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Abstract

Widespread use of smart devices has brought a growth of user-customized services.

In particular, localization techniques have been gaining attention due to increase

of location-based services (LBS). Most of LBS services such as navigation systems,

traffic alerts or augmented reality (AR) services depend on the GPS for its accuracy

and speed, however, its operation is limited to the outdoor environments. The de-

mand of indoor LBS is rapidly growing due to the growth of automated home and

IoT technology. There have been studies via WiFi, Bluetooth or RFID, but their

performance has been unsatisfactory for their limitation such as the requirement of

additional equipment or guarantee of the line of sight.

Among various sensors used for indoor localization, we focus on the acoustic

sensors, i.e. microphones. There are several advantages in using the acoustic signals

for indoor localization. There is no need for additional apparatus since loudspeakers

are pre-installed in most of the buildings for the purpose of announcement or playing

background music and mobile devices such as cellphones or tablets are equipped with

microphones and loudspeakers. Even the prevailing popularity of IoT services helps

accessibility of acoustical sensors and loudspeakers. In addition, acoustic signals have

advantages of being able to detect signals through obstacles unlike cameras of RFID.

In this thesis, we propose a position estimation system using acoustic signals to
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maximize these advantages. We aim to estimate the position of the target user with

an acoustic sensor based on the recording of signals from the fixed loudspeakers

installed around the room. We target to estimate the position of the acoustic sensor

with high accuracy and low-complexity in a large space with high reverberation.

Particularly, we try not to affect human hearing by using inaudible frequency bands.

In order to estimate the position, it is important to estimate the direct path signal

rather than the signal due to reverberation or reflection. To do this, we present

various localization techniques as following.

First, we propose the source data structure to operate in the large reverberant

environments. In the large space, the consideration of the near-far effect is required

which refers to a situation when the desired signal is far away, it is difficult to receive

the desired signal due to the interference of closer unwanted signals. In wireless

communications, it can be dealt with by interaction of transmitter and receiver

by feedback of channel information. However, it is difficult in the acoustic system

since there is no feedback between the transmitter and receiver. We borrowed the

structure called OFDMA-CDM and modified it to deal with the near-far effect. In

the reverberant environment, the amplitude of reverberation is often larger than the

direct path signal. We proposed the technique to estimate the direct path signal.

Second, we propose a method for accurate location estimation in the highly rever-

berant environments. In the high reverberation condition, more spurious reflections

occur, which makes it difficult to estimate the time delay of the direct path signal.

If the time delay estimation is wrong, it is likely that the position estimate does not

converge by an estimation method. In the proposed method, position candidates are

obtained from most of the received signals including signals even from spurious re-

flections. The unreliable candidates are filtered out by the agreement test and rank
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the rest candidates by their reliability to find accurate target position. We can es-

timate the receiver’s position even in the condition of attenuated direct path signal

or high reverberation by using the proposed method.

Third, we proposed a low-complexity localization method to work in the highly

reverberant environment. This method is based on the particle filter that estimates

the position by weighted particles whose weights are computed by the likelihood.

We designed likelihood function that efficiently calculates likelihood in the region

with the direct path signal so that more reliable position can be obtained. The

proposed method enables location estimation with high precision with a relatively

small amount of computation in severe reverberation.

The proposed methods are evaluated in simulated environments with different

reverberation time. The performances are verified in different parameters and com-

pared with other localization methods. In addition, the performance is evaluated in

the real reverberant environment with a large space. A series of experiments has

shown the superiority of the proposed methods and it is appropriate to apply in the

actual environment.

Keywords: location based services (LBS), indoor localization, acoustic receiver

localization, time delay estimation, reverberation, particle filter

Student number: 2010-20905
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Chapter 1

Introduction

Location-based services (LBS) has become one of the essential parts in user-customized

services due to the increasing use of mobile devices. Most of the widely used LBS

are based on global positioning system (GPS) due to its high accuracy and easy ac-

cess, but its operation is limited to the outdoor environments where the line of sight

(LOS) is guaranteed. However, the demand for indoor LBS is rapidly increasing due

to the growth of the virtual tour guide at museums, automated home, and internet

of things (IoT) technology such as indoor assistant robots, tracking or control of

home appliances.

One way to achieve the indoor LBS is to use the acoustic signals in the lo-

calization task. There are several advantages when acoustic signals are employed.

Acoustic signals can be detected through obstacles even in unknown environments

while other methods (e.g., RFID, ultrasonic, Bluetooth, or Wifi) are rather sensitive

to LOS condition or prior knowledge about the environments [1], [2]. Moreover, it is

efficient to use acoustic signals since there is no need for additional communication

devices such as sensors or access points. Loudspeakers are pre-installed in most of
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the buildings for reproducing voice announcements or playing background music and

mobile devices such as cellphones or tablets are already equipped with microphones

and loudspeakers.

The acoustic localization is studied in three ways: sound source localization

(SSL), acoustic receiver localization (ARL) and self-localization. SSL aims to find

the location or direction of the target source using multiple microphones placed

at known positions. An example of the SSL case is shown in the Fig. 1.1a. It is

often studied to improve the performance of speech recognition, speech enhance-

ment or acoustic event detection [3]–[6]. The main goal of ARL is to find the target

microphone position using the reference to the location of sound sources [7]–[12].

ARL is a study of finding the target microphone position with reference to the

sound source positions. An example of the ARL case is shown in the Fig. 1.1b. The

sound sources are assumed to be located at fixed known position and they are often

pre-designed to meet the purpose of positioning. Self-localization is a research that

estimates the location of each node in a wireless acoustic sensor network (WASN)

where many microphones and loudspeakers are scattered [13]–[17]. An example of

the self-localization case is shown in the Fig. 1.1c.

In a typical indoor localization scenario, the acoustic sensors (e.g., microphones)

are easy to be deployed and loudspeakers are usually pre-installed or easy to be

controlled. Since the main focus of indoor localization in an IoT environment is to

estimate the relative position of home appliances or users, ARL can be considered

as an optimal solution for such task. Moreover, the usage of ARL can minimize the

resource requirement for acoustic indoor localization because it is fully operational

only with the single microphone, whereas SSL and self-localization usually require

multiple or array of microphones.
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(a) An example of acoustic source localization.

(b) An example of acoustic receiver localization.

(c) An example of acoustic self-localization.

Figure 1.1. Cases of acoustic localization systems.
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In an ARL system, the position is usually calculated from the time of arrival

(TOA) or time difference of arrival (TDOA) which is estimated from the time de-

lay of direct path signal. However, in highly reverberant environment, time delay

estimation (TDE) is difficult because some reflections are often stronger than the

direct path signal [18], [19]. Previous studies attempted to suppress reverberation

by surrounding the environments by curtains [9] or conducting experiments in a

small space where direct path signals can be easily identified [7], [12]. There are

a few studies that attempt to tackle the multipath effect by identifying the direct

path signal in reverberant environments [10], [20]. Studies in the SSL also focused

on spurious measurements in the reverberant environments. DATEMM [21] tried to

disambiguate TDOA measurements in the multiple source localization system and

Canclini et al. [22] suggested a reliability criterion to disambiguate TDOA measure-

ments in the reverberant condition.

In this thesis, we aim to estimate the position of the target user with an acous-

tic sensor based on the recording of signals from the fixed loudspeakers installed

around the room. We target to estimate the position of the acoustic sensor with

high accuracy and low-complexity in a large space with high reverberation. To do

this, we present various localization techniques for the ARL system. We verify each

technique in the simulated and the real environments.

The Chapter 2 explains the overall process of position estimation using acoustic

signals. We first explain the types of position estimation using acoustic signals and

describe the configurations of our system. For the transmitting part of the system,

we explain the structure of the source signals previous studied in the ARL. For

the receiving part, the process of time delay estimation will be described. Then the

methods of position estimation from the time delays will be introduced. In addition,
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we will discuss the practical problems that need to be considered in order to operate

in real environments.

In the Chapter 3, we propose the source data structure to operate in the target

environment. It is designed to distinguish a number of sources in the inaudible fre-

quency band for the practical use in a real environment. Also, we propose a method

to estimate the time delay of the direct path signal to reduce position estimation er-

rors in the reverberant environments. The proposed method is compared with other

methods and its performance is shown through simulation and actual recordings.

In the Chapter 4, we propose a method for accurate location estimation in highly

reverberant environments. In the high reverberation condition, more spurious reflec-

tions occur, which makes it difficult to estimate the time delay of the direct path

signal. If the time delay estimation is wrong, it is likely that the position estimate

does not converge by an estimation method. In the proposed method, position can-

didates are obtained from most of the received signals including signals even from

spurious reflections and the position is estimated by investigating multiple sources

jointly. The unreliable candidates are filtered out by the agreement test and rank the

rest candidates by their reliability to find accurate target position. The performance

of the proposed method is evaluated in simulation and actual recordings.

In the Chapter 5, the ARL system is based on the particle filter. It estimates

position by the weighted particles whose weights are computed from the likelihoods.

We designed likelihood function that efficiently calculates likelihood in the region

with the direct path signal so that more reliable position can be obtained. The pro-

posed method enables location estimation with high precision with a relatively small

amount of computation in severe reverberation. The performance of the proposed

method is shown by simulation and actual recordings.
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The rest of the thesis is organized as follows: The next chapter introduces the

overall process of acoustic indoor localization. In Chapter 3, source data structure

and localization method for reverberant environment are proposed. In Chapter 4, an

accurate localization algorithm for the highly reverberant environment is proposed.

In Chapter 5, the particle filter based positioning method with high precision with

low-complexity is proposed. The conclusions are drawn in Chapter 6.
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Chapter 2

Acoustic Receiver Localization

System

In this section, we explain the task of indoor acoustic receiver localization using

artificial signals. The overall idea of our system is depicted in Fig. 2.1. We target a

large reverberant room where we need to consider the attenuation of acoustic signals

and interferences of reflections. The loudspeakers are placed around the room and the

target single-channel microphone is located inside it. The goal is to find the position

of the receiver by the recording of acoustic signals played from loudspeakers. We

will explain the structure of the source data and processing of the received data for

localization in the following subsections. In addition, we will explain the practical

issues in the application of the ARL system to the real environments.
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Figure 2.1. Relation and arrangement of the receiver and the sources. sl(t), r(t), hl(t)

and n(t) represent the l-th source, the received signal, their RIR and background

noise, respectively.

2.1 Source data structure

Since the received signal r(t) is given as a superposition of a number of reverberated

sources and noise as in the Fig. 2.1, the source signal sl(t) should be designed

carefully in order to provide high accuracy in estimating time delays. In the ARL

system, various source data structures have been studied. Since the ARL system can

be thought of as a type of communication system, ideas of reference signal design

are borrowed from the field of wireless communications. In order to distinguish

multiple sources, multiple access schemes [23]–[26] such as time division multiple

access (TDMA), frequency division multiple access (FDMA), code division multiple
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Figure 2.2. Schematics of widely used multiple access schemes: TDMA, FDMA,

CDMA and OFDMA.
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access (CDMA), or orthogonal frequency division multiple access (OFDMA) are

applied and modified in ARL systems.

