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Laplace-domain waveform inversion (WI) is a technique for estimating long 

wavelength velocity models. The velocity model, estimated by Laplace-domain 

WI, is used as an initial velocity model for techniques such as frequency-

domain and time-domain waveform inversion. These techniques are then used 

to develop high resolution velocity models used in subsurface imaging. Since 

frequency-domain and time-domain waveform inversion are sensitive to the 

initial velocity model, model resolution of Laplace-domain WI is an important 

factor in the overall velocity-estimation process. In addition, since the cost for 

obtaining the wavefield of the Laplace domain is large, it is necessary to 

improve the convergence rate and efficiency of Laplace-domain WI. Previous 

Laplace-domain WI studies have shown difficulty in analyzing model 

resolution and convergence rate due to insufficient understanding of the 

wavepath and its role in representing the relationship between the model 
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parameters and seismic data. This study investigates the characteristics of the 

wavepath in the Laplace domain which have not been clarified in previous 

research. Through this study, we implement convergence rate, model resolution, 

and efficiency analysis for Laplace-domain inversion. By introducing the 

attenuation constant, which can be considered a Laplace constant in the spatial 

domain, we prove that the wavepath of the Laplace domain is a real exponential 

basis with the product of the attenuation constant vector and the position vector 

as an exponent. We also prove that the attenuation constant vector is a function 

of both the Laplace constant and the incident angle. From the numerical 

example, it can be confirmed that the attenuation constant depends on both the 

Laplace constant and the incident angle. In addition, this study shows that it is 

reasonable to apply the Gauss-Newton method to Laplace-domain WI for fast 

convergence. The wavepath of the Laplace domain is a real exponential 

function, which has a large condition number. The numerical example of the 

BP benchmark model demonstrates the effectiveness of the Gauss-Newton 

method in this Laplace-domain WI algorithm. We also prove that a wide range 

of incident angles is essential to obtain a high resolution model through 

Laplace-domain inversion. The relationship between the model resolution and 

the incident angle range explains why the model resolution decreases as the 

offset-depth ratio increases. Also, horizontal and vertical resolution changes, 

depending on the exploration environment, can be predicted. Finally, we 

propose an efficient Laplace constant selection strategy to improve the 

efficiency of Laplace domain inversion. The Laplace constants selected through 

the proposed method improve efficiency by maintaining continuity of the range 

of attenuation constants and by minimizing unnecessary repetition of 

attenuation constants. From the numerical example, it can be seen that the 

proposed Laplace constant selection strategy yields superior results in terms of 

both efficiency and accuracy, compared with the strategy of choosing Laplace 
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constants at fixed intervals. This applies for both the simple-model and 

complex-model case, such as the SEG/EAGE salt dome model. 

 

Keywords :  Laplace-domain waveform inversion, Wavepath, Gauss-

Newton method, Model resolution, Laplace constant selection 
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, ĝ =

rg

|rg|
). n is a unit vector which is parallel to ŝ + ĝ 
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Chapter 1  Introduction 

 

1.1 Background 

 

Accurate velocity estimation is an essential process for successfully imaging 

oil and gas reservoirs. Velocity analysis using semblance or traveltime 

tomography has conventionally been used in velocity estimation. However, 

these methods provide low-resolution results because the information they use 

from seismograms is limited. Many studies have been conducted to delineate 

subsurface velocity models from seismic data with high resolution. One such 

technique which is actively studied is Full waveform inversion (FWI). FWI 

provides a high-resolution velocity model because it uses all waveforms 

(Tarantola, 1984, 1986; Pratt et al., 1998; Shin and Cha, 2008, 2009; Virieux 

and Operto, 2009; van Leeuwen and Herrmann, 2013; Warner et al., 2013; Vigh 

et al., 2014).  

Among them, frequency-domain waveform inversion (WI) is known as a very 

efficient algorithm for constructing velocity models. It has been observed that 

the frequency-domain WI algorithm provides an unaliased model image with 

only a limited number of frequencies (Pratt and Worthington, 1988; Liao and 

McMechan, 1996; Forgues et al., 1998). This hypothesis was proved by the 

analysis, proposed by Wu and Toksöz (1987), which shows that a finite range 

of wavenumbers of the model can be obtained with only a single frequency. 

Given that the number of frequencies is proportional to the computational cost, 

the fact that frequency-domain WI can build a reasonable model using a small 

number of frequencies implies that it is an efficient algorithm for velocity 

estimation.  
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Sirgue and Pratt (2004) provided instructions on how to choose a set of 

frequencies for efficient implementation of frequency-domain WI. This method 

helps to select a set of frequencies that maintain the continuity of the 

wavenumber (Woodward, 1992) and minimize the redundancy of the 

wavenumber for a given source-receiver geometry. They verified that the larger 

the range of offsets, the fewer frequencies are required in frequency-domain 

WI. This frequency selection strategy makes the implementation of the 

frequency-domain WI algorithm more efficient. 

On the other hand, frequency-domain WI has ill conditioned characteristics 

which leads to slow convergence. Therefore, research has been conducted to 

improve the convergence rate of frequency-domain WI. As a representative 

example, Pratt et al. (1998) proposed frequency-domain WI using Gauss-

Newton method, which is a nonlinear optimization scheme considering the 

Hessian matrix. According to Press et al. (1992) and Strutz (2016), the gradient 

descent method has an extremely slow convergence rate if the problem is ill-

conditioned. The Gauss-Newton method overcomes these shortcomings and 

converges with far fewer iterations than the gradient descent method. 

However, the Gauss-Newton method requires a lot of computational cost for 

constructing and solving the Hessian matrix, which is a dense matrix. Métivier 

et al. (2013) solved this computational cost problem using a truncated Gauss-

Newton method which adopts the conjugate gradient (CG) method. The 

truncated Gauss-Newton method is an efficient method in that it can be applied 

without constructing the Hessian matrix and can solve the Hessian matrix by 

repeating matrix-vector multiplications without a matrix inverse. By using the 

truncated Gauss-Newton method, the frequency-domain WI algorithm can 

overcome this convergence rate issue. 

There is another limitation in frequency-domain WI which must be addressed. 
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The frequency-domain WI algorithm, can easily reach a local minima; thereby 

generating poor-quality velocity models is highly likely because of the 

nonlinear nature of the inverse problems. To overcome this limitation of the 

frequency-domain WI algorithm, seismic data should contain low-frequency 

components or the initial model that is used for the inverse problem should be 

sufficiently close to the true velocity model.  

Until recently, many studies have focused on designing inversion algorithms 

to generate good initial models for FWI. One of the algorithms used to generate 

initial models, specifically, ray-based refraction traveltime tomography, has 

been studied by many geophysicists (Hampson & Russell 1984; Schneider & 

Kuo 1985; White 1989; Zhu & McMechan 1989; Docherty 1992; Qin et al. 

1993; Cai & Qin 1994; Stefani 1995; Shtivelman 1996; Zhang & Toksöz 1998). 

This algorithm provides limited information on the subsurface velocity model 

because of its difficulty in handling diffraction (Wu & Toksöz 1987; Woodward 

1992; Zelt & Barton 1998). Pyun et al. (2005) developed a first-arrival 

traveltime tomography algorithm, using the damped monochromatic wave 

equation proposed by Shin et al. (2003) which can overcome some of the 

limitations of ray-based refraction traveltime tomography.  

Other methods of building initial models for FWI have been studied (Brenders 

et al. 2008; Sirgue et al. 2009; Plessix et al. 2010; Bozdağ et al. 2011; Choi & 

Alkhalifah 2013; Fichtner et al. 2013; Chi et al. 2014; Datta & Sen 2016). 

Bharadwaj et al. (2013) proposed an FWI method that used two different 

functions. A velocity model was generated from an inversion using a cross-

correlation-based misfit function, then another inversion using the classic least-

squares objective function was used to exploit this output velocity model as an 

input. Similarly, Xu et al. (2012) used cross-correlation between the calculated 

and observed data as a cost function, but these authors used reflections to 



 

4 
 

reconstruct the long-wavelength components of the model. They used cross-

correlation-related objective functions to take advantage of phase information 

in data and obtain a long-wavelength background velocity model. Bozdağ et al. 

(2011) employed a Hilbert transform to construct a misfit function without the 

interaction of phase and amplitude information. 

There have been other studies for overcoming local minima. Sava and Biodndi 

(2004a, b) suggested wave-equation migration velocity analysis (WEMVA) 

which inverts the velocity model using migrated images. This does not require 

as close of an initial model as conventional FWI does to mitigate the cycle-

skipping problem. Ratcliffe et al. (2011) utilized deconvolution to extract low-

frequency components for their waveform inversion. Alkhalifah and Choi 

(2012) used objective functions based on the unwrapped phase, and Ma and 

Hale (2013) suggested an algorithm to estimate time shifts between recorded 

data and synthetic data using dynamic image warping. Recently, Warner and 

Guasch (2014) suggested an ‘adaptive waveform inversion (AWI)’, which 

adopts a correlation-based objective function as a solution for the cycle-

skipping problem.  

Among the algorithms for generating initial models, the Laplace-domain 

waveform inversion (WI), which is suggested by Shin and Cha (2008), is well-

known as an effective method for generating starting models. The Laplace-

domain WI algorithm uses Laplace-transformed wavefields to estimate velocity 

models. The Laplace-domain has the advantage that there are fewer local 

minima in the objective function compared to frequency-domain WI (Shin and 

Ha, 2008).  

Additional studies on the appropriate objective function for Laplace-domain 

WI have been actively conducted (Shin and Ha, 2008; Park et al., 2013; Jun et 

al., 2016). Laplace-domain wavefields have the property of exponentially 
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decreasing magnitude as distance increases. Therefore, far offset information 

of seismic data can be reflected well only when we use an objective function 

compensating for amplitude loss due to increased offset. The logarithmic 

objective function is a typical example of the proper objective function for 

Laplace-domain WI, and is most popularly used for it. 

In spite of these various studies, the field of Laplace-domain WI still has room 

for improvement. Ha and Shin (2013) proved that Laplace-domain WI has a 

disadvantage in that the inverted model with high resolution cannot be obtained 

using only the gradient descent method. However, this resolution problem of 

the gradient descent method has yet to be addressed in any previous studies. 

Also, studies on the relationship of Laplace constant, experimental setup and 

target position with model resolution are still insufficient. Bae et al. (2012) 

observed how the depth penetration varies with the Laplace constant and offset 

in Laplace-domain inversion. If the Laplace constant is very large, Laplace-

domain WI can be approximated by refraction tomography (Pyun et al., 2005), 

which is only able to invert shallow areas. Deeper locations can be estimated 

as the Laplace constant decreases. This paper also confirmed, along with Ha et 

al. (2012), that depth penetration increases with maximum offset in this paper. 

However, only the analysis using depth penetration alone had a limitation in 

fully explaining the model resolutions of various exploration environments.  

Moreover, proper selection of Laplace constants requires additional studies. 

Park et al. (2010) has proposed a strategy for determining the maximum and 

minimum values of the Laplace constant considering numerical error and depth 

penetration. However, it does not provide a guideline on how Laplace constants 

should be chosen between arbitrary upper and lower bounds of Laplace 

constants.  
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1.2 Motivation and research objective 

 

Although there have been many studies on the Laplace-domain WI, it still has 

more unanswered questions than frequency-domain WI as discussed in Chapter 

1.1. First, the gradient descent method is still used instead of the Gauss-Newton 

method. This has already proven to have a higher convergence rate in the 

Laplace-domain WI, and there has been no research to accelerate the 

convergence rate of it. In addition, there are only empirical observations on how 

the model resolution is determined in Laplace-domain WI. Moreover, while 

there is a guideline on how to choose the frequencies in frequency-domain WI, 

the criteria for choosing the Laplace constant is uncertain in Laplace-domain 

WI.  

The reason why these questions in Laplace-domain WI have not been solved 

yet is that the characteristics of the wavepath of the Laplace domain have not 

yet been determined. The wavepath, also known as data kernel, defines the 

relationship between the data domain and the model domain. Thus, the 

identification of this wavepath is fundamental to understanding the 

characteristics of the inversion algorithm that estimate the model parameters 

from the data. Frequency-domain WI is a representative example of this. By 

analyzing the characteristics of the Born wavepath in frequency-domain WI, 

the theoretical background of the analysis of the Hessian matrix of the 

frequency domain, analysis of model resolution, and frequency selection 

method may be established. Therefore, the wavepath of the Laplace domain 

needs to be well investigated to properly analyze Laplace-domain WI. 

This paper aims at grasping the wavepath of the Laplace-domain and solving 

many questions about Laplace-domain WI that have not been solved in 
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previous studies. This paper focuses specifically on explaining (1) the necessity 

of the Gauss-Newton method, (2) model resolution depending on the scattering 

angle and Laplace constant and finally (3) an efficient guideline for Laplace 

constant selection.  
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1.3 Outline 

 

First, in Chapter 2, we briefly review the wave equation in the Laplace domain 

and the logarithmic objective function which is most commonly used for 

Laplace-domain WI. We then show that the wavepath in the Laplace domain is 

a linear operator consisting of real exponentially decaying bases, using both the 

concept of an attenuation constant, which can be defined as the Laplace 

constant for the space domain, and the Laplace-domain Green's function 

assuming a homogeneous acoustic medium.  

In Chapter 3, using the characteristics of the wavepath in the Laplace domain, 

we find that the inverse problem using the Laplace-domain wavefields an ill-

conditioned problem. Because of this ill-conditioning, fast convergence cannot 

be guaranteed with the gradient descent method, and it is desirable to use the 

Gauss-Newton method for fast convergence in the Laplace-domain WI 

algorithm. The numerical example using the BP benchmark model confirms the 

superiority of the Gauss-Newton method for Laplace-domain WI by comparing 

the results of the Gauss-Newton method and the gradient descent method. 

Moreover, in Chapter 4, we verify that model resolution of Laplace-domain 

WI is dependent on the condition number of the Laplace-domain wavepath 

when there are numerical errors. By clarifying the relationship between the 

condition number of the Laplace domain and the range of the attenuation 

constant, which depends on a scattering angle, we confirm that the model 

resolution decreases as the scattering angle becomes narrower. Based on the 

above analysis, numerical examples show how the model resolution changes 

depending on the offset-depth ratio and type of experimental setup. 

In Chapter 5, finally, we propose an efficient strategy for selecting Laplace 
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constants for Laplace-domain WI. Chapter 5 explains why it is important that 

the range of vertical attenuation constants is both continuous and not 

overlapping as much as possible, and how to achieve these two conditions. We 

also show how to compensate for the effects of geometrical spreading in the 

proposed strategy. Furthermore, we discuss whether this strategy is also 

effective in 2D or 3D heterogeneous media. A numerical example shows how 

the proposed method outperforms the conventional Laplace constant selection 

method. 
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Chapter 2  Wavepath in the Laplace domain 

This chapter aims to clarify the wavepath of Laplace-domain WI, which is 

usually used with the logarithmic objective function. First, the Laplace-domain 

Green's function is introduced, and how the Green's function of the Laplace 

domain can be expressed in a homogeneous acoustic unbounded medium. 

Using the Green’s function of the Laplace domain, we derive that the Rytov 

wavepath, which means the wavepath of the logarithmic objective function, of 

the Laplace domain can be approximated to a real exponentially decaying basis. 

