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ABSTRACT 
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A 4266Mb/s/pin LPDDR4 memory controller with an asynchronous feedback 

continuous-time linear equalizer and an adaptive 3-step eye detection algorithm is 

presented. The asynchronous feedback continuous-time linear equalizer removes the glitch 

of DQS without training by applying an offset larger than the noise, and improves read 

margin by operating as a decision feedback equalizer in DQ path. The adaptive 3-step eye 

detection algorithm reduces power consumption and black-out time in initialization 

sequence and retraining in comparison to the 2-dimensional full scanning.  In addition, 

the adaptive 3-step eye detection algorithm can maintain the accuracy by sequentially 

searching the eye boundaries and initializing the resolution using the binary search method 

when the eye detection result changes. To achieve high bandwidth, a transmitter and 
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receiver suitable for training are proposed. The transmitter consists of a phase interpolator, 

a digitally-controlled delay line, a 16:1 serializer, a pre-driver and low-voltage swing 

terminated logic.  The receiver consists of a reference voltage generator, a continuous-

time linear equalizer, a phase interpolator, a digitally-controlled delay line, a 1:4 

deserializer, and a 4:16 deserializer. The clocking architecture is also designed for low 

power consumption in idle periods, which are commonly lengthy in mobile applications. A 

prototype chip was implemented in a 65nm CMOS process with ball grid array package 

and tested with commodity LPDDR4. The write margin was 0.36UI and 148mV; and the 

read margin was enhanced from 0.30UI and 76mV without AF-CTLE to 0.47UI and 80mV 

to with AF-CTLE. The power efficiency during burst write and read were 5.68pJ/bit and 

1.83pJ/bit respectively. 
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CHAPTER 1 
 

 

 

INTRODUCTION 
 

 

 

1.1 MOTIVATION 

 

Dynamic random-access memory (DRAM) is divided into computing DRAM, graphic 

DRAM, and mobile DRAM depending on the application, as shown in Figure 1.1.1. In the 

early days of the DRAM market, computing DRAM and graphics DRAM led growth, but 

now they are reaching their growth limit. In recent years, due to the increase in demand for 

smartphones and tablet PCs, mobile DRAM has led the growth of DRAM market size.  
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Figure 1.1.1 3-types of dynamic random-access memory. 

As memory-intensive, high-quality gaming modes and video codecs become 

widespread in battery-powered mobile systems, there is a constant need for high-speed, 

low-power, mobile DRAM and controller. According to market research, as shown in 

Figure 1.1.2, the requirements for mobile applications are 42% for speed, 30% for battery, 

18% for price, 8% for user interface and 2% for size, with high bandwidth being the highest 

and low power being the next [1.1.1]. To meet this demand, the bandwidth of mobile 

DRAM rapidly increased to 400 Mbps [1.1.2] (LPDDR) in 2007, 800 Mbps (LPDDR2) in 

2012, 1600 Mbps [1.1.3] (LPDDR3) in 2013 and 4266 Mbps [1.1.4] (LPDDR4) in 2015, 

respectively.  
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Figure 1.1.2 Mobile applications requirements market research. 

 

Various major architectural changes that contribute to performance improvements 

have been implemented in LPDDR4. For example, in the case of a data (DQ) pin, the clock 

scheme of data strobe (DQS) was changed from the source synchronous matched scheme 

(SSMS) to the unmatched scheme (SSUS), the I/O interface has been changed from high-

speed unterminated logic (HSUL) to low-voltage swing terminated logic (LVSTL), DQ on-

die termination (ODT) become necessary, and internal reference voltage (VREF) is adopted. 

In the case of a command/address (CA) pin, the I/O interface has been changed from pseudo 

open drain logic (PODL) to low-voltage swing terminated logic (LVSTL), double data rate 

(DDR) becomes single data rate (SDR) and VSS termination is added. 

However, the DRAM process is relatively bad compared to the logic process, and 

therefore it is insufficient to allow the memory to operate at high bandwidth on its own 

through architectural changes. To overcome this, various training operation such as ZQ 

calibration, CA training, DQ training, and latency training have been added to the 

Needs of improvement

Battery Speed UI Price Size

Battery

30%

Speed 

42%

UI 8%

Price

18%

Size 2%
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controller-side to improve the performance. In addition, periodic training is required to 

compensate for voltage and temperature variations. As a results, the bandwidth is getting 

higher, such trainings in controller-side become more complex, diverse, and important. 

Therefore, algorithms that can be trained simply and quickly effectively must be proposed. 

Back to the story of the memory controller unit (MCU) and DRAM, the low-power 

high bandwidth is equally required for both MCU and DRAM. Therefore, not only the 

training algorithm but also low-power, high-bandwidth architecture and transceiver (TRX) 

design are very important in MCU. Since the structure and design direction of the MCU 

should be slightly different depending on the type of the corresponding memory, the 

corresponding application should be determined and designed accordingly. Considering 

future development potential and performance, LPDDR4, one of mobile DRAM, can be a 

good candidate. 

Thus, in this thesis, we propose adaptive eye detection algorithm which is a simple 

and fast compared to the conventional eye detection algorithm and low power memory 

controller for LPDDR4. The proposed low power memory controller is also applicable to 

other DRAM applications through slight modifications to spec-sensitive parts.  
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1.2 THESIS ORGANIZATION 

 

This thesis is organized as follows. First, in Chapter 2, the basics and major 

specification of the LPDDR4 are explained. Additionally, the discussion about the 

difference between LPDDR4 and LPDDR3 is presented. Discussing the LPDDR4 

specifications, we understand the issues and the types of training that should be considered 

in the controller design. In Chapter 3, the thesis presents the adaptive 1x2y3x eye center 

detection algorithm with comparison of other previous eye detection algorithms. In Chapter 

4, low power memory controller architecture with TRX, clocking architecture and detail 

sub blocks will be explained. In Chapter 5, measurement setup and experimental results are 

described. Finally, in Chapter 6, the thesis is summarized with the discussion of 

contribution.  

 



6 

 

 

 

 

CHAPTER 2 
 

 

 

LPDDR4 
 

 

 

2.1 COMPARISON BETWEEN LPDDR3 AND LPDDR4 

 

LPDDR4 looks to lead the next generation of mobile DRAM as it operates over 4266 

Mbps and achieves large power reduction per bandwidth, without such high-cost process 

overhead as wide I/O and through-silicon-via (TSV). The key feature of LPDDR4 is low 

power consumption with high bandwidth than previous LPDDR3. Figure 2.1.1 shows the 

comparison between LPDDR3 and LPDDR4. The difference between LPDDR3 and 

LPDDR4 shows which ones were key to achieving high bandwidth low power. The speed 

of CA is maintained by changing DDR signaling to SDR signaling. Supply voltage is 

reduced from 1.2V to 1.1V. There have been many changes in the architectural aspects. The 

1-channel structure has been changed to a 2-channel structure, and the DQS scheme has 

been more simply changed from the SSMS to the SSUS. In case of I/O interface, LPDDR3 

adopts HSUL for DQ and PODL for CA, LPDDR4 replace the HSUL and PODL for each 

DQ and CA into LVSTL. In the case of ODT, all of the optional ones have been changed 

to mandatory, and the VDDQ termination and the VSSQ termination have been made 
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respectively for DQ CA. LPDDR4 started to provide internal VREF to improve the 

controller's performance. Both LPDDR3 and LPDDR4 do not use delay-locked loop (DLL) 

or phase-locked loop (PLL) to satisfy low power. In LPDDR4, as the speed increases and 

the absence of DLL increases, the proportion of training becomes relatively large. 

 

 

Figure 2.1.1 Comparison between LPDDR3 and LPDDR4. 

 

The largest structural change in LPDDR4 is the change from a 1-channel architecture 

to a 2-channel architecture per die as shown in Figure 2.1.2. In 2-channel architecture, there 

are two independent devices on single die. The single channel of LPDDR4 consist of a uni-

directional differential CK pins, 7 unit-directional single ended CA pins, 4 bi-directional 

Item LPDDR3 LPDDR4

Speed

CLK ~1066MHz ~2133MHz

CMD/ADDR DDR SDR

DQ DDR DDR

Voltage VDD2/VDDQ/VDD1 1.2/1.2/1.8 1.1/1.1/1.8

Architecture

# of Channel 1-channel 2-channel

DQS scheme
Source Synchronous 

Matched Scheme

Source Synchronous 

Unmatched Scheme

I/O interface HSUL/PODL LVSTL

DQ ODT No Term(VDDQ Term option) VDDQ Term

CA ODT No Term VSS Term

VREF External Internal

DLL or PLL No DLL or PLL No DLL or PLL

Training

CMD/ADDR No Yes

DQ write Optional Mandatory

DQ read Optional Mandatory
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differential DQS pins, 16 bi-directional single ended DQ pins, 2 bi-directional single ended 

DMI pins and other control pins such as RESET, ODT_CA, and ZQ_CAL. These two 

devices share the ZQ and RESET signal, and use the other I/O and power pins which are 

significantly affected by the loading. In LPDDR3, there were CA bus and DQ bus on the 

top side and bottom side, respectively. Therefore, there is a problem that the signal 

distribution is composed across the entire chip, vulnerable to PVT variation and causing 

large latency. In addition, mobile DRAMs are more vulnerable to these issues because they 

do not use delay-locked loop (DLL) to reduce power consumption. In LPDDR4, CA bus 

and DQ bus are placed on each channel, reducing the length of the data path by 30% on 

average, and the CA signal distribution across the DRAM die disappears. By adopting such 

a two-channel structure, the current consumption savings of 15% can be achieved. 