TDMA is a multiple access scheme that allocates specific time slots to each user

using all the frequency bands indiscriminately, which is depicted in the Fig. 2.2a.

When the number of users increases, the time slots are allocated in the same manner

as the round robin method. Since all the frequency bands are used, it is robust to

noise and has low data losses. The process of synchronization is required in order to

communicate in the assigned time slot. Some previous studies employed TDMA as

the source data structure of acoustic localization system to distinguish the identity

of each loudspeaker [7], [10], [27]. A short signal is transmitted for a predetermined

period of time in order, and a microphone uses the corresponding source signals to

perform synchronization to distinguish each source.

FDMA is a multiple access method that assigns different frequency bands to

each user, which is depicted in the Fig. 2.2b. In this method, data is transmitted

and received only through pre-assigned frequency bands to each user. If the number

of users increases, the frequency bandwidth may be reduced and interference may

occur between adjacent bands. To reduce the interference, guard bands are often

inserted between each band to separate them. Some studies with FDMA based

acoustic communication system, frequency limited signals like sine waves are used

as a method for determining the presence of a signal. The Doppler effect should be

considered when using data structure dependent to frequency because the frequency

of the signal is shifted as the source or the receiver is moved [24].

CDMA is a type of multiple access method that allows several users to share

the same frequency band by assigning the special code to each user using spread-

spectrum technology [23]–[25] and it is depicted in the Fig. 2.2c. This method is
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widely used in mobile communications. However, since users share the frequency

bands and time slots, it is necessary to consider the near-far effect. The near-far

effect refers to a situation when the desired signal is far away, it is difficult to receive

the desired signal due to the interference of closer unwanted signals. In acoustic local-

ization system, due to its simple use and implementation, many previous studies [7],

[9], [11], [12], [27] are based on the CDMA. However, due to its issues of applica-

tion to real environments, the experiments are usually conducted in the controlled

environment where it is easy to detect the direct signals.

OFDMA is the multiple access technique to accommodate users in a given band-

width. It is based on the modulation method called orthogonal frequency division

multiplexing (OFDM) [23]–[25]. OFDM divides a channel into multiple orthogonal

bands so that they don’t interfere with each other. OFDMA assigns a group of sub-

carriers to each user to achieve multiple access and it is often combined with TDMA,

FDMA, or CDMA.

There are studies using other multiple access methods like chirp signals as the

source data structure of the ARL system [28]–[31]. The chirp signal is the signals with

slant frequency which are usually in inaudible frequency bands. It distinguishes each

signal by modifying the slope of frequency or assigns a specific code to the frequency

domain and makes codewords.Some studies employed the chirp signal and used it

as the spread spectrum [29].

In ARL system, it is important to make a proper structure to distinguish each

source from the mixture. In the process, the source data structure should be designed

according to the purpose of the system (e.g., locating or tracking), or the target

environment (e.g., noisy environment or band-limited environment). Although it is

possible to refer to advantages and disadvantages of various multiple access used in

11



Source 3Source l

Recording start

Emission time 𝜂𝜂

𝜏𝜏𝑙𝑙

0

𝒔𝒔𝑙𝑙 − 𝒓𝒓 /c

Source 2Source 2𝜏𝜏2

0

Source 1 Source 1𝜏𝜏1

0

time

time

time

…

…

…

Figure 2.3. The relation between the time delays and the emission time. The sources

are played concurrently at an unknown emission time. The time delay is the sum of

the emission time and the delay from the distance between the sources and receiver.

communication systems when designing the source data structure, it should be noted

that the acoustic data communication is a passive system, that is, the transmitting

and receiving ends are separated.

2.2 Localization from the received signal

In this section, we explain the process of localization from the received signal: dis-

tinction of the each source, TDE and localization. The target receiver is assumed

to be enclosed by a set of loudspeakers placed in a reverberant room as shown in

12



Fig. 2.1 and records all of the incoming source signals with the single-channel mi-

crophone. The relation of the direct propagation time tlprop and the positions of the

source sl and receiver r can be represented as

tlprop =
‖ sl − r ‖

c
+ η (2.1)

where superscript l, η and c indicate a source index, the source emission time and

the speed of the sound, respectively and ‖ . ‖ represents the Euclidean norm. This

relation is depicted in Fig. 2.3. The emission time η is an unknown variable if the

source and the receiver are not synchronized. In case of unsynchronized system,

it is impossible to estimate the position if η is unknown or estimated with wrong

value [13], [15], [32].

In the TOA-based approach the time delay tl can be straightforwardly converted

to pair-wise distance dl using the relation dl = ctl. Though simple to implement,

the TOA-based approach requires additional process of synchronization between the

receiver and the sources to obtain η [8], [9], [17].

In the TDOA-based system, the receiver and the sources are assumed to be

asynchronous hence the time delays {tl} cannot be directly used to calculate the

distance. Instead, the position of the receiver is estimated from the time differences

{tlm}. Since the TDOA is calculated by the difference of TOAs as

tlmprop = tlprop − tmprop (2.2)

=
‖ sl − r ‖

c
+ η − (

‖ sm − r ‖
c

+ η) (2.3)

=
1

c
(‖ sl − r ‖ − ‖ sm − r ‖), (2.4)

consideration of η can be omitted because we assume that all the sources emit

signals simultaneously. In this paper, we assume the case of unknown η since it is

13



more practical. However, because the TDOA is a function of the maximum peak

indices of sources, i.e. tlmax, it is difficult to deal with spurious peaks caused by

multipath in the reverberant condition.

We now model the above localization system to estimate time delays {tl} as

following. The room impulse response (RIR) can be represented as a summation of

weighted Dirac delta functions δ(t) as following:

hl(t) =
∑
j

aljδ(t− τ lj) (2.5)

where alj indicates the amplitude of the j-th multipath of the RIR at time τ lj . Based

on (2.5), the received signal r(t) at time t can be represented as

r(t) =
L∑
l=1

hl(t) ∗ sl(t) + n(t) (2.6)

where ∗, sl(t) and n(t) indicate convolution, l-th source signal and the background

noise, respectively.

To compute the position from r(t), it is important to estimate the time delay tl

between the receiver and each source as shown in Fig. 2.5. To estimate tl, we need to

find the peaks in the cross-correlation between r(t) and sl(t). The generalized cross

correlation (GCC) [6], [33] is widely used method in computing cross correlation

which can be obtained by

Rl(t) = F−1[F [sl(t)]F∗[r(t)]], (2.7)

where F and F−1 denote the Fourier transform and its inverse transform, respec-

tively and F∗ represents the complex conjugate of F . The time delay tl is estimated

by the index of the maximum peak of the Rl(t) which can be written as

tl = argmax
t

|Rl(t)| (2.8)
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Figure 2.4. An example of cross-correlation of each source with the received signal.

The time delays are obtained from the peaks of each cross-correlation.

where |.| represents the absolute value. There will be a train of peaks with a cycle of

the frame length since our system plays sources repetitively. An example of {Rl(t)}

is shown in the Fig. 2.4. For accurate localization, it is important to estimate the

time delay of the direct propagation which is tl = tlprop.

After estimating {tl} and η, the final position estimation can be performed in

various methods. The most commonly used method is to solve nonlinear equations,

for example,

r̃ = argmin
r

(ct̃l − ‖ sl − r ‖)2 (2.9)

where t̃l is the observed time delay and r̃ is the estimated position. An algorithm

such as the Newton method or Levenberg-Marquardt algorithm (LMA) is used to
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solve this kind of equations [34]–[37]. Although it is a simple computation, if there

are errors in TDE, i.e. TOA or TDOA, the algorithm will not converge and the

answer will end up in a wrong location. The proposed methods in Chapters 3 and 4

use LMA for the position estimation method [37].

Another position estimation technique is the particle filter. Since it calculates

the position by weights of particles, it is often unnecessary to specify estimated

time delay for each source. Even with the inaccurate TDE, it is likely to provide a

similar location in the vicinity if we properly design the likelihood function. For this

reason, many localization studies [38]–[40] employ the particle filter approach. Since

we target environment with high reverberation, it is probable to face ambiguous

time delays. We employ the particle filtering as the localization method in Chapter

5.

2.3 TDE in reverberant environments

For a practical application of TDE to indoor localization, it is essential to consider

the effect of acoustic reverberation. Time delays such as TDOA or TOA are esti-

mated by investigating time lags on the correlation between the original sources and

received signals. In an ideal case, the time lag is decided by picking the peak where

the correlation is maximized. In the presence of reverberation, however, the peak

detection may not be reliable due to reflective paths which can be almost always

seen in usual RIRs.

The early reflections are the part of an RIR that appears right after the direct

sound as shown in Fig. 2.5. The early reflections consist of large impulsive signals

up to 50 ms of the RIR in the time domain, which is caused by the nearby walls
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Figure 2.5. An illustration of the direct sound, early reflections and late reflections

in the RIR between the receiver and the source.

or objects [41]–[43]. These early reflections incur major ambiguity during the peak

detection process because the magnitude of the peaks caused by the early reflections

is sometimes comparable to or even larger than that of the direct path signal. For this

reason, it is necessary to carefully examine the preceding parts of peak correlation

when estimating the position in reverberant environments [18]–[20].

The late reflections and the attenuation of the source signal also make it difficult

to retrieve the desired peak. The signals arriving after the early reflections are called

the late reflections which can be seen in Fig. 2.5. They usually seem like randomly

distributed decaying signals in the RIR, which act as noise in severe reverberation

[41]–[43]. If the source signal is generated far from the receiver, it will be attenuated

according to the inverse square of the distance. As a result, it will easily be masked

by nearby strong signals, late reflections or noise making it difficult to retrieve the
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target signal, which is called as the near-far effect.

2.4 Near-far effect

The position estimation in the ARL system is done by the communication between

the acoustic transmitter (loudspeakers) and the acoustic sensors (microphones). The

near-far effect is one of the major problems in the wireless communication systems

[25]. Since our ARL system is a kind of communication system, it is necessary to

consider the near-far effect.

The near-far effect means that the desired signal is difficult to detect due to the

interference of the closer signal. The example of the near-far effect is shown in the

Fig. 2.6a. Also, the beam pattern of the source and the receiver can cause the near-

far effect as shown in the Fig. 2.6b. That is, the near-far effect occurs in situations

when the desired source and the interfering sources share the same frequency bands

and time slots [25], [44].

There are many studies to overcome this effect in the field of the wireless com-

munications. One of the general solutions in wireless communications is the power

control technique. In wireless communication, the system can amplify the power of

the desired signal so that it becomes strong enough to be retrieved regardless of

the interference. Unfortunately, however, in ARL there is no way to feedback the

channel information supporting only one-way communication so it is impractical to

apply the power control technique.

