deployment locations 109

6.4.3 Path smoothing . 113

6.4.4 Path planning algorithm for a marsupial robot team . . . 115

6.5 Simulation result . 116

6.5.1 Outdoor space without obstacle 116

6.5.2 Outdoor space with obstacles 118

6.5.3 Office area . 119

6.5.4 University research building 122

Chapter 7 Conclusion 125

Bibliography 129

초록 151

vi

List of Figures

Figure 1.1 Conceptual picture of the descent of NASA’s Curiosity

rover to the Martian surface by sky crane for Mars mission 4

Figure 1.2 Examples of deployment and collection of rovers with

energy constraint by using transportation of a carrier . . 5

Figure 2.1 Examples of cooperative strategy for MRS that a robot

carries another robots or agents. 20

Figure 3.1 Procedure to find minimum bounded circle 32

Figure 4.1 Three cases of deployment for two tasks 39

Figure 4.2 Path planning for two tasks 40

Figure 4.3 Finding the optimal deployment location for two given

tasks in 3D space . 42

Figure 4.4 Path planning of the carrier for two clusters having mul-

tiple tasks . 43

vii

Figure 4.5 In earlier cluster, the carrier should deploy rovers at

maximum distance from the farthest task in the clus-

ter . 44

Figure 4.6 Calculation of deployment locations in 3D space 45

Figure 4.7 Example procedure of the proposed algorithm for de-

ployment . 48

Figure 4.8 Example procedure of rovers deployment for two tasks

in 50m× 50m space . 51

Figure 4.9 Effect of parameter change on the deployment result . . 52

Figure 4.10 Deployment scenario with 15 tasks according to the trav-

eling distance constraint of rovers 54

Figure 4.11 Deployment scenario with 15 tasks according to the un-

loading time of the carrier 56

Figure 4.12 Deployment procedure for two tasks in 3D space 58

Figure 4.13 Deployment example for six tasks in (100m×100m×30m) 59

Figure 4.14 Dynamic deployment scenario with ten tasks in 500m×

500m space . 61

Figure 4.15 Average computation time of proposed deployment al-

gorithm . 63

Figure 4.16 Efficiency of the deployment path comparing with the

solution from greedy two-opt algorithm, in 300m×300m

space . 65

viii

Figure 5.1 Three cases that the carrier meets rovers at a collection

location. 69

Figure 5.2 Optimal path planning of a carrier for two rovers 72

Figure 5.3 Path modification of the carrier 74

Figure 5.4 Two rovers collection in a 3D space 76

Figure 5.5 Examples of two rovers collection 77

Figure 5.6 Example of a collection location decision 79

Figure 5.7 Example procedure of the collection path generation al-

gorithm . 82

Figure 5.8 Collection scenario with 15 rovers according to the trav-

eling distance constraint of rovers 85

Figure 5.9 Collection scenario with 15 rovers according to the trav-

eling distance constraint of rovers, which are randomly

generated with standard deviation 3 86

Figure 5.10 Collection scenario with 25 rovers according to initial

location of the carrier . 89

Figure 5.11 Collecting simulation result for ten rovers in 3D space . . 90

Figure 5.12 Carrier’s paths and elapsed times from various approaches 91

Figure 5.13 Dynamic collection scenario with 11 rovers in 300m ×

300m space . 92

Figure 5.14 Average computation time of proposed collecting algo-

rithms . 94

Figure 5.15 Example of 15 rovers collection in 300m× 300m 96

ix

Figure 5.16 Efficiency of the collecting path comparing with the so-

lution from greedy two-opt algorithm, in 300m × 300m

space . 97

Figure 5.17 Ratio of mission time according to number of rovers and

approaches . 97

Figure 6.1 Framework for path planning of a marsupial robot team 101

Figure 6.2 Roadmap generation by global PRM 104

Figure 6.3 Path from carrier to task locations and first clustering

result . 107

Figure 6.4 Deployable area according to task configuration in cluster110

Figure 6.5 Local PRM generation in the first cluster for outdoor

space with obstacle . 110

Figure 6.6 Two case of deployment for last cluster 113

Figure 6.7 Shortcutting of path in office area 114

Figure 6.8 Deployment path planning in outdoor space without ob-

stacle . 117

Figure 6.9 Deployment path planning in outdoor space with obstacles118

Figure 6.10 Deployment path planning in office area 121

Figure 6.11 Deployment path planning in university research building123

x

List of Tables

Table 4.1 Specification of the simulation computer 49

Table 4.2 Initial parameters in deployment for two tasks 50

Table 4.3 Initial parameters in deployment for 15 tasks 53

Table 4.4 Initial parameters in deployment for two tasks 57

Table 4.5 Initial parameters in deployment for six tasks 60

Table 5.1 Initial parameters in collection for 15 rovers 84

Table 5.2 Initial parameters in collection for 25 rovers 87

Table 5.3 Initial parameters in collection for ten rovers in 3D space 88

Table 6.1 Number of nodes and edges for four areas 105

Table 6.2 Initial parameters in outdoor space without obstacle for

eight tasks . 116

Table 6.3 Number of nodes and edges, and elapsed time in outdoor

space without obstacle . 116

Table 6.4 Number of nodes and edges in outdoor space without ob-

stacle . 119

xi

Table 6.5 Initial parameters in office area for five tasks in office area 120

Table 6.6 Number of nodes and edges in office area 120

Table 6.7 Initial parameters in university research building 122

Table 6.8 Number of nodes and edges in university research building 122

xii

List of Algorithms

3.1 Cluster divider . 31

4.1 Deployment path generator . 46

4.2 Deployment path generator (continue) 47

5.1 Collection path generator . 80

5.2 Collection path generator (continue) 81

6.1 ClusterDivider . 108

6.2 Shortcutting . 114

6.3 Path planning for a marsupial robot team 115

xiii

Chapter 1

Introduction

1.1 Background and motivation

1.1.1 Multi-robot system

Robotics technologies are being adapted for widely different applications. The

applications include manufacturing automation, military equipment, robot-assisted

endoscopic surgery, home cleaning, mobility assistance, unmanned aerial vehi-

cles (UAV), autonomous cars, and even entertainment. As the number and

spatial distribution of robotic applications increases, the use of multi-robot sys-

tems (MRS) becomes inevitable. Over the past few decades, a great deal of

effort has been invested in the field of MRS, which has become important in

robotics research. As frequently explained in the literature [18, 87, 120], the

potential advantages of MRS over a single robot include: 1) increased spatial

coverage; 2) fault-tolerance and robustness by redundancy; 3) flexibility; and

1

4) cost-effectiveness of total systems. Furthermore, some tasks may be accom-

plished only by using an MRS when the size of the tasks is too substantial to be

done by an individual robot. Therefore, MRS are advantageous in various areas

such as object transportation and manipulation [23], exploration [17,84], recon-

naissance and surveillance [1,99], search and rescue [69], and map-building [92].

However, there are a few problems that arise from using MRS in practice,

for example, the problems of communication, task allocation, cooperation and

coordination, and collision avoidance. Most desired applications of MRS re-

quire resolving more than one problem, depending on the type of application.

Therefore, it is important to characterize the desired MRS and choose a suit-

able approach for each problem. Among those problems, cooperation with other

robots is the one of the fundamental issues. Cooperation can be divided into two

main categories: 1) tight cooperation that requires continuous synchronization

and coordination, such as box-pushing [72] and formation keeping [6,93]; and 2)

loose cooperation, such as exploration [18], surveillance [94], mapping [30, 84],

and tracking [9, 88].

For efficient cooperation, either centralized or distributed control architec-

ture should be used in a rover. In a centralized system, almost all tasks are

processed in a central controller, whereas each robot only performs sensing

and actuating. 1 However, as the system increases in size, processing ability

and communication bandwidth are limited, and fault tolerance might become

more significant [48]. On the other hand, in a distributed (decentralized) sys-

tem, each robot plans and solves its given tasks independently. This system

1In this study, the mobile robot includes UAV.

2

generally seems more flexible and robust than centralized systems. However,

each robot cannot tell whether the entire mission is completed, and the amount

of communication might increase. Therefore a mixed form of two systems, in

which the central controller coordinates each rover’s behavior, can be used. The

central coordinator of an MRS is often concerned with task allocation, which is

known to be a non-deterministic polynomial-time (NP) hard problem, meaning

that optimal solutions cannot be found quickly for large problems [34]. There-

fore, solutions to this problem are typically approximations that are acceptable

in practice [5]. Allocating roles to each of the team robots is also one of the

primary issues in MRS. It allows robots to specialize in behaviors for which they

are responsible [19]. The overall efficiency of an MRS is expected to increase

when the robots are specialized. The heterogeneity often enables each robot to

perform its roles explicitly.

1.1.2 Marsupial robot team

The marsupial robot team [26,28,56,73,80,99,101,118] has a special configura-

tion with both characteristics: tight cooperation and loose cooperation. In other

words, when one robot carries another robot, they work in tight cooperation.

But once the robot releases the other robots, they work in loose cooperation. In

this study, the heterogeneous robots composing this team are referred to as a

carrier and a rover, respectively. The heterogeneity of the carrier and the rover

allows each robot to perform its explicit roles, complementing each other’s lim-

its and increasing the efficiency of the entire system [19]. Advantages to rovers

from carrier are: 1) rapid and energy efficient transportation to target area; 2)

3

Figure 1.1: Conceptual picture of the descent of NASA’s Curiosity rover to the
Martian surface by sky crane for Mars mission launching in 2020 [29].

protection during transport; 3) shelter from environmental conditions; 4) power

recharge and swapping; 5) processing station; 6) proxy processing; and 7) com-

munication relay. Therefore, this type of marsupial robot team can be used

in various scenarios such as search and rescue [80], cooperative SLAM [118],

planetary exploration [29], surveillance [99,101], and drone delivery [73].

Figure 1.1 shows an example of using a marsupial robot team for the explo-

ration of Mars [29]. The rover may not be able to overcome some terrain to go

directly to its destination, or there may be energy or time constraints to travel

a long distance. Therefore, the rover is maneuvered and deployed using the sky

crane of an UAV, which acts as the carrier robot. Once the rover successfully

lands, the actual exploration mission will be performed by the rover. If the UAV

has a sufficient loading capacity or if the rover is light and small enough, it will

be possible to transport and deploy more than one rover.

Likewise, in this paper, a fleet of rovers is transported by a carrier as de-

picted in Figure 1.2. By using this combination, total fuel cost can be econo-

4

(a) Deployment (b) Collection

Figure 1.2: Examples of (a) deployment and (b) collection of rovers with energy
constraint by using transportation of a carrier. The red rounded rectangle is
the carrier.

mized, and the maximum traveling distance of each rover can be overcome. The

carrier, which moves faster than the rovers, is in charge of transporting, deploy-

ing, and collecting rovers. In addition, the carrier can be either a node that is

connected to a central system or a central system itself that communicates with

the rovers. Meanwhile, the energy of a rover being transported by the carrier is

not consumed. Once a rover is unloaded at the deployment location, it begins

moving to its initial task location. On the other hand, the rovers that have

completed their given tasks should be collected, unless the cost of collecting

the rovers is more expensive than the cost of the rovers. Assume that there is a

series of optimal deployment points for the given set of tasks. Then, a series of

optimal collection points can be expected to be the inverted series of optimal

deployment points. However, this is applicable only when both the locations

and the energies of all the robots at the beginning of collection are the same

as those at the end of deployment. For example, if the location of the carrier is

5

changed from the last location in deployment, the optimal collecting path can-

not be the same as the previous optimal deployment path. Furthermore, rovers

are expected to be fully charged before deployment. Thus, we can assume that

all the energies of the rovers are the same, while the remaining energies of the

rovers after completing their tasks may be different from one another.

Path planning is a fundamental problem for a mobile robot to perform its

mission without colliding with obstacles in the environment. Path planning

problems for a robot [14, 33, 47] or MRS [12,16] have been studied extensively.

However, to the best of our knowledge, only a few studies [56,62,73,75,76,118]

have addressed the path planning problem of the marsupial robot team. In this

study, our goal is to minimize the time rovers take to reach their assigned task

location by using a carrier robot. (For example, in search and rescue mission,

minimizing the time should be the most important criterion.) To implement

such a system, we need to consider the following.

• Communication: MRS requires communication for cooperation and co-

ordination. This dissertation assumes a fully connected network ensuring

connectivity is not the main objective. The number of connections rapidly

increases each time a robot is added because topology requires n(n−1)/2

connections for n robots. If so, the use of a star network centered on a car-

rier may be considered. Note that, in an environment without obstacles,

Bluetooth 4.0 and WiFi direct can communicate up to 100m (in most

cases 20-30m) [15] and 200m [102], respectively. An additional wireless

sensor network (WSN) deployment may be considered in case a robot

6

travels outside these ranges.

• Obstacle Avoidance: Obstacle avoidance, an essential factor for the

continued use and reliability of a robot, can be approached from a global

and local perspective. Usually global planning considers maps or static ob-

stacles in the environment and local planning avoids unmapped or moving

obstacles. In this study, we first consider an environment without obsta-

cle. Then we consider static obstacles with the assumption that moving

obstacles can be avoided through conventional reactive planning [55, 77].

Static obstacles can be avoided by creating roadmaps in open spaces. We

use a probabilistic roadmap method (PRM), one of the most widely used

sampling-based map building algorithms [57], to create the roadmap.

• Energy: There are three methods for path planning optimization: time,

path-length, and energy optimization. As we focus on minimizing the

time, we assume that the energy of a carrier, the larger robot, is infinite,

and the battery capacity of a rover, the smaller robot, is limited and would

be used for tasks such as image acquisition in addition to movement. For

time-efficient path planning, the maximum possible travel distance with

a given energy is important. Therefore, it is assumed that the amount

of available energy and the maximum travel distance are linearly propor-

tional.

• Dynamic environment: Due to the dynamics of the environment, new tasks

may appear and an ordinary tasks may disappear during the operation.

To cope with this, it is necessary to be able to quickly formulate a plan

7

for not only the initial plan but also the environment that changed during

the mission.

Considering these facts, the problems are solved in open space first. Then,

they are also solved in a graph which is generated by the PRM that considers

static obstacles. Solving the optimal path to these problems is computationally

expensive. Assume all rovers are deployed and collected at their exact task lo-

cations, and the amount of each task is the same. Then, these problems become

equivalent to the traveling salesman problem (TSP), known to be an NP hard

problem [25]. However, these problems have much higher computational com-

plexity than the TSP because each candidate location for either deployment or

collection can be either anywhere in the two-dimensional (2D) plane or a node in

a graph. To solve those problems efficiently, each problem is iteratively divided

into two sub-problems based on the distance between either tasks or rovers.

(The distance here refers to the Euclidean distance in the open space and the

distance calculated by A* algorithm [40] in the graph.) For each dividing step,

optimal or nearly optimal solutions for all sub-problems can be found. Then

the entire path is generated by merging and adjusting the solutions, and the

duration is also calculated. Finally, by comparing the durations, the path with

the minimum duration is chosen as for the deployment/collection path. This

approach enables near real-time updating of deployment/collection paths in a

dynamic environment. However, the method in the graph does not guarantee

real-time updating.

8

1.2 Contributions of the thesis

The objective of this thesis is to develop an algorithmic approach to the path

planning of marsupial robot team required to operate in environments. It is

important to emphasize that the proposed collaborative algorithms in this thesis

can not be analyzed by using the conventional techniques. This thesis is divided

into two parts. The first part, which includes chapter 4 and 5 deals with the

deployment and collection problems with the marsupial robot team in open

space without any obstacle. The second part includes chapter 6, and deals

with the path planning of marsupial robot team in an environment with static

obstacles. The contribution of each chapter can be summarized as follows.

• Chapter 2: Related Work. In this chapter we review previous studies in

multi-robot path planning and the other relevant fields. Then, the novelty

of this thesis is presented.

• Chapter 3: Preliminaries. In this chapter we first introduce some no-

tation and assumption. Then, we review some basic results in PRM and

computational geometry on which we will rely throughout the thesis.

• Chapter 4: Deployment of a Marsupial Robot Team. In this chap-

ter we study robot deployment problems where rovers have energy con-

straints. Surprisingly, little is studied about marsupial robot team ver-

sions, despite their practical relevance. To fill this gap, we study the fol-

lowing problem: m tasks exist in a bounded environment, and n rovers

and a carrier are operated. The carrier transports all rovers initially and

9

deploys each rover for each task. The aim is to find a carrier’s path which

makes each rover successfully arrives a given task location, and minimizes

the arrival time of all rovers. Our contribution is that we carefully for-

mulate this problem and develop an efficient algorithm for deployment of

rovers, considering the rover’s energy constraint.

• Chapter 5: Collection of a Marsupial Robot Team. In this chapter

we study robot collection problems where rovers are scattered after com-

pleting their tasks. The goal is to find a carrier’s path for all rovers that

can be retrieved from their location, minimizing the time. Our contribu-

tion is twofolds. First, we formulate this problem. Second, we develop an

algorithm for collection which generates efficient collecting path.

• Chapter 6: Deployment of a Marsupial Robot Team using a

Graph. In this chapter we study robot deployment problems in envi-

ronment with static obstacles. The aim is to find a carrier’s efficient

path which avoids obstacles in the environment. This problem has im-

portant applications in areas such as surveillance and exploration, and

search and rescue. For this problem, we can not use the existing path

planning method because we use the marsupial robot team. To this end,

first, we derive a roadmap by using PRM taking obstacles into account.

Second, we make clusters based on the distances to tasks from the carrier’s

location which is calculated by using A* algorithm. Finally, we present

an algorithm to find a series of deployment locations. We also perform

extensive simulations.

10

• Chapter 7: Conclusion. In this final chapter we draw our conclusions,

and present some ideas for future research.

11

Chapter 2

Related Work

The marsupial robot team is a category of MRS. To operate an MRS, several

preceding techniques are needed. This entails recognizing the environment, dis-

tributing work, and planning the path of each robot. Therefore, multi-robot

path planning issue is studied in section 2.1, multi-robot exploration is covered

in section 2.2, and multi-robot task allocation is dealt in section 2.3. In addi-

tion, simultaneous localization and mapping (SLAM) is briefly introduced in

section 2.4. On the other hand, motion planning of collective swarm, which is

the other one of two broad categories in multiple mobile robot systems, is cov-

ered in section 2.5. In section 2.6, the related work using marsupial-like robot

team is described, and the related work for collection is introduced in section

2.7. Then, roadmap generating methods is described in section 6.3. Finally, the

novelty of this thesis is again highlighted in section 2.9.

13

2.1 Multi-robot path planning

The purpose of multi-robot path planning is for given multiple robots in workspace

with starting and goal pose to determine path each robot should take reach its

goal, while avoiding collisions other robots and obstacles. The optimization cri-

teria of the problem can be minimizing: 1) total path length; 2) time to reach

goals; and 3) energy to reach goals. Typically, this is abstracted as the problem

of computing a set of non-colliding paths on a graph for multiple robots [89,112].

The related subject is also introduced in section 6.3.

2.2 Multi-robot exploration

Considerable researches for MRS cooperation have been conducted. For ex-

ample, Wurm et al. [119] use exploration strategy which divides space into

segments and allocates each robot to the individual segment by using Hun-

garian method. Based on dynamic programming principle, LaValle et al. [58]

introduce an algorithm that enables each robot to achieve the goal, minimizing

loss functional the authors defined. Gomez et al. [84] also formalize exploration

and map-building solution of heterogeneous robots by using dynamic program-

ming. The robots incrementally explore the environment with reduced search

space. Listmann et al. [67] investigate frontier-based approach using Voronoi

partition for multi-robot coverage problem. For path planning of multiple air

vehicles, Zheng et al. [121] demonstrate a novel co-evolving and cooperating

path planner (CCPP). These path planning approaches for MRS are described

in a productive task allocation perspective that minimize travel time or fuel

14

expenditure [10].

2.3 Multi-robot task allocation

For multi-robot exploration, dynamic task allocation in unknown environment

is essential [65]. Berhault et al. [13] adapt combinatorial auctions for allocat-

ing exploration targets. Rossi et al. [98] propose negotiation module of target

points for heterogeneous robot team. Their team also develop simultaneous task

subdivision and allocation method [97]. Delle et al. [27] present decentralized co-

ordination and task allocation algorithm of unmanned aerial vehicles. Nestinger

and Cheng [82] study a reconfigurable cooperative system framework which in-

cludes task allocation function. As explicit negotiations between many robots

often require a considerable amount of communication, Regele and Levi [91]

use heuristic priority adjustment after traditional path planning. Grocholsky et

al. [39] introduce a cooperative surveillance that consists of unmanned ground

vehicle (UGV) and UAV.

2.4 Simultaneous localization and mapping

SLAM was originally developed by Leonard et al. [64]. Montemerlo et al. [79]

suggest FastSLAM which is an algorithm that recursively estimates the full pos-

terior distribution over robot pose and landmark locations, yet scales logarith-

mically with the number of landmarks in the map. In recent years, cooperative

strategy is applied to SLAM. Howard [45] suggests multi-robot SLAM using par-

ticle filters. Gil et al. [36] use Rao-Blackwellized particle filter for visual SLAM.

Carpin [20] uses a map merging method for an MRS. Oh et al. [85] present

15

loop-closure detection method using bag-of-words for multi-robot SLAM. How-

ever, those studies generally assume the robots are initially scattered and do

not consider deployment problem.

2.5 Motion planning of collective swarm

In MRS, intentionally cooperative systems have knowledge of the presence of

other robots in the environment. However, collective swarm systems are those

in which robots execute their own tasks with only minimal need for knowledge

about other robot team members [106]. Collective swarm research is inspired

from biological systems such as insect colonies, flocks of birds, and schools of

fish [7]. Beni and Wang [11] first use the term swarm intelligence in their study.

