

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사 학위논문

대화처리를 위한
딥 메모리 네트워크

(Deep Memory Networks

for Natural Conversations)

 2017년 8월

서울대학교 대학원

컴퓨터공학부

장 하 영

대화 처리를 위한
딥 메모리 네트워크

(Deep Memory Networks

for Natural Conversations)

지도 교수 장 병 탁

이 논문을 공학박사 학위논문으로 제출함
2017년 8월

서울대학교 대학원

컴퓨터공학부
장 하 영

장하영의 공학박사 학위논문을 인준함
2017년 7월

위 원 장 최 진 영 (인)

부위원장 장 병 탁 (인)

위 원 문 병 로 (인)

위 원 신 수 용 (인)

위 원 석 호 식 (인)

 i

Abstract

Attention-based models are firstly proposed in the field of computer vision. And

then they spread into natural language processing (NLP). The first one successfully

bringing in attention mechanism from computer vision to NLP is neural machine

translation. Such attention-based mechanism is motivated from that, instead of

decoding based on the encoding of a whole and a fixed-length sentence during one

pass of neural network-based machine translation, one can attend a specific part of

the sentence. This specific part is what should currently be attended. These parts

could be words or phrases.

The basic problem that the attention mechanism solves is that it allows the

network to refer back to the input sequence, instead of forcing it to encode all

information into one fixed-length vector. The attention mechanism is simply giving

the network access to its internal memory, which is the hidden state of the encoder.

In this point of view, instead of choosing what to “attend” to, the network chooses

what to retrieve from memory. Unlike typical memory, the memory access

mechanism here is soft, which means that the network retrieves a weighted

combination of all memory locations, not a value from a single discrete location.

Making the memory access soft has the benefit that we can easily train the network

end-to-end using backpropagation

The trend towards more complex memory structures is now continuing. End-

to-End Memory Networks allow the network to read same input sequence multiple

times before making an output, updating the memory contents at each step. For

 ii

example, answering a question by making multiple reasoning steps over an input

story. However, when the networks parameter weights are tied in a certain way, the

memory mechanism in End-to-End Memory Networks identical to the attention

mechanism presented here, only that it makes multiple hops over the memory.

In this dissertation, we propose the deep memory network with attention

mechanism and word/sentence embedding for attention mechanism. Due to the

external memory and attention mechanism, proposed method can handle various

tasks in natural language processing, such as question and answering, machine

comprehension and sentiment analysis. Usually attention mechanism requires huge

computational cost. In order to solve this problem. I also propose novel word and

sentence embedding methods. Previous embedding methods only use the Markov

assumption. But if we consider the language structure and make use of it, it will be

very helpful to reduce the computational cost. Also it does not need strong

supervision which means the additional information on important sentences.

Keywords : Attention Model, Memory Network, Deep Learning, Natural Language

Understanding, Machine Comprehension

Student Number : 2004-30347

 iii

Contents

Chapter 1. Introduction .. 1

1.1 Background and Motivation .. 1

1.2 Approach and Contributions ... 3

1.3 Organization of the Dissertation ... 5

Chapter 2. Related Work .. 7

2.1 Memory Networks .. 7

2.2 End-to-End Memory Networks ... 10

2.3 Dynamic Memory Networks ... 13

Chapter 3. Conceptual Word Embedding ... 20

3.1 Related Work ... 20

3.2 Dependency-Gram .. 22

3.3 Experimental Results .. 26

3.4 Discussion and Summary .. 29

Chapter 4. Sentence Embedding using Context 31

4.1 Related Work ... 31

4.2 CR-Gram ... 35

4.3 Experimental Results .. 41

4.4 Discussion and Summary .. 43

 iv

Chapter 5. Deep Memory Networks .. 46

5.1 Related Work ... 46

5.2 Deep Memory Networks ... 48

5.3 Experimental Results .. 54

5.3.1 bAbI Dataset .. 54

5.3.2 Stanford Sentiment Treebank ... 57

5.3.3 SQuAD Dataset .. 58

5.4 Discussion and Summary .. 60

Chapter 6. Concluding Remarks .. 62

6.1 Summary and Discussion .. 62

6.2 Future Work .. 65

References ... 65

초록 ... 76

 v

List of Tables

[Table 3.1] Evaluation results of multi-class text classification 27

[Table 3.2] Nearest neighbor words by Skip-Gram and Dependency-gram

 ... 28

[Table 4.1] Summary statistics of the BookCorpus dataset 41

[Table 4.2] Classification accuracies on several standard benchmarks ... 42

[Table 5.1] Sample statements and questions from bAbI tasks 1 to 10 ... 55

[Table 5.2] Results on bAbI dataset. Strong supervision is the additional

information on important sentences to answer the question 56

[Table 5.4] Test accuracies for sentiment analysis on the Stanford Sentiment

Treebank .. 58

[Table 5.5] Performance comparison on the SQuAD test set 59

[Table 5.6] Performance comparisons of models with the models which do

not use dependency-gram or CR-gram using the SQuAD Dev set 60

 vi

List of Figures

[Figure 2.1] Example “story” statements, questions and answers generated by

a simple simulation. Answering the question about the location of the milk

requires comprehension of the actions “picked up” and “left”. The questions

also require comprehension of the time elements of the story, e.g., to answer

“where was Joe before the office?” 10

[Figure 2.2] End-to-End Memory Network ... 13

[Figure 2.3] Example of an input list of sentences to the Dynamic Memory

Network ... 17

[Figure 3.1] The CBOW architecture predicts the current word based on the

context, and the Skip-gram predicts surrounding words given the current

word ... 22

[Figure 3.2] Skip-Gram and TWE models. Blue circles indicate word

embeddings and green circles indicate context embeddings 24

[Figure 3.3] t-SNE visualization of the 500 most frequent words learned by

Dependency-gram .. 29

[Figure 4.1] The skip-thoughts model ... 32

[Figure 4.2] Sentence embedding model using co-reference 37

[Figure 4.3] Sentences grouped based on predicted topics 43

[Figure 5.1] Deep Memory Network ... 48

1

Chapter 1

Introduction

1.1 Background and Motivation

Neural network models have recently become the most effective tools for a range of

hard applied natural language processing problems, including translation (Luong et

al. 2015), sentiment analysis (Socher et al. 2011), and text generation (Wen et al.

2015). These models succeed in large part because they can learn and use their own

continuous numeric representational systems for sentence meaning. However, their

representations need not correspond in any interpretable way with the logic based

representations typically used in linguistic semantics. These models’ successes in

learning to solve semantically difficult problems signal that they are a potentially

valuable object of study for semantics, and drawing insights from semantics to

improve these models could yield substantial progress across applied language

understanding tasks. But there is no general method to solve the various tasks in

natural language problem.

Most tasks in natural language processing can be cast into question answering

(QA) problems over language input. QA is a complex natural language processing

task which requires an understanding of the meaning of a text and the ability to

reason over relevant facts. Most, if not all, tasks in natural language processing can

be cast as a question answering problem: high level tasks like machine translation

2

(What is the translation into French?); sequence modeling tasks like named entity

recognition (Passos et al., 2014) (NER) (What are the named entity tags in this

sentence?) or part-of-speech tagging (POS) (What are the part-of-speech tags?);

classification problems like sentiment analysis (Socher et al., 2013) (What is the

sentiment?); even multi-sentence joint classification problems like co-reference

resolution (Who does “their” refer to?).

Most higher intelligences in nature have a built-in mechanism for deciding how

to apply their brainpower from moment to moment. It is called attention, and refers

to management of cognitive resources. Human attention is a reasonably well studied

subject within the field of psychology and known to be a key feature of human

intelligence. Without attention we would constantly be overloaded with stimuli,

severely affecting our ability to perform tasks, make decisions and react to the

environment.

Attention-based models are firstly proposed in the field of computer vision

(Mnih et al., 2014). And then they spread into natural language processing (NLP).

The first one successfully bringing in attention mechanism from computer vision to

NLP is neural machine translation (Bahdanau et al., 2015). Such attention-based

mechanism is motivated from that, instead of decoding based on the encoding of a

whole and a fixed-length sentence during one pass of neural network-based machine

translation, one can attend a specific part of the sentence. This specific part is what

should currently be attended. These parts could be words or phrases.

From an engineering perspective, attention can be viewed as resource

optimization, enabling systems to perform tasks in complex environments while

requiring insignificant amounts of resources (compared to complexity of tasks and

3

environments) and using existing resources only for information likely to be

important or relevant. In this view, time itself can be treated as a resource.

While a general-purpose attention mechanism, applicable to any NLP, could be

a goal to strive for, a perfect and complete independence from architecture has been

found practically impossible, as resource management touches on too many

fundamental issues in the structure and operation of an architecture to make this a

theoretical possibility. The goal of the present work is therefore not to develop an

attention component that can be plugged directly in to existing NLP architectures.

This work is motivated by the desire to create practical attention based model

intended to perform real tasks in natural language processing rather than attempting

to validate hypothesis or models relating to the functionality of the brain at any level.

While clearly “biologically inspired” at a high level (by natural attention), this work

is not biologically inspired in this sense: It does not target an accurate simulation or

model of biological mechanisms. Where deemed useful and appropriate, inspiration

from research on human attention will be taken, but it is not a goal to have the

resulting components be constrained in design by what is known about the

functionality of human attention.

1.2 Approach and Contributions

The basic problem that the attention mechanism solves is that it allows the network

to refer back to the input sequence, instead of forcing it to encode all information

4

into one fixed-length vector. The attention mechanism is simply giving the network

access to its internal memory, which is the hidden state of the encoder. In this point

of view, instead of choosing what to “attend” to, the network chooses what to retrieve

from memory. Unlike typical memory, the memory access mechanism here is soft,

which means that the network retrieves a weighted combination of all memory

locations, not a value from a single discrete location. Making the memory access soft

has the benefit that we can easily train the network end-to-end using backpropagation

Memory Mechanisms themselves have a much longer history. The hidden state

of a standard Recurrent Neural Network is itself a type of internal memory. RNNs

suffer from the vanishing gradient problem that prevents them from learning long-

range dependencies. LSTMs improved upon this by using a gating mechanism that

allows for explicit memory deletes and updates.

The trend towards more complex memory structures is now continuing. End-

to-End Memory Networks allow the network to read same input sequence multiple

times before making an output, updating the memory contents at each step. For

example, answering a question by making multiple reasoning steps over an input

story. However, when the networks parameter weights are tied in a certain way, the

memory mechanism in End-to-End Memory Networks identical to the attention

mechanism presented here, only that it makes multiple hops over the memory.

In this dissertation, I propose the deep memory network with attention

mechanism and word/sentence embedding for attention mechanism. Due to the

external memory and attention mechanism, proposed method can handle various

tasks in natural language processing, such as question and answering, machine

comprehension and sentiment analysis. If we can cast the problems in natural

5

language processing into question answering problems, every input data can be

processed via sequence modeling process. Then attention mechanism can handle it.

Disadvantage of attention mechanism is that it requires huge computational cost.

In order to solve this problem. I proposed novel word and sentence embedding

methods. Previous embedding methods only use the Markov assumption. But if we

consider the language structure and make use of it, it will be very helpful to reduce

the computational cost. Also it does not need strong supervision which means the

additional information on important sentences.

1.3 Organization of the Dissertation

This dissertation is organized as follows.

In Chapter 2, we discuss memory networks and attention mechanism. We

describe how attention mechanism works and the characteristics of previous memory

model such as Memory Networks, End-to-End Memory Networks and Dynamic

Memory Networks.

In chapter 3, we propose novel distributed representation of words. The

proposed methods make use of the relationship between words in sentences. So we

can use more accurate representation of words.

In chapter 4, we propose distributed representation of sentences using the co-

reference. In linguistics, co-reference occurs when two or more expressions in a text

have the same referent. This means that syntactic relationship exists between co-

6

referential expressions. These kind of information can reduce computational cost of

attention mechanism dramatically.