 

   

(a)                              (b) 

Figure 2.1.2 Architecture of LPDDR3 and LPDDR4. 
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2.2 SOURCE SYNCHRONOUS CLOCKING SCHEME 

 

In the communication between the DRAM and the MCU, there is a time-of-flight 

according to the channel environment. This time-of-flight affects not only the pin-to-pin 

skew but also the jitter correlation, thus reducing the data eye. A source synchronous 

clocking scheme is an effective scheme to compensate the unpredictable time-of-flight 

variation between DRAM and MCU. It is a method of solving the above-mentioned eye 

reduction by transmit both DQ and DQS for sampling the DQ, thereby sampling the signal 

affected by the same time-of-flight. Figure 2.2.1 shows the source synchronous clocking 

scheme of LPDDR3 and LPDDR4. In LPDDR3 IO, an extra delay element is added to the 

DQ signal path to match the DQS signal path delay as shown in Figure 2.2.1 (a). The 

matching delay of DQS TREE is called the timing parameter of the tDQS2DQ. These delay 

units must have full-speed bandwidth and cost large power consumption. In LPDDR4 IO, 

tDQS2DQ delay element has shifted from DRAM to MCU with the help of a better logic 

process than the DRAM process. As a result, LPDDR4 can remove replica delays and the 

timing of the DQS path is controlled by MCU. Therefore, a training process is added to 

MCU. The Time varying variations such as voltage or temperature can affect tDQS2DQ, 

which can be solved with a periodic training sequence. The training for compensate 

tDQS2DQ is WRITE training. In WRITE training in SSUS, additional matching delay 

logic that can compensate the parameter of tDQS2DQ should be added to DQ path in MCU. 
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(a)                                           (b) 

Figure 2.2.1 Source synchronous (a) matched scheme and (b) unmatched scheme. 

 

In addition, the SSUS architecture simplifies the receiver of the DRAM and allows a 
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2.3 SIGNALING STANDARDS 

 

LPDDR3 adopts the HSUL for DQ and PODL for CA as shown in Figure 2.3.1. 

Although zero DC power consumption in HSUL, the size of the output swing is too large 

as VDDQ and it is vulnerable to signal integrity (SI) because it has no termination. PODL, 

on the other hand, supports VDDQ termination for high speed communication, and there is 

power consumption at ‘0’ but no power consumption at ‘1’. By using the DBI technique, 

power consumption can be reduced by taking advantage of these features. 

 

      

                                     (b)  

Figure 2.3.1 (a) high speed unterminated logic and (b) pseudo open drain logic.  

 

In LPDDR4, to reduce power consumption, LVSTL with VSSQ termination is adopted 

without using a HSUL or PODL. As shown in Figure 2.3.1, they consist of a pull-down 

NMOS transistor and a pull-up PMOS transistor. In contrast to HSUL or PODL, as shown 

in Figure 2.3.2, the LVSTL interface replaced the pull-up PMOS transistor with a NMOS 

transistor operating in the saturation region. The pull-up NMOS transistor reduce CIO 

compared to PMOS and reduce power consumption in unterminated mode because it 
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prohibiting rail-to-rail swing due to threshold voltage drop of pull-up NMOS transistor. 

VSSQ termination consumes power at ‘1’ but no power at ‘0’. DBI can also be applied to 

LVSTL to reduce power consumption.  

 

 

Figure 2.3.2 Low-voltage swing terminated logic 

 

Figure 2.3.3 shows the comparison between HSUL, PODL and LVSTL. In terms of 

swing and power consumption, PODL and LVSTL are similar. However, the biggest 

difference between PODL and LVSTL is termination. Since most of the system’s ground 

impedance is smaller than the supply impedance, VSSQ termination instead of VDDQ or 

1/2 VDDQ termination improves both noise immunity and SI characteristics. In addition, 

VDDQ scaling is available with VSSQ termination. 

 

VREF
RS

RS RT



13 

 

 

(a) 

 

(b) 

Figure 2.3.3 Comparison of HSUL, PODL, LVSTL 
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2.4 MULTIPLE TRAININGS 

 

LPDDR4 requires a variety of training performed by the MCU to achieve twice 

bandwidth of LPDDR3. The types of training are command bus training (CBT), write 

leveling (WLVL), read training (RDTR), and write training (WRTR). The first training is 

CBT. The command bus must be trained before enabling termination for high-frequency 

operation. LPDDR4 provides an internal VREFCA that defaults to a level suitable for un-

terminated, low frequency operation. The VREFCA must be trained to achieve suitable 

receiver voltage margin for terminated, high-frequency operation. At CBT, MCU finds the 

optimized timing relationship between the CA signal and its strobe clock (CK) and the 

optimized reference voltage VREFCA. The timing relationship is related to the setup and hold 

times in the DRAM. The training sequence of CBT is as follows: First, MCU enables the 

CBT mode at low frequency. When the CBT mode is activated, values latched at the 

receiver on the CA bus are asynchronously output to the DQ bus. MCU finds the optimum 

voltage and timing based on the feedback value at high frequency. Finally, MCU exit the 

CBT mode and change the operation frequency. 

The second training is WLVL. WLVL feature compensate CLK-to-DQS timing skew 

and ensure that data on a DQS domain properly crosses over into a CLK domain in DRAM. 

In WLVL mode, the DRAM samples the CK with the rising edge of DQS signals, and 

asynchronously feeds back to the MC. MCU changes the timing of DQS, finds the point 

where the phase between DQS and CLK crosses, and exit WLVL training.  

The third training is RDTR which informs MCU when the read data arrives from 
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DRAM after read command is issued. The RDTR also allows MCU to recognize voltage 

and timing parameters relevant in read operation. LPDDR4 has five read FIFO registers to 

aid RDTR. The read FIFO register help to read and write the specific pattern with only the 

CA. After the write patterns are written to the registers by write FIFO commands, read 

FIFO commands can be issued to read the latched data, which is then verified against the 

original pattern. Since the read FIFO command behaves exactly the same as the read 

command, it is possible to obtain read latency, optimum reference voltage, and sampling 

timing at read operation by repeatedly repeating this sequence.  

The last training is WRTR which is only possible if all three of previous training are 

well performed. As mentioned before, LPDDR4 must find the optimum sampling timing 

and reference voltage level as well as tDQS2DQ parameter. Write training proceeds in the 

following order: Each DQ receives specific write patterns by write command. After the 

write patterns are written, read commands can be issued to read the data, which is then 

compared against the original write pattern. This procedure is executed repeatedly for 

optimum sampling timing of DQ including tDQS2DQ and every reference voltage of DQ 

(VREFDQ) value allowed within the predefined range, which is from 10% to 42% of VDDQ 

with the resolution at 0.4% of VDDQ. The tDQS2DQ must guarantee that it has a value in 

the range of 200 to 1000ps. MCU requires an absolute delay element to compensate for this 

timing parameter for write training. 
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2.5 RE-TRAINING AND RE-INITIALIZATION 

 

In the previous sections, we introduced various architecture and interface changes of 

LPDDR4 to achieve low power high bandwidth. In addition, these changes are all 

assumptions of the multiple trainings. There are many reasons why DRAM needs training. 

One of them is the absence of DLL in DRAM. Figure 2.5.1 shows the conceptual block 

diagram of clocking with DLL in DRAM. In synchronous DRAM, the output data is 

aligned with an external clock after internal clock delay and timing delay from the internal 

clock to the output data. This delay is called tAC. Because tAC is a function of process, 

voltage, and temperature (PVT), READ data sampling at the MCU exhibits both static and 

dynamic variation. When the MCU attempts to capture incoming data bits simultaneously, 

the valid data window can disappear by time varying variation. The DLL in DRAM can 

track these variation and compensate delay parameters such as tAC. However, in LPDDR4, 

tDQS2DQ is moved from DRAM to the MCU, allowing improvement by using the 

application-specific integrated circuit process technology, which is better than that of 

DRAM.  

 

Figure 2.5.1 DRAM architecture with DLL 
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Since the absence of the DLL in LPDDR4, MCU needs to find other solution to 

compensate both static and dynamic variation. Once training or initialization can only 

compensate for static variation, so re-training or re-initialization is required to compensate 

for both static and dynamic variation. Various methods for efficient re-training have been 

proposed. One method is the use of built-in self-test circuit. In LPDDR4, it is recommended 

to use a free-running oscillator to count the oscillator cycle at regular intervals [1.1.5]. 

There is also a method to detect variation using an on-chip voltage or temperature sensor 

2. Another method is to perform re-training or re-initialization periodically [2.5.2]. Due to 

the volatile nature of DRAM, it is necessary to have an auto refresh interval periodically. 

In this case, the training interval is defined in terms of the number of auto refresh burst 

cycles. Taking LPDDR4 as an example, average refresh interval (tREFI) is 3.9us. If re-

training is performed for each 1024th auto refresh burst cycle, re-training is performed every 

4ms. This means that re-training and re-initialization are required fairly often even if the 

mobile device is not running. 

In addition to the DRAM's own performance improvement, the ASIC process 

technology is inherently superior in performance to the DRAM process, and therefore, the 

DRAM functions are being handed over to the MCU. As a result, MCUs are replacing 

DRAM functions through various training. It should be noted that re-training or re-

initialization is required to compensate for time varying variation. Various methods have 

been proposed for efficiently re-training the number of times, but this is not a fundamental 

solution. We conclude that the best solution to MCU is to apply an effective training 

algorithm that can be applied to both training and re-training.  
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CHAPTER 3 
 

 

 

ADAPTIVE EYE DETECTION 
 

 

 

3.1 EYE DETECTION 

 

The multiple trainings of LPDDR4, described in Chapter 2, are a series of processes 

in which the MCU detects data coming from/to DRAM. Calling ‘A-B’ is a training target, 

MCU changes the timing and reference voltage of B to detect the eye. For the sake of 

convenience, we will refer to the ‘eye center’ as the optimal sampling point for the eye. CA 

training, WLVL, and WRTR look for the eye of the DRAM-side, looking for the eye center 

of CK-CA, eye left-edge of CK-DQS, and the eye center of DQS-DQ, respectively. RDTR 

is the process of finding the eye center of the DQ-DQS on the MC-side.  

