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Abstract 

 

Attention-based models are firstly proposed in the field of computer vision. And 

then they spread into natural language processing (NLP). The first one successfully 

bringing in attention mechanism from computer vision to NLP is neural machine 

translation. Such attention-based mechanism is motivated from that, instead of 

decoding based on the encoding of a whole and a fixed-length sentence during one 

pass of neural network-based machine translation, one can attend a specific part of 

the sentence. This specific part is what should currently be attended. These parts 

could be words or phrases.  

The basic problem that the attention mechanism solves is that it allows the 

network to refer back to the input sequence, instead of forcing it to encode all 

information into one fixed-length vector. The attention mechanism is simply giving 

the network access to its internal memory, which is the hidden state of the encoder. 

In this point of view, instead of choosing what to “attend” to, the network chooses 

what to retrieve from memory. Unlike typical memory, the memory access 

mechanism here is soft, which means that the network retrieves a weighted 

combination of all memory locations, not a value from a single discrete location. 

Making the memory access soft has the benefit that we can easily train the network 

end-to-end using backpropagation  

The trend towards more complex memory structures is now continuing. End-

to-End Memory Networks allow the network to read same input sequence multiple 

times before making an output, updating the memory contents at each step. For 
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example, answering a question by making multiple reasoning steps over an input 

story. However, when the networks parameter weights are tied in a certain way, the 

memory mechanism in End-to-End Memory Networks identical to the attention 

mechanism presented here, only that it makes multiple hops over the memory.  

In this dissertation, we propose the deep memory network with attention 

mechanism and word/sentence embedding for attention mechanism. Due to the 

external memory and attention mechanism, proposed method can handle various 

tasks in natural language processing, such as question and answering, machine 

comprehension and sentiment analysis. Usually attention mechanism requires huge 

computational cost. In order to solve this problem. I also propose novel word and 

sentence embedding methods. Previous embedding methods only use the Markov 

assumption. But if we consider the language structure and make use of it, it will be 

very helpful to reduce the computational cost. Also it does not need strong 

supervision which means the additional information on important sentences. 

 

Keywords : Attention Model, Memory Network, Deep Learning, Natural Language 

Understanding, Machine Comprehension 

Student Number : 2004-30347 
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Chapter 1 

Introduction 

 

1.1 Background and Motivation 

 

Neural network models have recently become the most effective tools for a range of 

hard applied natural language processing problems, including translation (Luong et 

al. 2015), sentiment analysis (Socher et al. 2011), and text generation (Wen et al. 

2015). These models succeed in large part because they can learn and use their own 

continuous numeric representational systems for sentence meaning. However, their 

representations need not correspond in any interpretable way with the logic based 

representations typically used in linguistic semantics. These models’ successes in 

learning to solve semantically difficult problems signal that they are a potentially 

valuable object of study for semantics, and drawing insights from semantics to 

improve these models could yield substantial progress across applied language 

understanding tasks. But there is no general method to solve the various tasks in 

natural language problem. 

Most tasks in natural language processing can be cast into question answering 

(QA) problems over language input. QA is a complex natural language processing 

task which requires an understanding of the meaning of a text and the ability to 

reason over relevant facts. Most, if not all, tasks in natural language processing can 

be cast as a question answering problem: high level tasks like machine translation 
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(What is the translation into French?); sequence modeling tasks like named entity 

recognition (Passos et al., 2014) (NER) (What are the named entity tags in this 

sentence?) or  part-of-speech tagging (POS) (What are the part-of-speech tags?); 

classification problems like sentiment analysis (Socher et al., 2013) (What is the 

sentiment?); even multi-sentence joint classification problems like co-reference 

resolution (Who does “their” refer to?). 

Most higher intelligences in nature have a built-in mechanism for deciding how 

to apply their brainpower from moment to moment. It is called attention, and refers 

to management of cognitive resources. Human attention is a reasonably well studied 

subject within the field of psychology and known to be a key feature of human 

intelligence. Without attention we would constantly be overloaded with stimuli, 

severely affecting our ability to perform tasks, make decisions and react to the 

environment.  

Attention-based models are firstly proposed in the field of computer vision 

(Mnih et al., 2014). And then they spread into natural language processing (NLP). 

The first one successfully bringing in attention mechanism from computer vision to 

NLP is neural machine translation (Bahdanau et al., 2015). Such attention-based 

mechanism is motivated from that, instead of decoding based on the encoding of a 

whole and a fixed-length sentence during one pass of neural network-based machine 

translation, one can attend a specific part of the sentence. This specific part is what 

should currently be attended. These parts could be words or phrases.  

From an engineering perspective, attention can be viewed as resource 

optimization, enabling systems to perform tasks in complex environments while 

requiring insignificant amounts of resources (compared to complexity of tasks and 
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environments) and using existing resources only for information likely to be 

important or relevant. In this view, time itself can be treated as a resource. 

While a general-purpose attention mechanism, applicable to any NLP, could be 

a goal to strive for, a perfect and complete independence from architecture has been 

found practically impossible, as resource management touches on too many 

fundamental issues in the structure and operation of an architecture to make this a 

theoretical possibility. The goal of the present work is therefore not to develop an 

attention component that can be plugged directly in to existing NLP architectures.  

This work is motivated by the desire to create practical attention based model 

intended to perform real tasks in natural language processing rather than attempting 

to validate hypothesis or models relating to the functionality of the brain at any level. 

While clearly “biologically inspired” at a high level (by natural attention), this work 

is not biologically inspired in this sense: It does not target an accurate simulation or 

model of biological mechanisms. Where deemed useful and appropriate, inspiration 

from research on human attention will be taken, but it is not a goal to have the 

resulting components be constrained in design by what is known about the 

functionality of human attention. 

 

 

1.2 Approach and Contributions 

 

The basic problem that the attention mechanism solves is that it allows the network 

to refer back to the input sequence, instead of forcing it to encode all information 
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into one fixed-length vector. The attention mechanism is simply giving the network 

access to its internal memory, which is the hidden state of the encoder. In this point 

of view, instead of choosing what to “attend” to, the network chooses what to retrieve 

from memory. Unlike typical memory, the memory access mechanism here is soft, 

which means that the network retrieves a weighted combination of all memory 

locations, not a value from a single discrete location. Making the memory access soft 

has the benefit that we can easily train the network end-to-end using backpropagation  

Memory Mechanisms themselves have a much longer history. The hidden state 

of a standard Recurrent Neural Network is itself a type of internal memory. RNNs 

suffer from the vanishing gradient problem that prevents them from learning long-

range dependencies. LSTMs improved upon this by using a gating mechanism that 

allows for explicit memory deletes and updates. 

The trend towards more complex memory structures is now continuing. End-

to-End Memory Networks allow the network to read same input sequence multiple 

times before making an output, updating the memory contents at each step. For 

example, answering a question by making multiple reasoning steps over an input 

story. However, when the networks parameter weights are tied in a certain way, the 

memory mechanism in End-to-End Memory Networks identical to the attention 

mechanism presented here, only that it makes multiple hops over the memory.  

In this dissertation, I propose the deep memory network with attention 

mechanism and word/sentence embedding for attention mechanism. Due to the 

external memory and attention mechanism, proposed method can handle various 

tasks in natural language processing, such as question and answering, machine 

comprehension and sentiment analysis. If we can cast the problems in natural 
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language processing into question answering problems, every input data can be 

processed via sequence modeling process. Then attention mechanism can handle it. 

Disadvantage of attention mechanism is that it requires huge computational cost. 

In order to solve this problem. I proposed novel word and sentence embedding 

methods. Previous embedding methods only use the Markov assumption. But if we 

consider the language structure and make use of it, it will be very helpful to reduce 

the computational cost. Also it does not need strong supervision which means the 

additional information on important sentences. 

 

 

1.3 Organization of the Dissertation 

 

This dissertation is organized as follows. 

In Chapter 2, we discuss memory networks and attention mechanism. We 

describe how attention mechanism works and the characteristics of previous memory 

model such as Memory Networks, End-to-End Memory Networks and Dynamic 

Memory Networks.  

In chapter 3, we propose novel distributed representation of words. The 

proposed methods make use of the relationship between words in sentences. So we 

can use more accurate representation of words. 

In chapter 4, we propose distributed representation of sentences using the co-

reference. In linguistics, co-reference occurs when two or more expressions in a text 

have the same referent. This means that syntactic relationship exists between co-
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referential expressions. These kind of information can reduce computational cost of 

attention mechanism dramatically. 

In chapter 5, we propose the Deep Memory Network. Deep Memory Network 

use the syntactic relationship and structural information of language. It makes the 

Deep Memory Network locate the attention very efficiently and do not need strong 

supervision. 

Finally, we summarize the dissertation and discuss contributions in Chapter 6. 
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Chapter 2 

Related Work 

 

2.1 Memory Networks 

 

Memory Networks reason with inference components combined with a long-term 

memory component; they learn how to use these jointly (Weston et al., 2015a). The 

long-term memory can be read and written to, with the goal of using it for prediction. 

These models are investigated in the context of question answering (QA) where the 

long-term memory effectively acts as a (dynamic) knowledge base, and the output is 

a textual response.  

A memory network consists of a memory m (an array of objects indexed by mi) 

and four (potentially learned) components I, G, O and R as follows: 

 

I: (input feature map) – converts the incoming input to the internal feature 

representation. 

G: (generalization) – updates old memories given the new input. This 

generalization means that there is an opportunity for the network to compress 

and generalize its memories at this stage for some intended future use. 

O: (output feature map) – produces a new output (in the feature representation 

space), given the new input and the current memory state. 

R: (response) – converts the output into the response format desired. For 
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example, a textual response or an action. 

 

Given an input x (e.g., an input character, word or sentence depending on the 

granularity chosen, an image or an audio signal) the flow of the model is as follows: 

1. Convert x to an internal feature representation I(x). 

2. Update memories mi given the new input: mi = G(mi, I(x), m), ∀i. 

3. Compute output features o given the new input and the memory:  

o = O(I(x), m). 

4. Finally, decode output features o to give the final response: r = R(o). 

This process is applied at both train and test time, if there is a distinction 

between such phases, that is, memories are also stored at test time, but the model 

parameters of I, G, O and R are not updated. Memory Networks cover a wide class 

of possible implementations. The components I, G, O and R can potentially use any 

existing ideas from the machine learning literature, e.g., make use of your favorite 

models (SVMs, decision trees, etc.). 

 

I component: Component I can make use of standard pre-processing, e.g., 

parsing, co-reference and entity resolution for text inputs. It could also encode the 

input into an internal feature representation, e.g., convert from text to a sparse or 

dense feature vector. 