We also prove that its exponent is the product of the space vector and the 

scattering attenuation constant, which means the damping constant in the 

spatial domain. 
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2.1 Wave equation in the Laplace domain 

 

 First, we briefly review the wave equation in the Laplace domain (Shin and 

Cha, 2008). The acoustic wave equation in the time-domain can be expressed 

as  

 
1

𝑐(𝐱)2
𝜕2𝑢̃(𝐱|𝐬, 𝑡)

𝜕𝑡2
− ∇2𝑢̃(𝐱|𝐬, 𝑡) = 𝑤̃(𝑡)𝛿(𝐱 − 𝐬), (2.1.1) 

where 𝑐(𝐱) is the P-wave velocity at a position 𝐱 and 𝑢̃(𝐱|𝐬, 𝑡) is the acoustic 

wavefield propagated from the source position 𝐬 observed at position 𝐱 and 

time 𝑡 . 𝑤̃(𝑡)  is a time-domain source wavelet. The wave equation in the 

Laplace domain can be obtained by applying the Laplace transform to Equation 

(2.1.1) as follows: 

 
𝜎2

𝑐(𝐱)2
𝑢(𝐱|𝐬, 𝜎) − ∇2𝑢(𝐱|𝐬, 𝜎) = 𝑤(𝜎)𝛿(𝐱 − 𝐬), (2.1.2) 

where 

 

𝑢(𝐱|𝐬, 𝜎) = ∫ 𝑢̃(𝐱|𝐬, 𝑡) exp(−𝜎𝑡)𝑑𝑡
∞

0

,     

𝑤(𝜎) = ∫ 𝑤̃(𝑡) exp(−𝜎𝑡)𝑑𝑡
∞

0

, 

(2.1.3) 

and 𝜎 is a Laplace constant. 𝑢(𝐱|𝐬, 𝜎) is called a Laplace-domain wavefield. 

The Laplace-domain wavefield can be expressed as a product of a Green’s 

function 𝑔(𝐱|𝐬, 𝜎) and the source wavelet in the Laplace domain 𝑤(𝜎) as 

follows: 

 𝑢(𝐱|𝐬, 𝜎) = 𝑤(𝜎)𝑔(𝐱|𝐬, 𝜎), (2.1.4) 

where 
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𝜎2

𝑐(𝐱)2
𝑔(𝐱|𝐬, 𝜎) − ∇2𝑔(𝐱|𝐬, 𝜎) = 𝛿(𝐱 − 𝐬). (2.1.5) 

 Through discretization using the finite difference method or finite element 

method, Equation (2.1.2) and (2.1.5) can be converted into matrix-vector forms 

as follows: 

 𝐒𝐮 = 𝑤(𝜎)𝐟, (2.1.6) 

 𝐒𝐠 = 𝐟, (2.1.7) 

where 𝐒 is the impedance matrix which depends on 𝑐(𝐱) and 𝜎 and 𝐟 is a 

source vector whose components is 𝛿(𝐱 − 𝐬). By inverting the impedance 

matrix 𝐒, we  obtain the Laplace-domain wavefield 𝐮 or Laplace-domain 

Green’s function 𝐠. In this paper, however, the detailed discretization process 

related to 𝐒 is omitted because it is outside the scope of this study.  
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2.2 Logarithmic objective function for Laplace-domain 

waveform inversion (WI)  

 

Laplace-domain WI proposed by Shin and Cha (2008) is an inversion 

algorithm that uses Laplace transformed data. This method is the same as 

waveform inversion using the zero frequency component of a damped 

wavefield. In the Laplace-domain WI algorithm, the amount of damping can be 

controlled by the Laplace constant σ. 

 To perform Laplace-domain WI, the objective function should be defined. To 

compensate for data amplitude loss due to exponential decay related to offset 

distance, a logarithmic objective function is generally adopted for the Laplace-

domain WI algorithm. The logarithmic objective function of a single Laplace 

constant is expressed as 

 E(𝜎) =
1

2
∑∑[ln(

𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
)]

2

𝑟𝑠

, (2.2.1) 

where 𝐬 and 𝐠 are the position vector of the 𝑠th source and the 𝑟th receiver, 

respectively. 𝑢𝐬,𝐠 and 𝑑𝐬,𝐠 are the modeled and observed wavefields of the 𝑠th 

source and the 𝑟 th receiver, respectively, and 𝜎  is the Laplace constant. 

Expanding the logarithmic residual, ln (
𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
), to the first-order term of a 

Taylor’s series yields 

 ln (
𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
) ≈∑{

∂ ln (𝑢𝐬,𝐠(𝜎))

𝜕𝑝𝐦𝒋

∆𝑝𝐦𝑗
}

𝑀

𝑗=1

, (2.2.2) 

where 𝐦𝑗 is the position vector of 𝑗th model parameter, 𝑀 is the number of 

model parameters, and ∆𝑝𝐦𝑗
 is the difference between the true model and the 
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estimated model of the 𝑗th parameter (𝑗 = 1,⋯ ,𝑀).  

From Equation (2.2.2), we can recognize that the residual wavefield at a 

receiver ln (
𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
) is generated by the superposition of scattered wavefields 

resulting from ∆𝑝𝐦𝑗
 (Woodward, 1992). Model differences at each point in the 

model ∆𝑝𝐦𝑗
 acts as a scatterer and ∆𝑝𝐦𝑗

 can be regarded as a weight of the 

following basis: 

 𝐿(𝐬, 𝐠,𝐦, 𝜎) =
∂ ln(𝑢𝐬,𝐠(𝜎))

𝜕𝑝𝐦𝑗

, (2.2.3) 

where 𝐿(𝐬, 𝐠, 𝐱, 𝜎)  is called the wavepath and represents a basis function 

constituting the residual wavefield, ln (
𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
), as shown in Equation (2.2.2). 

In this case, the wavepath is obtained from the logarithmic objective function 

and is called the Rytov wavepath. To help clarify the Rytov wavepath, we 

provide a schematic diagram describing the relationship between the incident 

wavefield and scattering wavefield (Figure 1). The position vector of a source 

(𝐬), receiver (𝐠), model parameter (𝐦), and central point (𝐨) are within a 

specific window that is far from the source and receiver. 𝐫𝒔  represents the 

vector from 𝐬  to 𝐨  (𝐫𝒔 = 𝐨 − 𝐬 ), 𝐫𝒈  represents the vector from 𝐠  to 𝐨 

(𝐫𝒈 = 𝐨 − 𝐠), and 𝐱 represents the vector from 𝐨 to 𝐦 (𝐫𝒈 = 𝐦− 𝐨). Since 

the incident angle and scattering angle are always the same due to Snell’s law, 

both angles can be equally represented by 𝜃. 𝐬̂ and 𝐠̂ are direction vectors 

which are parallel to 𝐫𝒔 and 𝐫𝒈, respectively (𝐬̂ =
𝐫𝒔

|𝐫𝒔|
, 𝐠̂ =

𝐫𝒈

|𝐫𝒈|
). 𝐧 is a unit 

vector which is parallel to 𝐬̂ + 𝐠̂ (𝐧 =
𝐬+𝐠̂

|𝐬+𝐠̂|
). 

The Rytov wavepath can be expressed using three Green’s functions as 

follows: 
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 𝐿(𝐬, 𝐠,𝐦, 𝜎) = 𝜎2
𝑔0(𝐦|𝐬, 𝜎)𝑔0(𝐦|𝐠, 𝜎)

𝑔0(𝐠|𝐬, 𝜎)
, (2.2.4) 

where 𝑔0(𝐱2|𝐱1, 𝜎) is a Green’s function of a single Laplace constant 𝜎 from 

𝐱1 to 𝐱2 (Wu and Toksӧz, 1987; Woodward, 1992). As shown in Equation 

(2.2.4), The Rytov wavepath is independent of the source wavelet because both 

the denominator and numerator have Laplace-domain wavefields such that the 

source wavelet components are canceled out. There can be some numerical 

instability caused by the inverse of 𝑔0(𝐠|𝐬, 𝜎) if 𝑔0(𝐠|𝐬, 𝜎) is too small. To 

stabilize the inverse process, it is recommended not to use data residuals 

observed from the receivers whose 𝑔0(𝐠|𝐬, 𝜎)  is smaller than a certain 

threshold. Note that this paper assumes sloth (inverse of velocity squared) 

parameterization as follows: 

 𝑝𝐦𝑗
=

1

𝑐(𝐦𝑗)
2. (2.2.5) 

If we assume velocity or slowness (inverse of velocity) parameterization 

rather than sloth parameterization, the function of the parameter is multiplied 

to Equation (2.2.4). However, the parameterization is outside the scope of this 

study. In this paper, for the sake of convenience, we proceed with the 

assumption of sloth parameterization 

As shown in Equation (2.2.4), the Rytov wavepath in the Laplace domain can 

be expressed using the Laplace-domain Green’s functions. To investigate the 

Rytov wavepath in Laplace domain more specifically and analyze the role of 

each Laplace constant by using the Rytov wavepath, we should determine the 

Green’s function in the Laplace domain.  
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Figure 1 A schematic diagram describing the relationship between the incident 

wavefield and scattering wavefield. 𝐬, 𝐠, 𝐦 and 𝐨 are the position vectors of 

a source, receiver, model parameter and central point within a specific window 

that is far from the source and receiver, respectively. 𝐫𝒔 represents the vector 

from 𝐬 to 𝐨 (𝐫𝒔 = 𝐨 − 𝐬), 𝐫𝒈 represents the vector from 𝐠 to 𝐨 (𝐫𝒈 = 𝐨 −

𝐠 ), and 𝐱  represents the vector from 𝐨  to 𝐦  ( 𝐫𝒈 = 𝐦− 𝐨 ). Since the 

incident angle and scattering angle are always same due to Snell’s law, both 

angles can be equally represented by 𝜃. 𝐬̂ and 𝐠̂ are direction vectors which 

are parallel to 𝐫𝒔 and 𝐫𝒈, respectively (𝐬̂ =
𝐫𝒔

|𝐫𝒔|
, 𝐠̂ =

𝐫𝒈

|𝐫𝒈|
). 𝐧 is a unit vector 

which is parallel to 𝐬̂ + 𝐠̂ (𝐧 =
𝐬+𝐠̂

|𝐬+𝐠̂|
). 
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2.3 Laplace-domain Green’s functions for a 

homogeneous acoustic unbounded medium  

 

In this section, we briefly review the Laplace-domain Green’s function for a 

homogeneous acoustic unbounded medium. The easiest way to obtain the 

Laplace-domain Green’s function is by replacing angular frequency in the 

frequency-domain Green’s functions with an imaginary component 

representing the Laplace constant. The 1D, 2D and 3D frequency-domain 

Green’s functions can be expressed as follows (Ikelle and Amundsen, 2005): 

 𝑔̃(3𝐷)(𝐱1|𝐱2, 𝜔) =
exp(𝑖𝑘𝑅)

4𝜋𝑅
, (2.3.1) 

 

 𝑔̃(2𝐷)(𝐱1|𝐱2, 𝜔) =
𝑖

4
𝐻0
(1)(𝑘𝑅), (2.3.2) 

 

 𝑔̃(1𝐷)(𝐱1|𝐱2, 𝜔) =
exp(𝑖𝑘𝑅)

2𝑖𝑘
, (2.3.3) 

where  

 𝑅 = |𝐱1 − 𝐱2| (2.3.4) 

and 𝜔 is angular frequency, 𝑘 (= 𝜔/𝑐0) is wavenumber. 𝐻0
(1)
(𝑥) is the zero 

order Hankel function of the first kind. If 𝑥 is sufficiently large, 𝐻0
(1)(𝑥) can 

be approximated asymptotically to √
2

𝜋𝑥
exp (𝑖 (𝑥 −

𝜋

4
)). Therefore, if 𝑅  is 

sufficiently large, the 2D Green’s function 𝑔̃(2𝐷)(𝐱1|𝐱2, 𝜔) in Equation (2.3.2) 

can be expressed as: 
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 𝑔̃(2𝐷)(𝐱𝟏|𝐱𝟐, 𝜔)~
𝑖

4
√

2

𝜋𝑘𝑅
exp(𝑖 (𝑘𝑅 −

𝜋

4
)). (2.3.5) 

If 𝜎 is the Laplace constant and 𝜔 is replaced by 𝑖𝜎 from Equations (2.3.1) – 

(2.3.5), we can obtain the 1D, 2D and 3D Laplace-domain Green’s functions: 

 𝑔(3𝐷)(𝐱1|𝐱2, 𝜎) = 𝑔̃
(3𝐷)(𝐱1|𝐱2, 𝑖𝜎) =

exp(−𝛼𝑅)

4𝜋𝑅
, (2.3.6) 

 

 𝑔(2𝐷)(𝐱1|𝐱2, 𝜎) = 𝑔̃
(2𝐷)(𝐱1|𝐱2, 𝑖𝜎) =

𝑖

4
𝐻0
(1)(𝑖𝛼𝑅), (2.3.7) 

 

 𝑔(1𝐷)(𝐱1|𝐱2, 𝜎) = 𝑔̃
(1𝐷)(𝐱1|𝐱2, 𝑖𝜎) =

exp(−𝛼𝑅)

2𝛼
, (2.3.8) 

where 𝛼 (= 𝜎/𝑐0) is called the attenuation constant. Note that replacing 𝜔 

with 𝑖𝜎 is equivalent to turning 𝑘 into 𝑖𝛼. If -π < arg(𝑥) ≤ π/2, the Hankel 

function whose domain is the set of purely imaginary numbers can be expressed 

with a modified Bessel function of the second kind as follows: 

 𝐾𝑗(𝑥) =
𝜋

2
𝑖𝑗+1𝐻𝑗

(1)(𝑖𝑥). (2.3.9) 

Therefore, Equation (2.3.7) can be expressed as: 

 𝑔(2𝐷)(𝐱1|𝐱2, 𝜎) =
1

2𝜋
𝐾0(𝛼𝑅).  (2.3.10) 

If 𝑅 is sufficiently large, Equation (2.3.10) can be approximated as: 

 𝑔(2𝐷)(𝐱1|𝐱2, 𝜎)~
exp(−𝛼𝑅)

√8𝜋𝛼𝑅
 . (2.3.11) 

 

Generally, the Laplace-domain Green’s function can be expressed 

asymptotically as: 
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 𝑔(𝑛𝐷)(𝐱1|𝐱2, 𝜎)~
exp(−𝛼𝑅)

𝐴𝑛(𝑅, 𝛼)
, (2.3.12) 

where  

 𝐴𝑛(𝑅, 𝛼) = {

    4𝜋𝑅         𝑖𝑓 𝑛 = 3

√8𝜋𝛼𝑅       𝑖𝑓 𝑛 = 2
      2𝛼          𝑖𝑓 𝑛 = 1

. (2.3.13) 

Using these Green’s functions, we express the Rytov wavepath in the Laplace 

domain in the next section.  
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2.4 Rytov wavepath in the Laplace domain  

 

The Source Green’s function and Receiver Green’s function can be expressed 

as follows: 

 𝑔(𝑛𝐷)(𝐦|𝐬, 𝜎)~
exp(−𝛼𝑅𝐦𝐬)

𝐴𝑛(𝑅𝐦𝐬, 𝛼)
, (2.4.1) 

 𝑔(𝑛𝐷)(𝐦|𝐠, 𝜎)~
exp(−𝛼𝑅𝐦𝐠)

𝐴𝑛(𝑅𝐦𝐠, 𝛼)
, (2.4.2) 

 𝑔(𝑛𝐷)(𝐠|𝐬, 𝜎)~
exp(−𝛼𝑅𝐠𝐬)

𝐴𝑛(𝑅𝐠𝐬, 𝛼)
, (2.4.3) 

where 

 

𝑅𝐦𝐬 = |𝐦− 𝐬| = |𝐱 + 𝐫𝐬|, 

𝑅𝐦𝐠 = |𝐦− 𝐠| = |𝐱 + 𝐫𝐠|, 

𝑅𝐠𝐬 = |𝐠 − 𝐬| = |𝐫𝐬 − 𝐫𝐠|. 

