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ABSTRACT

The optical character recognition (OCR) of text images captured by cameras plays
an important role for scene understanding. However, the OCR, of camera-captured
image is still considered a challenging problem, even after the text detection (local-
ization). It is mainly due to the geometric distortions caused by page curve and per-
spective view, therefore their rectification has been an essential pre-processing step
for their recognition. Thus, there have been many text image rectification methods
which recover the fronto-parallel view image from a single distorted image. Recently,
many researchers have focused on the properties of the well-rectified text. In this
respect, this dissertation presents novel alignment properties for text image rectifi-
cation, which are encoded into the proposed cost functions. By minimizing the cost
functions, the transformation parameters for rectification are obtained. In detail,
they are applied to three topics: document image dewarping, scene text rectifica-
tion, and curved surface dewarping in real scene.

First, a document image dewarping method is proposed based on the alignments
of text-lines and line segments. Conventional text-line based document dewarping
methods have problems when handling complex layout and/or very few text-lines.
When there are few aligned text-lines in the image, this usually means that photos,

graphics and/or tables take large portion of the input instead. Hence, for the robust
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document dewarping, the proposed method uses line segments in the image in ad-
dition to the aligned text-lines. Based on the assumption and observation that all
the transformed line segments are still straight (line to line mapping), and many of
them are horizontally or vertically aligned in the well-rectified images, the proposed
method encodes this properties into the cost function in addition to the text-line
based cost. By minimizing the function, the proposed method can obtain transfor-
mation parameters for page curve, camera pose, and focal length, which are used
for document image rectification. Considering that there are many outliers in line
segment directions and miss-detected text-lines in some cases, the overall algorithm
is designed in an iterative manner. At each step, the proposed method removes the
text-lines and line segments that are not well aligned, and then minimizes the cost
function with the updated information. Experimental results show that the proposed

method is robust to the variety of page layouts.

This dissertation also presents a method for scene text rectification. Conven-
tional methods for scene text rectification mainly exploited the glyph property, which
means that the characters in many language have horizontal /vertical strokes and also
some symmetric shapes. However, since they consider the only shape properties of
individual character, without considering the alignments of characters, they work
well for only images with a single character, and still yield mis-aligned results for
images with multiple characters. In order to alleviate this problem, the proposed
method explicitly imposes alignment constraints on rectified results. To be precise,
character alignments as well as glyph properties are encoded in the proposed cost
function, and the transformation parameters are obtained by minimizing the func-
tion. Also, in order to encode the alignments of characters into the cost function,

the proposed method separates the text into individual characters using a projection
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profile method before optimizing the cost function. Then, top and bottom lines are
estimated using a least squares line fitting with RANSAC. Overall algorithm is de-
signed to perform character segmentation, line fitting, and rectification iteratively.
Since the cost function is non-convex and many variables are involved in the func-
tion, the proposed method also develops an optimization method using Augmented
Lagrange Multiplier method. This dissertation evaluates the proposed method on
real and synthetic text images and experimental results show that the proposed
method achieves higher OCR accuracy than the conventional approach and also
yields visually pleasing results.

Finally, the proposed method can be extended to the curved surface dewarping
in real scene. In real scene, there are many circular objects such as medicine bottles
or cans of drinking water, and their curved surfaces can be modeled as Generalized
Cylindrical Surfaces (GCS). These curved surfaces include many significant text and
figures, however their text has irregular structure compared to documents. Therefore,
the conventional dewarping methods based on the properties of well-rectified text
have problems in their rectification. Based on the observation that many curved
surfaces include well-aligned line segments (boundary lines of objects or barcode),
the proposed method rectifies the curved surfaces by exploiting the proposed line
segment terms. Experimental results on a range of images with curved surfaces of

circular objects show that the proposed method performs rectification robustly.

Key words: document image dewarping, scene text rectification, character seg-

mentation, curved surface dewarping
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Chapter 1

Introduction

The analysis of text in the scene such as optical character recognition (OCR) and
document segmentation helps their scene understanding. For instance, the text on
the road sign provides drivers with traffic information, and the document contains
contents of the book, as shown in Fig. 1.1. The various methods have been studied for
the text analysis [7-9], these methods can be divided into two topics: document and
scene text analysis. In the document analysis, numerous methods have been proposed
for the scanned document image processing (printed documents are converted to
digital images with flatbed scanners and document image processing algorithms are
applied) [7,8,10,11]. However, with the recent development of smart-phones having
high-resolution digital cameras, document image processing algorithms are required
to handle camera-captured images as well as scanned documents [12,13]. Also, in
the scene text, numerous methods have been proposed for the scene text analysis
such as detection and recognition in the camera-captured images [7,9]. In summary,
It is important issue to perform text analysis in camera-captured images for both

document and general scene. However, the text analysis of camera-captured images is
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Figure 1.1: Examples of the text analysis. (a) Scene text detection and recognition,
(b) Document image segmentation.

considered a challenging task due to the geometric distortions caused by page curve
and camera view, and hence their rectification which recovers flat fronto-parallel
view images from distorted images is an essential pre-processing step for the text
analysis.

In this dissertation, novel alignment properties for text image rectification are
presented, and they are applied to three topics: document image dewarping, scene
text rectification, and curved surface dewarping in real scene. Unlike previous text-
line based methods for document dewarping, the proposed approach exploits line
segments in the image in addition to the aligned text-lines. A document image
dewarping method of the proposed approach can obtain the rectification transfor-
mation that removes the distortions in both text and non-text regions. The proposed
approach is expanded to scene text rectification research by exploiting the alignments
of characters as well as the glyph property (this dissertation uses conventional low-

rank transform [4] for the glyph property), it effectively rectifies the distorted image
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having severe perspective distortions with considering the alignments of characters.
In addition, the proposed method is extended to the curved surface dewarping in
real scene. The proposed method transforms curved surface images to flat images
using the properties of line segments.

The main contributions of this dissertation are summarized as:

e A robust document image dewarping algorithm for various layouts is proposed

by using the alignments of text-lines and line segments.

e A scene text rectification algorithm is proposed using two different properties

that are based on the low-rank assumption and character alignments.

e The proposed alignment term can be extended to the curved surface dewarping

in real scene.

1.1 Document image dewarping

In this dissertation, a document image dewarping method is proposed based on
the alignments of text-lines and line segments. For the single document image de-
warping (without additional information), numerous methods using text-lines have
been proposed. Although these text-line based methods are able to reduce geometric
distortions without the additional information, they focus on text regions and some-
times yield severe distortions on non-text regions (e.g., photos, graphics or tables).
In summary, text-line based methods exploited regular structures of text-lines and
text-blocks, and they basically work for text-abundant cases. In order to alleviate
the limitations of text-line based methods, a dewarping method that exploits the

properties of text and non-text regions is present: The proposed method uses line
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Figure 1.2: Examples of the document image dewarping. the first row: input camera-
captured document images, the second row: document image dewarping results of
inputs.

segments as well as text-lines.

First, the lines extracted in the curved document surface are still straight lines in
the well-rectified image (line to line mapping). Also, since non-text regions in docu-
ments usually have many line segments that are horizontally or vertically aligned in
the well-rectified images (e.g., tables and the boundaries of images), the proposed
method encodes this two properties into the proposed cost function, as well as the
properties of text-lines. Considering that there are many outliers in line segment
directions and miss-detected text-lines (false positive) in some cases, the overall
algorithm is designed in an iterative manner. At each step, the proposed method
refines text-lines and line segments by removing the text-lines and line segments that

are not well aligned, and then minimizes the cost function with the updated informa-
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Figure 1.3: Example of the scene text image rectification. the first row: input camera-
captured scene text images, the second row: scene text rectification results of inputs.

tion. The cost function is minimized via the Levenberg-Marquardt algorithm [14,15]
and the proposed method can obtain the rectification transformation that removes

the distortions in both text and non-text regions.

1.2 Scene text rectification

In general, scene text rectification faces some challenges. First, the scene text image
contains a few characters compared to the document image. Many valuable informa-
tion can be extracted in the case of text-abundant document images, whereas there
are few features to be extracted in the case of scene text images. Second, there are
too many variants in the character shapes, (mixed) languages and stroke widths.
Hence, it is difficult to rectify the scene without these prior information. Finally,
dealing with the perspective distortion is not straightforward. Generally, when the
text is on a planar surface, its transformation to the fronto-parallel view can be

modeled as a projective transformation. In this transformation, there are four pa-
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rameters related with skew, shearing, horizontal and vertical foreshortening, where
estimating these parameters simultaneously is a challenging problem.