An alternative way to tackle the near-far effects is to design the source signals

such that they reside in non-overlapping frequency regions. We will introduce the

solution to this problem by designing the source data structure in the next chapter.
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(a) The case of the near-far caused by the closer signal interfering the desired signal from

a far distance.

(b) The case of the near-far caused by the beam pattern of the loudspeakers. A similar

situation can happen due to the beam pattern of the microphon as well.

Figure 2.6. Examples of the near-far effect.
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Chapter 3

Indoor Localization using

Inaudible Acoustic Signals

3.1 Introduction

One of the important issues in ARL is how to design the source signals, and in

traditional approaches, specific sequences such as the pseudo-random sequences [8]

or Gold codes [7], [9] are utilized, which are then modulated by means of the code

division multiple access (CDMA) [7], [12], or direct sequence spread spectrum tech-

niques [9], [29]. The location of the target acoustic sensor is usually estimated based

on the time of arrival (TOA) or time difference of arrival (TDOA). In a TOA-based

system, localization is performed by calculating distances between the receiver and

the sources while considering the relation between the time delay and the speed

of sound in a synchronous manner. In contrast, the TDOA-based methods allow

asynchrony between the receiver and the sources and compute the position through

multilateration or iterative estimation [28], [29].
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Although previous studies on ARL have focused on accurate localization, they

lacked in adaptation to actual environments. In real environments, there usually exist

acoustic reverberation and the near-far effects implying the situation that the target

signal is masked by nearby strong signals and makes it difficult to retrieve the target

signal. Previous studies have conducted experiments in a small space surrounded by

curtains [9] or extracted fingerprint [7] of the received signals to avoid reverberation

or the near-far effects.

In this chapter, we focus on two principles for a practical application of the ARL.

First, we aim not to influence on the human hearing by using inaudible acoustic

signals which can be processed in off-the-shelf audio devices. Second, the localization

algorithm should perform well in large reverberant room environments with sub-

meter accuracy. Based on these principles, we propose an indoor localization system

for which an efficient source data structure is designed to deal with environmental

issues, and a direct path detection algorithm is developed to cope with the effects

of multipath. Basically, localization is carried out by means of the time difference

of arrival (TDOA)-based technique. The performance of the proposed algorithm is

evaluated in both actual and simulated room environments.

3.2 Acoustic source design and synchronization

In this section, we propose a source data structure and synchronization algorithm

for an efficient localization in reverberant environments. For this, we concentrate

on several practical issues. First, the acoustic source signals should be designed to

be robust to the reverberations which cause multipath effects. Second, some special

techniques should be devised to mitigate the near-far effects. Third, we also need
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to consider the case in which the power of indirect (multipath) signal component

becomes stronger than the direct signal component.

3.2.1 Reverberation in multipath environments

The root mean square (RMS) delay spread is one of the important measures in

understanding a multipath channel. The RMS delay spread σrms is defined as the

standard deviation of the power of the room impulse response h(t) in (2.5), as given

by

σrms =

√∑
j a

2
j (τj − β̄)2∑
j a

2
j

(3.1)

where

β̄ =

∑
j a

2
jτj∑

j a
2
j

. (3.2)

For simplicity, we omit the super-script l which denotes the source index. If σrms

is relatively short compared to the symbol duration, the intersymbol interference

is prevented, i.e., the channel can be considered flat [23], [24]. We can consider the

data frame of the source signal plays the similar role of the data symbol in the

communication systems. For this reason, the length of the data frame should be

determined long enough to deal with the multipath effects.

3.2.2 Source data structure for ARL

To make ARL work in the large space, the source data structure should be well

designed to deal with the near-far effects. The near-far effects usually occur in situ-

ations when the desired source and the interfering sources share the same frequency

bands and time slots [44]. In wireless communications, the system amplifies the
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Figure 3.1. A schematic of the structure of OFDMA-CDM.

power of the desired signal so that it becomes strong enough to be retrieved regard-

less of the interference, which is called the power control technique. Unfortunately,

however, in ARL there is no way to feedback the channel information supporting

only one-way communication so it is impractical to apply the power control tech-

nique. An alternative way to tackle the near-far effects is to design the source signals

such that they reside in non-overlapping frequency regions.

In order to achieve this, we borrow an idea from the orthogonal frequency division

multiple access-code division multiplexing (OFDMA-CDM) approach [45] for the

acoustic data structure design. OFDMA is a multiple access scheme that divides
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Figure 3.2. Schematics of generating the source data. Source data is generated from

l-th data symbol dl spread by a unique sequence g which are then followed by

source-specific frequency mapping and inverse Fourier transform to time domain

signal.

the bandwidth into closely spaced multiple subcarriers assigned to each source [23]–

[25]. OFDMA-CDM employs OFDMA for multiple access and additionally applies

CDM for the diversity of each source [23], [45], [46]. An idea of the structure of

OFDMA-CDM is depicted in the Fig. 3.1.

In designing the sources, the characteristics of the cross-correlation among differ-

ent sources and auto-correlation of each source are important. The auto-correlation

function of each source needs to have a salient peak for a successful estimation of the

time delay tl. In contrast, the cross-correlation between different sources should be

kept as small as possible to avoid interferences. Among many kinds of pseudo-random

sequences, we apply the Gold sequence due to its good correlation properties [7], [9],

[23].

Fig. 3.2 shows how the proposed algorithm generates the l-th source signal.

The vector dl represents the data symbol assigned to the l-th source. Each data

symbol dl is spread by a Gold sequence g resulting in the transmission vector pl.

Then, pl is interleaved evenly onto its subcarriers by the source-specific frequency

mapper producing the source symbol Sl(f). The source symbols Sl(f) described
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Intended signal

Interfering signals

Figure 3.3. It is called as the near-far effect when the intended signal is interfered

by the closer signals.

in the frequency domain is then transformed into the corresponding time domain

source sl(t) through inverse FFT. Interested readers are encouraged to refer to [23],

[45], [46] for the basic processing in OFDMA-CDM.

Here, the source-specific frequency mapper assigns each source to a non-overlapping

subcarrier in a specified order, which has the following advantages: First, it enables

to avoid the near-far effects since each source resides in non-overlapping frequency

regions. Second, each source signal becomes robust to non-flat channel responses due

to the combined effect of interleaving and diversity. This is very useful because the

frequency responses of the commonly used microphones and loudspeakers cannot be

regarded flat.

An example of spectrogram of the source signal is shown in Fig. 3.4a. We designed

the signal to be band limited in inaudible frequency to affect the least to the human

hearing by assigning subcarriers of high frequency to the frequency mapper. As can

be seen in Fig. 3.4b, the received signal is attenuated and mixed with background

noise as explained in (2.6). However, due to the frequency difference, the ordinary

conversation or noise hardly affects the source signal.
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(a) Spectrogram of the source signal. The proposed source signal is

bandlimited in inaudible frequency band.

(b) Spectrogram of the received signal. The ordinary conversation does

not affect the source signal.

Figure 3.4. Examples of spectrograms of the source signal and the received signal.
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(b) The case when the direct path signal precedes the maximum peak.

Figure 3.5. Examples of cross-correlation between the source and the received signal.
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3.2.3 Signal presence detection

When considering practical use, it is necessary to check the presence of the desired

signal in the received signal. In this section, we introduce a process of detecting the

existence of a signal efficiently considering the characteristics of the source signal.

The characteristics of the generated signal are as follows:

• Band limited signal: to affect the least on the human hearing, the proposed

signal resides on the narrow inaudible frequency band.

• Periodic signal: source signal with short data frame size is played repeatedly.

The process of signal presence detection using the above characteristics is shown

in Fig. 3.6. First, the signal power in the predetermined band which is known in

advance is computed and compared with a certain threshold. In everyday life, there

is little signal in the inaudible frequency band, but in the case of white noise or

acoustic events with impulsive noise may affect the inaudible frequency band. The

second step checks the periodicity of the received signal to eliminate the noise cases.

The cycle of the source signal is predetermined by the length of the data frame,

the periodicity of the auto-correlation of the received signal is compared with the

data frame length. If the received signal has the desired periodicity, it will proceed

to TDE process. The presented two stage processes can efficiently determine the

presence of the desired signal with low computational complexity.

3.2.4 Direct path detection

Another important issue is that the power of the first reflection component of a source

signal sometimes becomes comparable to or even stronger than that of the direct path
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component in real multipath environments. An example of the case is depicted in the

Fig. 3.5b. Human auditory perception treats the preceding signal component more

importantly when perceiving direction, which is called the precedence effect [18],

[41], [47]. Conventional ARL systems mostly focused on finding the maximum peak

in the cross-correlation. In ideal case with no or small reverberation, the maximum

peak will be the direct path signal. However, in reverberant environments, the shape

of the cross-correlation is distorted by the early and late reverberation. Even though

the maximum peak indicates the direct path signal for most of the time as in the

Fig. 3.5a, the case where the direct path signal precedes the maximum peak as in the

Fig 3.5b will lead to error in position estimation. Some studies introduce parameters

to emphasize peaks in the cross-correlation by peak-quality features but they only

enhance the highest peak [7], [8]. Only a few studies have attempted to consider

the precedence effect [19]. Based on this, it is important to consider not only the

absolute level of the correlation peaks but also their precedences when estimating

the TOA or TDOA.

We propose a simple but effective method which refines the result of the syn-

chronization process given in (2.7) and (2.8). In this method we derive the modified

peak time indices {tlprec} in the following way:

tlprec =


t̂l, if Rl(t̂l) > ξRl(tlmax),

tlmax, otherwise,

(3.3)

where

t̂l = argmax
tlmax−Wprec+1≤t<tlmax

Rl(t). (3.4)

The highest peak time index obtained from (2.8) is indicated by tlmax, and Wprec

and ξ denote the length of the searching window and the threshold ratio of the peak,
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Table 3.1: Parameters of the real environment

Parameter Value

Dimension (m) 7.99 × 10.36 × 3.90

Loudspeaker position (m) (0.87, 1.11), (6.77, 1.31),

(height: 0.94 m) (6.39, 8.79), (1.68, 8.92)

RT60 (seconds) 0.571

RMS delay spread (seconds) 0.032

Number of target positions 60 (C1000S), 52 (iPad3, GalaxyS3)

Table 3.2: Simulated environment

Parameter Value

Dimension (m) 8 × 10

Loudspeaker position (m) (1,1), (7,1), (1,9), (7,9)

RT60 (seconds) 0.5, 1.1

Number of target positions 165

respectively. In our experiments, Wprec and ξ were determined empirically based on

the room acoustics [18], [41].

3.3 Performance evaluation

Experiments were conducted to evaluate the performance of the proposed approach

to ARL. As a performance measure, the localization error is calculated by the root

mean square error (RMSE) of the distances between the measured and estimated
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Table 3.3: System configuration

Parameter Value

Sampling rate (kHz) 48

Frequency band (kHz) 18 - 21.5

Frame length (samples) 4096, 8192

Wprec (samples) 500

ξ 0.65

positions over whole data frames for each target location. The result is depicted as

the cumulative distribution of the localization error.