Rigatos [95] suggest two distributed stochastic search algorithm for motion

planning of MRS: 1) distributed gradient; and 2) swarm intelligence theory.

The proposed algorithms show that the location of each robot and the mean

position of robots converge to the destination. The algorithms are based on

system-theoretic approach, and stability is proven by Lyapunov analysis. How-

ever, heuristic tuning is required for particle swarm optimization (PSO). Jat-

miki et al. [49] use PSO-based robot for odor source localization in obstacles

environment. For the odor source localization, chemotaxis model and anemo-

taxis model are combined to solve dynamic Advection-Diffusion problems. To

resolve local minima problem in conventional PSO, the neutral-charge concept

is adopted to recognize environmental changes. In addition, the more efficient

convergence is implemented by using wind utilization concept. The both pro-

posed models can solve the problems, however, they can not accurately address

16

the real life scenarios. Rimon and Koditschek [96] address a method to cre-

ate an artificial potential field in a fixed environment with all the information

about the robot model and geographic information. The specific goal is to find

a smooth bounded-torque feedback controller until it arrives at the destination

and stops, avoiding obstacles. The authors assess the method as Error detection

and recovery. Masoud and Masoud [71] propose nonlinear, anisotropic, harmonic

potential fields (NAHPF) which is a new class of motion planners that can mark

a constrained trajectory to a target zone in an environment that need not neces-

sarily be a priori known. To overcome the weakness of hybrid partial differential

equation-ordinary differential equation controller (HPC), evolutionary HPC is

used in the study. Gazi and Passino [32] discuss the continuous time model

of a swarm with M-objects in n-dimensional space. The motion of each object

is determined by three factors: 1) attraction by distant objects; 2) repulsion

by other objects in close proximity; and 3) attracted by the preferred region.

The authors analyze stability and suggest conditions for convergence. Sepul-

chre et al. [105] develop a method to stabilize the relative equilibrium state.

The issue of collective stabilization is how to connect them together to reach

the desired level rather than how to control the dynamics of each entity. The

authors assume that the particles are all identical, moving at a unit velocity,

and are all-to-all coupled. The equilibrium corresponds to a parallel motion or

a circular motion. The stabilization feedback derived from the Lyapunov func-

tion shows exponential stabilization and global convergence. Particle swarm has

shown good performance, however, it has not been fully explained how it works,

and existing methods have problems such as having unintentional dynamics or

17

limiting speed to follow trajectory. To cope with these, Clerc and Kennedy [24]

propose a method to find the optimum by analyzing discrete time trajectory

of particle and expanding it to continuous time. On the other hand, Masehian

and Sedighizdeg [70] suggest a heuristic technique for multi robot motion plan-

ning which is based on PSO. Local planning uses the PRM. Compared to other

PSOs, they are successful in diversity. In other words, there is a strong tendency

to search for new places.

2.6 Marsupial robot team

2.6.1 Multi-robot deployment

The deployment problem is fundamental to MRS. Wang et al. [113] introduce a

distributed deployment algorithm for mobile agents, assuming fully connected

communication topology. The algorithm initially calculates Voronoi partition.

Then robots move to final locations until pre-defined inequality is satisfied.

Carpin et al. [21] analyze how many robots are required for deployment when

there is a chance to fail. Satoh et al. [103] propose a framework for dynamic

deploying of agents. Although the framework provides coordination, it does not

consider dividing and allocating robots for geometrically scattered tasks. By

using stochastic extremum seeking method, Ghods et al. [35] design a control

for deployment of N agents in a planar signal field. However, energy constraint

of the agents is not considered in the study. Wang et al. [114] investigate a

multi-robot deployment method by simple rules, sensors, and precondition. In

the study, PSO without nostalgia is used as a distributed approach. Kloetzer

and Belta [54] demonstrate a deployment method for visiting regions of inter-

18

est. However, as most of computation should be performed offline before de-

ployment, dynamic adjustment of deployment cannot be achieved. For a spatial-

temporal coverage, Baroudi et al. [8] discuss GPS-free robots deployment which

use landmarks in the deployment area, and is verified in network simulation

tool. The method estimates distance by using receive signal strength indicator

(RSSI). Several studies of deployment have been conducted for WSN [46,115],

which is strongly related to the coverage problem. Stergiopoulos and Tzes [108]

suggest a coordination algorithm for autonomous optimal deployment of the

nodes in a WSN. The algorithm relies on suitable partitioning of the sensed

space, based on certain Helly-type theorems, guaranteeing distributed informa-

tion flow. By using relay robots and Voronoi diagram, Uchimura et al. [111]

use a deployment algorithm that enables leader robot and base station can

communicate each other.

2.6.2 Marsupial robot

Heterogeneous robot team consists of robots with different abilities. In this

team, using a larger carrier for transporting and deploying small rovers is ad-

vantageous, as the carrier may traverse longer distances than a rover. There are

not many studies on the marsupial robot team, most of them [44] focused on

novel architecture, and only a few of them focus on the path planning problem

of this team.

Figure 2.1 shows the example of the cooperative strategy by using marsupial-

like robot team. First, one of the earliest studies on architecture implementation

is proposed by Murphy et al. [80, 81]. (Figure 2.1a.) Wang et al. [116] demon-

19

(a) Micro-rover is deployed from the car-
like Silver Bullet [81]

(b) Carrier-based sensor deployment [90]

(c) Ranger carries scouts for reconnais-
sance and surveillance [99]

(d) Ground vehicle carries UAV for indoor
surveillance [101]

(e) TraxBot carries several scouts [26] (f) AVERT robotic system for indoor park-
ing [2]

Figure 2.1: Examples of cooperative strategy for MRS that a robot carries
another robots or agents.

20

strate carrier-based sensor deployment for a WSN. As they assume finite load

capacity of the carrier, the carrier has to repeatedly move back to the position

where sensors are stored. Pei and Mutka [90]. also introduce a relay deployment

method for the front node to explore an unknown environment. However, each

sensor itself in those studies cannot move from the deployed location. (Figure

2.1b.) Rybski et al. [99] use rangers and scouts for reconnaissance and surveil-

lance. (Figure 2.1c.) The scout combines rolling and jumping locomotion to

reach a given area, however path finding technique is not presented. Kadioglu

and Papanikolopoulos [51] presented a physical method for transporting scouts

by using Pioneer robot. Saska et al. [101] develop a heterogeneous unmanned

ground vehicle (UGV)-UAV system for cooperative indoor surveillance. (Fig-

ure 2.1d.) However, there is only one UAV, and efficient path generation is

not considered. Couceiro et al. [26] demonstrate a ranger called TraxBot which

deploys the scouts, maintaining a maximum the full connectivity of a WSN.

(Figure 2.1e.) However they assume that the mission is started only after all

scouts reached their goal positions. Drenner et al. [28] propose a marsupial sys-

tem where a multi-level hierarchy allows carriers to transport large number of

rovers. The study introduces electrical design and vision system of docking sta-

tion, and the actual experiment shows that the exploration robot is moved to a

fixed position on the station. Marek et al. [74] introduce Marsubot and Mother-

bot, and deal with energy allocation and distribution for long term autonomy.

Minten et al. [78] describe a docking method based on vision information. In

all the studies mentioned above, no consideration is given to path planning or

only very simple algorithms are presented. Amanatiadis et al. [2] introduce an

21

autonomous vehicle lifting and transportation system what is called AVERT.

(Figure 2.1f.) However, the efficient deployment of Bogie components is not ad-

dressed. Tran et al. [110] present canine assisted robot deployment for search

and rescue.

Some studies deal with the path planning problem of marsupial robot team.

Min et al. [76] develop a vision-based algorithm for effective deployment of small

multiple robots. The algorithm makes marsupial robot to drive into the center

of the task area and unload small robots. Mei et al. [75] propose a deployment

algorithm with energy and timing constraints for coverage problem. The study

aims to consume robot’s energy efficiently, not exceeding the timing constraint.

It means that a slower plan could be made within a given time limit to re-

duce energy consumption. Therefore, it may be difficult to use the method to

missions such as search and rescue where minimizing time is the most impor-

tant. Furthermore, the study assumes carrier’s travel time is negligible since

it travels at a much higher speed than robots. However, the dynamics of the

robot must be considered for path planning. Wurm et al. [118] suggest a way

to integrate a traditional cost-based planner with temporal planner. When a

carrier encounters a place where it cannot go by itself, it moves to the nearest

meeting location and deploys the rover. Compared with the heuristic method of

Stachniss [107], the study shows better performance. However, the duration for

symbolic actions, such as deploying a rover, is not considered in the planning.

Las et al. [56] deal with the path planning of marsupial vehicles consisting

of a carrier and a passenger for multi-agent surveillance and reconnaissance.

The method is useful for reconnaissance that minimizes the exposure by an

22

opponent, but there is a limit that one carrier can deploy only one passenger.

Mathew et al. [73] address the path planning of a truck and a quadrotor for

package delivery in urban area. They formulate heterogeneous delivery problem

(HDP) on a graph and propose a feasible solution. However, to efficiently tra-

verse the non-urban environment, it is necessary to consider creating a more

efficient node in the open space. Lee et al. [60, 62] describe efficient techniques

for deployment problem that minimizes time for robots to reach all the task

locations, considering energy constraint and robots’’ motion capabilities.

2.7 Robot collection

To the best of our knowledge, an analysis of robot collection is not been pre-

sented, except for our previous study [61]. Although Sahin and Zergeroglu [100]

use a computationally efficient path planning method for a collection of mo-

bile robots, the planning in the study is a sort of formation control. The other

studies focus on not robots collection but data collection. Goerner et al. [37] in-

vestigate constructing a path for mobile data collecting robot in heterogeneous

sensor network. The total cost of data collection is defined as the sum of trans-

mission energy of the sensor and movement energy of robot. Hollinger et al. [43]

introduce path planning for data collection in underwater environment. In the

study, a covering set of probabilistic neighborhoods is found. Then the optimal

path for the TSP of the covering set is acquired using Concorde [4]. Finally, an

autonomous underwater vehicle (AUV) tours the path. Chen et al. [22] present

a strategy that robot can collect the sensing data from WSN. In addition, de-

ployment and collection problems are similar to the transshipment problem in

23

logistics optimization which aims for minimum-durational transportation, and

supply chain management (SCM). Typically the candidate locations in logistics

or SCM are finite where optimal or near-optimal solution can be found on a

graph.

2.8 Roadmap generation

Motion planning methods to produce a roadmap can be divided into three cate-

gories according to approaches. These three methods are based on 1) geometric

information; 2) artificial potential fields; and 3) sampling. Since the approaches

based on artificial potential fields are introduced in section 2.5, we briefly in-

troduce geography-based methods and sampling based methods in this section.

2.8.1 Geometric algorithms

Visibility graph, which is first suggested by Lozano et al. [68], constructs a path

as a polygonal line connecting start position and goal position through vertices

of Cobs. This method is conceptually simple and produces shortest paths. How-

ever, this graph is only suitable for 2D. The best algorithm for visibility graph

is O(n2 log n). Two common cell decomposition approaches use exact cell and

approximate cell. Cell decomposition method is numerically stable and simple

to implement. Voronoi diagrams [109] are well studied for reactive mobile robot

path planning. This method maximizes clearance which is good for an uncer-

tain robot. However, this results in unnatural attraction to open space, and

suboptimal paths.

24

2.8.2 Sampling-based algorithms

Sampling-based algorithm samples milestones in free-configuration space. Then

a roadmap is constructed by connecting two milestones. This approach works

well for high-dimensional configuration spaces. Two popular methods using

sampling-based approach are rapidly-exploring random tree (RRT) and PRM.

Sampling-based planners are more efficient in most practical problems and prob-

abilistically complete. However, they offer weaker guarantees.

Rapidly-exploring random tree

RRT, developed by Lavalle and Kuffner [59], is a single-query search algo-

rithm which randomly builds a space-filling tree. The tree is incrementally con-

structed. RRT is easy to implement. However, the convergence rate is unknown

and metric sensitivity should be reduced. There are a lot variants of RRT such

as RRT* and bi-directional-RRT (BiRRT).

Probabilistic roadmap method

PRM is multi-query algorithm which is proposed by Kavraki et al. [52]. The idea

is to take random samples from configuration, declare them as vertices in free-

configuration space, and try to connect nearby vertices with local planner. PRM

can solve some of previously unsolved problems and support fast queries with

enough preprocessing. However, it is neither optimal nor complete. (PRM is

probabilistic complete.) Furthermore, the method is unlikely to sample nodes in

narrow passages. To navigate narrow passages, obstacle-based PRM (OBPRM)

is also proposed [3] as a variant of PRM.

25

2.9 Novelty of the thesis

This research is different from previous studies in the following ways:

1) This dissertation develops a combined loose and tight cooperation strat-

egy, achieved by carrying one another, for efficient deployment and col-

lection of rovers;

2) The proposed algorithms can reduce both the deployment and collection

time of rovers, considering both the energy constraint and the dynamics

of robots;

3) The proposed algorithms can reduce the number of computations so that

they are applicable for near real-time rovers in a dynamic task environ-

ment.

26

Chapter 3

Preliminaries

In this chapter, we first introduce some notation and assumption. Then, we

review some basic results in combinatorics on which we will rely throughout

this thesis.

3.1 Notation

To approach the problem, we define space and motion domain first. Given a

three-dimensional environment, W ∈ R3 denotes the workspace, and WOi de-

notes a workspace obstacle. Let QOi denote a configuration space obstacle such

that QOi = {q ∈ Q|R(q) ∩WOi ̸= ∅}, where q denotes a point in configura-

tion space Q. Qfree = Q \ (
⋃
QOi) denote the free configuration space. Initial

configurations of a carrier and m holonomic rovers are respectively denoted by

qc1 = (xc1 , yc1 , 0) ∈ Qfree and qi
r1 = (xir1 , y

i
r1 , z

i
r1) ∈ Qfree for 1 ≤ i ≤ m.

The orientation of carrier is denoted by θc. A goal configuration of the rover

27

is denoted by qi
rG

= (xirG , y
i
rG
, zirG) ∈ Qfree, for 1 ≤ i ≤ m, which is a task

location. An undirected graph in Qfree, which is initially empty, is denoted by

G = (N,E), where N and E are respectively a set of nodes and edges. In the

graph, the configuration qc1 of the carrier corresponds to node n1 ∈ N , and the

goal configuration qi
rG

corresponds to ni
g ∈ N .

On the other hand, the linear velocities of the carrier and the rover are re-

spectively denoted by vtc ≤ vmax
c and vtr ≤ vmax

r , and the constant accelerations

of the carrier and the rover are respectively denoted by ac and ar. The carrier’s

constant angular velocity is wc. tu denotes the duration for unloading rovers

and tl denotes the duration for loading rovers. The initial energy of the carrier

and the rover is respectively denoted by ϵc and ϵri . The required energy for one

task is denoted by ϵtask. A maximum travel distance of a rover for deployment

and collection is respectively denoted by ddeploy and dicollect.

A set of deployment points to be obtained is denoted by Ω = {qω1 =

(xω1 , yω1 , 0), qω2 = (xω2 , yω2 , 0), . . . ,qωα = (xωα , yωα , 0)} where 1 ≤ α ≤ m. In

the same way, a set of collection points to be obtained is denoted by Γ = {qγ0 =

(xγ1 , yγ1 , 0),qγ2 = (xγ2 , yγ2 , 0), . . . ,qγβ = (xγβ , yγβ , 0)} where 1 ≤ β ≤ n. A

group of rovers which are unloaded at the same deployment location qωα is

denoted by cluster Pωα , which is a subset of rovers. In the same way, a group

of rovers which are collected at the same collection location qγβ is denoted

by cluster Pγβ , which is a subset of rovers. Clearly, arbitrary two clusters are

mutually exclusive, and
α⋃

k=1

Pωk
=

β⋃
k=1

Pγk .

28

3.2 Assumptions

To simplify the problems, additional assumptions are given as follows.

• There is no collision between robots.

• Moving obstacles can be avoided by using existing local planning methods.

• The rover is a holonomic robot.

• The carrier moves faster than or equal to a rover, i.e., vmax
c ≥ vmax

r .

• Each rover can communicate with the carrier via a wireless network. How-

ever, the energy for communication is not considered.

• Each robot can be located by itself or by other positioning systems.

• Each task requires exactly one rover to execute it, and each rover is ca-

pable of executing at most one task at any given time.

• The number of rovers m is always bigger than the number of tasks.

• The initial energy of the carrier ϵc is sufficient for deploying, moving, and

collecting all rovers. Therefore, in the latter part of this study, only the

energy of a rover is considered.

• All rovers initially have the same amount of energy. After subtracting ϵtask

for a task, all the remaining energy ϵri − ϵtask is used for round-trip of

a rover from the deployment position. Therefore, the maximum traveling

distance of a rover ddeploy for approaching task location is determined by

half of the remaining energy. By assuming there is a linear correlation

29

ρ between the energy and ddeploy, then ddeploy = ρ(ϵri − ϵtask)/2 for all

rovers.

• Each rover can estimate its remaining energy after finishing its given task.

• The carrier can deploy and collect rovers only when it is not moving.

• Assuming dynamic environment, existing tasks can disappear and new

tasks can be created during the mission. The rovers to be collected also

can disappear.

• The generated path is well followed by the carrier and rovers

3.3 Clustering algorithm

Clustering methodology is crucial for minimizing the duration. Typical cluster-

ing algorithms [31] are center-based methods such as k-means [42], hierarchical

methods [50], density-based methods [41], and grid-based methods [104]. How-

ever, guaranteeing optimality of clustering considering energy constraint is not

easy. Therefore, for efficient computing, a cluster is divided into two clusters

iteratively by the following procedure:

1) Find two farthest tasks in a cluster and assign them as two clusters;

2) For each task, calculate the distances to two farthest tasks, and assign

the task to the cluster which includes the closer one.

Note that if there are more than one pair of the farthest two points, only

one set having the nearest task to the carrier is selected. This cluster dividing

method is described in Algorithm 3.1.

30

Algorithm 3.1: Cluster divider

Input: Cluster data: Icluster,
Index of the cluster to be divided: Idx

Output: Divided cluster data: Icluster
/* Collect tasks with respect to the index */

1 size← GET SIZE(Icluster)
2 for i← 1 to size do
3 if Icluster[i].index = Idx then
4 Dividing Targets← i

/* Check the number of targets */

5 size← GET SIZE(Dividing Targets)
6 if size = 1 then
7 return

/* Choose an arbitrary target and find the farthest point */

8 Max Dist1← 0
9 Max Index1← 0

10 for i← 1 to size do
11 d← GET DIST(Dividing Targets[i].position−

Dividing Targets[1].position)
12 if d > Max Dist1 then
13 Max Dist1← d
14 Max Index1← i

/* Find another farthest point from the preivous point */

15 Max Dist2← 0
16 Max Index2← 0
17 for i← 1 to size do
18 d← GET DIST(Dividing Targets[i].position−

Dividing Targets[Max Index1].position)
19 if d > Max Dist2 then
20 Max Dist2← d
21 Max Index2← i

22 [Idx Near, Idx Far]←
GET ORDER(prev point,Max Index1,Max Index2)

23 UPDATE INDEX(Icluster, Idx)
24 return Icluster

31

(a) (b) (c)

Figure 3.1: Procedure to find minimum bounded circle (a) A cluster including
10 tasks (b) Convex hull of the cluster (c) Minimum bounded circle.

3.4 Minimum bounded circle and sphere of a cluster

Minimum bounded circle and sphere are used in deployment of a marsupial

robot team. Once a cluster of tasks is determined, either the minimum bounded

circle in 2D space or the minimum bounded sphere in 3D space is estimated.

By using the estimated minimum circle/sphere, the center and the radius of

the circle/sphere can be known. They are used for calculating the deployment

locations. For α-th cluster, finding the center of the cluster eα and radius πα of

the circle/sphere is represented as the minimization problem:

minimize πα

subject to ∥qi
G − eα∥ ≤ πα,

(3.1)

where qi
G ∈ Pωα . Problem solving procedure is described in Figure 3.1. We first

find convex hull [38], as shown in Figure 3.1b, so that only outer points are

considered for finding the circle/sphere. Among those outer points, arbitrary

three points are chosen and the circle/sphere is found. If there exists a point

32

which is located outside of the circle/sphere, then find another circle/sphere

which includes the new point until there is no point outside of the circle/sphere.

Next, in case of finding the circle, the center of the bounded circle (xeα , yeα)

and its radius πα is computed by finding three points (x1, y1), (x2, y2), (x3, y3)

which satisfy as follows:

(x1 − xeα)
2 + (y1 − yeα)

2 = π2
α, (3.2)

(x2 − xeα)
2 + (y2 − yeα)

2 = π2
α, (3.3)

(x3 − xeα)
2 + (y3 − yeα)

2 = π2
α. (3.4)

To eliminate the quadratic terms, subtracting pairs of the equations yield:

2(x1 − x2)xeα + 2(y1 − y2)yeα = x21 − x22 + y21 − y22, (3.5)

2(x1 − x3)xeα + 2(y1 − y3)yeα = x21 − x23 + y21 − y23. (3.6)

Similarly, in case of finding the sphere, the center of the bounded sphere (xeα , yeα , zeα)

and its radius πα is computed by finding three points (x1, y1, z1), (x2, y2, z2),

(x3, y3, z3) which satisfy as follows:

(x1 − xeα)
2 + (y1 − yeα)

2 + (z1 − zeα)
2 = π2

α, (3.7)

(x2 − xeα)
2 + (y2 − yeα)

2 + (z2 − zeα)
2 = π2

α, (3.8)

(x3 − xeα)
2 + (y3 − yeα)

2 + (z3 − zeα)
2 = π2

α. (3.9)

To eliminate the quadratic terms, subtracting pairs of the equations yield:

2
(
(x1−x2)xeα+(y1−y2)yeα+(z1−z2)yeα

)
= x21−x22+y21−y22+z21−z22 , (3.10)

33

2
(
(x1−x3)xeα+(y1−y3)yeα+(z1−z3)yeα

)
= x21−x23+y21−y23+z21−z23 . (3.11)

As special cases, if the number of outer points is exactly three, then they make

a circle/sphere. If the number is two, then the center is the midpoint of two

points, and the radius is the distance from the center to any of two points. If

the number is one, then the point itself is the center, and the radius is zero.