Considering the problems caused by these difficulties, this dissertation proposes a
new scene text rectification algorithm that exploits character alignment constraints
in addition to other properties employed in the conventional works. Specifically, the
existing methods for scene text rectification mainly exploited the glyph property
which is a common shape property for the undistorted characters. Some examples
of glyph property are that the characters in many languages have horizontal and/or
vertical strokes and many characters have some symmetries in their shapes. When
the character or set of characters is represented as a matrix, the rank of the matrix

for the well-rectified character is usually lower than that for the distorted ones.

However, glyph property based methods still yield mis-aligned results for mul-
tiple characters, since they do not consider the alignments of characters. Thus, the
proposed method uses alignments of characters in addition to the conventional glyph
properties. The proposed method designs a cost function including these two proper-
ties, the minimization of which provides the transformation parameters. In order to
encode the alignment property into the cost function, the proposed method needs to
segment the text into individual characters. The character segmentation is relatively
easy when the text is in fronto-parallel view without any perspective distortion, but
it is also a difficult problem in the case of distorted images [16,17]. In short, the
rectification and character segmentation are a chicken-and-egg problem, i.e., better
segmentation needs better rectification and vice versa. The proposed method solves
this problem by performing the character segmentation and rectification iteratively.
Since the cost function is non-convex and many variables including alignments are

involved in the function, it is not straightforward to minimize the cost function.
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Figure 1.4: Examples of the curved surface dewarping in real scene. the first row:
input camera-captured curved surfaces in real scene, the second row: dewarping
results of inputs.

To solve this problem, the proposed method adds the auxiliary variables and finds
solution by solving the linearized problem iteratively. Then, the proposed method
can obtain the rectification transformation that removes the perspective distortions

of scene text.

1.3 Curved surface dewarping in real scene

In this dissertation, the proposed document dewarping method can be extended
to the dewarping of circular surface in real scene. In real scene, there are many
circular objects such as medicine bottles or cans of drinking water. These circular

objects includes many significant text and figures, however their text has irregular
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structure compared to documents. Therefore, the conventional dewarping methods
based on the properties of well-rectified text have problems in their rectification.
Since many circular objects include well-aligned line segments (boundary lines of
objects or barcode), the proposed method rectifies the circular surface by exploiting
proposed line segment terms. The proposed method can obtain the rectification

transformation that removes the geometric distortions of curved surface image.

1.4 Contents

In chapter 2, this dissertation presents related works that are the reviews of the
conventional approaches for document image dewarping, scene text rectification and
curved surface dewarping in real scene. The proposed method for the document
image dewarping is introduced in chapter 3. A document image dewarping method
using line segment alignment properties is explained in details. Then, the proposed
approach for the scene text rectification is introduced in chapter 4. A scene text rec-
tification method using the glyph and character alignment properties is explained
in details, and following experimental results are also presented. Then, the applica-
tion is presented in 5. By exploiting the alignments of line segments, curved surface
images captured in real scene are rectified. Finally, this dissertation is concluded in

chapter 6.



Chapter 2

Related work

Numerous methods have been proposed for text image rectification. In this chapter,
this dissertation reviews three related topics: document image dewarping, scene text

rectification, and curved surface dewarping in real scene.

2.1 Document image dewarping

2.1.1 Dewarping methods using additional information

For the document image dewarping, many methods were developed by using depth
measuring hardwares (e.g., structured light or laser scanners) [18-21]. This approach
is able to estimate the surfaces of curved pages very effectively, however, the require-
ments of special hardwares limit their application areas. In [22-24], curved pages
were estimated from multiple images taken from different viewpoints. Although they
could perform rectification without additional hardwares, taking multiple images are
burdensome for common users and their computation complexity is also very high.

In [25-27], the shape-from-shading approach exploiting illumination conditions was

9 A 5=

3 o I; )
=1l 7=

H Ol

I ]



proposed. Although these methods can be applied to a single document image, their
assumptions on illumination may not hold in many situations.

In summary, the above mentioned methods have limitations that need additional
informations such as page surface model acquired by the special hardwares, multiple

images or the assumption on illumination.

2.1.2 Text-line based dewarping methods

For the single document image dewarping (without additional information), numer-
ous methods using text-lines have been proposed. Since text-lines are common and
show regular structures in document images, they are considered very useful features
in the document image dewarping.

In [28], two vanishing points were estimated by many horizontal (made by text-
lines) and vertical lines (made by line feeds). This approach removes effectively
perspective distortions, however is not suitable for geometric distortions by curved
surfaces. In most of text-line based methods, curved surfaces are modeled with the
generalized cylindrical surface (GCS) [22] and the shapes are estimated from the
properties of text-lines. In [29-31], curved page surfaces were estimated by fitting top
and bottom text-lines to flat document regions. In [1], the properties of text-lines (in
undistorted documents) were encoded into a cost function, and curved page surfaces
and camera pose were estimated by minimizing the function. Although these text-
line based methods are able to reduce geometric distortions without the additional
information, they focus on text regions and sometimes yield severe distortions on
non-text regions.

In summary, text-line based methods exploited regular structures of text-lines

and text-blocks, and they basically work for text-abundant cases.
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2.2 Scene text rectification

For the rectification of camera-captured document images, many methods have been
proposed based on the Hough transform [32,33], distance transform [34], gradient
directions [35], vanishing point estimation [36], texture flow fields [37], text alignment
properties [1], and multiple view approaches [23]. However, they exploited abundant

text, text-lines, or text blocks, which is not the case for the scene text images.

For the scene text rectification, projection profile based methods have been stud-
ied [38,39]. The skew angle was estimated using projection profiles [38]. In [39], top
and baselines, and shearing angles were estimated by projection-based method. They
removes effectively the skew and shearing distortions, however are not suitable for

general perspective distortions.

Recently methods exploiting the glyph property of individual characters were also
proposed. A skew estimator that exploits intuitive glyph properties was proposed
in [40]. However, this method focused on skew and shearing distortions which are
not suitable for general perspective distortions. In [4], the homography for rectifica-
tion was estimated using a low-rank transform. This method exploited the low-rank
property indicating that a variety of objects have symmetry textures (such as build-
ing facade and repeated pattern). According to the experiments, it was shown to be
very effective for rectifying a single character. However, it is difficult to impose the
character alignment constraints only by using the low rank approach. The methods
that further improved the low-rank approach were proposed in [41,42], which espe-
cially improved the case of multiple characters. However, these methods do not work
well without prior information about the separation of characters. In [43], Wang et

al. assumed that the line segments on the characters pass through the vanishing
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points, and developed a method that removes perspective distortions by using the
estimated vanishing points [43]. However, this assumption does not hold for many
characters (e.g., ‘x’, ‘y’, and ‘0’).

For the alignments of characters, skew angles were estimated by fitting the
straight lines to the top and bottom points of the text and shearing angles were
also estimated by performing a linear regression on the shear variation [44]. This
method separated text into individual characters in distorted input images, before
rectification. Since the character segmentation is difficult problem in the case of
distorted images, this problem reduces rectification performance.

In [45], perspective and curved distortions were corrected by a Spatial Trans-
former Network (STN), and rectified text was recognized by a Sequence Recognition
Network (SRN). However, it is not clear whether this approach can be applied to

scene text rectification. It seems that the rectified results still have some distortions,

and they do not use standard OCR system.

2.3 Curved surface dewarping in real scene

In computer vision, recovering 2D flat image from curved surface, while estimating
the 3D object shape, has been an important issue. In the past decades, in order to
recover 2D flat surface, the structure from motion approach (SfM) has been studied
[46,47]. This approach estimates 3D structures from 2D image sequences that are
correlated by motions. This approach effectively estimates the 3D shape of objects,
however it needs to multiple images. For recovering flat surface of a single image,
additional assumptions for the object surface are needed. For this, many methods

have been proposed based on the regular/symmetrical lattice structure [48,49], and

12 A 2

-

[

-
I

1



low-rank transform [6]. This approach effectively estimates the 3D shape using the

assumption, however they can be adopted to only repeated pattern like lattice.
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Chapter 3

Document image dewarping

3.1 Proposed cost function

The proposed cost function for document image dewarping is presented in this sec-
tion. First, a parametric model for the rectification transformation is introduced, and

the proposed cost function reflecting the properties of line segments is presented.

3.1.1 Parametric model of dewarping process

For the parametric modeling of the dewarping process, the proposed method adopts
the model in [1]. Given a document surface as shown in Fig. 3.1-(a), a point («a, )
on an image domain corresponds to a point (z,y, z) on the curved document surface

with the relation

Q f 0 ¢ T
Elgl=10 f ¢ sRT [y | +t], (3.1)
1 0 0 1 z

¥ o -1 g
15 521l ol



(R,1)

document frame z /—\
¢ ﬁ image plane
(a) (b) ()

Figure 3.1: Dewarping model. (a) A curved document viewed by a camera, (b)
Curved document coordinate, (¢) Flat document coordinate.

where k is a scale for homogeneous coordinate, f is the focal length of a camera,
(cz,cy) is an image center and (s, R,t) are scale, rotation and translation between
two frames, respectively. Since the parameters s and ¢ are related to not rectification
but image scale and resolution, the proposed method sets s = 1 and t = [0,0, f]
without loss of generality.