3.3.1 Experimental setup and system configuration

We conducted experiments in a large reverberant seminar room and the simulated

environments. Four loudspeakers were placed around the surrounding walls. For the

simulation of reverberation, the RIRs corresponding to RT60 of 0.5 and 1.1 seconds

were generated by Allen and Berkley’s image method [48]. Total 100 test positions

were uniformly spread and RMSEs were calculated.

For the experiment in the real environment, Genelec 8030 loudspeakers and AKG

C1000S microphone were used for this experiment. The environmental parameters

of the room are listed in Table 3.1 and those of the simulated room in the Table

3.2. The reverberation time (RT60) was measured using pink noise in a preliminary

experiment [49], and σrms was calculated from the measured RIR.

Acoustic source signals were generated in the frequency bands above 18 kHz

for inaudibility. The source signals are played concurrently and repeatedly. The
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frame length of the source data was determined to be sufficiently longer than σrms.

Synchronization parameters Wprec and ξ were set based on the room acoustics [18],

[41]. The configuration of the ARL system constructed for performance evaluation

is given in Table 3.3.

3.3.2 Evaluation of acoustic data structure

The first simulation was conducted to confirm the structure of the acoustic source

data. The simulation result in Fig. 3.7a shows the comparison between the proposed

OFDMA-CDM data scheme (OC ) and a conventional CDMA-based scheme for dif-

ferent data frame lengths of 8192 (L8 ) and 4096 (L4 ) samples. The CDMA-based

system was implemented as a conventional structure from [9] with some modifica-

tion for a fair comparison. The RT60 was fixed to 0.5 seconds for the reverberant

environment simulation and the average RMS delay spread calculated from the gen-

erated RIRs was 1120 samples. All the signals used in this experiment had the same

sampling rate, frequency band and frame length as shown in Table 3.3.

We can see that longer data frame length cases (L8 ) are more robust than the

shorter ones (L4 ). This is because the data frame length in this experiment was

sufficiently longer than the RMS delay spread which the channel can be regarded

flat [23], [24]. For the structural difference, the OC outperformed the CDMA-based

source data structure. This can be accounted for by the fact that the CDMA-based

technique separates the source data in the code domain resulting overlaps in the

frequency domain, which is not suitable for mitigating the near-far effects.
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(a) An experiment of the proposed source data structure (OC) in different
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(b) Comparison of the proposed algorithm with the conventional method in

different RT.

Figure 3.7. The performance of the proposed in simulated environments.
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3.3.3 Performance of the direct path detection algorithm

The second experiment was conducted to evaluate the effect of the direct path de-

tection algorithm in different reverberant environments. Using the parameters of

the previous experiment, the data frame length was fixed to 8192 samples (L8 ) and

performance was measured by the OC. For simulation of severe reverberant environ-

ments, the RIR with RT60 of 0.5 and 1.1 seconds cases were generated and denoted

as RT0.5 and RT1.1, respectively. The case of direct path detection algorithm and

the conventional synchronization method using the maximum peak as in (2.8) are

denoted as Prec and MaxPeak, respectively. From the result shown in Fig. 3.7b, we

can see that Prec outperformed MaxPeak in all environments. One notable observa-

tion from this experiment is that the performance of Prec was more effective than

MaxPeak in severe reverberation (RT1.1 ). This result indicates that there exists

more portion of stronger indirect signals in reverberant environments.

3.3.4 Performance in a real room

We compared the performances of three different schemes of ARL in the real en-

vironment. The first scheme is the ARL technique with the proposed source data

structure and the direct path detection algorithm, which is denoted by OC Prec. The

second scheme denoted by OC MaxPeak has the same source data structure to that

of OC Prec but applies the conventional peak detection algorithm given in (2.8).

The last scheme denoted by CDMA represents a conventional CDMA-based system

presented in [9] with some modification for a fair comparison. All three schemes

had the same sampling rate, frequency band and frame length as shown in Table

3.3. RMSEs were calculated at 60 different positions inside the room. The results
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Figure 3.8. The performance of the proposed in the real environment.
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are shown in Fig. 3.8a where we can see that the proposed OFDMA-CDM data

structure (OC Prec and OC MaxPeak) outperformed the CDMA-based source data

structure. This can be accounted for by the fact that the CDMA-based technique

separates the source data in the code domain resulting in an amount of overlap in

the frequency domain, which is not suitable for mitigating the near-far effects. In

addition, the superior performance of OC Prec to that of OC MaxPeak confirms the

effectiveness of the proposed synchronization algorithm.

Next, we evaluated the performance of the proposed approach, i.e., OC Prec with

different types of receiver devices. We computed RMSEs at 52 positions using two

different receiver devices: Apple iPad3 and Samsung GalaxyS3. The result is shown

in Fig. 3.8b, where the result obtained with C1000S microphone is also displayed.

One notable observation from this result is that the performance of OC Prec is

almost similar with various off-the-shelf receiver devices.

3.4 Summary

This chapter has presented a novel indoor localization system using the inaudible

acoustic signal that operates in real environments. We have proposed the structure of

acoustic source data and synchronization algorithm for localization to deal with mul-

tipath in the reverberant environment and near-far effects. The proposed approach

has shown good performance in both the actual and simulated room environments.
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Chapter 4

Robust Time Delay Estimation

for Acoustic Indoor Localization

in Reverberant Environments

4.1 Introduction

In this chapter, we propose a robust time delay estimation (TDE) algorithm to cope

with the reverberant environments in ARL. In the actual environments, it is diffi-

cult to estimate the correct time delays of the direct path signals for localization

due to multipath signals caused by acoustic reverberation. Although previous stud-

ies on ARL focused on accurate localization, they lacked in adaptation to actual

environments. Aloui et al. [7] performed ARL experiments in a small space where

the direct signal was dominant. Sertatıl et al. [9] succeeded in measuring the receiver

position within a small area surrounded by curtains. Some other studies attempted

ARL in large spaces which are likely to be reverberant, but the reverberation was
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not their major concern [8], [29]. Some of the recent works in SSL focused on am-

biguous TDOA measurements caused by reverberation. DATEMM [21] suggested

disambiguation of TDOA estimation for multiple sources using microphone arrays

and the work is followed by [50]. Canclini et al. [22] performed TDOA disambigua-

tion with the use of a reliability criterion in a distributed microphone array network

system.

The proposed algorithm consists of two parts: minimizing the effect of multi-

path caused by reverberation and determining the receiver position via a reliability

measure. We target this algorithm to perform well in large reverberant room envi-

ronments. The performance of the proposed algorithm is evaluated with an asyn-

chronous TDOA-based localization system in both actual and simulated room envi-

ronments.

4.2 Robust TDE

In this section, we propose a robust TDE algorithm for application to practical re-

verberant environments. For simplicity, we assume that the localization is performed

in the two-dimensional space where a position is described by a coordinate (x, y).

The goal of this algorithm is to find the set of time indices for accurate position

estimation. Previous studies used to regard the highest peak in Rl(t) as the correct

time lag for localization [7], [28] or introduced the peak quality to emphasize the

highest peak [8], [9]. Focusing on detecting the preceding signal was an effective

method to deal with multipath in the reverberant environments [20]. Although the

above methods tried to achieve accurate localization, they treated each source inde-

pendently. Since in ARL, the position is calculated based on all the source signals,
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it is more desirable to determine the target position using all the multiple source

signals jointly. For this, we divide the problem into the following two steps: mini-

mizing the effect of multipath caused by reverberation and estimating the position

via a reliability measure.

First, we attempt to minimize the multipath effects by carefully investigating

the combinations of the time indices. Instead of picking only the highest peak as in

(2.8), we need to select multiple peaks from Rl(t). These peaks are selected from the

local maxima of |Rl(t)| that are greater than a predefined threshold γ. It is necessary

to determine γ depending on the application because it makes a trade-off between

computational complexity and accuracy since it controls the number of peaks to be

selected. The time indices of selected peaks for the l-th source signal are denoted

as T l = {τ lp} for p = 1, · · · , P l where P l denotes the number of peaks which varies

depending on the characteristics of Rl(t). If Rl(t) has only a few prominent peaks,

P l will be small. On the contrary, if Rl(t) is affected by severe reverberation or the

target receiver is far from the source, P l will have a large value. In this work, we set

an upper bound ζ on the number of peaks P l.

Next, we form a series of peak candidate set Pk which is a combination of time

indices from each source with k = 1, · · · ,K. The total possible number of peak

candidate sets will be K =
∏L
l=1 P

l and the cardinality of Pk equals the number

of sources |Pk| = L. For instance, Pk can be described as Pk = {τ1
a , τ

2
b , · · · , τLc }

where τ1
a ∈ T 1, τ2

b ∈ T 2, · · · , τLc ∈ T L. An example of peak candidate set is depicted

in the Fig. 4.1.

In each Pk, we can select a combination of several time indices to derive the

position of the target receiver. There are np =
∑L

i=m

(
L

i

)
possible combinations

for each Pk where m is the minimum number of sources needed for the position
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Figure 4.1. An example of peak candidate sets. A peak in cross-correlation of each

source becomes a component in the peak candidate set.
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estimation. For example, in a two-dimensional space, at least three time indices

corresponding to three different sources are needed to calculate the position, i.e.,

m = 3. Let (xk,n, yk,n) represent the position estimated from the n-th combination

of Pk with n = 1, · · · , np using the LMA mentioned in the previous section. In order

to measure how densely the estimated coordinates are populated, we calculate the

variance of the np estimated positions as a degree of agreement in Pk. We remove

Pk from further consideration if

np∑
n=1

(xk,n − x̄k)2 +

np∑
n=1

(yk,n − ȳk)2 > ν (4.1)

where x̄k and ȳk represent the mean of {xk,n} and {yk,n}, respectively and ν is an

empirically determined threshold. The relation between ν and the estimated position

is depicted in the Fig. 4.2. Since the test (4.1) is applied to all Pk, the L sound sources

are jointly utilized to determine the target position.

This process enables to reduce the effect of early reflections which usually incur

spurious peaks in {Rl(t)}. Also, we can benefit from weak sources because they

contribute in finding valid candidate sets whereas previous studies often decided

weak sources as unreliable and excluded them in estimating positions [8].

Even though the peak candidate sets are refined through the agreement test of

(4.1), there still exists a possibility that some of the remaining candidate sets indicate

irrelevant positions. In order to find these irrelevant candidate sets, we compute

a reliability measure qk for each Pk. Some previous studies in source localization

introduced various reliability measures that can be obtained from Rl(t) [22], [51].