Various eye detection algorithms have been proposed in various application [3.1.1]-

[3.1.8]. As shown in Figure 3.1.1, the most common way to find eye center in the eye 

diagram from various eye diagram is two-dimensional eye detection, which checks all point 

in a two-dimensional. It moves one point up, down, left or right from the starting point by 

checking whether the point passed or not, to find all the eye diagrams. The two-dimensional 

eye detection method is very accurate but has too many test points. The number of test 
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points required for full scanning eye detection is as follows: 

NTR = NtimeNvolt                                   (3.1.1) 

where NTR is number of test points, Ntime is number of time step and Nvolt is number of 

voltage step. For example, in the case of LPDDR4 MC, the timing step of the x-axis is 256 

points, and the reference voltage of the y-axis is 72 points, there are total of 18432 test 

points in total. In proportion to the number of test points, the training time, the power 

consumed in the training, and the register size of the link training finite-state machine 

(LTFSM) which performs the training increase. The optimal eye center detection algorithm 

based on the shape of the eye needs to know the overall shape of the eye, so it needs to use 

the two-dimensional eye detection method, resulting in a lot of time and complex circuitry. 

In LPDDR4, as mentioned before, low power consumption is the most important goal, so 

a simple and fast eye detection algorithm is required to replace two-dimensional eye 

detection even if there is some loss in accuracy.  

 

 

Figure 3.1.1 Two-dimensional eye detection 

V
o

lt
ag

e

Time



20 

 

3.2 1X2Y3X EYE DETECTION 

 

Instead of the two-dimensional eye center detection algorithm, the 1x2y3x eye center 

detection algorithm reduce the time of training. Figure 3.2.1 shows the 1x2y3x iteration 

eye detection algorithm. First, time direction sweep ‘1x’ is performed. As shown in Figure, 

first, eye detection sweeps the x-axis direction of the sampling timing to fine the x-axis eye 

monitoring while the y-axis of the reference voltage were fixed. Second, the eye detection 

sweeps the y-axis direction of the reference voltage to find the y-axis eye monitoring while 

the x-axis of the timing were fixed at center point value of the first sweep called ‘1x’. Third, 

the y-axis of the reference voltage is fixed at the center point of the second sweep called 

‘2y’, and the x-axis of the timing is swept for eye detection again. The center point of the 

eye is fixed at center point of the second and third sweep. Thanks to the LPDDR4 

specification, the value of the reference voltage of 1x sweep can be effectively started by 

with half value of the VOH, VDDQ/5 or VDDQ/6 [3.1.9][3.1.10]. In addition, the 

algorithm of saving two points, which is start and end point of eye opening, and averaging 

the sum of these two points is simpler than the algorithm of saving all point values of two-

dimension and finding optimal eye center. The number of test points required for 1x2y3x 

eye detection is as follows: 

NTR = 2Ntime + Nvolt.                       (3.2.1) 

For example, if the timing step of the x-axis is 256 points, and reference voltage of 

the y-axis is 72 points, only 584 registers are required. And, the algorithm of finding the 

point of the biggest x and y margin in the two-dimensional table is needed. In the 1x2y3x 
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algorithm, on the other hand, only 4 registers are required to save the start and end point of 

the x- and y-axis, and LTFSM can find the eye center by simply averaging each. 

 

 

Figure 3.2.1 1x2y3x iteration eye detection. 
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3.3 ADAPTIVE GAIN CONTROL 

 

The 1x2y3x eye detection method described above has succeeded in reducing the 

number of test points as compared with the two-dimensional eye detection method. 

However, there is still a need for training test points proportional to the number of time-

voltage steps. Therefore, there is still a need for improvements on ways to achieve faster 

training while maintaining accuracy in the current state. In this paper, we propose a method 

to reduce training time by applying adaptive gain control (AGC) scheme to eye detection 

algorithm. The figure is a concept block diagram of adaptive gain control.  

 

 

Figure 3.3.1 Simplified block diagram of adaptive gain control scheme 

 

First, determine whether the detected training point is pass or fail. In case of 

continuous pass or fail, AGC block increases the gain of training step to reduce number of 

test points. When AGC improves gain, the resolution of training is lower in inverse 

proportion to gain. The reason for the high resolution is to find the eye’s exact shape. And 

we can infer the shape of the eye by looking for the exact boundary of the eye. If we can 

improve adaptive gain and still have high resolution at the eye’s edge, we can reduce 

training time without loss of accuracy. Therefore, in the proposed AGC, we reinitialize the 

gain by sequentially searching the training points between pass and fail in binary search 
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algorithm form, assuming that it is the boundary of the eye at the time of successive pass 

or fail.  

Figure 3.3.2 shows an example of adaptive gain control scheme. The number of test 

points required for adaptive gain control scheme is as follows: 

NTR = N/K + K + 3α                     (3.3.1) 

where N is number of training step, K is maximum adaptive gain and α is the number of 

consecutive pass or fail cycles required for the adaptive gain to increase to its maximum 

value. Assuming that N is larger enough to ignore K or 3α, the NTR is reduced to the original 

test points N divided by the maximum adaptive gain value K. 

 

 

Figure 3.3.2 Eye detection with adaptive gain control scheme 
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3.4 ADAPTIVE 1X2Y3X EYE DETECTION 

 

In this thesis, we implement the adaptive gain control scheme to the 1x2y3x eye 

detection algorithm and propose a faster and more accurate training method. Figure 3.4.1 

shows an adaptive 1x2y3x eye detection algorithm and an example. Basically, eye detection 

is performed in the same manner as 1x2y3x.  

 

 

Figure 3.4.1 Adaptive 1x2y3x eye detection 
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Due to the adaptive gain control scheme, all three sweeps detect eye while moving 

test points at a wider interval in a continuous pass or fail. By using a binary search at the 

boundary of the eye to eliminate the loss of accuracy, the training results are the same when 

the adaptive gain control is enabled and disabled. Figure 3.4.2 shows the comparison 

between the previous eye detection algorithm and the proposed adaptive 1x2y3x eye 

detection algorithm. Comparing the actual design parameters, the number of time steps is 

256, and the number of voltage steps is 72. The maximum adaptive gain value is designed 

to be 2, and the number of consecutive detection result values to reach the maximum 

adaptive gain is 1. Therefore, the number of test points for full scanning method, 1x2y3x 

iteration, and proposed adaptive 1x2y3x iteration are 18432, 584, and 307, respectively. 

The proposed adaptive 1x2y3x eye detection algorithm is 60 times faster than the full 

scanning method and detects the eye 1.9 times faster than the 1x2y3x eye detection 

algorithm. This indicate that the proposed adaptive eye detection algorithm can save much 

power than the conventional method as well as the training time.  

 

 

Figure 3.4.2 Comparison of eye detection algorithms  
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CHAPTER 4 
 

 

 

LPDDR4 MEMORY CONTROLLER  
 

 

 

4.1 DESIGN PROCEDURE 

 

Figure 4.1.1 shows the design procedure of memory controller design. In order to 

design a memory controller, it is necessary to understand the specification of the target 

DRAM. There are various types of DRAM, and each DRAM must have a precise 

understanding of the specification because there are special functions that only the 

generation has. In this thesis, we propose the design of a memory controller suitable for 

LPDDR4 which is the hottest one of mobile DRAM. In order to design a system-on chip, 

it is effective to design it in a top-down manner. Therefore, once you understand the 

specification [1.1.5], we need to define the MCU architecture and core blocks. In this 

process, the functions required for communicating with the memory in the MCU are 

summarized, and the performance of the sub-blocks and the corresponding blocks to be 

designed is defined, and the whole top architecture is defined as the sub-blocks. 
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Figure 4.1.1 Design procedure of memory controller 

 

Our proposed MCU is designed to perform point-to-point (P2P) communication with 

single channel of LPDDR4. Based on this condition, the architecture of MCU is 

summarized as follows. First, our MCU should have the same I/O with the single channel 

of LPDDR4. The single channel of LPDDR4 consist of an uni-directional differential CK 

pins, 7 unit-directional single ended CA pins, 4 bi-directional differential DQS pins, 16 bi-

directional single ended DQ pins, 2 bi-directional single ended DMI pins and other control 

pins such as RESET, ODT_CA, and ZQ_CAL. Second, the clock speed of MCU is defined 

based on the operating speed of LPDDR4. The per pin speed range of the LPDDR4 is from 

533Mbps to 4266Mbps with interval of 533Mbps. To meet aforementioned operation 
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frequency, MCU have to generate clock of 266MHz to 2133MHz with interval of 233MHz. 

Designing an oscillator that supports such a wide range of frequencies causes a trade-off in 

jitter performance or jitter performance. The frequency range was reduced from 1333MHz 

to 2133MHz and a 266 to 2133MHz clock was generated using a multi-modulus divider. 

Our MCU follows flow chart depicted in Figure to communicate with LPDDR4. The 

LPDDR4 memory starts at power on state, to operate normally, memory passed power on, 

reset, boot up state and training sequence. The training sequence consist CBT, WLVL, 

RDTR, and WRTR. After training, LPDDR4 goes activation state to prepare normal state. 