In chapter 5, we propose the Deep Memory Network. Deep Memory Network

use the syntactic relationship and structural information of language. It makes the

Deep Memory Network locate the attention very efficiently and do not need strong

supervision.

Finally, we summarize the dissertation and discuss contributions in Chapter 6.

7

Chapter 2

Related Work

2.1 Memory Networks

Memory Networks reason with inference components combined with a long-term

memory component; they learn how to use these jointly (Weston et al., 2015a). The

long-term memory can be read and written to, with the goal of using it for prediction.

These models are investigated in the context of question answering (QA) where the

long-term memory effectively acts as a (dynamic) knowledge base, and the output is

a textual response.

A memory network consists of a memory m (an array of objects indexed by mi)

and four (potentially learned) components I, G, O and R as follows:

I: (input feature map) – converts the incoming input to the internal feature

representation.

G: (generalization) – updates old memories given the new input. This

generalization means that there is an opportunity for the network to compress

and generalize its memories at this stage for some intended future use.

O: (output feature map) – produces a new output (in the feature representation

space), given the new input and the current memory state.

R: (response) – converts the output into the response format desired. For

8

example, a textual response or an action.

Given an input x (e.g., an input character, word or sentence depending on the

granularity chosen, an image or an audio signal) the flow of the model is as follows:

1. Convert x to an internal feature representation I(x).

2. Update memories mi given the new input: mi = G(mi, I(x), m), ∀i.

3. Compute output features o given the new input and the memory:

o = O(I(x), m).

4. Finally, decode output features o to give the final response: r = R(o).

This process is applied at both train and test time, if there is a distinction

between such phases, that is, memories are also stored at test time, but the model

parameters of I, G, O and R are not updated. Memory Networks cover a wide class

of possible implementations. The components I, G, O and R can potentially use any

existing ideas from the machine learning literature, e.g., make use of your favorite

models (SVMs, decision trees, etc.).

I component: Component I can make use of standard pre-processing, e.g.,

parsing, co-reference and entity resolution for text inputs. It could also encode the

input into an internal feature representation, e.g., convert from text to a sparse or

dense feature vector.

G component: The simplest form of G is to store I(x) in a “slot” in the memory:

𝑚𝑚𝐻𝐻(𝑥𝑥) = 𝐼𝐼(𝑥𝑥) (2.1)

9

where H(.) is a function selecting the slot. That is, G updates the index H(x) of

m, but all other parts of the memory remain untouched. More sophisticated variants

of G could go back and update earlier stored memories (potentially, all memories)

based on the new evidence from the current input x. If the input is at the character or

word level one could group inputs (i.e., by segmenting them into chunks) and store

each chunk in a memory slot.

If the memory is huge (e.g., consider all of Freebase or Wikipedia) one needs

to organize the memories. This can be achieved with the slot choosing function H

just described: for example, it could be designed, or trained, to store memories by

entity or topic. Consequently, for efficiency at scale, G (and O) need not operate on

all memories: they can operate on only a retrieved subset of candidates (only

operating on memories that are on the right topic).

If the memory becomes full, a procedure for “forgetting” could also be

implemented by H as it chooses which memory is replaced, e.g., H could score the

utility of each memory, and overwrite the least useful.

O and R components: The O component is typically responsible for reading

from memory and performing inference, e.g., calculating what are the relevant

memories to perform a good response. The R component then produces the final

response given O. For example in a question answering setup O finds relevant

memories, and then R produces the actual wording of the answer, e.g., R could be an

RNN that is conditioned on the output of O.

An example task is given in Figure 1. In order to answer the question x =

10

“Where is the milk now?”, the O module first scores all memories, i.e., all previously

seen sentences, against x to retrieve the most relevant fact, 𝑚𝑚𝑜𝑜1= “Joe left the milk”

in this case. Then, it would search the memory again to find the second relevant fact

given [x, 𝑚𝑚𝑜𝑜1], that is 𝑚𝑚𝑜𝑜1 = “Joe travelled to the office” (the last place Joe went

before dropping the milk). Finally, the R module would score words given [x, 𝑚𝑚𝑜𝑜1,

𝑚𝑚𝑜𝑜2] to output r = “office”.

Figure 2.1. Example “story” statements, questions and answers generated by a simple
simulation. Answering the question about the location of the milk requires comprehension of
the actions “picked up” and “left”. The questions also require comprehension of the time
elements of the story, e.g., to answer “where was Joe before the office?”.

2.2 End-to-End Memory Networks

End-to-End Memory Network (Sukhbaatar el al., 2015) is a form of Memory

Network (Weston et al., 2015a) but unlike the model in that work, it is trained end-

to-end, and hence requires significantly less supervision during training, making it

more generally applicable in realistic settings. It can also be seen as an extension of

RNNsearch (Bahdanau et al., 2015) to the case where multiple computational steps

(hops) are performed per output symbol. The flexibility of the model allows to apply

Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.
Joe travelled to the office. Joe left the milk. Joe went to the bathroom.
Where is the milk now? A: office
Where is Joe? A: bathroom
Where was Joe before the office? A: kitchen

11

it to tasks as diverse as (synthetic) question answering (Weston et al., 2015b) and to

language modeling. For the former it is competitive with Memory Networks, but

with less supervision. For the latter, on some datasets it demonstrates comparable

performance to RNNs and LSTMs. In both cases the key concept of multiple

computational hops yields improved results.

It takes a discrete set of inputs x1, ..., xn that are to be stored in the memory, a

query q, and outputs an answer a. Each of the xi, q, and a contains symbols coming

from a dictionary with V words. The model writes all x to the memory up to a fixed

buffer size, and then finds a continuous representation for the x and q. The continuous

representation is then processed via multiple hops to output a. This allows

backpropagation of the error signal through multiple memory accesses back to the

input during training.

Input memory representation: Suppose an input set x1, ..., xi are stored in

memory. The entire set of {xi} are converted into memory vectors {mi} of

dimension d computed by embedding each xi in a continuous space, in the

simplest case, using an embedding matrix A (of size d × V). The query q is also

embedded (again, in the simplest case via another embedding matrix B with the

same dimensions as A) to obtain an internal state u. In the embedding space, we

compute the match between u and each memory mi by taking the inner product

followed by a softmax:

𝑝𝑝𝑖𝑖 = Softmax(𝑢𝑢𝑡𝑡𝑚𝑚𝑖𝑖) (2.2)

12

where Softmax(𝑧𝑧𝑖𝑖) = 𝑒𝑒𝑧𝑧𝑖𝑖 ∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑗𝑗⁄ . Defined in this way p is a probability vector

over the inputs.

Output memory representation: Each xi has a corresponding output vector ci

(given in the simplest case by another embedding matrix C). The response

vector from the memory o is then a sum over the transformed inputs ci, weighted

by the probability vector from the input:

o = ∑ 𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 (2.3)

Because the function from input to output is smooth, we can easily compute

gradients and backpropagate through it. Other recently proposed forms of

memory or attention take this approach (Bahdanau et al., 2015; Graves et al.,

2014; Gregor et al., 2015).

Generating the final prediction: In the single layer case, the sum of the output

vector o and the input embedding u is then passed through a final weight matrix

W (of size V × d) and a softmax to produce the predicted label:

a� = Softmax(𝑊𝑊(𝑜𝑜 + 𝑢𝑢)) (2.4)

The overall model is shown in Figure 2.2. During training, all three embedding

matrices A, B and C, as well as W are jointly learned by minimizing a standard cross-

entropy loss between aˆ and the true label a�. Training is performed using stochastic

13

gradient descent.

Figure 2.2. End-to-End Memory Network

2.3 Dynamic Memory Networks

The Dynamic Memory Network is a general architecture for question answering (QA)

(Kumar et al., 2016). It is composed of four modules which are input module,

question module, episodic memory module and answer module. Each of modules

allow different aspects such as input representations or memory components to be

analyzed and improved independently.

Input module: In natural language processing problems, the input is a sequence

14

of TI words 𝑤𝑤𝑖𝑖, … ,𝑤𝑤𝑇𝑇𝐼𝐼. One way to encode the input sequence is via a recurrent

neural network (Elman, 1991). Word embeddings are given as inputs to the

recurrent network. At each time step t, the network updates its hidden state ht =

RNN(L[wt], ht-1), where L is the embedding matrix and wt is the word index of

the tth word of the input sequence.

In cases where the input sequence is a single sentence, the input module outputs

the hidden states of the recurrent network. In cases where the input sequence is

a list of sentences, the sentences are concatenated into a long list of word tokens,

inserting after each sentence an end-of-sentence token. The hidden states at each

of the end-of-sentence tokens are then the final representations of the input

module. In subsequent sections, the output of the input module is denoted as the

sequence of TC fact representations c, whereby ct denotes the tth element in the

output sequence of the input module. Note that in the case where the input is a

single sentence, TC = TI . That is, the number of output representations is equal

to the number of words in the sentence. In the case where the input is a list of

sentences, TC is equal the number of sentences.

In order to model the input sequences, a gated recurrent network (GRU) (Cho

et al., 2014; Chung et al., 2014) is used. Assume each time step t has an input xt

and a hidden state ht. The internal mechanics of the GRU is defined as:

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊(𝑧𝑧)𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1 + 𝑏𝑏(𝑧𝑧)) (2.5)

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊(𝑟𝑟)𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1 + 𝑏𝑏(𝑟𝑟)) (2.6)

15

ℎ�𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑡𝑡 ∘ 𝑈𝑈ℎ𝑡𝑡−1 + 𝑏𝑏(ℎ)) (2.7)

ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡 ∘ ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ∘ ℎ�𝑡𝑡 (2.8)

where ∘ is an element-wise product, 𝑊𝑊(𝑧𝑧),𝑊𝑊(𝑟𝑟),𝑊𝑊 ∈ ℝ𝑛𝑛𝐻𝐻×𝑛𝑛𝐼𝐼 and

𝑈𝑈(𝑧𝑧),𝑈𝑈(𝑟𝑟),𝑈𝑈 ∈ ℝ𝑛𝑛𝐻𝐻×𝑛𝑛𝐻𝐻 . The dimensions n are hyperparameters. The above

computation is abbreviated with ht = GRU(xt, ht-1).

Question Module: Similar to the input sequence, the question is also most

commonly given as a sequence of words in natural language processing

problems. As before, the question is encoded via a recurrent neural network.

Given a question of TQ words, hidden states for the question encoder at time t

is given by 𝑞𝑞𝑡𝑡 = 𝐺𝐺𝑅𝑅𝑈𝑈(𝐿𝐿�𝑤𝑤𝑡𝑡
𝑄𝑄�,𝑞𝑞𝑡𝑡−1), L represents the word embedding matrix

as in the previous section and 𝑤𝑤𝑡𝑡
𝑄𝑄 represents the word index of the tth word in

the question. The word embedding matrix can be shared across the input module

and the question module. Unlike the input module, the question module

produces as output the final hidden state of the recurrent network encoder: q =

𝑞𝑞𝑇𝑇𝑄𝑄 .

Episodic Memory Module: The episodic memory module iterates over

representations outputted by the input module, while updating its internal

episodic memory. In its general form, the episodic memory module is comprised

of an attention mechanism as well as a recurrent network with which it updates

16

its memory. During each iteration, the attention mechanism attends over the fact

representations c while taking into consideration the question representation q

and the previous memory mi-1 to produce an episode ei.

The episode is then used, alongside the previous memories mi-1, to update the

episodic memory mi = GRU(ei, mi-1). The initial state of this GRU is initialized

to the question vector itself: m0 = q. For some tasks, it is beneficial for episodic

memory module to take multiple passes over the input. After TM passes, the final

memory 𝑚𝑚𝑇𝑇𝑀𝑀 is given to the answer module.

