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Abstract

Attention-based models are firstly proposed in the field of computer vision. And
then they spread into natural language processing (NLP). The first one successfully
bringing in attention mechanism from computer vision to NLP is neural machine
translation. Such attention-based mechanism is motivated from that, instead of
decoding based on the encoding of a whole and a fixed-length sentence during one
pass of neural network-based machine translation, one can attend a specific part of
the sentence. This specific part is what should currently be attended. These parts
could be words or phrases.

The basic problem that the attention mechanism solves is that it allows the
network to refer back to the input sequence, instead of forcing it to encode all
information into one fixed-length vector. The attention mechanism is simply giving
the network access to its internal memory, which is the hidden state of the encoder.
In this point of view, instead of choosing what to “attend” to, the network chooses
what to retrieve from memory. Unlike typical memory, the memory access
mechanism here is soft, which means that the network retrieves a weighted
combination of all memory locations, not a value from a single discrete location.
Making the memory access soft has the benefit that we can easily train the network
end-to-end using backpropagation

The trend towards more complex memory structures is now continuing. End-
to-End Memory Networks allow the network to read same input sequence multiple

times before making an output, updating the memory contents at each step. For



example, answering a question by making multiple reasoning steps over an input
story. However, when the networks parameter weights are tied in a certain way, the
memory mechanism in End-to-End Memory Networks identical to the attention
mechanism presented here, only that it makes multiple hops over the memory.

In this dissertation, we propose the deep memory network with attention
mechanism and word/sentence embedding for attention mechanism. Due to the
external memory and attention mechanism, proposed method can handle various
tasks in natural language processing, such as question and answering, machine
comprehension and sentiment analysis. Usually attention mechanism requires huge
computational cost. In order to solve this problem. | also propose novel word and
sentence embedding methods. Previous embedding methods only use the Markov
assumption. But if we consider the language structure and make use of it, it will be
very helpful to reduce the computational cost. Also it does not need strong

supervision which means the additional information on important sentences.

Keywords : Attention Model, Memory Network, Deep Learning, Natural Language
Understanding, Machine Comprehension

Student Number : 2004-30347
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Chapter 1

Introduction

1.1 Background and Motivation

Neural network models have recently become the most effective tools for a range of
hard applied natural language processing problems, including translation (Luong et
al. 2015), sentiment analysis (Socher et al. 2011), and text generation (Wen et al.
2015). These models succeed in large part because they can learn and use their own
continuous numeric representational systems for sentence meaning. However, their
representations need not correspond in any interpretable way with the logic based
representations typically used in linguistic semantics. These models’ successes in
learning to solve semantically difficult problems signal that they are a potentially
valuable object of study for semantics, and drawing insights from semantics to
improve these models could yield substantial progress across applied language
understanding tasks. But there is no general method to solve the various tasks in
natural language problem.

Most tasks in natural language processing can be cast into question answering
(QA) problems over language input. QA is a complex natural language processing
task which requires an understanding of the meaning of a text and the ability to
reason over relevant facts. Most, if not all, tasks in natural language processing can

be cast as a question answering problem: high level tasks like machine translation

1



(What is the translation into French?); sequence modeling tasks like named entity
recognition (Passos et al., 2014) (NER) (What are the named entity tags in this
sentence?) or part-of-speech tagging (POS) (What are the part-of-speech tags?);
classification problems like sentiment analysis (Socher et al., 2013) (What is the
sentiment?); even multi-sentence joint classification problems like co-reference
resolution (Who does “their” refer to?).

Most higher intelligences in nature have a built-in mechanism for deciding how
to apply their brainpower from moment to moment. It is called attention, and refers
to management of cognitive resources. Human attention is a reasonably well studied
subject within the field of psychology and known to be a key feature of human
intelligence. Without attention we would constantly be overloaded with stimuli,
severely affecting our ability to perform tasks, make decisions and react to the
environment.

Attention-based models are firstly proposed in the field of computer vision
(Mnih et al., 2014). And then they spread into natural language processing (NLP).
The first one successfully bringing in attention mechanism from computer vision to
NLP is neural machine translation (Bahdanau et al., 2015). Such attention-based
mechanism is motivated from that, instead of decoding based on the encoding of a
whole and a fixed-length sentence during one pass of neural network-based machine
translation, one can attend a specific part of the sentence. This specific part is what
should currently be attended. These parts could be words or phrases.

From an engineering perspective, attention can be viewed as resource
optimization, enabling systems to perform tasks in complex environments while
requiring insignificant amounts of resources (compared to complexity of tasks and

2
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environments) and using existing resources only for information likely to be
important or relevant. In this view, time itself can be treated as a resource.

While a general-purpose attention mechanism, applicable to any NLP, could be
a goal to strive for, a perfect and complete independence from architecture has been
found practically impossible, as resource management touches on too many
fundamental issues in the structure and operation of an architecture to make this a
theoretical possibility. The goal of the present work is therefore not to develop an
attention component that can be plugged directly in to existing NLP architectures.

This work is motivated by the desire to create practical attention based model
intended to perform real tasks in natural language processing rather than attempting
to validate hypothesis or models relating to the functionality of the brain at any level.
While clearly “biologically inspired” at a high level (by natural attention), this work
is not biologically inspired in this sense: It does not target an accurate simulation or
model of biological mechanisms. Where deemed useful and appropriate, inspiration
from research on human attention will be taken, but it is not a goal to have the
resulting components be constrained in design by what is known about the

functionality of human attention.

1.2 Approach and Contributions

The basic problem that the attention mechanism solves is that it allows the network

to refer back to the input sequence, instead of forcing it to encode all information



into one fixed-length vector. The attention mechanism is simply giving the network
access to its internal memory, which is the hidden state of the encoder. In this point
of view, instead of choosing what to “attend” to, the network chooses what to retrieve
from memory. Unlike typical memory, the memory access mechanism here is soft,
which means that the network retrieves a weighted combination of all memory
locations, not a value from a single discrete location. Making the memory access soft
has the benefit that we can easily train the network end-to-end using backpropagation

Memory Mechanisms themselves have a much longer history. The hidden state
of a standard Recurrent Neural Network is itself a type of internal memory. RNNs
suffer from the vanishing gradient problem that prevents them from learning long-
range dependencies. LSTMs improved upon this by using a gating mechanism that
allows for explicit memory deletes and updates.

The trend towards more complex memory structures is now continuing. End-
to-End Memory Networks allow the network to read same input sequence multiple
times before making an output, updating the memory contents at each step. For
example, answering a question by making multiple reasoning steps over an input
story. However, when the networks parameter weights are tied in a certain way, the
memory mechanism in End-to-End Memory Networks identical to the attention
mechanism presented here, only that it makes multiple hops over the memory.

In this dissertation, | propose the deep memory network with attention
mechanism and word/sentence embedding for attention mechanism. Due to the
external memory and attention mechanism, proposed method can handle various
tasks in natural language processing, such as question and answering, machine

comprehension and sentiment analysis. If we can cast the problems in natural
4



language processing into question answering problems, every input data can be
processed via sequence modeling process. Then attention mechanism can handle it.
Disadvantage of attention mechanism is that it requires huge computational cost.
In order to solve this problem. | proposed novel word and sentence embedding
methods. Previous embedding methods only use the Markov assumption. But if we
consider the language structure and make use of it, it will be very helpful to reduce
the computational cost. Also it does not need strong supervision which means the

additional information on important sentences.

1.3 Organization of the Dissertation

This dissertation is organized as follows.

In Chapter 2, we discuss memory networks and attention mechanism. We
describe how attention mechanism works and the characteristics of previous memory
model such as Memory Networks, End-to-End Memory Networks and Dynamic
Memory Networks.

In chapter 3, we propose novel distributed representation of words. The
proposed methods make use of the relationship between words in sentences. So we
can use more accurate representation of words.

In chapter 4, we propose distributed representation of sentences using the co-
reference. In linguistics, co-reference occurs when two or more expressions in a text

have the same referent. This means that syntactic relationship exists between co-



referential expressions. These kind of information can reduce computational cost of
attention mechanism dramatically.

In chapter 5, we propose the Deep Memory Network. Deep Memory Network
use the syntactic relationship and structural information of language. It makes the
Deep Memory Network locate the attention very efficiently and do not need strong
supervision.

Finally, we summarize the dissertation and discuss contributions in Chapter 6.



Chapter 2

Related Work

2.1 Memory Networks

Memory Networks reason with inference components combined with a long-term
memory component; they learn how to use these jointly (Weston et al., 2015a). The
long-term memory can be read and written to, with the goal of using it for prediction.
These models are investigated in the context of question answering (QA) where the
long-term memory effectively acts as a (dynamic) knowledge base, and the output is
a textual response.

A memory network consists of a memory m (an array of objects indexed by m;)

and four (potentially learned) components I, G, O and R as follows:

I: (input feature map) — converts the incoming input to the internal feature
representation.

G: (generalization) — updates old memories given the new input. This
generalization means that there is an opportunity for the network to compress
and generalize its memories at this stage for some intended future use.