 

G component: The simplest form of G is to store I(x) in a “slot” in the memory: 

 

𝑚𝑚𝐻𝐻(𝑥𝑥) = 𝐼𝐼(𝑥𝑥)    (2.1) 
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where H(.) is a function selecting the slot. That is, G updates the index H(x) of 

m, but all other parts of the memory remain untouched. More sophisticated variants 

of G could go back and update earlier stored memories (potentially, all memories) 

based on the new evidence from the current input x. If the input is at the character or 

word level one could group inputs (i.e., by segmenting them into chunks) and store 

each chunk in a memory slot. 

If the memory is huge (e.g., consider all of Freebase or Wikipedia) one needs 

to organize the memories. This can be achieved with the slot choosing function H 

just described: for example, it could be designed, or trained, to store memories by 

entity or topic. Consequently, for efficiency at scale, G (and O) need not operate on 

all memories: they can operate on only a retrieved subset of candidates (only 

operating on memories that are on the right topic).  

If the memory becomes full, a procedure for “forgetting” could also be 

implemented by H as it chooses which memory is replaced, e.g., H could score the 

utility of each memory, and overwrite the least useful.  

O and R components: The O component is typically responsible for reading 

from memory and performing inference, e.g., calculating what are the relevant 

memories to perform a good response. The R component then produces the final 

response given O. For example in a question answering setup O finds relevant 

memories, and then R produces the actual wording of the answer, e.g., R could be an 

RNN that is conditioned on the output of O.  

 

An example task is given in Figure 1. In order to answer the question x = 
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“Where is the milk now?”, the O module first scores all memories, i.e., all previously 

seen sentences, against x to retrieve the most relevant fact, 𝑚𝑚𝑜𝑜1= “Joe left the milk” 

in this case. Then, it would search the memory again to find the second relevant fact 

given [x, 𝑚𝑚𝑜𝑜1], that is 𝑚𝑚𝑜𝑜1 = “Joe travelled to the office” (the last place Joe went 

before dropping the milk). Finally, the R module would score words given [x, 𝑚𝑚𝑜𝑜1, 

𝑚𝑚𝑜𝑜2] to output r = “office”. 

 

 

Figure 2.1. Example “story” statements, questions and answers generated by a simple 
simulation. Answering the question about the location of the milk requires comprehension of 
the actions “picked up” and “left”. The questions also require comprehension of the time 
elements of the story, e.g., to answer “where was Joe before the office?”. 

 

 

2.2 End-to-End Memory Networks 

 

End-to-End Memory Network (Sukhbaatar el al., 2015) is a form of Memory 

Network (Weston et al., 2015a) but unlike the model in that work, it is trained end-

to-end, and hence requires significantly less supervision during training, making it 

more generally applicable in realistic settings. It can also be seen as an extension of 

RNNsearch (Bahdanau et al., 2015) to the case where multiple computational steps 

(hops) are performed per output symbol. The flexibility of the model allows to apply 

Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.   
Joe travelled to the office. Joe left the milk. Joe went to the bathroom. 
Where is the milk now? A: office           
Where is Joe? A: bathroom 
Where was Joe before the office? A: kitchen 
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it to tasks as diverse as (synthetic) question answering (Weston et al., 2015b) and to 

language modeling. For the former it is competitive with Memory Networks, but 

with less supervision. For the latter, on some datasets it demonstrates comparable 

performance to RNNs and LSTMs. In both cases the key concept of multiple 

computational hops yields improved results. 

It takes a discrete set of inputs x1, ..., xn that are to be stored in the memory, a 

query q, and outputs an answer a. Each of the xi, q, and a contains symbols coming 

from a dictionary with V words. The model writes all x to the memory up to a fixed 

buffer size, and then finds a continuous representation for the x and q. The continuous 

representation is then processed via multiple hops to output a. This allows 

backpropagation of the error signal through multiple memory accesses back to the 

input during training. 

 

Input memory representation: Suppose an input set x1, ..., xi are stored in 

memory. The entire set of {xi} are converted into memory vectors {mi} of 

dimension d computed by embedding each xi in a continuous space, in the 

simplest case, using an embedding matrix A (of size d × V). The query q is also 

embedded (again, in the simplest case via another embedding matrix B with the 

same dimensions as A) to obtain an internal state u. In the embedding space, we 

compute the match between u and each memory mi by taking the inner product 

followed by a softmax: 

 

𝑝𝑝𝑖𝑖 = Softmax(𝑢𝑢𝑡𝑡𝑚𝑚𝑖𝑖)    (2.2) 
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where Softmax(𝑧𝑧𝑖𝑖) = 𝑒𝑒𝑧𝑧𝑖𝑖 ∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑗𝑗⁄ . Defined in this way p is a probability vector 

over the inputs. 

 

Output memory representation: Each xi has a corresponding output vector ci 

(given in the simplest case by another embedding matrix C). The response 

vector from the memory o is then a sum over the transformed inputs ci, weighted 

by the probability vector from the input: 

 

o = ∑ 𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖      (2.3) 

 

Because the function from input to output is smooth, we can easily compute 

gradients and backpropagate through it. Other recently proposed forms of 

memory or attention take this approach (Bahdanau et al., 2015; Graves et al., 

2014; Gregor et al., 2015). 

 

Generating the final prediction: In the single layer case, the sum of the output 

vector o and the input embedding u is then passed through a final weight matrix 

W (of size V × d) and a softmax to produce the predicted label: 

 

a� = Softmax(𝑊𝑊(𝑜𝑜 + 𝑢𝑢))   (2.4) 

 

The overall model is shown in Figure 2.2. During training, all three embedding 

matrices A, B and C, as well as W are jointly learned by minimizing a standard cross-

entropy loss between aˆ and the true label a�. Training is performed using stochastic 
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gradient descent. 

 

 

Figure 2.2. End-to-End Memory Network 

 

 

2.3 Dynamic Memory Networks 

 

The Dynamic Memory Network is a general architecture for question answering (QA) 

(Kumar et al., 2016). It is composed of four modules which are input module, 

question module, episodic memory module and answer module. Each of modules 

allow different aspects such as input representations or memory components to be 

analyzed and improved independently.  

 

Input module: In natural language processing problems, the input is a sequence 
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of TI words 𝑤𝑤𝑖𝑖, … ,𝑤𝑤𝑇𝑇𝐼𝐼. One way to encode the input sequence is via a recurrent 

neural network (Elman, 1991). Word embeddings are given as inputs to the 

recurrent network. At each time step t, the network updates its hidden state ht = 

RNN(L[wt], ht-1), where L is the embedding matrix and wt is the word index of 

the tth word of the input sequence. 

In cases where the input sequence is a single sentence, the input module outputs 

the hidden states of the recurrent network. In cases where the input sequence is 

a list of sentences, the sentences are concatenated into a long list of word tokens, 

inserting after each sentence an end-of-sentence token. The hidden states at each 

of the end-of-sentence tokens are then the final representations of the input 

module. In subsequent sections, the output of the input module is denoted as the 

sequence of TC fact representations c, whereby ct denotes the tth element in the 

output sequence of the input module. Note that in the case where the input is a 

single sentence, TC = TI . That is, the number of output representations is equal 

to the number of words in the sentence. In the case where the input is a list of 

sentences, TC is equal the number of sentences. 

In order to model the input sequences, a gated recurrent network (GRU) (Cho 

et al., 2014; Chung et al., 2014) is used. Assume each time step t has an input xt 

and a hidden state ht. The internal mechanics of the GRU is defined as: 

 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊(𝑧𝑧)𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1 + 𝑏𝑏(𝑧𝑧))  (2.5) 

 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊(𝑟𝑟)𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1 + 𝑏𝑏(𝑟𝑟))  (2.6) 
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ℎ�𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑡𝑡 ∘ 𝑈𝑈ℎ𝑡𝑡−1 + 𝑏𝑏(ℎ))  (2.7) 

 

ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡 ∘ ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ∘ ℎ�𝑡𝑡   (2.8) 

 

where ∘  is an element-wise product, 𝑊𝑊(𝑧𝑧),𝑊𝑊(𝑟𝑟),𝑊𝑊 ∈ ℝ𝑛𝑛𝐻𝐻×𝑛𝑛𝐼𝐼  and 

𝑈𝑈(𝑧𝑧),𝑈𝑈(𝑟𝑟),𝑈𝑈 ∈ ℝ𝑛𝑛𝐻𝐻×𝑛𝑛𝐻𝐻 . The dimensions n are hyperparameters. The above 

computation is abbreviated with ht = GRU(xt, ht-1). 

 

Question Module: Similar to the input sequence, the question is also most 

commonly given as a sequence of words in natural language processing 

problems. As before, the question is encoded via a recurrent neural network. 

Given a question of TQ words, hidden states for the question encoder at time t 

is given by 𝑞𝑞𝑡𝑡 = 𝐺𝐺𝑅𝑅𝑈𝑈(𝐿𝐿�𝑤𝑤𝑡𝑡
𝑄𝑄�,𝑞𝑞𝑡𝑡−1), L represents the word embedding matrix 

as in the previous section and 𝑤𝑤𝑡𝑡
𝑄𝑄 represents the word index of the tth word in 

the question. The word embedding matrix can be shared across the input module 

and the question module. Unlike the input module, the question module 

produces as output the final hidden state of the recurrent network encoder: q =

𝑞𝑞𝑇𝑇𝑄𝑄 . 

 

Episodic Memory Module: The episodic memory module iterates over 

representations outputted by the input module, while updating its internal 

episodic memory. In its general form, the episodic memory module is comprised 

of an attention mechanism as well as a recurrent network with which it updates 
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its memory. During each iteration, the attention mechanism attends over the fact 

representations c while taking into consideration the question representation q 

and the previous memory mi-1 to produce an episode ei.  

The episode is then used, alongside the previous memories mi-1, to update the 

episodic memory mi = GRU(ei, mi-1). The initial state of this GRU is initialized 

to the question vector itself: m0 = q. For some tasks, it is beneficial for episodic 

memory module to take multiple passes over the input. After TM passes, the final 

memory 𝑚𝑚𝑇𝑇𝑀𝑀  is given to the answer module. 