For a GCS model as shown in Fig. 3.1-(b) and (c), a point on a curved surface

can be transformed to a corresponding point (u,v) on the rectified document with

u = /OI\/1~|—g’(t)2dt, (3.2)

vo= Y,
where g(z) is the document surface equation that is represented with a polynomial.

M
z=g(x) = Z ama™, (3.3)
m=0

When the number of polynomial parameters M is low, polynomial equation cannot
represent the page curl. On the other hand, when the parameter M is very high,

fitting parameters are over-fitted. After extensive experiments, the proposed method
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Figure 3.2: Illustration of text-line properties in well-rectified document image: 1.

Text-lines are horizontally straight lines, 2. (Blue) line-spacings between two neigh-
boring text-lines are regular, 3. Text-blocks are left-aligned (in red lines).

confirms that fourth (M=4) polynomial equation is sufficient to represent page curl

(like [1,50]).

By combining (3.1), (3.3), and (3.3), points on the image domain can be trans-

formed to the corresponding points on rectified document images.

In summary, the geometric relation between the captured image domain and

the rectified document domain can be parameterized with polynomial parameters

{am}%zo, camera pose R and camera focal length f. Therefore, the document im-

age rectification process can be formulated as an estimation problem of polynomial

parameters, camera pose and focal length.

17

= ‘H -
2 A ST
 —

e

1

{_‘J]-
1

n



3.1.2 Cost function design

For the estimation of the dewarping parameters © = ({am }}_,, R, f), the proposed

method develops a cost function:

fcost(@) = ftea:t(@) + fline(@) + A1.]L17"egul0w"(f)7 (34)

where fie.:(0) is a term reflecting the properties of text-lines in rectified images [1].
To be precise, they first extract text-lines in the distorted document images [50], then
design the cost function fie.:(©) that becomes small when transformed text-lines
are well-aligned: horizontally straight, line-spacings between two neighboring text-
lines are regular, and text-blocks are either left-aligned, right-aligned, or justified,

as shown in 3.2.

However, this term focuses on text regions and sometimes yields severe distor-
tions on non-text regions (e.g., photos, graphics or tables) as shown in Fig. 3.3. In
order to alleviate the limitations of text-line based methods, the proposed method
exploits the properties of both text and non-text regions: The proposed method
also exploits line segments as well as text-lines in document images by introducing
Jiine(©).

Also, there is a trivial solution in the cost function (the focal length f is very small
or large), the proposed method adds the regularization term fycguiar(f) imposing a

constraint for the scale of focal length f. This regularization term is designed as

Fregutar(f) = <max(af) - 1>2, (3.5)

min(a, f)

where a = max(w, h) is similar to the method in [51,52], w and h are the width and

¥ [, -1 =1 —
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(a)

Figure 3.3: Comparison of the proposed method with a conventional text-line based
method [1]. (a) Input image, (b) Result of [1]. Distortions on text regions are largely
removed, however, new distortions are introduced in other regions. (c) Result of
the proposed method. The proposed method exploits the properties of (red) line
segments as well as (green) text-lines, and can remove overall distortions.

height of the input image, respectively.

3.1.3 Line segment properties and cost function

For the design of fj;n.(©), the proposed method first extracts line segments in given
images by using Line Segment Detector (LSD) in [2].

In order to extract the line segments robustly (remove noise), the proposed
method removes the line segments whose length are less than the mean size of texts.
The mean size of texts is determined as: The Connected Components corresponding
to the text components are extracted and approximated to ellipses in [50]. The text

component size is determined by the major axes length of ellipse corresponding to
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Figure 3.4: Illustration of line segment, its center point and straightness property.

the text component.
Then, based on two properties of line segments, the line segment term f;,,.(O)

is designed as

fline(@) = )\Qfstr(@) + )‘Sfalign(g)v (3'6)

where fo,(©) reflects the straightness property of line segments, and fqign(©) re-
flects the alignments of line segments.

First, the straightness property describes the line segments extracted in curved
document image, lines on the curved document surface become still straight in the
well-rectified domain (Although the lines extracted in the well-rectified image can
be curved in the curved document surface). To be precise, as shown in Fig. 3.4,
the proposed method denotes the end points and their center point of the i-th line
segment (in the original image) as p;, ¢; and r;, and their transformed points by
the dewarping process (using O) as pl, ¢; and r]. Then, by the straightness property

of line segments, 7 is on the connection line between the transformed end points
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p; and ¢. Then, based on this straightness property of line segments, the proposed

method defines the term as

(aizi + biy; + ¢i)?
far(@) =) _di=>" T , (3.7)

i
where d; is the distance between the transformed center point r; and the transformed
connection line between p) and ¢.. a;, b; and ¢; are the coefficients of connection line
equation between p; and ¢, and (x;,y;) is the position of transformed center point
T}

As transformed line segments in well-rectified image are still straight, this term
becomes small. Since the straightness property is always satisfied with all plane to
plane mapping, it is not a significant constraint in rectification considering only
camera view (such as homography). However the proposed method considers page
curve as well as camera view in rectification process, then this property becomes an
efficient constraint that prevents lines from being curved.

Then, based on the observation that the majority of line segments are horizon-
tally or vertically aligned in the rectified images, the proposed method defines the

term as

Jalign(©) = Z min (0052 0;,sin® Hi) , (3.8)

)

where 6; is the angle of the transformed i-th line segment (when rectified with the
current parameters ©) as illustrated in Fig. 3.5. 0; is defined as the orientation of a
line segment connecting p; and ¢;.

As line segments are aligned in either vertical or horizontal directions, this term
becomes small as shown in Fig. 3.6. Although there are outliers (line segments hav-

ing arbitrary orientations), (3.8) minimizes these effects by using bounded penalty
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Figure 3.5: Illustration of line segment, its angle and alignment property.

functions (cos?6; < 1, sin?@; < 1). Also, the proposed method develops an opti-
mization step that alleviates the outlier problem, this process is mentioned in next

section.

In order to confirm the effectiveness of two line segment properties, the proposed
method compares the rectified images by minimizing the three cost functions in-
cluding only the straightness term (when A3 = 0), only the alignment term (when
A2 = 0) and both two terms, as shown in Fig. 3.7. When the cost function includes
only the straightness term, there are no distortions that bend straight lines (make
straight lines be curved by false estimation of page curve), however the rectified im-
age is still not well-rectified from perspective distortion. By comparison, when the
image are rectified by the only alignment term, the rectified image are well aligned
(with correct estimation of camera pose), however it sometimes causes distortions
that make straight lines be curved by false estimation of page curve. By using both
two terms, the rectified image are well rectified with the correct estimation of both
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Figure 3.6: Text-lines and line segments in camera-captured images and rectified
images. Text components are represented as (green) ellipses and line segments are
(red) lines. For example, the line segment alignment terms on bottom row are 84.3
and 0.4, respectively.

page curve and camera pose (and focal length).

In summary, the proposed cost function removes the overall distortions including
text and non-text regions. As shown in Fig. 3.7, Text-line based term fi,; removes
the only distortions on text regions, however there are some distortions on non-text
regions. The line segment straightness term fq, prevents the non-text regions in the
rectified images from wrinkling (mapping straight line segments to straight line seg-
ments). Also, the alignments of line segments are more powerful assumption, then the
line segment alignment term fq;4, removes all distortions from page curl and camera

& s A=

L,

-

=

13
1

ETA



[ GENDER AND HACTE
J  BENCHMARKING 2013 -

ol

GENDER AND RACE
BENCHMARK|

ongoin gt
il e

Calendar dates

Tuesday oAl PRERECORDED WEBINAR ONLINE JULY
day14May  SURVEY OPENS
Tuesdoy L6ttay  LIVE SUPPORT EVENT (London)
Thursday 16Moy  SUPPORT WEBINAR 2 (spet of Webinar
]
Tuesday16.July  SURVEY CLOSES
Septemter i

"PARTICIPANT FEEDBACK
TRENDS RESULTS WEBINAR

ociober
WIC 18 November  LIVE TRENDS ANALYSIS LAUNCH
157 Sephrs W, Londen, 1 Q.
a0 7500650 | mndicargk
v TP s | Camape |

e s o, T G 55

<ING 2013 NG 2013

1d race
ace
2as of
Hlients
e and

iof
nts
ind

dvice to
ice to

eting the

mrent state, g the

ent state,

(a) (b) (c)

Figure 3.7: Rectified results by minimizing three cost functions. The first row: recti-
fied images, the second row: the expanded images of first row. (a) Rectified images
with the straightness property (sets A3 = 0), (b) Rectified image with the align prop-
erty (sets Ay = 0), (c) Rectified images by minimizing the proposed cost function.

view. However, there are outliers (line segments having arbitrary orientations), the
proposed method develops an optimization step that alleviates the outlier problem
and the alignment term fq;gn uses only inlier (having vertical/horizontal direction)
line segments.