The iterative nature of this module allows it to attend to different inputs during

each pass. It also allows for a type of transitive inference, since the first pass

may uncover the need to retrieve additional facts. For instance, in the example

in Figure 2.3, the question is “Where is the football?” In the first iteration, the

model ought to attend to sentence 7 (John put down the football.), as the

question asks about the football. Only once the model sees that John is relevant

can it reason that the second iteration should retrieve where John was. Similarly,

a second pass may help for sentiment analysis.

17

Figure 2.3. Example of an input list of sentences to the Dynamic Memory Network

In the Dynamic Memory Network, the gating function is used as attention

mechanism. For each pass i, the mechanism takes as input a candidate fact ct, a

previous memory mi-1, and the question q to compute a gate: 𝑔𝑔𝑡𝑡𝑖𝑖 =

𝐺𝐺(𝑐𝑐𝑡𝑡 ,𝑚𝑚𝑖𝑖−1,𝑞𝑞)

The scoring function G takes as input the feature set z(c, m, q) and produces a

scalar score. It is defined as a large feature vector that captures a variety of

similarities between input, memory and question vectors:

z(c, m, q) = �𝑐𝑐,𝑚𝑚, 𝑞𝑞, 𝑐𝑐 ∘ 𝑞𝑞, 𝑐𝑐 ∘ 𝑚𝑚, |𝑐𝑐 − 𝑞𝑞|, |𝑐𝑐 − 𝑚𝑚|, 𝑐𝑐𝑇𝑇𝑊𝑊(𝑏𝑏)𝑞𝑞, 𝑐𝑐𝑇𝑇𝑊𝑊(𝑏𝑏)𝑚𝑚� (2.9)

where ∘ is an element-wise product. The function G is a simple two-layer feed

forward neural network.

G(c, m, q) = σ(𝑊𝑊(2) tanh�𝑊𝑊(1)𝑧𝑧(𝑐𝑐,𝑚𝑚, 𝑞𝑞) + 𝑏𝑏(1)�+ 𝑏𝑏(2)) (2.10)

18

To compute the episode for pass i, a modified GRU over the sequence of the

inputs 𝑐𝑐1, … , 𝑐𝑐𝑇𝑇𝑐𝑐, weighted by the gates gi is used. The episode vector that is

given to the answer module is the final state of the GRU. The equation to update

the hidden states of the GRU at time t and the equation to compute the episode

are, respectively:

ℎ𝑡𝑡𝑖𝑖 = 𝑔𝑔𝑡𝑡𝑖𝑖𝐺𝐺𝑅𝑅𝑈𝑈�𝑐𝑐𝑡𝑡ℎ𝑡𝑡−1𝑖𝑖 � + (1 − 𝑔𝑔𝑡𝑡𝑖𝑖)ℎ𝑡𝑡−1𝑖𝑖 (2.11)

𝑒𝑒𝑖𝑖 = ℎ𝑇𝑇𝑐𝑐
𝑖𝑖 (2.12)

Answer Module: The answer module generates an answer given a vector.

Depending on the type of task, the answer module is either triggered once at the

end of the episodic memory or at each time step.

Another GRU whose initial state is initialized to the last memory 𝑎𝑎0 = 𝑚𝑚𝑇𝑇𝑀𝑀 is

used in answer module. At each time step, it takes as input the question q, last

hidden state at-1, as well as the previously predicted output yt-1.

𝑦𝑦𝑡𝑡 = softmax(𝑊𝑊(𝑎𝑎)𝑎𝑎𝑡𝑡) (2.13)

𝑎𝑎𝑡𝑡 = 𝐺𝐺𝑅𝑅𝑈𝑈([𝑦𝑦𝑡𝑡−1,𝑞𝑞]𝑎𝑎𝑡𝑡−1) (2.13)

where we concatenate the last generated word and the question vector as the

input at each time step. The output is trained with the cross-entropy error

19

classification of the correct sequence appended with a special end-of-sequence

token.

In the sequence modeling task, we wish to label each word in the original

sequence. To this end, the Dynamic Memory Network is run in the same way

as above over the input words. For word t, Equation 2.12 is replaced with 𝑒𝑒𝑖𝑖 =

ℎ𝑡𝑡𝑖𝑖 .

20

Chapter 3

Conceptual Word Embedding

3.1 Related Work

Many current NLP systems and techniques treat words as atomic units - there is no

notion of similarity between words, as these are represented as indices in a

vocabulary. This choice has several good reasons - simplicity, robustness and the

observation that simple models trained on huge amounts of data outperform complex

systems trained on less data. An example is the popular N-gram model used for

statistical language modeling - today, it is possible to train N-grams on virtually all

available data (Brants et al., 2007).

However, the simple techniques are at their limits in many tasks. For example,

the amount of relevant in-domain data for automatic speech recognition is limited -

the performance is usually dominated by the size of high quality transcribed speech

data (often just millions of words). In machine translation, the existing corpora for

many languages contain only a few billions of words or less. Thus, there are

situations where simple scaling up of the basic techniques will not result in any

significant progress, and we have to focus on more advanced techniques.

With progress of machine learning techniques in recent years, it has become

possible to train more complex models on much larger data set, and they typically

outperform the simple models. Probably the most successful concept is to use

21

distributed representations of words (Hinton et al., 1986). For example, neural

network based language models significantly outperform N-gram models (Bengio et

al., 2003; Schwenk, 2007; Mikolov et al., 2011).

Neural network language model can be successfully trained in two steps: first,

continuous word vectors are learned using simple model, and then the N-gram

feedforward neural net language model is trained on top of these distributed

representations of words.

Skim-gram tries to maximize classification of a word based on another word in

the same sentence. More precisely, each current word is used as an input to a log-

linear classifier with continuous projection layer, and predict words within a certain

range before and after the current word. Increasing the range improves quality of the

resulting word vectors, but it also increases the computational complexity. Since the

more distant words are usually less related to the current word than those close to it,

less weight are given to the distant words by sampling less from those words in

training examples.

The training complexity of this architecture is proportional to

Q = C × (D + D × log2(𝑉𝑉)) (3.1)

where C is the maximum distance of the words. Thus, if we choose C = 5, for each

training word we will select randomly a number R in range < 1;C >, and then use R

words from history and R words from the future of the current word as correct labels.

This will require us to do RＸ2 word classifications, with the current word as input,

22

and each of the R + R words as output.

Figure 3.1. The CBOW architecture predicts the current word based on the context, and the
Skip-gram predicts surrounding words given the current word.

3.2 Dependency-Gram

Word embedding, also known as word representation, plays an increasingly vital role

in building continuous word vectors based on their contexts in a large corpus. Word

embedding captures both semantic and syntactic information of words, and can be

used to measure word similarities, which are widely used in various IR and NLP

tasks.

Most word embedding methods assume each word preserves a single vector,

which is problematic due to homonymy and polysemy. Multi-prototype vector space

23

models (Reisinger and Mooney 2010) were proposed to cluster contexts of a word

into groups, then generate a distinct prototype vector for each cluster. Following this

idea, (Huang et al. 2012) proposed multi-prototype word embeddings based on

neural language models (Bengio et al. 2003). Despite of their usefulness, multi-

prototype word embeddings face several challenges: (1) These models generate

multi-prototype vectors for each word in isolation, ignoring complicated correlations

among words as well as their contexts. (2) In multi-prototype setting, contexts of a

word are divided into clusters with no overlaps. In reality, a word’s several senses

may correlate with each other, and there is not clear semantic boundary between

them.

In this dissertation, I propose a more flexible and powerful framework for multi-

prototype word embeddings, namely Dependency-gram, in which dependency refers

to a word taking a specific context. The basic idea of Dependency-gram is that, we

allow each word to have different embeddings under different context. For example,

the word apple indicates a fruit under the topic food, and indicates an IT company

under the topic information technology (IT).

I use the dependency parser to obtain context, and perform collapsed Gibbs

sampling (Griffiths and Steyvers2004) to iteratively assign latent topics for each

word token. In this way, given a sequence of words D = {w1, . . . , wM}, each word

token wi will be discriminated into a specific topic zi, forming a word-context pair

〈𝑤𝑤𝑖𝑖, 𝑧𝑧𝑖𝑖〉, which can be used to learn conceptual word embeddings. As shown in

Figure 3.2, where the window size is 1, and wi−1 and wi+1 are conceptual words of wi.

.

24

Figure 3.2. Skip-Gram and TWE models. Blue circles indicate word embeddings and green
circles indicate context embeddings.

Dependency-gram aims to learn vector representations for words and contexts

separately and simultaneously. For each target word with its topic 〈𝑤𝑤𝑖𝑖, 𝑧𝑧𝑖𝑖〉, I propose

Dependency-gram as follows. The objective of dependency-gram is defined to

maximize the following average log probability

(3.2)

Compared with only using the target word wi to predict context words in Skip-

Gram, Dependency-gram also uses the context zi of target word to predict context

words. The basic idea of Dependency-gram is to regard each context as a pseudo

word that appears in all positions of words assigned with this context. Hence, the

vector of a context will represent the collective semantics of words under this context.

In Dependency-gram, we get topical word embedding of a word w in context z by

concatenating the embedding of w and z, i.e., 𝑤𝑤𝑧𝑧 = 𝑤𝑤⊕ 𝑧𝑧 , where ⊕ is the

25

concatenation operation, and the length of wz is double of w or z.

TWE-1 can be used for conceptual word embedding. For each word w with its

document c, TWE-1 will first infer the topic distribution Pr(𝑧𝑧|𝑤𝑤, 𝑐𝑐) by regarding c

as a document, namely Pr(𝑧𝑧|𝑤𝑤, 𝑐𝑐) ∝ Pr(𝑤𝑤|𝑧𝑧)Pr(𝑧𝑧|𝑐𝑐). With the distribution, we can

further obtain the conceptual word embedding of w in c as

 (3.3)

where wz is the embedding of word w under context z, obtained by

concatenating word vector w and context vector z.

conceptual word embedding will be used for computing conceptual word

similarity. Given a pair of words with their contexts, namely (wi, ci) and (wj, cj),

conceptual word similarity aims to measure the similarity between the two words,

which can be formalized as follows S�𝑤𝑤𝑖𝑖, 𝑐𝑐𝑖𝑖 ,𝑤𝑤𝑗𝑗, 𝑐𝑐𝑗𝑗� = (𝑊𝑊𝑖𝑖
𝑐𝑐𝑖𝑖𝑊𝑊𝑗𝑗

𝑐𝑐𝑗𝑗), which can also

be rewritten as

 (3.4)

where S(𝑊𝑊𝑧𝑧,𝑊𝑊𝑧𝑧′) is the similarity between 𝑊𝑊𝑧𝑧 and 𝑊𝑊𝑧𝑧′ .

26

3.3 Experimental Results

Multi-class text classification is well studied problem in NLP and IR. In this

dissertation, I run the experiments on the dataset 20NewsGroup. 20NewsGroup

consists of about 20,000 documents from 20 different newsgroups. I report macro-

averaging precision, recall and F-measure for comparison.

I learn topical word embeddings using the training set, then generate document

embeddings for both training set and test set. Afterwards, I regard document

embedding vectors as document features and train a linear classifier us-ng Liblinear

(Fan et al. 2008). I set the dimensions of both word and dependency embeddings as

K = 400.

I consider the following baselines, bag-of-words (BOW) model, LDA, Skip-

Gram, and Paragraph Vector (PV) models (Le and Mikolov 2014). The BOW model

represents each document as a bag of words and the weighting scheme is TFIDF. For

the TFIDF method, I select top 50,000 words according to TFIDF scores as features.

LDA represents each document as its inferred topic distribution. In Skip-Gram, I

build the embedding vector of a document by simply averaging over all word

embedding vectors in this document. The dimension of word embeddings in Skip-

Gram is also K = 400. Paragraph Vector models are document embedding models

proposed most recently, including the distributed memory model (PV-DM) and the

distributed bag-of-words model (PV-DBOW). PV models are reported to achieve the

27

state-of-the-art performance on sentiment classification (Le and Mikolov 2014).