(2.4.4) 

Note that the symbols are illustrated in Figure 1. If the source and receiver are 

far from the object, we can use the Fraunhofer approximation for the Green’s 

functions (Wu and Toksӧz, 1987) as follows: 

 𝑔(𝑛𝐷)(𝐦|𝐬, 𝜎) ≈
exp(−𝛼(|𝐫𝐬| + 𝐬̂ ∙ 𝐱))

𝐴𝑛(|𝐫𝐬| + 𝐬̂ ∙ 𝐱, 𝛼)
, (2.4.5) 

 𝑔(𝑛𝐷)(𝐦|𝐠, 𝜎) ≈
exp (−𝛼(|𝐫𝐠| + 𝐠̂ ∙ 𝐱))

𝐴𝑛(|𝐫𝐠| + 𝐠̂ ∙ 𝐱, 𝛼)
. (2.4.6) 

By putting the analytic Green’s functions (Equation (2.4.5) and (2.4.6)) into 

Equation (2.2.4), we can obtain the Rytov wavepath expressed by a decaying 

function: 
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𝐿(𝐬, 𝐠,𝐦, 𝜎)

≈ 𝜎2
exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|)) exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱)

𝑔0(𝐠|𝐬, 𝜎)𝐴𝑛(|𝐫𝐬| + 𝐬̂ ∙ 𝐱, 𝛼)𝐴𝑛(|𝐫𝐠| + 𝐠̂ ∙ 𝐱, 𝛼)
. 

(2.4.7) 

From Equation (2.4.7), it can be seen that the Rytov wavepath is decayed by 

both the exponential term exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱) and the geometrical spreading 

effect 1/[𝐴𝑛(|𝐫𝐬| + 𝐬̂ ∙ 𝐱, 𝛼)𝐴𝑛(|𝐫𝐠| + 𝐠̂ ∙ 𝐱, 𝛼)] . The value of 1/[𝐴𝑛(|𝐫𝐬| +

𝐬̂ ∙ 𝐱, 𝛼)𝐴𝑛(|𝐫𝐠| + 𝐠̂ ∙ 𝐱, 𝛼)]  in 1D, 2D and 3D is proportional to 1 , 1/

√(|𝐫𝐬| + 𝐬̂ ∙ 𝐱)(|𝐫𝐠| + 𝐠̂ ∙ 𝐱) and 1/[(|𝐫𝐬| + 𝐬̂ ∙ 𝐱)(|𝐫𝐠| + 𝐠̂ ∙ 𝐱)], respectively. 

Sirgue and Pratt (2004) assumes a far-field to obtain a frequency domain 

wavepath. We similarly assume a far-field in this process to obtain a wavepath 

in the Laplace domain (|𝐱| ≪ |𝐫𝐬| and |𝐱| ≪ |𝐫𝐠|). If we assume that 𝛼 is 

moderately large and a far-field approximation, the degree of attenuation by the 

inverse function 1/𝐴𝑛(|𝐫𝐠| + 𝐠̂ ∙ 𝐱, 𝛼)  with respect to 𝐱  is negligible 

compared to the degree of attenuation by the exponential function 

exp(−𝛼(|𝐫𝐠| + 𝐠̂ ∙ 𝐱)) with respect to 𝐱 . Then 𝐴𝑛(|𝐫𝐠| + 𝐠̂ ∙ 𝐱, 𝛼)  can be 

approximately regarded as the function independent of 𝐱. Thus, we can assume 

that the effect of geometrical spreading is negligible. Equation (2.4.5) and 

(2.4.6) can now be approximated as follows: 

 𝑔(𝑛𝐷)(𝐦|𝐬, 𝜎) ≈
exp(−𝛼(|𝐫𝐬| + 𝐬̂ ∙ 𝐱))

𝐴𝑛(|𝐫𝐬|, 𝛼)
, (2.4.8) 

 𝑔(𝑛𝐷)(𝐦|𝐠, 𝜎) ≈
exp (−𝛼(|𝐫𝐠| + 𝐠̂ ∙ 𝐱))

𝐴𝑛(|𝐫𝐠|, 𝛼)
. (2.4.9) 

By putting the analytic Green’s functions (Equation (2.4.8) and (2.4.9)) into 

Equation (2.2.4), we can obtain the Rytov wavepath expressed by an 

exponentially decaying function varying with attenuation constant: 
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 𝐿(𝑛𝐷)(𝐬, 𝐠,𝐦, 𝜎) ≈ 𝐵(𝑛𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp(−𝛂(𝐬, 𝐠, 𝐨, 𝜎) ∙ 𝐱), (2.4.10) 

where 

 𝛂(𝐬, 𝐠, 𝐨, 𝜎) =
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧, (2.4.11) 

and  

 

𝐵(𝑛𝐷)(𝐬, 𝐠, 𝐨, 𝜎)

=

{
 
 
 
 

 
 
 
 
 
𝜎2 exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|))

𝑔0
(3𝐷)(𝐠|𝐬, 𝜎)

1

16𝜋2|𝐫𝐬||𝐫𝐠|
             𝑖𝑓 𝑛 = 3

𝜎2 exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|))

𝑔0
(2𝐷)(𝐠|𝐬, 𝜎)

1

8𝜋𝛼√|𝐫𝐬||𝐫𝐠|

              𝑖𝑓 𝑛 = 2

 
𝜎2 exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|))

𝑔0
(1𝐷)(𝐠|𝐬, 𝜎)

1

4𝛼2
                               𝑖𝑓 𝑛 = 1

. 
(2.4.12) 

 

For simplicity, we introduce the notation 𝛂(𝐬, 𝐠, 𝐨, 𝜎) and we will call it the 

scattering attenuation constant vector. 𝛂(𝐬, 𝐠, 𝐨, 𝜎) defines the steepness of 

the Rytov wavepath decaying exponentially in the direction of the 𝐧 vector 

near the scattering point 𝐨. 𝐵(𝑛𝐷)(𝐬, 𝐠, 𝐨, 𝜎) represents the amplitude of the 

Rytov wavepath. Note that 𝛂(𝐬, 𝐠, 𝐨, 𝜎)  is independent of 𝐱  and 

𝐵(𝑛𝐷)(𝐬, 𝐠, 𝐨, 𝜎) is also independent of 𝐱 as long as |𝐱| ≪ |𝐫𝐬| and |𝐱| ≪ |𝐫𝐠|. 

Thus, they can be regarded as constants near the scattering point 𝐨. Hence, it 

can be confirmed that the Rytov wavepath in the Laplace domain is 

approximately an exponential decaying real basis function, whose scattering 

attenuation constant vector is 𝛂(𝐬, 𝐠, 𝐨, 𝜎) in the space domain. This is shown 

in Equation (2.4.10). 
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What is important in Equation (2.4.11) is that the amplitude of the scattering 

attenuation constant vector is affected simultaneously by the Laplace constant 

𝜎 and incident angle 𝜃. Therefore, even if a single Laplace constant is used, 

the amplitude of the scattering attenuation constant varies depending on the 

incident angle range. The relationship among the scattering attenuation constant, 

Laplace constant and the incident angle in the Laplace domain corresponds 

exactly to the relationship among the scattering wavenumber, frequency and 

incident angle in the frequency domain. This similarity provides an opportunity 

to apply the analysis used in the frequency domain similarly to the Laplace 

domain. 

In the following sections, we perform various analyses using the fact that the 

Laplace-domain wavepath consists of real exponentially decaying bases 

dependent on the scattering attenuation constant vector. And the fact that the 

scattering attenuation constant vector is dependent on both the Laplace constant 

and the incident angle. 
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2.5 Vertical components of wavepath in the Laplace 

domain considering the geometrical spreading effect 

 

The Rytov wavepath in the Laplace domain is affected by the geometric 

spreading effect as well as the attenuation constant. Of course, the attenuation 

due to this geometrical spreading effect is much smaller than the attenuation 

due to the exponential term as shown in (2.4.7). However, since the attenuation 

due to the geometrical spreading effect is not well distinguished from the 

attenuation due to the exponential term in the Laplace-domain WI algorithm, 

the geometrical spreading effect acts like an additional exponential term. In this 

section, we explain how geometrical spreading affects the wavepath in the 

Laplace domain.  

According to Appendix A, the geometrical spreading effect can be considered 

for the vertical wavepath as follows: 

 𝐿(𝑛𝐷)(𝐬, 𝐠,𝐦, 𝜎) ≈ 𝐵(𝑛𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp(−
2𝜎𝑎𝑝𝑝

(𝑛𝐷)

𝑐0
𝑐𝑜𝑠𝜃𝑧), (2.5.1) 

where 

 𝜎𝑎𝑝𝑝
(𝑛𝐷)

=

{
 
 

 
  𝜎 +

𝑐0
𝑅
            𝑖𝑓 𝑛 = 3

𝜎 +
𝑐0
2𝑅

           𝑖𝑓 𝑛 = 2

     𝜎                  𝑖𝑓 𝑛 = 1

. (2.5.2) 

where 𝜎𝑎𝑝𝑝
(𝑛𝐷)

 is the n-dimensional apparent Laplace constant. As shown in 

Equation (2.5.2), the geometrical spreading effect causes the additional 

attenuation increasing the apparent Laplace constants. Also, we can confirm 

that this influence of geometrical spreading decreases as 𝑅  increases or 𝜎 

increases (far-field approximation). Therefore, this additional attenuation 
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caused by the geometrical spreading effect can be neglected when 𝜎 or 𝑅 is 

large enough. 
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2.6 Numerical examples  

 

 We examine whether the attenuation constant in the far-field condition follows 

Equation (2.4.11). To confirm this, we check whether the attenuation constants 

of the wavepath remain unchanged for varying offsets and Laplace constants 

that keep the value of the right-hand side of Equation (2.4.11) the same. 

 Figure 2 (a), (b) and (c) show the 3D wavepath in the Laplace domain at 

Laplace constants 7.17, 10.0, and 14.9 s−1, with offsets of 0.35, 2.0, and 3.7 

km respectively. These offsets keep the right-hand side of Equation (2.4.11) 

equal at 1km target-depth in the middle of the model. As shown in the vertical 

profile of these wavepaths, we can see that the amplitudes are attenuated with 

similar ratios for the same height difference at 1km depth.  

 For a more detailed comparison, Figure 3 compares the exponential function 

using the expected scattering attenuation constant and the vertical profiles of 

wavepaths normalized by 𝐵(3𝐷)(𝐬, 𝐠, 𝐨, 𝜎) shown in Equation (2.4.12) with 

the logarithmic scale. If the normalized vertical profiles in the logarithmic scale 

are arranged tangentially, the attenuation constants are the same. Figure 3 shows 

that the normalized profiles of (b) and (c) are almost tangent to the exponential 

function using the expected scattering attenuation constant at 1 km in depth. 

The normalized profile of (a), however, is not exactly tangent to the exponential 

function. In this case, the geometrical spreading effect cannot be ignored 

because the distance from the source or receiver to target is not far enough. 

 Figure 4 shows the vertical profiles of wavepaths obtained from the Laplace 

constants satisfying the Equation (2.5.2) considering the geometrical spreading 

effect for the offsets used in Figure 3. As shown in Figure 4, all the normalized 
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profiles are tangent to the exponential function using the expected scattering 

attenuation constant at 1 km in depth. This shows that Equation (2.5.2) holds 

for the general case, and should be used if the far-field assumption is not 

established. 
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(a) 

 

(b) 

 

(c) 

Figure 2 The Laplace-domain Rytov wavepath where the geometrical spreading 

effect is not compensated and its vertical amplitude profile is near the target 

point. The upper two circles of each figure represent source and receiver 

location. The lower circle of each figure represents the target point (x: 2km, z: 

1km). Each wavepath uses 0.35km offset and 7.17 s−1 Laplace constant for 

(a), 2km offset and 10.0 s−1 Laplace constant for (b), 3.7km offset and 14.9 

s−1 Laplace constant for (c).  
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Figure 3 Vertical profiles of the normalized relative amplitudes of wavepaths 

where the geometrical spreading effect is not compensated.  

 

 

Figure 4 Vertical profiles of the normalized relative amplitudes of wavepaths 

where the geometrical spreading effect is compensated. 
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Chapter 3  Truncated Gauss-Newton method for 

Laplace-domain WI 

The Gauss-Newton method, which considers the Hessian matrix, can be a 

solution in the ill-conditioned problem (Press et al., 1992; Strutz, 2016). Pratt 

et al. (1998) verified that application of the Gauss-Newton method, to 

frequency-domain WI greatly improves the convergence rate. In this chapter, 

we show that the Gauss-Newton method exerts greater efficacy in Laplace-

domain WI due to its ill-conditioning. We also suggest how to efficiently apply 

the truncated Gauss-Newton method, which adopts the conjugate gradient (CG) 

method, to Laplace-domain WI. The numerical example using the BP 

benchmark model also confirms that the truncated Gauss-Newton method is 

superior to the gradient descent method. 
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3.1 Gauss-Newton method and ill-conditioned problems  

 

Before describing why Laplace-domain WI requires the Gauss-Newton 

method, we explain what ill-conditioned problems are and why the gradient 

descent method is not proper for an ill-conditioned problem.  

An ill-conditioned problem refers to a problem where a small input adjustment 

causes a large variation in the output. When applying this to the inverse problem, 

a small change in observed data results in a large change in the estimation of 

the model parameters. The measurement of ill-conditioning is typically 

represented by a condition number 𝜅(𝐿), which is expressed as a supremum in 

the ratio of change in data to change in model parameter (Trefethen and Bau, 

1997): 

 𝜅(𝐿) = sup
𝛿𝑑

(
‖𝛿𝑚‖

‖𝑚‖
)/(

‖𝛿𝑑‖

‖𝑑‖
). (3.1.1) 

𝜅(𝐿) also can be defined as the square root of the condition number of the 

Hessian, 𝐻 (= 𝐿𝑇𝐿): 

 𝜅(𝐿) = √𝜅(𝐻). (3.1.2) 

𝜅(𝐻) can be defined as the ratio of the maximum eigenvalue of the Hessian, 

𝜆𝑚𝑎𝑥, to the minimum eigenvalue of the Hessian, 𝜆𝑚𝑖𝑛: 

 𝜅(𝐻) =
|𝜆𝑚𝑎𝑥|

|𝜆𝑚𝑖𝑛|
. (3.1.3) 

Therefore, 𝜅(𝐿) can be expressed as: 

 𝜅(𝐿) =
√𝜆𝑚𝑎𝑥 

√𝜆𝑚𝑖𝑛
. (3.1.4) 

Here, each eigenvalue of the Hessian represents the sensitivity of the data in 
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the direction of the eigenvector of each model parameter. Thus, the fact that an 

eigenvalue is small means that the data hardly changes with respect to the 

corresponding eigenvector of the model parameter. That is, the condition 

number is the ratio of the minimum value and the maximum value of the 

sensitivity of the data in the direction of the eigenvectors of model parameters. 

If 𝜆𝑚𝑎𝑥 is close to 𝜆𝑚𝑖𝑛, then 𝜅(𝐿) ≅ 1. We call the problem which has a 

small condition number like this a well-conditioned problem. If 𝜆𝑚𝑎𝑥 is much 

larger than 𝜆𝑚𝑖𝑛 , then 𝜅(𝐿) ≫ 1 . We call the problem which has a large 

condition number like this an ill-conditioned problem.  

The problems that arise with the gradient descent method as 𝜅(𝐿) increases 

can be understood more easily by investigating Figure 5. Figure 5 shows the 

contour of the objective function changing with respect to two model 

parameters: 
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(a) (b) 

 

 

(c)  

Figure 5 Contour plots of the objective functions depending on the condition 

number. (a), (b) and (c) show the variation of the objective functions for the 

parameters when  𝜅(𝐿) = 1.00, 4.00, and 6.67, respectively. The larger the 

condition number, the larger the anisotropy of the ellipse. Moreover, as the 

condition number increases, the update directions of the gradient descent 

method zigzags and the convergence speed decreases. The asterisks represent 

the global minima. 
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The largest and shortest diameters of each ellipsoidal contour of the objective 

function in Figure 5 are closely related to 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛. The ratio between 

largest and shortest diameters is same as the ratio between 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛. 