Also, the longer line segments are more informative in rectification transforma-
tion, the proposed alignment term does not consider it. In order to give more weight
to longer line segments, the proposed method performs pre-processing that divides
line segment into several smaller line segments: The i-th line segment I; is divided
into n; line segments {I},12, ..., 1"}, whose length are same with a length threshold

t;. Then, the number of divided line segments n; is proportional to the length of line
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Figure 3.8: Rectified results by minimizing the three cost functions. (a) Input im-
ages and (green) text components. (b) Rectified image by minimizing the text-line
based term fieqt, (¢) Rectified image by minimizing the text-line based term fiey:
and line segment straightness term fs;,-, and (red) line segments, (d) Rectified im-
age by minimizing the cost function feos, (red) horizontal/vertical and (blue) non
horizontal/vertical line segments.
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Figure 3.9: Pre-processing of line segment extraction. (a) A result of line segment
extraction by [2], (b) A pre-processing result. All line segments are divided into
some line segments, the number of the divided line segments are proportional to the
length of line segment.

segment ;. Consequently, the longer lines are divided into more line segments, its

direction is more considered in the alignment term.

3.2 Outlier removal and optimization

Although the optimization method used in [1] assumes that there are no outliers (or
their effects are not critical), the direct optimization of f..st(©) may yield poorly
rectified results as shown in Fig. 3.10-(b), due to outliers (false-positive of text line
detection and line segments having arbitrary orientations). For the outlier removal,
the proposed method designs an iterative scheme. At each step, the proposed method
removes outliers and minimizes the cost function with updated inliers, that are

horizontal /vertical line segments and horizontal straight text-lines. To be precise,
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an updated inlier set at the (j + 1)-th iteration is defined as

Tj+1 = {t‘t € tja fteztfstr(l) < Pj}, (39)

Lj+1 = {”l S Lj,falign(l) < Tj}v

where fieqt—str is the term reflecting the property for horizontal text-lines in text-line
based term ficp¢. It becomes small when the text-lines are horizontal. T; and L; are
inlier sets of text components and line segments at the j-th iteration. Since these
terms reflects the properties of text-lines and line segment alignments, the proposed
method detects outliers whose the cost terms are more than threshold. This iteration
is repeated until the number of inliers becomes stable. After extensive experiments,

the proposed method confirms that the number of iteration is usually 1 ~ 3.

The proposed method computes the jacobian matrix of the cost function, then
the cost function can be minimized via the Levenberg-Marquardt (LM) algorithm

[14,15).

3.2.1 Jacobian matrix of the proposed cost function
Derivatives of the text-line based term

In [1], for the rectification parameters ({am, }2_,, R), the derivatives of the text-line
based term fie;; are computed, the proposed method uses them. In addition, since
the proposed method adds camera focal length f in the rectification parameters,

then computes the derivative of the text-line based term fi.,+ with respect to focal

length f.
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Figure 3.10: The proposed iterative scheme. (a) An input image, (b) Result after
the first iteration, (c¢) Result after the second iteration, (d) Result after the third
iteration. At each step, (blue lines) outliers are removed and (red lines, green texts)
are updated.

First, the equation of camera model in (3.1) can be represented as:

y | =R"[kp—1t], (3.10)

where p = ((a — ¢z), (B8 — ¢y), —f)" and t = (0,0, ). Then, the proposed method

differentiates both sides of (3.3) and (3.10) with respect to f:

ox 0z

g’(w)w = o (3.11)
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Then, the proposed method can get
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of

(rgp—g'(z)r{p)’

where r; ; is the i-th row and j-th column element of the matrix R', and 7; is the
i-th column vector of the matrix R'.

Then, the derivative of text-line based term % ftext can be computed using chain-

rule, this process is mentioned in [1].

Derivatives of line segment terms

The text-line based term of the cost function is computed in the curved document
domain (z,y, z), however the line segment terms are computed in the rectified doc-
ument domain (u,v). In order to compute the derivatives on the rectified document
domain, the proposed method first uses a simple approximation in (3.3) using the

Simpson'‘s rule [53]:

u = /x\/l—l—g’(t)th (3.14)
0
V1490 +4x/1+ 9’(%)2 +y/1+ 9’(1‘)2] :

(o4
1
< o8y

Then, the proposed method can compute the derivatives of the point (u,v) with
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respect to parameter ¢ using chain-rule:

Ou _ Oudx (3.15)

ot ox ot’

VIO +45/1+9() + \/1+g'<x>2] x

LTy, 959G 9’(93)9”(:17) 396
1+g(%) \/ 1+ g'(x)°
v _ Oy
o ot
Then, %7; and a” can be computed using % 8z and %

Also, the min(-,-) function in the alignment term (3.8) is not differentiable at

some points, therefore the proposed method uses a simple approximation:

% i) < g0)
2 fmin(f(),90) = {7 ’ (3.10
8‘%—9, otherwise.

Derivatives of the regularization term

The derivatives of the regularization term with respect to the camera focal length f

is computed as:

%, ifa<f

0

a(fregular) = _fiz’ if f<a (317)
0, otherwise.
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Figure 3.11: Document region detection. A blue rectangle is a result of the document
region detection.

3.3 Document region detection and dewarping

In this section, the proposed method detects the document region. Documents con-
tain many text and non-text (such as tables and figures) regions, and non-text regions
generally contain many horizontal/vertical lines. In addition, the border lines of doc-
ument page also have horizontal /vertical direction. Based on this observation, the
proposed method determines the document region using a projection profile method.
The proposed method computes projection profiles on horizontal /vertical directions.

Then the proposed method sets the border lines of document region whose projection

31 A 1



profiles more than threshold values, while including updated inlier text components,
as shown in Fig. 3.11.

Lastly, the proposed method takes the rendering of the distorted image using
the estimated rectification parameters. In this rendering process, computation of
rectified pixel positions corresponding to the whole input pixels is somewhat inef-
ficient in the aspect of time consuming. Then, the proposed method computes the
positions of only rectified pixels inside corresponding to the document region, then

take rendering of the distorted image.

3.4 Experimental results

In the experiments, the proposed method sets the weight A\; = 100, and Ag, A3 in

Nte“ , where Nyep: and Nj;,e are the numbers

(3.4) so that they are proportional to
of text-lines and line segments, respectively. Also, the length threshold ¢; for pre-
processing is proportional to the mean size of texts. Also, the proposed method sets
the initial value (j = 1) of threshold 7; for outlier removal to 0.01, and this threshold
becomes half as increasing iteration number j. The proposed method is implemented
with C++ and the proposed implementation takes 4 ~ 6.3 (s) for the rectification of
an image (4000 x 3000) on Intel(R) i5(TM) CPU(3.40GHz). To be precise, Text-line
extraction time takes 2.8 (s), line segment extraction time takes 1.1 (s), optimization
of cost function time takes 0.8 (s), and rendering process takes about 1.6 (s). Many
of the processing time is spent on the text line extraction and rendering process.
For the evaluation, the proposed method conducted experiments on two types

of datasets: text-abundant images and non conventional document images (i.e., not

text-abundant cases).
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Figure 3.12: Images of CBDAR2007 dataset. They are text-abundant document
images captured by a digital camera.

3.4.1 Experimental results on text-abundant document images

The proposed method first conducted experiments on text-abundant images, CB-
DAR2007 dewarping contest dataset [54]. The CBDAR2007 dewarping contest dataset

consists of 102 binarized document images as shown in the in Fig. 3.12.

This dissertation first evaluates the proposed method on CBDAR2007 dataset
and compares the performance with the conventional methods [1, 3,29, 55, 56] in
terms of OCR accuracy. To be precise, the accuracy is defined as

L(R,G)

=1 =
accuracy (R, G) max(£R. £G)

(3.18)

where R is a recognition result, G is the ground truth, #(-) is the number of
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Table 3.1: OCR performance on CBDAR2007 dewarping contest dataset

Original | SEG [55] | SKEL [56] | CTM [29] | Snakes [3] | Kim [1] | Proposed

mean
accuracy | 62.47 89.47 93.17 96.22 96.47 97.42

97.82

characters in the string, and L(z,y) means the Levenshtein distance between two
strings [57]. The distance is defined as the minimum number of character edits (inser-
tion, deletion, and substitution) to transform one string to the other. For the OCR,
the proposed method uses the Google tesseract OCR engine [7]. Experimental re-
sults are summarized in Table. 3.1. Since samples in CBDAR2007 dewarping contest
dataset are text-abundant images (having single columns), the conventional text-line
based method [1] showed good performance. However, as can be seen, the proposed
method can also handle all these cases and shows improved accuracy (probably due
to the proposed method considering outliers and estimation of focal length).