34

Chapter 4

Deployment of a Marsupial Robot
Team

The purpose of this chapter is to find a feasible solution to the path planning of

a marsupial robot team for initial deployment. We first draw the objective, and

analyze the computational complexity of the problems for optimal solutions. To

efficiently investigate the problem, we first consider the simple case with two

tasks in 2D space where the optimal solution can be obtained easily. Then we

extend the case to three-dimensional (3D) case, two-cluster case, and general

case. The work in this chapter is based on the conference paper [60,63] and the

journal article [62].

4.1 Problem definition

In this section we set up the problem we study in this chapter. The objective

is for each rover to reach its relevant task location in minimum time. This

35

objective is formulated as minimizing the maximum duration as follows:

minimize max
i=1,...,m

(∥qi
r1 − qi

rG
∥)

subject to ∥qi
r1 − qi

rG
∥ ≤ ddeploy (i = 1, . . . ,m)

(4.1)

However, in the setting that the carrier transports multiple rovers, each duration

for a task Ti is calculated as a sum of the transportation time from the initial

location, the unloading time, and the approaching time for a rover. Let f(v,w)

be the duration of the carrier from one deployment location v to the next

deployment location w. Then the duration can be represented as a sum of

moving time and rotating time as the following equation:

f(v,w) =

 S/vmax
c + vmax

c /ac + rt(θcv), if S ≥ vmax
c

2

ac

2
√

S/ac + rt(θcv), otherwise,
(4.2)

where S = ∥w − v∥, θcv is the heading angle of the carrier at v, and rt(θcv)

is the computing function of rotating time for the carrier at v. Note that if

S < vmax
c

2/ac in (2), then vtc cannot reach vmax
c . If a rover is deployed at α-th

deployment point qωα , the duration Ti is represented as the following equation:

Ti =

α∑
k=1

(
f(qωk−1

,qωk
) + tu

)
+
∥qωk

− qi
G∥

vmax
r

, (4.3)

where qωk−1
= qc1 . Then the objective can be formulated as finding the set of

optimal deployment points as follows:

Ω⋆ = argmin
Ω∈R3

(
max(T1, T2, . . . , Tm)

)
. (4.4)

36

Let g(qωi), where 1 ≤ i ≤ α, be the maximum duration that a rover travels for

its task in Pωi from the relevant deployment location qωi . Then,

g(qωi) =
max

(
∥qωi − q1

rG
∥, . . . , ∥qωi − qb

rG
∥
)

vmax
r

, (4.5)

where b is the number of rovers belong to the deployment location qωi , and qb
rG

is the goal location of b-th rover in Pωi . Then the maximum duration τi that a

rover travels in Pωi from the initial location of the carrier is defined as follows:

τi =

i∑
k=1

(
f(qωk−1

,qωk
) + g(qωi). (4.6)

Consequently, the equivalent equation of (4.4) can be defined by using (4.6) as

follows:

Ω⋆ = argmin
Ω∈R3

(
max(τ1, τ2, . . . , τα)

)
. (4.7)

4.2 Complexity analysis

To compute computational complexity of the problem above, assume the 2D

plane is divided into g grids. As the worst case, the number of all possible routes

for the carrier is as follows:

g + g(g − 1) + g(g − 1)(g − 2) + . . .

+g(g − 1) . . . (g −m+ 2)(g −m+ 1)

=
∑m−1

k=0

(∏k
j=0(g − j)

)
.

(4.8)

This is bounded above by gm. Let h(α) be the number of all cases that each

task is assigned among α deployment points. Then h(α) is expressed in a such

37

way that each task will select its deployment point with condition that every

deployment point should have at least one task as follows:

h(α) = αm −
α−1∑
k=1

(

(
α

k

)
h(α− k)). (4.9)

For the same area, as the grid size decreases, the number of the grids g in-

creases. Therefore, in most cases, α≪ g. Compared with gm then, h(α) can be

considered as a constant. Consequently, the overall computational complexity

of the problem using a carrier becomes O(gm). Here, the number of grids g in-

creases as the area increases, and increases when a precise grid is needed. As a

result, the complexity increases exponentially, and this brute-force methods for

optimality require a tremendous computation. Therefore, heuristic but efficient

algorithms are needed.

4.3 Optimal deployment path planning for two tasks

Assume two task locations, q1
G and q2

G, as depicted in Figure 4.1. Then, there

are three cases that two rovers are deployed. First, the deployment time to

be compared is initially calculated by letting each rover approach each task

location without any transportation by a carrier, unless the energy of the rover

is not enough to reach the goal, as in Figure 4.1a. Second, the carrier moves to

the midpoint of two tasks and deploys two rovers, as in Figure 4.1b. In the most

cases, the initially calculated deployment time is longer than the time calculated

by using a carrier. If the duration in Figure 4.1b is faster than the duration in

Figure 4.1a, the solution in Figure 4.1b is chosen. In the same way, Figure

4.1c can be chosen if the duration is faster than those two previous solutions.

38

(a) Case I (b) Case II (c) Case III

Figure 4.1: Three cases of deployment for two tasks. (a) Case I: Two rovers di-
rectly approach (b) Case II: Carrier goes the midpoint of two tasks and deploys
two rovers (c) Case III: Carrier goes first deployment location and approaches
to second task location.

Therefore, the first deployment location in Figure 4.1c should be calculated for

the optimal solution.

4.3.1 Deployment for two tasks in 2D space

Consider two tasks q1
G and q2

G again, as presented in Figure 4.2. In the figure,

the carrier is closer to q1
G than q2

G. Therefore, the carrier should approach q1
G

first to reduce the overall deployment time. In this case, generally, the optimal

duration can be achieved when two rovers respectively arrive two goal locations

at the same time. 1 If there is no delay on the carrier resulted from rotation,

acceleration/deceleration, and unloading at qω2 , then the optimal deployment

location is the intersection of line segment qc1q
1
G:

y =
yc1 − yG1

xc1 − xG1

(x− xc1) + yc1 , (4.10)

1This may not be the optimal duration, if q1
G is too close or q2

G is too far from the carrier.

39

Figure 4.2: Path planning for two tasks, q1
G and q2

G

where min (xc1 , xG1) ≤ x ≤ max (xc1 , xG1), and the circle of Apollonius OA1.

OA1 has a given ratio of distances |vmax
c |/|vmax

r | to two given points q1
G and

q2
G. By using internal and external division of line segment q1

Gq
2
G as follows:

internal-division:
(vmax

r xG2 + vmax
c xG1

vmax
r + vmax

c

,
vmax
r yG2 + vmax

c yG1

vmax
r + vmax

c

)
, (4.11)

external-division: (
vmax
r xG2 − vmax

c xG1

vmax
r − vmax

c

,
vmax
r yG2 − vmax

c yG1

vmax
r − vmax

c

), (4.12)

the equation of OA1 is formulated as the following equation:

(
x− (vmax

c)2xG1 − (vmax
r)2xG2

(vmax
c)2 − (vmax

r)2

)2

+
(
y − (vmax

c)2yG1 − (vmax
r)2yG2

(vmax
c)2 − (vmax

r)2

)2

= (vmax
c)2(vmax

r)2
(xG1 − xG2)

2 + (yG1 − yG2)
2

(vmax
c

2 − vmax
r

2)2
. (4.13)

40

Considering all the delays, the carrier should deploy first rover at the optimal

location qnew
ω1

in Figure 4.2, which is closer to the carrier than qold
ω1

. qnew
ω1

can

be computed by finding ∆d in the equation below:

ξ −∆d

vmax
r

= f(qnew
ω1

,qω2) + tu, (4.14)

where ξ = ∥qc1 − qG1∥, which means the distance between the carrier and the

first task, and:

S =

√
l2 + (ξ −∆d)2 − 2l(ξ −∆d) cos θ1, (4.15)

rt(θnewω1) =
(
θ3 +

∆d

ξ
· θ2

)
/wc (4.16)

in the function f in (4.14). Once ∆d is calculated, the distance from qnew
ω1

to q1
G,

∥qnew
ω1
−q1

G∥ is determined. Here, the distance should not exceed the maximum

traveling distance of a rover, i.e., ∥qnew
ω1
−q1

G∥ ≤ ddeploy. If not, the deployment

location qnew
ω1

should be moved until ∥qnew
ω1
− q1

G∥ = ddeploy, where the energy

constraint is satisfied. Therefore, the optimal deployment solution for two tasks

in 2D space can be acquired at all times by using this method.

4.3.2 Deployment for two tasks in 3D space

Figure 4.3 describes how the optimal deployment locations can be obtained

for two tasks in 3D space. The ∆d for qnew
ω1

can be found by equalizing the

durations that first rover moves from qnew
ω1

to q1
G, and the carrier moves from

qnew
ω1

to qω2 plus second rover moves from qω2 to q2
G as follows:

41

Figure 4.3: Finding the optimal deployment location qnew
ω1

for two given tasks,
q1
G and q2

G in 3D space

√
(ξ −∆d)2 + |zG1 |

2

vmax
r

= f(qnew
ω1

,qω2) + tu +
|zq1 |
vmax
r

, (4.17)

where 0 ≤ ∆d ≤ ξ. If any height of the task location zGi is the same as ddeploy,

the carrier should arrive (xGi , yGi , 0) at any cost. However, the location cannot

be reached, if the height is bigger than ddeploy.

4.4 Path planning algorithm of a marsupial robot team
for deployment

Expanding on the deployment method for two tasks, assume two clusters of

tasks, Pω1 and Pω2 , and their imaginary task locations e1 and e2 which are

located at the center of the clusters as depicted in Figure 4.4. Then two deploy-

ment points qω1 and qω2 can be found for e1 and e2 by the previous method

in section 4.3. The rover for q1
G moves π1 from e1, and the rover for q2 moves

42

Figure 4.4: Path planning of the carrier for two clusters, Pω1 and Pω2 , having
multiple tasks.

π2 from e2. Therefore, this time difference also should be compensated. The

equation is formulated by using (4.14):

ξ −∆d+ π1
vmax
r

= f(qω1 ,qω2) + tu +
π2

vmax
r

, (4.20)

where ξ = ∥qc1−e1∥. As the number of clusters increases, the earlier deployment

location is likely to move toward the carrier. Finally, as shown in Figure 4.5,

the carrier should instead deploy rovers at their maximum range ddeploy unless

the next cluster is the last. In any case, the rovers would have reached the task

locations by the time the carrier arrives latter location.

In the same way, the carrier deploy rovers at their maximum range ddeploy in

3D space as demonstrated in Figure 4.6. The carrier should stop near Pωα first,

then go to Pωα+1 . Let the center of Pωα , Pωα+1 , and the current location of

43

Figure 4.5: In earlier cluster, the carrier should deploy rovers at maximum
distance from the farthest task in the cluster

the carrier be (xα, yα, zα), (xα+1, yα+1, zα+1), and (xci , yci , 0) respectively. First,

the line segment between the carrier and (xα+1, yα+1, 0) which is the projected

point of (xα+1, yα+1, zα+1) is found as follows:

y =
yα+1 − yci
xα+1 − xci

(x− xci) + yci , (4.21)

where min(xci , xα+1) ≤ x ≤ max(xci , xα+1). Next, the another line segment

which is perpendicular to (4.21) and crosses (xα, yα, 0) is found as follows:

y =
xci − xα+1

yα+1 − yci
(x− xα) + yα. (4.22)

Then, the deployment location qωα can be found as a dot on (4.22). To mini-

mize the travel distance of the carrier, we find ∆d which satisfies the following

equation:

44

Figure 4.6: Calculation of deployment locations in 3D space. The locations are
calculated by using the maximum traveling distance of the rover, the size of the
cluster, and the direction to the next cluster.

(∆d)2 + z2α = (ddeploy − πα)
2, (4.23)

so that the distance from qωα to the farthest point in Pωα is the same as the

maximum traveling distance of the rover, ddeploy. If a diameter of a cluster is

longer than ddeploy, ∆d in (4.23) cannot be solved because zα > (ddeploy − πα).

Therefore, the deployment point cannot be acquired.

The overall path planning procedure using Algorithm 3.1 in section 3.3 is

presented in Algorithm 4.1 and 4.2. First, an initial set of clusters is created so

that radii of all clusters are shorter than ddeploy. For every step the clusters are

45

arranged, the deployment path and its time for deployment can be computed.

However, the generated path often crosses over itself which result in the ineffi-

ciency of the path. Inspired by two-opt algorithm [66], two divided clusters are

re-ordered to find the best path among them. Then the computed deployment

time can be compared with the previous one so that the faster one is chosen.

If the computed deployment time is faster than the previously computed time,

one of the previously divided cluster is divided recursively. Otherwise, the pre-

viously divided two clusters are merged again. Therefore, all tasks are divided

and clustered until the overall time for deployment can be no longer reduced.

Figure 4.7 gives an example procedure of the proposed deployment algorithm.

Algorithm 4.1: Deployment path generator

Input: carrier’s initial location: (xc1 , yc1 , 0, θc),
Task information: D

Output: Deployment path: Ω, Elapsed Time: Tmin

/* Initialization */

1 Tmin ← Tmax, Idx← 1, Numcluster ← 1
2 Icluster ← D
/* Initial clustering */

3 while Idx ≤ Numcluster do
4 Rcluster ← GET RADIUS(Idx)
5 if Rcluster > ddeploy then
6 Icluster ← DIVIDE CLUSTER(Icluster, Idx)
7 Numcluster ← Numcluster + 1

8 else
9 Idx← Idx+ 1

10 Idx← 1
/* Initial path generation */

11 Ω← GET DEPLOY PATH(Icluster)
12 Tmin ← CALC TIME(Ω)

46

Algorithm 4.2: Deployment path generator (continue)

/* Compare and update of deployment path */

1 while Idx ≤ Numcluster do
/* A cluster consists of only one task cannot be divided

*/

2 Qcnt ← COUNT TASKS(Icluster, Idx)
3 if Qcnt = 1 then
4 Idx← Idx+ 1
5 continue

6 Icluster ← DIVIDE CLUSTER(Icluster, Idx)
/* Generate a path */

7 Numcluster ← Numcluster + 1
8 Ωcand ← GET DEPLOY PATH(Icluster)
9 Tcand ← CALC TIME(Ωcand)

/* Generate alternative path from the swapped cluster */

10 Icluster temp ← SWAP CLUSTERS(Icluster, Idx)
11 Ωcand temp ← GET DEPLOY PATH(Icluster temp)
12 Tcand temp ← CALC TIME(Ωcand temp)

/* Compare and choose */

13 if Tcand temp < Tcand then
14 Tcand ← Tcand temp

15 Ωcand ← Ωcand temp

16 Icluster ← Icluster temp

17 if Tcand ≤ Tmin then
18 Tmin ← Tcand

19 Ω← Ωcand

20 else
21 Icluster ← MERGE CLUSTERS(Icluster, Idx)
22 Numcluster ← Numcluster − 1
23 Idx← Idx+ 1

/* Return result */

24 return Ω, Tmin

47

(a) 1st phase (b) 2nd phase (c) 3rd phase

(d) 4th phase (e) 5th phase (f) 6th phase

Figure 4.7: Example procedure of the proposed algorithm for deployment (a)
Initial state (b) Two clusters are created by finding two farthest tasks (red di-
amonds) in (a), and the corresponding path is generated (c) Cluster Pω1 in (b)
is divided again, and the deployment path is also acquired (d) The path is over-
written by newly created path (e) The clusters and the path are updated again.
However this result is not chosen (f) Final path for deployment is determined
if there is no more cluster which can be divided.

In Figure 4.7a, among all tasks, two farthest tasks are found as red circles. Since

the distance between two tasks is longer than ddeploy, two clusters are initially

created and deployment path is acquired as in Figure 4.7b. The earlier cluster

48

Pω1 in Figure 4.7b is again divided as in Figure 4.7c. However, assuming the

duration of the newly acquired path is slower than the duration of the previous

one, two divided clusters are merged again. Then another two farthest tasks

are found in the next cluster. The deployment path is updated in Figure 4.7d,

however, the path is not updated in Figure 4.7e according to the result. Finally,

there is no cluster left to try in Figure 4.7f, and the path, which is the same as

in Figure 4.7d, is chosen.

4.5 Simulation result

In this section, we demonstrate the simulation result of the proposed deploy-

ment method.

4.5.1 Simulation setup

First, the simulation setup is presented which will be used in the rest of all

simulation part. The specification of the computer used for simulation is shown

in Table 4.1. The simulation program runs in Matlab, and is executed on a

computer with dual-core 2.90GHz Intel Core i5-5287U CPU, 8GB RAM, and

Windows 8.1 64bit operating system.

In the program, parallel processing is not used. However, the implementa-

tion of the deployment algorithm is partially improved in speed of processing

Table 4.1: Specification of the simulation computer

Processor Intel Core i5-5287U dual-core 2.90GHz

Memory 8GB DDR3

OS Windows 8.1 (64bit)

49

from the previous study [60]. The path is generated varying several conditions.

First, to investigate feasibility, a few tasks or a few rovers are manually located

based on a small number of simple scenarios. Then, according to more com-

plex scenarios, the locations of the tasks or those of the rovers are randomly

generated and those paths are computed.

4.5.2 Deployment scenarios in 2D space

Deployment for two tasks

Figure 4.8 demonstrates the deployment simulation for two tasks. Initial loca-

tion of the carrier is (20, 10), and initial locations of two tasks are respectively

(10, 35) and (40, 35) in 50m × 50m space. All the parameters used for this

simulation is listed in Table 4.2.

Table 4.2: Initial parameters in deployment for two tasks

Specification carrier vmax
c = 10.0m/s, wc = 2.0rad/s, ac = 5.0m/s2

tu = 1.0s

rover vmax
r = 2.0m/s, ddeploy = 15.0m

Location carrier qc1 = (20, 10)

tasks q1
G = (10, 35), q2

G = (40, 35)

First, the carrier moves to the first deployment location qω1 . As soon as

the carrier arrives at qω1 , the carrier unloads a rover. After unloading is done,

the carrier moves to the next deployment location qω1 . At the same time, the

deployed rover moves to the first task location which is presented as light-

blue diamond in Figure 4.8. In Figure 4.8d, the carrier is arrived at qω2 , and

unloading the second rover. Finally, in Figure 4.8e, two rovers are unload and

reached at their task locations respectively.

50

(a) t = 2.80s (b) t = 4.40s (c) t = 8.00s

(d) t = 11.00s (e) t = 11.85s

Figure 4.8: Example procedure of rovers deployment for two tasks in 50m×50m
space (vmax

c = 10.0m/s, wc = 2.0rad/s, ac = 5.0m/s2, tu = 1.0s, vmax
r =

2.0m/s, and ddeploy = 15.0m) (a) Carrier is moving to the first deployment
location (b) The carrier arrives and deploys a rover (c) Two robots are moving
to their destination (d) The carrier arrives the second deployment location (e)
All rovers are deployed and arrived the locations

Figure 4.9 shows how the deployment location is adjusted according to the

change of each parameter. For flexible adjustment of deployment locations in

the maximum traveling distance of rover, we set up ddeploy = 100.0m. The other

conditions except for the changing condition are the same as in Figure 4.8, and

the same deployment path is drawn in Figure 4.9.

51

(a) Change of rover’s speed (b) Change of the carrier’s rotating speed

(c) Change of the carrier’s accelera-
tion/deceleration

(d) Change of the carrier’s unloading du-
ration

Figure 4.9: Effect of parameter change on the deployment result. Deployment
location is adjusted according to the change of each parameter.

In Figure 4.9a, if vmax
r increases, the deployment location becomes closer to

the carrier. In the similar way, the deployment location also becomes closer to

the carrier as tu increases in Figure 4.9d. On the other hand, if wc or ac increase,

52

the carrier needs less time to move to the next location after deploying the first

rover. Therefore, the deployment location becomes closer to the first task loca-

tion. In Figure 4.9b, if wc is 0.6rad/s or less, the deployment location becomes

the point between two tasks since deploying two rovers in the location becomes

faster than deploying one by one. In Figure 4.9c, in case ac = 1.0m/s2, the

deployment location becomes qc1 , which means the carrier should immediately

deploy the first rover at the beginning.

Deployment for 15 tasks

Second deployment scenario is shown in Figure 4.10. There are 15 tasks in

100m × 100m space. All the parameters used for this simulation is listed in

Table 4.3.