O: (output feature map) — produces a new output (in the feature representation
space), given the new input and the current memory state.

R: (response) — converts the output into the response format desired. For
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example, a textual response or an action.

Given an input x (e.g., an input character, word or sentence depending on the
granularity chosen, an image or an audio signal) the flow of the model is as follows:

1. Convert x to an internal feature representation 1(x).

2. Update memories m; given the new input: m; = G(m;, 1(x), m), Vi.

3. Compute output features o given the new input and the memory:

0 =0(I(x), m).

4. Finally, decode output features o to give the final response: r = R(0).

This process is applied at both train and test time, if there is a distinction
between such phases, that is, memories are also stored at test time, but the model
parameters of I, G, O and R are not updated. Memory Networks cover a wide class
of possible implementations. The components I, G, O and R can potentially use any
existing ideas from the machine learning literature, e.g., make use of your favorite

models (SVMs, decision trees, etc.).

I component: Component | can make use of standard pre-processing, e.g.,
parsing, co-reference and entity resolution for text inputs. It could also encode the
input into an internal feature representation, e.g., convert from text to a sparse or

dense feature vector.

G component: The simplest form of G is to store 1(x) in a “slot” in the memory:

My = 1(x) (2.1)
3



where H(.) is a function selecting the slot. That is, G updates the index H(x) of
m, but all other parts of the memory remain untouched. More sophisticated variants
of G could go back and update earlier stored memaories (potentially, all memaories)
based on the new evidence from the current input x. If the input is at the character or
word level one could group inputs (i.e., by segmenting them into chunks) and store
each chunk in a memory slot.

If the memory is huge (e.g., consider all of Freebase or Wikipedia) one needs
to organize the memories. This can be achieved with the slot choosing function H
just described: for example, it could be designed, or trained, to store memories by
entity or topic. Consequently, for efficiency at scale, G (and O) need not operate on
all memories: they can operate on only a retrieved subset of candidates (only
operating on memories that are on the right topic).

If the memory becomes full, a procedure for “forgetting” could also be
implemented by H as it chooses which memory is replaced, e.g., H could score the
utility of each memory, and overwrite the least useful.

O and R components: The O component is typically responsible for reading
from memory and performing inference, e.g., calculating what are the relevant
memories to perform a good response. The R component then produces the final
response given O. For example in a question answering setup O finds relevant
memories, and then R produces the actual wording of the answer, e.g., R could be an

RNN that is conditioned on the output of O.

An example task is given in Figure 1. In order to answer the question x =

9 :
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“Where is the milk now?”, the O module first scores all memories, i.e., all previously
seen sentences, against x to retrieve the most relevant fact, my = “Joe left the milk”
in this case. Then, it would search the memory again to find the second relevant fact
given [x, m, ], thatis m, = *“Joe travelled to the office” (the last place Joe went
before dropping the milk). Finally, the R module would score words given [x, m,_,

m,, ] to output r = “office”.

Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.
Joe travelled to the office. Joe left the milk. Joe went to the bathroom.
Where is the milk now? A: office

Where is Joe? A: bathroom

Where was Joe before the office? A: kitchen

Figure 2.1. Example “story” statements, questions and answers generated by a simple
simulation. Answering the question about the location of the milk requires comprehension of
the actions “picked up” and “left”. The questions also require comprehension of the time
elements of the story, e.g., to answer “where was Joe before the office?”.

2.2 End-to-End Memory Networks

End-to-End Memory Network (Sukhbaatar el al., 2015) is a form of Memory
Network (Weston et al., 2015a) but unlike the model in that work, it is trained end-
to-end, and hence requires significantly less supervision during training, making it
more generally applicable in realistic settings. It can also be seen as an extension of
RNNsearch (Bahdanau et al., 2015) to the case where multiple computational steps

(hops) are performed per output symbol. The flexibility of the model allows to apply

10



it to tasks as diverse as (synthetic) question answering (\Weston et al., 2015b) and to
language modeling. For the former it is competitive with Memory Networks, but
with less supervision. For the latter, on some datasets it demonstrates comparable
performance to RNNs and LSTMs. In both cases the key concept of multiple
computational hops yields improved results.

It takes a discrete set of inputs Xy, ..., X» that are to be stored in the memory, a
query ¢, and outputs an answer a. Each of the x;, g, and a contains symbols coming
from a dictionary with V words. The model writes all x to the memory up to a fixed
buffer size, and then finds a continuous representation for the x and g. The continuous
representation is then processed via multiple hops to output a. This allows
backpropagation of the error signal through multiple memory accesses back to the

input during training.

Input memory representation: Suppose an input set xi, ..., Xi are stored in
memory. The entire set of {x;} are converted into memory vectors {m;} of
dimension d computed by embedding each x; in a continuous space, in the
simplest case, using an embedding matrix A (of size d x V). The query g is also
embedded (again, in the simplest case via another embedding matrix B with the
same dimensions as A) to obtain an internal state u. In the embedding space, we
compute the match between u and each memory m; by taking the inner product

followed by a softmax:

p; = Softmax(utm;) (2.2)

11



where Softmax(z;) = e”/Y.;e? . Defined in this way p is a probability vector

over the inputs.

Output memory representation: Each x; has a corresponding output vector c;
(given in the simplest case by another embedding matrix C). The response
vector from the memory o is then a sum over the transformed inputs ci, weighted

by the probability vector from the input:

0 = XiPiCi (2.3)

Because the function from input to output is smooth, we can easily compute
gradients and backpropagate through it. Other recently proposed forms of
memory or attention take this approach (Bahdanau et al., 2015; Graves et al.,

2014; Gregor et al., 2015).

Generating the final prediction: In the single layer case, the sum of the output
vector o and the input embedding u is then passed through a final weight matrix

W (of size V x d) and a softmax to produce the predicted label:

a = Softmax(W (o + u)) (2.4)

The overall model is shown in Figure 2.2. During training, all three embedding
matrices A, B and C, as well as W are jointly learned by minimizing a standard cross-

entropy loss between a” and the true label 3. Training is performed using stochastic
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gradient descent.
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Figure 2.2. End-to-End Memory Network

2.3 Dynamic Memory Networks

The Dynamic Memory Network is a general architecture for question answering (QA)
(Kumar et al., 2016). It is composed of four modules which are input module,
question module, episodic memory module and answer module. Each of modules
allow different aspects such as input representations or memory components to be

analyzed and improved independently.

Input module: In natural language processing problems, the input is a sequence
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of Tiwords w;, ..., wr,. One way to encode the input sequence is via a recurrent
neural network (Elman, 1991). Word embeddings are given as inputs to the
recurrent network. At each time step t, the network updates its hidden state h; =
RNN(L[wi], he1), where L is the embedding matrix and w is the word index of
the tth word of the input sequence.

In cases where the input sequence is a single sentence, the input module outputs
the hidden states of the recurrent network. In cases where the input sequence is
a list of sentences, the sentences are concatenated into a long list of word tokens,
inserting after each sentence an end-of-sentence token. The hidden states at each
of the end-of-sentence tokens are then the final representations of the input
module. In subsequent sections, the output of the input module is denoted as the
sequence of Tc fact representations ¢, whereby c: denotes the tth element in the
output sequence of the input module. Note that in the case where the input is a
single sentence, Tc = T, . That is, the number of output representations is equal
to the number of words in the sentence. In the case where the input is a list of
sentences, Tc is equal the number of sentences.

In order to model the input sequences, a gated recurrent network (GRU) (Cho
et al., 2014; Chung et al., 2014) is used. Assume each time step t has an input x

and a hidden state h:. The internal mechanics of the GRU is defined as:

2z, = o(WPDx, + U%hy_y + bPD) (2.5)

=W x, + Uhe_y + b™) (2.6)

14



h, = tanh(Wx, + 1, o Uhe_q + b™) (2.7)

ht = Zt o ht—l + (1 - Zt) ° flt (28)

where o is an element-wise product, W@, W@, W € R™>*™ and
U@,y y e R™>™, The dimensions n are hyperparameters. The above

computation is abbreviated with h; = GRU(X;, he.1).

Question Module: Similar to the input sequence, the question is also most
commonly given as a sequence of words in natural language processing
problems. As before, the question is encoded via a recurrent neural network.
Given a question of Tq words, hidden states for the question encoder at time t

is givenby gq; = GRU(L[th],qt_l), L represents the word embedding matrix

as in the previous section and th represents the word index of the tth word in
the question. The word embedding matrix can be shared across the input module
and the question module. Unlike the input module, the question module

produces as output the final hidden state of the recurrent network encoder: q =

Arqy-

Episodic Memory Module: The episodic memory module iterates over
representations outputted by the input module, while updating its internal
episodic memory. In its general form, the episodic memory module is comprised

of an attention mechanism as well as a recurrent network with which it updates

15



its memory. During each iteration, the attention mechanism attends over the fact
representations ¢ while taking into consideration the question representation q
and the previous memory m"™* to produce an episode €'.