Some experimental results are shown in Fig. 3.13, Fig. 3.14 and 3.15. Since
the binding lines of book and the border lines of figures and papers are horizon-
tal/vertical aligned, the results of the proposed method has more less distortions on
both text and non-text regions. Also, some experimental results in Fig. 3.16 and Fig.
3.17 shows that proposed outlier removal scheme works well. Although the inputs
have miss-detected texts and non horizontal/vertical lines, the proposed method

removes these outliers and rectifies inputs using updated inlier features.

3.4.2 Experimental results on non conventional document images

In order to consist of non conventional document images (i.e., not text-abundant

cases), the proposed method collected 100 images having various layouts (e.g., three
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Figure 3.13: Results of CBDAR2007 dataset.

35




VEF PFESEHE )

FEF

s P OEETY QRE BRE[ £

5

‘Terms and Concepts

ey

i
,.a.,..ha...&,..;,'“‘:.‘;‘m-»;-.-..‘.
o
T

OE 431 o e e s i
ki, nd o il .

T e e ot e
i b e o

b

oy P o o 5 et b

P u.w_.,-...‘.m..,.“:"‘m
o i

Ll .-»-m-“ ';':.::..“.,_ *---——~

it
=
e
i e
P bty
e e A
T
e
(ST et ook
et o
TR e i i

5 )
oy ———

gt h cn of o 1o . 5
ot

e rtorel e (e S, A3} 1o i o e e
St D
P
The CBR-Works o hra o'
g e

T R

(a)

BEz

forms and Concepts

B e o e

ol et 1 0 G .

Context
cian B it hs . Oncrsio, bt is om0t .
S oo e, n oty s i Oy
ST o e mesiagen 4wl b s n (o bl h et o
s Imurycues e 4
S o Cueoeer migh ok o ot
Gethceountaatance o e of b s BakAccoot O
oo i s
S, ety ot s it
E et ik o e

o h vk (e e o .
Sy yoh e cjcs v cuet v e o s
e e e S
o o 8 i s, oLy (3t
fiecey Crsnshodio vy

S s,

‘Terms and Concepts

i e e g s
i e S

Sy ey u.m.“f“..

s ;muﬂuvw—umi-‘m s

i e

P
ekt e e b s he i e i s s
gy
+ Theaaiy o queeyfor nformasion from an animaion’sdus. sch s e . W*lwwwhm:mwh::nﬁmw-\‘m-ﬂ-‘-"vi
el i el
iy g e e sty et s . + ety gy popeie o o g miion s e
fressiamivimtmoey it .
Laor
2 = oL - .

e
o e o e NS Th g oo o e

ieges
T how 1 y00 et NI The g bhoios st b

o b il e e e g o e i .

bt i
Lre—
Moot - ot |
—
Ittt |
1ot
T ————

b, o it el et o

S —
o b 4 e it ool Bk ek e

4 Wi i crtan b P i s "

i}
e Al e e e i e e s

D e ————
ot nd it el s b

T Py —
it sk o sl ol By ey o g e

it it e e st he r sfmon he i ht st
e

E—
. e e 1y v

BT ———
kv mdxmein o ok .

e ——
i bk s e i ool Bt ey vk o e

s decy pucn cn caue e g o ey such e s i

S “This o s s o o sl o b ol e
R b S o iy e i b’ 3 iy o
ety e g e e W bt i e e

i o
ko2, Ot

TheLinoat.fire Layer

b gty ok el b . b
o e o e o e b o e ik o
o T e ok 1o e e R s o b
ot

o b s o o
ol oot Wit A e s e e e
;-—-._....,,._...‘—.._..-.‘-..4..
R e ey 2 g
o st et

'
[ R —
e s oy o o o o
g o bt et v ety ot
oyt .-n.-g..._m.....w“m iy
it gk s i S
T S —
1D o o e i s i e

ary e e e ot i g v, ad in e o, s
it byl b r s Nt
e s of g o ca et s e probbily o e s o 5.
e i e o 1 bt A e bt
frita iy
e Teokfve by i s vl o e
e e ey el
o e e ey
oy gt e
i 7.3 o ki g kB o e

N e s o Al e i o b of o v
[t oo oy ety gl ke
i gt o oo e ot e b gl

M";-\Mm-«ml«

0
133 bt

Nt s ity e
s g e o By
ot ol by iy .
g i e e .

o s ek Al s e o s g
b bk e i i e ot

) 'mfm
i _.Am.m.mwr..,.mm-.mM
e g i i e s o i

95 Tol Suppers o th INRECA Ny 277

T ——

Wt

43gan

55 Too Supor or the INNEA Metbodology 277

apec 0 th diflcenc of the ey an the cse i s Sec. 434)can
e odeid,

b ey e o 3 i
i f el th smaic e b ey -

oiad i St 435 spprid b the i (e Fig, 920 On the e
i of the oo th seantc chractrics G g he ooy re

seribd i Seck. 4. o supporid by he i (o Fig 820). On te ke
e of the ior the somanie chaachriaic o wing he heonoy srs

1 oy The s e 1 ke el b g e v

o the asanomy The s odir b o e for sl he i css

i

o e cas e e o he e o i
Modlog Rales

8 B, orksmodling ol s i o b siin
o i, Tl

oo los e mog d i i
irodued Sk 1. it s P 43 T

o b s oty T e o el e gt s
iy e (e Cilaiy s o s o S 449) o 1 S 00 oo
s th s ey assd of he sesnmy oyl S the e Herrchy inend of the tsonomy of syl
Modelng Raulos Modeling Rulea
The CBR.Werks modelingtol ke s st o adaptton The CBR Work modling ok i inod an adior for adptaion and
caplton s This i lo the modeingof s, ol o the completion ruls. Thi edorallows the odaling of e, accordig  the
921 Rl
“Thecas, hich i e

iy e
b sd of s windom. Rl s o e

ety diplaed

o v ouwig 5 pardot e s

(b)

il Sl el el e e e el o+
oo it Laowing h parioit

()

Figure 3.14: Results of CBDAR2007 dataset, (a) Input images, (b) Results of [3],
(c) Results of [1], (d) Results of the proposed method.
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Figure 3.15: Results of CBDAR2007 dataset, (a) Input images, (b
¢) Results of d) Results of the proposed method.
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Figure 3.16: Results of CBDAR2007 dataset and illustration of features used for
rectification, (a) Input images and extracted features (red lines and green text com-
ponents), (b) Results of the proposed method, inlier features (red vertical /horizontal
aligned lines and green text components in horizontal text-liines), and outlier blue
lines that have arbitrary direction.
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Figure 3.18: Images of the non conventional document dataset collected by this
dissertation. They have various layouts.

column documents, documents containing large tables and/or figures, presentation

slides, and so on) as shown in the Fig. 3.18.

For the evaluation on non conventional cases, the proposed method also con-
ducted experiments on the dataset of the proposed method (100 images). Since
the proposed method wants to evaluate the rectification performance on non-text
regions, the proposed method computed the geometric quantities of rectangles in
rectified results. To be precise, the proposed method uses orthogonality 6,, diagonal

& 2 M=o 8l

L=

ETA



Table 3.2: Geometric measures of the proposed and conventional methods on our
dataset

Original | Kim [1] | Proposed

Orthogonality 24.2816 12.8471 1.9181

Diagonal ratio 0.0629 0.0415 0.0089

Vertical ratio 0.1826 0.0950 0.0289

Horizontal ratio 0.1427 0.0860 0.0241

ratio 4, and length ratios for opposite sides rp, and r, [52], which are defined as

0, = cos ! <(Cl —c2)- (1 — 64)> 7

d(Cl, 02) X d(Cl, C4)

d d
ry = max( (c1,c3) (02764)>7

(

r, = max (dgcl’%
(
(

where ¢; (i = 1,2,3,4) is a corner point of a rectangle as shown in Fig. 3.19. Since
0, = 90° and ry = rp = r, = 1 in ideally rectified images, the proposed method
measures the remaining geometric distortions with |6, — 90°|, |rq4 — 1|, |rp, — 1| and
|r,—1|. Experimental results are summarized in Table. 3.2. Since the executable of [1]
is publicly available, it (author’s implementation) is compared with the proposed
method. As shown, the proposed method shows improved geometric rectification

performance in terms of all measures.