The margin tests are performed to evaluate the LPDDR4 operating performance. The 

tDQSCK (clock to DQS delay) and tDQSDQ (DQS to DQ delay) should be compensated 

by MCU to proper operation, and MCU also performs ZQ calibration, per pin de-skewing, 

read and write latency training, clock domain crossing, and eye center detection. To 

perform these functions, phase-locked loop (PLL), delay-locked loop (DLL), serializer/de-

serializer (SER/DES), LVSTL driver, clock distribution circuit with skew minimization, 

and continuous-time linear equalizer (CTLE) are required. The proposed MCU supports 

power on, reset, idle, activating, bank active, read, write, command training, and MPC 

based training. 

After architecture define, the design phase begins. Three must be done in parallel. 

First, it is necessary to verify the operation of the whole system through modeling. Until 

the detailed circuit design is completed, it is necessary to model the sub-blocks according 

to the defined architecture, and to check that there are no mistakes in the functional parts. 

The second is to design the actual circuit. We must define clearly the simulation corner 
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conditions that we need to verify before entering the circuit design. In the verification 

environment, the sub-blocks defined in the architecture configuration step are designed to 

meet the required performance requirements. When designing each sub-block, the design 

should be performed in consideration of not only the corresponding block but also other 

blocks to which the input output of the corresponding block is connected. Finally, the third 

is to establish a measurement plan. This is partly related to modeling, so we make a test 

plan about how to measure the designed MCU. To test proposed LPDDR4 memory 

controller with LPDDR4 memory, LPDDR4 is required. Generally LPDDR4 memory 

controller is stacked with LPDRR4 memory by package-on-package structure [4.1.1] 

[4.1.2]. However, it is not easy to make package-on-package structure for academic 

research. Thus, thin quad flat package is used for testing, and this package type is 

considered when layout and floor plan. 

In the verification phase, both functional verification based on modeling and 

simulation verification based on schematic and layout are performed simultaneously. To 

verify the MCU, a corresponding DRAM model is required. In this thesis, the system can 

be configured and verified using the verilog model of LPDDR4 and channel model. The 

flow plan should preferably be started before layout. The layout size and pin position are 

defined through the flow plan and then the layout is performed. This prevents the layout 

size from becoming too large and optimizes the signal transmission path. 
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4.2 ARCHITECTURE 

 

Figure 4.2.1 shows the architecture of proposed LPDDR4 memory controller. The 

input and output of MCU consist of an uni-directional differential CK, 7 unit-directional 

single ended CA, 4 bi-directional differential DQS, 16 bi-directional single ended DQ, 2 

bi-directional single ended DMI and other control signals such as RESET, ODT_CA, and 

ZQ_CAL. 

 

 

Figure 4.2.1 Architecture of proposed LPDDR4 memory controller 
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The MCU consists of all-digital phase-locked loop (ADPLL), all-digital delay-locked 

loop (ADDLL), clock distribution circuit, link training finite-state machine (LTFSM), 7 

transmitter for CK and CA path, 18 transceiver for DQ and DMI, 2 transceiver for DQS. 

ADPLL generates the global clock PHY_CLK used in MCU and SYS_CLK used in 

LTFSM. PHY_CLK has an operating frequency of 266 to 2133 MHz, and SYS_CLK has 

an 8 divided frequency of PHY_CLK. The ADDLL consists of a global DLL and a local 

DLL. The global DLL helps fast locking the local DLL, the local DLL generates the multi-

phase clock, and PI adjusts the clock phase to 1/64 UI steps. The LTFSM operates as 

SYS_CLK and generates DQ, CA signals and MCU control signals. The transmitter and 

the receiver are configured to satisfy the high bandwidth by supporting the training 

operation.  

The most important part of the memory controller's architectural configuration is to 

maintain the source synchronous clocking scheme while keeping it in line with the overall 

system's training behavior. Training support should be basic and satisfy SSCS for high 

performance. The method incorporates a transmit clock delay line and integrating receiver 

yielding an increased tolerance to high frequency transmit source jitter [4.2.1]. There are 

two groups that must satisfy the SSCS in the memory controller. One is CA and CK, and 

the other is DQ and DQS. If the SSCS can be satisfied between CK and DQS, better 

performance can be obtained, but this can be neglected because it is difficult to achieve 

because the signal path inside the DRAM is quite different. In order to satisfy the SSCS, it 

is necessary to share a clock for generating each group signal. For example, when the CA 

and CK are generated with one clock, the generated CK must be designed to sample the 
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CA so that the SSCS can be satisfied. In order to adjust the signal timing while satisfying 

the SSCS, it is necessary to control the timing of the clock of the last serializer. 
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4.2.1 TRANSMITTER 

 

Figure 4.2.2 shows the block diagram of transmitter. The transmitter consists of PI, 

digitally controlled delay line (DCDL), 16:1 SER, pre-driver (pre-DRV), and LVSTL. 

Transmitter should be designed with WLVL and WRTR in mind. More specifically, write 

DQS path should take WLVL into account, and write DQ path should be designed 

considering WRTR.  

 

 

Figure 4.2.2 Block diagram of transmitter 
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considered to achieve high bandwidth. Therefore, DCDL with range of 200~1000ps is 

placed after PI to compensate both tDQS2DQ and per-pin skew. To compensate tDQS2DQ 

in source synchronous unmatched scheme, PHYCLK should be delayed by over than 3 UI. 

For this reason, clock phase mismatch occurs between LTFSM and transmitter. In order to 

ensure stable data sampling considering the data transmission between LTFSM and 

transmitter, the SER is configured as 16:1 SER. In order to achieve high bandwidth, pre-

driver supports 1-tap de-emphasis and LVSTL can have accurate pull-up and pull-down 

drive strength through ZQ calibration.  

One thing to note about transmitter design is that all designs must be made in a limited 

area. This is somewhat difficult to observe at the academic level, but it must be kept in 

mind when creating multichannel transceiver circuits. In the chip, the number of pins is 

limited, and the order of the pads such as the power signal ground signal is limited for 

uniform power supply. In addition, the spacing between the pads and the pads is determined 

by the process, so it must be taken into account that both the transmitter and the receiver 

must be included within a limited height. The block that occupies the largest area in the 

transmitter is the driver. Therefore, the guidelines of the driver design should be designed 

first, and the blocks of the remaining transmitter should be designed to be optimized for 

the driver size. 

Simultaneous switching output noise (SSO) in single-ended signaling is one of the 

major performance limiters as data-rate scales higher [4.2.2]. Research shows that 

improved package and motherboards can reduce the impact of SSO and improve system 

performance. However, academic-level research has limitations in applying these areas, so 
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you should implement as much of the SSO-insensitive design on-chip as possible. From an 

empirical point of view, the easiest and most accurate way to reduce SSO noise is to 

separate the output driver and the internal circuitry from the main driver of SSO noise. 

Unfortunately, the chip manufactured in this paper has a disadvantage that it is not 

susceptible to SSO noise because it does not separate the power supply. These parts should 

be improved in the future. 

 

4.2.2 RECEIVER 

 

Receiver should be designed with RDTR in mind. Figure 4.2.3 shows the block 

diagram of receiver. The receiver consists of VREF generator, CTLE, PI, DCDL, 1:4 DES, 

and 4:16 DES.  

 

 

Figure 4.2.3 Block diagram of receiver 
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distribution time of the DQS and therefore it is unable to use DFE which is a powerful 

equalizing technique. Therefore, CTLE is used to compensate the channel loss. The 

reference voltage of VREF generator is shared among all DQs. Since the DQS is irregularly 

received in the read path, the ADDLL in receiver operates in a way that locks by PHYCLK 

when it is not a READ operation and freezes the control code when READ operation. 

DCDL with range of 200ps is placed for per-pin de-skewing in each of DQ and DQS in 

front of DES. The clock domain crossing from DQS to PHYCLK, read latency training and 

byte-aligning are performed in the 1:16 DES.  

As with the transmitter, the area of the receiver design must be considered first. This 

is because the area including both transceivers is limited by the process and pins. However, 

since the area of the receiver is generally smaller than that of the transmitter, there is not 

much difficulty in designing such a portion. Due to the nature of single-ended signaling, 

the reference voltage used for multiple DQs must be shared across the entire chip. This part 

is guarded without a special repeater, so that the top metal is laid out so that it is not affected 

by the noise as much as possible. 

The most characteristic part of the memory controller receiver is the data strobe. 

Unlike a typical i/o interface, the memory controller's receiver receives data and data 

strokes on an irregular basis, as well as a limited number of data strobe edges to sample 

data. Care must be taken to ensure that all data strobe sent by the memory is taken care of 

and not to be missed. In addition, since the delay mismatch between the data experienced 

in the memory and the data strobe occurs in the memory controller, the data must be delayed 

in accordance with the distribution delay of the data strobe. 
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The memory controller is bi-directional, so the receiver must not be on at all times. If 

the receiver is always on, the data sent from the memory controller to the memory may 

loop back itself, which may cause malfunctions. Therefore, in the READ operation, the 

receiver is turned on. When it is not READ operation, the receiver is designed to turn off 

or the DQ path should be turned off. This should take into account both the timing of 

sending the READ command and the timing of sending the DQ in response to the READ 

command in memory. The activation timing of the receiver can be determined by measuring 

the time it takes for the memory itself to transmit the READ command and returning the 

DQ to the DRAM. Therefore, the memory controller is designed to use the decoder to 

determine the type of command currently being transmitted and, in the case of the READ 

command, to activate the receiver after a specific cycle, where the specific cycle is designed 

to be trained. 