The episode is then used, alongside the previous memories m™, to update the
episodic memory m' = GRU(e', m™). The initial state of this GRU is initialized
to the question vector itself: m® = q. For some tasks, it is beneficial for episodic
memory module to take multiple passes over the input. After Ty passes, the final
memory m™™ is given to the answer module.

The iterative nature of this module allows it to attend to different inputs during
each pass. It also allows for a type of transitive inference, since the first pass
may uncover the need to retrieve additional facts. For instance, in the example
in Figure 2.3, the question is “Where is the football?”” In the first iteration, the
model ought to attend to sentence 7 (John put down the football.), as the
guestion asks about the football. Only once the model sees that John is relevant
can it reason that the second iteration should retrieve where John was. Similarly,

a second pass may help for sentiment analysis.
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Figure 2.3. Example of an input list of sentences to the Dynamic Memory Network

In the Dynamic Memory Network, the gating function is used as attention
mechanism. For each pass i, the mechanism takes as input a candidate fact c;, a
previous memory m'™, and the question q to compute a gate: gi =
G(e, m™,q)

The scoring function G takes as input the feature set z(c, m, q) and produces a
scalar score. It is defined as a large feature vector that captures a variety of

similarities between input, memory and question vectors:

z(c,m,q) = [c,m,q,coq,com,|c—ql,lc —ml|cTW®q,cTWw®m] (2.9)

where o is an element-wise product. The function G is a simple two-layer feed

forward neural network.

G(c,m,q) = o(W® tanh(WDz(c,m, q) + b)) + b@) (2.10)

17



To compute the episode for pass i, a modified GRU over the sequence of the
inputs ¢y, ..., cr,, Weighted by the gates g is used. The episode vector that is
given to the answer module is the final state of the GRU. The equation to update
the hidden states of the GRU at time t and the equation to compute the episode

are, respectively:

h = gtGRU(cchi—r) + (1= ghi— (2.11)

el = hi (2.12)

Answer Module: The answer module generates an answer given a vector.
Depending on the type of task, the answer module is either triggered once at the
end of the episodic memory or at each time step.

Another GRU whose initial state is initialized to the last memory a, = m™ is
used in answer module. At each time step, it takes as input the question g, last

hidden state a1, as well as the previously predicted output y.1.

y, = softmax(W @a,) (2.13)

ar = GRU([y¢-1,q)as—1) (2.13)

where we concatenate the last generated word and the question vector as the

input at each time step. The output is trained with the cross-entropy error
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classification of the correct sequence appended with a special end-of-sequence
token.

In the sequence modeling task, we wish to label each word in the original
sequence. To this end, the Dynamic Memory Network is run in the same way

as above over the input words. For word t, Equation 2.12 is replaced with e! =

B,
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Chapter 3

Conceptual Word Embedding

3.1 Related Work

Many current NLP systems and techniques treat words as atomic units - there is no
notion of similarity between words, as these are represented as indices in a
vocabulary. This choice has several good reasons - simplicity, robustness and the
observation that simple models trained on huge amounts of data outperform complex
systems trained on less data. An example is the popular N-gram model used for
statistical language modeling - today, it is possible to train N-grams on virtually all
available data (Brants et al., 2007).

However, the simple techniques are at their limits in many tasks. For example,
the amount of relevant in-domain data for automatic speech recognition is limited -
the performance is usually dominated by the size of high quality transcribed speech
data (often just millions of words). In machine translation, the existing corpora for
many languages contain only a few billions of words or less. Thus, there are
situations where simple scaling up of the basic techniques will not result in any
significant progress, and we have to focus on more advanced techniques.

With progress of machine learning techniques in recent years, it has become
possible to train more complex models on much larger data set, and they typically

outperform the simple models. Probably the most successful concept is to use
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distributed representations of words (Hinton et al., 1986). For example, neural
network based language models significantly outperform N-gram models (Bengio et
al., 2003; Schwenk, 2007; Mikolov et al., 2011).

Neural network language model can be successfully trained in two steps: first,
continuous word vectors are learned using simple model, and then the N-gram
feedforward neural net language model is trained on top of these distributed
representations of words.

Skim-gram tries to maximize classification of a word based on another word in
the same sentence. More precisely, each current word is used as an input to a log-
linear classifier with continuous projection layer, and predict words within a certain
range before and after the current word. Increasing the range improves quality of the
resulting word vectors, but it also increases the computational complexity. Since the
more distant words are usually less related to the current word than those close to it,
less weight are given to the distant words by sampling less from those words in
training examples.

The training complexity of this architecture is proportional to

Q=Cx(D+Dxlog,(V)) (3.1)

where C is the maximum distance of the words. Thus, if we choose C = 5, for each
training word we will select randomly a number R in range < 1;C >, and then use R

words from history and R words from the future of the current word as correct labels.

This will require us to do R X 2 word classifications, with the current word as input,
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and each of the R + R words as output.

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2) D\ w(t-2)

w(t-1) w(t-1)

SUM

wit)

wit+1)

N
w(t+2) D w(t+2)

cBow Skip-gram

Figure 3.1. The CBOW architecture predicts the current word based on the context, and the
Skip-gram predicts surrounding words given the current word.

3.2 Dependency-Gram

Word embedding, also known as word representation, plays an increasingly vital role
in building continuous word vectors based on their contexts in a large corpus. Word
embedding captures both semantic and syntactic information of words, and can be
used to measure word similarities, which are widely used in various IR and NLP
tasks.

Most word embedding methods assume each word preserves a single vector,

which is problematic due to homonymy and polysemy. Multi-prototype vector space
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models (Reisinger and Mooney 2010) were proposed to cluster contexts of a word
into groups, then generate a distinct prototype vector for each cluster. Following this
idea, (Huang et al. 2012) proposed multi-prototype word embeddings based on
neural language models (Bengio et al. 2003). Despite of their usefulness, multi-
prototype word embeddings face several challenges: (1) These models generate
multi-prototype vectors for each word in isolation, ignoring complicated correlations
among words as well as their contexts. (2) In multi-prototype setting, contexts of a
word are divided into clusters with no overlaps. In reality, a word’s several senses
may correlate with each other, and there is not clear semantic boundary between
them.

In this dissertation, | propose a more flexible and powerful framework for multi-
prototype word embeddings, namely Dependency-gram, in which dependency refers
to a word taking a specific context. The basic idea of Dependency-gram is that, we
allow each word to have different embeddings under different context. For example,
the word apple indicates a fruit under the topic food, and indicates an IT company
under the topic information technology (IT).

I use the dependency parser to obtain context, and perform collapsed Gibbs
sampling (Griffiths and Steyvers2004) to iteratively assign latent topics for each
word token. In this way, given a sequence of words D = {wj, . . ., ww}, each word
token w; will be discriminated into a specific topic z;, forming a word-context pair
(w;, z;), which can be used to learn conceptual word embeddings. As shown in

Figure 3.2, where the window size is 1, and w;-; and wi+1 are conceptual words of wi.
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uy {'wf : 31}

Figure 3.2. Skip-Gram and TWE models. Blue circles indicate word embeddings and green
circles indicate context embeddings.

Dependency-gram aims to learn vector representations for words and contexts
separately and simultaneously. For each target word with its topic (w;, z;), | propose
Dependency-gram as follows. The objective of dependency-gram is defined to

maximize the following average log probability

M
o ) 1 . o . 4 o - y o
L(D} = ﬁz Z 1()?, PI'\“}+('|” J']+]Ut‘,) Pl(“i+f'|'“f) (3'2)

i=1 —k<e<k.c70

Compared with only using the target word w; to predict context words in Skip-
Gram, Dependency-gram also uses the context z; of target word to predict context
words. The basic idea of Dependency-gram is to regard each context as a pseudo

word that appears in all positions of words assigned with this context. Hence, the

vector of a context will represent the collective semantics of words under this context.

In Dependency-gram, we get topical word embedding of a word w in context z by

concatenating the embedding of w and z, i.e., w?=w @ z, where @ is the
24



concatenation operation, and the length of w” is double of w or z.

TWE-1 can be used for conceptual word embedding. For each word w with its
document ¢, TWE-1 will first infer the topic distribution Pr(z|w,c) by regarding c
as a document, namely Pr(z|w, c) < Pr(w|z)Pr(z|c). With the distribution, we can

further obtain the conceptual word embedding of w in ¢ as

w = Z Pr(z|lw, c)w? (3.3)

zeT

where w; is the embedding of word w under context z, obtained by
concatenating word vector w and context vector z.

conceptual word embedding will be used for computing conceptual word
similarity. Given a pair of words with their contexts, namely (wi, ¢) and (w;, cj),

conceptual word similarity aims to measure the similarity between the two words,
which can be formalized as follows S(w;, ¢;, wj, ¢;) = (Wicil/lgcf), which can also

be rewritten as

Z Z Pr(z|w;.c;) ]‘1‘{.:’|r:'.l.-,r‘}-).S'(w;.w"}) (3.4

z€T z'eT

where S(WZ,WZ') is the similarity between W# and wz'.
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3.3 Experimental Results

Multi-class text classification is well studied problem in NLP and IR. In this
dissertation, | run the experiments on the dataset 20NewsGroup. 20NewsGroup
consists of about 20,000 documents from 20 different newsgroups. | report macro-
averaging precision, recall and F-measure for comparison.