We have found that

qk =
∑
τ lp∈Pk

|Rl(τ lp)|
max(|Rl(t)|)

(4.2)
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Figure 4.2. The relation of ν and the estimated position.

is suitable for measuring the reliability of Pk. This reliability measure represents the

confidence of each candidate’s position while the previous studies focused on finding

one salient peak from individual source. The final position (x̄k̂, ȳk̂) is calculated

from Pk̂ where

k̂ = argmax
k

qk. (4.3)

Since the reflective peaks or noise are likely to result in lower magnitude in Rl(t),

sorting Pk according to qk will help to identify the most probable position among

the candidate sets.
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Table 4.1: System configuration

Parameter Value

Sampling rate (kHz) 48

Frequency band (kHz) 18.0 - 20.9

Symbol length (samples) 8192

4.3 Performance evaluation

In this section, we compare the performance of three different TDE methods in

ARL. The first method is the proposed robust TDE algorithm denoted by RTDE,

which computes the receiver position using the multiple sources jointly. The second

method denoted by Prec represents the technique introduced in [20], which considers

the precedence of the highest peak if it exists. The last method denoted by MaxPeak

applies the conventional highest peak detection method [7], [28] given in (2.8). All

three methods were employed upon the same ARL system suggested in [20] with the

same configuration as shown in Table 4.1.

In implementing the proposed TDE method, the peak selection threshold γ was

empirically set to the half of the maximum magnitude of Rl(t). The upper bound ζ

of P l was set to 20 and the threshold ν for the agreement test was set to 0.001.

The performances are depicted in terms of the localization error calculated by

the root mean square error (RMSE) versus precision plots. The RMSE is calculated

between the exact and estimated positions over the entire data symbols for each

target position. In this work, the precision means the cumulative distribution of the

localization error.
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Table 4.2: Parameters of the real room environment

Parameter Value

Dimension (m) 7.99 × 10.36 × 3.90

Loudspeaker position (m) (0.87, 1.12), (6.92, 1.27),

(height: 1.14 m) (6.57, 8.75), (1.69, 9.08)

RT60 (seconds) 0.571

Number of target positions 60

4.3.1 Performance evaluation in a real room

In order to evaluate the performance in reverberant environments, we conducted

the experiments in a large reverberant seminar room in the presence of two exper-

imenters and several rows of tables and chairs. The ambient noise measured in the

environment was 35.3 dB. Four loudspeakers (Genelec 8030) were placed around

the surrounding walls. The height of the target microphones (AKG C1000S) was

similarly leveled with the loudspeakers at 1.20 m. The inaudible source signals were

played simultaneously in a continuous manner from the loudspeakers. The average

SPL of the source signals was measured as 46.4 dB at 1 m away from the loudspeak-

ers. The reverberation time (RT60) was measured using pink noise in a preliminary

experiment [49]. The RT60 for considered part of frequency band was 0.335 seconds.

The environmental parameters of this room are listed in Table 4.2. RMSEs were

calculated at 60 different positions inside the room. The average of P l for the real

room experiment was 8.33.

From the results shown in Fig. 4.3, we can see that the proposed robust TDE al-

gorithm outperformed the other methods in terms of both the precision and RMSE.
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Figure 4.3. Performance evaluation of the ARL system using different TDE meth-

ods: comparison of the proposed method with the direct path detection and the

conventional highest peak detection in the actual room environment.

Showing better precision can be accounted for by the fact that analyzing the agree-

ment of each peak candidate set jointly using the combinations of all sources is an

effective way to disambiguate the detection process. With this comprehensive anal-

ysis, we can eliminate ambiguous or reflective peaks caused by multipath and select

only the valid candidate sets. The reduction of RMSEs in the proposed method is

considered to result from the sorting of the peak candidate sets according to the

reliability measure.

4.3.2 Performance evaluation in simulated reverberant conditions

We also conducted experiments in simulated environments to evaluate the perfor-

mance of the proposed method in various reverberant conditions. For this, we simu-

47



0 0.1 0.2 0.3 0.4 0.5

Localization error (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

RTDE
Prec
MaxPeak

(a) RT = 0.3 seconds
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(b) RT = 0.5 seconds

Figure 4.4. Performance evaluation of the ARL system using different TDE methods

in the simulated environments with the mild RT.
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(a) RT = 0.8 seconds
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(b) RT = 1.1 seconds

Figure 4.5. Performance evaluation of the ARL system using different TDE methods

in the simulated environments with the high RT.
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Table 4.3: Parameters of the simulated room environments

Parameter Value

Dimension (m) 8 × 10

Loudspeaker position (m) (1, 1), (7, 1), (1, 9), (7, 9)

RT60 (seconds) 0.3, 0.5, 0.8, 1.1

Number of target positions 3000

lated an enclosed space with the dimension and layout similar to those in the previous

experiment while varying the RT60 as shown in Table 4.3. In order to simulate the

environments, the RIRs corresponding to RT60 of 0.3, 0.5, 0.8 and 1.1 seconds were

generated by the image method [48]. A total of 3000 target receiver positions were

randomly chosen inside the simulated room and RMSEs were calculated. The con-

figuration of the ARL system for this simulated environments was set the same to

the previous real room experiment as shown in Table 4.1.

The results are shown in Figs. 4.4 and 4.5 where we can find that the proposed

method outperformed the other approaches. It is worth noting that the proposed

method showed rather consistent precision even the RT60 increased. This is because

the proposed method evaluates a lot of possible combinations of time indices jointly

whereas the conventional methods generally analyze time indices in a source-wise

manner.

4.4 Summary

In this chapter, we have proposed a novel TDE algorithm for the ARL system that

operates in real environments. It is difficult to estimate the correct time delays in
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actual environments due to the multipath effect caused by acoustic reverberation.

The proposed algorithm attempts to minimize the effect of multipath by investi-

gating the multiple sources jointly and determines the location with the adoption

of a reliability measure. The proposed algorithm showed better performance than

the conventional methods in both the actual room and simulated environments with

various reverberation conditions.
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Chapter 5

Indoor Localization Based on

Particle Filtering

5.1 Introduction

It is complicated to apply ARL in the actual environment since reverberation or

reflections from various objects cause errors in the estimation of time delays. In

highly reverberant environments, some reflections are often stronger than the direct

path signal and the time delay estimation becomes more ambiguous [18], [19]. In the

past, some researches focused on designing the data structure of the source for an

application of indoor localization or estimating the accurate target position, rather

than facing the reverberant environment. Previous studies conducted experiments

in environments with low reverberations where space is surrounded by curtains [9]

or a small designed space where direct path signals can be easily identified [7]. Re-

cently, some researches began to deal with reverberation. Some studies [10], [20]

tried to identify the direct path signal in reverberation. Studies in the SSL also fo-
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cused on spurious measurements in the reverberant environments. DATEMM [21]

tried to disambiguate TDOA measurements in the multiple source localization sys-

tem and Canclini et al. [22] suggested a reliability criterion to disambiguate TDOA

measurements in the reverberant condition.

In this chapter, we propose an indoor localization system for acoustic sensors

based on the artificial sound sources through the particle filtering. Especially, we

aimed to accurately estimate the position of the sensor with low-complexity in the

environment with high reverberation. Reverberation is one of the biggest obstacles

in position estimation using acoustic signals since it produces unrelated reflections.

Although there are many acoustic localization systems, only a few studies aimed to

deal with reverberation. We propose the acoustic receiver localization system with

the peak quality, efficient likelihood function, and finding direct path peak region

for accurate position estimation. Through these methods, we have improved the

performance compared to the existing methods, and have verified the performance

in various reverberation environments in both simulation and real environment.

5.2 A framework of positioning method using particle

filter

This section describes the Bayesian framework of the positioning method using the

particle filter. We define the dynamic model of the system, explain how to perform

Bayesian estimation with the particle filter, and then introduce the formulation of

the likelihood function. Since there are a number of famous articles regarding the

particle filter, we address only the essentials in understanding our study. A full

description of the particle filtering theory can be found in [52], [53].
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5.2.1 State and dynamic models

In order to describe the system in the Bayesian framework, the dynamic model

should be defined. There are several dynamic models for representing the position

of people. Among them, the Langevin model which is proposed to represent the

Brownian motion is widely used in practice because it represents the motion of people

well even though its simple implementation [38], [39], [54]–[56]. In the Langevin

model, the Cartesian coordinates are assumed to be independent to each other. We

will consider it in two-dimensional space because the height of the loudspeakers and

the receiver are similar in the system. Let us define the state of the target receiver

at time t as xt = [xt yt ẋt ẏt] where [xt yt] represents the coordinate and [ẋt ẏt]

represents the velocity, then the Langevin motion model for x-coordinate can be

written as:

xt =xt−1 + ∆T ẋt−1, (5.1)

ẋt =axẋt−1 + bxFx (5.2)

where Fx = N (0, 1) represents a normally distributed random variable with zero-

mean and variance of one, and ∆T = Lf/fs means the time interval with Lf being

the frame length in samples and fs denoting the sampling frequency. ax and bx

are the position and velocity variance constants, respectively, which are defined as

following:

ax =e−βx∆T , (5.3)

bx =ẋt
√

1− ax2. (5.4)

Similar to previous studies [38], [39], [54]–[56], we set the rate constant βx = 10/s

and the velocity parameter ẋt = 1m/s which are found to show decent performance
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for the indoor positioning.

5.2.2 Bayesian framework using particle filter

For the localization system with L loudspeakers, we will consider the peak indices

of Rl(t) in (2.7) as the measurements, which can be written as Z lt = {zlt} where

zlt = {zlt,1, · · · , zlt,P } ⊆ {τ lj} (5.5)

and P is the number of peaks from the result of the peak detection on Rl(t). Let Z1:t

be the measurements up to time t where the superscript l is omitted in this section.

The state xt will be assumed to follow the Markov process and independent to the

measurements. The goal of the system is to estimate the posterior p(xt|Z1:t), which

can be calculated based on the Bayesian recursive estimation as following:

p(xt|Z1:t) =
p(Zt|xt)p(xt|Z1:t−1)

p(Zt|Z1:t−1)
(5.6)

p(Zt|Z1:t−1) =

∫
p(Zt|xt)p(xt|Z1:t−1)dxt (5.7)

where p(xt|Z1:t−1) =
∫
p(xt|xt−1)p(xt−1|Z1:t−1)dxt−1 and p(Zt|xt) are the prior and

the likelihood, respectively [55]–[57]. This implies that the probability distribution

of the current state can be recursively obtained if there is a posterior of the previous

time and the dynamic model. In general, there is no closed form solution, and we

will estimate it through the particle filtering approach.

In the particle filter, the posterior at time t is expressed with particles {x(i)
t } and

their corresponding weights {w(i)
t } where i = 1, · · · , N is the index of the particles.

We can divide the process of the particle filtering into two stages: the propagation

stage and the update stage. In the propagation stage, the particles x
(i)
t−1 of previ-

ous time are propagated into the current time based on the proposal distribution
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p(x
(i)
t |x

(i)
t−1, Zt) which is described by the dynamic model. In the update stage, the

weights of the particles are updated according to the likelihood from the measure-

ments through the following equation:

w
(i)
t ∝ w

(i)
t−1L(x

(i)
t |Zt). (5.8)

The weights are then normalized to have summation of one by
∑

iw
(i)
t = 1. The

resampling process is usually performed to prevent the degeneracy problem in which

only some particles have meaningful weights. We used the low variance resampling

algorithm for the resampling strategy [57].