Therefore, as 𝜅(𝐿) increases, the contours become more anisotropic.  

The anisotropy, that becomes stronger as 𝜅(𝐿) increases, greatly affects the 

convergence rate of the gradient descent method (Press et al., 1992; Strutz, 

2016). This is because the larger the difference between the long axis and the 

short axis of the contour, the more updates of the gradient descent method show 

zigzag shapes as illustrated in Figure 5. This zigzag-shaped update occurs more 

frequently when the gradient direction vector is nearly orthogonal to the 

shortest direction to the local minimum. These zigzag-shaped updates of the 

gradient descent method result in many iterations needed to reach a local 

minimum with sufficient accuracy.  

The Gauss-Newton method, which considers the Hessian matrix, can be an 

alternative approach to the ill-conditioned problem (Press et al., 1992; Strutz, 

2016). In contrast to the gradient descent method, if the problem is perfectly 

linear, the Gauss-Newton method converges to the global minimum with a 

single iteration. Generally, the Gauss-Newton method converges in fewer 

iterations, without zigzag shapes, even though the problem is nonlinear and ill-

conditioned. Therefore, in the case of a large condition number, it is necessary 

to use the Gauss-Newton method, considering the Hessian, rather than gradient 

descent method for fast convergence.  
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3.2 Ill-conditioning of the Laplace-domain WI algorithm 

 

Before explaining the ill-conditioning of the problem of waveform inversion 

in the Laplace domain, we first describe the well-conditioning of frequency-

domain WI. According to Sirgue and Pratt (2004), the Born wavepath of the 

frequency domain, 𝐿𝑓(𝐱, 𝐤), can be approximately expressed as: 

 𝐿𝑓(𝐱, 𝐤) ≈ 𝐴(𝐤) exp(−𝑖𝐤 ∙ 𝐱). (3.2.1) 

where 𝐤 is a scattering wavenumber vector and 𝐴(𝐤) is a spectrum of 𝐤. If 𝐱 

is discretized for a simple explanation, we convert 𝐿𝑓(𝐱, 𝐤) as follows: 

 𝐿𝑓(𝑖, 𝐤) ≈ 𝐴(𝐤) exp(−𝑖𝐤 ∙ 𝐱𝑖). (3.2.2) 

In order for frequency-domain WI to be well-solved with the gradient descent 

method, the condition number of 𝐿𝑓, 𝜅(𝐿𝑓), should be close to 1 as described 

in Chapter 3.1. To understand 𝜅(𝐿𝑓), the condition number of the Hessian, 

𝐻𝑓 (= 𝐿𝑓
𝑇𝐿𝑓
∗ ), must first be grasped. By using Equation (3.2.2), we can express 

the (𝑖, 𝑗) component of the Hessian matrix, 𝐻𝑓(𝑖, 𝑗), as follows: 

 

𝐻𝑓(𝑖, 𝑗) = (𝐿𝑓
𝑇𝐿𝑓
∗ )
𝑖,𝑗

= 𝑅𝑒 [∫ 𝐴(𝐤)2 exp (−𝑖𝐤 ∙ (𝐱𝑖 − 𝐱𝑗)) 𝑑𝐤]. 
(3.2.3) 

The matrix 𝐻𝑓 can be classified as a symmetric Toeplitz matrix. In the ideal 

case of a full bandwidth and a normalized spectrum (𝐴(𝐤) = 1), the Hessian 

𝐻𝑓 in the frequency domain becomes the unitary matrix: 

 𝐻𝑓(𝑖, 𝑗) = 𝛿𝑖𝑗 . (3.2.4) 

As the matrix approaches to the unit matrix, the condition number of the 

matrix decreases. Therefore, in the case of frequency-domain WI, the condition 
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number of the Hessian, 𝜅(𝐻𝑓), decreases when the bandwidth of scattering 

wavenumbers increases. Therefore, frequency-domain WI can be a well-

conditioned problem as long as a wide frequency band is guaranteed. 

As expressed in Chapter 2.4, the Rytov wavepath in the Laplace domain is 

approximately an exponential decaying real basis function whose scattering 

attenuation constant vector is 𝛂(𝐬, 𝐠, 𝐨, 𝜎) in the space domain as shown in 

Equations (2.4.10) and (2.4.11). If all amplitude variations are canceled by 

appropriate scaling schemes and |𝐱| is not large relative to the total length of 

ray (far-field approximation), then the wavepath in the Laplace domain can be 

approximated by an exponential basis as: 

 𝐿𝑙(𝐱, 𝛂) ≈ 𝐵(𝛂) exp(−𝛂 ∙ 𝐱). (3.2.5) 

where 𝛂 is a scattering attenuation constant vector and 𝐵(𝛂) is a spectrum of 

𝛂. If 𝐱 is discretized for a simple explanation, we convert 𝐿𝑙(𝐱, 𝛂) to: 

 𝐿𝑙(𝑖, 𝛂) ≈ 𝐵(𝛂) exp(−𝛂 ∙ 𝐱𝑖). (3.2.6) 

The Hessian matrix of the Laplace domain, 𝐻𝑙, can then be expressed as: 

 𝐻𝑙(𝑖, 𝑗) = (𝐿𝑙
𝑇𝐿𝑙)𝑖,𝑗 = ∫ 𝐵(𝛂)2 exp (−𝛂 ∙ (𝐱𝒊 + 𝐱𝒋)) 𝑑𝛂. (3.2.7) 

The matrix 𝐻𝑙 is classified as a real positive semidefinite Hankel matrix, as 

shown in the following equation (Beckermann, 2000): 

 𝐻𝑙(𝑖, 𝑗) = (ℎ𝑖+𝑗)𝑖,𝑗=0,1,⋯,𝑀 ,       ℎ𝑘 = ∫𝑥
𝑘𝑑𝜇(𝑥). (3.2.8) 

This real positive semidefinite Hankel matrix is known to have an extremely 

large condition number. According to Beckermann (2000) the condition 

number of the real positive semidefinite Hankel matrix increases exponentially 

with respect to the dimension of 𝐻𝑙 , which implies the number of model 

parameters. The Hilbert matrix, a special case of the real positive semidefinite 
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Hankel matrix, is the most famous example of a large condition number. The 

Hilbert matrix is represented by the Hessian of the Laplace domain 𝐻𝑙 when 

the integral range of Equation (3.2.7) is from 0 to ∞ and 𝐵(𝛂) = 1. It can be 

expressed as: 

 𝐻𝑙(𝑖, 𝑗) =
1

𝑖 + 𝑗 − 1
. (3.2.9) 

The condition number of the Hilbert matrix 𝜅(𝐻𝑓) grows like (1 + √2)
4𝑀
/

√𝑀 (Todd, 1954; Wilkinson, 1965). This implies that the condition number of 

the wavepath of the Laplace domain 𝜅(𝐿𝑓)  grows like (1 + √2)
2𝑀
/√𝑀
4

. 

Note that this extremely high condition number is the result of full positive 

attenuation constants. The large condition number of the full-bandwidth 

wavepath of Laplace-domain WI contrasts greatly with the small condition 

number of the full-bandwidth wavepath of the frequency-domain WI.  

This shows that Laplace-domain WI is always an ill-conditioned problem with 

or without the wide bandwidth of the attenuation constant. In the Laplace-

domain WI algorithm, the gradient descent method converges too slowly due 

to this ill-conditioning of the Laplace-domain wavepath. Therefore, Laplace-

domain WI cannot guarantee a reasonable convergence rate without a method 

considering the Hessian matrix, such as the Gauss-Newton method. 
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3.3 Truncated Gauss-Newton method 

 

An effective solution for suppressing the crosstalk effect is the adoption of the 

Gauss-Newton method. In the Gauss-Newton method, a Hessian matrix is 

generated and solved to scale the parameter updates. The Hessian matrix 

consists of the correlation terms between the partial derivatives of the Laplace 

wavefields with respect to two parameters. The (i,j) components of the Hessian 

matrix can be expressed:  

 𝐻𝑖𝑗 = ∑
∂ log(𝑢𝑘)

𝜕𝑝𝑖

∂ log(𝑢𝑘)

𝜕𝑝𝑗

𝑁𝑠𝑁𝑟

𝑘

= 𝐶(𝑝𝑖 , 𝑝𝑗). (3.3.1) 

As shown in the definition, the Hessian matrix has cross-correlation terms 

between two different parameters on the off-diagonal position, which is the 

main cause of the inaccuracy of model updates. This inaccuracy of model 

updates, caused by large off-diagonal components, results in a slow 

convergence rate. We call this inaccuracy caused by the off-diagonal 

components of the Hessian crosstalk effect. Consideration of these off-diagonal 

terms plays a role in suppressing the crosstalk effect caused by the cross-

correlation terms (Pratt et al., 1998). Therefore, we can obtain more accurate 

updates of parameters without the crosstalk effect by generating and solving the 

Hessian matrix. 

However, the Gauss-Newton method is hard to apply to WI because of its high 

computational cost. This is related to explicitly calculating and saving the 

Hessian matrix, which is an extremely huge matrix. To improve the 

computational efficiency, the truncated Gauss-Newton method which adopts 

the conjugate gradient (CG) method is widely used to consider the Hessian 

matrix (Golub and Van Loan, 1996; Hu et al., 2009; Pyun et al., 2011, Métivier 
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et al., 2013). In the truncated Gauss-Newton method, the Hessian-vector 

product allows the Gauss-Newton method to be implemented without explicitly 

calculating or saving the Hessian matrix. Therefore, the computational 

efficiency of the Gauss-Newton method is improved by using the truncated 

Gauss-Newton method. In a paper by Pyun et al. (2011), the truncated Gauss-

Newton method algorithm was applied to the logarithmic misfit function in the 

frequency domain. We followed the method of Pyun et al. (2011) but applied it 

to Laplace-domain WI instead of frequency-domain WI. Further details of the 

truncated Gauss-Newton method is explained in Appendix B. Note that any 

optimization scheme that considers the off-diagonal components of the Hessian 

matrix, such as the quasi-Newton l-BFGS method (Wright and Nocedal, 1999), 

can be used to suppress the distortion effect of the WI in the Laplace domain. 

Note that the convergence rate of the truncated Gauss-Newton method is also 

affected by the condition number of the Hessian matrix. The number of 

iterations of CG in the truncated Gauss-Newton method algorithm is 

proportional to 𝜅(𝐿𝑙)(= √𝜅(𝐻𝑙)) . Therefore, the convergence rate of CG 

slows down as the condition number of the Hessian increases. Nevertheless, 

according to Shewchuk (1994), the truncated Gauss-Newton method converges 

√𝜅(𝐻𝑙) times faster than the gradient descent method in a locally linear case. 

That is, the convergence rate of the gradient descent method is more sensitive 

to 𝜅(𝐻𝑙) than that of the truncated Gauss-Newton method. This implies that 

the truncated Gauss-Newton method is a better choice for fast convergence than 

the gradient descent method when solving ill-conditioned problems such as 

Laplace-domain WI. 
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3.4 Stopping criterion 

 

While solving the Hessian matrix completely provides a correct answer in 

linear inverse problems, the nonlinear inverse problem is problematic if the 

Hessian is solved too completely. This phenomenon is called over-solving. This 

over-solving problem can be solved by constraining the degree to which the 

Hessian is solved depending on how much the objective function is locally 

quadratic. Given that for Laplace-domain WI we solve a nonlinear inverse 

problem, the problem of over-solving should be suppressed as much as possible. 

To prevent over-solving in the CG method, a stopping criterion for the CG 

method suggested by Eisenstat et al. (1994) and Métivier et al. (2013) can be 

used. According to Eisenstat et al. (1994) and Métivier et al. (2013), the CG 

iterations should stop whenever 

 ‖𝐻(𝑝𝑘)∆𝑝𝑘 + 𝑔(𝑝𝑘)‖ ≤ 𝜂𝑘‖𝛻𝐸(𝑝𝑘)‖, (3.4.1) 

where 𝑝𝑘 is the vector of the parameters, 𝐻(𝑝𝑘) is the Hessian matrix, and 

𝑔(𝑝𝑘) is the gradient direction vector of 𝑘th outer iteration . The value 𝜂𝑘 is 

called the forcing term. According to Métivier et al. (2013), the following 

definition of the forcing term 𝜂𝑘, proposed by Eisenstat et al. (1994), provides 

a good convergence speed in the Gauss-Newton algorithm: 

 𝜂𝑘 =
‖𝑔(𝑝𝑘)‖ − ‖𝑔(𝑝𝑘−1) + 𝐻(𝑝𝑘−1)∆𝑝𝑘−1‖

‖𝑔(𝑝𝑘−1)‖
. (3.4.2) 

To prevent the forcing term from being too restrictive, the following 

safeguards should be implemented: 

 If 𝜂𝑘−1
(1+√5)/2

> 0.1, then 𝜂𝑘 = max {𝜂𝑘 , 𝜂𝑘−1
(1+√5)/2

} (3.4.3) 

and  
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 If 𝜂𝑘 > 1, then 𝜂𝑘 = 0.9. (3.4.4) 

In this paper, we applied this forcing term to the stopping criterion for the 

truncated Gauss-Newton method in the Laplace domain.  
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3.5 Numerical examples  

 

In this section, we demonstrate how the inversion result of synthetic seismic 

data can be improved using the truncated Gauss-Newton method instead of the 

gradient descent method. Laplace-domain WI is a technique that is specialized 

in estimating velocity models with salt domes. However, the conventional 

Laplace-domain WI cannot provide a high resolution model for low velocity 

layer under salt domes within a reasonable time. By contrast, the truncated 

Gauss-Newton method is expected to show faster convergence in these areas. 

Therefore, we used the BP benchmark model (Figure 6(a)), which includes 

three distinct salt domes, to test whether the low velocity layer under the salt 

domes can be constructed accurately.  

The BP benchmark model is used to generate time-domain seismograms. The 

seismic data was generated using a 6th order finite-difference method (FDM). 

The marine seismic experiment was conducted for this test. There are 418 

sources and 301 receivers on a streamer. The maximum offset is 15 km. The 

depth of sources and receivers is 50m and their interval is 50m. Figure 6(b) 

shows the initial model for the Laplace-domain WI test. We constrained the 

maximum velocity to 4800 m/s and the minimum velocity to 1486 m/s. 

To verify the effectiveness of the truncated Gauss-Newton method in Laplace-

domain WI, we inverted the BP benchmark model (Figure 6(a)) with and 

without considering the off-diagonal components of the Hessian matrix. We 

then compared the updates of the parameter and velocity models. To implement 

this test, we used two methods for the BP benchmark model: the truncated 

Gauss-Newton method and the gradient descent method scaled by the diagonal 

components of the Hessian matrix. By comparing the updates of the parameters 

and the inverted velocity models, we can verify the effectiveness of considering 
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the off-diagonal components of the Hessian matrix. 