Table 4.3: Initial parameters in deployment for 15 tasks

Specification carrier vmax
c = 15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2

tu = 4.0s

rover vmax
r = 1.0m/s, ddeploy = 10.0− 25.0m

Locations carrier qc1 = (52, 60)

tasks q1
G = (57, 11), q2

G = (76, 59), q3
G = (17, 17)

q4
G = (13, 75), q5

G = (9, 26), q6
G = (50, 70)

q7
G = (82, 67), q8

G = (70, 62), q9
G = (50, 32)

q10
G = (80, 10), q11

G = (25, 21), q12
G = (92, 93)

q13
G = (12, 45), q14

G = (63, 28), q15
G = (72, 54)

The maximum traveling distance of rover, ddeploy varies from 25.0m to

10.0m. Figure 4.10a is the result when ddeploy = 25.0m. The tasks are ini-

tially divided into four clusters, and then one of them is divided again until

there are five clusters. This deployment takes 47.02s, and the carrier travels

53

(a) ddeploy = 25.0m (b) ddeploy = 20.0m

(c) ddeploy = 15.0m (d) ddeploy = 10.0m

Figure 4.10: Deployment scenario with 15 tasks according to the traveling dis-
tance constraint of rovers (vmax

c = 15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2,
tu = 4.0s, and vmax

r = 1.0m/s.) Initial location of the carrier, qc1 = (52, 60)

157.52m. Next, Figure 4.10b demonstrates the result when ddeploy = 20.0m. As

the rovers which is spreading from qω1 in Figure 4.10a move more than 20.0m,

the cluster with respect to qω1 in Figure 4.10a is divided into two clusters, qω1

54

and qω2 in Figure 4.10b. Compared with the time in Figure 4.10a, the elapsed

time for the deployment increases to 54.52s due to the increase of travel dis-

tance of the carrier. In Figure 4.10c, ddeploy = 15.0m where one cluster is added

from Figure 4.10b. The length of the carrier’s path slightly increases as the

carrier should move closer to each task (for example, see qω3 in Figure 4.10b

and 4.10c). Lastly, Figure 4.10d shows the result when ddeploy = 10.0m. Since

ddeploy is tightly limited than other cases, the number of deployment locations

increases to ten locations from five locations in Figure 4.10a, and the carrier’s

travel distance also increases to 229.01m. As the task in first cluster is near the

initial location of the carrier, the carrier immediately deploys first rover.

Based on the result in Figure 4.10, the unloading time tu varies by 0.5s for

each time to see if there is any change of clustering. The result is shown in

Figure 4.11. Figure 4.11a shows the different result from Figure 4.10a. Since tu

gets smaller, the cluster for qω4 in Figure 4.10a is divided into three clusters in

Figure 4.11a. While the travel distance of the carrier increases, overall duration

for deployment decreases. The similar change is observed in Figure 4.11b. As

tu becomes half, the carrier visits more locations for deployment in the latter

part of moving. Consequently, the travel distance of the carrier increases to

196.32m. On the other hand, in Figure 4.11c, tu increases by 0.5s. Therefore,

two clusters qω5 and qω6 in Figure 4.10c are merged into one cluster in Figure

4.11c, to reduce the duration for unloading. In Figure 4.11d, there is no change

in clusters even the unloading time is set as zero. However, the elapsed time

for deployment is reduced. Even if the unloading time tu becomes slow, the

clusters cannot merge as ddeploy is too short. As a result, in the presented cases,

55

(a) ddeploy = 25.0m and tu = 0.5s (b) ddeploy = 20.0m and tu = 2.0s

(c) ddeploy = 15.0m and tu = 4.5s (d) ddeploy = 10.0m and tu = 0.0s

Figure 4.11: Deployment scenario with 15 tasks according to the unloading
time of the carrier (vmax

c = 15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2, and
vmax
r = 1.0m/s.)

the generated paths seem to be efficient.

56

4.5.3 Deployment scenarios in 3D space

Deployment for two tasks

For the same two tasks in section 4.5.2, we give height to the tasks. The pa-

rameters for this simulation is shown in Table 4.4. As a result, the deployment

Table 4.4: Initial parameters in deployment for two tasks

Specification carrier vmax
c = 10.0m/s, wc = 2.0rad/s, ac = 5.0m/s2

tu = 1.0s

rover vmax
r = 2.0m/s, ddeploy = 15.0m

Locations carrier qc1 = (20, 10, 0)

tasks q1
G = (10, 35, 10), q2

G = (40, 35, 10)

procedure is demonstrated in Figure 4.12. First, the carrier is located in its

initial location in Figure 4.12a. In Figure 4.12b, the carrier approaches to first

deployment location qω1 . As the carrier arrives at qω1 , the first rover is deployed

and it begins to fly in Figure 4.12c. After finishing all deployment, two rovers

approach their assigned locations in Figure 4.12d. Finally, two rovers arrive the

locations simultaneously. From this simulation, we verify the optimality of the

proposed deployment method for arbitrary two tasks.

Deployment for six tasks

The example of more complex scenario is also tried with six tasks. The pa-

rameters for this simulation is listed in Table 4.5. The deployment procedure

is demonstrated in Figure 4.13. In the figure, the spheres imply the maximum

traveling distance of the rover from each deployment location.

According to ddeploy, six tasks are separated into six clusters. The carrier

57

(a) Initial state (b) Carrier approaches to qω1

(c) Carrier approaches to qω2
, and first

rover moves to first task location
(d) Two rovers are approaching

(e) All rovers reach their assigned locations

Figure 4.12: Deployment procedure for two tasks in 3D space

travels 201.24m, and it takes 52.95s for all the rovers reach task locations.

Next, the maximum traveling distance increases to 15.0m in Figure 4.13b. As

a result, two tasks with respect to qω3 and qω4 in Figure 4.13a are merged into

one cluster. In addition, both the travel distance of the carrier and the total

duration of time for deployment decreases. Figure 4.13c shows the result when

58

(a) ddeploy = 7.0m

(b) ddeploy = 15.0m

(c) ddeploy = 25.0m

Figure 4.13: Deployment example for six tasks in (100m×100m×30m). We set
vmax
c = 15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2, tu = 4.0s, and vmax

r = 1.0m/s

59

ddeploy = 25.0m. In the same manner, both the distance of the carrier and the

total duration also decreases, and another two tasks are merged into one cluster.

By using the proposed method, the efficient path generation for deployment is

shown.

4.5.4 Deployment in a dynamic environment

The proposed methods for deployment is used in initial state, before the be-

ginning of the mission. However, in practice, a dynamic environment should be

considered, where new task is created, existing task disappears, and rover is lost

or disconnected. Therefore the simulation is conducted based on this criteria.

Figure 4.14 demonstrates a deployment example in 500m× 500m space, when

the set of tasks changes during the deployment procedure. In Figure 4.14a, the

deployment path is initially generated for ten tasks first. Then, while a rover is

deployed at qω4 , the original task q7
G disappears and new task q10

G is created.

Therefore, the rest of the deployment path is thrown away, and new path is

generated from qω4 in Figure 4.14b. If q7
G does not exist and q10

G exists at the

beginning, deployment path is generated as in Figure 4.14c. However, since the

Table 4.5: Initial parameters in deployment for six tasks

Specification carrier vmax
c = 15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2

tu = 4.0s

rover vmax
r = 1.0m/s, ddeploy = 7.0− 25.0m

Locations carrier qc1 = (52, 60, 0)

tasks q1
G = (57, 11, 4), q2

G = (76, 59, 5)

q3
G = (17, 37, 6), q4

G = (13, 75, 7)

q5
G = (9, 26, 5), q6

G = (50, 70, 3)

60

(a) Deployment path generation for initial
set of tasks

(b) Deployment path generation for up-
dated set of tasks at qω4

(c) Deployment path generation without
q7
G in (a) and with q10

G

(d) Final deployment path

Figure 4.14: Dynamic deployment scenario with ten tasks in 500m×500m space
(vmax

c = 10.0m/s, wc = 2.0rad/s, ac = 3.0m/s2, tu = 2.5s, vmax
r = 3.0m/s,

and ddeploy = 50.0m.)

61

state changes when the carrier is at qω4 , the deployment path before qω4 in

Figure 4.14a is used by the carrier. Then new path in Figure 4.14b is used by

the carrier, and the final deployment path is shown in Figure 4.14d. The red

dashed lines present the old path with q7
G and without q10

G . Therefore, if a de-

ployment path is calculated in real-time, the change of tasks can be reflected

in the path of the carrier at any time. As a result, the deployment path can be

updated in any case so that the path maintains their efficiency in a dynamic

environment.

4.6 Performance evaluation

The performance of the proposed algorithm is evaluated in two ways:

1) Computation time;

2) Efficiency of the path.

To generate random conditions, the Monte Carlo method is used since not all

conditions can be tested. However, the simulation results are shown for 2D

space only because the dimensional difference had shown almost no effects on

computation time.

4.6.1 Computation time

To evaluate performance of the proposed algorithms, computation time is mea-

sured in 200m × 200m space. (Note that, changing the size of the map is not

considered, as it is expected that the size of the map would not affect the

computation time.) All locations of the carrier, rovers, and tasks are randomly

generated with a uniform distribution, and the number of rovers or tasks varies

62

Figure 4.15: Average computation time of proposed deployment algorithm. All
parameters and locations are randomly generated adopting the Monte Carlo
method

from ten to 100. The maximum traveling distances of rover, ddeploy varies from

5.0m to 20.0m. Adopting the Monte Carlo method, the parameters of vmax
c , wc,

ac, tu, and vmax
r are also randomly generated with a normal distribution, with

mean 15.0m/s, 3.0rad/s, 5.0m/s2, 3.0s, and 3.0m/s respectively. The duration

is measured 100 times and the average value is acquired under each distinct

condition.

The average computation time of the proposed deployment algorithm is

depicted in Figure 4.15. As the number of tasks increases, the slope of the

average computation time tends to increase. Although the maximum traveling

63

distance of rover differs, there is almost no deviation in the result. As a result,

Figure 4.15 shows that the computations can be done quickly. By using this,

near real-time system can be implemented, depending on the number of tasks

and sampling time of the system. In addition, reducing the computation time

may be possible if two options are considered: 1) implementing the simulation

code with faster programming languages such as visual c++; and 2) optimizing

the data structure and using parallel processing.

4.6.2 Efficiency of the path

As mentioned in chapter 1, finding optimal solution for the problems requires a

lot of computation. Brute-force search [86] over all paths may take hours or even

days for tens of tasks or rovers. Therefore, to investigate the efficiency of the

proposed algorithms, the computed path is compared with the greedy two-opt

solution which is the one of the TSP solving algorithms [53], in 300m × 300m

space.

Intuitively, the efficiency of the path is mainly affected by the traveling

distance of rovers, and by the ratio of carrier’s speed to rovers’ speed. Therefore,

the distance ddeploy varies from 10.0m to 40.0m. The number of tasks and rovers

is set from ten to 100, and all locations of them are randomly generated. For

the other parameters, the Monte Carlo method is also used with a normal

distribution, and each distinct condition is repeated 100 times. The result shown

in Figure 4.16 is the relative efficiency of the proposed deployment algorithm,

compared to greedy two-opt solution. When ddeploy = 10.0m, some condition

show that the proposed method is even inefficient than greedy two-opt. This

64

Figure 4.16: Efficiency of the deployment path comparing with the solution
from greedy two-opt algorithm, in 300m× 300m space

is resulted from the simple clustering method. However, as ddeploy increases,

the inefficiency of the cluster dividing method can decrease. As the number of

tasks increases, the efficiency tends to increase since more tasks are likely to be

merged into a cluster. In the given section, total average of the efficiency values

is 25.20%. This efficiency comes from in part by the adjacency of tasks as they

can be put into a cluster. Therefore the smaller space may result in the more

efficient path, while the bigger space may result in the similar path as the path

from greedy two-opt algorithm.

65

Chapter 5

Collection of a Marsupial Robot
Team

In this chapter we find a feasible solution to the path planning of a marsupial

robot team for collection. Some parts, including the basic concept, are similar

to the method for deployment. However, since the task location reached by

the rover during deployment is the starting point of the task, the position

of the rover will be changed when the task finishes. Therefore a re-planning

is required for collection. The biggest difference between when collecting and

deploying rovers is that the remaining energy is different. In other word, it is

assumed that all rovers are fully charged and have the same maximum travel

distance value, however that the remaining energy of rover is different at the

time of collection. Therefore, it is necessary to estimate the common area of a

circle having a maximum distance. In addition, the carrier can unload rovers at

deployment location and leave immediately, however the carrier may wait rovers

67

at collection location. As in the previous chapter, we first draw the objective and

analyze the computational complexity of the problems for optimal solutions.

The work in this chapter is based on the journal article [61].

5.1 Problem definition

The objective of the problem is to retrieving all rovers, which have completed

the assigned tasks, in minimum time. Let qG be the final location to where all

rovers return. Then the general objective function that each rover returns by

itself is formulated as follows:

minimize max
i=1,...,n

(∥qG − qri∥)

subject to ∥qG − qri∥ ≤ dicollect (i = 1, . . . , n).

(5.1)

In case the carrier can meet and retrieve rovers, the duration can be calculated

as in chapter 4. The duration of the carrier from the previous collecting location

to the next collecting location can be computed by using (4.2). However, overall

duration for collecting rovers from the initial location of the carrier is different

from (4.3). The reason is that the carrier deploying rovers does not have to wait

after finishing deployment at one location, whereas the carrier collecting rovers

may have to wait for rovers coming. There are three cases that the carrier meets

rovers at a collection location, as shown in Figure 5.1:

• Case I: Both the carrier and the last rover in the cluster arrive at the

collection location simultaneously.

• Case II: All rovers in the cluster arrive at the collection location before

68

(a) Case I (b) Case II (c) Case III

Figure 5.1: Three cases that the carrier meets rovers at a collection location.

the carrier.

• Case III: The carrier arrives at the collection location before the last rover

in the cluster.

In case I and II, the carrier does not wait for loading rovers. However, in case

III, the carrier should wait for rovers approaching. (Note that the case III can

be modified to either the case I or II by repositioning the collection location.

However it does not guarantee that the total collection time will be reduced.)

Therefore, the total collection duration ηδ, where 1 ≤ δ ≤ β, from the initial

location is deducted as follows:

69

η1 = max(f(qγ0 ,qγ1), g(qγ1)) + tl,

η2 = max(η1 + f(qγ1 ,qγ2), g(qγ2)) + tl,

η3 = max(η2 + f(qγ2 ,qγ3), g(qγ3)) + tl,

...

ηδ−1 = max(ηδ−2 + f(qγδ−2
,qγδ−1

), g(qγδ−1
)) + tl,

ηδ = max(ηδ−1 + f(qγδ−1
,qγδ), g(qγδ)) + tl,

(5.2)

where qγ0 = qc1 . Finally, the objective of the problem using a carrier can be

formulated as the following optimization problem:

Γ⋆ = argmin
Γ∈R3

(
max(η1, η2, . . . , ηβ)

)
(5.3)

5.2 Complexity analysis

The computational complexity for collecting of a marsupial robot team can

be done in the same way as the computational complexity analysis for the

deployment of the team. In this case, the computational complexity is bounded

above by O(gn) for m rovers. This brute-force methods for optimality require a

tremendous computation. A simpler method is that all rovers to be collected are

in place and the carrier visits all rovers, which is the same as the TSP problem.

However, this method will inevitably require more execution time. Therefore,

heuristic but efficient algorithms are needed.

70

5.3 Optimal collection path planning for two rovers

Once the rovers finish their tasks, they should be collected for recharging and

reusing. Basically, the approach to collection path planning is similar to deploy-

ment path planning. To investigate efficient solution for this collection problem,

the simple collecting case of two rovers in 2D space is analyzed first where the

optimal solution can be obtained easily. Then we extend the case to 3D case,

two-cluster case, and general case.

5.3.1 Collection for two rovers in 2D space

Consider two rovers at q1
r1 and q2

r1 , to be collected one by one as given in

Figure 5.2. Basically, the carrier should approach and load RV1 in the figure

as soon as possible. If the acceleration/deceleration and rotating time of the

carrier are neglected, the carrier will meet RV1 at some point on the circle

of Apollonius OA1 which has a given ratio of distances |vmax
c |/|vmax

r | to the

locations of the carrier and q1
r1 . The shortest path where the carrier can meet

RV1 is qγA in Figure 5.2a. However, depending on the location of the second

rover, the first optimal collection location is varied. For example, if the second

rover is at B as in Figure 5.2a, the first optimal location can be at any point

between two intersection points of qc1q
2
r1 and OA1. Maybe, the best location

for qγB will be the point which makes the line q1
r1qγB to be the shortest. If

RV2 is at C as in Figure 5.2a, qγC is the only one optimal collection location.

However, RV1 cannot reach qγC due to its limitation of traveling distance,

which is presented as a red circle in Figure 5.2a. Therefore, they should instead

meet at qγ′
C
. On the other hand, if RV2 is at D as in Figure 5.2b, there is no

71

(a) Two cases the carrier collects two rovers

(b) The other case the carrier collects two rovers

Figure 5.2: Optimal path planning of a carrier for two rovers. The collection
location is calculated by considering the location of the next rover and the
maximum traveling distances of rovers

72

intersection point between qc1q
2
r1 and OA1. Therefore, the closest point qγD

on OA1 to qc1q
2
r1 is chosen for the optimal collection location. Note that, if

90◦ < ∠q1
r1qc1q

2
r1 < 270◦, the optimal collection location again becomes qγA .

The procedure to find collection locations for two rovers can be summarized as

follows:

1) Find a rover farther than another;

2) Find a line segment which connects the carrier and the farther rover;

3) Select the point closest to the found line as the collection location while

satisfying both the circle of maximum travel distance and the circle of

Apollonius.

When deploying two rovers, the circle of Apollonius is used between two rovers.

However, in the case of collecting two rovers, this circle is used between the

carrier and the first rover that the carrier approach.

As a next step, the previous optimal locations should be adjusted so that the

effects of acceleration/deceleration and rotating time of the carrier are applied.

Figure 5.3 shows how the collection location is repositioned from qγ1old to qγ1new .

Assume that the carrier and RV1 from A arrive at qγ1new at the same time with

duration of λ. Then the duration λ is represented as follows:

λ = f(qc1 ,qγ1new) =
|θc|+ |∆θ|

wc
+

S

vmax
c

+
vmax
c

ac
, (5.4)

λ =
∥qr1 − qγ1new∥

vmax
r

, (5.5)

73

Figure 5.3: Path modification of the carrier. The previous collection location
qγ1old is no longer optimal as the location is adjusted to qγ1new to reflect more
dynamics of the carrier

in condition that the carrier gets its maximum linear speed as ∥qc1 −qγ1new∥ ≥

vmax
c /ac. Combining (5.4) and (5.5) yields:

|θc|+ |∆θ|
wc

+
S

vmax
c

+
vmax
c

ac
=
∥qr1 − qγ1new∥

vmax
r

. (5.6)

And the law of cosines yields the following equation:

S2 = l2 + (∥qr1 − qγ1old∥+∆d)2 − 2l(∥qr1 − qγ1old∥+∆d) cos θA. (5.7)

On the other hand, in Figure 5.3, the relation between ∆θ and ∆d can be

represented as follows:

74

tan (90− θA −∆θ) =
∥qr1 − qγA′∥ − ∥qr1 − qγA′∥ −∆d

∥qc1 − qγA′∥
. (5.8)

Summarizing the equation for ∆θ:

∆θ = 90− θA − arctan
(∥qr1 − qγA′∥ − ∥qr1 − qγA′∥ −∆d

∥qc1 − qγA′∥

)
. (5.9)

Therefore, by replacing ∆θ in (5.6) with (5.9), (5.7) can be solved for ∆d. To

simplify the problem with arc tangent, ∆θ can be approximated as follows:

∆θ =
(90− θA)(∥qr1 − qγ1old∥+∆d)

∥qr1 − qγA′∥
. (5.10)

Then ∆θ in (5.6) is replaced by (5.10), and ∆d can be acquired by combining

(5.6) and (5.7).

5.3.2 Collection for two rovers in 3D space

By expanding the idea of collection in the previous chapter, the collection for

two rovers in 3D space can be established. Assume the rover RV1 is hovering

at height z1, as depicted in Figure 5.4. Then the rover should fly and land on

the collection location. At the same time, the carrier should move to the same

location for retrieving. Therefore, by equalizing the duration that the carrier

moves and the rover moves, the collection location qγ1new can be calculated as

follows:

|θc|+ |∆θ|
wc

+
S

vmax
c

+
vmax
c

ac
=

√
∆d2 + z21

vmax
r

. (5.11)

75

Figure 5.4: Two rovers collection in a 3D space

Once the height factor of a rover is applied to an equation, the other method

is basically the same.

5.4 Path planning algorithm of a marsupial robot team
for collection

In the same manner as deployment problem in chapter 4, clustering rovers is

important to generate an efficient path. Figure 5.5 shows an example of collec-

tion of two rovers, which explains how clustering affects the collection result.

In Figure 5.5a, two rovers are collected one by one as previously analyzed. On

the other hand, two rovers in Figure 5.5b are collected together at one location.

If the loading time tu increases, the latter path becomes more advantageous

than the path in Figure 5.5a. (An opposite case may occur if tu decreases.)

76

(a) Two rovers are collected one by one and
clustering is not considered

(b) Two rovers in one cluster are gathered
and collected together

Figure 5.5: Examples of two rovers collection. As the loading time gets longer,
collection time for (a) is expected to take longer than the time for (b)

Therefore all rovers for collecting should be divided into several clusters so that

some rovers are gathered and collected at once. In this study, the same cluster-

ing method used for deployment problem is applied for clustering of collection

problem.