The iterative nature of this module allows it to attend to different inputs during 

each pass. It also allows for a type of transitive inference, since the first pass 

may uncover the need to retrieve additional facts. For instance, in the example 

in Figure 2.3, the question is “Where is the football?” In the first iteration, the 

model ought to attend to sentence 7 (John put down the football.), as the 

question asks about the football. Only once the model sees that John is relevant 

can it reason that the second iteration should retrieve where John was. Similarly, 

a second pass may help for sentiment analysis. 
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Figure 2.3. Example of an input list of sentences to the Dynamic Memory Network 

In the Dynamic Memory Network, the gating function is used as attention 

mechanism. For each pass i, the mechanism takes as input a candidate fact ct, a 

previous memory mi-1, and the question q to compute a gate: 𝑔𝑔𝑡𝑡𝑖𝑖 =

𝐺𝐺(𝑐𝑐𝑡𝑡 ,𝑚𝑚𝑖𝑖−1,𝑞𝑞) 

The scoring function G takes as input the feature set z(c, m, q) and produces a 

scalar score. It is defined as a large feature vector that captures a variety of 

similarities between input, memory and question vectors:  

 

z(c, m, q) = �𝑐𝑐,𝑚𝑚, 𝑞𝑞, 𝑐𝑐 ∘ 𝑞𝑞, 𝑐𝑐 ∘ 𝑚𝑚, |𝑐𝑐 − 𝑞𝑞|, |𝑐𝑐 − 𝑚𝑚|, 𝑐𝑐𝑇𝑇𝑊𝑊(𝑏𝑏)𝑞𝑞, 𝑐𝑐𝑇𝑇𝑊𝑊(𝑏𝑏)𝑚𝑚� (2.9) 

 

where ∘ is an element-wise product. The function G is a simple two-layer feed 

forward neural network. 

 

G(c, m, q) = σ(𝑊𝑊(2) tanh�𝑊𝑊(1)𝑧𝑧(𝑐𝑐,𝑚𝑚, 𝑞𝑞) + 𝑏𝑏(1)�+ 𝑏𝑏(2)) (2.10) 
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To compute the episode for pass i, a modified GRU over the sequence of the 

inputs 𝑐𝑐1, … , 𝑐𝑐𝑇𝑇𝑐𝑐, weighted by the gates gi is used. The episode vector that is 

given to the answer module is the final state of the GRU. The equation to update 

the hidden states of the GRU at time t and the equation to compute the episode 

are, respectively: 

 

ℎ𝑡𝑡𝑖𝑖 = 𝑔𝑔𝑡𝑡𝑖𝑖𝐺𝐺𝑅𝑅𝑈𝑈�𝑐𝑐𝑡𝑡ℎ𝑡𝑡−1𝑖𝑖 � + (1 − 𝑔𝑔𝑡𝑡𝑖𝑖)ℎ𝑡𝑡−1𝑖𝑖   (2.11) 

 

𝑒𝑒𝑖𝑖 = ℎ𝑇𝑇𝑐𝑐
𝑖𝑖      (2.12) 

 

Answer Module: The answer module generates an answer given a vector. 

Depending on the type of task, the answer module is either triggered once at the 

end of the episodic memory or at each time step. 

Another GRU whose initial state is initialized to the last memory 𝑎𝑎0 = 𝑚𝑚𝑇𝑇𝑀𝑀  is 

used in answer module. At each time step, it takes as input the question q, last 

hidden state at-1, as well as the previously predicted output yt-1. 

 

𝑦𝑦𝑡𝑡 = softmax(𝑊𝑊(𝑎𝑎)𝑎𝑎𝑡𝑡)   (2.13) 

 

𝑎𝑎𝑡𝑡 = 𝐺𝐺𝑅𝑅𝑈𝑈([𝑦𝑦𝑡𝑡−1,𝑞𝑞]𝑎𝑎𝑡𝑡−1)   (2.13) 

 

where we concatenate the last generated word and the question vector as the 

input at each time step. The output is trained with the cross-entropy error 
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classification of the correct sequence appended with a special end-of-sequence 

token. 

In the sequence modeling task, we wish to label each word in the original 

sequence. To this end, the Dynamic Memory Network is run in the same way 

as above over the input words. For word t, Equation 2.12 is replaced with 𝑒𝑒𝑖𝑖 =

ℎ𝑡𝑡𝑖𝑖 . 
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Chapter 3 

Conceptual Word Embedding  

 

3.1 Related Work 

 

Many current NLP systems and techniques treat words as atomic units - there is no 

notion of similarity between words, as these are represented as indices in a 

vocabulary. This choice has several good reasons - simplicity, robustness and the 

observation that simple models trained on huge amounts of data outperform complex 

systems trained on less data. An example is the popular N-gram model used for 

statistical language modeling - today, it is possible to train N-grams on virtually all 

available data (Brants et al., 2007). 

However, the simple techniques are at their limits in many tasks. For example, 

the amount of relevant in-domain data for automatic speech recognition is limited - 

the performance is usually dominated by the size of high quality transcribed speech 

data (often just millions of words). In machine translation, the existing corpora for 

many languages contain only a few billions of words or less. Thus, there are 

situations where simple scaling up of the basic techniques will not result in any 

significant progress, and we have to focus on more advanced techniques. 

With progress of machine learning techniques in recent years, it has become 

possible to train more complex models on much larger data set, and they typically 

outperform the simple models. Probably the most successful concept is to use 
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distributed representations of words (Hinton et al., 1986). For example, neural 

network based language models significantly outperform N-gram models (Bengio et 

al., 2003; Schwenk, 2007; Mikolov et al., 2011). 

Neural network language model can be successfully trained in two steps: first, 

continuous word vectors are learned using simple model, and then the N-gram 

feedforward neural net language model is trained on top of these distributed 

representations of words.  

Skim-gram tries to maximize classification of a word based on another word in 

the same sentence. More precisely, each current word is used as an input to a log-

linear classifier with continuous projection layer, and predict words within a certain 

range before and after the current word. Increasing the range improves quality of the 

resulting word vectors, but it also increases the computational complexity. Since the 

more distant words are usually less related to the current word than those close to it, 

less weight are given to the distant words by sampling less from those words in 

training examples. 

The training complexity of this architecture is proportional to 

 

Q = C × (D + D × log2(𝑉𝑉))   (3.1) 

 

where C is the maximum distance of the words. Thus, if we choose C = 5, for each 

training word we will select randomly a number R in range < 1;C >, and then use R 

words from history and R words from the future of the current word as correct labels. 

This will require us to do RＸ2 word classifications, with the current word as input, 
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and each of the R + R words as output.  

 

 

Figure 3.1. The CBOW architecture predicts the current word based on the context, and the 
Skip-gram predicts surrounding words given the current word. 

 

 

3.2 Dependency-Gram 

 

Word embedding, also known as word representation, plays an increasingly vital role 

in building continuous word vectors based on their contexts in a large corpus. Word 

embedding captures both semantic and syntactic information of words, and can be 

used to measure word similarities, which are widely used in various IR and NLP 

tasks. 

Most word embedding methods assume each word preserves a single vector, 

which is problematic due to homonymy and polysemy. Multi-prototype vector space 
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models (Reisinger and Mooney 2010) were proposed to cluster contexts of a word 

into groups, then generate a distinct prototype vector for each cluster. Following this 

idea, (Huang et al. 2012) proposed multi-prototype word embeddings based on 

neural language models (Bengio et al. 2003). Despite of their usefulness, multi-

prototype word embeddings face several challenges: (1) These models generate 

multi-prototype vectors for each word in isolation, ignoring complicated correlations 

among words as well as their contexts. (2) In multi-prototype setting, contexts of a 

word are divided into clusters with no overlaps. In reality, a word’s several senses 

may correlate with each other, and there is not clear semantic boundary between 

them. 

In this dissertation, I propose a more flexible and powerful framework for multi-

prototype word embeddings, namely Dependency-gram, in which dependency refers 

to a word taking a specific context. The basic idea of Dependency-gram is that, we 

allow each word to have different embeddings under different context. For example, 

the word apple indicates a fruit under the topic food, and indicates an IT company 

under the topic information technology (IT). 

I use the dependency parser to obtain context, and perform collapsed Gibbs 

sampling (Griffiths and Steyvers2004) to iteratively assign latent topics for each 

word token. In this way, given a sequence of words D = {w1, . . . , wM}, each word 

token wi will be discriminated into a specific topic zi, forming a word-context pair 

〈𝑤𝑤𝑖𝑖, 𝑧𝑧𝑖𝑖〉, which can be used to learn conceptual word embeddings. As shown in 

Figure 3.2, where the window size is 1, and wi−1 and wi+1 are conceptual words of wi. 

. 
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Figure 3.2. Skip-Gram and TWE models. Blue circles indicate word embeddings and green 
circles indicate context embeddings. 

 

Dependency-gram aims to learn vector representations for words and contexts 

separately and simultaneously. For each target word with its topic 〈𝑤𝑤𝑖𝑖, 𝑧𝑧𝑖𝑖〉, I propose 

Dependency-gram as follows. The objective of dependency-gram is defined to 

maximize the following average log probability 

 

 

(3.2) 

 

 

Compared with only using the target word wi to predict context words in Skip-

Gram, Dependency-gram also uses the context zi of target word to predict context 

words. The basic idea of Dependency-gram is to regard each context as a pseudo 

word that appears in all positions of words assigned with this context. Hence, the 

vector of a context will represent the collective semantics of words under this context. 

In Dependency-gram, we get topical word embedding of a word w in context z by 

concatenating the embedding of w and z, i.e., 𝑤𝑤𝑧𝑧 = 𝑤𝑤⊕ 𝑧𝑧 , where ⊕  is the 
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concatenation operation, and the length of wz is double of w or z. 

TWE-1 can be used for conceptual word embedding. For each word w with its 

document c, TWE-1 will first infer the topic distribution Pr(𝑧𝑧|𝑤𝑤, 𝑐𝑐) by regarding c 

as a document, namely Pr(𝑧𝑧|𝑤𝑤, 𝑐𝑐) ∝ Pr(𝑤𝑤|𝑧𝑧)Pr(𝑧𝑧|𝑐𝑐). With the distribution, we can 

further obtain the conceptual word embedding of w in c as 

 

 

    (3.3) 

 

 

where wz is the embedding of word w under context z, obtained by 

concatenating word vector w and context vector z. 

conceptual word embedding will be used for computing conceptual word 

similarity. Given a pair of words with their contexts, namely (wi, ci) and (wj, cj), 

conceptual word similarity aims to measure the similarity between the two words, 

which can be formalized as follows S�𝑤𝑤𝑖𝑖, 𝑐𝑐𝑖𝑖 ,𝑤𝑤𝑗𝑗, 𝑐𝑐𝑗𝑗� = (𝑊𝑊𝑖𝑖
𝑐𝑐𝑖𝑖𝑊𝑊𝑗𝑗

𝑐𝑐𝑗𝑗), which can also 

be rewritten as 

 

 

 (3.4) 

 

 

where S(𝑊𝑊𝑧𝑧,𝑊𝑊𝑧𝑧′) is the similarity between 𝑊𝑊𝑧𝑧 and 𝑊𝑊𝑧𝑧′ . 
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3.3 Experimental Results 

 

Multi-class text classification is well studied problem in NLP and IR. In this 

dissertation, I run the experiments on the dataset 20NewsGroup. 20NewsGroup 

consists of about 20,000 documents from 20 different newsgroups. I report macro-

averaging precision, recall and F-measure for comparison. 