In the numerical test of the truncated Gauss-Newton method, the forcing term 

𝜂𝑘  in Equation (3.4.2) was used, and the additional safeguards in Equation 

(3.4.3) and Equation (3.4.4) were implemented. To prevent the CG iteration 

from being too large, we set the maximum number of the CG iteration to 30 as 

an additional safeguard. Because the forcing term of the first iteration 𝜂1 

cannot be defined by Equation (3.4.2), we set 𝜂1 to 0.05.  
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(a)   

 

 

(b)  

Figure 6 (a) The true BP P-wave velocity model and (b) the initial model with 

sea water velocity. 
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To investigate the suppression of the crosstalk effect in the truncated Gauss-

Newton method, we compared the model updates and the inverted velocity 

models obtained by the truncated Gauss-Newton and the gradient descent 

methods using a Laplace constant of 𝜎=1. Figure 7(a) and 7(b) show the 

parameter updates from the truncated Gauss-Newton method and the gradient 

descent method, respectively. While a salt dome shape similar to that in Figure 

6(a) was detected in the updates of the truncated Gauss-Newton method (Figure 

7(a)), this shape was blurred downward in the updates of the gradient descent 

method (Figure 7(b)). From these results, we can confirm that consideration of 

the Hessian matrix suppresses the crosstalk effect. 

Figure 8(a) and 8(b) show the velocity models obtained by using the truncated 

Gauss-Newton method and gradient descent method, respectively, with 5 

Laplace constants: 𝜎=1, 3, 5, 7, 9. The number of forward modeling used in the 

truncated Gauss-Newton method and the number of forward modeling used in 

the gradient descent method are equalized for a fair comparison. While the salt 

dome in the results of the gradient descent method is shifted downward (Figure 

8(a)), the salt dome in the results of the truncated Gauss-Newton method is not 

(Figure 8(b)). The downward shift in the salt dome (Figure 8(a)) is the result of 

the distortion effect, which cannot be suppressed by the gradient descent 

method.  

To compare the inaccuracy of model updates more precisely, we extracted 

depth profiles from the true BP benchmark model and the inverted velocity 

models (Figure 6(a), 8(a), and 8(b)). The depth profiles were extracted at a 

distance of 36,400 m from the left boundary, where a long salt dome is located. 

Two criteria in the depth profiles should be observed to compare how much 

they are influenced by the crosstalk effect. The first one is the downward shift 

in the upper boundary of the salt dome, which should be located at a depth of 
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2500 m. As the accuracy of the model updates decreases, the shallower 

parameters that have low velocities, ranging from 1500 m/s to 2000 m/s, will 

become blurred within the deeper area, which should contain a salt dome. This 

causes a downward shift in the upper boundary of the salt dome. The second 

criterion is the accuracy of the subsalt velocity below 5500 m. The accuracy of 

the subsalt velocity can deteriorate as the influence from the crosstalk effect 

becomes larger.  

Figure 9 shows depth profiles of the true BP benchmark model (dashed line), 

velocity models inverted with the truncated Gauss-Newton method (solid line), 

and velocity models inverted with the gradient descent method (dotted line). 

Considering the two criteria, the truncated Gauss-Newton method matches the 

true model better than the gradient descent method in Figure 9. Therefore, the 

velocity model inverted using the truncated Gauss-Newton method was less 

influenced by crosstalk effect than the model inverted using the gradient 

descent method.  
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(a)  

 

(b) 

Figure 7 The first model updates of the BP benchmark model based on (a) the 

truncated Gauss-Newton method using a Laplace constant of 𝜎=1 and (b) the 

gradient descent method using a Laplace constant of 𝜎=1. 
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(a) 

 

(b)  

Figure 8 Inversion results of the BP benchmark model obtained using (a) the 

truncated Gauss-Newton method and (b) gradient descent method, respectively: 

the final inversion results obtained by using Laplace constants of 𝜎=1, 3, 5, 7, 

9. 

  



 

49 
 

 

 

 

 

 

 

 

 

Figure 9 Depth profiles of the true BP benchmark model (dashed line, Figure 

6(a)), velocity models inverted by the truncated Gauss-Newton method (solid 

line, Figure 8(a)), and velocity models inverted by the gradient descent method 

(dotted line, Figure 8(b)) with Laplace constants of [𝜎=1, 3, 5, 7, 9] at a distance 

of 36,650 m from the left boundary. 
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Chapter 4  Resolution analysis for Laplace-

domain WI 

It is well known that the model resolution of frequency-domain WI depends 

on the frequency bandwidth and the range of scattering angles (Wu and Toksöz 

1987; Woodward 1992; Sirgue and Pratt, 2004). In this chapter, the model 

resolution of Laplace-domain WI is proved to be dependent on the Laplace 

constant bandwidth and the range of scattering angles similarly with frequency-

domain WI. In the numerical example, we validate our analysis by observing 

the change in vertical and horizontal resolution depending on the offset-depth 

ratio and experimental setup. 
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4.1 Relationship between the number of attenuation 

constants and model resolution  

 

It is clear that high-resolution models can be represented only when the 

number of model parameters 𝑀 is large enough. Therefore, in order to obtain 

a high-resolution model, the Laplace-domain WI algorithm must have the 

ability to uniquely estimate as many model parameters as possible. In this 

section, we examine how many distinct attenuation constants should be used to 

determine 𝑀 model parameters in an ideal case with no numerical error.  

Model parameters can be estimated by Gauss-Newton method or gradient 

descent method as shown in Chapter 3. The model parameter vector estimated 

from the Gauss-Newton method can be expressed as follows: 

 ∆𝑝𝐦
𝑒𝑠𝑡 = (𝐿𝑇𝐿 + 𝜖𝐼)−1𝐿𝑇 ln (

𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
) (4.1.1) 

where 𝜖 is a damping factor. If 𝜖 is zero, we call Equation (4.1.1) the least 

squares solution. If 𝜖 is nonzero, we call Equation (4.1.1) the damped least 

squares solution.  

The model parameter vector estimated from the gradient descent method can 

be given by: 

 ∆𝑝𝐦
𝑒𝑠𝑡 = 𝑙𝐿𝑇 ln (

𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
). (4.1.2) 

where 𝑙  is the step length. As shown in both cases, the estimated model 

parameter vector ∆𝑝𝐦
𝑒𝑠𝑡  is a linear combination of the exponential basis 

functions in both case. Data residuals ln (
𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
)  are the weights of the 

exponential basis functions in both cases shown in Equations (4.1.1) and (4.1.2). 
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For the exponential basis functions to span the 𝑀th dimensional model space, 

the exponential basis functions should be linearly independent. If the number 

of elements in the set of linearly independent exponential basis functions 

increases, the exponential basis functions can span higher dimensional model 

space. Note that the set of the exponential basis functions whose attenuation 

constants are distinct is a linearly independent set. Thus, the number of distinct 

attenuation constants defines the maximum dimension of the estimated model 

space. This is directly related to the model resolution and whether the 

optimization method used is the gradient descent method or Gauss-Newton 

method.  

From this, it can be seen that at least 𝑀  distinct scattering attenuation 

numbers are required to determine the 𝑀 model parameters uniquely. However, 

it has yet to be observed whether or not the 𝑀 parameters can be completely 

determined by only a sufficient number of attenuation constants in a practical 

case with numerical errors. In the following section, we investigate the 

difficulties of stably and accurately determining the 𝑀 model parameters with 

𝑀 distinct attenuation constants for the real case where numerical errors exist. 
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4.2 Relationship between the condition number of 

wavepath and model resolution  

The previous section shows that the number of distinct attenuation constants 

is important for the uniqueness of estimated model parameters in the absence 

of numerical errors. Therefore, the model resolution is affected only by the 

number of distinct attenuation constants if there are no numerical errors. In 

practice, however, there are always numerical errors in the computation of 

estimated model parameters. The model resolution is influenced by these 

numerical errors. The measure of how the numerical error affects the problem 

is the condition number described in Chapter 3.2. In this section, we investigate 

how the condition number affects the model resolution in inverse problems. 

First, we assume that model update ∆𝑝𝐦
𝑒𝑠𝑡 is estimated from the least squares 

with no damping factor 𝜖 (normal equation) which is shown as follows: 

 ∆𝑝𝐦
𝑒𝑠𝑡 = (𝐿𝑇𝐿)−1𝐿𝑇 ln (

𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
). (4.2.1) 

If ∆𝑝𝐦
𝑡𝑟𝑢𝑒 is the true model difference and we linearize the data residual vector 

as ln (
𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
) ≈ 𝐿∆𝑝𝐦

𝑡𝑟𝑢𝑒 and put this into Equation (4.2.1), we can obtain the 

following equation: 

 ∆𝑝𝐦
𝑒𝑠𝑡 ≈ (𝐿𝑇𝐿)−1𝐿𝑇𝐿∆𝑝𝐦

𝑡𝑟𝑢𝑒 . (4.2.2) 

If the number of distinct attenuation constants is larger than the number of the 

model parameters and the 𝐿𝑇𝐿 can be stably solved, the following equation is 

approximately true: 

 ∆𝑝𝐦
𝑒𝑠𝑡 ≈ ∆𝑝𝐦

𝑡𝑟𝑢𝑒 . (4.2.3) 

This means the model parameters ∆𝑝𝐦
𝑒𝑠𝑡 can be perfectly resolved if the 𝐿𝑇𝐿 
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can be stably solved. 

Unfortunately, Equation (4.2.3) is scarcely solved with stability if the problem 

is ill-conditioned. According to Trefethen and Bau (1997), the relative error of 

the estimated model update ∆𝑝𝐦
𝑒𝑠𝑡  satisfies the following equation if the 

optimization algorithm is least squares without the damping factor 𝜖: 

 
‖𝛿∆𝑝𝐦

𝑒𝑠𝑡‖

‖∆𝑝𝐦
𝑒𝑠𝑡‖

= 𝑂(𝜅(𝐿)2𝜖𝑚𝑎𝑐ℎ𝑖𝑛𝑒), (4.2.4) 

where 𝜖𝑚𝑎𝑐ℎ𝑖𝑛𝑒  is machine epsilon and is as large as the minimum value 

among the gaps between floating point numbers. As shown in Equation (4.2.4), 

the relative error of the estimated model update is governed by 𝜅(𝐿)2, not 𝜅(𝐿). 

If 𝜅(𝐿) is large, 
‖𝛿∆𝑝𝐦

𝑒𝑠𝑡‖

‖∆𝑝𝐦
𝑒𝑠𝑡‖

 is extremely sensitive, even in the case of small 

numerical error. As shown in Chapter 3.2, it is confirmed that the condition 

number of the wavepath of the Laplace domain increases exponentially as the 

number of model parameters to be estimated, 𝑀, is larger. This shows that the 

least squares method without the damping factor 𝜖, shown Equation (4.2.1), for 

Laplace-domain WI with a considerable 𝑀,  is unstable even though the 

number of distinct attenuation constants is larger than the number of the model 

parameters.  

From this reason, there is no choice but to use the damping factor 𝜖 shown in 

Equation (4.1.1) of the previous section for stabilizing the estimation of model 

updates. We call the optimization scheme using the damping factor 𝜖  the 

damped least squares method. Trefethen and Bau (1997) confirm that the 

damped least squares method guarantees stability if some 𝜖  satisfying the 

following equation is used: 

 
‖𝜖𝐼‖

‖𝐿𝑇𝐿‖
= 𝑂(𝜖𝑚𝑎𝑐ℎ𝑖𝑛𝑒). (4.2.5) 
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Using this damped least squares method, Laplace-domain WI can estimate the 

model parameters stably regardless of the condition number.  

In the damped least squares algorithm, the problem is model resolution. We 

may inquire about how the use of damped least squares affect the resolution of 

the estimated model parameters. If ∆𝑝𝐦
𝑡𝑟𝑢𝑒 is the true model difference and we 

linearize the data residual vector as ln (
𝑑𝐬,𝐠(𝜎)

𝑢𝐬,𝐠(𝜎)
) ≈ 𝐿∆𝑝𝐦

𝑡𝑟𝑢𝑒 and put this into 

Equation (4.1.1), we can obtain the following equation: 

 ∆𝑝𝐦
𝑒𝑠𝑡 ≈ (𝐿𝑇𝐿 + 𝜖𝐼)−1𝐿𝑇𝐿∆𝑝𝐦

𝑡𝑟𝑢𝑒 . (4.2.6) 

If we assume 𝑅 = (𝐿𝑇𝐿 + 𝜖𝐼)−1𝐿𝑇𝐿, then 

 ∆𝑝𝐦
𝑒𝑠𝑡 ≈ 𝑅∆𝑝𝐦

𝑡𝑟𝑢𝑒 . (4.2.7) 

We call 𝑅 model resolution matrix as defined in Menke (2012). Note that 𝑅 

is never the unit matrix 𝐼, so ∆𝑝𝐦
𝑒𝑠𝑡 ≠ ∆𝑝𝐦

𝑡𝑟𝑢𝑒. This means the each component 

of ∆𝑝𝐦
𝑒𝑠𝑡 is the weighted average of components of ∆𝑝𝐦

𝑡𝑟𝑢𝑒, which weights of 

the components are the row of 𝑅. This means the model resolution is not perfect 

when the damped least squares is adopted.   

We may then investigate how this model resolution affects the condition 

number of 𝐿 . Let 𝐿̃  be a matrix satisfying 𝐿̃𝑇𝐿̃ = 𝐿𝑇𝐿 + 𝜖𝐼 . Here, the 

difference between 𝐿̃ and 𝐿 represents the error of the data kernel caused by 

introduction of 𝜖. Therefore, the following proposition is true: 

 lim
𝐿̃→𝐿  

𝑅 = 𝐼. (4.2.8) 

When an 𝜖  satisfying Equation (4.2.5) is introduced, the relative error 

between 𝐿̃ and 𝐿 satisfies the following equation (Trefethen and Bau, 1997): 



 

56 
 

 
‖𝐿̃ − 𝐿‖

‖𝐿‖
= 𝑂(𝜅(𝐿)2𝜖𝑚𝑎𝑐ℎ𝑖𝑛𝑒). (4.2.9) 

From Equation (4.2.8) and Equation (4.2.9), we arrive at the conclusion that 

𝑅 moves away from 𝐼 as the condition nubmer 𝜅(𝐿) increases. This means 

that as the condition number of 𝐿  increases, the resolution of the model 

estimated by damped least squares decreases.  

In summary, the damped least squares method is numerically stable even with 

numerical errors but cannot provide perfect model resolution. This model 

resolution tends to be lower as the wavepath of the Laplace domain 𝐿 becomes 

ill-conditioned. It is more serious if the number of model parameters 𝑀 is 

considerable. However, 𝑀 cannot be reduced because 𝑀 limits the degree of 

freedom of the model. Therefore, for high model resolution, it is necessary to 

reduce the condition number as much as possible while keeping 𝑀 large.  
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4.3 Range of the attenuation constants and condition 

number of data kernel matrix in the Laplace domain  

In Chapter 3.2, we show that the Hessian of the Laplace domain is 

approximated to a real positive semidefinite Hankel matrix. In the previous 

section, for a high model resolution, we demonstrated a need for a method 

reducing the condition number as much as possible while keeping 𝑀 

sufficiently large. In this section, we show that the condition number decreases 

as the range of the attenuation constant increases. We also verify that the model 

resolution must be low if the range of the attenuation constant is small. Through 

this fact, we investigate the change of the condition number of the Hessian in 

the Laplace domain with respect to the range of the attenuation constant.  