Table 3.1 shows the evaluation results of text classification on 20NewsGroup.

I can observe that Dependency-gram outperforms all baselines significantly,

especially for topic models and embedding models. This indicates that our model

can capture more precise semantic information of documents as compared to topic

models and embedding models. Moreover, as compared to the BOW model, the

Dependency-gram models manage to reduce the document feature space by 99.2

percent in this case.

Table 3.1. Evaluation results of multi-class text classification

Model Accuracy Precision Recall F-measure

BOW 79.7 79.5 79.0 79.0

LDA 72.2 70.8 70.7 70.0

Skip-Gram 75.4 75.1 74.3 74.2

PV-DM 72.4 72.1 71.5 71.5

PV-DBOW 75.4 74.9 74.3 74.3

Dependency-Gram 80.6 81.0 80.9 80.1

In order to demonstrate the characteristics of Dependency-gram, I selected

several example words and used Dependency-gram to find the most similar words

of these words in different topics. For comparison, I also used Skip-Gram to find

similar words of these example words.

In Table 3.2, I show the most similar words of three example words, bank, left

and apple, which are typical polysemous words. For each example word w, I first

show the result obtained from Skip-Gram, i.e., the first line of each example word;

28

then I list the results under another representative context of the example word

obtained from Dependency-gram, denoted as w#.

Table 3. 2. Nearest neighbor words by Skip-Gram and Dependency-gram.

Words Similar Words

bank
bank#

citibank, investment, river
insurance, stock, investor

left
left#

right, leave, quit
moved, arrived, leave

apple
apple#

macintosh, ios, juice
moved, arrived, leave

From Table 3.2, I can observe that, similar words returned by Skip-Gram

contain similar words of multiple senses of example words. This indicates that Skip-

Gram combines multiple senses of a polysemous word into a unique embedding

vector. In contrast, with Dependency-gram models, we can successfully discriminate

word senses into multiple topics by conceptual word embeddings.

29

Figure 3.3. t-SNE visualization of the 500 most frequent words learned by Dependency-gram

3.4 Discussion and Summary

The success of IR and NLP tasks crucially depend on text representation, of which

word representation is the foundation. Conventionally, NLP tasks usually take one-

hot word representation, with each word being represented as a W-length vector with

only one non-zero entry. The one-hot representation is simple and has been widely

used as the basis of bag-of-words (BOW) document models. However, it suffers

from several challenges, the most critical one of which is it cannot take the

relationship between words into consideration, while in fact many words share high

semantic or syntactic relations. Word embeddings have been successfully used in

language models (Bengio et al., 2006; Mnih and Hinton, 2008). Word embeddings

30

are useful because they can encode both syntactic and semantic information of words

into continuous vectors and similar words are close in vector space. Previous word

embedding models are time consuming due to high computational complexity.

Recently, (Mikolov et al., 2013) proposed two efficient models, Skip-Gram and

continuous bag-of-words model (CBOW), to learn word embeddings from a large-

scale text corpus. The training objective of CBOW is to combine the embeddings of

context words to predict the target word; while Skip-Gram is to use the embedding

of each target word to predict its context words (Mikolov et al. 2013). In this

dissertation, I base on Skip-Gram to extend our models. In most previous word

embedding models, one word owns a unique vector, which is problematic because

many words have multiple senses. Hence, researchers propose multi prototype

models. (Reisinger and Mooney 2010) proposed a multi-prototype vector space

model, which cluster contexts of each target word into groups, and build context

vectors for each cluster. Following this idea, (Huang et al. 2012) also clustered

contexts, and each cluster generated a distinct prototype embedding. Besides,

probabilistic models (Tian et al. 2014), bilingual resources (Guo et al. 2014) and

nonparametric models (Neelakantan et al. 2014) have been explored for multi-

prototype word embeddings. Most of these methods perform multi-prototype

modeling for each word in isolation. On the contrary, Dependency-gram use

dependency as context to discriminate word senses by considering all words and

their contexts together. Dependency-gram also applicable for document embeddings.

Moreover, multi-prototype models can be incorporated in Dependency-gram easily,

which will be left as future work.

31

Chapter 4

Sentence Embedding using Context

4.1 Related Work

Developing learning algorithms for distributed compositional semantics of words

has been a longstanding open problem at the intersection of language understanding

and machine learning. In recent years, several approaches have been developed for

learning composition operators that map word vectors to sentence vectors including

recursive networks (Socher et al., 2013), recurrent networks (Hochreiter and

Schmidhuber, 1997), convolutional networks (Kalchbrenner et al., 2014; Kim, 2014)

and recursive-convolutional methods (Cho et al., 2014; Zhao et al., 2015) among

others. All of these methods produce sentence representations that are passed to a

supervised task and depend on a class label in order to backpropagate through the

composition weights. Consequently, these methods learn high quality sentence

representations but are tuned only for their respective task. The paragraph vector of

(Le et al., 2014) is an alternative to the above models in that it can learn unsupervised

sentence representations by introducing a distributed sentence indicator as part of a

neural language model. The downside is at test time, inference needs to be performed

to compute a new vector.

Skip-thought is a model for learning high-quality sentence vectors without a

particular supervised task in mind (Kiros et al., 2015). Using word vector learning

32

as inspiration, it adopts an objective function that abstracts the skip-gram model of

(Mikolov et al., 2013)) to the sentence level. That is, instead of using a word to

predict its surrounding context, we instead encode a sentence to predict the sentences

around it. Thus, any composition operator can be substituted as a sentence encoder

and only the objective function becomes modified. Figure 4.1 illustrates the model.

Figure 4.1 The skip-thoughts model

Skip-thoughts is a kind of encoder-decoder models. That is, an encoder maps

words to a sentence vector and a decoder is used to generate the surrounding

sentences. Encoder-decoder models have gained a lot of traction for neural machine

translation. In this setting, an encoder is used to map e.g. an English sentence into a

vector. The decoder then conditions on this vector to generate a translation for the

source English sentence. The source sentence representation can also dynamically

change through the use of an attention mechanism (Bahdanau et al., 2015) to take

into account only the relevant words for translation at any given time. Skip-thought

model use an RNN encoder with GRU (Chung et al., 2014) activations and an RNN

decoder with a conditional GRU.

Given sentence tuple (si−1, si, si+1), let 𝑤𝑤𝑖𝑖𝑡𝑡 denote the t-th word for sentence si

and let 𝑥𝑥𝑖𝑖𝑡𝑡 denote its word embedding. The model can be described in three parts:

the encoder, decoder and objective function.

33

Encoder: Let 𝑤𝑤𝑖𝑖1, … ,𝑤𝑤𝑖𝑖𝑁𝑁 be the words in sentence si where N is the number of

words in the sentence. At each time step, the encoder produces a hidden state

ℎ𝑖𝑖𝑡𝑡 which can be interpreted as the representation of the sequence 𝑤𝑤𝑖𝑖1, … ,𝑤𝑤𝑖𝑖𝑡𝑡.

The hidden state ℎ𝑖𝑖𝑡𝑡 thus represents the full sentence. To encode a sentence, we

iterate the following sequence of equations (dropping the subscript i):

) (4.1)

) (4.2)

) (4.3)

) (4.4)

where ℎ�𝑡𝑡 is the proposed state update at time t, zt is the update gate, rt is the

reset gate (⊙) denotes a component-wise product. Both update gates takes

values between zero and one.

Decoder: The decoder is a neural language model which conditions on the

encoder output hi. The computation is similar to that of the encoder except we

introduce matrices Cz, Cr and C that are used to bias the update gate, reset gate

and hidden state computation by the sentence vector. One decoder is used for

34

the next sentence si+1 while a second decoder is used for the previous sentence

si-1. Separate parameters are used for each decoder with the exception of the

vocabulary matrix V, which is the weight matrix connecting the decoder’s

hidden state for computing a distribution over words. In what follows we

describe the decoder for the next sentence si+1 although an analogous

computation is used for the previous sentence si-1. Let ℎ𝑖𝑖+1𝑡𝑡 denote the hidden

state of the decoder at time t. Decoding involves iterating through the following

sequence of equations (dropping the subscript i+1):

) (4.5)

) (4.6)

) (4.7)

) (4.8)

Given ℎ𝑖𝑖+1𝑡𝑡 the probability of word 𝑤𝑤𝑖𝑖+1𝑡𝑡 given the previous t-1 words and

the encoder vector is

) (4.9)

where 𝐯𝐯𝑤𝑤𝑖𝑖+1
𝑡𝑡 denotes the row of V corresponding to the word 𝑤𝑤𝑖𝑖+1𝑡𝑡 . An

35

analogous computation is performed for the previous sentence si-1.

Objective: Given a tuple (si-1, si, si+1), the objective optimized is the sum of the

log-probabilities for the forward and backward sentences conditioned on the

encoder representation:

(4.10)

The total objective is the above summed over all such training tuples.

4.2 CR-Gram

Natural language is intrinsically ambiguous, learning one vector for each word may

not cover all the senses of the word. In the case of a multi-sense word, the learned

vector will be around the average of all the senses of the word in the embedding

space, and therefore may not be a good representation of any of the sentences. A

possible solution is sentence embedding which trains a vector for each sense of a

word. There are two key steps in training sense embeddings. In order to do, we need

to train embedding vectors for word senses according to their contexts

Recently, sense embedding methods based on complete probabilistic models

and well-defined learning objective functions (Tian et al., 2014; Jauhar et al., 2015)

become more popular. These methods regard the choice of senses of the words in a

36

sentence as hidden variables. Learning is therefore done with expectation

maximization style algorithms, which alternate between inferring word sense

choices in the training corpus and learning sense embeddings.

A common problem with these methods is that they model the sense embedding

of each center word dependent on the word embeddings of its context words. As I

explained in chapter 3, word embedding of a polysemous word is not a good

representation and may negatively influence the quality of inference and learning.

Furthermore, these methods choose the sense of each word in a sentence

independently, ignoring the dependency that may exist between the neighboring

words. I argue that such dependency is important in word sense disambiguation and

therefore helpful in learning sentence embeddings. For example, consider the

sentence “He cashed a check at the bank”. Both “check” and “bank” are ambiguous

here. Although the two words hint at banking related senses, the hint is not decisive

(as an alternative interpretation, they may represent a check mark at a river bank).

Fortunately, “cashed” is not ambiguous and it can help disambiguate “check”.

However, if we consider a small context window in sense embedding, then “cashed”

cannot directly help disambiguate bank”. We need to rely on the dependency

between the sense choices of “check” and “bank” to disambiguate “bank”.

In this dissertation, I propose a novel probabilistic model for sentence

embedding that takes into account the dependency between sense choices of

neighboring words. We do not learn any word embeddings in our model and hence

avoid the problem with embedding polysemous words discussed above. It contains

a sequence of observable words and latent sentences and models the dependency

between each word-sentence pair and between neighboring sentences in the

37

sequence. The energy of neighboring sentences can be modeled using existing word

embedding approaches such as CBOW and Skip-gram (Mikolov et al., 2013).

Figure 4.2 Sentence embedding model using co-reference.

In a sentence, let wi be the ith word of the sentence and si be the latent sentence

of the ith word. S(w) denotes the set of all the sentences of word w. Our model can

be represented as a Markov network shown in Figure 1. It is similar to a high order

hidden Markov model. The model contains a sequence of observable words (w1, w2,

…) and latent senses (s1, s2, …). It models the dependency between each word-

sentence pair and between neighboring sentences in the document. The energy

function is formulated as follows:

(4.11)

38

Here 𝐰𝐰 = {𝑤𝑤𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑙𝑙} is the set of words in a sentence with length l and

𝐬𝐬 = {𝑠𝑠𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑙𝑙} is the set of sentences. The function E1 models the dependency

between a word-sentence pair. If I assume that the sets of sentences of different

words do not overlap, we can formulate E1 as follows:

(4.12)

Here we assume that all the matched word-sentence pairs have the same energy,

but it would also be interesting to model the degrees of matching with different

energy values in E1. In Equation 4.11, the function E2 models the compatibility of

neighboring senses in a context window with fixed size k. Existing embedding

approaches like CBOW and Skip-gram (Mikolov et al., 2013) can be used here to

define E2. The formulation using Skip-gram is as follows:

(4.13)

Here V(s) and V'(s) are the input and output embedding vectors of sentence s.