Some experimental results are shown in Fig. 3.20 and 3.21. Unlike the proposed

method, the conventional text-line based method has difficulties when there are
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Figure 3.19: Four corner points extraction for evaluation. (a) The distorted images
and manually annotated corner (blue) points, (b) The transformed images and corner
(red) points.

few aligned text-lines or mis-detected text-lines (false positives). However, since
the proposed method exploits line segments and removes outliers, the proposed
method works robustly for a variety of inputs. Also, as shown in Fig. 3.22 and
3.23, the proposed method can handle the documents containing arbitrary graphical
entities (such as circle and ellipse). The proposed method exploits text-lines as well
as line segments and considers outlier line segments that have arbitrary direction.
Also, the boundary of page and bookbinding regions always contain the well-aligned
(horizontal or vertical) lines. Therefore, it can enough handle documents containing

arbitrary graphical entities.
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often to
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the site?

Figure 3.20: Experimental results on the proposed datasets. (a) Distorted in-
put images and (green) text components, (b) Rectified images by the text-line
based method [1], (c) Rectified images by the proposed method and (red) hori-
zontal /vertical and (blue) non horizontal /vertical line segments.
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Figure 3.21: Experimental results on the proposed datasets. (a) Distorted in-
put images and (green) text components, (b) Rectified images by the text-line
based method [1], (c) Rectified images by the proposed method and (red) hori-
zontal /vertical and (blue) non horizontal /vertical line segments.
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Figure 3.22: Experimental results on the proposed datasets. (a) Distorted input
images and (green) text components, (b) Rectified images by the proposed method
and (red) horizontal /vertical and (blue) non horizontal/vertical line segments.
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Figure 3.23: Experimental results on the proposed datasets. (a) Distorted input
images and (green) text components, (b) Rectified images by the proposed method
and (red) horizontal /vertical and (blue) non horizontal/vertical line segments.
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3.5 Summary

In this chapter, this dissertation has proposed a document dewarping method ex-
ploiting the properties of line segments and text-lines. The proposed method for the
document dewarping encoded the straightness and alignment properties of line seg-
ments into the proposed cost function so that the method works on both text and
non-text regions. Also, the proposed method developed an iterative optimization
scheme in order to handle outliers. Experimental results showed that the proposed
method yields the state of the art OCR performance on text regions and visually

pleasing rectified results on non-text regions.
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Chapter 4

Scene text rectification

4.1 Proposed cost function for rectification

The proposed cost function for scene text image rectification is presented in this
section. First, the proposed cost function reflecting glyph and alignment properties

is introduced, and alignment properties and their terms are presented in detail.

4.1.1 Cost function design

Similar to conventional methods [4,39-44], the proposed method assumes that scene
text is on planar surfaces and text regions are already detected and binarized [9].
Then, the transformation parameters can be modeled as the projective transforma-

tion.

For the estimation of transformation parameters 7, the proposed method devel-
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Figure 4.1: Limitations of the cost function using only glyph property. (a) Distorted
input images, (b) Images minimizing the cost function using glyph property [4],
(c¢) Rectified images by the proposed method. The proposed method exploits the
alignments of characters as well as the glyph property, then yields visually pleasing
results.

ops a cost function:

min [[1°], + MEl} + fatign (1, W),
I0E,r (41)

s.t. IOT:IO+E,

where [|1°], + 1 || E||; is a term reflecting the glyph property of rectified image, then
the proposed method uses the function of low-rank transform [4]. To be precise, this
term reflects the rank of texture by decomposing a transformed result (I o 7) of an
input image (I) by transform parameters (7), with a low-rank matrix (1) and a
sparse error matrix (E). However, since the low-rank term does not consider the
alignment of characters, the optimization of this term sometimes yields mis-aligned
results. For instance, in Fig. 4.1, the low-rank cost values of images on the bottom
row are 46.3, 46.1, and 47.9, respectively. For alleviating this problem, the proposed
method also exploits the alignments of characters by introducing the alignment term

faiign (7) and alignment parameters W.
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(a)

(b)

Figure 4.2: Illustration of the character alignment properties. (a) Vertical alignment
property : top (blue) and bottom (green) points of characters are on two lines. (b)
Horizontal alignment property : the width of the well-rectified character has minimal
value. The proposed method encodes this properties into the cost function.

4.1.2 Character alignment properties and alignment terms

Alignments of characters represent following two properties that are vertical and
horizontal alignment properties. As shown in Fig. 4.2, vertical alignment means
that characters in the undistorted text are aligned to the horizontal-straight lines,
specifically the most top and bottom points of characters are on one of two lines.
The horizontal alignment means that the character widths of undistorted text have

minimal values.

In order to encode this alignment properties into the cost function, the proposed
method first introduces alignment parameters W = {(w;, j1;)}}*.;, which are binary

variables. Specifically, w; represents whether the top point of the i-th character is
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aligned to the top line l;, and u; denotes whether the bottom point is aligned to the
bottom line ;. For instance, the top point of the ‘D’ is not on the /; and the bottom
point is on [, as shown in Fig. 4.2, and (w;, i1;) corresponding to the character in ‘D’

are (0,1).

For using the above stated properties, the proposed method needs to segment
the characters and estimate the alignment parameters though not complete. In this
section, the proposed method assumes that the results of character segment and
alignment parameters are obtained, and how to decide the segmentation and align-

ment parameters of characters will be explained later.

Then, based on two properties of character alignments, the alignment term

fatign (T, W) is designed as

falign (7-7 W) = A2 foert (Ta W) + A3 fhori (7_) ) (42)

where fyere (7, W) reflects the vertical alignment of characters, and fpo; (7) reflects

the horizontal alignment of characters.

First, the proposed method denotes a set of pixels that corresponds to the i-
th character as C;(7), when the text image is transformed by 7. Each character
segment C; is considered a character and its top and bottom vertical positions after

the transformation 7 are denoted as T;(7) and B;(7), respectively:

n = maXx Pk T s 43
(1) jeOi(T)[p] ly (4.3)
Bi T = min i X Ty, 44

(1) ]ECZ_(T)[??J Iy (4.4)

where j is a pixel index of i-th character, p * 7 is the transformation of a point p by

¥ [, -1 =1 —
o2 M= ]-'ll oF W



7, and [p], means the vertical position of p. By using the alignment parameters and

above two equations, the proposed method represents the vertical alignment term

N N
Foert W) = 3w (T(7) = 90))* + 3 i (Bi(7) — wi)? (4.5)
i=1 =1

where N is the number of character segments and 1; and ¥, are the vertical positions
of top and bottom lines in Fig. 4.2. As the top and bottom points of characters are

on two lines, vertical alignment term has small value.

Then, the proposed method denotes width of i-th character after the transfor-
mation 7 as W;(7):

Wi(r) = jglczjfi) [Dj * Tla — jenéii?r)[pj * Tz, (4.6)

where [p|, means the horizontal position of p. By using the above equation, the

proposed method represents the horizontal alignment term as

N

Frori () = > Wi(7). (4.7)
i=1
As the sum of the character widths has small value, horizontal alignment term

has small value.

As can be seen, the proposed cost function is non-convex and many variables are
involved in the function. Therefore, its optimization is a difficult problem and the
proposed method discusses its optimization method in the next section. Also, the
overall algorithm that includes not only cost function optimization (rectification)
but also character segmentation and alignment parameter estimation is mentioned

in the next section.
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Algorithm 1: Overall iterative algorithm

Data: Input image I, initial transformation parameters 7
Result: Solutions 19", F*, 7*
while do

Step 1 : Determine the number of characters N and character
segmentation results {C;(7)}Y,
Step 2 : Estimate the alignment parameters W
Step 3 : Estimate the rectification variables (I, E, 7) by minimizing the
cost function (4.1)
end

4.2 Overall algorithm

For the alignment term in (4.1), the proposed method needs to segment the text
into individual characters and determine their alignment parameters. The charac-
ter segmentation is a difficult problem in the case of distorted images. Since better
segmentation needs better rectification and vice versa, the proposed method solves
this problem by performing the character segmentation (and alignment parameter
estimation) and rectification iteratively. As shown in Fig. 4.3, the proposed method
confirms that scene text rectification and character segmentation are performed as
performing the proposed iterative scheme more and more. For the iterative scheme,
first the proposed method performs the character segmentation in the rectified im-
age (by the current estimated 7) using a projection profile method. After character
segmentation, the proposed method estimates the alignment parameters by using a
least squares line fitting with RANSAC outlier removal. Then, the proposed method
performs rectification by minimizing the cost function in (4.1). Since the cost func-
tion is non-convex function and many variables are involved in the function, it is not
straightforward to minimize the cost function. To solve this problem, the proposed

method adds the auxiliary variables and find solution by solving the linearized prob-
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Figure 4.3: The proposed iterative rectification and segmentation scheme. (a) Input
distorted images and their character segments, (b) Rectified images and their char-
acter segments after first iteration. (¢) Rectified images and their character segments
after second iteration. Top (blue) points and Bottom (green) points are aligned to
two horizontal (red) lines, and characters are better rectified and segmented as per-
forming iterative scheme.

lem iteratively. The above mentioned three processes are performed iteratively. The

whole optimization process is summarized in Algorithm 1.