Clock domain crossing is also a difficult issue. Since the memory controller and 

memory are exposed to different PVT variations, timing variations occur between 

PHY_CLK and received DQS. To prevent this, it is necessary to generate a PHY CLK that 

tracks the phase of DQS, or to maximize the timing margin between the DQS and the PHY 

CLK. It is necessary. However, since the method of generating the PHY CLK that tracks 

the phase of the DQS is somewhat disadvantageous in terms of additional circuitry and 

complexity, we have chosen to maximize the timing margin between the DQS and the PHY 

CLK. To do this, the first thing to do is to deserialize the DQ as much as possible using the 

DQS. We deserialize DQ to DQS 1: 4 using the pre-amble edge and post-amble edge of 

DQS. There are three types of timing for deserializing DQ using fixed PHY CLK. Among 
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them, the training is configured so that the PHY CLK can sample the DQ at the timing with 

the widest timing margin. 

 

4.2.3 CLOCKING ARCHITECTURE 

 

According to [4.2.3], the state ratios of mobile DRAMs are 12%, 28%, 18%, and 42% 

for burst write, burst read, random write, and random read, respectively. When comparing 

only the burst state and the random state, it can be seen that the random state is more than 

burst state with ratio of 40:60. This means that the waiting time of mobile DRAM is 

relatively high, so that design of clocking architecture of the MCU should consider about 

power consumption during standby state. 

 

Figure 4.2.4 Mobile DRAM state ratio 
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adjust independently of each other. The local ADDLL should not be shut down to track 

PVT variation even in idle state. Therefore, a clocking architecture is constructed by gating 

clocks between PI and clock tree. The control signal of the gated clock can be implemented 

by sending the command at the time of sending the command in LTFSM.  

 

 

Figure 4.2.5 Clocking architecture of CK and CA 
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floor plan stage, local ADDLL and PI were placed between CK CA channels and dummy 

load was placed to reduce load mismatch. Figure 4.2.6 shows the clocking architecture of 

TX of DQ, DMI and DQS. DQS, DMI and 8 DQs share a local ADDLL and have PIs to 

phase adjust independently of each other.  

 

 

Figure 4.2.6 Clocking architecture of DQ/DQS TX 
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reduce static power consumption at non READ operation. 

 

 

Figure 4.2.7 Clocking architecture of DQ/DQS RX 
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power consumption of the IDLE state in the actually designed chip is measured higher than 

the simulation value, but the power variation in the WRITE state and the READ state is 

similar to the actual design value. This allows us to determine which block was causing the 

design mistake. Another thing to keep in mind is to avoid SSCS breaking or glitches in the 

process of gating the clock. For this reason, the clock gating block is designed to have no 

glitch by re-sampling the control signal with the falling edge of the input signal. 

 

 

Figure 4.2.8 Block diagram of transceiver at IDLE state 
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4.3 CIRCUIT IMPLEMENTATION 

 

Section 4.3 describes sub-block design of ADPLL with multi-modulus divider, 

ADDLL with triangular-modulated PI, CTLE with auto-DQS cleaning, 1:16 DES with 

clock domain crossing, LVSTL driver with ZQ calibration block, DCDL with coarse-fine 

delay unit and LTFSM.  

 

4.3.1 ADPLL WITH MULTI-MODULUS DIVIDER  

 

Figure 4.3.1 shows the block diagram of the ADPLL. The ADPLL consists of the 

phase-frequency detectable time-to-digital converter (PFDTDC), digital loop filter (DLF), 

1st order delta-sigma modulator (DSM), digitally controlled oscillator (DCO) and 2-stage 

multi-modulus divider (MMDIV).  

 

 

Figure 4.3.1 Block diagram of the ADPLL 
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A PFDTDC combines vernier TDC and the PFD to generate both high resolution and 

wide range TDC information with up and down information. It has dynamic range of 300ps 

with the resolution 10ps. The DLF provides control code of the DCO by proportional and 

integral path. The DSM reduces the in-band noise by shaping quantization noise and 

increases the effective resolution of the DCO. The 2-stage MMDIV divides the output clock 

of the DCO and generates both system clock of the MCU and the feedback clock of the 

PFDTDC. The frequency of the reference clock is 66.6MHz. The operation frequency of 

the DCO is from 1333MHz to 2133MHz. As shown in Figure, to provide the system clock 

of the LPDDR4 MCU from 266MHz to 2133MHz, the system clock is generated by 

selecting 1, 2, 4, or 8 dividing factors of 1st stage of MMDIV, and the feedback clock is 

generated by dividing factor 4 of 1st stage and dividing factors 5, 6, 7 or 8 of 2nd stage of 

MMDIV.  

 

 

Figure 4.3.2 Block diagram of digitally controlled oscillator 
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The DCO adopts digitally controlled resistor (DCR) based ring oscillator [4.3.1]-

[4.3.3]. The effective supply voltage of the DCO is changed to control output frequency. 

The jitter characteristics of the PLL is in inverse proportion to the KDCO. In order to support 

all the frequencies from 1333MHz to 2133MHz, the DCO must be designed to have a large 

KDCO. To achieve both wide tuning range and low KDCO simultaneously, the 2-bit mode 

selection is implemented by adjusting the strength of the inverters of each stage of the DCO.  

 

4.3.2 ADDLL WITH TRIANGULAR-MODULATED PI 

 

Figure 4.3.3 shows the block diagram of the global ADDLL and the local ADDLL. 

The global DLL adopts an open-loop coarse TDC (Time-to-Digital Converter) architecture, 

and an asynchronous one-time lock completes 180° phase shift lock in several cycles. When 

the global DLL is locked, the lock code is sent to the local DLL and all circuits in the global 

DLL are powered down.  

 

Figure 4.3.3 Block diagram of ADDLL 
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The local DLL immediately becomes coarse locked by delay code from global DLL. 

The local DLL then continually tracks the input phase to compensate for PVT variation as 

well as the mismatch between global and local DLLs. The local DLL generates multiphase 

CLK signals (CLK0, CLK90, and CLK180) and sends them to the PI. The folded delay 

line (DL) has coarse DL and fine DL. Conventional DL consisting of coarse DL and fine 

DL can cause glitch and signal distortion at the moment the coarse delay code is changed, 

since all of the fine delay code are changed at the same time. This increases jitter, reduces 

linearity and timing margins, and causes the system to malfunction. Figure 4.3.4 shows the 

operation of the folding DL of the invention with two delay codes with the same delay time. 

If the local DLL is initially locked near the change point of the CDC in the collapsed DL, 

digital loop filter (DLF) changes the delay code to another code away from the CDC change 

point, suppressing glitches and signal distortion. 

 

 

Figure 4.3.4 Operation of the folded delay line 

 

Figure 4.3.5 shows the block diagram of triangular-modulated PI. To improve the 

linearity of the PI over a wide frequency range, a high slew rate between adjacent 

interpolating CLK phases is required but is difficult to achieve with conventional PIs. This 

difficulty is overcome by introducing a triangular wave generator (TWG) into the PI. TWG 
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use a programmable current source and capacitor array to convert the square wave of the 

CLK signal to a high slew rate triangle wave over a wide frequency range. Therefore, phase 

interpolation can be smoothly performed even if only three CLK signals are transmitted at 

intervals of 90 degrees from the local DLL, and complexity, power consumption, and area 

can be reduced. 

 

 

Figure 4.3.5 Block diagram of triangular-modulated PI 

 

4.3.3 CTLE WITH AUTO-DQS CLEANING 

 

As mentioned earlier, CTLE is basically an equalization technique that can widen the 

receiver's margin due to the nature of the memory interface that can’t use a DFE. In this 

thesis, we applied asynchronous feedback to allow CTLE to remove DQS glitch apart from 

the equalization function. 

Figure 4.3.6 shows the timing diagram of DQS glitch issue and gate training. At both 

the start and end times of a read operation, both DQSP and DQSN signals are grounded, as 
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VSSQ termination is used and the memory output driver is turned off. In the idle state, both 

the DQSP and DQSN signals have the same signal level, making the receiver vulnerable to 

noise, which can cause glitches in Y_DQS. One way to eliminate glitches is to generate 

gate pulses that are optimized to remove glitches through gate training in the MCU. 

 

 

Figure 4.3.6 Timing diagram of DQS glitch issue and gate training 

 

 However, as we have already talked about, the training results are vulnerable to delay 

variations that change in real time. As shown in Figure 4.3.7, if the arrival times of the 

DQSP and DQSN signals change, the fixed gate pulse will lose the DQS. Therefore, the 

MCU has to do gate re-training, and during this time, the MCU will not be able to access 

DRAM, which will have a negative performance side effect. 
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Figure 4.3.7 Gate training fail with time variance 
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Figure 4.3.8 DQS clean with 2x receiver 

 

 

Figure 4.3.9 Timing diagram of automatic gate  
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occurrence in idle state. If the sign of the offset changes according to the input in the READ 

operation, the CTLE can eliminate both the glitch occurrence in the IDLE state and the 

duty error of the output during the READ operation. We focused on the transition of the 

YDQS signal according to the input period when the READ operation was performed, and 

the YDQS signal was fed back so that the offset direction of the CTLE could be changed 

according to the input. Figure 4.3.10 shows the block diagram of CTLE with asynchronous 

feedback. In the IDLE state, the output of the SR latch is fixed to make offset of the CTLE 

in one direction, which interferes with the glitch occurrence. During READ operation, the 

CTLE offset is changed by the transition between YDQSP and YDQSN. Figure 4.3.11 

shows the timing diagram of proposed receiver with and without asynchronous feedback.  

 

 

Figure 4.3.10 Block diagram of CTLE with asynchronous feedback 
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Figure 4.3.11 Timing diagram of CTLE with asynchronous feedback  

 

4.3.4 DES WITH CLOCK DOMAIN CROSSING 

 

Figure 4.3.12 shows the block diagram of 1:16 DES.  