To include multiple rovers in a cluster, there must be the intersection area

where all relevant rovers can reach. In this manner, all rovers to be collected

are initially assigned to one cluster first. Then the cluster is recursively divided

into two clusters until there is no cluster which has no intersection area. In β-th

cluster for collection Pγβ , the intersection area Iβ is found by using radii and

centers of the circles, made by the maximum traveling distances of rovers as

below:

Iβ = Oβ
D1 ∩Oβ

D2 ∩Oβ
D3 ∩ ∩Oβ

Dk. (5.12)

77

Incidentally, calculating the exact intersection area requires a lot of computation

[117]. Note that the purpose of this calculating is to find the closest point in

the area from the line between the previous collection location and the next

collection location of the carrier. In this point of view, the problem finding

intersection area can be converted into convex problem because circle is convex

and the intersection of convex polygons is convex. Let qγβ−1
and qγβ+1

be the

previous and the next collection location respectively. As the next collection

location qγβ+1
is not known yet, it is temporarily determined as a midpoint of

all intersection points of the circles in the next cluster Pγβ . Then the desired

collection location qγβ is acquired by solving the following convex problem:

minimize |(xγβ − xγβ−1
)dy − (yγβ − yγβ−1

)dx|

subject to ∥qγβ − qj
r∥ ≤ djcollect,

(5.13)

where

dx = xγβ+1
− xγβ−1

, (5.14)

dy = yγβ+1
− yγβ−1

, (5.15)

and qj
r ∈ Pγβ for all j. If the acquired location from (5.13) is beyond the end

of segment, the alternative collection location again calculated as follows:

minimize min(∥qγβ − qγβ−1
∥, ∥qγβ − qγβ+1

∥)

subject to ∥qγβ − qj
r∥ ≤ djcollect.

(5.16)

On the other hand, using convex optimization requires more computing time.

To reduce the amount of computation, only intersection points of the circles

in cluster Pγβ can be considered as candidate collection locations qγβ . Figure

78

Figure 5.6: Example of a collection location decision. The yellow dot can be
found by using convex optimization, however the black dots which are the
intersection of the circles can be considered as an alternative collection location
to reduce the calculation amount

5.6 shows an example. If the carrier comes from the bottom left as shown by

the blue arrow, the convex optimization will set yellow dot to be the collection

location. However, since solving the requires a lot of computation, three black

dots that intersect the three circles can be considered as alternate locations. The

overall algorithm for collection is described in Algorithm 5.1 and 5.2. Basically,

the principle of the algorithm is almost the same as Algorithm 4.1 and 4.2.

In Algorithm 4.1 and 4.2, the initial clustering is done by finding intersection

points in each cluster.

The procedure example of the collection path generation is illustrated in

Figure 5.7. In Figure 5.7a, rovers to be collected after finishing their tasks are

initially scattered. The red circles show the maximum traveling distances of

rovers.

79

Algorithm 5.1: Collection path generator

Input: carrier’s initial location (xc1 , yc1 , 0, θc)
rovers’ information R

Output: Collection path Γ, Elapsed Time Tmin

/* Initialization */

1 Tmin ← Tmax, Idx ← 1, Numcluster ← 1
2 Icluster ← R
/* Initial Clustering */

3 while Idx ≤ Numcluster do
4 Itsc P ts[Idx] ← GET INTERPTS(Idx)
5 if Itsc P ts[Idx] is NULL then
6 DIVIDE CLUSTER(Icluster, Idx)
7 Numcluster ← Numcluster + 1

8 else
9 Idx← Idx+ 1

10 Idx← 1
/* Initial path generation */

11 Γ ← GET COLLECT PATH(Itsc P ts)
12 Tmin ← CALC TIME(Γ)

80

Algorithm 5.2: Collection path generator (continue)

/* Compare and update of collection path */

1 while Idx ≤ Numcluster do
/* A cluster consists of only one rover cannot be divided

*/

2 Rcnt ← COUNT ROBOTS(Idx)
3 if Rcnt = 1 then
4 Idx← Idx+ 1
5 continue

6 DIVIDE CLUSTER(Icluster, Idx)
7 Itsc P ts[Idx] ← GET INTERPTS(Idx)
8 Itsc P ts[Idx+ 1] ← GET INTERPTS(Idx+ 1)
9 Numcluster ← Numcluster + 1

/* Generate a path */

10 Γcand ← GET COLLECT PATH(Itsc P ts)
11 Tcand ← CALC TIME(Γcand)

/* Generate alternative path from the swapped cluster */

12 Icluster temp ← SWAP CLUSTERS(Icluster, Idx)
13 Γcand temp ← GET COLLECT PATH(Itsc P ts)
14 Tcand temp ← CALC TIME(Gammacand)

/* Compare and choose */

15 if Tcand temp < Tcand then
16 Tcand ← Tcand temp

17 Γcand ← Γcand temp

18 Icluster ← Icluster temp

19 if Tcand ≤ Tmin then
20 Tmin ← Tcand

21 Γ← Γcand

22 else
23 MERGE CLUSTERS(Icluster, Idx)
24 Numcluster ← Numcluster − 1
25 Idx← Idx+ 1

/* Return result */

26 return Γ, Tmin

81

(a) 1st phase (b) 2nd phase (c) 3rd phase

(d) 4th phase (e) 5th phase (f) 6th phase

Figure 5.7: Example procedure of the collection path generation algorithm (a)
Initially scattered rovers to be collected (b) Initial clustering and first collec-
tion path (c) Second generated collection path (d) and (e) Third and fourth
generated collection path. However these results are not chosen (f) Final path
for collection is determined if there is no more cluster which can be divided

Based on the geometrical information, the rovers are divided into two clusters

so that there is always an intersection area for each cluster, and then initial

collection path is computed in Figure 5.7b. In Figure 5.7c, the cluster Pγ1 in

82

Figure 5.7b is divided into Pγ1 and Pγ2 . Consequently, Pγ2 in Figure 5.7b is

updated to Pγ3 . Then the algorithm finds collection path for the updated set

of clusters and the path is chosen as the time for collection is shorter than the

previous computed time. In Figure 5.7d, Pγ1 is again divided, however this third

generated path is not chosen according to the time. Then two divided clusters

are merged again. In Figure 5.7e, Pγ2 cannot be divided as there is only on

robot. Therefore, the next cluster is divided into Pγ3 and Pγ3 . Assuming that

the elapsed time for Figure 5.7e is slower than the previous one, they are merged

again. In Figure 5.7f, since there is no more cluster to be divided and computed,

final collection path is determined. The result is exactly the same as Figure 5.7c

because there has been no update after Figure 5.7c.

5.5 Simulation result

According to the assumption mentioned in section 3.2 , each rover has different

remaining energy when rovers are collected after finishing their given tasks.

Therefore, in this simulation, the maximum traveling distances of all rovers are

randomly set by using mean dMcollect and standard deviation σ. 1

5.5.1 Collection scenarios in 2D space

Collection of 15 rovers

In chapter 4.5.2, the rovers are deployed for 15 tasks in 100m × 100m space.

For those deployed rovers, collection is performed by the proposed method.

Initial location of the carrier is set as the last deployment location, and all the

conditions are set the same as in Figure 4.10. All initial parameters including

1We use dMcollect as the average of remaining energies of rovers.

83

the initial locations are listed in Table 5.1. First, the remaining energies of

rovers are assumed to be the same without deviation.

Table 5.1: Initial parameters in collection for 15 rovers

Specification carrier vmax
c = 15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2

tu = 4.0s

rover vmax
r = 1.0m/s, dMcollect = 10.0− 25.0m (σ = 0)

Locations carrier qc1 = (80, 10)

rovers q1
r = (57, 11), q2

r = (76, 59), q3
r = (17, 17)

q4
r = (13, 75), q5

r = (9, 26), q6
r = (50, 70)

q7
r = (82, 67), q8

r = (70, 62), q9
r = (50, 32)

q10
r = (80, 10), q11

r = (25, 21), q12
r = (92, 93)

q13
r = (12, 45), q14

r = (63, 28), q15
r = (72, 54)

The resulted collecting path for the problem is shown in Figure 5.8. Since

the carrier begins collecting from the last deployment location, the first collec-

tion location qγ1 and the initial location of the carrier qc1 are the same for all

in Figure 5.8. While the collection locations are not exactly matched with the

deployment locations, the overall path seems to be similar as the inversed de-

ployment path in Figure 4.10. Except for the result in Figure 5.8c, the number

of generated clusters is also exactly the same as in Figure 4.10. On the other

hand, the carrier travels 123.73m in Figure 5.8a whereas it travels 157.52m in

Figure 4.10a. However, the carrier moves 26.97m from its initial location to the

first deployment location qω1 in Figure 4.10a. Therefore, excluding the distance,

the gap between two paths is 6.73m. The travel distance of the carrier tends to

increase as the maximum traveling distance of rover decreases.

Next, for the same set of rovers, the remaining energies are assumed to

84

(a) dMcollect = 25.0m and σ = 0 (b) dMcollect = 20.0m and σ = 0

(c) dMcollect = 15.0m and σ = 0 (d) dMcollect = 10.0m and σ = 0

Figure 5.8: Collection scenario with 15 rovers according to the traveling distance
constraint of rovers. All rovers have the same maximum traveling distance.
(vmax

c = 15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2, tl = 4.0s, and vmax
r =

1.0m/s.)

be different with standard deviation 3. Figure 5.9 presents the collection paths

generation result with this scenario. In Figure 5.9a, one more collection location

85

(a) dMcollect = 25.0m and σ = 3 (b) dMcollect = 20.0m and σ = 3

(c) dMcollect = 15.0m and σ = 3 (d) dMcollect = 10.0m and σ = 3

Figure 5.9: Collection scenario with 15 rovers according to the traveling distance
constraint of rovers, which are randomly generated with standard deviation 3
(vmax

c = 15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2, tl = 4.0s, and vr = 1.0m/s.)

qγ6 is added as not all rovers which belong to qγ5 in Figure 5.8a can gather

at one location in Figure 5.9a. Both the elapsed time for collection and travel

86

distance of the carrier increase to 60.25s and 129.56m respectively. In Figure

5.9b and 5.9c, one more collection location is also added, however, the travel

distance of the carrier is reduced from 147.47m to 134.50m and from 161.68m

to 156.00m respectively. This collection algorithm has room for improvement.

For example, in Figure 5.9d, the collection location qγ5 can be adjusted to the

right so that the location lies on the line segment qγ4qγ6 . However, at the time

when qγ5 is calculated, the center of next cluster is used since the location for

qγ6 is not known. Once all locations for collection are computed, then this kind

of location can be found and re-calculated. However, this strategy should be

carefully selected as it requires additional computation.

Collection of 25 rovers

Table 5.2 shows initial parameters for a scenario of collection path generation.

Table 5.2: Initial parameters in collection for 25 rovers

Specification carrier vmax
c = 10.0m/s, wc = 2.0rad/s, ac = 3.0m/s2

tl = 2.0s

rover vmax
r = 3.0m/s, dMcollect = 20.0m (σ = 2)

Locations carrier qc1 = (20, 20), (180, 20), (20, 180), (100, 100)

rovers q1
r = (140, 179), q2

r = (28, 30), q3
r = (51, 163)

q4
r = (70, 40), q5

r = (95, 71), q6
r = (110, 184)

q7
r = (151, 77), q8

r = (11, 107), q9
r = (26, 114)

q10
r = (68, 33), q11

r = (106, 34), q12
r = (131, 138)

q13
r = (17, 46), q14

r = (166, 108), q15
r = (89, 22)

q16
r = (155, 164), q17

r = (80, 52), q18
r = (183, 37)

q19
r = (28, 174), q20

r = (29, 171), q21
r = (103, 81)

q22
r = (25, 37), q23

r = (10, 181), q24
r = (98, 68)

q25
r = (23, 157)

87

There are 25 rovers in 200m×200m space. All locations of rovers are randomly

generated within the space, and the maximum traveling distance of rover is also

randomly generated with mean 20.0m and standard deviation 2. The result is

shown in Figure 5.10.

The paths of the carrier are differently generated as the initial location of the

carrier is changed, whereas the other conditions and locations of rovers remain

the same. The clustering results are almost the same to each other, however,

total elapsed time for collection and travel distance of the carrier vary depending

on the initial location of the carrier. As a result, it is shown that the feasible

and efficient path can be generated by using the proposed algorithm.

5.5.2 Collection scenarios in 3D space

The proposed collection method is also tried in 3D space. We set ten rovers in

100m× 100m× 30m space. The detailed settings for the simulation are shown

in Table 5.3.

Table 5.3: Initial parameters in collection for ten rovers in 3D space

Specification carrier vmax
c = 15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2

tl = 4.0s

rover vmax
r = 1.0m/s, dMcollect = 13.0m (σ = 2)

Locations carrier qc1 = (90, 20, 0)

rovers q1
r = (76, 59, 8), q2

r = (17, 17, 8), q3
r = (13, 75, 8)

q4
r = (50, 70, 8), q5

r = (82, 67, 8), q6
r = (70, 62, 8)

q7
r = (50, 32, 8), q8

r = (25, 21, 8), q9
r = (92, 93, 8)

q10
r = (12, 45, 8)

The collecting result for ten rovers is shown in Figure 5.11. In the figure, the

meshed spheres represent the maximum travel distances of the rovers. The

88

result shows that two rovers are collected at qγ3 and qγ6 . If the corresponding

clusters are divided so that one is collected after another, total elapsed time

(a) qc1 = (20, 20) (b) qc1 = (180, 20)

(c) qc1 = (20, 180) (d) qc1 = (100, 100)

Figure 5.10: Collection scenario with 25 rovers according to initial location
of the carrier (vmax

c = 10.0m/s, wc = 2.0rad/s, ac = 3.0m/s2, tl = 2.0s,
vmax
r = 3.0m/s, dMcollect = 20.0m, and σ = 2.)

89

Figure 5.11: Collecting simulation result for ten rovers in 3D space. (vmax
c =

15.0m/s, wc = 3.0rad/s, ac = 10.0m/s2, tl = 4.0s, vmax
r = 1.0m/s, dMcollect =

13.0m, and σ = 0.)

will increase. The number of clusters and the path will vary according to the

dynamics of robots. For example, more loading time of rovers may result in less

number of clusters.

To evaluate and compare the performance of the proposed algorithm, we

execute four methods for the same configuration: 1) the rovers land at their

location and stay, and the carrier visits all locations generated by greedy two-

opt algorithm; 2) the rovers simply moves so that the distance to the carrier’s

initial location to be minimized; 3) the rovers move by the proposed algorithm;

and 4) the rovers move by the proposed algorithm with convex problem solver.

Figure 5.12 demonstrates four paths generation for the same rovers in Figure

90

Figure 5.12: Carrier’s paths and elapsed times from various approaches

5.11. The black dots represent initial locations of the rovers. This shows that the

proposed algorithms generate more time-efficient paths than other approaches.

Apparently, big difference between the third algorithm (Algo) and the fourth

algorithm (AlgoCvx) is not observed in this result.

5.5.3 Collection in a dynamic environment

As in the case of robot deployment, the dynamic environment must be consid-

ered when the robot is collected. Even if a plan is made to collect the rovers

in the initial state, communication with the rover to be collected may be dis-

connected or there may be rovers that do not need to be collected for some

reason. Figure 5.13 presents a collection example in 300m× 300m space, when

the set of rovers changes during the collection procedure. Figure 5.13a shows

91

(a) Collection path generation for initial
set of rovers

(b) Collection path generation for updated
set of rovers at q1

Figure 5.13: Dynamic collection scenario with 11 rovers in 300m× 300m space
(vmax

c = 20.0m/s, wc = 4.0rad/s, ac = 5.0m/s2, tl = 5.0s, vmax
r = 6.0m/s,

dMcollect = 45.0m, and σ = 2.)

the collection path resulted from initial locations of 11 rovers. In this scenario,

one rover RV11 disappears when the carrier is at qγ1 . In Figure 5.13b, the red

dashed lines present the original path which is the same as the path in Fig-

ure 5.13a. If the path is updated at qγ1 assuming that all rovers are at initial

locations, the path is generated as blue dot lines. However, in this case, all

other rovers are already reached the collection locations and they have no more

energy available, when the carrier arrives at qγ1 . Therefore, the carrier has to

follow the original path for collection excepting for qγ3 in Figure 5.13a. In other

case, if some rovers are moving and have energies left when the path needs to

update, another path may be chosen for collection. As a result, the collection

path can be updated in any case so that the path maintain its efficiency in a

92

dynamic environment.

5.6 Performance evaluation

Performance evaluation of robot collection is also described in terms of compu-

tation time and path efficiency as in robot deployment.

5.6.1 Computation time

To evaluate performance of the proposed algorithm, computation time is mea-

sured in 200m × 200m space. All locations of the carrier and rovers are ran-

domly generated with a uniform distribution, and the number of rovers varies

from ten to 100. The maximum traveling distances of rover dMcollect vary from

5.0m to 20.0m. Adopting the Monte Carlo method, the parameters of vmax
c ,

wc, ac, tl, and vr are also randomly generated with a normal distribution, with

mean 15.0m/s, 3.0rad/s, 5.0m/s2, 3.0s, and 3.0m/s respectively. The duration

is measured 100 times and the average value is acquired under each distinct

condition.

The average computation time of the proposed collection algorithm is de-

picted in Figure 5.14. The computation time of the collection algorithm in-

creases as the number of rovers increases. If there exists more than 90 rovers,

the computation time of the algorithm may exceed 1.0s. The computation of

the collection algorithm takes the least time when dMcollect = 5.0m in Figure

5.13a. However any correlation between the maximum traveling distance and

the average computation time is not observed. Approximately, the computa-

tion of the collection algorithm takes twice as long as that of the deployment

93

(a) Average computation time according to number of rovers and maximum travel
distance

(b) Average computation time according to number of rovers and the approach

Figure 5.14: Average computation time of proposed collecting algorithms. All
parameters and locations are randomly generated adopting the Monte Carlo
method

94

algorithm which is measured in section 5.6. Since the clustering methods of the

algorithms are basically the same, the difference may come from the calculations

for each cluster. On the other hand, Figure 5.13b shows the result of computa-

tion times for three methods introduced in section 5.5.2. Although the proposed

method requires more computation than the other simple methods, it is con-

firmed that when a limited number of robots are operated, the results are still

close to real time. However, using the convex problem to find a more accurate

collecting point take much more time and did not appear in the graph. When

using the convex problem for the same configuration, the average computation

times required for the rovers from ten to 100 are 2.60s, 10.16s, 19.81s, 33.14s,

49.14s, 72.49s, 101.91s, 128.75s, 185.63s, and 193.60s respectively. Reducing the

computation time also can be considered as one of future works.

5.6.2 Efficiency of the path

As introduced in chapter 4, the path from the proposed algorithm is compared

with the greedy two-opt solution. Figure 5.15 demonstrates an example of two

different collection solutions for the same problem of 15 rovers in 300m× 300m

space. As the rovers in Figure 5.15b cannot move to meet the carrier, the car-

rier’s travel distance becomes larger than the distance in Figure 5.15a. There-

fore, the elapsed time also increases. In this case, the path from the proposed

algorithm is 26.58% faster than the other.

As the efficiency of the path is mainly affected by the traveling distance of

rovers, and by the ratio of carrier’s speed to rovers’ speed, dMcollect varies from

10.0m to 40.0m. The number of tasks and rovers is set from ten to 100, and

95

(a) The proposed (b) Greedy two-opt

Figure 5.15: Example of 15 rovers collection in 300m× 300m (vmax
c = 20.0m/s,

wc = 4.0rad/s, ac = 5.0m/s2, tl = 5.0s, vmax
r = 6.0m/s, dMcollect = 25.0m, and

σ = 2.)

all locations of them are randomly generated. For the other parameters, the

Monte Carlo method is also used with a normal distribution, and each distinct

condition is repeated 100 times. The relative efficiency of the proposed collection

algorithm is presented in Figure 5.16, comparing with greedy two-opt solution.

The efficiency tends to increase as the number of rovers increases. The total

average of the efficiency is 26.75%. This efficiency comes from in part by the

adjacency of rovers as they can be put into a cluster. Therefore the smaller

space may result in the more efficient path, while the bigger space may result

in the similar path as the path from greedy two-opt algorithm.

Finally, the ratio of mission time according to number of rovers is compared

as in Figure 5.17. This figure shows the relative time of the other methods when

the time of the method using TSP is taken as 100%. In the figure, the proposed

96

Figure 5.16: Efficiency of the collecting path comparing with the solution from
greedy two-opt algorithm, in 300m× 300m space

Figure 5.17: Ratio of mission time according to number of rovers and approaches

97

algorithm improves the duration approximately from 10 to 20 percent. However,

the algorithm using convex solver makes no big difference while it requires a lot

of computation time.

98

Chapter 6

Deployment of a Marsupial Robot
Team using a Graph

6.1 Problem definition

The goal of the problem is to find a route of the carrier, which is a sequence of

nodes, that minimizes the longest time at which each rover arrives at the given

task location. (Once a route for the carrier is determined, the routes of rovers

are also determined from the deployment locations.) In a graph G, let the route

of the carrier be Rc = (n1, n2, ..., nj) where n ∈ N , and let Ri
c be the sub-route

of Rc which means a path from one deployment location to next deployment

location, such that
⋃
Ri

c = Rc. Then a function s : Ri
c → R≥0 that calculates

the total length of the sub-route Ri
c can be formulated as the sum of Euclidean

distances between two sequential nodes in the sub-route, as follows:

s(i) =

β(i)−1∑
k=1

∥e(α(i,k),α(i,k+1))∥, (6.1)

99

where α(i, k) is a mapping function to kth node in Ri
c, β(i) is a function that

returns the number of nodes in Ri
c, and e ∈ E is the edge between two nodes.

By using the function s, a function fc that measures travel time for a carrier is

defined as follows:

fc(i) =

 s(i)/vmax
c + vmax

c /ac, if s(i) ≥ vmax
c

2/ac,

2
√
s(i)/ac, otherwise.

(6.2)

Similarly, a function fr for a rover can be defined by replacing the velocity and

acceleration terms in (6.2) with those terms of rovers. In the first sub-route

R1
c , the carrier travels from its initial location to the first deployment location.