5.2.3 Likelihood function

For a given state xt, the likelihood function computes the likelihood of the observed

data. The likelihood function should be well formulated to reflect the characteristics

of Rl(t) to estimate the location. We use the similar function as the one used in

previous studies [38]–[40], [54]. The likelihood function assumes that the observed

data zlt,p is the time delay of true position distorted by additive Gaussian noise. The

likelihood function of l-th source is expressed as

L(x
(i)
t |Z lt) =

P∑
p=1

αlt,pN (zlt,p; τ
l(x

(i)
t ), σ2). (5.9)

Here N (x;µ, σ2) means the Gaussian distribution with mean µ and variance σ2

evaluated at x. The p-th measurements zlt,p is the index from (5.5) and αlt,p is the

corresponding normalized amplitude, respectively and τ l(x
(i)
t ) is the expected time

delay of i-th particle which is computed by

τ l(x
(i)
t ) = ‖ sl − x

(i)
t ‖ /c. (5.10)
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The likelihood is obtained by multiplying (5.9) of L sources by

L(x
(i)
t |Zt) =

L∏
l=1

L(x
(i)
t |Z lt) (5.11)

based on the assumption that measurements of individual pairs are independent.

However, since our system assumes asynchrony between the sources and the

receiver, i.e. the emission time is unknown, we need to modify the likelihood function

to incorporate the emission time. The following is the likelihood that can handle the

unknown emission time:

L(x
(i)
t , η̂

m,(i)
t |Z lt) =

P∑
p=1

αlt,pN (zlt,p; τ
l(x

(i)
t ) + η̂

m,(i)
t , σ2), (5.12)

L(x
(i)
t , η̂

m,(i)
t |Zt) =

L∏
l=1

L(x
(i)
t , η̂

m,(i)
t |Z lt), (5.13)

L(x
(i)
t |Zt) =max

m
[L(x

(i)
t , η̂

m,(i)
t |Zt)]. (5.14)

The estimation of emission time η̂
m,(i)
t is calculated as following:

η̂
m,(i)
t =zmt,pmax

− τm(x
(i)
t ) (5.15)

where m = 1, · · · , L is the index of the sources and zmt,pmax
is the maximum peak

index of m-th source. This equation assumes that the maximum peak value of at

least one source is due to the direct path signal.

According to the modified likelihood function, if at least one zmt,pmax
is due to

the direct path signal, the likelihood will have a high value. However, in a real

environment with reverberation, wrong emission time estimates obtained from the

spurious peaks may provide a higher likelihood. Therefore we need to force the

likelihood to be computed away from the region with early or late reverberation.

The proposed method in the next section will give the solution to this problem.
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5.3 ARL in reverberant environment

In this section, we propose three novel techniques for ARL system based on the

particle filters to deal with the high reverberation. First, we explain how to weight

the peaks of Rl(t), which will be called as peak quality hereafter. The peak quality

is an indicator to determine the reliability of peaks in Rl(t). Second, we modify the

likelihood function for efficient and accurate computation. A lot of studies on the

position estimation through the particle filter have been using the similar likelihood

function as in (5.9) and (5.11). We will modify it to reduce the computational com-

plexity while increasing the accuracy. The third is a process of finding the region

that contains the direct path in Rl(t). With this process, the likelihood is computed

in the specified region to minimize the effect of reverberation and it also helps to

estimate the emission time.

5.3.1 Peak quality

In the process of ARL, Rl(t) is computed by the convolution of the source signal and

the received signal and the shape of Rl(t) becomes similar to the RIR. Therefore

Rl(t) will have some peaks due to the early reverberation and the late reverberation

in addition to the peak by the direct path signal as in the RIR. Since the likelihood

function is represented by the sum of the information of several peaks as in (5.12), it

is necessary to give proper weights, for example, giving small weights to peaks due

to reverberation and a larger weight to the direct path peak.

Here we redefine the normalized amplitude of each peak as the peak quality and
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modify (5.12) to have a coefficient of λ as following:

L(x
(i)
t , η̂

m,(i)
t |Z lt) =

P∑
p=1

(αlt,p)
λN (zlt,p; τ

l(x
(i)
t ) + η̂

m,(i)
t , σ2). (5.16)

Although the amplitude is not the precise information for the direct path peak, still,

the amplitudes of peaks near the direct path tends to be larger than those from

the late reverberation or noise. In the previous study [40], (5.16) was calculated

with λ = 0 without consideration of the amplitude of Rl(t). In a recent study [20],

[38], [39], [58], researchers put interests in peak amplitudes which are the case of

λ = 1. From the preliminary experiment, however, we found that there is a limit

to represent weights of the desired peaks only by the normalized amplitude which

is λ = 1 as reverberation gets worse. This is because the amplitude of peaks due

to noise and late reverberation get similar or the distinction between direct path

and early reverberation becomes increasingly ambiguous. However, if large λ, such

as infinity, is used, it will be similar to the case only using the maximum peak of

Rl(t). We confirmed that it is important to find the appropriate λ according to the

environment. Experimental results will be shown in the following section.

5.3.2 Efficient calculation of the likelihood function

As can be seen on (5.16), the likelihood function is obtained as the weighted sum of

Gaussian functions. As reverberation increases, a number of spurious peaks increases

and so does their contribution to the likelihood. For this reason, we propose to

calculate the likelihood only near the region adjacent to the delay computed from

each particle: τ l(x
(i)
t ) + η̂

m,(i)
t . The adjacent region can be obtained as following,

Elt,p = {p| |τ l(x(i)
t ) + η̂

m,(i)
t − zlt,p| < Da} (5.17)
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The threshold of adjacency Da is defined as average distance of the uniformly dis-

tributed particle in the given space, which can be represented as following,

Da =
√
uv/Nfs/c (5.18)

where u and v are the width and the length of the room if we assumed the space to

be two-dimensional.

Then, we apply the region to the likelihood function as

L(x
(i)
t , η̂

m,(i)
t |Z lt) =

∑
p∈El

t,p

(αlt,p)
λN (zlt,p; τ

l(x
(i)
t ) + η̂

m,(i)
t , σ2). (5.19)

By excluding measurements that are not related to each particle, computation of

summation is reduced and more accurate likelihood can be obtained.

5.3.3 Finding the direct path region

We now introduce the method that excludes measurements that are assumed to be

early and late reverberation and determines the region where the direct path signal

belongs in Rl(t). This method significantly reduces errors caused by reverberation.

There are two possible cases of the peak location of direct path signal in the re-

verberant environment. First, as an ideal case, the peak with the maximum value

in Rl(t) is due to the direct path signal. This happens when the loudspeaker and

the microphone are close together and are minimally affected by reverberation or

reflections. The likelihood should be calculated in the region including the maximum

of Rl(t). The second case is when the direct path signal precedes the maximum of

Rl(t). In reverberant environments, early reverberation often has a larger peak than

the direct path signal if the target microphone is near the walls or the direct path

signal is blocked by obstacles [18], [19]. Previous studies [10], [20] tried to identify
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Input:

Peak indices zlt = {zlt,p} from Rl(t)

Output:

Let Bl
t be the set of selected peak indices

pmax = argmaxp(α
l
t,p)

2

p̂ = pmax

Bl
t = {p̂}

while (zlt,p̂ − zlt,p̂−1) < Dc & (zlt,pmax
− zlt,p̂) < Dmax do

Bl
t = Bl

t

⋃
{p̂− 1}

p̂ = p̂− 1

end while

where αlt,p = Rl(zlt,p)/
∑

pR
l(zlt,p),

Dc = 2dfs/c and

Dmax =
√
u2 + v2fs/c

return Bl
t

Figure 5.1. Process of finding the direct path region.
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the preceding peak of the maximum of Rl(t) as the direct path peak. However,

identifying the preceding peak was not perfect in the previous studies due to the

ambiguity the direct path peak decision.

We decided to find a region that includes direct path peak through the following

algorithm in the Fig. 5.1. Here, the preceding peak of the maximum of Rl(t) is

iteratively analyzed by means of the maximum distance Dc of the first reflection

and the direct path signal. This is done until there is no more preceding peak and

while the maximum length of the set is less than Dmax. Here, Dc is defined as

twice of the distance between the source and the adjacent wall, and Dmax is the

maximum distance between the sources and the receiver that can have in the given

space. In the end, the resulting region Bl
t will contain the index of the direct path

signal. This method can be applied to any positioning algorithm that computes the

cross-correlation between the source and the received signal which results the similar

shape with the RIR.

The final likelihood function becomes as

L(x
(i)
t , η̂

m,(i)
t |Z lt) =

∑
p∈Q

(αlt,p)
λN (zlt,p; τ

l(x
(i)
t ) + η̂

m,(i)
t , σ2) (5.20)

where the summation range is now modified to Q = Elt,p
⋂
Bl
t.

This method of selectively applying the measurements also helps to estimate the

emission time. In the equation (5.13), the likelihood candidates are obtained using

the estimated η̂mt,(i). If we use the whole measurement as in the other studies, even

though the weight of particles can be controlled by the Gaussian function, wrong

estimate of η̂mt,(i) can cause a large likelihood due to the early and late reverberation.

Using the proposed method, it is possible to estimate the accurate likelihood by

minimizing the effect of reverberation.
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Table 5.1: Configuration of the source signals

Parameter Value

Sampling rate (kHz) 48

Frequency band (kHz) 18.0 - 20.9

Frame length (samples) 8192

5.4 Performance evaluation

In this section, we conducted a series of experiments to evaluate the performance

of the proposed system. It was investigated in various simulated reverberant envi-

ronments. To simulate a large reverberant space, the RIRs are generated through

the image method [48] with various reverberation times (RTs) and synthesized with

the sources. The sources of the ARL system is based on [20] with the configuration

shown in Table 5.1. The RT is the measure for reverberation representing the time

required for the sound level to decrease by 60 dB. We conducted experiments in dif-

ferent parameters and compared the performance with the previous methods. After

that, we compared the performance of the proposed method with previous methods

in the actual environments.

Performance is expressed through the localization error between the actual and

the estimated position for each target position. The localization error is measured

at 10-th frame assuming the convergence of all the case using the particle filters. A

sample example for the convergence of the localization error is shown on the Fig. 5.2

in condition of RT = 1.1 seconds and λ = 4 using 1000 particles. The localization

errors at 5000 target positions are averaged in frame-wise for this example. The

performances are depicted by the cumulative distribution function (CDF) of the
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Figure 5.2. A sample experiment showing the convergence of the localization error

in the case of RT = 1.1 seconds.

Table 5.2: Parameters of the simulated room environments

Parameter Value

Dimension (m) 8 × 10

Loudspeaker position (m) (1, 1), (7, 1), (1, 9), (7, 9)

RT (seconds) 0.5, 0.8, 1.1, 1.4

Number of target positions 5000

localization error and depicted only the region of interest.