The function σ is an activation function.

39

Given the model and a sentence w, we want to infer the most likely values of

the hidden variables (i.e. the optimal sense sequence of the sentence) that minimize

the energy function in Equation 4.11:

) (4.14)

We use dynamic programming to do inference which is similar to the Viterbi

algorithm of the hidden Markov model.

(4.15)

Once we finish the forward process, we can retrieve the best sentence sequence

with a backward process. The time complexity of the algorithm is O(n4kl) where n is

the maximal number of sentences of a word. Because most words in a typical

sentence have either a single sense or far less than n sentences, the actual running

time of the algorithm is very fast.

We want to learn all the input and output sense embedding vectors that optimize

the following max-margin objective function:

(4.16)

40

Here Θ is the set of all the parameters including V and V' for all the sentences.

C is the set of training sentences. Our learning objective is similar to the negative

sampling and max-margin objective proposed for word embedding (Collobert and

Weston, 2008). Sneg(wi) denotes the set of negative samples of sentences of word wi

which is defined with the following strategy. For a polysemous word wi, Sneg(wi) =

S(wi)\{si}. For the other words with a single sentence, Sneg(wi) is a set of randomly

selected sentences of a fixed size. The objective in Equation 4.16 can be optimized

by coordinate descent which in our case is equivalent to the hard Expectation-

Maximization algorithm. In the hard E step, we run the inference algorithm using the

current model parameters to get the optimal sense sequences of the training sentences.

In the M step, with the sentences sequences s of all the sentences fixed, we learn

sentence embedding vectors. Assume we use the Skip-gram model for E2 (Equation

4.13), then the M-step objective function is as follows:

(4.17)

Here E1 is omitted because the sense sequences produced from the E-step

always have zero E1 value.

We optimize the M-step objective function using stochastic gradient descent.

41

4.3 Experimental Results

I used a large collection of novels, namely the BookCorpus dataset (Zhu et al., 2015)

for training our models. These are free books written by yet unpublished authors.

The dataset has books in 16 different genres, e.g., Romance (2,865 books), Fantasy

(1,479), Science fiction (786), Teen (430), etc. Table 4.1 highlights the summary

statistics of the book corpus. Along with narratives, books contain dialogue, emotion

and a wide range of interaction between characters. Furthermore, with a large enough

collection the training set is not biased towards any particular domain or application.

Table 4.1. Summary statistics of the BookCorpus dataset

of books # of sentences # of words # of unique words mean # of words
per sentence

11,038 74,004,228 984,846,357 1,316,420 13

For the quantitative experiments, we report results on several classification

benchmarks which are commonly used for evaluating sentence representation

learning methods. We use 5 datasets: movie review sentiment (MR), customer

product reviews (CR), subjectivity/objectivity classification (SUBJ), opinion

polarity (MPQA) and question-type classification (TREC). 10-fold cross-validation

is used for evaluation on the first 4 datasets, while TREC has a pre-defined train/test

split. On these tasks, properly tuned bag-of-words models have been shown to

perform exceptionally well. In particular, the NB-SVM of [37] is a fast and robust

performer on these tasks. Skip-thought vectors potentially give an alternative to these

42

baselines being just as fast and easy to use.

Table 6 presents the results. On most tasks, CR-gram performs about as well as

the bag-of-words baselines but fails to improve over methods whose sentence

representations are learned directly for the task at hand. This indicates that for tasks

like sentiment classification, tuning the representations, even on small datasets, are

likely to perform better than learning a generic unsupervised sentence vector on

much bigger datasets. Finally, we observe that the skip-thoughts-NB combination is

effective, particularly on MR.

Table 4.2. Classification accuracies on several standard benchmarks.

Method MR CR SUBJ MPQA TREC
NB-SVM 79.4 81.8 93.2 86.3

MNB 79.0 80.0 93.6 86.3
cBoW 77.2 79.9 91.3 86.4 87.3

GrConv 76.3 81.3 89.5 84.5 88.4
RNN 77.2 82.3 93.7 90.1 90.2

BRNN 82.3 82.6 94.2 90.3 91.0
CNN 81.5 85.0 93.4 89.6 93.6

AdaSent 83.1 86.3 95.5 93.3 92.4
Pagraph-vector 74.8 78.1 90.5 74.2 91.8

Skip-thought 76.5 80.1 93.6 87.1 92.2
CR-gram 84.1 83.4 91.2 90.9 92.1

As a final experiment, I applied t-SNE to skip-thought vectors extracted from

BookCorpus and the visualizations are shown in Figure 4.3. Each point corresponds

to a sentence. Each color corresponds to a topic.

43

Figure 4.3. Sentences grouped based on predicted topics.

4.4 Discussion and Summary

LEARNING a good representation (or features) of input data is an important

task in machine learning. In text and language processing, one such problem is

learning of an embedding vector for a sentence; that is, to train a model that can

automatically transform a sentence to a vector that encodes the semantic meaning of

the sentence. While word embedding is learned using a loss function defined on word

pairs, sentence embedding is learned using a loss function defined on sentence pairs.

In the sentence embedding usually the relationship among words in the sentence, i.e.,

44

the context information, is taken into consideration. Therefore, sentence embedding

is more suitable for tasks that require computing semantic similarities between text

strings. By mapping texts into a unified semantic representation, the embedding

vector can be further used for different language processing applications, such as

machine translation, sentiment analysis, and information retrieval.

In machine translation, the recurrent neural networks (RNN) with Long Short-

Term Memory (LSTM) cells, or the LSTM-RNN, is used to encode an English

sentence into a vector, which contains the semantic meaning of the input sentence,

and then another LSTM-RNN is used to generate a French (or another target

language) sentence from the vector. The model is trained to best predict the output

sentence. In (Le et al., 2014) a paragraph vector is learned in an unsupervised manner

as a distributed representation of sentences and documents, which are then used for

sentiment analysis. Sentence embedding can also be applied to information retrieval,

where the contextual information are properly represented by the vectors in the same

space for fuzzy text matching (Huang et al., 2013).

Inspired by the word embedding method (Mikolov et al., 2013a;, Mikolov et al.,

2013b) the authors in (Le et al., 2014) proposed an unsupervised learning method to

learn a paragraph vector as a distributed representation of sentences and documents,

which are then used for sentiment analysis with superior performance. However, the

model is not designed to capture the fine-grained sentence structure. In (Kiros et al.,

2015), an unsupervised sentence embedding method is proposed with great

performance on large corpus of contiguous text corpus, e.g., the BookCorpus (Zhu

et al., 2015). The main idea is to encode the sentence s(t) and then decode previous

and next sentences, i.e., s(t-1) and s(t+1), using two separate decoders. The encoder

45

and decoders are RNNs with Gated Recurrent Unit (GRU) (Chung et al., 2014).

However, this sentence embedding method is not designed for document retrieval

task having a supervision among queries and clicked and unclicked documents. In

(Socher et al., 2011), a Semi-Supervised Recursive Autoencoder (RAE) is proposed

and used for sentiment prediction. Similar to our proposed method, it does not need

any language specific sentiment parsers. A greedy approximation method is

proposed to construct a tree structure for the input sentence. It assigns a vector per

word. It can become practically problematic for large vocabularies. It also works

both on unlabeled data and supervised sentiment data.

In this dissertation I propose a novel probabilistic model for learning sentence

embeddings. Unlike previous work, proposed model do not learn sentence

embeddings dependent on word embeddings and hence avoid the problem with

inaccurate embeddings of polysemous words. Furthermore, I model the dependency

between sentences of neighboring words which can help us disambiguate multiple

ambiguous words in a sentence. Based on CR-gram, I derive a dynamic

programming inference algorithm and an EM-style unsupervised learning algorithm

which do not rely on external knowledge from any knowledge base or lexicon except

that I determine the number of senses of polysemous words according to an existing

sense inventory.

For the future work, I plan to try learning our model with soft EM. Besides, I

plan to use dependency information in our model to improve the generality of our

model. Finally, I plan to evaluate our model with more NLP tasks.

46

Chapter 5

Deep Memory Networks

5.1 Related Work

A number of recent efforts have explored ways to capture long-term structure within

sequences using RNNs or LSTM-based models (Chung et al., 2014; Graves, 2013;

Koutnık et al., 2014; Mikolov et al., 2014; Hochreiter et al., 1997). The memory in

these models is the state of the network, which is latent and inherently unstable over

long timescales. The LSTM-based models address this through local memory cells

which lock in the network state from the past. In practice, the performance gains over

carefully trained RNNs are modest.

Some of the very early work on neural networks by (Steinbuch and Piske, 1963)

and (Taylor, 1959) considered a memory that performed nearest-neighbor operations

on stored input vectors and then fit parametric models to the retrieved sets. This has

similarities to a single layer version of our model.

The earliest recent work with a memory component that is applied to language

processing is that of memory networks (Weston et al., 2015a) which adds a memory

component for question answering over simple facts. Their input module computes

sentence representations independently and hence cannot easily be used for other

tasks such as sequence labeling. This memory network requires that supporting facts

are labeled during QA training. End-to-end memory networks (Sukhbaatar et al.,

47

2015) do not have this limitation. In contrast to previous memory models with a

variety of different functions for memory attention retrieval and representations,

dynamic memory networks (Kumar et al., 2015) have shown that neural sequence

models can be used for input representation, attention and response mechanisms.

Sequence models naturally capture position and temporality of both the inputs and

transitive reasoning steps.

Attention mechanisms allow neural network models to use a question to

selectively pay attention to specific inputs. They can benefit image classification

(Stollenga et al., 2014), generating captions for images (Xu et al., 2015), among

others mentioned below, and machine translation (Cho et al., 2014; Bahdanau et al.,

2015; Luong et al., 2015). Other recent neural architectures with memory or attention

which have proposed include neural Turing machines (Graves et al., 2014), neural

GPUs (Kaiser and Sutskever, 2015) and stack-augmented RNNs (Joulin and Mikolov,

2015).

Question answering involving natural language can be solved in a variety of

ways to which we cannot all do justice. If the potential input is a large text corpus,

QA becomes a combination of information retrieval and extraction (Yates et al.,

2007). Neural approaches can include reasoning over knowledge bases, (Bordes et

al., 2012; Socher et al., 2013b) or directly via sentences for trivia competitions (Iyyer

et al., 2014).

48

5.2 Deep Memory Networks

Deep Memory Network is a memory model based on attention mechanism. It is

composed of four modules which are input module, question module, episodic

memory module and answer module. Each of modules allow different aspects such

as input representations or memory components to be analyzed and improved

independently.

Figure 5.1 Deep Memory Network

Input module: In natural language processing problems, the input is a sequence

of TI words 𝑤𝑤𝑖𝑖, … ,𝑤𝑤𝑇𝑇𝐼𝐼. One way to encode the input sequence is via a recurrent

neural network (Elman, 1991). Word embeddings are given as inputs to the

recurrent network. At each time step t, the network updates its hidden state ht =

RNN(L[wt], ht-1), where L is the embedding matrix and wt is the word index of

49

the tth word of the input sequence.

In cases where the input sequence is a single sentence, the input module outputs

the hidden states of the recurrent network. In cases where the input sequence is

a list of sentences, the sentences are concatenated into a long list of word tokens,

inserting after each sentence an end-of-sentence token. The hidden states at each

of the end-of-sentence tokens are then the final representations of the input

module. In subsequent sections, the output of the input module is denoted as the

sequence of TC fact representations c, whereby ct denotes the tth element in the

output sequence of the input module. Note that in the case where the input is a

single sentence, TC = TI . That is, the number of output representations is equal

to the number of words in the sentence. In the case where the input is a list of

sentences, TC is equal the number of sentences.