 

 

Figure 4.3.12 Block diagram of 1:16 DES 
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The jitter correlation is broken between the PHYCLK and the DQS as the DQS signal 

passes through the DRAM. In addition, the jitter of DQS becomes larger due to the noise 

from DRAM. As a result, the more parallel the incoming data of DQS domain DES, the 

more stable clock domain crossing can be achieved. However, since the number of rising 

edges of DQS is limited, there is a limitation on DES. We designed 1: 4 DES in DQS 

domain by using both pre-amble and post-amble edges. Figure 4.3.13 shows the timing 

diagram of 1:16 DES. In a single READ operation, YDQS has 10 rising edges, including 

the rising edge of pre-amble and post-amble. By using all of them, 1:4 DES can derive DQB 

by de-serializing YDQ 1: 4 with YDQS. Since DQB has a width of 4tCK, 1:16 DES have 

enough timing margin that can stably sample DQB with PHYCLK even if DQS has many 

jitter while passing through DRAM or shifted by PVT variation. 

 

 

Figure 4.3.13 Timing diagram of 1:16 DES 
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4.3.5 LVSTL WITH ZQ CALIBRATION 

 

To achieve high bandwidth, LVSTL must have the accurate driver strength. In addition, 

at READ operation, impedance matching is required to avoid reflection caused by 

impedance mismatching between the channel and the receiver. A pull-down of the driver 

acts as ground termination in the receiver mode. The values of the impedances are 240Ω, 

120Ω, 80Ω, 60Ω, 48Ω, and 40Ω, which is integer divided values of 240Ω. In the proposed 

MCU, ZQ calibration is adopted to ensure accurate pull-down driver strength and pull-up 

driver strength. ZQ calibration first performs a pull-down NMOS calibration using an 

external resistor. Then ZQ calibration performs a pull-up NMOS calibration based on the 

calibrated pull-down transistor. Figure 4.3.14 shows the block diagram of pull-down ZQ 

calibration. Replica circuit of pull-down NMOS is connected to an external 240Ω resistor 

through the ZQ pad. The comparator compares the DC levels of the VOH and ZQ PAD. 

The counter adjusts the number of pulldown NMOS based on the output of the comparator 

to change the impedance so that the DC level of the ZQ pad is equal to VOH. 
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Figure 4.3.14 Block diagram of pull-down ZQ calibration 

 

Figure 4.3.15 shows the block diagram of pull-up ZQ calibration. After the pull-down 

ZQ calibration is completed, the external resistor connected to the pull-down NMOS is 

switched to the replica circuit of the pull-up NMOS. Subsequently, the same method of 

pull-down ZQ calibration is repeated for the pull-up NMOS. After all ZQ calibrations are 

completed, the results are shared with the LVSTL in the transmitter.  

 

 

Figure 4.3.15 Block diagram of pull-up ZQ calibration 
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4.3.6 COARSE-FINE DCDL 

 

When designing a DCDL, delay resolution and delay range should be defined. MCU 

need an asynchronous delay line to compensate tDQS2DQ and pin-to-pin skew in the 

transmitter. Therefore, the delay range was determined to be 1000ps by the maximum value 

of tDQS2DQ and pin-to-pin skew. The delay resolution should be about 4ps considering 

that the time margin is generally 1/64 UI and the maximum operating speed of the MCU is 

4266Mbps. A delay unit with a propagation delay of 4ps requires as many as 250 delay 

units to achieve a delay range of 1000ps, which costs too much power and area. Coarse-

fine architectures are a way to efficiently implement high resolution and wide delay lines. 

Figure 4.3.16 shows the block diagram of coarse-fine DCDL. We were able to achieve 4ps 

fine resolution and 800ps wide range simultaneously using 16 coarse-delay units and a 4-

bit phase mixer type fine delay line. 

 

 

Figure 4.3.16 Block diagram of coarse-fine DCDL 
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4.4 LINK TRAINING  

 

In order to design and test the MCU, the initialization and training of the DRAM must 

be performed by the MCU. The LTFSM generates data and commands to support memory 

initiation and training operations, performs calibration of the MCU, and generates control 

codes. As shown in Figure 4.4.1, the LPDDR4 memory can operates normally, after finish 

the initialization and training process from power ramp state at Ta to DQ training state at 

Tj. 

 

 

Figure 4.4.1 Initialization sequence of LPDDR4 
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the MCU means readiness for transmitting and receiving signals to and from the DRAM. 

Therefore, power ramp state of the MCU is the process of power supplying, reset state of 

the digital control circuits, and ready to operate state of the analog circuits.  

The LTFSM consists of two modules. One module is a low-speed module that operates 

by a reference clock. The other module is a high-speed module operating by SYS_CLK. 

The states from time Ta to Tg in Figure 4.4.1 are low speed operation range. Prior to CBT, 

high-speed command transmission is not guaranteed, so the MCU must operate at low 

bandwidth. The low-speed module of LTFSM generates low-speed CAs before CBT and 

immediately after CBT. After CBT, the high-speed module replaces the low-speed module 

to generate CAs and DQs and control the MCU.  

 

 

Figure 4.4.2 Operation sequence of LTFSM 

 

Power Up Reset DRAM Init.

MRW/MRR ZA Cal Start ZA Cal Latch

CA Bus Tr. WR Leveling

Eye centering Read Latency Calibration

DQ Read Training

tDQS2DQ Eye centering Calibration

DQ Write Training

Normal Operation

Write / Read Margin Test 



59 

 

4.4.1 SIMULATION RESULTS 

 

Section 4.4.1 shows simulation results of the memory controller modeling. The 

modeling verification was performed by modeling the memory and channel corresponding 

to the whole controller PHY part as a system Verilog, and link training block using Verilog 

code for synthesis. Schematic is modeled to have the same structure as possible. In this 

environment, the memory controller and the memory are operated to communicate through 

the transient simulation, and the error is judged based on the pre-encoded message of the 

memory. From Figure 4.4.3 To Figure 4.4.5 show initialization step sequence of the boot-

up operation. The boot-up operation means a step from initial power-on to the initial setting 

while communicating at a low speed in a state in which the memory can’t guarantee high-

speed communication, and preparing for high-speed command training. That is, it means 

initialization of the memory device. First, the MRW commands are sent sequentially to the 

memory. After that, ZQ calibration and ZQ latch are performed. In reality, the MRW should 

be written for all addresses, but the prototype chip is designed to input initial values only 

for the addresses that should be actually written, except for addresses that can be used as 

default values. 
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Figure 4.4.3 Boot up sequence - initialization step 1 

 
Figure 4.4.4 Boot up sequence - initialization step 2 
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From Figure 4.4.6 to Figure 4.4.13, modeling simulation results of the command 

training are shown. Figure 4.4.6 shows entry timing of the command training. When CKE 

signal goes low, the command training starts after the tCAENT. The operation speed is 

changed from boot frequency to the normal operation speed of the LPDDR4 memory. For 

example, speed is changed from 33MHz to 2133MHz. Figure 4.4.7 shows the setup and 

hold timing margin for the reference voltage sweep at the command training. The both 

margins are 2ns. During the CBT, the CS signal is sampled at the rising edge of CK to read 

the CA signals at the point where CS becomes H, and feed back this value to the DQ signals. 

In CBT, CS training is performed first and CA training is performed later. Therefore, in 

order to prevent the timing margin of the CA signal from affecting the CS training, the CA 

signal is designed to have a wide timing margin before and after the CS signal transmission. 

 

 
Figure 4.4.5 Boot up sequence - initialization step 3 
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Figure 4.4.8 shows the training pattern of the CS training. The values of the CA are 

fixed to predefined value, and only CS signal toggle width of 0.75 tCK when the CS 

training. The reason why the pulse width is 0.75 tCK is to prevent duplicated sampling. 

 
Figure 4.4.6 Timing of command training entry 

 
Figure 4.4.7 Training pattern of CS training 
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Since the CS and CA signals are transmitted at a single data rate, they are generally 

transmitted with a pulse width of 1 tCK. However, there is a possibility that if 1 tCK pulse 

width is widened due to special environmental factors, the problem of duplicated sampling 

may occur during training. In order to prevent this, and to obtain the center position of the 

training accurately, it is necessary to train the pulse using a pulse made by decreasing both 

ends of the existing pulse by the same amount. Therefore, a multi-phase clock is used in 

the CA path, and a 0.125 tCK shifted signal and a 0.475 tCK shifted signal are merged into 

an OR gate to generate a training signal having a pulse width of 0.75 t CK as a mask signal 

having a 0.75 t CK pulse width. The CS training is the x axis timing sweep training, but if 

the timing pass zone is not found in the predefined reference voltage, the value of the 

reference voltage would be changed until it finds the timing pass zone. Also the x axis value 

is changed, if the voltage pass zone is not found in fix timing value. 

 

 
Figure 4.4.8 Setup and hold timing margin for reference voltage sweep at command training 
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Figure 4.4.9 shows this exceptional case of the reference voltage change. At the CS 

training, if there is no pass zone in particular a time code, the time code is changed and the 

voltage sweep is performed again to find the pass zone. This example is intended to show 

that it can respond to an exceptional case that rarely occurs in a real situation. In the actual 

environment, since the center of the eye can be moved to the default value of VREF through 

the ZQ calibration, there is only a slight difference, and almost no occurrence of the path 

region is present. 

 

 

 

Figure 4.4.10 shows the CA training results. The 1x2y3x eye center detection 

algorithm is performed. First in the 1x sweep, the reference voltage code is fixed at 23.2 

which means 23.2% of the VDDQ, and the timing training is performed. Second in the 2y 

 
Figure 4.4.9 Reference voltage sweep in CS training 
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sweep, the timing code is fixed at 1001001 which means binary value of the phase 

interpolator code of 73/128, and the reference voltage training is performed. Finally in the 

3x sweep, the reference voltage code is fixed at 23.2% of the VDDQ, and the timing 

training is performed. As the time code and voltage code change, you can see that the slope 

changes in the middle. This is a continuation of the process in which gain is increased and 

then reinitialized by adaptive training, through which the code is rapidly increased to enable 

the fast training claimed in this paper. 