I learn topical word embeddings using the training set, then generate document 

embeddings for both training set and test set. Afterwards, I regard document 

embedding vectors as document features and train a linear classifier us-ng Liblinear 

(Fan et al. 2008). I set the dimensions of both word and dependency embeddings as 

K = 400.  

I consider the following baselines, bag-of-words (BOW) model, LDA, Skip-

Gram, and Paragraph Vector (PV) models (Le and Mikolov 2014). The BOW model 

represents each document as a bag of words and the weighting scheme is TFIDF. For 

the TFIDF method, I select top 50,000 words according to TFIDF scores as features. 

LDA represents each document as its inferred topic distribution. In Skip-Gram, I 

build the embedding vector of a document by simply averaging over all word 

embedding vectors in this document. The dimension of word embeddings in Skip-

Gram is also K = 400. Paragraph Vector models are document embedding models 

proposed most recently, including the distributed memory model (PV-DM) and the 

distributed bag-of-words model (PV-DBOW). PV models are reported to achieve the 



 

 

 

 

27 

state-of-the-art performance on sentiment classification (Le and Mikolov 2014). 

Table 3.1 shows the evaluation results of text classification on 20NewsGroup. 

I can observe that Dependency-gram outperforms all baselines significantly, 

especially for topic models and embedding models. This indicates that our model 

can capture more precise semantic information of documents as compared to topic 

models and embedding models. Moreover, as compared to the BOW model, the 

Dependency-gram models manage to reduce the document feature space by 99.2 

percent in this case. 

 

Table 3.1. Evaluation results of multi-class text classification 

Model Accuracy Precision Recall F-measure 

BOW 79.7 79.5 79.0 79.0 

LDA 72.2 70.8 70.7 70.0 

Skip-Gram 75.4 75.1 74.3 74.2 

PV-DM 72.4 72.1 71.5 71.5 

PV-DBOW 75.4 74.9 74.3 74.3 

Dependency-Gram 80.6 81.0 80.9 80.1 
 

 

In order to demonstrate the characteristics of Dependency-gram, I selected 

several example words and used Dependency-gram to find the most similar words 

of these words in different topics. For comparison, I also used Skip-Gram to find 

similar words of these example words. 

In Table 3.2, I show the most similar words of three example words, bank, left 

and apple, which are typical polysemous words. For each example word w, I first 

show the result obtained from Skip-Gram, i.e., the first line of each example word; 
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then I list the results under another representative context of the example word 

obtained from Dependency-gram, denoted as w#. 

 

Table 3. 2. Nearest neighbor words by Skip-Gram and Dependency-gram. 

Words Similar Words 

bank 
bank# 

citibank, investment, river 
insurance, stock, investor 

left 
left# 

right, leave, quit 
moved, arrived, leave 

apple 
apple# 

macintosh, ios, juice 
moved, arrived, leave 

 

From Table 3.2, I can observe that, similar words returned by Skip-Gram 

contain similar words of multiple senses of example words. This indicates that Skip-

Gram combines multiple senses of a polysemous word into a unique embedding 

vector. In contrast, with Dependency-gram models, we can successfully discriminate 

word senses into multiple topics by conceptual word embeddings. 
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Figure 3.3. t-SNE visualization of the 500 most frequent words learned by Dependency-gram 

 

 

3.4 Discussion and Summary 

 

The success of IR and NLP tasks crucially depend on text representation, of which 

word representation is the foundation. Conventionally, NLP tasks usually take one-

hot word representation, with each word being represented as a W-length vector with 

only one non-zero entry. The one-hot representation is simple and has been widely 

used as the basis of bag-of-words (BOW) document models. However, it suffers 

from several challenges, the most critical one of which is it cannot take the 

relationship between words into consideration, while in fact many words share high 

semantic or syntactic relations. Word embeddings have been successfully used in 

language models (Bengio et al., 2006; Mnih and Hinton, 2008). Word embeddings 
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are useful because they can encode both syntactic and semantic information of words 

into continuous vectors and similar words are close in vector space. Previous word 

embedding models are time consuming due to high computational complexity. 

Recently, (Mikolov et al., 2013) proposed two efficient models, Skip-Gram and 

continuous bag-of-words model (CBOW), to learn word embeddings from a large-

scale text corpus. The training objective of CBOW is to combine the embeddings of 

context words to predict the target word; while Skip-Gram is to use the embedding 

of each target word to predict its context words (Mikolov et al. 2013). In this 

dissertation, I base on Skip-Gram to extend our models. In most previous word 

embedding models, one word owns a unique vector, which is problematic because 

many words have multiple senses. Hence, researchers propose multi prototype 

models. (Reisinger and Mooney 2010) proposed a multi-prototype vector space 

model, which cluster contexts of each target word into groups, and build context 

vectors for each cluster. Following this idea, (Huang et al. 2012) also clustered 

contexts, and each cluster generated a distinct prototype embedding. Besides, 

probabilistic models (Tian et al. 2014), bilingual resources (Guo et al. 2014) and 

nonparametric models (Neelakantan et al. 2014) have been explored for multi-

prototype word embeddings. Most of these methods perform multi-prototype 

modeling for each word in isolation. On the contrary, Dependency-gram use 

dependency as context to discriminate word senses by considering all words and 

their contexts together. Dependency-gram also applicable for document embeddings. 

Moreover, multi-prototype models can be incorporated in Dependency-gram easily, 

which will be left as future work. 
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Chapter 4 

Sentence Embedding using Context 

 

4.1 Related Work 

 

Developing learning algorithms for distributed compositional semantics of words 

has been a longstanding open problem at the intersection of language understanding 

and machine learning. In recent years, several approaches have been developed for 

learning composition operators that map word vectors to sentence vectors including 

recursive networks (Socher et al., 2013), recurrent networks (Hochreiter and 

Schmidhuber, 1997), convolutional networks (Kalchbrenner et al., 2014; Kim, 2014) 

and recursive-convolutional methods (Cho et al., 2014; Zhao et al., 2015) among 

others. All of these methods produce sentence representations that are passed to a 

supervised task and depend on a class label in order to backpropagate through the 

composition weights. Consequently, these methods learn high quality sentence 

representations but are tuned only for their respective task. The paragraph vector of 

(Le et al., 2014) is an alternative to the above models in that it can learn unsupervised 

sentence representations by introducing a distributed sentence indicator as part of a 

neural language model. The downside is at test time, inference needs to be performed 

to compute a new vector. 

Skip-thought is a model for learning high-quality sentence vectors without a 

particular supervised task in mind (Kiros et al., 2015). Using word vector learning 
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as inspiration, it adopts an objective function that abstracts the skip-gram model of 

(Mikolov et al., 2013)) to the sentence level. That is, instead of using a word to 

predict its surrounding context, we instead encode a sentence to predict the sentences 

around it. Thus, any composition operator can be substituted as a sentence encoder 

and only the objective function becomes modified. Figure 4.1 illustrates the model.  

 

 

Figure 4.1 The skip-thoughts model 

 

Skip-thoughts is a kind of encoder-decoder models. That is, an encoder maps 

words to a sentence vector and a decoder is used to generate the surrounding 

sentences. Encoder-decoder models have gained a lot of traction for neural machine 

translation. In this setting, an encoder is used to map e.g. an English sentence into a 

vector. The decoder then conditions on this vector to generate a translation for the 

source English sentence. The source sentence representation can also dynamically 

change through the use of an attention mechanism (Bahdanau et al., 2015) to take 

into account only the relevant words for translation at any given time. Skip-thought 

model use an RNN encoder with GRU (Chung et al., 2014) activations and an RNN 

decoder with a conditional GRU.  

Given sentence tuple (si−1, si, si+1), let 𝑤𝑤𝑖𝑖𝑡𝑡 denote the t-th word for sentence si 

and let 𝑥𝑥𝑖𝑖𝑡𝑡 denote its word embedding. The model can be described in three parts: 

the encoder, decoder and objective function. 
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Encoder: Let 𝑤𝑤𝑖𝑖1, … ,𝑤𝑤𝑖𝑖𝑁𝑁 be the words in sentence si where N is the number of 

words in the sentence. At each time step, the encoder produces a hidden state 

ℎ𝑖𝑖𝑡𝑡 which can be interpreted as the representation of the sequence 𝑤𝑤𝑖𝑖1, … ,𝑤𝑤𝑖𝑖𝑡𝑡. 

The hidden state ℎ𝑖𝑖𝑡𝑡 thus represents the full sentence. To encode a sentence, we 

iterate the following sequence of equations (dropping the subscript i): 

 

)    (4.1) 

 

)    (4.2) 

 

)   (4.3) 

 

)   (4.4) 

 

where ℎ�𝑡𝑡 is the proposed state update at time t, zt is the update gate, rt is the 

reset gate (⊙) denotes a component-wise product. Both update gates takes 

values between zero and one. 

 

Decoder: The decoder is a neural language model which conditions on the 

encoder output hi. The computation is similar to that of the encoder except we 

introduce matrices Cz, Cr and C that are used to bias the update gate, reset gate 

and hidden state computation by the sentence vector. One decoder is used for 
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the next sentence si+1 while a second decoder is used for the previous sentence 

si-1. Separate parameters are used for each decoder with the exception of the 

vocabulary matrix V, which is the weight matrix connecting the decoder’s 

hidden state for computing a distribution over words. In what follows we 

describe the decoder for the next sentence si+1 although an analogous 

computation is used for the previous sentence si-1. Let ℎ𝑖𝑖+1𝑡𝑡  denote the hidden 

state of the decoder at time t. Decoding involves iterating through the following 

sequence of equations (dropping the subscript i+1): 

 

)   (4.5) 

 

)   (4.6) 

 

)  (4.7) 

 

)   (4.8) 

 

Given ℎ𝑖𝑖+1𝑡𝑡  the probability of word 𝑤𝑤𝑖𝑖+1𝑡𝑡  given the previous t-1 words and 

the encoder vector is 

 

)   (4.9) 

 

where 𝐯𝐯𝑤𝑤𝑖𝑖+1
𝑡𝑡  denotes the row of V corresponding to the word 𝑤𝑤𝑖𝑖+1𝑡𝑡 . An 
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analogous computation is performed for the previous sentence si-1. 