I learn topical word embeddings using the training set, then generate document
embeddings for both training set and test set. Afterwards, | regard document
embedding vectors as document features and train a linear classifier us-ng Liblinear
(Fan et al. 2008). | set the dimensions of both word and dependency embeddings as
K =400.

I consider the following baselines, bag-of-words (BOW) model, LDA, Skip-
Gram, and Paragraph Vector (PV) models (Le and Mikolov 2014). The BOW model
represents each document as a bag of words and the weighting scheme is TFIDF. For
the TFIDF method, | select top 50,000 words according to TFIDF scores as features.
LDA represents each document as its inferred topic distribution. In Skip-Gram, |
build the embedding vector of a document by simply averaging over all word
embedding vectors in this document. The dimension of word embeddings in Skip-
Gram is also K = 400. Paragraph Vector models are document embedding models
proposed most recently, including the distributed memory model (PV-DM) and the

distributed bag-of-words model (PV-DBOW). PV models are reported to achieve the
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state-of-the-art performance on sentiment classification (Le and Mikolov 2014).
Table 3.1 shows the evaluation results of text classification on 20NewsGroup.
I can observe that Dependency-gram outperforms all baselines significantly,
especially for topic models and embedding models. This indicates that our model
can capture more precise semantic information of documents as compared to topic
models and embedding models. Moreover, as compared to the BOW model, the
Dependency-gram models manage to reduce the document feature space by 99.2

percent in this case.

Table 3.1. Evaluation results of multi-class text classification

Model Accuracy | Precision Recall F-measure
BOW 79.7 79.5 79.0 79.0
LDA 72.2 70.8 70.7 70.0
Skip-Gram 75.4 75.1 74.3 74.2
PV-DM 72.4 72.1 715 715
PV-DBOW 75.4 74.9 74.3 74.3
Dependency-Gram 80.6 81.0 80.9 80.1

In order to demonstrate the characteristics of Dependency-gram, | selected
several example words and used Dependency-gram to find the most similar words
of these words in different topics. For comparison, | also used Skip-Gram to find
similar words of these example words.

In Table 3.2, | show the most similar words of three example words, bank, left
and apple, which are typical polysemous words. For each example word w, | first

show the result obtained from Skip-Gram, i.e., the first line of each example word;
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then 1 list the results under another representative context of the example word

obtained from Dependency-gram, denoted as w#.

Table 3. 2. Nearest neighbor words by Skip-Gram and Dependency-gram.

Words Similar Words
bank citibank, investment, river
bank# insurance, stock, investor
left right, leave, quit
left# moved, arrived, leave
apple macintosh, ios, juice
apple# moved, arrived, leave

From Table 3.2, | can observe that, similar words returned by Skip-Gram
contain similar words of multiple senses of example words. This indicates that Skip-
Gram combines multiple senses of a polysemous word into a unique embedding
vector. In contrast, with Dependency-gram models, we can successfully discriminate

word senses into multiple topics by conceptual word embeddings.
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Figure 3.3. t-SNE visualization of the 500 most frequent words learned by Dependency-gram

3.4 Discussion and Summary

The success of IR and NLP tasks crucially depend on text representation, of which
word representation is the foundation. Conventionally, NLP tasks usually take one-
hot word representation, with each word being represented as a W-length vector with
only one non-zero entry. The one-hot representation is simple and has been widely
used as the basis of bag-of-words (BOW) document models. However, it suffers
from several challenges, the most critical one of which is it cannot take the
relationship between words into consideration, while in fact many words share high
semantic or syntactic relations. Word embeddings have been successfully used in
language models (Bengio et al., 2006; Mnih and Hinton, 2008). Word embeddings

B e
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are useful because they can encode both syntactic and semantic information of words
into continuous vectors and similar words are close in vector space. Previous word
embedding models are time consuming due to high computational complexity.
Recently, (Mikolov et al., 2013) proposed two efficient models, Skip-Gram and
continuous bag-of-words model (CBOW), to learn word embeddings from a large-
scale text corpus. The training objective of CBOW is to combine the embeddings of
context words to predict the target word; while Skip-Gram is to use the embedding
of each target word to predict its context words (Mikolov et al. 2013). In this
dissertation, | base on Skip-Gram to extend our models. In most previous word
embedding models, one word owns a unique vector, which is problematic because
many words have multiple senses. Hence, researchers propose multi prototype
models. (Reisinger and Mooney 2010) proposed a multi-prototype vector space
model, which cluster contexts of each target word into groups, and build context
vectors for each cluster. Following this idea, (Huang et al. 2012) also clustered
contexts, and each cluster generated a distinct prototype embedding. Besides,
probabilistic models (Tian et al. 2014), bilingual resources (Guo et al. 2014) and
nonparametric models (Neelakantan et al. 2014) have been explored for multi-
prototype word embeddings. Most of these methods perform multi-prototype
modeling for each word in isolation. On the contrary, Dependency-gram use
dependency as context to discriminate word senses by considering all words and
their contexts together. Dependency-gram also applicable for document embeddings.
Moreover, multi-prototype models can be incorporated in Dependency-gram easily,

which will be left as future work.
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Chapter 4

Sentence Embedding using Context

4.1 Related Work

Developing learning algorithms for distributed compositional semantics of words
has been a longstanding open problem at the intersection of language understanding
and machine learning. In recent years, several approaches have been developed for
learning composition operators that map word vectors to sentence vectors including
recursive networks (Socher et al., 2013), recurrent networks (Hochreiter and
Schmidhuber, 1997), convolutional networks (Kalchbrenner et al., 2014; Kim, 2014)
and recursive-convolutional methods (Cho et al., 2014; Zhao et al., 2015) among
others. All of these methods produce sentence representations that are passed to a
supervised task and depend on a class label in order to backpropagate through the
composition weights. Consequently, these methods learn high quality sentence
representations but are tuned only for their respective task. The paragraph vector of
(Leetal., 2014) is an alternative to the above models in that it can learn unsupervised
sentence representations by introducing a distributed sentence indicator as part of a
neural language model. The downside is at test time, inference needs to be performed
to compute a new vector.

Skip-thought is a model for learning high-quality sentence vectors without a

particular supervised task in mind (Kiros et al., 2015). Using word vector learning
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as inspiration, it adopts an objective function that abstracts the skip-gram model of
(Mikolov et al., 2013)) to the sentence level. That is, instead of using a word to
predict its surrounding context, we instead encode a sentence to predict the sentences
around it. Thus, any composition operator can be substituted as a sentence encoder

and only the objective function becomes modified. Figure 4.1 illustrates the model.

got back hame <e05>

got back home

- tram - >
! could see the cat on the steps . strange _<eos

<eoss> This was strange

Figure 4.1 The skip-thoughts model

Skip-thoughts is a kind of encoder-decoder models. That is, an encoder maps
words to a sentence vector and a decoder is used to generate the surrounding
sentences. Encoder-decoder models have gained a lot of traction for neural machine
translation. In this setting, an encoder is used to map e.g. an English sentence into a
vector. The decoder then conditions on this vector to generate a translation for the
source English sentence. The source sentence representation can also dynamically
change through the use of an attention mechanism (Bahdanau et al., 2015) to take
into account only the relevant words for translation at any given time. Skip-thought
model use an RNN encoder with GRU (Chung et al., 2014) activations and an RNN
decoder with a conditional GRU.

Given sentence tuple (s, Si, Si+1), let w denote the t-th word for sentence s;
and let x} denote its word embedding. The model can be described in three parts:
the encoder, decoder and objective function.
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Encoder: Let w},...,w! be the words in sentence s; where N is the number of
words in the sentence. At each time step, the encoder produces a hidden state
hf which can be interpreted as the representation of the sequence w}, ..., wf.

The hidden state hit thus represents the full sentence. To encode a sentence, we

iterate the following sequence of equations (dropping the subscript i):

v’ = o(W.x'+Uh 4.1)
7z = o(W.x'+U.h'™) (4.2)
h' = tanh(Wx'+U(x' @ h'™1) (4.3)
ht = (1-z)®h'"' +2' 0k (4.4)

where ht is the proposed state update at time t, z' is the update gate, r. is the
reset gate (©) denotes a component-wise product. Both update gates takes

values between zero and one.