If 𝑥 = exp(−𝛼∆𝑧), we can express the Hessian matrix of the Laplace domain 

as the following Hankel matrix using Equation (3.2.8): 

 

𝐻𝑙(𝑎, 𝑏, 𝐵) = (ℎ𝑖+𝑗(𝑎, 𝑏, 𝐵))
𝑖,𝑗=0,1,⋯,𝑛

, 

 ℎ𝑘(𝑎, 𝑏, 𝐵) = ∫ 𝐵(𝛼) exp(−𝛼𝑘∆𝑧) 𝑑𝛼
𝑏

𝑎

,  

(4.3.1) 

where 𝑎  and 𝑏  (0 ≤ 𝑎 ≤ 𝑏 < ∞ ) are the lower and upper bound of the 

attenuation constant 𝛼 , respectively. Beckermann (2000) studied how the 

condition number varies with this integration range [a, b]. According to 

Beckermann (2000), the following proposition is true:  

 
[𝑎, 𝑏] ⊃ [𝑐, 𝑑] → inf{𝜅(𝐻𝑙(𝑎, 𝑏, 𝐵)): 𝐵(𝛼) ∈ ℝ}

≤ inf{𝜅(𝐻𝑙(𝑐, 𝑑, 𝐵)): 𝐵(𝛼) ∈ ℝ}, 
(4.3.2) 

where ℝ is the set of real numbers. This proposition implies that the condition 

number of the Hessian of the Laplace domain can increase as the range of the 

attenuation constant is limited. Since the condition number of the Hessian is the 
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square of the condition number of the wavepath, decrease of the integration 

range also means that the condition number of the wavepath in the Laplace 

domain increases. As shown in the previous section, this condition number of 

the Laplace-domain wavepath is inversely proportional to model resolution. 

Therefore, the proposition shown in Equation (4.3.2) suggests that the model 

parameter can be poorly resolved due to ill-conditioning if the range of 

attenuation constants is narrow. 

As shown in Equation (2.4.11) of Chapter 2.4, the range of scattering 

attenuation constants is determined by the range of Laplace constants and 

incident angles. If the range of scattering angles or Laplace constants is limited, 

the range of attenuation constants will be limited, which in turn makes the 

inversion problem ill-conditioned. That is, the insufficient range of scattering 

angles or Laplace constants can be a main cause of low model resolution. 
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4.4 Numerical examples  

Variation in resolution of by offset-depth ratio 

As shown in Equation (2.4.11), the amplitude of the scattering attenuation 

constant vector of the wavepath 𝛂 is changed by the scattering (or incident) 

angle 𝜃 and Laplace constant σ as follows. 

 𝛂 ≈
2σ

𝑐
cos (

𝜃

2
)𝐧. (4.4.1) 

This scattering angle is determined by the position of the source 𝐬, the position 

of the receiver 𝐠 and the target position 𝐱 (= (𝑥, 𝑦, 𝑧)). Suppose a surface 

acquisition exploration in which sources and receivers exist only on the upper 

surface, such as marine seismic or land seismic. If the maximum offset is 

constant and position 𝐱 is located deeper, the maximum value of the scattering 

angles becomes smaller. Also, when the depth of the target position is fixed, the 

maximum value of the scattering angles gradually increases as the maximum 

offset increases. If the reflective surface is horizontal and the position of the 

source receiver is parallel to the reflective surface, the relationship between the 

ratio of the maximum offset to the target depth and the maximum value of the 

scattering angles can be expressed by the following proportional expression. 

 
𝜃𝑚𝑎𝑥
2

= tan−1 (
max(|𝐬 − 𝐠|)

2𝑧
) = tan−1(𝑅𝑜/𝑑/2 ), (4.4.2) 

where 𝑅𝑜/𝑑 is called offset-depth ratio, which represents the maximum offset 

divided by the target depth. If the source receiver is not parallel to a horizontal 

reflective surface, Equation (4.4.2) cannot be established. However, it is still 

valid in general that the larger the offset-depth ratio, the larger the maximum 

scattering angle is. Thus, as the offset-depth ratio increases, the maximum 

scattering angle increases and a wider range of scattering attenuation constants 
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becomes available. As we have seen in the previous section, a wider range of 

scattering attenuation constants provides higher model resolution. Therefore, 

we can reach a conclusion that the model parameters at the target depth has 

lower resolution as the target depth increases within the same offset.  

This phenomenon has already been observed in Bae et al (2012) and Ha et al 

(2012). However, these studies provided little to no clarity on the cause of the 

relationship between offset-depth ratio and model resolution. This was due to a 

lack of understanding of the wavepath in the Laplace domain. In this paper, we 

have found that the offset-depth ratio affects the range of the scattering angles 

and the model resolution in Laplace-domain WI, similar to frequency-domain 

WI. 

We examined how the resolution of a model inverted by Laplace-domain WI 

changes as the depth of a Gaussian, high-velocity anomaly increases to see how 

the model resolution varies with the offset-depth ratio.  

Figure 10(a), Figure 11(a) and Figure 12(a) show the velocity models with 

anomalies whose depths are 0.75 km, 1.50 km, and 2.25 km, respectively. In 

this numerical example, the velocity model updates are estimated using the 

seismic data obtained in Figure 10(a), Figure 11(a) and Figure 12(a). We 

observe how their resolution change with the depth of the anomalies. 

The maximum velocity of the Gaussian anomaly is 3.50 km/s and the 

background velocity is 1.70 km/s. The initial velocity model is a homogeneous 

velocity model with a velocity of 1.70 km/s. The size of the velocity model is 

3 km x 6 km and the grid interval is 25 m. A fixed spread experiment was 

conducted for this test. The depth of both sources and receivers is 25 m and the 

maximum offset is 6 km. The interval of sources and receivers is 25m. The used 

Laplace constants range from 1.00 to 10.0 with an interval of 1.00. 
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Figure 10(b), Figure 11(b) and Figure 12(b) show the velocity model updates 

estimated using the seismic data obtained from Figure 10(a), Figure 11(a) and 

Figure 12(a) respectively. As shown in these figures, the resolution of the model 

update decreases as the depth of the target becomes deeper. This is because the 

range of scattering angles is limited as the depth increases. The limitation of the 

range of scattering angles appears both in the vertical scattering attenuation 

constant vector and in the nearly horizontal scattering attenuation constant 

vector reducing the vertical and horizontal resolution. From these numerical 

examples, we can confirm that the resolution of the model becomes poor as the 

target depth is increased.  
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(a) 

 

(b) 

Figure 10 (a) True velocity model with a Gaussian anomaly of 3.50 km/s 

maximum velocity in a shallow region and (b) its estimated model update. 
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(a) 

 

(b)  

Figure 11 (a) True velocity model with a Gaussian anomaly of 3.50 km/s 

maximum velocity in the center and (b) its estimated model update. 
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(a) 

 

(b) 

Figure 12 (a) True velocity model with a Gaussian anomaly of 3.50 km/s 

maximum velocity in a deep region and (b) its estimated model update. 
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Model resolution and types of experimental setup 

There are many types of surface exploration in addition to surface experiments. 

This section investigates how the horizontal and vertical resolution of a model 

changes in surface reflection profiling (SRP), vertical seismic profiling (VSP) 

and cross-hole experiments similar to that performed by Virieux and Operto 

(2009). The experimental settings used in these tests are mostly similar to the 

experimental settings used in Figure 11 and differ only in the source-receiver 

positions. In the case of the SRP, the sources and receivers are all located along 

the top. In the case of the VSP, the sources are located along the top, the 

receivers along the left-side. Finally, in the case of the cross-hole experiment, 

the sources are located along the left-side, the receivers along the right-side.  

As explained in Chapter 2, the relationship among the scattering attenuation 

constant, Laplace constant and incident angle in the Laplace domain 

corresponds exactly to the relationship among the scattering wavenumber, 

frequency and incident angle in the frequency domain. This similarity enables 

the analysis of spectral coverage in each experimental setup in the frequency 

domain to be applied to that of the Laplace domain. Devaney (1984) and Wu 

and Toksӧz (1987) suggested the spectral coverage of the SRP data, VSP data 

and cross-hole data in the frequency domain. By using the analysis in the 

frequency domain, we can easily determine the coverage of scattering 

attenuation constants of each experimental setup as shown Figure 13.  

Figure 13(a), (b) and (c) show the theoretical attenuation-constant coverage of 

the SRP data, VSP data and cross-hole data, respectively. By using the 

theoretical attenuation constant coverage, we can expect resolution change in 

any direction depending on the experimental setups.  

All distances from the sources or receivers to the nearest boundary are 25m. 
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Both the interval of the sources and the interval of the receivers is 25m. In the 

case of the SRP, there are many attenuation constant vectors in the vertical 

direction and no attenuation constant vectors in the horizontal direction as 

shown in Figure 13(a). Therefore, the resolution in the horizontal direction is 

considerably worse than that in the vertical direction (Figure 14(b)).  

On the other hand, in the case of the VSP, the range of the attenuation constant 

vectors whose directions are from top-left to bottom-right is wide and there is 

no attenuation constant vector whose direction is from top-right to bottom-left 

as shown in Figure 13(b). Therefore, the resolution from top-right to bottom-

left is worse than the resolution from top-left to bottom-right (Figure 14(c)). 

Finally, in the case of the cross-hole experiment, the range of the attenuation 

constant vectors in the vertical direction is wide and the vertical resolution is 

high as shown in Figure 13(c). Instead, the range of the attenuation constant 

vectors in the horizontal direction is limited to small values so the horizontal 

resolution is worse than the vertical resolution (Figure 14(d)). 
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(a) 

 

(b) 
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(c) 

Figure 13 The coverages of scattering attenuation constants in the case of (a) 

the SRP data, (b) the VSP data and (c) the cross-hole data, where 𝜎 is the 

Laplace constant of the wavefìeld, and 𝑐0 is velocity. 𝛂 = (𝛼𝑥 , 𝛼𝑧) is the 2D 

scattering attenuation constant vector.  
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(a) 

 

(b)  
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(c) 

 

(d) 

Figure 14 (a) The velocity model with a Gaussian, high-velocity anomaly, (b) 

the update of the model parameters in the SRP, (c) the update of the model 

parameters in the VSP and (c) the update of the model parameters in the cross-

hole exploration environment. The red line indicates the location of the sources, 

and the blue line indicates the location of the receivers. 
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Chapter 5  An efficient strategy for Laplace 

constant selection  

 

This chapter introduces a strategy for selecting a set of Laplace constants that 

keep the condition number reasonable while minimizing cost. We show that 

Laplace-domain WI is well-conditioned when it satisfies the conditions of 

continuity and minimum redundancy of attenuation constants. We also show 

how the Laplace constant should be chosen so that the vertical attenuation 

constant vector satisfies both conditions. To make the strategy more efficient, 

we further propose a modified method considering the geometrical spreading 

effect. We will also see if this strategy is valid even if the medium is 2D or 3D 

and heterogeneous. 
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5.1 Continuity and redundancy of attenuation constants  

 

Park et al. (2010) has already proposed a method for reasonably determining 

the maximum and minimum values of the Laplace constant considering 

numerical error and depth penetration. Therefore, in this paper, we limit the 

discussion to how Laplace constants should be chosen between arbitrary upper 

and lower bounds of Laplace constants, but not how to determine the maximum 

or minimum of the Laplace constant. These minimum and maximum Laplace 

constants are assumed to be 𝜎1  and 𝜎𝑁𝜎 , respectively, as defined in the 

previous section. Using Equation (2.4.11), the attenuation constant 𝛼 can be 

restricted to the following maximum and minimum values: 

 
2𝜎1
𝑐0
𝑐𝑜𝑠𝜃𝑚𝑎𝑥 = 𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥 =

2𝜎𝑁𝜎
𝑐0

, (5.1.1) 

where 𝜃 is the scattering (or incident) angle and 𝜃 satisfies 0 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥.  

We should consider conditions of 𝛼 which should be satisfied to make the 

inverse problem well-conditioned, without unreasonable cost, in the situation 

where 𝛼 is bounded as in the above equation. If the sources and receivers are 

distributed densely enough near the top surface, the conditions that 𝛼 should 

satisfy are: 

1. Continuity 

and 

2. Minimum redundancy. 

The following sections explain why these two conditions hold to make the 

inversion problem efficient and well-conditioned. 
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Continuity of attenuation constants 

Suppose that there is an empty space in the range of 𝛼, as shown in Figure 15. 

The 𝛼s corresponding to this empty space are not parallel to other 𝛼s out of 

the empty space and can be sufficiently distinguished. The introduction of 

additional 𝛼s which are well distinct from other 𝛼s makes the problem more 

well-conditioned. Therefore, the presence of such an empty space in 𝛼 means 

that linearly independent bases, which can help to effectively reduce the 

condition number of the inverse problem, are not used. Thus, the case where 

𝛼s are filled between the minimum and maximum attenuation constants without 

empty sections is better-conditioned because it has more distinct bases than the 

case with empty sections. Therefore, it is preferred that the range of 𝛼s is 

continuous. 

 

 

Figure 15 A diagram of attenuation constants illustrating the importance of 

continuity. The white circles represent attenuation constants with the empty 

sections that were originally present, and the gray circles represent attenuation 

constants that may be added to the empty section. 

 

Less redundancy of attenuation constants 

Suppose now that the attenuation constants are already set densely through the 

entire range. Now consider that additional Laplace constants may be introduced 
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as shown in Figure 16. This single additional Laplace constant generates 

additional attenuation constants within the range of existing attenuation 

constants. The attenuation constants generated by the newly introduced Laplace 

constant have values that are not significantly different from those existing. 

This means that the bases of the newly introduced Laplace constants are nearly 

dependent on the existing basis and do not contribute much to the reduction of 

the condition number. Therefore, the additional Laplace constants do not 

contribute to the improvement of model resolution.  

The important thing to consider here is the additional costs of introducing new 

attenuation constants. Additional forward wavefield modeling processes are 

necessary for a new Laplace constant generating the new attenuation constants. 

Therefore, the addition of attenuation constants that overlap with the original 

range of attenuation constants is not an efficient choice because the degree of 

enhancement of the model update is insignificant compared to the additional 

cost required by it. In other words, overlapping ranges of attenuation constants 

created by different Laplace constants cause inefficiencies. 

 

 

Figure 16 A diagram of attenuation constants illustrating the importance of 

minimum redundancy of attenuation constants. The white circles represent 

densely filled attenuation constants that were originally present, and the gray 

circles represent attenuation constants that may be added to the empty section.  
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5.2 An efficient strategy for Laplace constant selection  

 

Our selection strategy is similar to the frequency selection strategy suggested 

by Sirgue and Pratt (2004) due to the similarity between the Green’s functions 

in both the Laplace and frequency domain. Similarly to the frequency selection 

strategy, the purpose of the Laplace constant strategy is to make the vertical 

attenuation constants continuous and minimally redundant for all given source-

receiver pairs and Laplace constants.  

Given source-receiver pairs, the range of vertical attenuation constants of a 

single Laplace constant is defined. The vertical attenuation constant is at a 

maximum when the scattering angle is its smallest and the vertical attenuation 

constant is at a minimum when the scattering angle is at its largest. Therefore, 

we can express the maximum and minimum vertical attenuation constants of a 

single Laplace constant as follows: 

 

𝛼𝑖,𝑚𝑎𝑥 =
2𝜎𝑖
𝑐0
, 

𝛼𝑖,𝑚𝑖𝑛 =
2𝜎𝑖
𝑐0
𝑐𝑜𝑠 𝜃𝑚𝑎𝑥, 

(5.2.1) 

where 𝜃𝑚𝑎𝑥 is the maximum angle at the depth of the target layer. 

To make the vertical attenuation constants continuous, the maximum vertical 

attenuation constant of the 𝑖th Laplace constant should be equal to or larger 

than the minimum vertical attenuation constant of the 𝑖 + 1th Laplace constant. 

Also, to make the vertical attenuation constants have minimum redundancy, the 

maximum vertical attenuation constant of the 𝑖th Laplace constant should be 

equal to or smaller than the minimum vertical attenuation constant of the 𝑖 +

1th Laplace constant. To satisfy these two conditions (continuity and minimum 
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redundancy), the maximum vertical attenuation constant of the 𝑖 th Laplace 

constant should be equal to the minimum vertical attenuation constant of the 

𝑖 + 1th Laplace constant: 

 𝛼𝑖+1,𝑚𝑖𝑛 = 𝛼𝑖,𝑚𝑎𝑥. (5.2.2) 

Using this condition, we can obtain a recurrence formula of Laplace constants 

for satisfying continuity and minimum redundancy:  

 𝜎𝑖+1 =
𝜎𝑖

𝑐𝑜𝑠 𝜃𝑚𝑎𝑥
. (5.2.3) 

The suggested strategy allows us to choose Laplace constants which make the 

coverage of the vertical scattering attenuation constants continuous and 

minimize vertical attenuation constant redundancy. From equation (5.2.3), we 

can confirm that larger of offset-depth ratios, require fewer Laplace constants 

in Laplace-domain WI. This property is similar with frequency selection for 

frequency-domain WI. 