 

Objective: Given a tuple (si-1, si, si+1), the objective optimized is the sum of the 

log-probabilities for the forward and backward sentences conditioned on the 

encoder representation: 

 

(4.10) 

 

The total objective is the above summed over all such training tuples. 

 

 

4.2 CR-Gram 

 

Natural language is intrinsically ambiguous, learning one vector for each word may 

not cover all the senses of the word. In the case of a multi-sense word, the learned 

vector will be around the average of all the senses of the word in the embedding 

space, and therefore may not be a good representation of any of the sentences. A 

possible solution is sentence embedding which trains a vector for each sense of a 

word. There are two key steps in training sense embeddings. In order to do, we need 

to train embedding vectors for word senses according to their contexts 

Recently, sense embedding methods based on complete probabilistic models 

and well-defined learning objective functions (Tian et al., 2014; Jauhar et al., 2015) 

become more popular. These methods regard the choice of senses of the words in a 
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sentence as hidden variables. Learning is therefore done with expectation 

maximization style algorithms, which alternate between inferring word sense 

choices in the training corpus and learning sense embeddings.  

A common problem with these methods is that they model the sense embedding 

of each center word dependent on the word embeddings of its context words. As I 

explained in chapter 3, word embedding of a polysemous word is not a good 

representation and may negatively influence the quality of inference and learning. 

Furthermore, these methods choose the sense of each word in a sentence 

independently, ignoring the dependency that may exist between the neighboring 

words. I argue that such dependency is important in word sense disambiguation and 

therefore helpful in learning sentence embeddings. For example, consider the 

sentence “He cashed a check at the bank”. Both “check” and “bank” are ambiguous 

here. Although the two words hint at banking related senses, the hint is not decisive 

(as an alternative interpretation, they may represent a check mark at a river bank). 

Fortunately, “cashed” is not ambiguous and it can help disambiguate “check”. 

However, if we consider a small context window in sense embedding, then “cashed” 

cannot directly help disambiguate bank”. We need to rely on the dependency 

between the sense choices of “check” and “bank” to disambiguate “bank”. 

In this dissertation, I propose a novel probabilistic model for sentence 

embedding that takes into account the dependency between sense choices of 

neighboring words. We do not learn any word embeddings in our model and hence 

avoid the problem with embedding polysemous words discussed above. It contains 

a sequence of observable words and latent sentences and models the dependency 

between each word-sentence pair and between neighboring sentences in the 
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sequence. The energy of neighboring sentences can be modeled using existing word 

embedding approaches such as CBOW and Skip-gram (Mikolov et al., 2013).  

 

 

Figure 4.2 Sentence embedding model using co-reference. 

 

In a sentence, let wi be the ith word of the sentence and si be the latent sentence 

of the ith word. S(w) denotes the set of all the sentences of word w. Our model can 

be represented as a Markov network shown in Figure 1. It is similar to a high order 

hidden Markov model. The model contains a sequence of observable words (w1, w2, 

…) and latent senses (s1, s2, …). It models the dependency between each word-

sentence pair and between neighboring sentences in the document. The energy 

function is formulated as follows: 

 

 

(4.11) 
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Here 𝐰𝐰 = {𝑤𝑤𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑙𝑙} is the set of words in a sentence with length l and 

𝐬𝐬 = {𝑠𝑠𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑙𝑙} is the set of sentences. The function E1 models the dependency 

between a word-sentence pair. If I assume that the sets of sentences of different 

words do not overlap, we can formulate E1 as follows: 

 

 

(4.12) 

 

 

Here we assume that all the matched word-sentence pairs have the same energy, 

but it would also be interesting to model the degrees of matching with different 

energy values in E1. In Equation 4.11, the function E2 models the compatibility of 

neighboring senses in a context window with fixed size k. Existing embedding 

approaches like CBOW and Skip-gram (Mikolov et al., 2013) can be used here to 

define E2. The formulation using Skip-gram is as follows: 

 

 

(4.13) 

 

 

Here V(s) and V'(s) are the input and output embedding vectors of sentence s. 

The function σ is an activation function.  
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Given the model and a sentence w, we want to infer the most likely values of 

the hidden variables (i.e. the optimal sense sequence of the sentence) that minimize 

the energy function in Equation 4.11: 

 

)    (4.14) 

 

We use dynamic programming to do inference which is similar to the Viterbi 

algorithm of the hidden Markov model. 

 

 

(4.15) 

 

 

Once we finish the forward process, we can retrieve the best sentence sequence 

with a backward process. The time complexity of the algorithm is O(n4kl) where n is 

the maximal number of sentences of a word. Because most words in a typical 

sentence have either a single sense or far less than n sentences, the actual running 

time of the algorithm is very fast. 

We want to learn all the input and output sense embedding vectors that optimize 

the following max-margin objective function: 

 

 

(4.16) 
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Here Θ is the set of all the parameters including V and V' for all the sentences. 

C is the set of training sentences. Our learning objective is similar to the negative 

sampling and max-margin objective proposed for word embedding (Collobert and 

Weston, 2008). Sneg(wi) denotes the set of negative samples of sentences of word wi 

which is defined with the following strategy. For a polysemous word wi, Sneg(wi) = 

S(wi)\{si}. For the other words with a single sentence, Sneg(wi) is a set of randomly 

selected sentences of a fixed size. The objective in Equation 4.16 can be optimized 

by coordinate descent which in our case is equivalent to the hard Expectation-

Maximization algorithm. In the hard E step, we run the inference algorithm using the 

current model parameters to get the optimal sense sequences of the training sentences. 

In the M step, with the sentences sequences s of all the sentences fixed, we learn 

sentence embedding vectors. Assume we use the Skip-gram model for E2 (Equation 

4.13), then the M-step objective function is as follows: 

 

 

(4.17) 

 

 

Here E1 is omitted because the sense sequences produced from the E-step 

always have zero E1 value. 

We optimize the M-step objective function using stochastic gradient descent. 
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4.3 Experimental Results 

 

I used a large collection of novels, namely the BookCorpus dataset (Zhu et al., 2015) 

for training our models. These are free books written by yet unpublished authors. 

The dataset has books in 16 different genres, e.g., Romance (2,865 books), Fantasy 

(1,479), Science fiction (786), Teen (430), etc. Table 4.1 highlights the summary 

statistics of the book corpus. Along with narratives, books contain dialogue, emotion 

and a wide range of interaction between characters. Furthermore, with a large enough 

collection the training set is not biased towards any particular domain or application.  

 

Table 4.1. Summary statistics of the BookCorpus dataset 

# of books # of sentences # of words # of unique words mean # of words 
per sentence 

11,038 74,004,228 984,846,357 1,316,420 13 
 

For the quantitative experiments, we report results on several classification 

benchmarks which are commonly used for evaluating sentence representation 

learning methods. We use 5 datasets: movie review sentiment (MR), customer 

product reviews (CR), subjectivity/objectivity classification (SUBJ), opinion 

polarity (MPQA) and question-type classification (TREC). 10-fold cross-validation 

is used for evaluation on the first 4 datasets, while TREC has a pre-defined train/test 

split. On these tasks, properly tuned bag-of-words models have been shown to 

perform exceptionally well. In particular, the NB-SVM of [37] is a fast and robust 

performer on these tasks. Skip-thought vectors potentially give an alternative to these 
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baselines being just as fast and easy to use.  

Table 6 presents the results. On most tasks, CR-gram performs about as well as 

the bag-of-words baselines but fails to improve over methods whose sentence 

representations are learned directly for the task at hand. This indicates that for tasks 

like sentiment classification, tuning the representations, even on small datasets, are 

likely to perform better than learning a generic unsupervised sentence vector on 

much bigger datasets. Finally, we observe that the skip-thoughts-NB combination is 

effective, particularly on MR. 

 

Table 4.2. Classification accuracies on several standard benchmarks. 

Method MR CR SUBJ MPQA TREC 
NB-SVM 79.4 81.8 93.2 86.3  

MNB 79.0 80.0 93.6 86.3  
cBoW 77.2 79.9 91.3 86.4 87.3 

GrConv 76.3 81.3 89.5 84.5 88.4 
RNN 77.2 82.3 93.7 90.1 90.2 

BRNN 82.3 82.6 94.2 90.3 91.0 
CNN 81.5 85.0 93.4 89.6 93.6 

AdaSent 83.1 86.3 95.5 93.3 92.4 
Pagraph-vector 74.8 78.1 90.5 74.2 91.8 

Skip-thought 76.5 80.1 93.6 87.1 92.2 
CR-gram 84.1 83.4 91.2 90.9 92.1 
 

As a final experiment, I applied t-SNE to skip-thought vectors extracted from 

BookCorpus and the visualizations are shown in Figure 4.3. Each point corresponds 

to a sentence. Each color corresponds to a topic. 
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Figure 4.3. Sentences grouped based on predicted topics. 

 

 

4.4 Discussion and Summary 

 

LEARNING a good representation (or features) of input data is an important 

task in machine learning. In text and language processing, one such problem is 

learning of an embedding vector for a sentence; that is, to train a model that can 

automatically transform a sentence to a vector that encodes the semantic meaning of 

the sentence. While word embedding is learned using a loss function defined on word 

pairs, sentence embedding is learned using a loss function defined on sentence pairs. 

In the sentence embedding usually the relationship among words in the sentence, i.e., 
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the context information, is taken into consideration. Therefore, sentence embedding 

is more suitable for tasks that require computing semantic similarities between text 

strings. By mapping texts into a unified semantic representation, the embedding 

vector can be further used for different language processing applications, such as 

machine translation, sentiment analysis, and information retrieval. 

In machine translation, the recurrent neural networks (RNN) with Long Short-

Term Memory (LSTM) cells, or the LSTM-RNN, is used to encode an English 

sentence into a vector, which contains the semantic meaning of the input sentence, 

and then another LSTM-RNN is used to generate a French (or another target 

language) sentence from the vector. The model is trained to best predict the output 

sentence. In (Le et al., 2014) a paragraph vector is learned in an unsupervised manner 

as a distributed representation of sentences and documents, which are then used for 

sentiment analysis. Sentence embedding can also be applied to information retrieval, 

where the contextual information are properly represented by the vectors in the same 

space for fuzzy text matching (Huang et al., 2013). 