Decoder: The decoder is a neural language model which conditions on the
encoder output h;. The computation is similar to that of the encoder except we
introduce matrices C,, C, and C that are used to bias the update gate, reset gate

and hidden state computation by the sentence vector. One decoder is used for
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the next sentence si+1 while a second decoder is used for the previous sentence
Si1. Separate parameters are used for each decoder with the exception of the
vocabulary matrix V, which is the weight matrix connecting the decoder’s
hidden state for computing a distribution over words. In what follows we
describe the decoder for the next sentence si+1 although an analogous
computation is used for the previous sentence si.1. Let hf,; denote the hidden
state of the decoder at time t. Decoding involves iterating through the following

sequence of equations (dropping the subscript i+1):

r'o= oW+ U+ Chy) (4.5)
2 = o(Wix'' 4+ UM+ C.h) (4.6)
h! = tanh(Wix'"!' + U ©hi~1) + Ch;) (4.7)
hi,, = (1-2z')oh'y 2 ¢ h' (4.8)

Given hf,, the probability of word wf,, given the previous t-1 words and

the encoder vector is

P(w! Jwzl hy) ocexp(vy,e hiL)) 4.9

gy il

where v, denotes the row of V corresponding to the word wf,,. An
i+1
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analogous computation is performed for the previous sentence Si.i.

Objective: Given a tuple (Si-1, Si, Si+1), the objective optimized is the sum of the
log-probabilities for the forward and backward sentences conditioned on the

encoder representation:
Z logP(w!,q|wsy, hy) + Z logP(w!_y|w", h;) (4.10)
f t

The total objective is the above summed over all such training tuples.

4.2 CR-Gram

Natural language is intrinsically ambiguous, learning one vector for each word may
not cover all the senses of the word. In the case of a multi-sense word, the learned
vector will be around the average of all the senses of the word in the embedding
space, and therefore may not be a good representation of any of the sentences. A
possible solution is sentence embedding which trains a vector for each sense of a
word. There are two key steps in training sense embeddings. In order to do, we need
to train embedding vectors for word senses according to their contexts

Recently, sense embedding methods based on complete probabilistic models
and well-defined learning objective functions (Tian et al., 2014; Jauhar et al., 2015)

become more popular. These methods regard the choice of senses of the words in a
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sentence as hidden variables. Learning is therefore done with expectation
maximization style algorithms, which alternate between inferring word sense
choices in the training corpus and learning sense embeddings.

A common problem with these methods is that they model the sense embedding
of each center word dependent on the word embeddings of its context words. As |
explained in chapter 3, word embedding of a polysemous word is not a good
representation and may negatively influence the quality of inference and learning.
Furthermore, these methods choose the sense of each word in a sentence
independently, ignoring the dependency that may exist between the neighboring
words. | argue that such dependency is important in word sense disambiguation and
therefore helpful in learning sentence embeddings. For example, consider the
sentence “He cashed a check at the bank”. Both “check” and “bank” are ambiguous
here. Although the two words hint at banking related senses, the hint is not decisive
(as an alternative interpretation, they may represent a check mark at a river bank).
Fortunately, “cashed” is not ambiguous and it can help disambiguate “check”.
However, if we consider a small context window in sense embedding, then “cashed”
cannot directly help disambiguate bank”. We need to rely on the dependency
between the sense choices of “check” and “bank” to disambiguate “bank™.

In this dissertation, | propose a novel probabilistic model for sentence
embedding that takes into account the dependency between sense choices of
neighboring words. We do not learn any word embeddings in our model and hence
avoid the problem with embedding polysemous words discussed above. It contains
a sequence of observable words and latent sentences and models the dependency
between each word-sentence pair and between neighboring sentences in the

36
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sequence. The energy of neighboring sentences can be modeled using existing word

embedding approaches such as CBOW and Skip-gram (Mikolov et al., 2013).

[(ZENERNRD ]

Wi W, Ws Wy Ws sessanene

Figure 4.2 Sentence embedding model using co-reference.

In a sentence, let w; be the ith word of the sentence and s; be the latent sentence
of the ith word. S(w) denotes the set of all the sentences of word w. Our model can
be represented as a Markov network shown in Figure 1. It is similar to a high order
hidden Markov model. The model contains a sequence of observable words (w1, w2,
...) and latent senses (s1, s2, ...). It models the dependency between each word-
sentence pair and between neighboring sentences in the document. The energy

function is formulated as follows:

E(W,S) = Z (El(u*i, Si) + EQ(SI‘_]‘., cey .‘5;+k)> (4.11)

i
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Here w = {w;|1 < i <[} is the set of words in a sentence with length | and
s = {s;]1 < i < [} is the set of sentences. The function E; models the dependency
between a word-sentence pair. If 1 assume that the sets of sentences of different

words do not overlap, we can formulate E1 as follows:

Ey(wis) =40 % €S (4.12)
' +oo s ¢ S(w;)

Here we assume that all the matched word-sentence pairs have the same energy,
but it would also be interesting to model the degrees of matching with different
energy values in Ei. In Equation 4.11, the function E> models the compatibility of
neighboring senses in a context window with fixed size k. Existing embedding
approaches like CBOW and Skip-gram (Mikolov et al., 2013) can be used here to

define E2. The formulation using Skip-gram is as follows:

Ey(Simks - Sith) =

- 2 U(VT(SJ-JV’(S-J) (4.13)

i—k<j<ithk, j#i

Here V(s) and V {s) are the input and output embedding vectors of sentence s.

The function ¢ is an activation function.
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Given the model and a sentence w, we want to infer the most likely values of
the hidden variables (i.e. the optimal sense sequence of the sentence) that minimize

the energy function in Equation 4.11:
s = arg mqin E(w,s) ) (4.14)

We use dynamic programming to do inference which is similar to the Viterbi

algorithm of the hidden Markov model.

A2k

m(A; _oksi1,...,A;) = min (m(A,—__Q;,.. v Aily)
(4.15)

+ Er(wi, Ai) + Ea(Ai—ok, . - ., - A s))

Once we finish the forward process, we can retrieve the best sentence sequence
with a backward process. The time complexity of the algorithm is O(n*I) where n is
the maximal number of sentences of a word. Because most words in a typical
sentence have either a single sense or far less than n sentences, the actual running
time of the algorithm is very fast.

We want to learn all the input and output sense embedding vectors that optimize

the following max-margin objective function:

[wl]
©* =arg min min
wel 1=1 500 E€ESneq(w;)
4.16
111ax(1 + Ey(wi, 8i) + Ea(Si—py ooy Sivk)— (4.16)
Eo(Si ko) 8im1, Snegs Sitls- .. S 5+A-)1U)
=
¥ E

x_! - ;'.'1..;



Here @ is the set of all the parameters including V and V *for all the sentences.

C is the set of training sentences. Our learning objective is similar to the negative
sampling and max-margin objective proposed for word embedding (Collobert and
Weston, 2008). Sneg(Wi) denotes the set of negative samples of sentences of word w;
which is defined with the following strategy. For a polysemous word Wi, Speg(Wi) =
S(wi)\{si}. For the other words with a single sentence, Sneg(Wi) is a set of randomly
selected sentences of a fixed size. The objective in Equation 4.16 can be optimized
by coordinate descent which in our case is equivalent to the hard Expectation-
Maximization algorithm. In the hard E step, we run the inference algorithm using the
current model parameters to get the optimal sense sequences of the training sentences.
In the M step, with the sentences sequences s of all the sentences fixed, we learn
sentence embedding vectors. Assume we use the Skip-gram model for E, (Equation

4.13), then the M-step objective function is as follows:

O* = arg n'gn Z Z Z Z

wel i=1 i—k<j<ith,j#i sneg€Sneq(w;)

111‘(1){(1 - g(‘[/(sj)ffvl(si)) (4.17)

+ O.(1/(.%)]“/,(31209))‘ 0)

Here E: is omitted because the sense sequences produced from the E-step
always have zero E; value.

We optimize the M-step objective function using stochastic gradient descent.
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4.3 Experimental Results

| used a large collection of novels, namely the BookCorpus dataset (Zhu et al., 2015)
for training our models. These are free books written by yet unpublished authors.
The dataset has books in 16 different genres, e.g., Romance (2,865 books), Fantasy
(1,479), Science fiction (786), Teen (430), etc. Table 4.1 highlights the summary
statistics of the book corpus. Along with narratives, books contain dialogue, emotion
and a wide range of interaction between characters. Furthermore, with a large enough

collection the training set is not biased towards any particular domain or application.

Table 4.1. Summary statistics of the BookCorpus dataset

mean # of words
per sentence

11,038 74,004,228 | 984,846,357 1,316,420 13

# of books | # of sentences | # of words # of unique words

For the quantitative experiments, we report results on several classification
benchmarks which are commonly used for evaluating sentence representation
learning methods. We use 5 datasets: movie review sentiment (MR), customer
product reviews (CR), subjectivity/objectivity classification (SUBJ), opinion
polarity (MPQA) and question-type classification (TREC). 10-fold cross-validation
is used for evaluation on the first 4 datasets, while TREC has a pre-defined train/test
split. On these tasks, properly tuned bag-of-words models have been shown to
perform exceptionally well. In particular, the NB-SVM of [37] is a fast and robust

performer on these tasks. Skip-thought vectors potentially give an alternative to these
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baselines being just as fast and easy to use.