Then rovers are unloaded at the deployment location, and the rovers move

to the assigned goal locations. Expanding on this concept, a function g that

computes total time at which unloaded rovers arrive at each location is derived

as follows:

g(1) = fc(1) + tu +max(f1
r),

g(2) = fc(1) + tu + fc(2) + tu +max(f2
r),

...

g(i) =
∑i

k=1 (fc(k) + tu) +max(f i
r).

(6.3)

Therefore, the objective is to finding an efficient route R⋆
c that minimizes the

longest time of rovers as follows:

R⋆
c = argminmax

Rc

{g(1), ..., g(i), ...}. (6.4)

To save time, at the former deployment locations, it can be expected that the

carrier will unload rovers near the maximum range that the rovers can travel.

100

Figure 6.1: Framework for path planning of a marsupial robot team

6.2 Framework

The path planning of the marsupial robot team using the graph can be divided

into three steps: 1) roadmap generation; 2) path finding in the graph; and 3)

path smoothing. Taking the steps into account, our overall framework to find an

efficient path is diagrammed as Figure 6.1. First, preliminary information on en-

vironment such as map, obstacles, initial locations, and goal locations is input to

the roadmap generator. Then the roadmap generator creates a roadmap for the

entire environment by using the PRM which is the multi-query sampling-based

method. The local PRM generates additional nodes and edges in a specified

101

region of interest in open space. On the generated roadmap, the shortest path

from one node to another node is found by using the A* pathfinder. By using

the A* pathfinder, not only the nearest task location from the carrier but also

the path from a deployment location to a task location can be found. On the

other hand, the clustering agent finds near task locations based on a specific

node which is also a task location, and the found tasks and the first task become

a cluster. Then a deployment location associate with the cluster can be deter-

mined. In this process, the geometric pathfinder is used to compensate for the

drawbacks of sampling based roadmap. For efficiency, the generated path along

the graph nodes should be smoothed. This is done by the path smoother. Note

that, path smoothing results in short-cutting edges in the graph, while creating

a curved path is beyond the scope of this paper. Once a path is created, the

time required for travel can be calculated in the cost evaluator by using the

robot’s attributes. The path selector in the global planner then chooses the

path that minimizes the time. The details of the approach in this framework

are explained in the next section.

6.3 Probabilistic roadmap generation

PRM is a multiple-query algorithm which has demonstrated to be efficient and

general tools for motion planning. In a basic PRM, the number of nodes in the

map and the maximum length of edges can be determined. As the number of

nodes or edge length increases, the efficiency of the path increases. However, the

search time also increases. On the contrary, if the number decreases, the search

time can be accelerated, whereas the necessary path may not be generated. As

102

a result, it is important to determine the number and locations of nodes. In this

study, we use the method with uniform distribution as the most basic PRM.

6.3.1 Global PRM

The initial number of nodes ℵ1 for a map with height h and width w is deter-

mined by the following heuristic function:

ℵ1 = (
√
w × h)× ξ1 + ξ2, (6.5)

where ξ1 and ξ2 are non-negative constants respectively. If the coordinates of a

generated node belong to obstacle area, the node is canceled and not included

in the total node number ℵ1. Therefore, it is generated until the number ℵ1

is satisfied regardless of the obstacle of environment. Generally, the maximum

length of edge is preferably determined by considering the size of the map.

However, if the length is shorter than ddeploy, the rover may be unable to directly

go to the task location. Hence, the maximum length of edge δ is calculated by

the following function:

δ = max (ddeploy,
(w + h)

2
φ), (6.6)

where φ is a constant satisfies 0 < φ < 1. The roadmaps generated by global

PRM for four different areas are demonstrated in Figure 6.2. In the figure,

small black dots are nodes, grey lines are edges, and black blobs are obstacles

or walls. The red rectangle and skyblue diamonds respectively represent the

carrier and the tasks. Note that, the locations of the carrier and the tasks are

all the same in Figure 6.2a and 6.2b. The parameters ξ1 and ξ2 in (6.5) and

number of generated nodes and edges for each area is shown in Table 6.1. For

103

(a) Outdoor space without obstacle
(100m×100m)

(b) Outdoor space with obstacles
(100m×100m)

(c) Office (27m×26m) (d) University research building
(50m×22m)

Figure 6.2: Roadmap generation by global PRM. The roadmap is generated
including the locations of carrier and tasks as nodes. In the map, small black
dots are nodes, grey lines are edges, and black blobs are obstacles or walls. The
red rectangle and skyblue diamonds respectively represent the carrier and the
tasks.

104

Table 6.1: Number of nodes and edges for four areas

Area ξ1 ξ2 Nodes Edges

Outdoor w/o obstacle
1.5 150

300 2,761

Outdoor w/ obstacles 300 2,594

Office 190 1,659

Univ. building 220 1,248

the result, we set ddeploy = 15.0m and φ = 0.15. Comparing the space with

obstacles to the space without an obstacle, it is confirmed that the obstacle

causes less edge generation.

6.3.2 Local PRM

Local PRM is used to provide more time-efficient nodes. On the roadmap gen-

erated by global PRM, the local PRM creates additional nodes and links edges

from the newly added nodes. The local PRM requires region of interest obtained

from cluster information, whose width and height are respectively represented

as wROI and hROI . Then, similarly as (6.5), the number of nodes ℵadd that the

local PRM creates is calculated as the following equation:

ℵadd = (
√
wROI × hROI)× ξ3 + ξ4, (6.7)

where ξ3 and ξ4 are non-negative constants respectively. As a result of addition,

the total number of nodes becomes ℵ1+ℵadd. Meanwhile, the maximum length

of edge δ is set as δ = ddeploy. The example of local PRM is shown with clustering

in the section 6.4.2.

6.4 Path planning strategy

This section describes strategies to path planning for a marsupial robot team.

105

6.4.1 Clustering scheme

Assume that there are more than two tasks in the local area. Once the optimal

location to reach each task location is found, the carrier should repeatedly go

and stop at every deployment location and unload a rover. However, in this

case, if there is a location where all the task locations can be reached by rovers,

the carrier can stop only once and unload all the rovers, which may be more

advantageous in terms of time. Therefore, clustering tasks based on location

should be considered.

Cluster creation

Creation of a cluster begins with a greedy search from the initial position of the

carrier n1. Let C1 denote an initially-empty set for a cluster, and let A∗(a, b)

be a function that returns the length of shortest path from na to nb. Then the

nearest task node nnearest
1 from n1 is obtained as follows:

nnearest
1 = argmin

ni
g

(A∗(n1, n
i
g)). (6.8)

This acquired node is added as an element of C1. Next, for the remaining task

nodes, the Euclidean distance from nnearest
1 is calculated. If the calculated dis-

tance is less than 2 · ddeploy, the corresponding node is also added to C1. The

results of the above procedure for the maps in Figure 6.2b and 6.2d are respec-

tively shown in Figure 6.3a and 6.3b. In Figure 6.3, the path from the carrier

to task is indicated by yellow lines, and the shortest path is drawn with blue

lines. From the nearest task node, the cluster is made as the red circle in Figure

6.3. If a deployment location for the cluster can be found, the location is to be

106

(a) Outdoor space with obstacles

(b) University research building

Figure 6.3: Path from carrier to task locations and first clustering result (red
circle). Each path and the path to the nearest task are respectively drawn with
yellow lines and blue lines.

107

the next location of the carrier. Then next cluster C2, C3, ... can be made based

on the previous deployment location.

Cluster division

Cluster creation is based on geographic information between tasks. Therefore,

there is no problem if there is no obstacle. However, if obstacle exists in cluster,

some rovers may not reach the assigned task location from the deployment

location. Figure 6.3b shows an example. The nearest task is found from the

carrier and a cluster is created containing other task. However, there is a wall

between the two tasks. Therefore, if the maximum travel distance of the rover

is shortened, finding a deployment location where both rovers can actually

arrive is impossible. In this case, the cluster must be divided so that more than

two deployment locations to be generated. The process of dividing the cluster

is described in Algorithm 6.1. The task nodes excluded from the cluster by

Algorithm 6.1 are clustered together with other task nodes at the next cluster

creation.

Algorithm 6.1: ClusterDivider

Input: Cluster C, Nearest task node nnearest

Output: Cluster C
1 nfarthest ← FindFarthestNode(C, nnearest)

2 C ← C \ nfarthest

3 for i=1:Num(C) do
4 if ni ̸= nfarthest and ni ̸= nnearest then
5 path near ← A*(ni, n

nearest)

6 path far ← A*(ni, n
farthest)

7 if GetLength(path far) ≤ GetLength(path near) then
8 C ← C \ ni

108

6.4.2 Determining deployment locations

Candidate nodes creation with the local PRM

Once the next cluster to be visited is determined from the carrier’s location, an

efficient deployment node corresponding to that cluster must be found. Since

each rover has a limited maximum travel distance, this node should be located

at least within ddeploy from each task node. Then, the desired deployment node

can only be in an intersection area of circles whose radius is ddeploy and center

is each task node, as shown in Figure 6.4. However, the graph generated by the

PRM may or may not have enough nodes to have optimal node in this area.

Therefore, we use the local PRM to generate more possible nodes in the area.

To simplify the computation, the intersection area of circles is approximated as

a red rectangle in Figure 6.4.

Figure 6.5 shows the result of local PRM for the first cluster in outdoor space

with obstacle which is depicted in Figure 6.2b. First, in Figure 6.5a, there are

three task locations in a cluster, each with its maximum range indicated by a

circle. In the intersection area, there are about seven nodes. Next, in Figure

6.5b, the local PRM is used to create random nodes in the intersection area.

The generated nodes are indicated by green circles whereas the newly connected

edges are not indicated. Although all these nodes are in the intersection area,

on some nodes a rover deployed may not reach task location due to obstacles.

Therefore, each candidate node is examined with the path-length to task loca-

tion in the cluster by using A* algorithm, and re-selects only the feasible nodes

as candidates. The selected nodes are red circles in Figure 6.5c.

109

(a) One task (b) Two tasks (c) Three tasks

Figure 6.4: Deployable area (grey area) according to task configuration (skyblue
diamond) in cluster. The area is approximated as a red rectangle.

(a) Before local PRM

(b) After local PRM

(c) Reachable nodes

Figure 6.5: Local PRM generation in the first cluster for outdoor space with
obstacle. Maximum travel distance of rover is 15.0m

110

Candidate nodes creation with a deterministic method

Since the local PRM is a sampling-based approach, it is difficult to provide an

optimal solution to this partial problem. The optimal solution may be acquired

by generating a lot of samples, however it may also require a lot of computation

which is almost infeasible in robotic real operation. On the other hand, if there

is no obstacle around the interested cluster, then a candidate node can be

additionally made in a deterministic way. This method is previously introduced

in chapter 4, and as a result an additional candidate node is set at one point

on the boundary of the intersection area.

Deployment node selection

The criterion for choosing a node to deploy rovers are to select the node that

makes the fastest arrival at the next deployment location. However, there is no

information about the next cluster at the time of determining the deployment

location for the current cluster. Therefore, the next deployment location is

temporarily set to the nearest task node from the center position of the tasks

which belong to the current cluster. The center position is calculated by finding

the minimum bounded circle as follows:

minimize r

subject to ∥ni − λ∥ ≤ r,

(6.9)

where ni is the node in the current cluster. If there is only one node in the

cluster, the center position becomes the node itself, and if there are two nodes,

the center position becomes the mid-point of two nodes. In case there are more

than three nodes, convex hull [38] is characterized first so that only outer nodes

111

can be considered. Next, the center of bounded circle is computed by finding

three points which satisfy the same equation of circle. By using the center

location, the next nearest task node is found.

Let the initial location or the previous deploying node of the carrier be ni−1

and the next nearest task node be nnearest
i+1 . Then, the best node ni to deploy

rovers for the corresponding cluster can be determined by solving the following

problem:

ni = argmin
ncand

(A∗(ni−1, ncand) +A∗(ncand, n
nearest
i+1)), (6.10)

where ncand is the candidate deployment node. Then the path from ni−1 to ni

becomes a sub-route.

Recursive method for last cluster

If one cluster is created for tasks not belonging to the previous cluster, if there

are no remaining tasks, the cluster is found to be the last cluster. In the last

cluster, the deployment location should be the node that minimizes the maxi-

mum duration each rover in the cluster arrives at the task location. However,

if there are more than two tasks in the last cluster, dividing the cluster into

two should be considered as shown in Figure 6.6. First, a deployment location

is determined as shown in Figure 6.6a. Next, the cluster is divided into two

clusters based on the geographical adjacency of the tasks, and two deployment

locations are determined as shown in Figure 6.6b. In Figure 6.6b, the former

deployment location should be chosen so that the time the rovers travel in the

former cluster is nearly equal to the time the carrier travel to the latter cluster

plus the time for unloading plus the time the rovers travel in the latter cluster.

112

(a) One deployment location for last clus-
ter

(b) Two deployment locations for divided
clusters

Figure 6.6: Two case of deployment for last cluster. Last cluster can be divided
into two clusters unless there is only one task. Yellow circles indicate deployment
locations. Blue lines and green lines respectively indicate the path of the carrier
and rovers.

As the time required for arriving all tasks can be calculated by (6.3), the better

deployment location can be chosen. It is expected that slower linear velocity of

the rover and faster unloading time may result in the division of the cluster.

6.4.3 Path smoothing

Sampling-based path planning tends to find jagged and longer path. In the

case of PRM, this problem is also caused by limiting the edge distance as

(6.6). However, finding a shortcut path from the deploying path result does

not require a lot of computation. Therefore, for each sub-route, shortcutting

algorithm is performed as a smoothing function. The shortcutting procedure is

described in Algorithm 6.2. Since this algorithm is based on a greedy strategy,

it does not guarantee optimal shortcuts. The example of smoothing in office

area is depicted in Figure 6.7. Grey lines show the original path before path

smoothing, blue lines show the smoothed path, and green lines show the rover’s

113

Algorithm 6.2: Shortcutting

Input: Sub-route Ri
c

Output: Smoothed sub-route sRi
c

/* Initialization */

1 sRi
c ← ∅, n← GetNodeNum(Ri

c)
/* Return sub-route if there are only two nodes */

2 if n = 2 then
3 sRi

c ← Ri
c

4 return

5 j ← 1, sRi
c ← AddNode(sRi

c, j)
6 while j < n do
7 for k = n : −1 : j + 1 do
8 if NoCollision(Ri

c, j,k) then
9 sRi

c ← AddNode(sRi
c, k)

10 j ← k − 1
11 break

12 j ← j + 1

Figure 6.7: Shortcutting of path in office area. Thick grey lines show the original
path and blue lines show the smoothed path of the carrier.

path from deployment locations. As shown in the figure, it can be seen that

the somewhat zigzag grey path changes to a more efficient blue path without

114

colliding with obstacles.

6.4.4 Path planning algorithm for a marsupial robot team

Summarizing the methods above, the overall algorithm for path planning is

briefly described in Algorithm 6.3. The route of rover is found from each de-

ployment location to task location in GetRoverRoute function.

Algorithm 6.3: Path planning for a marsupial robot team

Input: mapM, robot’s information I, task locations qrG

Output: Path of carrier and rovers
/* Initialization */

1 G ← GlobalPRM(M, I, qrG), Rc = ∅, i← 1
2 while do
3 I ← UpdateCarrierLocation(Rc)
4 Ci ← GetCluster(G, I, qrG)
5 if IsLastCluster() = false then
6 nnearest

i+1 ← GetNextNearestTask(G, Ci, qrG)
7 ni ← FindDeployNode(G, Ci, I, nnearest

i+1)
8 Rc ← GetSmoothedSubRoute(G, I, ni)
9 i← i+ 1

10 else
11 ncand

i ← FindDeploymentNode(G, Ci, I)
12 (Ci, Ci+1) ← Divide(G, Ci, qrG)
13 nnearest

i+1 ← GetNextNearestTask(G, Ci, qrG)

14 ncand2
i ← FindDeployNode(G, Ci, I, nnearest

i+1)

15 ncand2
i+1 ← FindDeployNode(G, Ci+1, I)

16 if GetTime(ncand
i) < GetTime(ncand2

i , ncand2
i+1) then

17 Rc ← GetSmoothedSubRoute(G, I, ncand
i)

18 break

19 else
20 Rc ← GetSmoothedSubRoute(G, I, ncand2

i)
21 i← i+ 1

22 GetRoverRoute(Rc, qrG)

115

6.5 Simulation result

Our proposed method was implemented and simulated for the environments

shown in Figure 6.2, outdoor space without obstacle, outdoor space with obsta-

cles, office area, and university research building. For clear presentations, nodes

and edges that do not belong to path are not drawn in the result figures.

6.5.1 Outdoor space without obstacle

First, the proposed algorithm is simulated for the outdoor space without obsta-

cle shown in Figure 6.2a. All the parameters used for this simulation is listed

in Table 6.2.

Table 6.2: Initial parameters in outdoor space without obstacle for eight tasks

Specification carrier vmax
c = 10.0m/s, ac = 5.0m/s2, tu = 3.0s

rover vmax
r = 5.0m/s, ar = 5.0m/s2, ddeploy = 15.0m

Locations carrier qc1 = (27, 13)

tasks q1
G = (23, 27), q2

G = (80, 20), q3
G = (90, 25)

q4
G = (85, 30), q5

G = (70, 71), q6
G = (60, 75)

q7
G = (57, 65), q8

G = (23, 55)

Figure 6.8 shows the path planning results for rovers deployment, and the re-

lated values are listed in Table 6.3. First, the path by using the proposed

Table 6.3: Number of nodes and edges, and elapsed time in outdoor space
without obstacle

Method Nodes Edges Time(s)

The proposed 393 6,238 27.14

The proposed without local PRM 300 2,761 27.58

Normal method with more nodes 393 4,761 30.35

116

(a) Proposed path planning (b) Proposed path planning without local
PRM

(c) Paths using the same number of nodes as the result of (a)

Figure 6.8: Deployment path planning in outdoor space without obstacle.
(vmax

c = 10.0m/s, ac = 5.0m/s2, vmax
r = 5.0m/s, ar = 5.0m/s2, tu = 3.0s,

and ddeploy = 15.0m.)

method is shown in Figure 6.8a. Here, the number of nodes becomes 393 from

the first 300, the number of edges is increased to 6,238, and the total time for

the deployment is 27.14s. To compare this result with other results, in Figure

117

6.8b, we create the path without using the local PRM. As a result, the total

deployment time is 27.58s. The time in Figure 6.8a and the time in Figure 6.8b

show less difference than expected. In Figure 6.8c, instead of using local PRM,

we use global PRM to reflect the increased number of nodes after using local

PRM in Figure 6.8a. As a result, the number of nodes equals the first, and the

number of edges is slightly less, however the time increases to 30.35s.

6.5.2 Outdoor space with obstacles

Second, the proposed algorithm is simulated for the outdoor space with obsta-

cles shown in Figure 6.2b. All the parameters used for this simulation are the

same as in Table 6.2, however vmax
r varies from 2.0m/s to 5.0m/s. Figure 6.9

shows the path planning results for deployment. For eight tasks, three clusters

are generated in Figure 6.9a. In the first cluster, the deployment location is

(a) vmax
r = 5.0m/s (b) vmax

r = 2.0m/s

Figure 6.9: Deployment path planning in outdoor space with obstacles. (vmax
c =

10.0m/s, ac = 5.0m/s2, ar = 5.0m/s2, tu = 3.0s, and ddeploy = 15.0m.)

118

determined at a node that can reach the tasks while avoiding the obstacle be-

tween tasks and move to the next cluster quickly. There is no obstacle around

the second cluster. Therefore, the candidate node, made by the deterministic

method, is chosen as the deployment location. For the last cluster, two rovers

are deployed at the midpoint of the tasks. Meanwhile, four clusters are created

in Figure 6.9b. This is because the maximum linear velocity of the rover is

slower than that of Figure 6.9a, so that the rovers unloaded in the last cluster

move longer to each task location. Therefore, the last cluster is divided into two

clusters and each deployment location is found. As there is only one task in the

last cluster in Figure 6.9b, the carrier directly moves to the task location. As

a result, while the path of the carrier becomes longer, the total time becomes

shorter than before the previous last cluster is divided. Table 6.4 shows the

number of nodes and edges after the initial roadmap generation and after the

last path generation. Note that, the total deployment time is 33.25s for the path

in Figure 6.9a and 36.46s for the path in Figure 6.9b.

Table 6.4: Number of nodes and edges in outdoor space without obstacle

Step Nodes Edges

Global PRM 300 2,594

after Local PRM (vmax
r = 5.0m/s) 424 6,857

after Local PRM (vmax
r = 2.0m/s) 422 6,922

6.5.3 Office area

Third, the proposed algorithm is also simulated for the office area shown in

Figure 6.2c. All the parameters used for this simulation are listed in Table 6.5.

119

In the table, ddeploy varies from 3.0m to 9.0m. Table 6.6 shows the number of

nodes and edges after the initial roadmap generation and after the last path

generation.