Inspired by the word embedding method (Mikolov et al., 2013a;, Mikolov et al., 

2013b) the authors in (Le et al., 2014) proposed an unsupervised learning method to 

learn a paragraph vector as a distributed representation of sentences and documents, 

which are then used for sentiment analysis with superior performance. However, the 

model is not designed to capture the fine-grained sentence structure. In (Kiros et al., 

2015), an unsupervised sentence embedding method is proposed with great 

performance on large corpus of contiguous text corpus, e.g., the BookCorpus (Zhu 

et al., 2015). The main idea is to encode the sentence s(t) and then decode previous 

and next sentences, i.e., s(t-1) and s(t+1), using two separate decoders. The encoder 
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and decoders are RNNs with Gated Recurrent Unit (GRU) (Chung et al., 2014). 

However, this sentence embedding method is not designed for document retrieval 

task having a supervision among queries and clicked and unclicked documents. In 

(Socher et al., 2011), a Semi-Supervised Recursive Autoencoder (RAE) is proposed 

and used for sentiment prediction. Similar to our proposed method, it does not need 

any language specific sentiment parsers. A greedy approximation method is 

proposed to construct a tree structure for the input sentence. It assigns a vector per 

word. It can become practically problematic for large vocabularies. It also works 

both on unlabeled data and supervised sentiment data. 

In this dissertation I propose a novel probabilistic model for learning sentence 

embeddings. Unlike previous work, proposed model do not learn sentence 

embeddings dependent on word embeddings and hence avoid the problem with 

inaccurate embeddings of polysemous words. Furthermore, I model the dependency 

between sentences of neighboring words which can help us disambiguate multiple 

ambiguous words in a sentence. Based on CR-gram, I derive a dynamic 

programming inference algorithm and an EM-style unsupervised learning algorithm 

which do not rely on external knowledge from any knowledge base or lexicon except 

that I determine the number of senses of polysemous words according to an existing 

sense inventory.  

For the future work, I plan to try learning our model with soft EM. Besides, I 

plan to use dependency information in our model to improve the generality of our 

model. Finally, I plan to evaluate our model with more NLP tasks. 
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Chapter 5 

Deep Memory Networks 

 

5.1 Related Work 

 

A number of recent efforts have explored ways to capture long-term structure within 

sequences using RNNs or LSTM-based models (Chung et al., 2014; Graves, 2013; 

Koutnık et al., 2014; Mikolov et al., 2014; Hochreiter et al., 1997). The memory in 

these models is the state of the network, which is latent and inherently unstable over 

long timescales. The LSTM-based models address this through local memory cells 

which lock in the network state from the past. In practice, the performance gains over 

carefully trained RNNs are modest.  

Some of the very early work on neural networks by (Steinbuch and Piske, 1963) 

and (Taylor, 1959) considered a memory that performed nearest-neighbor operations 

on stored input vectors and then fit parametric models to the retrieved sets. This has 

similarities to a single layer version of our model. 

The earliest recent work with a memory component that is applied to language 

processing is that of memory networks (Weston et al., 2015a) which adds a memory 

component for question answering over simple facts. Their input module computes 

sentence representations independently and hence cannot easily be used for other 

tasks such as sequence labeling. This memory network requires that supporting facts 

are labeled during QA training. End-to-end memory networks (Sukhbaatar et al., 
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2015) do not have this limitation. In contrast to previous memory models with a 

variety of different functions for memory attention retrieval and representations, 

dynamic memory networks (Kumar et al., 2015) have shown that neural sequence 

models can be used for input representation, attention and response mechanisms. 

Sequence models naturally capture position and temporality of both the inputs and 

transitive reasoning steps. 

Attention mechanisms allow neural network models to use a question to 

selectively pay attention to specific inputs. They can benefit image classification 

(Stollenga et al., 2014), generating captions for images (Xu et al., 2015), among 

others mentioned below, and machine translation (Cho et al., 2014; Bahdanau et al., 

2015; Luong et al., 2015). Other recent neural architectures with memory or attention 

which have proposed include neural Turing machines (Graves et al., 2014), neural 

GPUs (Kaiser and Sutskever, 2015) and stack-augmented RNNs (Joulin and Mikolov, 

2015). 

Question answering involving natural language can be solved in a variety of 

ways to which we cannot all do justice. If the potential input is a large text corpus, 

QA becomes a combination of information retrieval and extraction (Yates et al., 

2007). Neural approaches can include reasoning over knowledge bases, (Bordes et 

al., 2012; Socher et al., 2013b) or directly via sentences for trivia competitions (Iyyer 

et al., 2014). 
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5.2 Deep Memory Networks 

 

Deep Memory Network is a memory model based on attention mechanism. It is 

composed of four modules which are input module, question module, episodic 

memory module and answer module. Each of modules allow different aspects such 

as input representations or memory components to be analyzed and improved 

independently.  

 

 

Figure 5.1 Deep Memory Network 

 

Input module: In natural language processing problems, the input is a sequence 

of TI words 𝑤𝑤𝑖𝑖, … ,𝑤𝑤𝑇𝑇𝐼𝐼. One way to encode the input sequence is via a recurrent 

neural network (Elman, 1991). Word embeddings are given as inputs to the 

recurrent network. At each time step t, the network updates its hidden state ht = 

RNN(L[wt], ht-1), where L is the embedding matrix and wt is the word index of 
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the tth word of the input sequence. 

In cases where the input sequence is a single sentence, the input module outputs 

the hidden states of the recurrent network. In cases where the input sequence is 

a list of sentences, the sentences are concatenated into a long list of word tokens, 

inserting after each sentence an end-of-sentence token. The hidden states at each 

of the end-of-sentence tokens are then the final representations of the input 

module. In subsequent sections, the output of the input module is denoted as the 

sequence of TC fact representations c, whereby ct denotes the tth element in the 

output sequence of the input module. Note that in the case where the input is a 

single sentence, TC = TI . That is, the number of output representations is equal 

to the number of words in the sentence. In the case where the input is a list of 

sentences, TC is equal the number of sentences. 

In order to model the input sequences, a gated recurrent network (GRU) (Cho 

et al., 2014; Chung et al., 2014) is used. Assume each time step t has an input xt 

and a hidden state ht. The internal mechanics of the GRU is defined as: 

 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊(𝑧𝑧)𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1 + 𝑏𝑏(𝑧𝑧))  (5.1) 

 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊(𝑟𝑟)𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1 + 𝑏𝑏(𝑟𝑟))  (5.2) 

 

ℎ�𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑡𝑡 ∘ 𝑈𝑈ℎ𝑡𝑡−1 + 𝑏𝑏(ℎ))  (5.3) 

 

ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡 ∘ ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ∘ ℎ�𝑡𝑡   (5.4) 
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where ∘  is an element-wise product, 𝑊𝑊(𝑧𝑧),𝑊𝑊(𝑟𝑟),𝑊𝑊 ∈ ℝ𝑛𝑛𝐻𝐻×𝑛𝑛𝐼𝐼  and 

𝑈𝑈(𝑧𝑧),𝑈𝑈(𝑟𝑟),𝑈𝑈 ∈ ℝ𝑛𝑛𝐻𝐻×𝑛𝑛𝐻𝐻 . The dimensions n are hyperparameters. The above 

computation is abbreviated with ht = GRU(xt, ht-1). 

 

Sentence Module: The output of the sentence module is denoted as the 

sequence of TC fact representations s, whereby st denotes the tth element in the 

output sequence of the sentence module. In order to model the input sequences, 

CR-gram is used. Sentence pair and between neighboring sentences in the 

document. The energy function is formulated as follows: 

 

(5.5) 

 

Here 𝐰𝐰 = {𝑤𝑤𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑙𝑙} is the set of words in a sentence with length l and 

𝐬𝐬 = {𝑠𝑠𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑙𝑙}  is the set of sentences. The function E1 models the 

dependency between a word-sentence pair. If I assume that the sets of sentences 

of different words do not overlap, we can formulate E1 as follows: 

 

(5.6) 

 

Here we assume that all the matched word-sentence pairs have the same energy, 

but it would also be interesting to model the degrees of matching with different 

energy values in E1. In Equation 5.5, the function E2 models the compatibility 

of neighboring senses in a context window with fixed size k. Existing 
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embedding approaches like CBOW and Skip-gram (Mikolov et al., 2013) can 

be used here to define E2. The formulation using Skip-gram is as follows: 

 

(5.7) 

 

Here V(s) and V'(s) are the input and output embedding vectors of sentence s. 

The function σ is an activation function. Inference is similar to the Viterbi 

algorithm of the hidden Markov model. 

 

Question Module: Similar to the input sequence, the question is also most 

commonly given as a sequence of words in natural language processing 

problems. As before, the question is encoded via a recurrent neural network. 

Given a question of TQ words, hidden states for the question encoder at time t 

is given by 𝑞𝑞𝑡𝑡 = 𝐺𝐺𝑅𝑅𝑈𝑈(𝐿𝐿�𝑤𝑤𝑡𝑡
𝑄𝑄�,𝑞𝑞𝑡𝑡−1), L represents the word embedding matrix 

as in the previous section and 𝑤𝑤𝑡𝑡
𝑄𝑄 represents the word index of the tth word in 

the question. The word embedding matrix can be shared across the input module 

and the question module. Unlike the input module, the question module 

produces as output the final hidden state of the recurrent network encoder: q =

𝑞𝑞𝑇𝑇𝑄𝑄 . 

 

Episodic Memory Module: The episodic memory module iterates over 

representations outputted by the input module, while updating its internal 

episodic memory. In its general form, the episodic memory module is comprised 
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of an attention mechanism as well as a recurrent network with which it updates 

its memory. During each iteration, the attention mechanism attends over the fact 

representations c and s while taking into consideration the question 

representation q and the previous memory mi-1 to produce an episode ei.  

The episode is then used, alongside the previous memories mi-1, to update the 

episodic memory mi = GRU(ei, mi-1). The initial state of this GRU is initialized 

to the question vector itself: m0 = q. For some tasks, it is beneficial for episodic 

memory module to take multiple passes over the input. After TM passes, the final 

memory 𝑚𝑚𝑇𝑇𝑀𝑀  is given to the answer module. 

The iterative nature of this module allows it to attend to different inputs during 

each pass. It also allows for a type of transitive inference, since the first pass 

may uncover the need to retrieve additional facts.  