Figure 17(a) and (b) show that the algorithm can be efficiently performed 

without overlapping scattering attenuation constants by selecting Laplace 

constants such that 𝛼𝑖+1,𝑚𝑖𝑛 and 𝛼𝑖,𝑚𝑎𝑥 are equal. Figure 17(a) and (b) show 

how the Laplace constants should be selected to satisfy the continuity condition 

and the minimum redundancy condition when the offset-depth ratio is large or 

small, respectively. Figure 17 shows that a larger the offset-depth ratio, sparser 

the Laplace constants can be selected. 
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(a) 

 

(b) 

Figure 17 Illustration of the Laplace constant selection strategy. (a) and (b) 

show how the Laplace constants should be selected to satisfy the continuity 

condition and the minimum redundancy condition when the offset-depth ratio 

is large or small, respectively.  
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5.3 A modified Laplace constant selection strategy 

considering the geometrical spreading 

As shown in Chapter 2.5, the geometrical spreading effect acts like an 

additional exponential term because the attenuation due to the geometrical 

spreading effect is hard to distinguish from the attenuation due to the Laplace 

constants in Laplace-domain WI. Therefore, if we do not consider the 

geometrical spreading effect as in Equation (5.2.3), the additional attenuation 

caused by geometrical spreading effect causes redundancy of basis. Therefore, 

considering the geometrical spreading effect, it is more reasonable to use a 

wider interval than the interval obtained from Equation (5.2.3). This section 

describes how to choose the Laplace constants considering the geometrical 

spreading effect in more detail. 

According to Appendix A, the geometrical spreading effect can be 

approximately considered for the wavepath as follows. Generally, the Rytov 

wavepath of Laplace domain in 1D model case can be expressed as  

 𝐿(𝑛𝐷)(𝐬, 𝐠,𝐦, 𝜎) ≈ 𝐵(𝑛𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp(−
2𝜎𝑎𝑝𝑝

(𝑛𝐷)

𝑐0
𝑐𝑜𝑠𝜃𝑧), (5.3.1) 

where 

 𝜎𝑎𝑝𝑝
(𝑛𝐷) =

{
 
 

 
  𝜎 +

𝑐0
𝑅
            𝑖𝑓 𝑛 = 3

𝜎 +
𝑐0
2𝑅

           𝑖𝑓 𝑛 = 2

     𝜎                  𝑖𝑓 𝑛 = 1

. (5.3.2) 

𝜎𝑎𝑝𝑝
(𝑛𝐷)

 is the n-dimensional apparent Laplace constant. Substituting Equation 

(5.3.2) into Equation (5.2.3), we can obtain the relations of Laplace constants 

in 1D, 2D and 3D cases as:  
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 𝜎𝑖+1
(𝑛𝐷)

=

{
 
 
 

 
 
 𝜎𝑖 +

𝑐0
𝑅𝑚𝑖𝑛

𝑐𝑜𝑠 𝜃𝑚𝑎𝑥
−

𝑐0
𝑅𝑚𝑎𝑥

      𝑖𝑓 𝑛 = 3

𝜎𝑖 +
𝑐0

2𝑅𝑚𝑖𝑛
𝑐𝑜𝑠 𝜃𝑚𝑎𝑥

−
𝑐0

2𝑅𝑚𝑎𝑥
  𝑖𝑓 𝑛 = 2

           
𝜎𝑖

𝑐𝑜𝑠 𝜃𝑚𝑎𝑥
              𝑖𝑓 𝑛 = 1

, (5.3.3) 

where 𝜃𝑚𝑎𝑥 is the maximum angle at the depth of the target layer, and 𝑅𝑚𝑖𝑛 

and 𝑅𝑚𝑎𝑥 are the shortest and longest distance from source (or receiver) to 

scattering point at the target layer, respectively. As shown in Equation (5.3.3), 

we can select the Laplace constants more sparsely due to the geometrical 

spreading effect in 2D and 3D cases. Figure 18 shows the Laplace-constant 

discretization strategy of 1D, 2D and 3D cases. 

 

  



 

80 
 

 

 

 

 

 

 

(a)          (b)      (c) 

Figure 18 (a), (b), and (c) illustrate the Laplace constant selection strategy in 

one-, two-, and three-dimensions, respectively. A single Laplace constant 

produces a range of vertical attenuation constants of the wavepath, and Laplace 

constants are chosen such that the vertical attenuation constants are continuous 

and do not overlap across all ranges. 
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5.4 Effectiveness of the Laplace constant selection 

strategy in a 2D or 3D heterogeneous medium  

 

The suggested strategy assumes that there are only straight rays in a 

homogeneous medium. The incident angles and the scattering angles also 

produce the vertical components of attenuation constant vector near the target. 

However, when we apply Laplace-domain WI to actual velocity models, we 

cannot make a 1D model assumption and a homogeneous analytic solution 

assumption. Therefore, the wave rays can be bent or non-perpendicular 

components can exist. As explained above, the nature of the attenuation 

constant vector of the wavepath in the Laplace domain shows large similarity 

with that of the wavenumber vector of the wavepath in the frequency domain. 

Due to its similarity, several changes of the attenuation constant vector of the 

wavepath in the Laplace domain are also similar to those of the wavenumber 

vector of the wavepath in the frequency domain, which are explained well in 

Sirgue and Pratt (2004). The validity of the Laplace constant selection strategy 

in the case of a 2D or 3D heterogeneous medium will be examined by 

comparing its similarity to the frequency selection strategy: 

 

Existence of non-vertical attenuation constant vectors  

In 2D or 3D heterogeneous models, the incident and scattering rays are not 

symmetric due to inclined reflective surfaces. Therefore, the inversion process 

generates non-vertical attenuation constant vectors as well as vertical 

attenuation constant vectors even though the Laplace constant selection 

strategy is derived with an assumption of 1D vertical models. 
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Ray bending 

In the heterogeneous model, the ray bends due to wave refraction. In many 

cases, velocity increases with depth. The incident angle widens and the 

attenuation constant decreases. Extremely wide incident angles such as diving 

waves provide extremely low attenuation constants. The attenuation constant 

coverage of a single Laplace constant in this case is wider than the attenuation-

constant coverage assuming a homogeneous model. Therefore, the application 

of the Laplace selection strategy can create some redundancy in the attenuation-

constant coverage. Fortunately, the continuity of the attenuation-constant 

coverage can be preserved in this case. 

 

Amplitude loss caused by reflections 

In a heterogeneous medium, when wavefields meet the reflective surface, 

some are reflected and others are transmitted. This causes amplitude loss and 

changes the amplitude of the Laplace-domain wavepath. This amplitude loss 

does not change the attenuation constant vector in a local smooth area between 

reflective surfaces since. Amplitude loss occurs only at the reflective surface. 

That is, it has the effect of multiplying only constants to the wavepath. 

Therefore, the amplitude loss caused by reflections need not be considered in 

the Laplace constant selection strategy. 

 

 

Difficulty of defining a representative velocity 

If we consider the geometrical spreading effect, the representative velocity 
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needs to be considered in the Laplace constant selection strategy as shown in 

Equation (5.3.3). However, it is difficult to determine the representative 

velocity. If the representative velocity is set too high, there will be a problem 

with the continuity of attenuation constants. If the velocity is set too low, the 

redundancy of attenuation constants will increase. Satisfying the minimum 

redundancy of attenuation constants guarantees efficiency, while satisfying 

continuity ensures accuracy. Therefore, one has to choose between efficiency 

and accuracy. If accuracy is chosen as a priority, it is safe to set the 

representative velocity to the lowest expected velocity of the entire model. If 

efficiency is a priority, we recommend using the estimated average velocity of 

the entire model to the representative velocity. 

We can confirm that the Laplace constant selection strategy is effective in 

maintaining the continuity of attenuation constants in 2D and 3D heterogeneous 

models considering only the representative velocity setting. 
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5.5 Numerical examples 

Three-layered model 

To verify the validity of the proposed Laplace constant selection strategy, we 

implement a comparison test with a 1D velocity model whose size is 10 km×3 

km as shown in Figure 19. In this comparison test, inversion using the set of 

Laplace constants selected from the proposed strategy is compared to inversion 

using a set of Laplace constants with fixed intervals. The true velocity model is 

a three-layered model whose velocities are 1.7, 3.5 and 1.7 km/s from the top 

as shown in Figure 19. We use a homogeneous starting velocity model whose 

velocity is 1.7 km/s where the maximum offset is 10 km and the grid interval is 

0.025 km. The fixed spread experiment was conducted for this test. The number 

of sources is 440 and the number of receivers is 440. The depth of sources and 

receivers is 25m. Both the interval of the sources and the interval of the 

receivers are 25m. In this test, we set the maximum depth, 3 km, as the depth 

of the target layer. We also fix the minimum and maximum Laplace constants 

as 1.0 s−1 and 10.0 s−1, respectively. 

Given the maximum offset (10 km) and the depth of the target layer (3 km), 

the cosine value of 𝜃𝑚𝑎𝑥  is 0.088, 𝑅𝑚𝑖𝑛  is 3 km, and 𝑅𝑚𝑎𝑥  is 5.83 km. 

Therefore, the set of Laplace constants (s−1) selected by the suggested strategy 

is {1.000, 2.349, 4.970, 10.00}. The inversion using the set of Laplace constant 

is compared with the inversion using 8 sets of Laplace constants with fixed 

intervals as shown in Table 1. For Laplace-domain WI, we used the truncated 

Gauss-Newton method. After Laplace-domain WI was performed using the sets 

of Laplace constants in Table 1, the relative model misfit of each result was 

calculated using the following equation:  
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 𝑚𝑜𝑑𝑒𝑙 𝑚𝑖𝑠𝑓𝑖𝑡 =
1

𝑀𝑙
‖
𝑚𝑖𝑛𝑣 −𝑚𝑡𝑟𝑢𝑒

𝑚𝑡𝑟𝑢𝑒
‖
1

, (5.5.1) 

where 𝑚𝑖𝑛𝑣  is the inverted model parameter,  𝑚𝑡𝑟𝑢𝑒  is the true model 

parameter and 𝑀𝑙 is the number of model parameters on the vertical dotted line 

positioned at the center of the model. The first test was performed with 2500 

iteration, which is expected to be sufficient for convergence. The relative model 

misfit of each result is shown in Table 2. 

The relative model misfit of the results obtained from the proposed strategy is 

less than or equal to the relative model misfits of all the results obtained from 

the fixed interval strategy. The model misfit obtained by using the proposed 

Laplace constant selection strategy is less than or equal to the model misfit 

obtained through Laplace constants with a fixed interval, which is smaller than 

the smallest interval of the Laplace constant obtained through the proposed 

strategy. This implies that the proposed strategy for Laplace constants selection 

guarantees the continuity of the scattering attenuation constants and allows us 

to appropriately select the set of Laplace constants to such an extent that the 

exponential basis function sufficiently reflects the model.  

The second test was performed with the same computational cost. This 

experiment compares the efficiency of each strategy shown in Table 1. It 

investigates whether or not the minimum redundancy of the scattering 

attenuation constant is guaranteed in each case. Because the number of 

modeling per iteration is set to the same, the computation cost of each strategy 

is equal if the product of the number of iterations and Laplace constants is 

constant. In this experiment, the product of the number of iterations and the 

number of Laplace constants is 5000 to compare the model misfit with the same 

calculation cost. The relative model misfit of each result is shown in Table 3. 
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The relative model misfit of the results obtained from the proposed strategy is 

much less than the relative model misfits of all the results obtained from the 

fixed interval strategy. This implies that the proposed strategy for Laplace 

constants selection guarantees the minimum redundancy of the scattering 

attenuation constants and allows us to perform the inversion process efficiently.  
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Figure 19 Three-layered velocity model. The relative model misfit of each 

inverted model parameter on the vertical dotted line is compared for this test. 
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Table 1 Description of the set of Laplace constants used in each strategy. 
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Table 2 The relative model misfit of inverted model parameters obtained from 

each strategy with 2500 iterations, which is sufficient for convergence. 
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Table 3 The relative model misfit of inverted model parameters obtained from 

each strategy with the same computational cost. 
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SEG/EAGE Salt dome model 

The validity of the proposed Laplace constant selection strategy in 1D model 

cases was verified by the previous test using the three-layered velocity model. 

To verify the validity of the proposed Laplace constant selection strategy in a 

complex velocity model case, we also implement a comparison test with the 

SEG/EAGE salt dome model shown in Figure 20(a). In this comparison test, 

the results inverted with the set of Laplace constants selected from the proposed 

strategy is compared to two results inverted with the sets of Laplace constants 

selected sparsely or densely with fixed intervals.  

The seismic data was generated using the 6th order finite-difference method 

(FDM) in the frequency domain. The fixed spread experiment was conducted 

for this test. The number of sources and receivers is 779. The maximum offset 

is 15.56 km. The depth and interval of sources and receivers is 20m. A 1D 

model, whose velocity increases from 1679m/s at the top to 3000m/s at the 

bottom, was used as an initial model for the Laplace-domain WI test (Figure 

20(b)). We constrained the maximum velocity to 4450 m/s and the minimum 

velocity to 1679 m/s. In this test, we set the maximum depth, 4.180 km, as the 

depth of the target layer.  

Given the maximum offset (15.56 km) and the depth of the target layer (4.180 

km), the set of Laplace constants (s−1) selected by the suggested strategy is 

{0.500, 1.063, 2.258, 4.798, 10.20}. The results inverted with the set of Laplace 

constants is compared with the results inverted with two sets of Laplace 

constants with fixed intervals as shown in Table 4. For Laplace-domain WI, we 

used the truncated Gauss-Newton method. After Laplace-domain WI was 

performed using the sets of Laplace constants in Table 4, the relative model 

misfit of each result was calculated using the following equation:  
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 𝑚𝑜𝑑𝑒𝑙 𝑚𝑖𝑠𝑓𝑖𝑡 =
1

𝑀
‖
𝑚𝑖𝑛𝑣 −𝑚𝑡𝑟𝑢𝑒

𝑚𝑡𝑟𝑢𝑒
‖
1

, (5.5.2) 

where 𝑚𝑖𝑛𝑣  is the inverted model parameter,  𝑚𝑡𝑟𝑢𝑒  is the true model 

parameter and 𝑀 is the number of model parameters.  

The comparison test was performed with the same computational cost. This is 

an experiment that compares the efficiency of each strategy shown in Table 4. 

Because the total number of modellings per iteration constant, the computation 

cost of each strategy is equal if the product of the number of iterations and the 

number of Laplace constants is equal. In this experiment, the product of the 

number of iterations and the number of Laplace constants is set to 300 to 

compare the model misfit with the same calculation cost.  

Figure 21(a) shows the velocity model inverted with Laplace constants 

selected by the proposed strategy. Figure 21(b) and (c) show the velocity 

models inverted with Laplace constants selected with sparse and dense intervals, 

respectively. As shown in Figure 21, the inverted result obtained from Laplace 

constants selected with the proposed strategy is closer to the true model (Figure 

20(a)) than the results obtained from the two sets of Laplace constants selected 

at fixed intervals. It can be confirmed that the Laplace constants obtained from 

the proposed strategy can estimate low velocity zones below salt domes more 

accurately. 