Table 6 presents the results. On most tasks, CR-gram performs about as well as
the bag-of-words baselines but fails to improve over methods whose sentence
representations are learned directly for the task at hand. This indicates that for tasks
like sentiment classification, tuning the representations, even on small datasets, are
likely to perform better than learning a generic unsupervised sentence vector on
much bigger datasets. Finally, we observe that the skip-thoughts-NB combination is

effective, particularly on MR.

Table 4.2. Classification accuracies on several standard benchmarks.

Method MR CR SUBJ MPQA TREC
NB-SVM 79.4 81.8 93.2 86.3
MNB 79.0 80.0 93.6 86.3
cBow 77.2 79.9 91.3 86.4 87.3
GrConv 76.3 81.3 89.5 84.5 88.4
RNN 77.2 82.3 93.7 90.1 90.2
BRNN 82.3 82.6 94.2 90.3 91.0
CNN 81.5 85.0 93.4 89.6 93.6
AdaSent 83.1 86.3 95.5 93.3 92.4
Pagraph-vector 74.8 78.1 90.5 74.2 91.8
Skip-thought 76.5 80.1 93.6 87.1 92.2
CR-gram 84.1 83.4 91.2 90.9 92.1

As a final experiment, | applied t-SNE to skip-thought vectors extracted from
BookCorpus and the visualizations are shown in Figure 4.3. Each point corresponds

to a sentence. Each color corresponds to a topic.
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Figure 4.3. Sentences grouped based on predicted topics.

4.4 Discussion and Summary

LEARNING a good representation (or features) of input data is an important
task in machine learning. In text and language processing, one such problem is
learning of an embedding vector for a sentence; that is, to train a model that can
automatically transform a sentence to a vector that encodes the semantic meaning of
the sentence. While word embedding is learned using a loss function defined on word
pairs, sentence embedding is learned using a loss function defined on sentence pairs.

In the sentence embedding usually the relationship among words in the sentence, i.e.,
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the context information, is taken into consideration. Therefore, sentence embedding
is more suitable for tasks that require computing semantic similarities between text
strings. By mapping texts into a unified semantic representation, the embedding
vector can be further used for different language processing applications, such as
machine translation, sentiment analysis, and information retrieval.

In machine translation, the recurrent neural networks (RNN) with Long Short-
Term Memory (LSTM) cells, or the LSTM-RNN, is used to encode an English
sentence into a vector, which contains the semantic meaning of the input sentence,
and then another LSTM-RNN is used to generate a French (or another target
language) sentence from the vector. The model is trained to best predict the output
sentence. In (Le et al., 2014) a paragraph vector is learned in an unsupervised manner
as a distributed representation of sentences and documents, which are then used for
sentiment analysis. Sentence embedding can also be applied to information retrieval,
where the contextual information are properly represented by the vectors in the same
space for fuzzy text matching (Huang et al., 2013).

Inspired by the word embedding method (Mikolov et al., 2013a;, Mikolov et al.,
2013b) the authors in (Le et al., 2014) proposed an unsupervised learning method to
learn a paragraph vector as a distributed representation of sentences and documents,
which are then used for sentiment analysis with superior performance. However, the
model is not designed to capture the fine-grained sentence structure. In (Kiros et al.,
2015), an unsupervised sentence embedding method is proposed with great
performance on large corpus of contiguous text corpus, e.g., the BookCorpus (Zhu
et al., 2015). The main idea is to encode the sentence s(t) and then decode previous

and next sentences, i.e., s(t-1) and s(t+1), using two separate decoders. The encoder
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and decoders are RNNs with Gated Recurrent Unit (GRU) (Chung et al., 2014).
However, this sentence embedding method is not designed for document retrieval
task having a supervision among queries and clicked and unclicked documents. In
(Socher et al., 2011), a Semi-Supervised Recursive Autoencoder (RAE) is proposed
and used for sentiment prediction. Similar to our proposed method, it does not need
any language specific sentiment parsers. A greedy approximation method is
proposed to construct a tree structure for the input sentence. It assigns a vector per
word. It can become practically problematic for large vocabularies. It also works
both on unlabeled data and supervised sentiment data.

In this dissertation | propose a novel probabilistic model for learning sentence
embeddings. Unlike previous work, proposed model do not learn sentence
embeddings dependent on word embeddings and hence avoid the problem with
inaccurate embeddings of polysemous words. Furthermore, | model the dependency
between sentences of neighboring words which can help us disambiguate multiple
ambiguous words in a sentence. Based on CR-gram, | derive a dynamic
programming inference algorithm and an EM-style unsupervised learning algorithm
which do not rely on external knowledge from any knowledge base or lexicon except
that | determine the number of senses of polysemous words according to an existing
sense inventory.

For the future work, I plan to try learning our model with soft EM. Besides, |
plan to use dependency information in our model to improve the generality of our

model. Finally, I plan to evaluate our model with more NLP tasks.
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Chapter 5

Deep Memory Networks

5.1 Related Work

A number of recent efforts have explored ways to capture long-term structure within
sequences using RNNs or LSTM-based models (Chung et al., 2014; Graves, 2013;
Koutnik et al., 2014; Mikolov et al., 2014; Hochreiter et al., 1997). The memory in
these models is the state of the network, which is latent and inherently unstable over
long timescales. The LSTM-based models address this through local memory cells
which lock in the network state from the past. In practice, the performance gains over
carefully trained RNNs are modest.

Some of the very early work on neural networks by (Steinbuch and Piske, 1963)
and (Taylor, 1959) considered a memory that performed nearest-neighbor operations
on stored input vectors and then fit parametric models to the retrieved sets. This has
similarities to a single layer version of our model.

The earliest recent work with a memory component that is applied to language
processing is that of memory networks (Weston et al., 2015a) which adds a memory
component for question answering over simple facts. Their input module computes
sentence representations independently and hence cannot easily be used for other
tasks such as sequence labeling. This memory network requires that supporting facts

are labeled during QA training. End-to-end memory networks (Sukhbaatar et al.,
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2015) do not have this limitation. In contrast to previous memory models with a
variety of different functions for memory attention retrieval and representations,
dynamic memory networks (Kumar et al., 2015) have shown that neural sequence
models can be used for input representation, attention and response mechanisms.
Sequence models naturally capture position and temporality of both the inputs and
transitive reasoning steps.

Attention mechanisms allow neural network models to use a question to
selectively pay attention to specific inputs. They can benefit image classification
(Stollenga et al., 2014), generating captions for images (Xu et al., 2015), among
others mentioned below, and machine translation (Cho et al., 2014; Bahdanau et al.,
2015; Luong et al., 2015). Other recent neural architectures with memory or attention
which have proposed include neural Turing machines (Graves et al., 2014), neural
GPUs (Kaiser and Sutskever, 2015) and stack-augmented RNNs (Joulin and Mikolov,
2015).

Question answering involving natural language can be solved in a variety of
ways to which we cannot all do justice. If the potential input is a large text corpus,
QA becomes a combination of information retrieval and extraction (Yates et al.,
2007). Neural approaches can include reasoning over knowledge bases, (Bordes et
al., 2012; Socher et al., 2013b) or directly via sentences for trivia competitions (lyyer

etal., 2014).
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5.2 Deep Memory Networks

Deep Memory Network is a memory model based on attention mechanism. It is
composed of four modules which are input module, question module, episodic
memory module and answer module. Each of modules allow different aspects such
as input representations or memory components to be analyzed and improved

independently.
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Figure 5.1 Deep Memory Network

Input module: In natural language processing problems, the input is a sequence
of Trwords w;, ..., wr,. One way to encode the input sequence is via a recurrent
neural network (Elman, 1991). Word embeddings are given as inputs to the
recurrent network. At each time step t, the network updates its hidden state h; =

RNN(L[wi], he1), where L is the embedding matrix and w is the word index of
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the tth word of the input sequence.

In cases where the input sequence is a single sentence, the input module outputs
the hidden states of the recurrent network. In cases where the input sequence is
a list of sentences, the sentences are concatenated into a long list of word tokens,
inserting after each sentence an end-of-sentence token. The hidden states at each
of the end-of-sentence tokens are then the final representations of the input
module. In subsequent sections, the output of the input module is denoted as the
sequence of Tc fact representations ¢, whereby c: denotes the tth element in the
output sequence of the input module. Note that in the case where the input is a
single sentence, Tc = T, . That is, the number of output representations is equal
to the number of words in the sentence. In the case where the input is a list of
sentences, Tc is equal the number of sentences.

In order to model the input sequences, a gated recurrent network (GRU) (Cho
etal., 2014; Chung et al., 2014) is used. Assume each time step t has an input x

and a hidden state h:. The internal mechanics of the GRU is defined as:

2z, = o(WPDx, + U?hy_y + bPD) (5.1)
e =0cW®x, + U he_y + ™) (5.2)
h, = tanh(Wx, + 1, 0 Uh,_q + b™) (5.3)
he=ziohey+(1—2)oh, (5.4)
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where o is an element-wise product, W@, W@, W € R™>*™ and
U@,y y e R™>™, The dimensions n are hyperparameters. The above

computation is abbreviated with h; = GRU(X;, ht.1).