In the Deep Memory Network, the gating function is used as attention 

mechanism. For each pass i, the mechanism takes as input a candidate fact ct, 

sentence fact st, a previous memory mi-1, and the question q to compute a gate: 

𝑔𝑔𝑡𝑡𝑖𝑖 = 𝐺𝐺(𝑐𝑐𝑡𝑡 , 𝑠𝑠𝑡𝑡,𝑚𝑚𝑖𝑖−1,𝑞𝑞) 

The scoring function G takes as input the feature set z(c, s, m, q) and produces 

a scalar score. It is defined as a large feature vector that captures a variety of 

similarities between input, memory and question vectors:  

 

z(c, s, m, q) = �𝑐𝑐, 𝑠𝑠,𝑚𝑚, 𝑞𝑞, 𝑐𝑐 ∘ 𝑞𝑞, 𝑐𝑐 ∘ 𝑚𝑚, 𝑠𝑠 ∘ 𝑞𝑞, 𝑠𝑠 ∘ 𝑚𝑚, |𝑐𝑐 − 𝑞𝑞|, |𝑐𝑐 − 𝑚𝑚|, |𝑠𝑠 −

𝑞𝑞|, |𝑠𝑠 − 𝑚𝑚|, 𝑐𝑐𝑇𝑇𝑊𝑊(𝑏𝑏)𝑞𝑞, 𝑐𝑐𝑇𝑇𝑊𝑊(𝑏𝑏)𝑚𝑚, 𝑠𝑠𝑇𝑇𝑊𝑊(𝑏𝑏)𝑞𝑞, 𝑠𝑠𝑇𝑇𝑊𝑊(𝑏𝑏)𝑚𝑚� (5.8) 
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where ∘ is an element-wise product. The function G is a simple two-layer feed 

forward neural network. 

 

G(c, s, m, q) = σ(𝑊𝑊(2) tanh�𝑊𝑊(1)𝑧𝑧(𝑐𝑐, 𝑠𝑠,𝑚𝑚, 𝑞𝑞) + 𝑏𝑏(1)�+ 𝑏𝑏(2)) (5.9) 

 

To compute the episode for pass i, a modified GRU over the sequence of the 

inputs 𝑐𝑐1, … , 𝑐𝑐𝑇𝑇𝑐𝑐, weighted by the gates gi is used. The episode vector that is 

given to the answer module is the final state of the GRU. The equation to update 

the hidden states of the GRU at time t and the equation to compute the episode 

are, respectively: 

 

ℎ𝑡𝑡𝑖𝑖 = 𝑔𝑔𝑡𝑡𝑖𝑖𝐺𝐺𝑅𝑅𝑈𝑈�𝑐𝑐𝑡𝑡ℎ𝑡𝑡−1𝑖𝑖 � + (1 − 𝑔𝑔𝑡𝑡𝑖𝑖)ℎ𝑡𝑡−1𝑖𝑖   (5.10) 

 

𝑒𝑒𝑖𝑖 = ℎ𝑇𝑇𝑐𝑐
𝑖𝑖      (5.11) 

 

Answer Module: The answer module generates an answer given a vector. 

Depending on the type of task, the answer module is either triggered once at the 

end of the episodic memory or at each time step. 

Another GRU whose initial state is initialized to the last memory 𝑎𝑎0 = 𝑚𝑚𝑇𝑇𝑀𝑀  is 

used in answer module. At each time step, it takes as input the question q, last 

hidden state at-1, as well as the previously predicted output yt-1. 

 

𝑦𝑦𝑡𝑡 = softmax(𝑊𝑊(𝑎𝑎)𝑎𝑎𝑡𝑡)   (5.12) 
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𝑎𝑎𝑡𝑡 = 𝐺𝐺𝑅𝑅𝑈𝑈([𝑦𝑦𝑡𝑡−1,𝑞𝑞]𝑎𝑎𝑡𝑡−1)   (5.13) 

 

where we concatenate the last generated word and the question vector as the 

input at each time step. The output is trained with the cross-entropy error 

classification of the correct sequence appended with a special end-of-sequence 

token. 

In the sequence modeling task, we wish to label each word in the original 

sequence. To this end, the Deep Memory Network is run in the same way as 

above over the input words. For word t, Equation 5.12 is replaced with 𝑒𝑒𝑖𝑖 = ℎ𝑡𝑡𝑖𝑖 . 

 

 

5.3 Experimental Results 

 

5.3.1 bAbI Dataset 

 

The Facebook bAbI dataset (Weston et al., 2015b) is a synthetic dataset for testing a 

model’s ability to retrieve facts and reason over them. Each task tests a different skill 

that a question answering model ought to have, such as co-reference resolution, 

deduction, and induction. Showing an ability exists here is not sufficient to conclude 

a model would also exhibit it on real world text data. It is, however, a necessary 

condition. 
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Table 5.1 Sample statements and questions from bAbI tasks 1 to 10. 

 

Each task provides a set of training and test data, with the intention that a 

successful model performs well on test data. The supervision in the training set is 

given by the true answers to questions, and the set of relevant statements for 

answering a given question, which may or may not be used by the learner. Correct 

answers are limited to a single word (Q: Where is Mark? A: bathroom), or else a list 

of words (Q: What is Mark holding?) as evaluation is then clear-cut, and is measured 

simply as right or wrong. 

All of the tasks are noiseless and a human able to read that language can 

potentially achieve 100% accuracy. We list the results in Table 5.2 
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Table 5.2 Results on bAbI dataset. Strong supervision is the additional information on 
important sentences to answer the question. 

Task 

MemNN with 
Strong 

Supervision 
(Kumar et al., 

2015) 

DMN with 
Strong 

Supervision 
(Kumar et al., 

2015) 

DeepMN 
without Strong 

Supervison 

1: Single Supporting Fact 100 100 100 
2: Two Supporting Facts 100 98.2 98 
3: Three Supporting Facts 100 95.2 97 
4: Two Argument Relations 100 100 100 
5: Three Argument Relations 98 99.3 98.5 
6: Yes/No Questions 100 100 100 
7: Counting 85 96.9 96 
8: Lists/Sets 91 96.5 96.7 
9: Simple Negation 100 100 100 
10: Indefinite Knowledge 98 97.5 97.9 
11: Basic Co-reference 100 99.9 99 
12: Conjunction 100 100 100 
13: Compound Co-reference 100 99.8 98.2 
14: Time Reasoning 99 100 100 
15: Basic Deduction 100 100 100 
16: Basic Induction 100 99.4 99 
17: Positional Reasoning 65 59.6 63 
18: Size Reasoning 95 95.3 94.2 
19: Path Finding 36 34.5 35.1 
20: Agent’s Motivations 100 100 100 
Mean Accuracy (%) 93.3 93.6 93.6 

 

The Deep Memory Network shows as good as Dynamic Memory Network 

(DMN) and Memory Network (MemNN). But Deep Memory Network does worse 

than the Memory Network, which we refer to from here on as MemNN, on tasks 2 

and 3, both tasks with long input sequences. I guess that this is due to the recurrent 

input sequence model having trouble modeling very long inputs. The MemNN does 

not suffer from this problem as it views each sentence separately. But both DMN and 

MemNN needs additional information about the important sentence which tells the 

answer. Without strong supervision, mean accuracy of MemNN decreases to 59.8% 

(Sukhbaatar et al., 2015).  
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In tasks 7 and 8, both tasks require the model to iteratively retrieve facts and 

store them in a representation that slowly incorporates more of the relevant 

information of the input sequence. In this situation, MemNN is worse than Deep 

Memory Network or DMN. 

 

 

5.3.2 Stanford Sentiment Treebank 

 

The Stanford Sentiment Treebank (SST) (Socher et al., 2013) is a popular 

dataset for sentiment classification. It provides phrase-level fine-grained labels, and 

comes with a train/development/test split. The original dataset includes 10,662 

sentences, half of which were considered positive and the other half negative. Each 

label is extracted from a longer movie review and reflects the writer’s overall 

intention for this review.  

We present results on two formats: fine-grained root prediction, where all full 

sentences (root nodes) of the test set are to be classified as either very negative, 

negative, neutral, positive, or very positive, and binary root prediction, where all 

non-neutral full sentences of the test set are to be classified as either positive or 

negative. To train the model, we use all full sentences as well as subsample 50% of 

phrase-level labels every epoch. During evaluation, the model is only evaluated on 

the full sentences (root setup). In binary classification, neutral phrases are removed 

from the dataset. The Deep Memory Network achieves state-of-the-art accuracy on 

the binary classification task, as well as on the fine-grained classification task. Table 

5.4 shows the results. 
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Table 5.4 Test accuracies for sentiment analysis on the Stanford Sentiment Treebank.  

Method Binary Fine-grained 
RNN 82.4 43.2 

RNTN 82.9 44.4 
TreeLSTM 85.4 45.7 

DRNN 87.8 48.7 
DCNN 86.8 48.5 
DMN 88.6 52.1 

DeepMN 89.5 52.4 
 

 

5.3.3 SQuAD Dataset 

 

SQuAD is composed of 100,000+ questions posed by crowd workers on 536 

Wikipedia articles. The dataset is randomly partitioned into a training set (80%), a 

development set (10%), and a test set (10%). The answer to every question is a 

segment of the corresponding passage. 

Two metrics are utilized to evaluate model performance of SQuAD: Exact 

Match (EM) and F1 score. EM measures the percentage of the prediction that 

matches one of the ground truth answers exactly. F1 measures the overlap between 

the prediction and ground truth answers which takes the maximum F1 over all of the 

ground truth answers.  

A couple of preprocessing steps is in place to ensure that the deep neural models 

get the correct input. We segmented context and questions into sentences by using 

NLTK’s Punkt sentence segmenter. Words in the sentences were then converted into 

symbols by using PTB Tokenizer. Syntactic information including POS tags and 

syntactic trees were acquired by Stanford CoreNLP utilities (Manning et al., 2014). 



 

 

 

 

59 

For the parser, we collected constituent relations and dependency relations for each 

word by using tree annotation and enhanced dependencies annotation respectively. 

To generate syntactic sequence, we removed sequences whose first node is a 

punctuation (“$”, “:”, “#”, “.”, “ ” ”, “ “ ”, “,”). To use dependency labels, we 

removed all the subcategories (e.g., “nmod:poss” ⇒ “nmod”). 

Table 5.5 shows exact match and F1 scores on the dev and test set of our model 

and competing approaches. As we can see, our method clearly outperforms the 

baseline and several strong state-of-the-art systems.  

 

Table 5.5 Performance comparison on the SQuAD test set. 