In order to model the input sequences, a gated recurrent network (GRU) (Cho

et al., 2014; Chung et al., 2014) is used. Assume each time step t has an input xt

and a hidden state ht. The internal mechanics of the GRU is defined as:

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊(𝑧𝑧)𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1 + 𝑏𝑏(𝑧𝑧)) (5.1)

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊(𝑟𝑟)𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1 + 𝑏𝑏(𝑟𝑟)) (5.2)

ℎ�𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑡𝑡 ∘ 𝑈𝑈ℎ𝑡𝑡−1 + 𝑏𝑏(ℎ)) (5.3)

ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡 ∘ ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ∘ ℎ�𝑡𝑡 (5.4)

50

where ∘ is an element-wise product, 𝑊𝑊(𝑧𝑧),𝑊𝑊(𝑟𝑟),𝑊𝑊 ∈ ℝ𝑛𝑛𝐻𝐻×𝑛𝑛𝐼𝐼 and

𝑈𝑈(𝑧𝑧),𝑈𝑈(𝑟𝑟),𝑈𝑈 ∈ ℝ𝑛𝑛𝐻𝐻×𝑛𝑛𝐻𝐻 . The dimensions n are hyperparameters. The above

computation is abbreviated with ht = GRU(xt, ht-1).

Sentence Module: The output of the sentence module is denoted as the

sequence of TC fact representations s, whereby st denotes the tth element in the

output sequence of the sentence module. In order to model the input sequences,

CR-gram is used. Sentence pair and between neighboring sentences in the

document. The energy function is formulated as follows:

(5.5)

Here 𝐰𝐰 = {𝑤𝑤𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑙𝑙} is the set of words in a sentence with length l and

𝐬𝐬 = {𝑠𝑠𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑙𝑙} is the set of sentences. The function E1 models the

dependency between a word-sentence pair. If I assume that the sets of sentences

of different words do not overlap, we can formulate E1 as follows:

(5.6)

Here we assume that all the matched word-sentence pairs have the same energy,

but it would also be interesting to model the degrees of matching with different

energy values in E1. In Equation 5.5, the function E2 models the compatibility

of neighboring senses in a context window with fixed size k. Existing

51

embedding approaches like CBOW and Skip-gram (Mikolov et al., 2013) can

be used here to define E2. The formulation using Skip-gram is as follows:

(5.7)

Here V(s) and V'(s) are the input and output embedding vectors of sentence s.

The function σ is an activation function. Inference is similar to the Viterbi

algorithm of the hidden Markov model.

Question Module: Similar to the input sequence, the question is also most

commonly given as a sequence of words in natural language processing

problems. As before, the question is encoded via a recurrent neural network.

Given a question of TQ words, hidden states for the question encoder at time t

is given by 𝑞𝑞𝑡𝑡 = 𝐺𝐺𝑅𝑅𝑈𝑈(𝐿𝐿�𝑤𝑤𝑡𝑡
𝑄𝑄�,𝑞𝑞𝑡𝑡−1), L represents the word embedding matrix

as in the previous section and 𝑤𝑤𝑡𝑡
𝑄𝑄 represents the word index of the tth word in

the question. The word embedding matrix can be shared across the input module

and the question module. Unlike the input module, the question module

produces as output the final hidden state of the recurrent network encoder: q =

𝑞𝑞𝑇𝑇𝑄𝑄 .

Episodic Memory Module: The episodic memory module iterates over

representations outputted by the input module, while updating its internal

episodic memory. In its general form, the episodic memory module is comprised

52

of an attention mechanism as well as a recurrent network with which it updates

its memory. During each iteration, the attention mechanism attends over the fact

representations c and s while taking into consideration the question

representation q and the previous memory mi-1 to produce an episode ei.

The episode is then used, alongside the previous memories mi-1, to update the

episodic memory mi = GRU(ei, mi-1). The initial state of this GRU is initialized

to the question vector itself: m0 = q. For some tasks, it is beneficial for episodic

memory module to take multiple passes over the input. After TM passes, the final

memory 𝑚𝑚𝑇𝑇𝑀𝑀 is given to the answer module.

The iterative nature of this module allows it to attend to different inputs during

each pass. It also allows for a type of transitive inference, since the first pass

may uncover the need to retrieve additional facts.

In the Deep Memory Network, the gating function is used as attention

mechanism. For each pass i, the mechanism takes as input a candidate fact ct,

sentence fact st, a previous memory mi-1, and the question q to compute a gate:

𝑔𝑔𝑡𝑡𝑖𝑖 = 𝐺𝐺(𝑐𝑐𝑡𝑡 , 𝑠𝑠𝑡𝑡,𝑚𝑚𝑖𝑖−1,𝑞𝑞)

The scoring function G takes as input the feature set z(c, s, m, q) and produces

a scalar score. It is defined as a large feature vector that captures a variety of

similarities between input, memory and question vectors:

z(c, s, m, q) = �𝑐𝑐, 𝑠𝑠,𝑚𝑚, 𝑞𝑞, 𝑐𝑐 ∘ 𝑞𝑞, 𝑐𝑐 ∘ 𝑚𝑚, 𝑠𝑠 ∘ 𝑞𝑞, 𝑠𝑠 ∘ 𝑚𝑚, |𝑐𝑐 − 𝑞𝑞|, |𝑐𝑐 − 𝑚𝑚|, |𝑠𝑠 −

𝑞𝑞|, |𝑠𝑠 − 𝑚𝑚|, 𝑐𝑐𝑇𝑇𝑊𝑊(𝑏𝑏)𝑞𝑞, 𝑐𝑐𝑇𝑇𝑊𝑊(𝑏𝑏)𝑚𝑚, 𝑠𝑠𝑇𝑇𝑊𝑊(𝑏𝑏)𝑞𝑞, 𝑠𝑠𝑇𝑇𝑊𝑊(𝑏𝑏)𝑚𝑚� (5.8)

53

where ∘ is an element-wise product. The function G is a simple two-layer feed

forward neural network.

G(c, s, m, q) = σ(𝑊𝑊(2) tanh�𝑊𝑊(1)𝑧𝑧(𝑐𝑐, 𝑠𝑠,𝑚𝑚, 𝑞𝑞) + 𝑏𝑏(1)�+ 𝑏𝑏(2)) (5.9)

To compute the episode for pass i, a modified GRU over the sequence of the

inputs 𝑐𝑐1, … , 𝑐𝑐𝑇𝑇𝑐𝑐, weighted by the gates gi is used. The episode vector that is

given to the answer module is the final state of the GRU. The equation to update

the hidden states of the GRU at time t and the equation to compute the episode

are, respectively:

ℎ𝑡𝑡𝑖𝑖 = 𝑔𝑔𝑡𝑡𝑖𝑖𝐺𝐺𝑅𝑅𝑈𝑈�𝑐𝑐𝑡𝑡ℎ𝑡𝑡−1𝑖𝑖 � + (1 − 𝑔𝑔𝑡𝑡𝑖𝑖)ℎ𝑡𝑡−1𝑖𝑖 (5.10)

𝑒𝑒𝑖𝑖 = ℎ𝑇𝑇𝑐𝑐
𝑖𝑖 (5.11)

Answer Module: The answer module generates an answer given a vector.

Depending on the type of task, the answer module is either triggered once at the

end of the episodic memory or at each time step.

Another GRU whose initial state is initialized to the last memory 𝑎𝑎0 = 𝑚𝑚𝑇𝑇𝑀𝑀 is

used in answer module. At each time step, it takes as input the question q, last

hidden state at-1, as well as the previously predicted output yt-1.

𝑦𝑦𝑡𝑡 = softmax(𝑊𝑊(𝑎𝑎)𝑎𝑎𝑡𝑡) (5.12)

54

𝑎𝑎𝑡𝑡 = 𝐺𝐺𝑅𝑅𝑈𝑈([𝑦𝑦𝑡𝑡−1,𝑞𝑞]𝑎𝑎𝑡𝑡−1) (5.13)

where we concatenate the last generated word and the question vector as the

input at each time step. The output is trained with the cross-entropy error

classification of the correct sequence appended with a special end-of-sequence

token.

In the sequence modeling task, we wish to label each word in the original

sequence. To this end, the Deep Memory Network is run in the same way as

above over the input words. For word t, Equation 5.12 is replaced with 𝑒𝑒𝑖𝑖 = ℎ𝑡𝑡𝑖𝑖 .

5.3 Experimental Results

5.3.1 bAbI Dataset

The Facebook bAbI dataset (Weston et al., 2015b) is a synthetic dataset for testing a

model’s ability to retrieve facts and reason over them. Each task tests a different skill

that a question answering model ought to have, such as co-reference resolution,

deduction, and induction. Showing an ability exists here is not sufficient to conclude

a model would also exhibit it on real world text data. It is, however, a necessary

condition.

55

Table 5.1 Sample statements and questions from bAbI tasks 1 to 10.

Each task provides a set of training and test data, with the intention that a

successful model performs well on test data. The supervision in the training set is

given by the true answers to questions, and the set of relevant statements for

answering a given question, which may or may not be used by the learner. Correct

answers are limited to a single word (Q: Where is Mark? A: bathroom), or else a list

of words (Q: What is Mark holding?) as evaluation is then clear-cut, and is measured

simply as right or wrong.

All of the tasks are noiseless and a human able to read that language can

potentially achieve 100% accuracy. We list the results in Table 5.2

56

Table 5.2 Results on bAbI dataset. Strong supervision is the additional information on
important sentences to answer the question.

Task

MemNN with
Strong

Supervision
(Kumar et al.,

2015)

DMN with
Strong

Supervision
(Kumar et al.,

2015)

DeepMN
without Strong

Supervison

1: Single Supporting Fact 100 100 100
2: Two Supporting Facts 100 98.2 98
3: Three Supporting Facts 100 95.2 97
4: Two Argument Relations 100 100 100
5: Three Argument Relations 98 99.3 98.5
6: Yes/No Questions 100 100 100
7: Counting 85 96.9 96
8: Lists/Sets 91 96.5 96.7
9: Simple Negation 100 100 100
10: Indefinite Knowledge 98 97.5 97.9
11: Basic Co-reference 100 99.9 99
12: Conjunction 100 100 100
13: Compound Co-reference 100 99.8 98.2
14: Time Reasoning 99 100 100
15: Basic Deduction 100 100 100
16: Basic Induction 100 99.4 99
17: Positional Reasoning 65 59.6 63
18: Size Reasoning 95 95.3 94.2
19: Path Finding 36 34.5 35.1
20: Agent’s Motivations 100 100 100
Mean Accuracy (%) 93.3 93.6 93.6

The Deep Memory Network shows as good as Dynamic Memory Network

(DMN) and Memory Network (MemNN). But Deep Memory Network does worse

than the Memory Network, which we refer to from here on as MemNN, on tasks 2

and 3, both tasks with long input sequences. I guess that this is due to the recurrent

input sequence model having trouble modeling very long inputs. The MemNN does

not suffer from this problem as it views each sentence separately. But both DMN and

MemNN needs additional information about the important sentence which tells the

answer. Without strong supervision, mean accuracy of MemNN decreases to 59.8%

(Sukhbaatar et al., 2015).

57

In tasks 7 and 8, both tasks require the model to iteratively retrieve facts and

store them in a representation that slowly incorporates more of the relevant

information of the input sequence. In this situation, MemNN is worse than Deep

Memory Network or DMN.

5.3.2 Stanford Sentiment Treebank

The Stanford Sentiment Treebank (SST) (Socher et al., 2013) is a popular

dataset for sentiment classification. It provides phrase-level fine-grained labels, and

comes with a train/development/test split. The original dataset includes 10,662

sentences, half of which were considered positive and the other half negative. Each

label is extracted from a longer movie review and reflects the writer’s overall

intention for this review.