Table 6.5: Initial parameters in office area for five tasks in office area

Specification carrier vmax
c = 10.0m/s, ac = 5.0m/s2, tu = 3.0s

rover vmax
r = 5.0m/s, ar = 5.0m/s2, ddeploy = 3.0− 9.0m

Locations carrier qc1 = (2, 2)

tasks q1
G = (24, 24), q2

G = (9, 23), q3
G = (21, 4)

q4
G = (4, 20), q5

G = (8, 8)

Table 6.6: Number of nodes and edges in office area

Step Nodes Edges

Global PRM 190 1,659

after Local PRM (ddeploy = 3.0m) 240 2,697

after Local PRM (ddeploy = 5.0m) 254 3,385

after Local PRM (ddeploy = 7.0m) 258 4,590

after Local PRM (ddeploy = 9.0m) 239 4,336

Figure 6.10 shows the path planning results to deploy rovers in the office

area. All the results in the figure show that the path is well created without

colliding with the wall of the office. Due to the maximum travel distance of the

rover, the rover is unloaded for only one task at the first deployment location

in Figure 6.10a and 6.10b. However, as the maximum travel distance increases,

Figure 6.10c contains two tasks in the first cluster and 6.10d contains three

tasks in the first cluster. As a result, the four deployment locations in Figure

6.10a decreases to three in Figure 6.10d. In addition, as the maximum travel

distance of the rover becomes longer, the carrier unloads the rover farther from

120

(a) ddeploy = 3.0m (b) ddeploy = 5.0m

(c) ddeploy = 7.0m (d) ddeploy = 9.0m

Figure 6.10: Deployment path planning in office area. As the maximum travel
distance of the rover increases, the length of carrier paths and the number
of deployment locations decrease. (vmax

c = 10.0m/s, ac = 5.0m/s2, vmax
r =

5.0m/s, ar = 5.0m/s2, and tu = 3.0s.)

121

the task. Since the speed of the rover is constant at 5m/s, it is observed that

the time required for all rovers to reach the assigned task location is gradually

shortened from 25.42s to 24.25s, 23.56s, and 18.24s respectively.

6.5.4 University research building

Finally, the proposed algorithm is simulated for the university research building

shown in Figure 6.2d. All the parameters used for this simulation is listed

in Table 6.7 and the number of nodes and edges after the initial roadmap

generation and after the last path generation is shown in Table 6.8.

Table 6.7: Initial parameters in university research building

Specification carrier vmax
c = 8.0m/s, ac = 4.0m/s2, tu = 3.0s

rover vmax
r = 3.0m/s, ar = 3.0m/s2, ddeploy = 3.0− 6.0m

Locations carrier qc1 = (35, 5)

tasks q1
G = (3, 9), q2

G = (11, 6), q3
G = (16, 4)

q4
G = (20, 5), q5

G = (27, 7) , q6
G = (33, 8)

q7
G = (44, 15), q8

G = (44.5, 12) , q9
G = (7.5, 18)

q10
G = (18, 16)

Table 6.8: Number of nodes and edges in university research building

Step Nodes Edges

Global PRM 190 1,659

after Local PRM (ddeploy = 3.0m) 412 5,708

after Local PRM (ddeploy = 6.0m) 419 5,368

Figure 6.11 shows the path planning results to deploy rovers in university

research building which is shown in Figure 6.2d. This environment is more

complex than the previous environments. In Figure 6.11a, the carrier visits

122

(a) ddeploy = 3.0m

(b) ddeploy = 6.0m

Figure 6.11: Deployment path planning in university research building. (vmax
c =

8.0m/s, ac = 4.0m/s2, vmax
r = 3.0m/s, ar = 3.0m/s2, and tu = 3.0s.)

nine deployment locations whereas it visits seven locations in Figure 6.11b.

Due to short maximum travel distance of rover in Figure 6.11a, the carrier

enters further into the room from the hallway. The time for deployment is

57.86s. On the other hand, the time for deployment in Figure 6.11b is 45.25s.

Initially, the task A above the carrier becomes a cluster with the task B in the

figure. However, the two tasks cannot be reached from one location as there is

123

a wall. Therefore, the task B is excluded from the cluster again. As the distance

to task A from the carrier’s initial location is shorter than ddeploy, the carrier

immediately deploys a rover at the beginning. The result shows that the carrier

deploys the rovers in the corridor and sometimes goes into the room and deploys

them depending on the distance constraints and the state of the cluster.

124

Chapter 7

Conclusion

In this study we introduced the practical path planning problems of a marsupial

robot team for efficient deployment and collection. First, the motivation of the

study using carrier for efficient operation of MRS was established (see chap-

ter 1). The use of a carrier was suggested to decrease the overall duration for

deployment and collection and to overcome the limitations of a rover. For the

rigorous study, related studies were reviewed for MRS, path planning problems,

and a marsupial robot team (see chapter 2). Through the review, we could con-

firm that there are very few studies on the path planning of a marsupial robot

team, although there are studies related to a marsupial robot team. We defined

the problems to be solved for the efficient deployment and collection of the

marsupial robot team (see section 4.1, 5.1, and 6.1) and analyzed the computa-

tional complexity of the problem (see section 4.2). Since calculating the optimal

solution in this setting requires so much computation that it is almost impos-

125

sible, efficient algorithms were proposed (see section 4.4, 5.4, and 6.4.4). The

algorithms are designed considering the maximum traveling distance of a rover,

the dynamics of the carrier and rovers, and the dynamicity of the environment.

To reduce the computational complexity of the problems, we proposed using a

simple clustering method which uses geographical information of the tasks or

rovers. By using the clustering method, the entire problem can be divided into

several sub-problems. Then we showed the optimal solution can be acquired

for each sub-problem. Finally, the entire solution of the path was computed by

merging the solutions of the sub-problems.

Based on several scenarios, the feasibility of the proposed algorithms was

shown by the simulations (see section 4.5, 5.5, and 6.5). For the deployment of

the rovers, the deployment for two tasks was demonstrated, then the deployment

for 15 tasks was also demonstrated varying the dynamics of the carrier and the

rovers. For the collection of the rovers, the 15 rovers, which have been previously

deployed, were collected varying their remaining energy. The simulation results

imply as follows:

1) Increase of loading/unloading time may cause increase of the number of

clusters;

2) Increase of the carrier’s speed may result in increase of the number of

clusters, and the length of the carrier’s travel distance;

3) Increase of the rover’s speed may shorten the length of the carrier’s travel

distance.

Both the deployment and collection simulations were shown in 3D space. It

126

was also shown that the proposed algorithms are applicable in a dynamic en-

vironment where the tasks disappear or are created and the rovers disappear.

However, dynamic environments in robotics usually involve different sources of

uncertainty. Therefore more uncertain factors should be investigated. Finally,

the performance evaluation showed that the near real-time rover can be imple-

mented for large-size fleets of rovers or tasks by using the proposed algorithms

(see section 4.6 and 5.6). The efficiency of the generated path was compared

with the near optimal solution of the TSP, greedy two-opt.

In addition, we suggested a novel method for a marsupial robot team deploy-

ment using a graph (see chapter 6). The overall framework for this was proposed

first (see section 6.2). We used PRM to create roadmap, and created a more

efficient roadmap by dividing the global PRM and the local PRM (see section

6.3). Next, the given task locations were clustered based on the path length from

the carrier’s position. Then we use the generated roadmap to search A* algo-

rithm and find the optimal deployment node satisfying the distance constraint.

The simulation results (see section 6.5) show that this method can be used for

exploration and urban search and rescue. To improve the performance of this

method, we can consider using PRM variants such as visibility-PRM [83]. In

addition, a more fundamental improvement can be achieved by using dynamic

programming techniques to calculate the more efficient overall path. However

this will require more computation resources. To use this study in real-world

environments, it is necessary to extend the problem to non-holonomic robots

and also to create a curved path.

The room for improvement is as follows.

127

• The transmission problem is not considered in this study: we only assumed

that each rover can communicate with the carrier via a wireless network.

However, this assumption limits the work’s significance. First, we need to

determine the kind of network topology. Moreover, the carrier may have

to deploy the network sensors according to the size of the space. Second,

the energy required for transmissions should be considered for yielding

equations.

• Using two or more carrier can maximize the advantages of the proposed

collaborative system. To realize this, another task allocation method should

be investigated.

• This study assumes that each rover can perform only one task. However,

some of rovers may move shorter than other rovers and leave enough

energy to move and perform another tasks. This may make the analysis

more intricate and complex.

• Different task durations may entail the use of temporal windows.

• The collection algorithm has an implicit assumption that all rovers will

be collected after they have finished task. However, since the end of the

operation can be estimated, expansions that create more efficient paths

can be considered by starting the carrier earlier.

• The proposed method is used in a known environment, however, some

tasks such as exploration should assume an unknown environment.

128

Summarizing the above, we plan to extend this research in four aspects for

future work.

1) Using more than one carrier for efficient deployment and collection.

2) Conducting experiments with real robots by implementing the system.

This work includes the development of communication protocol between

robots, positioning system, and etc.

3) Deployment and collection of a marsupial robot team in various roadmaps.

4) Expansion into path planning for long-term deployment.

129

Bibliography

[1] N. Agmon, C.-L. Fok, Y. Emaliah, P. Stone, C. Julien, and S. Vishwanath,

“On coordination in practical multi-robot patrol,” in Proceedings of IEEE

International Conference on Robotics and Automation (ICRA), 2012, pp.

650–656.

[2] A. Amanatiadis, C. Henschel, B. Birkicht, B. Andel, K. Charalampous,

I. Kostavelis, R. May, and A. Gasteratos, “Avert: An autonomous multi-

robot system for vehicle extraction and transportation,” in Proceedings

of IEEE International Conference on Robotics and Automation (ICRA),

2015, pp. 1662–1669.

[3] N. M. Amato, O. B. Bayazit, and L. K. Dale, “Obprm: An obstacle-based

prm for 3d workspaces,” 1998.

[4] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. (2006) Concorde

tsp solver. [Online]. Available: http://www.math.uwaterloo.ca/tsp/

concorde/

131

http://www.math.uwaterloo.ca/tsp/concorde/
http://www.math.uwaterloo.ca/tsp/concorde/

[5] T. Arai, E. Pagello, and L. E. Parker, “Editorial: Advances in multi-robot

systems,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5,

pp. 655–661, 2002.

[6] T. Balch and R. C. Arkin, “Behavior-based formation control for multi-

robot teams,” IEEE Transactions on Robotics and Automation, vol. 14,

no. 6, pp. 926–939, 1998.

[7] J. C. Barca and Y. A. Sekercioglu, “Swarm robotics reviewed,” Robotica,

vol. 31, no. 03, pp. 345–359, 2013.

[8] U. Baroudi, G. Sallam, M. Al-Shaboti, and M. Younis, “Gps-free robots

deployment technique for rescue operation based on landmark’s critical-

ity,” in Proceedings of International Wireless Communications and Mobile

Computing Conference (IWCMC), 2015, pp. 367–372.

[9] B. R. W. Beard, T. W. McLain, D. B. Nelson, D. Kingston, and D. Jo-

hanson, “Decentralized cooperative aerial surveillance using fixed-wing

miniature uavs,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1306–1324,

2006.

[10] J. Bellingham, M. Tillerson, A. Richards, and J. P. How, “Multi-task al-

location and path planning for cooperating uavs,” in Cooperative Control:

Models, Applications and Algorithms. Springer, 2003, pp. 23–41.

[11] G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,”

in Robots and Biological Systems: Towards a New Bionics? Springer,

1993, pp. 703–712.

132

[12] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules for

prioritized path planning of multi-robot systems,” in Proceedings of IEEE

International Conference on Robotics and Automation (ICRA), vol. 1,

2001, pp. 271–276.

[13] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby,

P. Griffin, and A. Kleywegt, “Robot exploration with combinatorial auc-

tions,” in Proceedings of IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), 2003, pp. 1957–1962.

[14] P. Bhattacharya and M. L. Gavrilova, “Roadmap-based path planning-

using the voronoi diagram for a clearance-based shortest path,” IEEE

Robotics & Automation Magazine, vol. 15, no. 2, pp. 58–66, 2008.

[15] bluAir. (2015) Bluetooth Range: 100m, 1km, or 10km? [Online].

Available: http://www.bluair.pl/bluetooth-range

[16] J. Bruce and M. Veloso, “Real-time randomized path planning for robot

navigation,” in Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), vol. 3, 2002, pp. 2383–2388.

[17] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, “Collab-

orative multi-robot exploration,” in Proceedings of IEEE International

Conference on Robotics and Automation (ICRA), 2000, pp. 476–481.

[18] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated

multi-robot exploration,” IEEE Transactions on Robotics, vol. 21, no. 3,

pp. 376–386, 2005.

133

http://www.bluair.pl/bluetooth-range
http://www.bluair.pl/bluetooth-range

[19] A. Campbell and A. S. Wu, “Multi-agent role allocation: issues, ap-

proaches, and multiple perspectives,” Autonomous agents and multi-agent

systems, vol. 22, no. 2, pp. 317–355, 2011.

[20] S. Carpin, “Fast and accurate map merging for multi-robot systems,”

Autonomous Robots, vol. 25, no. 3, pp. 305–316, 2008.

[21] S. Carpin, T. H. Chung, and B. M. Sadler, “Theoretical foundations of

high-speed robot team deployment,” in Proceedings of IEEE International

Conference on Robotics and Automation (ICRA), 2013, pp. 2033–2040.

[22] T.-C. Chen, T.-S. Chen, and P.-W. Wu, “On data collection using mobile

robot in wireless sensor networks,” IEEE Transactions on Systems, Man

and Cybernetics, Part A: Systems and Humans, vol. 41, no. 6, pp. 1213–

1224, 2011.

[23] P. Cheng, J. Fink, V. Kumar, and J.-S. Pang, “Cooperative towing with

multiple robots,” Journal of mechanisms and robotics, vol. 1, no. 1, p.

011008, 2009.

[24] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and

convergence in a multidimensional complex space,” IEEE transactions on

Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[25] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[26] M. S. Couceiro, C. M. Figueiredo, D. Portugal, R. P. Rocha, and N. M.

Ferreira, “Initial deployment of a robotic team-a hierarchical approach

134

under communication constraints verified on low-cost platforms,” in Pro-

ceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2012, pp. 4614–4619.

[27] F. M. Delle Fave, A. Rogers, Z. Xu, S. Sukkarieh, and N. R. Jennings,

“Deploying the max-sum algorithm for decentralised coordination and

task allocation of unmanned aerial vehicles for live aerial imagery collec-

tion,” in Proceedings of IEEE International Conference on Robotics and

Automation (ICRA), 2012, pp. 469–476.

[28] A. Drenner, M. Janssen, A. Kottas, A. Kossett, C. Carlson, R. Lloyd, and

N. Papanikolopoulos, “Coordination and longevity in multi-robot teams

involving miniature robots,” Journal of Intelligent & Robotic Systems,

vol. 72, no. 2, pp. 263–284, 2013.

[29] M. et al. (2013) Mars 2020 Rover. [Online]. Available: http:

//mars.jpl.nasa.gov/mars2020

[30] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart,

“Distributed multirobot exploration and mapping,” Proceedings of the

IEEE, vol. 94, no. 7, pp. 1325–1339, 2006.

[31] G. Gan, C. Ma, and J. Wu, Data clustering: theory, algorithms, and ap-

plications. Siam, 2007, vol. 20.

[32] V. Gazi and K. M. Passino, “Stability analysis of social foraging swarms,”

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-

netics, vol. 34, no. 1, pp. 539–557, 2004.

135

http://mars.jpl.nasa.gov/mars2020
http://mars.jpl.nasa.gov/mars2020
http://mars.jpl.nasa.gov/mars2020

[33] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path

planning,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5,

pp. 615–620, 2000.

[34] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task

allocation in multi-robot systems,” The International Journal of Robotics

Research, vol. 23, no. 9, pp. 939–954, 2004.

[35] N. Ghods, P. Frihauf, and M. Krstic, “Multi-agent deployment in the

plane using stochastic extremum seeking,” in Proceedings of IEEE Con-

ference on Decision and Control (CDC), 2010, pp. 5505–5510.

[36] A. Gil, Ó. Reinoso, M. Ballesta, and M. Juliá, “Multi-robot visual slam

using a rao-blackwellized particle filter,” Robotics and Autonomous Sys-

tems, vol. 58, no. 1, pp. 68–80, 2010.

[37] J. Goerner, N. Chakraborty, and K. Sycara, “Energy efficient data collec-

tion with mobile robots in heterogeneous sensor networks,” in Proceedings

of IEEE International Conference on Robotics and Automation (ICRA),

2013, pp. 2527–2533.

[38] R. L. Graham, “An efficient algorithm for determining the convex hull

of a finite planar set,” Information processing letters, vol. 1, no. 4, pp.

132–133, 1972.

[39] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas, “Cooperative air and

ground surveillance,” Robotics & Automation Magazine, IEEE, vol. 13,

no. 3, pp. 16–25, 2006.

136

[40] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” IEEE transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[41] J. A. Hartigan, “Statistical theory in clustering,” Journal of classification,

vol. 2, no. 1, pp. 63–76, 1985.

[42] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering

algorithm,” Journal of the Royal Statistical Society. Series C (Applied

Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[43] G. Hollinger, S. Choudhary, P. Qarabaqi, C. Murphy, U. Mitra, G. S.

Sukhatme, M. Stojanovic, H. Singh, F. Hover et al., “Underwater data

collection using robotic sensor networks,” IEEE Journal on Selected Areas

in Communications, vol. 30, no. 5, pp. 899–911, 2012.

[44] H. Hourani, P. Wolters, E. Hauck, and S. Jeschke, “A marsupial relation-

ship in robotics: a survey,” in Proceedings of International Conference on

Intelligent Robotics and Applications. Springer, 2011, pp. 335–345.

[45] A. Howard, “Multi-robot simultaneous localization and mapping using

particle filters,” The International Journal of Robotics Research, no. 12,

pp. 1243–1256, 2006.

[46] P. D. Hung, M.-T. Pham, T. Q. Vinh, and T. D. Ngo, “Self-deployment

strategy for a swarm of robots with global network preservation to assist

rescuers in hazardous environments,” pp. 2655–2660, 2014.

137

[47] A. Ismail, A. Sheta, and M. Al-Weshah, “A mobile robot path planning

using genetic algorithm in static environment,” Journal of Computer Sci-

ence, vol. 4, no. 4, pp. 341–344, 2008.

[48] W. Jacak, “Intelligent robotic systems,” Intelligent Robotic Systems: De-

sign, Planning, and Control, pp. 9–19, 2002.

[49] W. Jatmiko, K. Sekiyama, and T. Fukuda, “A pso-based mobile robot

for odor source localization in dynamic advection-diffusion with obstacles

environment: theory, simulation and measurement,” IEEE Computational

Intelligence Magazine, vol. 2, no. 2, pp. 37–51, 2007.

[50] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32,

no. 3, pp. 241–254, 1967.

[51] E. Kadioglu and N. Papanikolopoulos, “A method for transporting a team

of miniature robots,” in Proceedings of IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2003, pp. 2297–2302.

[52] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration

spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,

pp. 566–580, 1996.

[53] B.-I. Kim, J.-I. Shim, and M. Zhang, “Comparison of tsp algorithms,”

Project for Models in Facilities Planning and Materials Handling, 1998.

138

[54] M. Kloetzer and C. Belta, “Automatic deployment of distributed teams

of robots from temporal logic motion specifications,” IEEE Transactions

on Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[55] E. Lalish, K. A. Morgansen, and T. Tsukamaki, “Decentralized reactive

collision avoidance for multiple unicycle-type vehicles,” in Proceedings of

American Control Conference (ACC), 2008, pp. 5055–5061.

[56] J. C. Las Fargeas, P. T. Kabamba, and A. R. Girard, “Path planning for

information acquisition and evasion using marsupial vehicles,” in Proceed-

ings of American Control Conference (ACC), 2015, pp. 3734–3739.

[57] S. M. LaValle, “Motion planning,” IEEE Robotics & Automation Maga-

zine, vol. 18, no. 1, pp. 79–89, 2011.

[58] S. M. LaValle, S. Hutchinson et al., “Optimal motion planning for multiple

robots having independent goals,” IEEE Transactions on Robotics and

Automation, vol. 14, no. 6, pp. 912–925, 1998.

[59] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”

The international journal of robotics research, vol. 20, no. 5, pp. 378–400,

2001.

[60] H. Lee, J. Jeon, and B. Lee, “An efficient cooperative deployment of robots

for multiple tasks,” in Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), 2015, pp. 5419–5425.

[61] H. Lee and B. Lee, “Energy constrained collection of multiple robots in

3d space,” Electronics Letters, vol. 53, no. 4, pp. 231–233, 2017.

139

[62] H. Lee, H. Yoo, and B. Lee, “Deployment method of uavs with energy

constraint for multiple tasks,” Electronics Letters, vol. 51, no. 21, pp.

1650–1652, 2015.

[63] H. Lee, J. Oh, J. Jeon, and B. Lee, “Efficient deployment of energy-

constrained unmanned aerial vehicles in 3-dimensional space,” in Proceed-

ings of International Conference on Informatics in Control, Automation

and Robotics (ICINCO), 2016, pp. 446–451.

[64] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by

tracking geometric beacons,” IEEE Transactions on Robotics and Au-

tomation, vol. 7, no. 3, pp. 376–382, 1991.

[65] K. Lerman, C. Jones, A. Galstyan, and M. J. Matarić, “Analysis of dy-

namic task allocation in multi-robot systems,” The International Journal

of Robotics Research, vol. 25, no. 3, pp. 225–241, 2006.

[66] S. Lin, “Computer solutions of the traveling salesman problem,” The Bell

System Technical Journal, vol. 44, no. 10, pp. 2245–2269, 1965.

[67] K. D. Listmann, V. Willert et al., “Discoverage: A new paradigm for

multi-robot exploration,” in Proceedings of IEEE International Confer-

ence on Robotics and Automation (ICRA), 2010, pp. 929–934.

[68] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-

free paths among polyhedral obstacles,” Communications of the ACM,

vol. 22, no. 10, pp. 560–570, 1979.

140

[69] A. Macwan, G. Nejat, and B. Benhabib, “Optimal deployment of robotic

teams for autonomous wilderness search and rescue,” in Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2011, pp. 4544–4549.

[70] E. Masehian and D. Sedighizadeh, “An improved particle swarm opti-

mization method for motion planning of multiple robots,” in Distributed

Autonomous Robotic Systems. Springer, 2013, pp. 175–188.