 

  

 

Figure 4.4.11 shows training patterns of the CA training. The training patterns are 

changed in the order of A-0-B-0-C-0-D-0-E-0-A-···. The 5 kinds of data patterns are used 

to test various environment, and 0 pattern is inserted between data patterns to prevent 

 
Figure 4.4.10 1x2y3x eye detection algorithm in CA training 
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timing error. Figure 4.4.12 shows the result of the command training. The value of timing 

code is 0011110 which means binary value of the phase interpolator code of 30/128, and 

the value of voltage code is 14.8% of the VDDQ. 

 

 

 

 

Figure 4.4.13 and Figure 4.4.14 show the exit timing of the command training and 

changing of the operation speed at the end of the command training. After the command 

training, operation speed of the LPDDR4 memory lowers to 33MHz to write the result of 

the command training value at the LPDDR4 memory. As shown in Fig. 4.2.12, it will be 

fasted again for the write leveling. 

  

 
Figure 4.4.11 Training pattern of CA training: 0-A-0-B-0-C-0-D-0-E-0-A-··· 
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Figure 4.4.12 Result of the command training 
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Figure 4.4.15 and Figure 4.4.16 show the write leveling. Figure 4.4.15 shows entry 

timing of the write leveling. Predefined command is sent to the memory to enter the write 

leveling. After tWLDQSEN and tWLMRD, the DQS and other signals are sent to the 

memory. As shown in Figure 4.4.16, the DQS[1] is aligned with CK at DQS1_CODE 6, 

and the DQS[0] is aligned with CK at DQS0_CODE 10. 

 

 
Figure 4.4.13 Exit timing of the command training 

 
Figure 4.4.14 Operation speed change in the end command training 



68 

 

 

 

 

 

From Figure 4.4.17 to Figure 4.4.19, simulation results of the read training are shown. 

As shown in Figure 4.4.17, first, the phase interpolator code is swept to lock the phase 

interpolator code. And each delay line in DQ is swept to check the skews of the each DQ. 

 
Figure 4.4.15 Entry timing of the write leveling 

 
Figure 4.4.16 Write leveling 
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Figure 4.4.18 shows command transmission of the read training. The DQs receive 

predefined clock patterns to lock the reference voltage. Figure 4.4.19 shows the result of 

the read training. From DQ[0] to DQ[7], including DMI[0], the DQs have common eye 

open window. And DQS[0] signal leads every DQs to compensate DQS buffering delay in 

memory controller. 

 

 

 

 
Figure 4.4.17 Training code sweep of the read training 

 
Figure 4.4.18 Environment of the read training 
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Figure 4.4.20 and Figure 4.4.21 show the write training. In Figure 4.4.20, the min code 

is reflected to each DQ code to compensate the tDQS2DQ skew. For example, DQ[0] code 

is reduced from 77 to 24 by subtraction of common min code 53. Figure 4.4.21 shows the 

write training patterns. Consecutive 5 write commands are sent to the LPDDR4 memory. 

After that, 5 consecutive DQS and DQs are sent to the memory. The DQS[0] signal leads 

every DQs to compensate DQS buffering delay called "tDQS2DQ delay" in the LPDDR4 

memory. 

 

 
Figure 4.4.19 Result of the read training 
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Figure 4.4.20 Training code sweep of the write training 

 
Figure 4.4.21 Write training pattern 
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CHAPTER 5 
 

 

 

MEASUREMENT RESULTS 
 

 

 

5.1 MEASUREMENT SETUP 

 

Figure 5.1.1 shows chip microphotograph of the proposed LDDR4 memory controller. 

Our LPDDR4 memory controller is implemented in 65nm CMOS process and occupies an 

area of 12mm2. At the right side of the chip, transceivers of DQS0, DQ0~7 and DMI0 are 

located. At the top side of the chip, transceivers of DQS1, DQ8~15 and DMI1 are located. 

The transmitters of CA0~5, CS and CK are located at upper right side of the chip. The 

LTFSM located at the center of the chip. The ADPLL and ADDLL are located at the bottom 

of the chip. The total number of pins of the chip is 176. There are four voltage domains. 

VDDDCO is the voltage used by the DCO of the ADPLL. VDDPLL is used by circuits 

other than DCO in ADPLL. VDDD is the power used by the LTFSM block. VDDQ is the 

power used by the transceiver and ADDLL and clock distribution circuit. 
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Figure 5.1.1 Chip microphotograph 

 

As shown in Figure 5.1.2, mobile DRAM is generally configured as a package on 

package (PoP) type in which DRAM and MCU are overlapped. The PoP has a good signal 

integrity characteristics because channel length of the PoP is very short.  

 

 

Figure 5.1.2 Package on package example 
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In academic research, PoP type package is hard to use, thus ball grid array (BGA) type 

package is used. Fortunately, the mobile memory interface does not use only the PoP type 

evaluation, and there are cases where two packages are arranged side by side on the PCB 

as shown in Figure 5.1.3.  

 

 

Figure 5.1.3. Iphone 4 PCB 

 

In this thesis, as shown in Figure 5.1.4, we design the test board by placing our MCU 

and LPDDR4 memory side by side.  

 

Figure 5.1.4 Test board with placing MCU and LPDDR4 memory side by side 

 

Memory chip Controller chip



75 

 

Before we start talking about the test board, we design a BGA package that minimizes 

the length difference of all I/O to minimize the occurrence of skew in the package. Our 

BGA has 4 layers. Figure 5.1.5 and Figure 5.1.6 show the cross section from bottom layer 

to top layer. Top and 2nd layer is VSS domain and 3rd layer is VDD domain. In the case of 

VSS, since the PLL is a noise-sensitive circuit, only the VSS of PLL is provided separately 

from the remaining circuits.  

 

     

Figure 5.1.5 Top (left) and 3rd (right) layer of BGA package 
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Figure 5.1.6 2nd (left) and bottom (right) layer of BGA package 

 

In order to measure the proposed LPDDR4 memory controller, three types of test 

boards were fabricated. Figure 5.1.7 shows the first test board which is named LP4_TEST. 

LP4_TEST board is made for measurement of sub blocks of the MCU including ADPLL, 

ADDLL, DCDL, TX and RX. CK, DQS0, DQ0, DQ1, CS and CA0 can be measured with 

SMA. The rest of the I/O signals are designed to be probing through test points. 
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Figure 5.1.7 LP4_TEST board 

 

Figure 5.1.8 shows the rest of test boards which is named LP4_TP and LP4_noTP. 

The LP4_TP board is configured so that the MCU can communicate with the LPDDR4 1-

channel. The initialization sequence and the margin test result between the MCU and 

LPDD4 are stored in I2C block of the MCU and this value can be read to PC to check the 

training results. As with the LP4_TEST board for debugging, I/O signals can be measured 

by probing test points. LP4_noTP board is designed with test points removed by 

considering the effect on signal integrity. 
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Figure 5.1.8 LP4_TP board (left) and LP4_noTP board (right) 

 

Figure 5.1.9 and Figure 5.1.10 show the measurement setup. The measurement setup 

consists of a pulse function arbitrary noise generator 81160A, a DC power supply E3631A, 

a test board, an i2c board and a PC. 81160A generates 66MHz reference clock of the 

ADPLL. E3631A generates VDDD, VDDQ, VDDPLL, VDDDCO, VSS and VSSPLL. 

The I2C board and PC initialize the MCU and analyze the measurement results. 

LP4

MCU
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Figure 5.1.9 Photograph of measurement setup 

 

 

Figure 5.1.10 Block diagram of measurement setup 
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5.2 MEASUREMENT RESULTS OF SUB-BLOCK 

 

5.2.1 ADPLL WITH MULTI-MODULUS DIVIDER 

 

The ADPLL must be able to create an output clock in the range of 1333MHz to 

2133MHz. In addition, low jitter of the ADPLL must be low because it is directly associated 

with the eye margin of signal transmission and reception. Figure 5.2.1 shows the integrated 

jitter measurement results of the ADPLL according to operation frequency. The integrated 

jitter from 1kH to 100MHz is 3.86ps, 2.85ps, 2.71ps and 2.53ps at 1333MHz, 1600MHz, 

1866MHz, and 2133MHz, respectively. The circuit area of the phase-locked loop is 

0.39mm2 and consumes 17.47mW at 2133MHz operation.  

Figure 5.2.2 shows the performance summary of integer-N ADPLL. The reference 

clock is 66.66MHz and the N value is changed to 32, 28, 24, and 20 to generate clocks of 

2133MHz, 1866MHz, 1600MHz and 1333MHz, respectively. The maximum power 

consumption is 17.47mW at 2133MHz and the worst integrated RMS jitter is 3.86ps at 

1333MHz. The area of ADPLL is 0.39 mm2. 
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Figure 5.2.1 Measurement results of ADPLL 

 

 

Figure 5.2.2 Performance summary of ADPLL 

 

Process TSMC 65nm LP

Reference Frequency [MHz] 66.66

Divider Factor [-] 32 28 24 20

DCO

Target frequency [GHz] 2.133 1.866 1.6 1.333

Range [GHz] 2.4 2.2 1.9 1.4

Power [mW] 3.17 2.74 2.3 1.9

PLL

Integrated RMS jitter

(10k-100MHz)
[ps] 2.53 (RMS) 2.71 (RMS) 2.85 (RMS) 3.86 (RMS)

Phase noise @ 1MHz [dBc/Hz] -98.42 -99.53 -96.75 -96.14

Power [mW] 14.3 9.6 8.4 7.2

Total Power [mW] 17.47 12.34 10.7 9.1

Area [mm2] 0.39
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5.2.2 ADDLL WITH TRIANGULAR-MODULATED PI 

 

Figure 5.2.3 and Figure 5.2.4 shows the measurement results of the ADDLL. To verify 

the operation of the ADDLL, an oscilloscope was used to observe whether the waveforms 

of the CK0 and CK180 signals were 180° locked. As shown in Figure 5.2.3 and Figure 

5.2.4, the ADDLL performs 180° of locking well in the operating frequency range of 266 

to 2133MHz. The global delay-locked loop and local delay-locked loop occupy areas of 

0.047mm2 and 0.027mm2 respectively. The global delay-locked loop power offed after 

lock and the local delay-locked loop consumes 3.71mW at 2133MHz. 