We present results on two formats: fine-grained root prediction, where all full

sentences (root nodes) of the test set are to be classified as either very negative,

negative, neutral, positive, or very positive, and binary root prediction, where all

non-neutral full sentences of the test set are to be classified as either positive or

negative. To train the model, we use all full sentences as well as subsample 50% of

phrase-level labels every epoch. During evaluation, the model is only evaluated on

the full sentences (root setup). In binary classification, neutral phrases are removed

from the dataset. The Deep Memory Network achieves state-of-the-art accuracy on

the binary classification task, as well as on the fine-grained classification task. Table

5.4 shows the results.

58

Table 5.4 Test accuracies for sentiment analysis on the Stanford Sentiment Treebank.

Method Binary Fine-grained
RNN 82.4 43.2

RNTN 82.9 44.4
TreeLSTM 85.4 45.7

DRNN 87.8 48.7
DCNN 86.8 48.5
DMN 88.6 52.1

DeepMN 89.5 52.4

5.3.3 SQuAD Dataset

SQuAD is composed of 100,000+ questions posed by crowd workers on 536

Wikipedia articles. The dataset is randomly partitioned into a training set (80%), a

development set (10%), and a test set (10%). The answer to every question is a

segment of the corresponding passage.

Two metrics are utilized to evaluate model performance of SQuAD: Exact

Match (EM) and F1 score. EM measures the percentage of the prediction that

matches one of the ground truth answers exactly. F1 measures the overlap between

the prediction and ground truth answers which takes the maximum F1 over all of the

ground truth answers.

A couple of preprocessing steps is in place to ensure that the deep neural models

get the correct input. We segmented context and questions into sentences by using

NLTK’s Punkt sentence segmenter. Words in the sentences were then converted into

symbols by using PTB Tokenizer. Syntactic information including POS tags and

syntactic trees were acquired by Stanford CoreNLP utilities (Manning et al., 2014).

59

For the parser, we collected constituent relations and dependency relations for each

word by using tree annotation and enhanced dependencies annotation respectively.

To generate syntactic sequence, we removed sequences whose first node is a

punctuation (“$”, “:”, “#”, “.”, “ ” ”, “ “ ”, “,”). To use dependency labels, we

removed all the subcategories (e.g., “nmod:poss” ⇒ “nmod”).

Table 5.5 shows exact match and F1 scores on the dev and test set of our model

and competing approaches. As we can see, our method clearly outperforms the

baseline and several strong state-of-the-art systems.

Table 5.5 Performance comparison on the SQuAD test set.

Method Dev EM Dev F1
LR Baseline 40.0 51.0
Dynamic Chunk Reader 62.5 71.0
Match-LSTM with Ans-Ptr 64.1 73.9
Dynamic Coattention Networks 65.4 75.6
BiDAF 68.0 77.3
R-NET 71.1 79.5
Deep Memory Network 67.2 76.6

To take a closer look at how syntactic sequences affect the performance, we

removed the word and sentence embedding from our model and conducted

experiments based on the syntactic input along. In particular, we are interested in

two aspects related to syntactic sequences. We compared the performance of the

models using syntactic information along with the models without syntactic

information. The predictive results in terms of EM and F1 metrics are reported in

Table 5.6. From the table we see that both the word and sentence embedding are

important for the models to work properly.

60

Table 5.6 Performance comparisons of models with the models which do not use dependency-
gram or CR-gram using the SQuAD Dev set.

Method EM F1
DeepMN with Skip-gram 60.4 69.3
DeepMN with Skip-thought 56.4 65.1
Deep Memory Network 67.2 76.6

5.4 Discussion and Summary

Representations of Texts and Words. One of the main issues in reading

comprehension is to identify the latent representations of texts and words (Chen et

al., 2016; Lee et al., 2016; Wang et al., 2016; Xiong et al., 2016; Yu et al., 2016).

Many pre-trained libraries such as word2vec (Mikolov et al., 2013) and Glove

(Pennington et al., 2014) have been widely used to map words into a high

dimensional embedding space. Another approach is to generate embeddings by using

neural networks models such as Character Embedding (Kim, 2014) and Tree-LSTM

(Tai et al., 2015). One thing that worth mentioning is that although Tree-LSTM does

utilize syntactic information, it targets at the phrases or sentences level embedding

other than the word level embedding. Many machine comprehension models include

both pre-trained embeddings and variable embeddings that can be changed through

a training stage (Seo et al., 2016; Yang et al., 2016).

Deep Memory Network is a memory model based on attention mechanism. It

is composed of four modules which are input module, question module, episodic

memory module and answer module. Each of modules allow different aspects such

as input representations or memory components to be analyzed and improved

61

independently. The Deep Memory Network is a potentially general architecture for

a variety of NLP applications, including classification, question answering and

sequence modeling. A single architecture is a first step towards a single joint model

for multiple NLP problems. The Deep Memory Network is trained end-to-end with

one, albeit complex, objective function. Future work will explore additional tasks,

larger multi-task models and multimodal inputs and questions.

62

Chapter 6

Concluding Remarks

6.1 Summary and Discussion

In this dissertation, we propose the deep memory network with attention mechanism

and word/sentence embedding for attention mechanism. Due to the external memory

and attention mechanism, proposed method can handle various tasks in natural

language processing, such as question and answering, machine comprehension and

sentiment analysis. If we can cast the problems in natural language processing into

question answering problems, every input data can be processed via sequence

modeling process. Then attention mechanism can handle it.

Usually attention mechanism requires huge computational cost. In order to

solve this problem. I proposed novel word and sentence embedding methods.

Previous embedding methods only use the Markov assumption. But if we consider

the language structure and make use of it, it will be very helpful to reduce the

computational cost. Also it does not need strong supervision which means the

additional information on important sentences.

In Chapter 3, we propose a more flexible and powerful framework for multi-

prototype word embeddings, namely Dependency-gram, in which dependency refers

to a word taking a specific context. The basic idea of Dependency-gram is that, we

allow each word to have different embeddings under different context. For example,

63

the word apple indicates a fruit under the topic food, and indicates an IT company

under the topic information technology (IT). We use the dependency parser to obtain

context, and perform collapsed Gibbs sampling to iteratively assign latent topics for

each word token.

In chapter 4, we propose a novel probabilistic model for sentence embedding

that takes into account the dependency between sense choices of neighboring words.

We do not learn any word embeddings in our model and hence avoid the problem

with embedding polysemous words discussed above. It contains a sequence of

observable words and latent sentences and models the dependency between each

word-sentence pair and between neighboring sentences in the sequence. The energy

of neighboring sentences can be modeled using existing word embedding approaches

such as CBOW and Skip-gram.

In chapter 5, we propose the Deep Memory Network. Deep Memory Network

use the syntactic relationship and structural information of language. It makes the

Deep Memory Network locate the attention very efficiently and do not need strong

supervision. The Deep Memory Network is a memory model based on attention

mechanism. It is composed of four modules which are input module, question

module, episodic memory module and answer module. Each of modules allow

different aspects such as input representations or memory components to be analyzed

and improved independently. It is a potentially general architecture for a variety of

NLP applications, including classification, question answering and sequence

modeling. A single architecture is a first step towards a single joint model for

multiple NLP problems. The Deep Memory Network is trained end-to-end with one,

albeit complex, objective function.

64

6.2 Future Work

Our work in this dissertation has demonstrated that memory based model with

attention mechanism can be effectively used in natural language problems to learn

representations in language. In the following, we discuss future work in several

directions:

Towards multitask learning and general natural language understanding.

Multitask learning in NLP has been of interest in previous work. Proposed

model shows some possibility to multitask learning. Since common concepts in

language would apply to individual tasks, it is intuitive to share information across

tasks. This could be seen as the first step towards a general, task-independent

natural language understanding model. Even though there has been interest in

multitask learning specifically with neural models, improvements remain relatively

small and the best mechanism for knowledge sharing across tasks is unclear.

Exploring “less greedy” methods.

We think that one of the strengths of Deep Memory Network resides in its

greedy nature which provided by CR-gram. Nonetheless, less greedy methods

considering multiple decoding paths during training would be worth exploring. For

this purpose, global scores for sentences would be required in order to discriminate

between different solutions.

65

References

Mnih, Volodymyr, Nicolas Heess, and Alex Graves. Recurrent models of visual

attention. Advances in neural information processing systems. 2014.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate. In International Conference on

Learning Representations (ICLR), 2015.

Weston, Jason, Sumit Chopra, and Antoine Bordes. Memory networks. In

International Conference on Learning Representations (ICLR), 2015a.

Weston, Jason, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van

Merriënboer, Armand Joulin, and Tomas Mikolov. Towards AI-complete question

answering: A set of prerequisite toy tasks. arXiv preprint: 1502.05698, 2015b.

Graves, Alex, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv

preprint arXiv:1410.5401, 2014.

Gregor, Karol, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, Daan Wierstra.

DRAW: A recurrent neural network for image generation. arXiv preprint

arXiv:1502.04623, 2015.

Elman, Jeffrey L. Distributed representations, simple recurrent networks, and

66

grammatical structure. Machine learning 7.2-: 195-225, 1991.

Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, Yoshua Bengio. On the

properties of neural machine translation: Encoder-decoder approaches. arXiv

preprint arXiv:1409.1259, 2014.

Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. NIPS Deep

Learning Workshop, 2014.

Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. End-to-end memory

networks. Advances in neural information processing systems. 2015.

Kumar, Ankit, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan

Gulrajani, Victor Zhong, Romain Paulus, Richard Socher. Ask me anything:

Dynamic memory networks for natural language processing. International

Conference on Machine Learning. 2016.

Brants, Thorsten, Ashok C. Popat, Peng Xu, Franz J. Och, Jeffrey Dean. Large

language models in machine translation. In Proceedings of the Joint Conference on

Empirical Methods in Natural Language Processing and Computational Language

Learning, 2007.

Hinton, Geoffrey E., James L. Mcclelland, and David E. Rumelhart. Distributed

67

representations. In: Parallel distributed processing: Explorations in the

microstructure of cognition. Volume 1: Foundations,

MIT Press, 1986.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, Christian Jauvin. A neural

probabilistic language model. Journal of Machine Learning Research, 3:1137-1155,

2003.

Schwenk, Holger, Continuous space language models. Computer Speech and

Language, vol. 21, 2007.

T. Mikolov, A. Deoras, S. Kombrink, L. Burget, J. C ernocky´. Empirical Evaluation

and Combination of Advanced Language Modeling Techniques, In: Proceedings of

Interspeech, 2011.

Reisinger, Joseph, and Raymond J. Mooney. Multi-prototype vector-space models

of word meaning. In Proceedings of HLT-NAACL, 109–117, 2010.

Huang, Eric H., Richard Socher, Christopher D. Manning, Andrew Y. Ng, Improving

word representations via global context and multiple word prototypes. In

Proceedings of ACL, 873–882, 2012.

Griffiths, Thomas L., and Mark Steyvers. M. Finding scientific topics. PNAS

101:5228–5235, 2004.

68

Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; and Lin, C.-J. Liblinear: A

library for large linear classification. JMLR 9:1871–1874, 2008.

Le, Q. V., and Mikolov, T. Distributed representations of sentences and documents.

873–882, 2014.

Bengio, Y.; Schwenk, H.; Sen´ecal, J.-S.; Morin, F.; and Gauvain, J.-L. Neural

probabilistic language models. In Innovations in Machine Learning. 137–186, 2006.

Mnih, A., and Hinton, G. E. A scalable hierarchical distributed language model. In

Proceedings of NIPS, 1081–1088, 2008.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J. Distributed

representations of words and phrases and their compositionality. In Proceedings of

NIPS, 3111–3119, 2013.