4.2.1 Initialization

For the initialization of transformation parameters 7, the proposed method estimates
rough skew and shearing angles. First, for the skew estimation, the proposed method
computes the projection profiles and considers the angle yielding the most compact
profile as the skew angle 6,.. After correcting the skew with the estimated angle,
the proposed method estimates the shearing angle #; by maximizing the length sum
of zero-runs in horizontal profiles (i.e., intervals between CCs) in a search range of

(—m/3, m/3). Then, the initial homography matrix is given by

1 —tanf; O cosf, —sinf, 0
0 1 0 sind, cosf, 0]:; (4.8)

0 0 1 0 0 1
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Figure 4.4: Estimation of the skew and shearing angles using the projection profile
analysis.

and a transformation parameter vector 7 is initialized by this homography. This step

is illustrated in Fig. 4.4.

4.2.2 Character segmentation

In order to encode the alignments of characters into the proposed cost function, the
proposed method separates scene text into individual characters. First, the proposed
method extracts connected components (CCs), and estimates the mean stroke width
of scene text. Intuitively, the stroke width represents how far the pen moves to
write a given CC. For this representation, the proposed method estimates the stroke
widths of all CCs [58], and calculates the mean stroke width. Second, the proposed
method computes a horizontal projection profile and separates the characters with
the projection value of more than mean stroke width value. As shown in Fig. 4.5, all

scene text including English and Chinese characters are separated by this projection
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Figure 4.5: Results of character segmentation. (a) Character segments. (b) (Blue)
graph and horizontal (red) lines mean projection profiles and mean stroke width
values, respectively.

profile method. Also, Chinese characters are sometimes over-segmented, however the
proposed method confirms that segmentation is correctly performed for the purpose,
because the over-segmented characters are satisfied with the character alignment
properties. Also, the characters of the cursive script are under-segmented, since all
the characters are a little tilt. Then, the proposed method determines the horizontal

positions C;(7) using the result of character segmentation.

4.2.3 Estimation of the alignment parameters

The alignment parameters determine whether the corresponding characters are aligned
to top and bottom lines. However, since the current estimated 7 is still not perfectly
optimized, the characters in the rectified image (by the current estimated 7) are not
aligned to two horizontal lines I; and [;. In the case of the projective transformation,
when the three points on the same line are transformed, they still lie on the same line
in the transformed domain (line to line mapping). Therefore, although horizontal
57 2 X 2] 8
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(a) (b)

Figure 4.6: Results of line fitting on computed top and bottom points with RANSAC.

lines [; and [, are not horizontal, however they are still straight in the rectified image
(by the current estimated 7). These two (maybe not horizontal but slant) lines are
obtained by performing least squares line fitting on computed top and bottom points
with RANSAC outlier removal, and alignment parameters are also estimated. For
instance, as shown in Fig. 4.6-(a), only four top points (corresponding to ‘o’ and ‘n’)
are aligned. Hence, alignment parameters w; corresponding to the top line (‘o” and
‘n’) are 1, and the others (‘L” and ‘d’) are 0. Also, since all bottom points are on

bottom line, all alignment parameter u; are 1.

4.2.4 Cost function optimization for rectification

The proposed method estimates the variables (I°, E, 7) by minimizing the proposed
cost function. For this, the proposed method develops an optimization method for
(4.1), which is non-convex and thus difficult to optimize. Therefore, the proposed

method first transforms the cost function into a convex function by introducing
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auxiliary variables I' = {(av, Bi, 7))},

N N N
miHFHIOH* F B + XY wilai —y)* + X > w8 —w)* + X Y v,
i=1 =1

I E,r ;
b bR Z:l

st. Tor=1I"+E,

Ti(r) = o, (4.9)
B’L(T) = Bia
Wz(T) = Y-

Then, the proposed method linearizes the constraints around the current esti-

mated value 7 and solves the linearized problem [4]. The linearized problem becomes

N N N
o min FHIOH* + MBI A+A2 Y wiles — 1) + X > (B — w)® + A D> i
AET i=1 i=1 i=1

st. VIAT+Tor=I"+E,

VT;AT + j%?é)[pj * T)y = g,

VB;AT+ min [p; * 7], = B,
jeci(r)[pj ly =45

VW;AT 4+ max |p; * 7|, — min [p; * 7|z = 7,
jecm[py ] jeci(ﬂ[pg Jo ="

(4.10)

where VI = 20en) g7, — 200) g, - dBW) anq v, = 2W0),

To solve the above linearized convex problem, the proposed method uses the
Augmented Lagrange Multiplier (ALM) method [59]. The proposed method can find
the global optimum of the linearized problem by using the ALM method as in [4].

However, since (4.10) is a local approximation of the original non-convex problem,
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Algorithm 2: Solving the problem (4.9)

Data: Input image [, initial transformation parameters 7, the number of
characters N, character segments {C’i}ﬁ\il, alignment parameters
W = {(wi, Hi)}g\il'
Result: Solution 1%, E*, 7*
while not converged do
Step 1 : Compute Jacobians VI, VT;, VB;, and VW;
Step 2 : Solve the linearized problem in (4.10)
Step 3 : Update the transformation: 7 < 7+ AT
end

the proposed method finds the solution of the original problem (4.9) by solving the

linearized problem iteratively. This iterative solver is summarized in Algorithm 2.

Review of the ALM method

The general constrained convex problem is like that:
m)}n f(X), st. R(X)=0, (4.11)

where f is convex function of variables X, and R(X) = 0 is a linear constraint.
The ALM method converts constrained convex problem into unconstrained convex

problem as follow:

Ly(X,Y) = f(X)+ < Y. R(X) >+ | R(2)]l,",
(4.12)
min L, (X, Y),

where Y is a Lagrange multiplier and 1 > 0 is the penalty imposed for feasibility.
Two above problems in (4.11), (4.12) have same optimal solution, when Lagrange
multiplier Y has an appropriate value and penalty 7 is sufficiently large. The ALM

method solves the constrained convex problem in (4.11) by optimizing the augmented
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convex problem in (4.12). The ALM method optimizes the augmented Lagrangian
function and estimates an appropriate Lagrange multiplier as following iterative

step:

Xp+1 = arg H}}n Ly, (X, Yg),
Yir1 = Yi +me(R(Xy)),
Me+1 = P Nk (4.13)

where 1 > 1 is a parameter increasing penalty 7).
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Solving linearized problem

In the proposed optimization, the input variable X, object function f(-) and linear

constraints R(-) become

X =(°E,AmT),

N N N
FXO) =0+ MNEN + X2 D wilai —y)* + X2 Y palBi — w)* + A3 ) %
=1 =1 =1

VIAT+Tor -1+ E

-
[(VTZ‘AT +maxec, () [pj * Tly — O‘i)ﬁil]

-
[(VBiAT + minjec, () [pj * 7]y — ﬁi)i]i1:|

. N T
[(VWiAT + maxjec, (r)[pj * T]a — minjec,(r)[pj * 7]z — %)izl}

(4.14)

where [(mz)fil]T mean the vectors of [z1, z2,...,zx]".

The proposed method estimates the optimal solutions (I°, E, A7,T') by perform-
ing iterative step of ALM method in (4.13). The updating Lagrange multiplier and
penalty is simple, the proposed method mentions only the first step updating the

variable X of the iterative step in (4.13), in detail.

Since many variables are involved in the augmented Lagrangian function, it is
unstraightforward process to minimize the augmented Lagrangian function. To solve

this problem, the proposed method develops an alternating optimization method [4]
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as follow:

Ilg+1 = argmmLk 10 Ek,ATk,Fk,Yk)

Ex1 = aulrgmurlL77 k;+1»E ATk,Pk,Yk) (4.15)

(
i (

|PR— argmank (I341, Bry1, A, T, Yy,
(

ATy = argmlnL Ik+1»Ek+1aAT Fk+17Yk)

The proposed method solves the above problems by minimizing the low-rank
and alignment terms alternatively, and they have closed-form solutions. The solution
I°, E and A7 are mentioned in [4], and the solutions for the auxiliary additional

variables become:

2)\2+m (2hoye + Y VT ATy, + max;ecc(r) [pj*7ly), wi=1
Qi1 <
maxec(r)[Pj * Tly, otherwise
.
2)\2+77k (2o + Yk VT AT, + mineo(r) pj *Tly), Hi=1 (4.16)
Br+1
minjec(r)[pj * Tly, otherwise
(—A3+Y,)) .
— ——L + VIWAT, + max [p; * 7|, — min [p; * 7]z,
b m e P T iy e Tl

where £ is an iteration index, Y,, Y3 and Y, are the Lagrangian multiplier corre-
sponding to linear constraints related to «, 3, and ~.