 

 

Figure 5.2.3 Measurement results of ADDLL at 266, 533, 800 and 1066MHz 
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Figure 5.2.4 Measurement results of ADDLL at 1333, 1600, 1866 and 2133MHz 

 

Figure 5.2.5 shows the measurement of differential non-linearity (DNL) at 266MHz 

and 2133MHz to verify the performance of the PI. The measured DNL has a value of -

0.625 to 0.906 LSB and -0.727 to 0.911 LSB for 266MHz and 2133MHz, respectively. 

 

 

Figure 5.2.5 Measured DNL of ADDLL 
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5.2.3 COARSE-FINE DCDL 

 

Figure 5.2.6 show measurement results of the coarse-fine DCDL. The coarse-fine 

DCDL has 256 step of delay control code, and average resolution is 4ps. The dynamic range 

of the coarse-fine DCDL is 1106ps. 

 

 

Figure 5.2.6 Measurement results of DCDL 

 

5.3 LPDDR4 INTERFACE MEASUREMENT RESULTS 

 

Figure 5.3.1 shows overall measurement results of the LPDDR4 memory controller 

operation. All operations of the LPDDR4 memory controller including the READ and 

WRITE operation are confirmed from 533Mbps to 4266Mbps. The resolution of time and 
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voltage code are 1/128tCK and 1mV, respectively. From 533Mbps to 3200Mbps, 1.25V 

VDDQ is used without termination. At 3733Mbps and 4266Mbps, supply voltage is risen 

from 1.25V to 1.3V for the internal supply voltage drop and RZQ/4 termination is enabled. 

The MCU stores the pass start code and the length value of the eye detection result in the 

register during the training process of the DRAM. During the measurement, I2C was used 

to retrieve the stored registers. The measured write timing margin is 23/128tCK and 278mV 

at 4266Mbps. The measured read timing margin is 27/128tCK and 32mV at 4266Mbps. All 

training sequences are verified at data-rate from 533Mb/s/pin to 4266Mb/s/pin. 

 

 

Figure 5.3.1 Measurement results of trainings 

 

Figure 5.3.2 shows the measured shmoo plot of write margin test and read margin test. 

The measured eye width and height of write operation are 0.27UI and 221mV, respectively. 

For a read operation, the measured eye width and height are enhanced by 94% from 0.17UI 

to 0.33UI and 9% from 55mV to 60mV by asynchronous feedback, respectively.  

Speed (Mbps) 533 1066 1600 2133 2666 3200 3733 4266

CMD TR
Time 124 122 113 120 96 87 87 81

Voltage 403 403 403 403 403 403 403 403

Write Leveling PASS PASS PASS PASS PASS PASS PASS PASS

Read Training PASS PASS PASS PASS PASS PASS PASS PASS

Write Training PASS PASS PASS PASS PASS PASS PASS PASS

Normal Operation PASS PASS PASS PASS PASS PASS PASS PASS

Write

Margin

Time 54 47 55 49 35 22 26 23

Voltage 379.2 379.2 379.2 302.4 302.2 268.8 316.8 278.4

Read

Margin

Time 47 46 41 39 46 35 28 27

Voltage 432 436 432 352 320 304 140 32
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Figure 5.3.2 Shmoo plot of WRITE and READ margin test at 4266Mb/s/pin 

 

The power efficiency of write and read operations at 4266Mbps/pin are 5.68pJ/bit and 

1.83pJ/bit respectively. Table I compares this work with a LPDDR4 memory controller. 
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Table 5.3.1 Performance Comparison of LPDDR4 Memory Controller 

Parameter This work [4.3.5] 

Technology (nm) 65 10 

Interface 

environment 

Chip-to-chip on 

PCB 
Package on package 

Configuration 
16-DQ, 2-DMI, 2-

DQS, 6-CA, CK 

16-DQ, 2-DMI, 2-

DQS, 6-CA, CK 

Data-rates (Mb/s/pin) 4266 4266 

tDQSCK variation 

compensation 

Asynchronous 

feedback 

Automatic gate by 

additional receiver 

Training algorithm Adaptive 3-step Full scanning 

Power 

efficiency 

(pJ/bit) 

write 5.68 2.13* 

read 1.83 0.153* 

Write margin 0.36UI, 148mV 0.51UI, 150mV 

Read 

margin 

without 

AF-CTLE 
0.30UI, 76mV 

0.44UI, NA 
with 

AF-CTLE 
0.47UI, 80mV 

* Simulation result 
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CHAPTER 6 
 

 

 

CONCLUSION 
 

 

 

In this thesis, low power memory controller, which is operated with a LPDDR4, is 

proposed and designed with adaptive eye detection algorithm, which is used at the 

LPDDR4 memory training sequence and reduce the overall training time.  

In order to achieve high bandwidth and low power consumption, mobile DRAM 

interface is increasing the weight of MCU training. MCU training is not performed on a 

one-shot basis but should be re-training periodically to compensate for PVT variations. 

Therefore, efficient training is a factor that greatly affects the power efficiency of the 

overall memory interface. The proposed adaptive eye detection algorithm adopts the 

adaptive gain control scheme for the eye detection process, which enables the 60 times 

faster training than the two-dimensional full scanning method and 1.9 times faster training 

than 1x2y3x eye center detection method. As a result, black-out time and power 

consumption at re-training decreased by 52.6%. 

The proposed architecture of the LPDDR4 memory controller is designed based on 

the LPDDR4 memory specification in order to compose the memory system. We also 

proposed a transceiver and on-chip clock architecture and sub-blocks for MCUs with high 
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bandwidth and low power consumption. The proposed transmitter with write training, we 

achieved 0.27UI and 221mV write margin. The proposed clocking architecture reduces 

power consumption in IDLE states by 118% and 37%, respectively, compared to burst write 

or burst read states. We achieved 0.33UI and 60mV read margin through the proposed 

receiver, training, and CTLE with asynchronous feedback.  

Fabricated in 65nm CMOS process, the proposed LPDDR4 memory controller 

occupies 12mm2. The proposed LPDDR4 memory controller has verified the operation by 

making an evaluation board communicating with commercial LPDDR4 memory. The 

operation of the LPDDR4 memory system including CBT, RDTR, WLVL, WRTR, read 

margin test and write margin test, is verified from 533Mbps to 4266Mbps. 
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한글초록 
 

본 연구에서는 비동기식 피드백 연속-시간 선형 이퀄라이저 및 적응형 3

단계 눈 탐지 알고리즘을 갖춘 4266Mb/s/pin LPDDR4 메모리 컨트롤러를 제안

하였다. 비동기 피드백 연속-시간 선형 이퀄라이저는 잡음보다 큰 오프셋을 

적용하여 트레이닝 없이 DQS의 글리치를 제거하고 DQ 경로에서 결정 피드백 

이퀄라이저로 작용하여 읽기 마진을 향상시킨다. 적응형 3단계 눈 감지 알고

리즘은 2차원 전체 스캔 방식과 비교하여 초기화 동작 및 재트레이닝의 전력 

소비 및 블랙 아웃 시간을 줄인다. 또한 적응형 3단계 눈 감지 알고리즘은 눈 

검출 결과가 바뀌면 순차적으로 이진 방법을 사용하여 눈 경계를 탐색하고 해

상도를 초기화 함으로써 정확도를 유지할 수 있다. 높은 대역폭을 달성하기 

위한 트레이닝에 적합한 송신기 및 수신기를 제안하였다. 송신기는 위상 변환

기, 디지털 제어 지연 라인, 16:1 시리얼라이저, 프리 드라이버 및 저전압 스윙 

터미네이티드 로직으로 구성되어 있다. 수신기는 기준 전압 생성기, 연속 시간 

선형 이퀄라이저, 위상 변환기, 디지털 제어 지연 라인, 1:4 디시리얼라이저 및 

4:16 디시리얼라이저로 구성된다. 일반적으로 모바일 어플리케이션은 긴 유휴 

기간을 가지고 있는데, 이에 적합하도록 유휴 기간에서 저전력을 소비하는 클

라킹 아키텍쳐를 제안하였다. 프로토 타입 칩은 볼 그리드 어레이 패키지로 

65nm CMOS 공정에서 구현되었으며 상용 LPDDR4 메모리 칩과 연동하여 측
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정 하였다. 측정 결과, 쓰기 마진은 0.36UI와 148mV 였으며, 읽기 마진은 AF-

CTLE를 적용하지 않은 경우 0.30UI와 76mV 였으며, AF-CTLE를 적용한 경우 

0.47UI 및 80mV으로 향상되었다. 연속된 쓰기 및 읽기 동안 전력 효율은 각각 

5.68pJ/bit 및 1.83pJ/bit 이었다. 

 

주요어 : 모바일 메모리 컨트롤러; LPDDR4; 메모리 인터페이스; 송수신기; 적

응형 눈 감지 
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