Socher, Richard, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning,

Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic

compositionality over a sentiment treebank. In EMNLP, 2013.

Hochreiter, Sepp and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

69

Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom. A convolutional neural

network for modelling sentences. ACL, 2014.

Kim, Yoon, Convolutional neural networks for sentence classification. EMNLP,

2014.

Cho, Kyunghyun, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.

On the properties of neural machine translation: Encoder-decoder approaches. SSST-

8, 2014.

Zhao, Han, Zhengdong Lu, and Pascal Poupart. Self-adaptive hierarchical sentence

model. IJCAI, 2015.

Le, Quoc V. and Tomas Mikolov. Distributed representations of sentences and

documents. ICML, 2014.

Kiros, Ryan, Yukun Zhu, Ruslan R. Salakhutdinov, Richard Zemel, Raquel Urtasun,

Antonio Torralba, Sanja Fidler, Skip-thought vectors. Advances in neural

information processing systems. 2015.

Tian, Fei, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and Tie-Yan

Liu. A probabilistic model for learning multi-prototype word embeddings.

In COLING, pages 151–160, 2014.

70

Jauhar, Sujay Kumar, Chris Dyer, and Eduard Hovy. Ontologically grounded multi-

sense representation learning for semantic vector space models. In Proc. NAACL,

pages 683–693. 2015.

Collobert, Ronan and Jason Weston. A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceedings of the 25th

international conference on Machine learning, pages 160–167. ACM. 2008.

Duchi, John, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Research,

12(7):257–269, 2010.

Zhu, Yukun, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like

visual explanations by watching movies and reading books. In ICCV, 2015.

Luong, Thang, Ilya Sutskever, Quoc Le, Oriol Vinyals & Wojciech Zaremba.

Addressing the rare word problem in neural machine translation. In Proceedings of

the 53rd annual meeting of the Association for Computational Linguistics and the

7th international joint conference on natural language processing (ACL-IJCNLP),

volume 1: Long papers, 11–19. Beijing, China: Association for Computational

Linguistics, 2015.

Socher, Richard, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng & Christopher

71

D. Manning. Semi-supervised recursive autoencoders for predicting sentiment

distributions. In Proceedings of the 2011 conference on empirical methods in natural

language processing (EMNLP), 151–161. Edinburgh, UK: Association for

Computational Linguistics, 2011.

Wen, Tsung-Hsien, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke &

Steve Young. Semantically conditioned LSTM-based natural language generation

for spoken dialogue systems. In Proceedings of the 2015 conference on empirical

methods in natural language processing (EMNLP), 1711–1721. Lisbon, Portugal:

Association for Computational Linguistics, 2015.

Passos, A., Kumar, V., and McCallum, A. Lexicon infused phrase embeddings for

named entity resolution. In Conference on Computational Natural Language

Learning. Association for Computational Linguistics, June 2014.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed

representations of words and phrases and their compositionality, in Proceedings of

Advances in Neural Information Processing Systems, pp. 3111–3119, 2013a.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word

representations in vector space, arXiv preprint arXiv:1301.3781, 2013b.

Q. V. Le and T. Mikolov, Distributed representations of sentences and documents,

Proceedings of the 31st International Conference on Machine Learning, pp. 1188–

72

1196, 2014.

R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun, and S.

Fidler, Skip-thought vectors, Advances in Neural Information Processing Systems

(NIPS), 2015.

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler,

Aligning books and movies: Towards story-like visual explanations by watching

movies and reading books, arXiv preprint arXiv:1506.06724, 2015.

P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, Learning deep

structured semantic models for web search using clickthrough data, in Proceedings

of the 22Nd ACM International Conference on Conference on Information,

Knowledge Management, ser. CIKM ’13. ACM, pp. 2333–2338, 2013.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S.,

and Bengio, Y. Show, attend and tell: Neural image caption generation with visual

attention. In ICML, 2015.

Joulin, A. and Mikolov, T. Inferring algorithmic patterns with stack-augmented

recurrent nets. In NIPS, 2015.

Kaiser, L. and Sutskever, I. Neural GPUs Learn Algorithms. arXiv preprint

arXiv:1511.08228, 2015.

73

Socher, R., Chen, D., Manning, C. D., and Ng, A. Y. Reasoning With Neural Tensor

Networks For Knowledge Base Completion. In NIPS, 2013b.

Yates, A., Banko, M., Broadhead, M., Cafarella, M. J., Etzioni, O., and Soderland,

S. Textrunner: Open information extraction on the web. In HLT-NAACL

(Demonstrations), 2007.

Bordes, A., Glorot, X., Weston, J., and Bengio, Y. Joint Learning of Words and

Meaning Representations for Open-Text Semantic Parsing. AISTATS, 2012.

Iyyer, M., Boyd-Graber, J., Claudino, L., Socher, R., and Daume III, H. A Neural

Network for Factoid Question Answering over Paragraphs. In EMNLP, 2014.

A. Graves. Generating sequences with recurrent neural networks. arXiv preprint:

1308.0850, 2013.

J. Koutnık, K. Greff, F. J. Gomez, and J. Schmidhuber. A clockwork RNN. In ICML,

2014.

T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ranzato. Learning longer

memory in recurrent neural networks. arXiv preprint: 1412.7753, 2014.

K. Steinbuch and U. Piske. Learning matrices and their applications. IEEE

74

Transactions on Electronic Computers, 12:846–862, 1963.

W. K. Taylor. Pattern recognition by means of automatic analogue apparatus.

Proceedings of The Institution of Electrical Engineers, 106:198–209, 1959.

M. Richardson, C. J. Burges, and E. Renshaw. Mctest: A challenge dataset for the

open-domain machine comprehension of text. In Empirical Methods in Natural

Language Processing (EMNLP), pages 193–203, 2013.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky.

The Stanford CoreNLP natural language processing toolkit. In Association

for Computational Linguistics (ACL) System Demonstrations, pages

55–60, 2014.

Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu. Attentionover-attention neural

networks for reading comprehension. arXiv preprint arXiv:1607.04423, 2016.

K. Lee, T. Kwiatkowski, A. Parikh, and D. Das. Learning recurrent span

representations for extractive question answering. arXiv preprint arXiv:1611.01436,

2016

Z. Wang, H. Mi, W. Hamza, and R. Florian. Multi-perspective context matching for

machine comprehension. arXiv preprint arXiv:1612.04211, 2016.

75

C. Xiong, V. Zhong, and R. Socher. Dynamic coattention networks for question

answering. arXiv preprint arXiv:1611.01604, 2016.

Y. Yu, W. Zhang, K. Hasan, M. Yu, B. Xiang, and B. Zhou. End-to-end answer chunk

extraction and ranking for reading comprehension. arXiv preprint arXiv:1610.09996,

2016.

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word

representation. In EMNLP, pages 1532–1543. Association for Computational

Linguistics, October 2014.

K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from

tree-structured long short-term memory networks. In IN PROC. ACL, 2015.

M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention flow for

machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

Z. Yang, B. Dhingra, Y. Yuan, J. Hu, W. W. Cohen, and R. Salakhutdinov. Words or

characters? fine-grained gating for reading comprehension. arXiv preprint

arXiv:1611.01724, 2016.

76

초 록

어텐션 기반 모델은 컴퓨터 비전 분야에서 먼저 이용되기 시작해서

최근에는 자연언어처리 문제에까지 널리 적용되고 있다. 이러한

시도들은 신경망 기반 기계번역에서 가장 먼저 적용이 되었다. 한

언어에서 다른 언어로의 번역 문제를 전체 문장을 신경망을 이용하여

인코딩한 후에 다른 언어로 디코딩하는 것이 아니라 지금 번역해야 하는

문장의 일부에 집중하여 인코딩과 디코딩을 수행함으로써 보다 효율적인

번역이 가능하다.

어텐션 기반 모델로 해결할 수 있는 기본적인 문제는 신경망이 모든

정보를 하나의 고정 길이 벡터로 인코딩하도록 강제하지 않고 입력

시퀀스를 다시 참조 할 수 있게 한다는 것이다. 어텐션 기반 모델은

히든 노드에 대한 접근을 통해서 단순히 신경망의 어느 부분에 대해서

관심을 가져야 할지 결정하는 것이 아니라 신경망에서 어느 정보를 가져

올지 결정하는 것이 가능해 진다. 이러한 과정은 개별 노드가 아닌 모든

노드의 가중치 조합에 대한 검색을 통해서 구현 되기 때문에 역전파를

통한 신경망의 학습이 보다 빨라 진다는 이점이 있다.

본 논문에서는 어텐션 기반의 딥 메모리 네트워크와 이를 위한

단어와 문장의 벡터 표현 방법을 제안하였다. 제안된 방법은 외부

메모리를 이용한 어텐션 기발 모델로 인하여 질문/답변(Q&A), 기계

이해(Machine Comprehentions) 및 정서 분석과 같은 자연 언어 처리의

77

다양한 작업을 처리 할 수 있다. 기존의 어텐션 기반 모델들이 많은

양의 메모리와 계산량을 요구하는 문제를 해결하기 위해서 새로운

단어와 문장의 벡터 표현 방법을 제안하였다. 기존의 방법들이 마코프

가정(Markov assumption)만을 사용한 반면에 제안한 방법은 언어의

구조적 특징을 이용함으로써 어텐션 기반의 모델에서 계산 비용을 크게

줄일수 있었고, 기존의 모델들과 달리 해답문장에 대한 정보를 제공하는

강한 감독학습(strong supervision) 없이도 높은 성능을 얻을 수 있었다.

주요어 : 주의 모델, 메모리 네트워크, 딥러닝, 자연언어처리, 기계독해

학번 : 2004-30347

	Chapter 1. Introduction
	1.1 Background and Motivation
	1.2 Approach and Contributions
	1.3 Organization of the Dissertation

	Chapter 2. Related Work
	2.1 Memory Networks
	2.2 End-to-End Memory Networks
	2.3 Dynamic Memory Networks

	Chapter 3. Conceptual Word Embedding
	3.1 Related Work
	3.2 Dependency-Gram
	3.3 Experimental Results
	3.4 Discussion and Summary

	Chapter 4. Sentence Embedding using Context
	4.1 Related Work
	4.2 CR-Gram
	4.3 Experimental Results
	4.4 Discussion and Summary

	Chapter 5. Deep Memory Networks
	5.1 Related Work
	5.2 Deep Memory Networks
	5.3 Experimental Results
	5.3.1 bAbI Dataset
	5.3.2 Stanford Sentiment Treebank
	5.3.3 SQuAD Dataset
	5.4 Discussion and Summary

	Chapter 6. Concluding Remarks
	6.1 Summary and Discussion
	6.2 Future Work

	References
	초록

<startpage>10
Chapter 1. Introduction 1
 1.1 Background and Motivation 1
 1.2 Approach and Contributions 3
 1.3 Organization of the Dissertation 5
Chapter 2. Related Work 7
 2.1 Memory Networks 7
 2.2 End-to-End Memory Networks 10
 2.3 Dynamic Memory Networks 13
Chapter 3. Conceptual Word Embedding 20
 3.1 Related Work 20
 3.2 Dependency-Gram 22
 3.3 Experimental Results 26
 3.4 Discussion and Summary 29
Chapter 4. Sentence Embedding using Context 31
 4.1 Related Work 31
 4.2 CR-Gram 35
 4.3 Experimental Results 41
 4.4 Discussion and Summary 43
Chapter 5. Deep Memory Networks 46
 5.1 Related Work 46
 5.2 Deep Memory Networks 48
 5.3 Experimental Results 54
 5.3.1 bAbI Dataset 54
 5.3.2 Stanford Sentiment Treebank 57
 5.3.3 SQuAD Dataset 58
 5.4 Discussion and Summary 60
Chapter 6. Concluding Remarks 62
 6.1 Summary and Discussion 62
 6.2 Future Work 65
References 65
초록 76
</body>