Sentence Module: The output of the sentence module is denoted as the
sequence of T fact representations s, whereby s: denotes the tth element in the
output sequence of the sentence module. In order to model the input sequences,
CR-gram is used. Sentence pair and between neighboring sentences in the

document. The energy function is formulated as follows:

E(W1S) = Z (El(u';. S,‘) + EQ(S;,]‘.. cee Sprk)) (55)
i

Here w = {w;|1 < i <[} is the set of words in a sentence with length | and

s={s;|]1<i<l} is the set of sentences. The function E:; models the

dependency between a word-sentence pair. If | assume that the sets of sentences

of different words do not overlap, we can formulate E; as follows:

Fi(ws, si) = 0 Si € S(UJ,‘,) (5.6)
BT  too s ¢ S(wy)

Here we assume that all the matched word-sentence pairs have the same energy,
but it would also be interesting to model the degrees of matching with different
energy values in E;. In Equation 5.5, the function E; models the compatibility

of neighboring senses in a context window with fixed size k. Existing
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embedding approaches like CBOW and Skip-gram (Mikolov et al., 2013) can

be used here to define E,. The formulation using Skip-gram is as follows:

E2(S-j,];, R ,r9j+]<-) =

-2 J(VTWV’(&)) (5.7)

i—k<j<itk,j#i
Here V(s) and V {s) are the input and output embedding vectors of sentence s.

The function ¢ is an activation function. Inference is similar to the Viterbi

algorithm of the hidden Markov model.

Question Module: Similar to the input sequence, the question is also most
commonly given as a sequence of words in natural language processing
problems. As before, the question is encoded via a recurrent neural network.

Given a question of Tq words, hidden states for the question encoder at time t
is given by g, = GRU(L[w?], q;_1). L represents the word embedding matrix

as in the previous section and th represents the word index of the tth word in
the question. The word embedding matrix can be shared across the input module
and the question module. Unlike the input module, the question module

produces as output the final hidden state of the recurrent network encoder: q =

qTQ b

Episodic Memory Module: The episodic memory module iterates over
representations outputted by the input module, while updating its internal

episodic memory. In its general form, the episodic memory module is comprised
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of an attention mechanism as well as a recurrent network with which it updates
its memory. During each iteration, the attention mechanism attends over the fact
representations ¢ and s while taking into consideration the question
representation g and the previous memory m'* to produce an episode e'.

The episode is then used, alongside the previous memories m™, to update the
episodic memory m' = GRU(e', m'™). The initial state of this GRU is initialized
to the question vector itself: m® = ¢. For some tasks, it is beneficial for episodic
memory module to take multiple passes over the input. After Ty passes, the final
memory m™™ is given to the answer module.

The iterative nature of this module allows it to attend to different inputs during
each pass. It also allows for a type of transitive inference, since the first pass
may uncover the need to retrieve additional facts.

In the Deep Memory Network, the gating function is used as attention
mechanism. For each pass i, the mechanism takes as input a candidate fact c;,
sentence fact s, a previous memory m™, and the question g to compute a gate:

i—-1

gtL; =G(ct, s, m'™7,q)
The scoring function G takes as input the feature set z(c, s, m, q) and produces
a scalar score. It is defined as a large feature vector that captures a variety of

similarities between input, memory and question vectors:

z(c,s,m,q) = [c,s,m,q,coq,com,soq,som,lc—ql,lc—m|,|s—

ql,Is —m|, cTW®q, cTW®m,sTw®gq,sTw®m| (5.8)
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where o is an element-wise product. The function G is a simple two-layer feed

forward neural network.

G(c,s,m,q) = (W@ tanh(W(l)Z(c, s,m,q) + b(l)) +b®@) (5.9)

To compute the episode for pass i, a modified GRU over the sequence of the
inputs ¢y, ..., ¢z, Weighted by the gates g is used. The episode vector that is
given to the answer module is the final state of the GRU. The equation to update
the hidden states of the GRU at time t and the equation to compute the episode

are, respectively:

ht = giGRU(cchi—1) + (1 — gDhi— (5.10)

el = hi (5.11)

Answer Module: The answer module generates an answer given a vector.
Depending on the type of task, the answer module is either triggered once at the
end of the episodic memory or at each time step.

Another GRU whose initial state is initialized to the last memory aq = m™ s
used in answer module. At each time step, it takes as input the question g, last

hidden state a1, as well as the previously predicted output y.1.

y, = softmax(W @aq,) (5.12)
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a; = GRU([y¢-1,9)as—1) (5.13)

where we concatenate the last generated word and the question vector as the
input at each time step. The output is trained with the cross-entropy error
classification of the correct sequence appended with a special end-of-sequence
token.

In the sequence modeling task, we wish to label each word in the original
sequence. To this end, the Deep Memory Network is run in the same way as

above over the input words. For word t, Equation 5.12 is replaced with e’ = hi.

5.3 Experimental Results

5.3.1 bAbl Dataset

The Facebook bAbI dataset (Weston et al., 2015b) is a synthetic dataset for testing a
model’s ability to retrieve facts and reason over them. Each task tests a different skill
that a question answering model ought to have, such as co-reference resolution,
deduction, and induction. Showing an ability exists here is not sufficient to conclude
a model would also exhibit it on real world text data. It is, however, a necessary

condition.
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Table 5.1 Sample statements and questions from bAbl tasks 1 to 10.

Task 1: Single Supporting Fact
Mary went to the bathroom.
John moved to the hallway.
Mary travelled to the office.
Where is Mary? Aoffice

Task 2: Two Supporting Facts
John 1s in the playground.
John picked up the football.
Bob went to the kitchen.
Where is the football? A:playeround

Task 3: Three Supporting Facts
John picked up the apple.
John went to the office.
John went to the kitchen.
John dropped the apple.
Where was the apple before the kitchen? A:office

Task 4: Two Argument Relations
The office is north of the bedroom.
The bedroom is north of the bathroom.
The kitchen is west of the garden.
What is north of the bedroom? A: office
What is the bedroom north of? A: bathroom

Task 5: Three Argument Relations

Mary gave the cake to Fred.

Fred gave the cake to Bill.

Jeff was given the milk by Bill.

Who gave the cake to Fred? A: Mary
Who did Fred give the cake to? A: Bill

Task 6: Yes/No Questions

John moved to the playground.
Daniel went to the bathroom.
John went back to the hallway.

Is John in the playground? A:no
Is Daniel in the bathroom? A:yes

Task 7: Counting

Daniel picked up the football.

Daniel dropped the football.

Daniel got the milk.

Daniel took the apple.

How many objects is Daniel holding? A: two

Task 8: Lists/Sets

Daniel picks up the football.

Daniel drops the newspaper.

Daniel picks up the milk.

John took the apple.

What is Daniel holding? milk. football

Task 9: Simple Negation
Sandra travelled to the office.
Fred is no longer in the office.
Is Fred in the office? A:no
Is Sandra in the office? A:yes

Task 10: Indefinite Knowledge
John 15 either i the classroom or the playground.
Sandra 1s 1n the garden.
Is John in the classroom? A:maybe
Is John in the office? Amno

Each task provides a set of training and test data, with the intention that a
successful model performs well on test data. The supervision in the training set is
given by the true answers to questions, and the set of relevant statements for
answering a given question, which may or may not be used by the learner. Correct
answers are limited to a single word (Q: Where is Mark? A: bathroom), or else a list
of words (Q: What is Mark holding?) as evaluation is then clear-cut, and is measured
simply as right or wrong.

All of the tasks are noiseless and a human able to read that language can

potentially achieve 100% accuracy. We list the results in Table 5.2
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Table 5.2 Results on bAbl dataset. Strong supervision is the additional information on
important sentences to answer the question.

MemNN with DMN with
Strong Strong DeepMN
Task Supervision Supervision without Strong
(Kumar et al., (Kumar et al., Supervison
2015) 2015)
1: Single Supporting Fact 100 100 100
2: Two Supporting Facts 100 98.2 98
3: Three Supporting Facts 100 95.2 97
4: Two Argument Relations 100 100 100
5: Three Argument Relations 98 99.3 98.5
6: Yes/No Questions 100 100 100
7: Counting 85 96.9 96
8: Lists/Sets 91 96.5 96.7
9: Simple Negation 100 100 100
10: Indefinite Knowledge 98 97.5 97.9
11: Basic Co-reference 100 99.9 99
12: Conjunction 100 100 100
13: Compound Co-reference 100 99.8 98.2
14: Time Reasoning 99 100 100
15: Basic Deduction 100 100 100
16: Basic Induction 100 99.4 99
17: Positional Reasoning 65 59.6 63
18: Size Reasoning 95 95.3 94.2
19: Path Finding 36 34.5 35.1
20: Agent’s Motivations 100 100 100
Mean Accuracy (%) 93.3 93.6 93.6

The Deep Memory Network shows as good as Dynamic Memory Network

(DMN) and Memory Network (MemNN). But Deep Memory Network does worse

than the Memory Network, which we refer to from here on as MemNN, on tasks 2

and 3, both tasks with long input sequences. | guess that this is due to the recurrent

input sequence model having trouble modeling very long inputs. The MemNN does

not suffer from this problem as it views each sentence separately. But both DMN and

MemNN needs additional information about the important sentence which tells the

answer. Without strong supervision, mean accuracy of MemNN decreases to 59.8%

(Su

khbaatar et al., 2015).
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In tasks 7 and 8, both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant
information of the input sequence. In this situation, MemNN is worse than Deep

Memory Network or DMN.