[71] S. A. Masoud and A. A. Masoud, “Motion planning in the presence of di-

rectional and regional avoidance constraints using nonlinear, anisotropic,

harmonic potential fields: a physical metaphor,” IEEE Transactions on

Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 32,

no. 6, pp. 705–723, 2002.

[72] M. J. Matarić, M. Nilsson, and K. T. Simsarin, “Cooperative multi-robot

box-pushing,” in Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 1995, pp. 556–561.

[73] N. Mathew, S. L. Smith, and S. L. Waslander, “Planning paths for pack-

age delivery in heterogeneous multirobot teams,” IEEE Transactions on

Automation Science and Engineering, vol. 12, no. 4, pp. 1298–1308, 2015.

[74] M. Matusiak, J. Paanajärvi, P. Appelqvist, M. Elomaa, M. Vainio,

T. Ylikorpi, and A. Halme, “A novel marsupial robot society: towards

long-term autonomy,” in Distributed Autonomous Robotic Systems 8.

Springer, 2009, pp. 523–532.

141

[75] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee, “Deployment of mobile robots

with energy and timing constraints,” IEEE Transactions on Robotics,

vol. 22, no. 3, pp. 507–522, 2006.

[76] H. J. Min and N. Papanikolopoulos, “Vision-based effective dispersion

of miniature robots by using local sensing,” in SPIE Defense, Security,

and Sensing. International Society for Optics and Photonics, 2009, pp.

73 321V–73 321V.

[77] J. Minguez, L. Montano, and O. Khatib, “Reactive collision avoidance for

navigation with dynamic constraints,” in Proceedings of IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), vol. 1,

2002, pp. 588–594.

[78] B. W. Minten, R. R. Murphy, J. Hyams, and M. Micire, “A

communication-free behavior for docking mobile robots,” in Distributed

autonomous robotic systems 4. Springer, 2000, pp. 357–367.

[79] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., “Fastslam: A

factored solution to the simultaneous localization and mapping problem,”

in Aaai/iaai, 2002, pp. 593–598.

[80] R. R. Murphy, “Marsupial and shape-shifting robots for urban search and

rescue,” IEEE Intelligent Systems and their applications, vol. 15, no. 2,

pp. 14–19, 2000.

142

[81] R. R. Murphy, M. Ausmus, M. Bugajska, T. Ellis, T. Johnson, N. Kelley,

J. Kiefer, and L. Pollock, “Marsupial-like mobile robot societies,” in Pro-

ceedings of Annual conference on Autonomous Agents, 1999, pp. 364–365.

[82] S. S. Nestinger and H. H. Cheng, “Mobile-r: A reconfigurable cooperative

control platform for rapid deployment of multi-robot systems,” in Pro-

ceedings of IEEE International Conference on Robotics and Automation

(ICRA), 2011, pp. 52–57.

[83] C. Nissoux, T. Siméon, and J.-P. Laumond, “Visibility based probabilis-

tic roadmaps,” in Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 1999, pp. 1316–1321.

[84] L. M. Noz-Gómez, M. Alencastre-Miranda, R. Lopez-Padilla, and

R. Murrieta-Cid, “Exploration and map-building under uncertainty with

multiple heterogeneous robots,” in Proceedings of IEEE International

Conference on Robotics and Automation (ICRA), 2011, pp. 2295–2301.

[85] J. H. Oh, S.-H. Lee, and B. H. Lee, “Accurate visual loop-closure detec-

tion using bag-of-words for multiple robots,” Journal of Automation and

Control Engineering, vol. 3, no. 5, 2015.

[86] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students

and practitioners. Springer Science & Business Media, 2009.

[87] L. E. Parker, “Alliance: An architecture for fault tolerant multirobot coop-

eration,” IEEE Transactions on Robotics and Automation, vol. 14, no. 2,

pp. 220–240, 1998.

143

[88] L. E. Parker and B. A. Emmons, “Cooperative multi-robot observation

of multiple moving targets,” in Proceedings of IEEE International Con-

ference on Robotics and Automation, vol. 3, 1997, pp. 2082–2089.

[89] M. Peasgood, C. M. Clark, and J. McPhee, “A complete and scalable

strategy for coordinating multiple robots within roadmaps,” IEEE Trans-

actions on Robotics, vol. 24, no. 2, pp. 283–292, 2008.

[90] Y. Pei and M. W. Mutka, “Steiner traveler: Relay deployment for remote

sensing in heterogeneous multi-robot exploration,” in Proceedings of IEEE

International Conference on Robotics and Automation (ICRA), 2012, pp.

1551–1556.

[91] R. Regele and P. Levi, “Cooperative multi-robot path planning by heuris-

tic priority adjustment,” in Proceedings of IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 2006, pp. 5954–5959.

[92] I. Rekleitis, R. Sim, G. Dudek, and E. Milios, “Collaborative exploration

for map construction,” in Proceedings of IEEE International Symposium

on Computational Intelligence in Robotics and Automation, 2001, pp.

296–301.

[93] W. Ren and N. Sorensen, “Distributed coordination architecture for

multi-robot formation control,” Robotics and Autonomous Systems,

vol. 56, no. 4, pp. 324–333, 2008.

144

[94] A. Renzaglia, L. Doitsidis, A. Martinelli, and E. B. Kosmatopoulos,

“Multi-robot three-dimensional coverage of unknown areas,” The Inter-

national Journal of Robotics Research, vol. 31, no. 6, pp. 738–752, 2012.

[95] G. G. Rigatos, “Distributed gradient and particle swarm optimization

for multi-robot motion planning,” Robotica, vol. 26, no. 03, pp. 357–370,

2008.

[96] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial

potential functions,” IEEE Transactions on Robotics and Automations,

vol. 8, no. 5, pp. 501–518, 1992.

[97] C. Rossi, L. Aldama, and A. Barrientos, “Simultaneous task subdivision

and allocation for teams of heterogeneous robots,” in Proceedings of IEEE

International Conference on Robotics and Automation (ICRA), 2009, pp.

946–951.

[98] C. Rossi, L. Aldama, A. Barrientos, A. Valero, and C. Cruz, “Negotia-

tion of target points for teams of heterogeneous robots: an application to

exploration,” in Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2009, pp. 5868–5873.

[99] P. E. Rybski, N. P. Papanikolopoulos, S. Stoeter, D. G. Krantz, K. B.

Yesin, M. Gini, R. Voyles, D. F. Hougen, B. Nelson, M. D. Erickson

et al., “Enlisting rangers and scouts for reconnaissance and surveillance,”

Robotics & Automation Magazine, IEEE, vol. 7, no. 4, pp. 14–24, 2000.

145

[100] T. Sahin and E. Zergeroglu, “A computationally efficient path planner for

a collection of wheeled mobile robots with limited sensing zones,” in Pro-

ceedings of IEEE International Conference on Robotics and Automation

(ICRA), 2007, pp. 1074–1079.

[101] M. Saska, T. Krajńık, and L. Pfeucil, “Cooperative µuav-ugv autonomous

indoor surveillance,” in Proceedings of International Multi-Conference on

Systems, Signals and Devices (SSD), 2012, pp. 1–6.

[102] C. Satish, “Inter-vehicular communication for collision avoidance using

wi-fi direct,” 2014.

[103] I. Satoh, “Coordination and deployment of mobile agents on dependable

systems,” in Proceedings of International Conference on Dependability

(DEPEND), 2010, pp. 139–145.

[104] E. Schikuta, “Grid-clustering: An efficient hierarchical clustering method

for very large data sets,” in Proceedings of IEEE International Conference

on Pattern Recognition, vol. 2, 1996, pp. 101–105.

[105] R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar

collective motion: All-to-all communication,” IEEE Transactions on Au-

tomatic Control, vol. 52, no. 5, pp. 811–824, 2007.

[106] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer,

2016.

[107] C. Stachniss, Robotic mapping and exploration. Springer, 2009, vol. 55.

146

[108] Y. Stergiopoulos and A. Tzes, “Autonomous deployment of heteroge-

neous mobile agents with arbitrarily anisotropic sensing patterns,” in

Proceedings of IEEE Mediterranean Conference on Control & Automa-

tion (MED), 2012, pp. 1585–1590.

[109] O. Takahashi and R. J. Schilling, “Motion planning in a plane using gen-

eralized voronoi diagrams,” IEEE Transactions on Robotics and Automa-

tion, vol. 5, no. 2, pp. 143–150, 1989.

[110] J. Tran, A. Ferworn, M. Gerdzhev, and D. Ostrom, “Canine assisted

robot deployment for urban search and rescue,” in Proceedings of IEEE

International Workshop on Safety Security and Rescue Robotics (SSRR),

2010, pp. 1–6.

[111] Y. Uchimura, T. Imaizumi, and H. Murakami, “Mobile robot deployment

based on voronoi diagram,” in Proceedings of International Symposium

on Access Spaces (ISAS), 2011, pp. 71–76.

[112] J. van Den Berg, J. Snoeyink, M. C. Lin, and D. Manocha, “Centralized

path planning for multiple robots: Optimal decoupling into sequential

plans.” in Robotics: Science and systems, vol. 2, no. 2.5, 2009, pp. 2–3.

[113] J. Wang, C. Smith, G. Staskevich, and B. Abbe, “A distributed

deployment algorithm for mobile robotic agents with limited sens-

ing/communication ranges,” in Proceedings of IEEE International Con-

ference on Electro/Information Technology (EIT), 2015, pp. 530–535.

147

[114] N. Wang, A. Liang, and H. Guan, “A multi-robot self-deployment method

based on particle swarm optimization,” in Proceedings of IEEE Inter-

national Conference on Intelligent Computing and Intelligent Systems

(ICIS), 2010, pp. 152–156.

[115] Y.-H. Wang, C.-H. Tsai, and Y.-H. Wu, “Robot-based deployment mech-

anism for wireless sensor networks in unknown region,” in Proceedings

of International Joint Conference on Awareness Science and Technology

and Ubi-Media Computing (iCAST-UMEDIA), 2013, pp. 143–149.

[116] Z. Wang, X. Zhao, and X. Qian, “Carrier-based sensor deployment by a

mobile robot for wireless sensor networks,” in Proceedings of International

Conference on Control Automation Robotics & Vision (ICARCV), 2012,

pp. 1663–1668.

[117] L. Wilkinson, “Exact and approximate area-proportional circular venn

and euler diagrams,” IEEE Transactions on Visualization and Computer

Graphics, vol. 18, no. 2, pp. 321–331, 2012.

[118] K. M. Wurm, C. Dornhege, B. Nebel, W. Burgard, and C. Stachniss,

“Coordinating heterogeneous teams of robots using temporal symbolic

planning,” Autonomous Robots, vol. 34, no. 4, pp. 277–294, 2013.

[119] K. M. Wurm, C. Stachniss, and W. Burgard, “Coordinated multi-robot

exploration using a segmentation of the environment,” in Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2008, pp. 1160–1165.

148

[120] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-

robot coordination,” International Journal of Advanced Robotic Systems,

vol. 10, p. 399, 2013.

[121] C.-w. Zheng, M.-y. Ding, and C.-P. Zhou, “Cooperative path planning for

multiple air vehicles using a co-evolutionary algorithm,” in Proceedings of

International Conference on Machine Learning and Cybernetics, vol. 1,

2002, pp. 219–224.

149

초록

본 논문은 다중 로봇 시스템에서 에너지 제약을 갖고 있는 이동 로봇을 효율적

으로 배치하고 회수하는 문제를 다룬다. 기존에도 다중 로봇 시스템을 위한 이동

로봇들의 작업 할당 및 경로 계획 등의 연구는 활발히 이루어졌다. 이러한 연구

들은 일반적으로 이동 로봇들이 이미 여러 장소에 흩어진 상황에서 최적의 해를

구하는 방향으로 주로 진행되어왔다. 한 편 초기 상태의 한 장소에서 시작하여

이동 로봇들을 효율적으로 배치하는 연구는 아직 부족한 실정이다. 로봇을 이용해

수행하고자 하는 작업에 따라 이동 로봇을 빠르게 배치하는 문제는 매우 중요해질

수 있다. 또한 이동 로봇들을 회수하는 문제 또한 기존에 거의 다루어지지 않았다.

실제 임무 수행을 마친 로봇들을 회수하는 것은 재사용 등의 측면에서 꼭 필요한

연구 분야이다. 이동 로봇은 그 특성상 에너지의 제약을 가지고 있다. 본 논문에

서는 배치 및 회수의 두 문제를 에너지 제약이라는 가정 하에 다룬다. 즉, 에너지

제약을 갖는 이동 로봇의 배치 문제는 모든 이동 로봇들이 주어진 작업 위치에

도달하기까지의 소요 시간을 최소화하는 것이고, 에너지 제약을 갖는 이동 로봇의

회수 문제는 모든 이동 로봇들이 작업을 마친 위치로부터 복귀하여 회수되는데 필

요한 소요 시간을 최소화하는 것이다. 본 논문에서는 이동 로봇의 에너지 제약을

고려함과 동시에 보다 효율적인 배치 및 회수를 위해 이동 로봇보다 상대적으로

크며 속도도 빠른 수송 로봇이 포함된 marsupial 로봇 팀의 활용을 제안한다. 여

기서 수송 로봇은 여러 대의 이동 로봇을 싣고 수송할 수 있으며, 정해진 위치에서

이동로봇을배치하고다시회수하는역할을담당한다.이처럼수송로봇을이용해

이동 로봇을 배치하는 문제는 몇몇 연구에서 다루어지기도 했다. 그러나 이 연구

151

들은주로기계적인메커니즘등의기능위주로연구가진행되었고,효율적인경로

생성을 위한 연구는 미흡한 실정이다.

본논문에서이용되는수송로봇은주어진목표를달성하는데충분한에너지를

갖고 있다고 가정한다. 그런데 이러한 환경에서 최적의 배치 지점 및 회수 지점을

결정하기 위해서는 NP-Hard 문제로 알려진 외판원 문제보다도 더 많은 계산을

필요로 하는 점이 문제이다. 이러한 계산 요구 사항을 줄이기 위해서는 목표 작업

위치 또는 회수하고자 하는 이동 로봇의 위치와 이동 로봇의 가용한 에너지 등을

고려하여 인접한 대상들을 클러스터로 무리지을 필요가 있다. 클러스터를 나누는

방법은 모든 경우를 고려할 경우 계산의 복잡도가 증가하여 단순한 알고리즘을 이

용해 나눈다. 그 다음으로는 클러스터들과 수송 로봇 간의 전후 위치를 고려하여

클러스터의 순서를 정할 수 있고, 최종적으로 각 클러스터에 해당하는 효율적인

배치및회수지점을계산할수있게된다.결국수송로봇은계산된지점들을순차

적으로방문하게되며,이동로봇의효율적인배치및회수를달성할수있다.또한

본논문에서는로드맵을생성하고이를이용해 marsupial로봇팀의배치를효율적

으로 달성하는 방법도 제안한다. 이 방법을 이용하면 고정된 장애물을 자연스럽게

회피할 수 있는 경로를 얻어낼 수 있다. 제안된 방법은 최적의 해를 보장할 수는

없지만 빠른 시간 안에 적은 양의 계산으로 효율적인 경로를 생성할 수 있다는 장

점이 있다. 또한 이 방법은 여러 대의 이동 로봇 및 작업뿐만 아니라 3차원 공간과

동적인 환경도 고려하여 고안되었다. 본 논문에서 제안된 방법은 로봇들의 동역학

을 고려하여 설계된 시뮬레이션 프로그램을 통해 검증되었으며, 같은 문제에 대한

외판원 문제의 해와 비교하여 더 효율적인 경로를 생성함을 확인할 수 있었다.

주요어: 다중 로봇 시스템, 다중 로봇 경로계획, marsupial 로봇, 배치, 회수, 에너

지 제약

학번: 2012-30227

152

	Chapter 1 Introduction
	1.1 Background and motivation
	1.1.1 Multi-robot system
	1.1.2 Marsupial robot team

	1.2 Contributions of the thesis

	Chapter 2 Related Work
	2.1 Multi-robot path planning
	2.2 Multi-robot exploration
	2.3 Multi-robot task allocation
	2.4 Simultaneous localization and mapping
	2.5 Motion planning of collective swarm
	2.6 Marsupial robot team
	2.6.1 Multi-robot deployment
	2.6.2 Marsupial robot

	2.7 Robot collection
	2.8 Roadmap generation
	2.8.1 Geometric algorithms
	2.8.2 Sampling-based algorithms

	2.9 Novelty of the thesis

	Chapter 3 Preliminaries
	3.1 Notation
	3.2 Assumptions
	3.3 Clustering algorithm
	3.4 Minimum bounded circle and sphere of a cluster

	Chapter 4 Deployment of a Marsupial Robot Team
	4.1 Problem definition
	4.2 Complexity analysis
	4.3 Optimal deployment path planning for two tasks
	4.3.1 Deployment for two tasks in 2D space
	4.3.2 Deployment for two tasks in 3D space

	4.4 Path planning algorithm of a marsupial robot team for deployment
	4.5 Simulation result
	4.5.1 Simulation setup
	4.5.2 Deployment scenarios in 2D space
	4.5.3 Deployment scenarios in 3D space
	4.5.4 Deployment in a dynamic environment

	4.6 Performance evaluation
	4.6.1 Computation time
	4.6.2 Efficiency of the path

	Chapter 5 Collection of a Marsupial Robot Team
	5.1 Problem definition
	5.2 Complexity analysis
	5.3 Optimal collection path planning for two rovers
	5.3.1 Collection for two rovers in 2D space
	5.3.2 Collection for two rovers in 3D space

	5.4 Path planning algorithm of a marsupial robot team for collection
	5.5 Simulation result
	5.5.1 Collection scenarios in 2D space
	5.5.2 Collection scenarios in 3D space
	5.5.3 Collection in a dynamic environment

	5.6 Performance evaluation
	5.6.1 Computation time
	5.6.2 Efficiency of the path

	Chapter 6 Deployment of a Marsupial Robot Team using a Graph
	6.1 Problem definition
	6.2 Framework
	6.3 Probabilistic roadmap generation
	6.3.1 Global PRM
	6.3.2 Local PRM

	6.4 Path planning strategy
	6.4.1 Clustering scheme
	6.4.2 Determining deployment locations
	6.4.3 Path smoothing
	6.4.4 Path planning algorithm for a marsupial robot team

	6.5 Simulation result
	6.5.1 Outdoor space without obstacle
	6.5.2 Outdoor space with obstacles
	6.5.3 Office area
	6.5.4 University research building

	Chapter 7 Conclusion
	Bibliography
	초록

<startpage>22
Chapter 1 Introduction 1
 1.1 Background and motivation 1
 1.1.1 Multi-robot system 1
 1.1.2 Marsupial robot team 3
 1.2 Contributions of the thesis 9
Chapter 2 Related Work 13
 2.1 Multi-robot path planning 14
 2.2 Multi-robot exploration 14
 2.3 Multi-robot task allocation 15
 2.4 Simultaneous localization and mapping 15
 2.5 Motion planning of collective swarm 16
 2.6 Marsupial robot team 18
 2.6.1 Multi-robot deployment 18
 2.6.2 Marsupial robot 19
 2.7 Robot collection 23
 2.8 Roadmap generation 24
 2.8.1 Geometric algorithms 24
 2.8.2 Sampling-based algorithms 25
 2.9 Novelty of the thesis 26
Chapter 3 Preliminaries 27
 3.1 Notation 27
 3.2 Assumptions 29
 3.3 Clustering algorithm 30
 3.4 Minimum bounded circle and sphere of a cluster 32
Chapter 4 Deployment of a Marsupial Robot Team 35
 4.1 Problem definition 35
 4.2 Complexity analysis 37
 4.3 Optimal deployment path planning for two tasks 38
 4.3.1 Deployment for two tasks in 2D space 39
 4.3.2 Deployment for two tasks in 3D space 41
 4.4 Path planning algorithm of a marsupial robot team for deployment 42
 4.5 Simulation result 49
 4.5.1 Simulation setup 49
 4.5.2 Deployment scenarios in 2D space 50
 4.5.3 Deployment scenarios in 3D space 57
 4.5.4 Deployment in a dynamic environment 60
 4.6 Performance evaluation 62
 4.6.1 Computation time 62
 4.6.2 Efficiency of the path 64
Chapter 5 Collection of a Marsupial Robot Team 67
 5.1 Problem definition 68
 5.2 Complexity analysis 70
 5.3 Optimal collection path planning for two rovers 71
 5.3.1 Collection for two rovers in 2D space 71
 5.3.2 Collection for two rovers in 3D space 75
 5.4 Path planning algorithm of a marsupial robot team for collection 76
 5.5 Simulation result 83
 5.5.1 Collection scenarios in 2D space 83
 5.5.2 Collection scenarios in 3D space 88
 5.5.3 Collection in a dynamic environment 91
 5.6 Performance evaluation 93
 5.6.1 Computation time 93
 5.6.2 Efficiency of the path 95
Chapter 6 Deployment of a Marsupial Robot Team using a Graph 99
 6.1 Problem definition 99
 6.2 Framework 101
 6.3 Probabilistic roadmap generation 102
 6.3.1 Global PRM 103
 6.3.2 Local PRM 105
 6.4 Path planning strategy 105
 6.4.1 Clustering scheme 106
 6.4.2 Determining deployment locations 109
 6.4.3 Path smoothing 113
 6.4.4 Path planning algorithm for a marsupial robot team 115
 6.5 Simulation result 116
 6.5.1 Outdoor space without obstacle 116
 6.5.2 Outdoor space with obstacles 118
 6.5.3 Office area 119
 6.5.4 University research building 122
Chapter 7 Conclusion 125
Bibliography 129
초록 151
</body>