Method Dev EM Dev F1 
LR Baseline 40.0 51.0 
Dynamic Chunk Reader 62.5 71.0 
Match-LSTM with Ans-Ptr 64.1 73.9 
Dynamic Coattention Networks 65.4 75.6 
BiDAF 68.0 77.3 
R-NET 71.1 79.5 
Deep Memory Network 67.2 76.6 

 

To take a closer look at how syntactic sequences affect the performance, we 

removed the word and sentence embedding from our model and conducted 

experiments based on the syntactic input along. In particular, we are interested in 

two aspects related to syntactic sequences. We compared the performance of the 

models using syntactic information along with the models without syntactic 

information. The predictive results in terms of EM and F1 metrics are reported in 

Table 5.6. From the table we see that both the word and sentence embedding are 

important for the models to work properly. 
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Table 5.6 Performance comparisons of models with the models which do not use dependency-
gram or CR-gram using the SQuAD Dev set. 

Method EM F1 
DeepMN with Skip-gram 60.4 69.3 
DeepMN with Skip-thought 56.4 65.1 
Deep Memory Network 67.2 76.6 

 

 

5.4 Discussion and Summary 

 

Representations of Texts and Words. One of the main issues in reading 

comprehension is to identify the latent representations of texts and words (Chen et 

al., 2016; Lee et al., 2016; Wang et al., 2016; Xiong et al., 2016; Yu et al., 2016). 

Many pre-trained libraries such as word2vec (Mikolov et al., 2013) and Glove 

(Pennington et al., 2014) have been widely used to map words into a high 

dimensional embedding space. Another approach is to generate embeddings by using 

neural networks models such as Character Embedding (Kim, 2014) and Tree-LSTM 

(Tai et al., 2015). One thing that worth mentioning is that although Tree-LSTM does 

utilize syntactic information, it targets at the phrases or sentences level embedding 

other than the word level embedding. Many machine comprehension models include 

both pre-trained embeddings and variable embeddings that can be changed through 

a training stage (Seo et al., 2016; Yang et al., 2016). 

Deep Memory Network is a memory model based on attention mechanism. It 

is composed of four modules which are input module, question module, episodic 

memory module and answer module. Each of modules allow different aspects such 

as input representations or memory components to be analyzed and improved 
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independently. The Deep Memory Network is a potentially general architecture for 

a variety of NLP applications, including classification, question answering and 

sequence modeling. A single architecture is a first step towards a single joint model 

for multiple NLP problems. The Deep Memory Network is trained end-to-end with 

one, albeit complex, objective function. Future work will explore additional tasks, 

larger multi-task models and multimodal inputs and questions. 
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Chapter 6  

Concluding Remarks 

 

6.1 Summary and Discussion 

 

In this dissertation, we propose the deep memory network with attention mechanism 

and word/sentence embedding for attention mechanism. Due to the external memory 

and attention mechanism, proposed method can handle various tasks in natural 

language processing, such as question and answering, machine comprehension and 

sentiment analysis. If we can cast the problems in natural language processing into 

question answering problems, every input data can be processed via sequence 

modeling process. Then attention mechanism can handle it. 

Usually attention mechanism requires huge computational cost. In order to 

solve this problem. I proposed novel word and sentence embedding methods. 

Previous embedding methods only use the Markov assumption. But if we consider 

the language structure and make use of it, it will be very helpful to reduce the 

computational cost. Also it does not need strong supervision which means the 

additional information on important sentences. 

In Chapter 3, we propose a more flexible and powerful framework for multi-

prototype word embeddings, namely Dependency-gram, in which dependency refers 

to a word taking a specific context. The basic idea of Dependency-gram is that, we 

allow each word to have different embeddings under different context. For example, 



 

 

 

 

63 

the word apple indicates a fruit under the topic food, and indicates an IT company 

under the topic information technology (IT). We use the dependency parser to obtain 

context, and perform collapsed Gibbs sampling to iteratively assign latent topics for 

each word token.  

In chapter 4, we propose a novel probabilistic model for sentence embedding 

that takes into account the dependency between sense choices of neighboring words. 

We do not learn any word embeddings in our model and hence avoid the problem 

with embedding polysemous words discussed above. It contains a sequence of 

observable words and latent sentences and models the dependency between each 

word-sentence pair and between neighboring sentences in the sequence. The energy 

of neighboring sentences can be modeled using existing word embedding approaches 

such as CBOW and Skip-gram. 

In chapter 5, we propose the Deep Memory Network. Deep Memory Network 

use the syntactic relationship and structural information of language. It makes the 

Deep Memory Network locate the attention very efficiently and do not need strong 

supervision. The Deep Memory Network is a memory model based on attention 

mechanism. It is composed of four modules which are input module, question 

module, episodic memory module and answer module. Each of modules allow 

different aspects such as input representations or memory components to be analyzed 

and improved independently. It is a potentially general architecture for a variety of 

NLP applications, including classification, question answering and sequence 

modeling. A single architecture is a first step towards a single joint model for 

multiple NLP problems. The Deep Memory Network is trained end-to-end with one, 

albeit complex, objective function.  
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6.2 Future Work 

 

Our work in this dissertation has demonstrated that memory based model with 

attention mechanism can be effectively used in natural language problems to learn 

representations in language. In the following, we discuss future work in several 

directions: 

 

Towards multitask learning and general natural language understanding. 

Multitask learning in NLP has been of interest in previous work. Proposed 

model shows some possibility to multitask learning. Since common concepts in 

language would apply to individual tasks, it is intuitive to share information across 

tasks. This could be seen as the first step towards a general, task-independent 

natural language understanding model. Even though there has been interest in 

multitask learning specifically with neural models, improvements remain relatively 

small and the best mechanism for knowledge sharing across tasks is unclear. 

 

Exploring “less greedy” methods. 

We think that one of the strengths of Deep Memory Network resides in its 

greedy nature which provided by CR-gram. Nonetheless, less greedy methods 

considering multiple decoding paths during training would be worth exploring. For 

this purpose, global scores for sentences would be required in order to discriminate 

between different solutions. 
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초  록 

 

어텐션 기반 모델은 컴퓨터 비전 분야에서 먼저 이용되기 시작해서 

최근에는 자연언어처리 문제에까지 널리 적용되고 있다. 이러한 

시도들은 신경망 기반 기계번역에서 가장 먼저 적용이 되었다. 한 

언어에서 다른 언어로의 번역 문제를 전체 문장을 신경망을 이용하여 

인코딩한 후에 다른 언어로 디코딩하는 것이 아니라 지금 번역해야 하는 

문장의 일부에 집중하여 인코딩과 디코딩을 수행함으로써 보다 효율적인 

번역이 가능하다.  

어텐션 기반 모델로 해결할 수 있는 기본적인 문제는 신경망이 모든 

정보를 하나의 고정 길이 벡터로 인코딩하도록 강제하지 않고 입력 

시퀀스를 다시 참조 할 수 있게 한다는 것이다. 어텐션 기반 모델은 

히든 노드에 대한 접근을 통해서 단순히 신경망의 어느 부분에 대해서 

관심을 가져야 할지 결정하는 것이 아니라 신경망에서 어느 정보를 가져 

올지 결정하는 것이 가능해 진다. 이러한 과정은 개별 노드가 아닌 모든 

노드의 가중치 조합에 대한 검색을 통해서 구현 되기 때문에 역전파를 

통한 신경망의 학습이 보다 빨라 진다는 이점이 있다. 

본 논문에서는 어텐션 기반의 딥 메모리 네트워크와 이를 위한 

단어와 문장의 벡터 표현 방법을 제안하였다. 제안된 방법은 외부 

메모리를 이용한 어텐션 기발 모델로 인하여 질문/답변(Q&A), 기계 

이해(Machine Comprehentions) 및 정서 분석과 같은 자연 언어 처리의 
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다양한 작업을 처리 할 수 있다. 기존의 어텐션 기반 모델들이 많은 

양의 메모리와 계산량을 요구하는 문제를 해결하기 위해서 새로운 

단어와 문장의 벡터 표현 방법을 제안하였다. 기존의 방법들이 마코프 

가정(Markov assumption)만을 사용한 반면에 제안한 방법은 언어의 

구조적 특징을 이용함으로써 어텐션 기반의 모델에서 계산 비용을 크게 

줄일수 있었고, 기존의 모델들과 달리 해답문장에 대한 정보를 제공하는 

강한 감독학습(strong supervision) 없이도 높은 성능을 얻을 수 있었다. 

 

주요어 : 주의 모델, 메모리 네트워크, 딥러닝, 자연언어처리, 기계독해 

학번 : 2004-30347 


	Chapter 1. Introduction  
	1.1 Background and Motivation  
	1.2 Approach and Contributions  
	1.3 Organization of the Dissertation  

	Chapter 2. Related Work  
	2.1 Memory Networks  
	2.2 End-to-End Memory Networks  
	2.3 Dynamic Memory Networks  

	Chapter 3. Conceptual Word Embedding  
	3.1 Related Work  
	3.2 Dependency-Gram  
	3.3 Experimental Results  
	3.4 Discussion and Summary  

	Chapter 4. Sentence Embedding using Context  
	4.1 Related Work  
	4.2 CR-Gram  
	4.3 Experimental Results  
	4.4 Discussion and Summary  

	Chapter 5. Deep Memory Networks  
	5.1 Related Work  
	5.2 Deep Memory Networks  
	5.3 Experimental Results  
	5.3.1 bAbI Dataset  
	5.3.2 Stanford Sentiment Treebank  
	5.3.3 SQuAD Dataset  
	5.4 Discussion and Summary  


	Chapter 6. Concluding Remarks  
	6.1 Summary and Discussion  
	6.2 Future Work  

	References  
	초록


<startpage>10
Chapter 1. Introduction   1
 1.1 Background and Motivation   1
 1.2 Approach and Contributions   3
 1.3 Organization of the Dissertation   5
Chapter 2. Related Work   7
 2.1 Memory Networks   7
 2.2 End-to-End Memory Networks   10
 2.3 Dynamic Memory Networks   13
Chapter 3. Conceptual Word Embedding   20
 3.1 Related Work   20
 3.2 Dependency-Gram   22
 3.3 Experimental Results   26
 3.4 Discussion and Summary   29
Chapter 4. Sentence Embedding using Context   31
 4.1 Related Work   31
 4.2 CR-Gram   35
 4.3 Experimental Results   41
 4.4 Discussion and Summary   43
Chapter 5. Deep Memory Networks   46
 5.1 Related Work   46
 5.2 Deep Memory Networks   48
 5.3 Experimental Results   54
  5.3.1 bAbI Dataset   54
  5.3.2 Stanford Sentiment Treebank   57
  5.3.3 SQuAD Dataset   58
  5.4 Discussion and Summary   60
Chapter 6. Concluding Remarks   62
 6.1 Summary and Discussion   62
 6.2 Future Work   65
References   65
초록 76
</body>