5.4.1 Performance in a simulated environment

In order to measure the performance in various reverberant conditions, we conducted

experiments in the simulated environments. The simulated RTs are 0.5, 0.8, 1.1,

and 1.4 seconds. Experiments were performed on a total of 5000 arbitrary target

positions. The σ2 in the likelihood function was fixed to 10 for all experiments

which showed good performance in the preliminary analysis. The configurations of
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Figure 5.3. An experiment for the performance with/without the propose methods

in RT = 1.1 seconds.

the simulated environment are listed on Table 5.2.

First of all, we introduce an experimental result to show the performance with

and without the processes of efficient likelihood calculation and finding direct path

region. The experimental result with the condition of RT = 1.1 seconds, 600 particles

and λ = 4 is shown in the Fig. 5.3 to show the effect of the proposed techniques.

Since we assume ARL system to be asynchronous, it is necessary to estimate the

emission time. The conditions on Fig. 5.3 are as following,

• P : the conventional method in (5.16),

• E: the application of an efficient likelihood as in (5.19),

• B: the application of finding the direct path region, and
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• Q: the result when B and E applied together in (5.20).

Although it may seem only slight improvement by the efficient likelihood calcula-

tion, the overall result shows evident performance improvement with the proposed

methods. This is because the both techniques are necessary in estimating the emis-

sion time by limiting the contribution of spurious signals. Therefore, we applied Q

through the following experiments.

We conducted experiments to investigate the effect of λ in the peak quality by

changing the RT. The number of particles is fixed to 1000 and the result is shown

in the Figs. 5.4 and 5.5. Here, λ = 0 is similar to the method used in [38], [40], and

λ = 1 is similar to [39], [54], [58], [59]. From the results, it can be confirmed that

the larger the value of λ, the higher the accuracy. This is because if the larger λ is

used, it increase the weights on the reliable peaks, while the weight to the spurious

peak decreases. However, performance does not continue to improve as λ increases.

As λ increases, only peaks with high amplitude can contribute to the likelihood. If

λ reaches the infinity, only the maximum peak will have the significant value and

it will show the similar performance to the conventional method that estimates the

location only through the maximum peaks as in (2.8). We plotted the failure rate in

different λ on Fig. 5.6. In this plot, we regarded the target position with localization

error more than 0.2 m as the failure and its ratio to the whole target positions are

defined to be the failure rate. Therefore the value of λ needs to be decided according

to the environment, here we proceeded with following experiments with λ = 4.

In the localization system, due to the nature of the application, there exists the

degeneracy problem which means that only a few particles have the non-zero or

meaningful weights. In compensation to the degeneracy problem, it is important to
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Figure 5.4. Performance evaluation with regard to λ in the peak quality in mild RTs.
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Figure 5.5. Performance evaluation with regard to λ in the peak quality in high RTs.
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Figure 5.6. Failure rate of the proposed method with different λ.

choose a proper resampling strategy, but it is also important to check the number

of particles suitable for the application. The particle filter shows accurate results

as the number of particles increases, but there is a trade-off with the amount of

computation. Therefore, we measured the performance by varying the number of

particles (PN), which is shown in the Figs. 5.7 and 5.8. The figure shows that the

performance converges around PN600.

Next, we conducted comparative experiments with other localization methods.

Although there have been a number of studies, it is impractical to compare the

performance with the same standard because the experimental environment and

equipment are different. We compared performance with three other methods that

can be conducted with the same standard. The first one is a conventional method

of calculating the position based on TDOA through the LMA. This method works

70



0 0.05 0.1 0.15 0.2 0.25 0.3

Localization error (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

PN1000
PN800
PN600
PN400
PN200
PN100

(a) RT = 0.5 seconds

0 0.05 0.1 0.15 0.2 0.25 0.3

Localization error (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

PN1000
PN800
PN600
PN400
PN200
PN100

(b) RT = 0.8 seconds

Figure 5.7. Performance evaluation with regard to the particle number in mild RTs.
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Figure 5.8. Performance evaluation with regard to the particle number in high RTs.
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well in the ideal environment, but estimation will fail if multipath generates irrel-

evant peaks and induce wrong tlmprop. The second method is from [20], which finds

the direct path peak among spurious peaks caused by multipaths. A similar scheme

was introduced in the recent study [10]. However, this method also has a limita-

tion that it does not work well in the high reverberation because finding the direct

path peak gets more ambiguous. In severe reverberation, the multipath peaks are

often larger than the direct path peak, resulting errors in TDE. The third method

proposed in [59] aimed for accurate localization in severe reverberant environments.

This method considered all possible tlm candidates from combinations of peaks and

estimates the position by ranking the peak candidates with a peak quality. Although

its accurate estimation, too much computation is required as the number of candi-

dates increases in high reverberations. We label the first, second and third method

with MaxPeak, Prec, and RTDE, respectively. The performance comparison with the

proposed method (Proposed) is shown in Figs. 5.9 and 5.10.

As the localization error measurements of the other methods, the RMSE of the

average error of ten frames were calculated for each target position. We can see from

Figs. 5.9 and 5.10, that the proposed method outperformed the other approaches.

In the case of low reverberation (RT = 0.5 seconds), though the different accuracy,

every method succeeds in locating more than over 75% targets. As the reverberation

increases, the rate of failure increases rapidly for MaxPeak and Prec, and only RTDE

and Proposed can estimate the position of most of the targets. The proposed method

is not much different from RTDE in terms of CDF but the difference is more apparent

as reverberation increases. Particularly, it is noteworthy that the proposed method

has very little performance degradation due to reverberation.

Next, we compared the regional error of the proposed method with other con-
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Figure 5.9. Performance comparison of the proposed method with other methods in

mild RTs.
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Figure 5.10. Performance comparison of the proposed method with other methods

in high RTs.

75



2 3 4 5 6
width

PF

2

3

4

5

6

7

8

le
ng

th

2 3 4 5 6
width

RTDE

2

3

4

5

6

7

8

le
ng

th

2 3 4 5 6
width

Prec

2

3

4

5

6

7

8

le
ng

th

2 3 4 5 6
width

MaxPeak

2

3

4

5

6

7

8

le
ng

th

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lo
ca

liz
at

io
n 

er
ro

r

Figure 5.11. Regional error comparison of the proposed method with other methods

when RT = 0.5.
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Figure 5.12. Regional error comparison of the proposed method with other methods

when RT = 0.8.
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Figure 5.13. Regional error comparison of the proposed method with other methods

when RT = 1.1.
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Figure 5.14. Regional error comparison of the proposed method with other methods

when RT = 1.4.
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ventional methods which is the contour of the equal localization error. Although we

represented the performance with the cumulative distribution of localization error to

see the performance in the given space, the localization errors can vary in inner area.

We plotted the regional error in Figs. 5.11, 5.12, 5.13 and 5.14. In mild reverberation,

all methods show similar performance over all area. However, in high reverberation

conditions, we can see more localization error on the edge area in MaxPeak and

Prec cases whereas the Proposed and RTDE shows rather consistent performance

over all area. This is because the edge area is close to the walls which tend to have

more reflections and conventional methods produce more errors when reflections are

present.

We compared the calculation times for all the methods mentioned above. The

computation time is expressed as the average of the time taken to estimate arbi-

trary 1000 target positions. Table 5.3 shows the relative computation time to the

reference, i.e. the MaxPeak with time RT = 0.5 seconds. Computation time for the

reference took 0.177 seconds using the Matlab program on the system with the i7-

4770 processor and 8GB of RAM. In the case of MaxPeak and Prec, it takes almost

the same time because the LMA is computed only once after TDOA is determined.

Since RTDE requires the LMA and rank calculation for every peak candidate, it

takes relatively longer time even with our best optimization. In contrast, the par-

ticle filter has a relatively small amount of computation. In particular, the PN600

showed a real-time calculation speed, showing possibility of practical use in the real

applications.
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(a) Classroom

(b) Atrium

Figure 5.15. Two target places for experiments in the real environments.
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Figure 5.16. Target positions on the two given environments.
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Figure 5.17. Performance comparison of the proposed method and the other methods

in the classroom environment.
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Figure 5.18. Performance comparison of the proposed method and the other methods

in the main atrium environment.
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5.4.2 Performance in the actual environment

We conducted experiments in two actual environments: a large and reverberant

classroom and the wide-open atrium. For the large classroom case, experimental

equipment for acoustic recording and playback, several rows of desks and chairs,

and some furnitures were present in the room. Four loudspeakers (Genelec 8030)

were installed near the wall around the room to reproduce the source signals. The

microphone (AKG C1000S), which is the target of the position estimation, was

placed inside the room in various positions with a height similar to loudspeakers.

The performance is measured in total of 60 different target positions covering most

of desk area as shown in Fig. 5.16a. The reference position of the microphone and the

loudspeakers were measured by experimenters using the laser meter (Leica X310).

The RT was measured to be 0.571 seconds in the preliminary experiment using the

pink noise. The ambient noise at the site was measured to be 35.3 dB.

The atrium case is chosen since its space is larger and is more reverberant than

the classroom. Four loudspeakers (Genelec 8030) were installed at each corner of

the center area of the atrium. The center area of the atrium was about five stories

high (19.4 m). The microphone (AKG C1000S) was positioned in a grid over various

positions inside the room with a height similar to loudspeakers. By assuming sym-

metry, the performance was measured in total of 56 target positions (8 by 7 grid)

only in half of the space. The positions of loudspeakers and target microphones are

as shown in Fig. 5.16b. The RT was measured to be 2.082 seconds in the prelimi-

nary experiment using the sine sweep signal [49]. The ambient noise at the site was

measured to be 39.1 dB. The configuration and parameters of both spaces are listed

on Table 5.4. The λ is set to 4 and 1000 particles are used for the experiments.
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We conducted experiments on two cases to investigate the performance in the

environment with reverberation and reflections as well as the performance when

the signal is blocked by an object. The first case refers to the LOS case which

is the situation when there is no artificial object between the loudspeakers and

the microphone considering only reverberation and reflection of room objects. The

second case represents the non-line of sight (NLOS) that a person stands between the

loudspeaker and the microphone with the shortest distance to block the dominant

direct signal.

The performance of the LOS case and the NLOS case for two spaces are shown

on Figs. 5.17 and 5.18, respectively. As we did in Figs. 5.9 and 5.10, we compared the

performance in each situation with other methods. For classroom case, the proposed

method outperformed other methods in the both cases as in the simulation. We can

also see that the performance of the proposed algorithm and RTDE is consistent

even in the NLOS situation where performance of other two methods(MaxPeak

and Prec) degrades drastically. When the direct signal is blocked or attenuated,

RTDE maintains its performance because it calculates for all peak combinations,

but the other two methods have a high failure rate because they consider only

one peak combination. The performance of the proposed method is better than the

RTDE because it restricts the effect of reverberation as well as its low computation

complexity.