4.3 Experimental results

This dissertation evaluated the proposed scene text rectification method on the scene

text dataset containing real scene text images and synthetic text images [43]. The
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Figure 4.7: Images of dataset. The first row: real scenes, the second row: detection
and binarization results of first row, the third row: synthetic text images.

real scene text images were from MSRA-TD 500 dataset [60] and synthetic text im-
ages were obtained by applying homography transformation to ICDAR 2013 Robust
Reading Competition dataset [61]. They include English and Chinese characters, as

shown in Fig. 4.7.

In the experiments, the proposed method resized inputs so that their pixel-
resolutions became 3500 pixels. The proposed method set the weight Ao, A3 in 4.1
so that it is proportional to 1/N, where N is the number of character segments.
Also, for the image height h, the proposed method set 3 = 0 and y, = h. The
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proposed method implemented with C++ and its implementation takes 2-6 s for
the rectification of an image (3500-pixel resolution) on Intel(R) i5(TM) CPU(3.40

GHz).

For the objective evaluations of the rectification, the conventional method [4]
is compared with the proposed method. The performance is evaluated in terms of
OCR accuracy. To be precise, the accuracy of OCR is defined as

L(R,G)

g 1 _——
accuracy(R, G) max(#R, #G)’

(4.17)

where R is a recognition result string, G is the ground truth string, #(+) is the number
of characters in the string, and L(x,y) means the Levenshtein distance between two
strings [57]. The distance is defined as the minimum number of character edits
(insertion, deletion, and substitution) to transform one string to the other. For the

OCR, the proposed method used the google tesseract OCR engine [7].

Experimental results for OCR accuracy are summarized in Table. 4.1 and Ta-
ble. 4.2. As shown, the proposed method shows higher accuracy for both real and
synthetic text images. Since real text images consist of relatively less distorted im-
ages, the difference between the conventional method [4] and the proposed method

is relatively small compared with synthetic images.

Some experimental results are shown in Fig. 4.8, 4.9, 4.10 and 4.11. The con-
ventional method [4] has difficulties in the severe perspective distortions, but the
proposed method corrects severe perspective distortions as well as the little per-
spective distortions well. Also, since the proposed method adds the alignment term,
characters are more aligned in the proposed method compared with the conventional

method in [4].
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Table 4.1: OCR accuracy of the proposed and conventional method [4] on real scene

text images.

Table 4.2: OCR accuracy of the proposed and conventional method [4] on synthetic

text images.

OCR accuracy English Chinese
Input image 0.6128 0.4566
TILT [4] 0.9178 0.6326
Proposed 0.9421 0.7183

OCR accuracy English Chinese
Input image 0.1475 0.1178
TILT [4] 0.7974 0.4005
Proposed 0.9023 0.6531

4.4 Summary

In this chapter, this dissertation has proposed a new scene text rectification algo-
rithm. In the proposed method, two properties of rectified text images are encoded
into the cost function and the proposed method obtained optimal transformation
parameters by minimizing the cost function. Since the proposed method considered
the alignments of characters, the proposed algorithm yielded improved rectification
performance for a range of cases. Also, in order to encode the alignments of charac-
ters into the proposed function, the proposed method separated the scene text into
individual characters. Overall algorithm was designed as performing the character

segmentation (and alignment parameter estimation) and rectification iteratively. Ex-
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perimental results on natural and synthetic images showed that the OCR, accuracy
of the proposed algorithm is higher than the conventional methods using only glyph

properties.
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Figure 4.9: Rectification results on Chinese real scene text images. (a) input distorted
image, (b) the conventional method [4], (c) the proposed method.
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Figure 4.10: Rectification results on English synthetic text images. (a) input dis-
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Chapter 5

Curved surface dewarping in

real scene

5.1 Proposed curved surface dewarping method

The proposed cost function in document dewarping can be extended to curved sur-
face dewarping in real scene. In order to adapt to real scene images, a pre-processing

step is introduced, in this section.

5.1.1 Pre-processing

In order to rectify curved surface in real scene, the proposed method first detects
the salient planar objects. There are many salient object detection methods, the
proposed method detects the salient planar objects using [5]. This saliency detection
methods ranks the similarity of the image elements with foreground cues or back
ground cures via graph-based manifold ranking, then defined the saliency of the

image elements as their relevances to the given seeds or queries. Then, the proposed

3 fi i 1
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Figure 5.1: Results of the saliency detection [5]. (a) Input images, (b) Saliency maps,
(c) Results of feature extraction on salient objects.

method extracts color pixels and line segments on the only salient regions. This

results is as shown in Fig. 5.1.

5.2 Experimental results

First, in order to evaluate the effectiveness of pre-processing, this dissertation com-
pared three images: results of [4] in the whole image, results of [4] in the salient
object, the results of proposed method. These experimental results are shown in

Fig. 5.3, 5.4 and 5.5. By exploiting the saliency detection, object rectification in real
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Figure 5.2: Images of the curved surface in a real scene dataset collected by this

dissertation.

scene is more aligned, as shown in Fig. 5.3, 5.4 and 5.5-(b) and (c).

Also, in order to consist of curved surface images in real scene, the proposed
method collected 74 curved surface images as shown in the Fig. 5.2. For the eval-
uation, the proposed method computed the geometric quantities of rectangles in
rectified results mentioned in scene text rectification. Experimental results are sum-
marized in Table. 5.1. The existing methods [1,6] are compared with the proposed

method. As shown, the proposed method shows improved geometric rectification

performance in terms of all measures.
Some experimental results are shown in Fig. 5.6, Fig. 5.7, and Fig. 5.8. Unlike

—

the proposed method, the conventional text-line based method has difficulties by a
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Table 5.1: Geometric measures of the proposed and conventional methods [1,6] on
our dataset

Kim [1] Zhang [6] | Proposed
Orthogonality 11.3624 8.6529 4.5710
Diagonal ratio 0.0414 0.0317 0.0124
Vertical ratio 0.0916 0.0655 0.0498
Horizontal ratio 0.0861 0.0655 0.0480

few text-lines and their false positives. Also, the low-rank based method works well
in well-structured images such as barcode, however yield distortions in other images.
However, since the proposed method exploits well aligned line segments including

boundary lines of circular objects, the proposed method works well.

5.3 Summary

In this chapter, this dissertation has proposed a dewarping algorithm of curved
surface in real scene by extending the document dewarping algorithm in 3. Since
the curved surface in real scene contains a lots of line segments (i.e., boundary
lines of circular objects or barcode lines), the proposed algorithm yielded improved
rectification performance for a range of cases. Experimental results on the tested
dataset showed that the geometric measures of the proposed algorithm is higher

than the conventional methods.
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Figure 5.3: Results of the three methods. (a) Input image, (b) Result of [4], (c)
Result of [4] for the salient object region, (d) Result of the proposed method.
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Figure 5.4: Results of the three methods. (a) Input image, (b) Result of [4], (c)
Result of [4] for the salient object region, (d) Result of the proposed method.
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Figure 5.5: Results of the three methods. (a) Input image, (b) Result of [4], (c)
Result of [4] for the salient object region, (d) Result of the proposed method.
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Figure 5.6: Results of the three methods. (a) Input image, (b) Result of [1], (c)
Result of [6], (d) Result of the proposed method.
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Figure 5.7: Results of the three methods. (a) Input image, (b) Result of [1], (c)
Result of [6], (d) Result of the proposed method.
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Figure 5.8: Results of the three methods. (a) Input image, (b) Result of [1], (c)
Result of [6], (d) Result of the proposed method.
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Chapter 6

Conclusions

In this dissertation, a new rectification method for document and scene text image
based on alignment properties have been proposed. For document image dewarping,
the proposed method exploited line segment properties which are valid in non-text
as well as text regions, encoded this properties into a cost function and obtained
optimum transformation parameters by minimizing the cost function. Since the pro-
posed method considered the properties on non-text as well as text regions, the
proposed algorithm yields improved OCR accuracy and geometric measures, espe-
cially for the images include many non-text regions. For scene text rectification, in
the proposed method, two properties of rectified text images were encoded into the
cost function and also obtained transformation parameters by minimizing the cost
function. Since the proposed method considered the alignments of characters as well
as glyph (low-rank) property, the proposed algorithm yielded improved rectification
performance for a range of cases. Experimental results on natural and synthetic im-
ages showed that the OCR accuracy of the proposed algorithm is higher than the

conventional low-rank based method. In addition, the proposed alignment term of



line segments was extended to the curved surface dewarping in a real scene.
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