5.3.2 Stanford Sentiment Treebank

The Stanford Sentiment Treebank (SST) (Socher et al., 2013) is a popular
dataset for sentiment classification. It provides phrase-level fine-grained labels, and
comes with a train/development/test split. The original dataset includes 10,662
sentences, half of which were considered positive and the other half negative. Each
label is extracted from a longer movie review and reflects the writer’s overall
intention for this review.

We present results on two formats: fine-grained root prediction, where all full
sentences (root nodes) of the test set are to be classified as either very negative,
negative, neutral, positive, or very positive, and binary root prediction, where all
non-neutral full sentences of the test set are to be classified as either positive or
negative. To train the model, we use all full sentences as well as subsample 50% of
phrase-level labels every epoch. During evaluation, the model is only evaluated on
the full sentences (root setup). In binary classification, neutral phrases are removed
from the dataset. The Deep Memory Network achieves state-of-the-art accuracy on
the binary classification task, as well as on the fine-grained classification task. Table

5.4 shows the results.
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Table 5.4 Test accuracies for sentiment analysis on the Stanford Sentiment Treebank.

Method Binary Fine-grained
RNN 82.4 43.2
RNTN 82.9 44.4
TreeLSTM 85.4 45.7
DRNN 87.8 48.7
DCNN 86.8 48.5
DMN 88.6 52.1
DeepMN 89.5 524

5.3.3 SQUAD Dataset

SQUAD is composed of 100,000+ questions posed by crowd workers on 536
Wikipedia articles. The dataset is randomly partitioned into a training set (80%), a
development set (10%), and a test set (10%). The answer to every question is a
segment of the corresponding passage.

Two metrics are utilized to evaluate model performance of SQUAD: Exact
Match (EM) and F1 score. EM measures the percentage of the prediction that
matches one of the ground truth answers exactly. F1 measures the overlap between
the prediction and ground truth answers which takes the maximum F1 over all of the
ground truth answers.

A couple of preprocessing steps is in place to ensure that the deep neural models
get the correct input. We segmented context and questions into sentences by using
NLTK’s Punkt sentence segmenter. Words in the sentences were then converted into
symbols by using PTB Tokenizer. Syntactic information including POS tags and

syntactic trees were acquired by Stanford CoreNLP utilities (Manning et al., 2014).
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For the parser, we collected constituent relations and dependency relations for each
word by using tree annotation and enhanced dependencies annotation respectively.
To generate syntactic sequence, we removed sequences whose first node is a
punctuation (“$”, “:”, “#”, “.r, 74 To use dependency labels, we

removed all the subcategories (e.g., “nmod:poss” = “nmod” ).

Table 5.5 shows exact match and F1 scores on the dev and test set of our model
and competing approaches. As we can see, our method clearly outperforms the

baseline and several strong state-of-the-art systems.

Table 5.5 Performance comparison on the SQUAD test set.

Method Dev EM Dev F1
LR Baseline 40.0 51.0
Dynamic Chunk Reader 62.5 71.0
Match-LSTM with Ans-Ptr 64.1 73.9
Dynamic Coattention Networks 65.4 75.6
BiDAF 68.0 77.3
R-NET 71.1 79.5
Deep Memory Network 67.2 76.6

To take a closer look at how syntactic sequences affect the performance, we
removed the word and sentence embedding from our model and conducted
experiments based on the syntactic input along. In particular, we are interested in
two aspects related to syntactic sequences. We compared the performance of the
models using syntactic information along with the models without syntactic
information. The predictive results in terms of EM and F1 metrics are reported in
Table 5.6. From the table we see that both the word and sentence embedding are

important for the models to work properly.
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Table 5.6 Performance comparisons of models with the models which do not use dependency-
gram or CR-gram using the SQUAD Dev set.

Method EM F1

DeepMN with Skip-gram 60.4 69.3
DeepMN with Skip-thought 56.4 65.1
Deep Memory Network 67.2 76.6

5.4 Discussion and Summary

Representations of Texts and Words. One of the main issues in reading
comprehension is to identify the latent representations of texts and words (Chen et
al., 2016; Lee et al., 2016; Wang et al., 2016; Xiong et al., 2016; Yu et al., 2016).
Many pre-trained libraries such as word2vec (Mikolov et al., 2013) and Glove
(Pennington et al., 2014) have been widely used to map words into a high
dimensional embedding space. Another approach is to generate embeddings by using
neural networks models such as Character Embedding (Kim, 2014) and Tree-LSTM
(Tai et al., 2015). One thing that worth mentioning is that although Tree-LSTM does
utilize syntactic information, it targets at the phrases or sentences level embedding
other than the word level embedding. Many machine comprehension models include
both pre-trained embeddings and variable embeddings that can be changed through
a training stage (Seo et al., 2016; Yang et al., 2016).

Deep Memory Network is a memory model based on attention mechanism. It
is composed of four modules which are input module, question module, episodic
memory module and answer module. Each of modules allow different aspects such

as input representations or memory components to be analyzed and improved
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independently. The Deep Memory Network is a potentially general architecture for
a variety of NLP applications, including classification, question answering and
sequence modeling. A single architecture is a first step towards a single joint model
for multiple NLP problems. The Deep Memory Network is trained end-to-end with
one, albeit complex, objective function. Future work will explore additional tasks,

larger multi-task models and multimodal inputs and questions.
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Chapter 6

Concluding Remarks

6.1 Summary and Discussion

In this dissertation, we propose the deep memory network with attention mechanism
and word/sentence embedding for attention mechanism. Due to the external memory
and attention mechanism, proposed method can handle various tasks in natural
language processing, such as question and answering, machine comprehension and
sentiment analysis. If we can cast the problems in natural language processing into
question answering problems, every input data can be processed via sequence
modeling process. Then attention mechanism can handle it.

Usually attention mechanism requires huge computational cost. In order to
solve this problem. | proposed novel word and sentence embedding methods.
Previous embedding methods only use the Markov assumption. But if we consider
the language structure and make use of it, it will be very helpful to reduce the
computational cost. Also it does not need strong supervision which means the
additional information on important sentences.

In Chapter 3, we propose a more flexible and powerful framework for multi-
prototype word embeddings, namely Dependency-gram, in which dependency refers
to a word taking a specific context. The basic idea of Dependency-gram is that, we

allow each word to have different embeddings under different context. For example,
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the word apple indicates a fruit under the topic food, and indicates an IT company
under the topic information technology (IT). We use the dependency parser to obtain
context, and perform collapsed Gibbs sampling to iteratively assign latent topics for
each word token.

In chapter 4, we propose a novel probabilistic model for sentence embedding
that takes into account the dependency between sense choices of neighboring words.
We do not learn any word embeddings in our model and hence avoid the problem
with embedding polysemous words discussed above. It contains a sequence of
observable words and latent sentences and models the dependency between each
word-sentence pair and between neighboring sentences in the sequence. The energy
of neighboring sentences can be modeled using existing word embedding approaches
such as CBOW and Skip-gram.

In chapter 5, we propose the Deep Memory Network. Deep Memory Network
use the syntactic relationship and structural information of language. It makes the
Deep Memory Network locate the attention very efficiently and do not need strong
supervision. The Deep Memory Network is a memory model based on attention
mechanism. It is composed of four modules which are input module, question
module, episodic memory module and answer module. Each of modules allow
different aspects such as input representations or memory components to be analyzed
and improved independently. It is a potentially general architecture for a variety of
NLP applications, including classification, question answering and sequence
modeling. A single architecture is a first step towards a single joint model for
multiple NLP problems. The Deep Memory Network is trained end-to-end with one,

albeit complex, objective function.
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6.2 Future Work

Our work in this dissertation has demonstrated that memory based model with
attention mechanism can be effectively used in natural language problems to learn
representations in language. In the following, we discuss future work in several

directions:

Towards multitask learning and general natural language understanding.

Multitask learning in NLP has been of interest in previous work. Proposed
model shows some possibility to multitask learning. Since common concepts in
language would apply to individual tasks, it is intuitive to share information across
tasks. This could be seen as the first step towards a general, task-independent
natural language understanding model. Even though there has been interest in
multitask learning specifically with neural models, improvements remain relatively

small and the best mechanism for knowledge sharing across tasks is unclear.

Exploring “less greedy” methods.

We think that one of the strengths of Deep Memory Network resides in its
greedy nature which provided by CR-gram. Nonetheless, less greedy methods
considering multiple decoding paths during training would be worth exploring. For
this purpose, global scores for sentences would be required in order to discriminate

between different solutions.
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