For atrium case, the proposed method outperformed other methods in the both

cases as well. Although the atrium is much more reverberant than the classroom,

since the loudspeakers were placed away from the wall, the direct path signals were

dominant. Therefore all methods in the LOS case showed better performance than

the classroom case even with the severe reverberation. We can see the obvious per-
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formance degradation of the MaxPeak case in the NLOS case.

From these results, we can deduce the possibility of using the proposed method in

real life. In practice, since most built-in loudspeakers are installed on the ceiling, di-

rect path signals will be dominant as in the atrium case. When the proposed method

is used in the IoT environment, loudspeakers and microphones will be installed at

various heights and locations. From the performance of NLOS cases in various en-

vironments, it can be considered to be applicable in the real environments.

5.5 Summary

In this chapter, we present an indoor acoustic receiver localization system that can

operate in highly reverberant environments. To achieve low-complexity and high ac-

curacy, we propose the system based on the particle filters. The likelihood function

of the particle filter is modified to include the peak quality for accurate localization.

In order to tackle the multipath effect, the proposed scheme employs a novel algo-

rithm for finding the direct path region. The performance of the localization system

is verified in a series of simulated reverberant environments, and also tested in the

real environment. Experimental results show that the proposed method is superior

to the conventional methods. However, due to the use of high-frequency inaudible

sources, tracking has not been addressed in this paper due to the Doppler effect. We

believe that the use of the particle filter will facilitate the extension to the receiver

tracking as well, after further study on correlations in the presence of the Doppler

effect.
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Chapter 6

Conclusions

In this thesis, we designed an indoor positioning system using acoustic signals that

operate in the real environments. The goal of the acoustic indoor positioning system

is to find the position of a target acoustic sensor (i.e. a microphone) by reproducing

a unique signal from loudspeakers with known positions. In addition, this system has

advantages of being able to use the pre-installed loudspeakers and microphones on

mobile devices. We have considered practical problems such as reverberation and the

near-far effect for operation in the real environment. A series of proposed methods

have been proposed and evaluated through experiments in the simulated and the

real environments.

First, we designed the source data structure for a practical use. The proposed

structure aims to work in the large reverberant space. In order to affect the least

to the human hearing, the signals are carried through inaudible frequency bands.

We borrowed a multiple access scheme called OFDMA-CDM in the wireless commu-

nication and modified it for the localization purpose. The proposed structure out-

performed CDMA-based structure because it avoids the near-far effects. In the real
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environment, due to the reflection and attenuation, reverberation is often stronger

than the direct propagation signal. Since failure in detecting the direct propagation

signal leads to wrong position estimation, we proposed the method of finding the

direct path signal. The performance comparison between the traditional method

showed that the proposed method outperformed in the reverberant environments.

Second, we proposed an algorithm for accurate localization in the highly re-

verberant environments. As the reverberation gets severe, the more spurious peaks

appear in the RIR. The early reverberation makes it difficult the find the direct path

signal and the late reverberation works as noise so that the time delay estimation

gets ambiguous. The proposed method picks time delays from each source which

are the indices of peaks in the cross-correlation and forms the peak candidate sets.

The agreement test filters out inaccurate peak candidates set. Then the reliability

is calculated in each peak candidate set and they are ranked by their reliability

measure. The position is estimated from the most reliable peak candidate set. Un-

like the previous localization method that estimates the position by one time delay

estimate from each source, the proposed method takes into account all the possible

combination which makes it more accurate in the reverberation condition and the

case of the attenuated direct path signal. The performance of the proposed method

is evaluated in the simulated and the real environments.

Third, we proposed to accurately estimate the position with relatively low com-

putational complexity. Although the previous method provides the accurate estima-

tion in the severe reverberation, it has disadvantages in high computational com-

plexity. We propose to estimate the position with the particle filters that estimates

the position by weighted particles. The weights of particles are computed by the

likelihood. We proposed to form the likelihood function to reflect the reliability of
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time delay observation and to be efficient. In addition, we proposed the process of

finding the region that includes the direct path signal and computes likelihood in

it. This process allows not only the accurate positioning but also estimation of un-

known emission time in the asynchronous system. The performance of the proposed

particle filter-based localization method is evaluated in the simulated environment

by altering various parameters. Also, the performance in the real environments is

evaluated for the line-of-sight and the non-line-of-sight case.

We proposed techniques that can be used in real life through a series of proposed

methods and experiments. For example, it is possible to estimate the position of a

smart device by using built-in loudspeakers or to estimate the position of home

appliances in a home environment with multiple IoT devices. This technology can

be used commercially, for example, by advertising, etc., or can be used for initial

position calibration for accurate indoor LBS. Also, it can help to localize the target

in the environment without LOS or non-visual situation where other sensors such

as camera can’t be used.

Although the proposed techniques are able to estimate the indoor position ac-

curately and practically, there is a limitation in tracking the receiver. This can be

summarized through the Doppler effect: when the receiver moves, the frequency

shift occurs. Since the system uses narrow band high frequency that is shared by

several sources, it is greatly influenced by the frequency shift even in the speed of

human walking. Future study to tackle moving receivers can make this technique

more suitable for practical use.
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요 약

최근 들어 다양한 휴대기기의 보급이 늘어남에 따라 사용자 맞춤형 서비스가 늘어나고

있다. 특히, 위치 정보에 기반한 서비스가 늘어나면서 다양한 위치 추정 기술이 주목

받고 있다. 위치 기반 서비스 중에서는 GPS를 기반으로 하는 네비게이션과 같은 위치

기반 안내 서비스,증강현실 서비스 등이 널리 쓰이면서 사용자들에게 편의를 제공하고

있다. 하지만 현재 가장 많이 쓰이는 GPS 기술은 실외에서만 사용할 수 있다는 제한이

있다. IoT, 사용자 맞춤형 로봇과 같은 실내 서비스가 많이 만들어지면서 실내에서의

위치 기반 서비스의 필요성이 대두되고 있다. WiFi, 블루투스, RFID 혹은 광센서와

같은 다양한 센서를 이용한 실내 위치 추정 기술에 대한 연구가 이루어지고 있지만

장애물, 벽으로 인하여 시야가 막혀있으면 동작하지 않거나, 센서의 특성으로 인하여

측위의 정확도가 낮다는 단점이 존재한다.

위치 추정을 위한 여러가지 센서 중 우리는 음향 센서에 주목하였다. 음향 센서, 즉

마이크를이용하여위치추정을하게되면,실내에미리설치되어있는스피커를사용할

수있다는점과다양한휴대기기에장착된스피커및마이크를이용할수있다는점으로

인하여 추가적인 장비가 필요하지 않다는 장점이 있다. 또한 음향 신호는 직선거리가

장애물로 막혀있는 경우에도 수신할 수 있다는 이점이 있다.

본 논문에서는 이러한 장점을 최대한 살릴 수 있는 음향 신호를 이용한 위치 추정

시스템을 제안하였다. 음향신호를 이용하는 위치 추정 시스템은 위치를 알고 있는 스

피커를 통하여 인공적으로 만든 음향 신호를 재생하고, 위치 추정의 대상인 마이크가
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재생되는 신호를 녹음하여 위치를 추정하는 시스템이다. 특히, 우리는 연구를 진행하

면서, 사람의 활동에 영향을 주지 않기 위하여 비가청 주파수 대역을 이용하는 신호를

설계하여 사용하였다. 위치 추정을 하기 위해서는 잔향이나 반사에 의한 신호가 아닌

직접신호를추정하는것이중요하며,우리는잔향이있고넓은공간에서도직접신호를

추정하여 위치 추정의 정확도를 올리는 방법에 대하여 다음의 내용들을 제안하였다.

먼저, 넓고 잔향이 있 공간에서의 위치 추정에 적합한 음향 신호의 구조를 제안하

였다. 넓은 공간에서는 원근효과(near-far effect)가 존재한다. 이는 원하는 신호가 멀리

있을 때, 가까이 존재하는 다른 신호가 원하는 신호의 수신을 방해하는 것을 의미한다.

통신에서는 송수신단의 상호작용을 통하여 이를 보완 할 수 있지만, 음향 신호를 이

용하는 경우에는 송수신단이 분리 되어 있기 때문에 어려움이 있다. 우리는 통신에서

사용하는 OFDMA-CDM이라는형태와유사한방식으로신호를만들어서원근효과로

인한 문제를 해결하였다. 잔향이 많은 환경에서는 직접 신호가 잔향 혹은 반사음보다

그 크기가 작아서 검출이 어려운 경우가 존재하며, 이를 위하여 직접 신호를 추정하는

방법을 제안하였다.

두번째로, 잔향이 심한 환경에서의 위치 추정 방법을 제안하였다. 잔향이 심해짐에

따라원하지않는신호와직접신호를구분하는것이더어려워지게된다.우리는위치를

추정하기 위한 각 신호들의 집합을 만들고, 각각의 신뢰도를 계산하여, 가장 신뢰도가

높은 신호들을 이용하여 위치를 추정하는 방법을 제안하였다. 이 방법을 사용하면 잔

향이 있거나, 직접 신호가 장애물 등으로 인해 세기가 약해진 경우에도 위치를 계산할

수 있게 된다.

마지막으로, 잔향이 심한 환경에서 비교적 적은 계산량으로 위치를 추정하는 방

법을 제안하였다. 이 방법은 파티클 필터를 기반으로 동작하며, 이는 가중치를 가진

입자들을 이용하여 위치를 추정하는 방법이다. 입자들의 가중치는 관측값으로부터 우

도를 계산하여 얻어지며, 우리는 관측값으로 부터 위치계산에 적합한 우도를 계산하는

방법을 제안하였다. 각 소스의 관측값에서 신뢰도를 우도에 반영하는 방법, 효율적이
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지만 정확도를 올리는 계산 방법을 제안하였고, 또한 관측값에서 직접 신호가 포함된

부분을 추정하여 위치 계산에 반영하는 방법을 제안하였다. 이러한 방법을 통하여, 잔

향이 심한 경우에도 파티클 필터를 이용하여 반복적으로 계산하여 정확한 위치 추정이

가능하다는 것을 확인하였다.

이와 같은 실내 환경에서의 위치 추정을 위하여 제안한 다양한 방법들은 잔향 시

간을 바꿔가며 구성한 시뮬레이션 환경에서 성능을 확인하였다. 여러 가지 파라미터를

바꿔가면서 제안한 방법의 성능을 확인하고, 기존 논문들에서 사용한 데이터 구조 및

측위 방법과 성능을 비교하였고 제안한 방법의 우수성을 확인하였다. 또한 넓고 잔향

이 심한 실제 환경에서도 실험을 진행하였다. 일련의 실험을 통하여 제안한 위치 추정

시스템이 실제 환경에서 마이크의 위치를 추정하는 방법으로 적합하다는 것을 확인할

수 있었다.

주요어: 위치 기반 서비스, 실내 위치 추정, 마이크의 위치 추청, 시간 지연 추정, 잔향

환경, 파티클 필터

학 번: 2010-20905
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