Figure 22 shows the model misfit of each velocity model obtained through 

each strategy depending on computational cost. As the inversion process 

proceeds, it can be seen that the velocity model obtained through the proposed 

Laplace constant selection strategy always shows a relatively low model misfit 

at the same calculation cost. It is confirmed that the use of the Laplace constants 

obtained from the proposed strategy is effective not only for the 1D model but 
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also for the complex model.  
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(a) 

 

(b) 

Figure 20 (a) The true SEG/EAGE Salt dome velocity model and (b) the initial 

model. 
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Table 4 Description of the set of Laplace constants used in each strategy. 
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(a) 

 

(b) 

 

(c) 

Figure 21 Inversion results of the BP benchmark model obtained using the set 

of Laplace constants selected with (a) the proposed strategy, (b) the 

conventional strategy with a sparse interval and (c) the conventional strategy 

with a dense interval. 
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Figure 22 The relative model misfit of inverted model parameters obtained 

from each strategy depending on the product of the number of iterations and 

the number of Laplace constants, which represents the computational cost. 
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Chapter 6  Discussions & Conclusions 

 

In this paper, we re-analyze the wavepath of the Laplace domain by 

introducing the concept of attenuation constants in the spatial domain. We 

prove that the Laplace-domain wavepath can be approximated to a real 

exponentially decaying basis, whose exponent is the product of the scattering 

attenuation constant vector and the space vector. It is also confirmed that the 

magnitude of the scattering attenuation constant vector is a function of the 

incident angle as well as the Laplace constant.  

Several facts can be seen through the natures of the Laplace-domain wavepath. 

First, we can confirm that Laplace-domain WI is an ill-conditioned problem 

through the fact that the Laplace-domain wavepath is a real exponential 

decaying basis. We can confirm that the Gauss-Newton method should be used 

to obtain a satisfactory convergence rate. The truncated Gauss-Newton method 

using CG algorithm can be used as a solution to overcome the high-

computational cost of the Gauss-Newton method. This requires a stopping 

criterion that detects the accuracy of locally quadratic approximations and 

prevents over-solving. The numerical example using the BP benchmark model 

shows that the truncated Gauss-Newton method plays a role in preventing 

distortion of the model update in Laplace-domain WI. 

Second, the model resolution in the Laplace domain can be analyzed by 

introducing the concept of scattering attenuation constants. The range of 

attenuation constants affects the model resolution and scattering attenuation 

constant depends on the incident angle. These two facts make it possible to 

predict how model resolution varies with varying shot-receiver geometry and 

target positions. This analysis can explain the degradation of model resolution 
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as the depth is increased, which was observed in Bae et al. (2012) and Ha et al. 

(2012). Also, resolution change depending on the exploration environment can 

be explained as well. The incident-angle dependency of the model resolution of 

the Laplace domain is very similar to that of the frequency domain. This can be 

explained by the scattering attenuation constants of the Laplace domain, and 

the scattering wavenumbers of the frequency domain. Both affect the model 

resolution, are proportional to the cosine value of the incident angle. 

Finally, the introduction of the concept of scattering attenuation constants can 

provide an efficient strategy for selecting the Laplace constants. This strategy 

is similar to the frequency selection strategy which was suggested by Sirgue 

and Pratt (2004). The Laplace constant selection strategy maintains the 

continuity of the range of attenuation constants for accuracy and minimizes the 

overlap of the range of attenuation constants for efficiency. Numerical 

examples show that the suggested Laplace constant selection strategy shows 

better accuracy and reduces cost compared to the conventional strategy.  

This paper explains various features of Laplace-domain WI, such as ill-

conditioning, scattering angle and the Laplace constant, which was not revealed 

in previous studies on Laplace-domain WI. Based on these analyses, we also 

present some new guidelines for Laplace-domain WI. This includes approaches 

such as the truncated Gauss-Newton method or the efficient Laplace-constant 

selection strategy. Moreover, this paper succeeded in raising the level of 

analysis of Laplace-domain WI to that of frequency-domain WI. Model 

resolution analysis was particularly highlighted by introducing a new concept 

called the attenuation constant corresponding to wavenumber. By 

demonstrating that the model resolution of Laplace-domain WI behaves 

similarly to frequency-domain WI, this paper suggests that the preceding 

studies on frequency-domain WI may be applied to Laplace-domain WI. In the 
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future, many techniques of frequency-domain WI are expected to be applied to 

Laplace-domain WI. In addition, this analysis for Laplace-domain WI is also 

expected to be applicable for other techniques using Laplace constants or 

complex frequencies. 
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Appendix A. Rytov wavepath considering the 

geometrical spreading 

 

1D case 

 𝐿(1𝐷)(𝐬, 𝐠,𝐦, 𝜎) ≈
𝜎2

𝑔0(𝐠|𝐬, 𝜎)

exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|))

4𝛼2
exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱) (A.1) 

Incident and scattering angles are always same due to Snell’s law. If 𝜃 is an 

incident angle or a scattering angle, we can express (𝐬̂ + 𝐠̂) as: 

 (𝐬̂ + 𝐠̂) = 2𝑐𝑜𝑠𝜃𝐧 (A.2) 

Therefore, we can replace 𝛼(𝐬̂ + 𝐠̂) of Equation (A.1) with Equation (A.2) 

and 𝛼 = 𝜎/𝑐0: 

 𝐿(1𝐷)(𝐬, 𝐠,𝐦, 𝜎) ≈
𝜎2

𝑔0(𝐠|𝐬, 𝜎)

exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|))

4𝛼2
exp (−

2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧 ∙ 𝐱) (A.3) 
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2D case 

 

𝐿(2𝐷)(𝐬, 𝐠,𝐦, 𝜎)

≈
𝜎2

𝑔0(𝐠|𝐬, 𝜎)

exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|)) exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱)

√8𝜋𝛼(|𝐫𝐬| + 𝐬̂ ∙ 𝐱)√8𝜋𝛼(|𝐫𝐠| + 𝐠̂ ∙ 𝐱)

 

≈
𝜎2

𝑔0(𝐠|𝐬, 𝜎)

exp(−𝛼(|𝐫𝒔| + |𝐫𝐠|))

8𝜋𝛼
 

exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱)

√(|𝐫𝐬| + 𝐬̂ ∙ 𝐱)(|𝐫𝐠| + 𝐠̂ ∙ 𝐱)

 

(A.4) 

If |𝐱| ≪ |𝐫𝐬| and |𝐱| ≪ |𝐫𝐠| (far-field approximation) 

 

𝐿(2𝐷)(𝐬, 𝐠,𝐦,𝜎)

≈
𝜎2

𝑔0(𝐠|𝐬, 𝜎)

exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|))

8𝜋𝛼
 

exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱)

√|𝐫𝐬||𝐫𝐠| + (|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂) ∙ 𝐱

 

≈
𝜎2

𝑔0(𝐠|𝐬, 𝜎)

exp(−𝛼(|𝐫𝒔| + |𝐫𝐠|))

8𝜋𝛼√|𝐫𝐬||𝐫𝐠|

 
exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱)

√1 +
|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂

|𝐫𝐬||𝐫𝐠|
∙ 𝐱

 

(A.5) 

If x is small, we can assume that 
1

√1+2𝑥
= exp(−𝑥) + 𝑂(𝑥2) . Since we 

assume |𝐱| ≪ |𝐫𝐬| and |𝐱| ≪ |𝐫𝐠|, we can approximate Equation (A.5) as: 

 

𝐿(2𝐷)(𝐬, 𝐠,𝐦, 𝜎) ≈ 𝐵(2𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp(−
|𝐫𝐠|𝐬 + |𝐫𝐬|𝐠̂

𝟐|𝐫𝐬||𝐫𝐠|
∙ 𝐱) exp(−𝛼(𝐬 + 𝐠̂) ∙ 𝐱) 

≈ 𝐵(2𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−(𝛼(𝐬̂ + 𝐠̂) +
|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂

𝟐|𝐫𝐬||𝐫𝐠|
) ∙ 𝐱) 

≈ 𝐵(2𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−(
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧 +

|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂

𝟐|𝐫𝐬||𝐫𝐠|
) ∙ 𝐱) 

(A.6) 
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3D case 

 𝐿(3𝐷)(𝐬, 𝐠,𝐦, 𝜎) ≈
𝜎2

𝑔0(𝐠|𝐬, 𝜎)

exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|)) exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱)

16𝜋2(|𝐫𝐬| + 𝐬̂ ∙ 𝐱)(|𝐫𝐠| + 𝐠̂ ∙ 𝐱)
 (A.7) 

 

If |𝐱| ≪ |𝐫𝐬| and |𝐱| ≪ |𝐫𝐠| (far-field approximation) 

 

𝐿(3𝐷)(𝐬, 𝐠,𝐦,𝜎)

≈
𝜎2

𝑔0(𝐠|𝐬, 𝜎)

exp (−𝛼(|𝐫𝒔| + |𝐫𝐠|))

16𝜋2
 

exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱)

|𝐫𝐬||𝐫𝐠| + (|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂) ∙ 𝐱
 

≈
𝜎2

𝑔0(𝐠|𝐬, 𝜎)

exp(−𝛼(|𝐫𝒔| + |𝐫𝐠|))

16𝜋2|𝐫𝐬||𝐫𝐠|
 
exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱)

1 +
|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂

|𝐫𝐬||𝐫𝐠|
∙ 𝐱

 

≈ 𝐵(3𝐷)(𝐬, 𝐠, 𝐨, 𝜎)  
exp(−𝛼(𝐬̂ + 𝐠̂) ∙ 𝐱)

1 +
|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂

|𝐫𝐬||𝐫𝐠|
∙ 𝐱

 

 

(A.8) 

If x is small, we can assume that 
1

1+𝑥
= exp(−𝑥) + 𝑂(𝑥2). Since we assume 

|𝐱| ≪ |𝐫𝐬| and |𝐱| ≪ |𝐫𝐠|, we can approximate Equation (A.8) as: 

 

𝐿(3𝐷)(𝐬, 𝐠,𝐦, 𝜎) ≈ 𝐵(3𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp(−
|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂

|𝐫𝐬||𝐫𝐠|
∙ 𝐱) exp(−𝛼(𝐬 + 𝐠̂) ∙ 𝐱) 

≈ 𝐵(3𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp(−(𝛼(𝐬̂ + 𝐠̂) +
|𝐫𝐠|𝐬 + |𝐫𝐬|𝐠̂

|𝐫𝐬||𝐫𝐠|
) ∙ 𝐱) 

≈ 𝐵(3𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp(−(
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧 +

|𝐫𝐠|𝐬 + |𝐫𝐬|𝐠̂

|𝐫𝐬||𝐫𝐠|
) ∙ 𝐱) 

(A.9) 

 

For the 1D model, the incident angle and scattering angle are symmetric and 

the scattering attenuation constant vector can be written: 
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𝛂𝑎𝑝𝑝
(1𝐷)(𝐬, 𝐠, 𝐨, 𝜎) = (0,

2𝜎

𝑐0
cos 𝜃) 

|𝐫𝐬| = |𝐫𝐠| = 𝑅 

𝐧 = (0, 1) 

𝐱 = (0, 𝑧) 

(A.10) 

Using Equation (A.10), we can obtain the wavepaths of the Laplace domain 

in 1D, 2D and 3D as follows: 

1D case 

 

𝐿(1𝐷)(𝐬, 𝐠,𝐦, 𝜎) ≈ 𝐵(1𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧 ∙ 𝐱) 

≈ 𝐵(1𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝑧) 

(A.11) 

2D case 

 

𝐿(2𝐷)(𝐬, 𝐠,𝐦, 𝜎)

≈ 𝐵(2𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−(
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧

+
|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂

2|𝐫𝐬||𝐫𝐠|
) ∙ 𝐱) 

≈ 𝐵(2𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (− (
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧 +

𝐬̂ + 𝐠̂

2𝑅
) ∙ 𝐱) 

≈ 𝐵(2𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−(
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧 +

1

𝑅
𝑐𝑜𝑠𝜃𝐧) ∙ 𝐱) 

≈ 𝐵(2𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−
2

𝑐0
(𝜎 +

𝑐0
2𝑅
) 𝑐𝑜𝑠𝜃𝑧) 

(A.12) 

3D case 



 

105 
 

 

𝐿(3𝐷)(𝐬, 𝐠,𝐦, 𝜎)

≈ 𝐵(3𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−(
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧

+
|𝐫𝐠|𝐬̂ + |𝐫𝐬|𝐠̂

|𝐫𝐬||𝐫𝐠|
) ∙ 𝐱) 

≈ 𝐵(3𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (− (
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧 +

𝐬̂ + 𝐠̂

𝑅
) ∙ 𝐱) 

≈ 𝐵(3𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−(
2𝜎

𝑐0
𝑐𝑜𝑠𝜃𝐧 +

2

𝑅
𝑐𝑜𝑠𝜃𝐧) ∙ 𝐱) 

≈ 𝐵(3𝐷)(𝐬, 𝐠, 𝐨, 𝜎) exp (−
2

𝑐0
(𝜎 +

𝑐0
𝑅
)𝑐𝑜𝑠𝜃𝑧) 

(A.13) 
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Appendix B. Truncated Gauss-Newton method 

 

Algorithm 1 shows the truncated Gauss-Newton method algorithm for FWI 

suggested by Métivier et al. (2013). The truncated Gauss-Newton method is 

based on the computation of the descent direction by the conjugate gradient 

(CG) algorithm. As shown in Algorithm 1, Laplace-domain wavefield, gradient, 

and Hessian-vector product should be computed in the truncated Gauss-Newton 

method algorithm. The Laplace-domain wavefield can be calculated using 

Equation (2.1.6). In this section, we explain how to calculate the gradient and 

Hessian-vector product.  

 

Gradient computation 

The gradient ∇𝐸(𝑝) can be expressed as follows: 

 ∇𝐸(𝑝) =∑∑𝐋(𝑠, 𝑝, 𝜎)𝑇𝐫(𝑠, 𝜎)

𝑠𝜎

 (B.1) 

where 𝐋(𝑠, 𝑝, 𝜎)  and 𝐫(𝑠, 𝜎)  are the wavepath and residual vector, 

respectively. The Laplace-domain wavepath 𝐋(𝑠, 𝑝, 𝜎) can be expressed using 

the discretized impedance matrix 𝐒(𝜎): 

 𝐋(𝑠, 𝑝, 𝜎) = 𝐑(𝑠, 𝜎)𝐒(𝜎)−1 [
𝜕𝐒(𝜎)

𝜕𝑝
𝐮s(𝜎)] (B.2) 

where 𝐑(𝑠, 𝜎)  is a mapping of the wavefield to the receiver locations 

including the weight which varies with the receiver locations. 𝐫(𝑠, 𝜎) and 

𝐑(𝑠, 𝜎) depend on what objective function is used. By putting Equation (B.2) 

into (B.1), we can obtain the gradient formula 
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∇𝐸(𝑝) =∑∑[
𝜕𝐒(𝜎)

𝜕𝑝
𝐮𝑠(𝜎)]

𝑇

𝐒(𝜎)−1
𝑇
𝐑(𝑠, 𝜎)𝑇𝐫(𝑠, 𝜎)

𝑠𝜎

 

=∑∑[
𝜕𝐒(𝜎)

𝜕𝑝
𝐮𝑠(𝜎)]

𝑇

𝛌𝑠(𝜎)

𝑠𝜎

 

(B.3) 

where  

 𝐒(𝜎)𝛌𝑠(𝜎) = 𝐑(𝑠, 𝜎)
𝑇𝐫(𝑠, 𝜎). (B.4) 

𝛌𝑠(𝜎) is called the adjoint state. To obtain the gradient, we first solve Equation 

(2.1.6) for 𝐮𝑠(𝜎), Equation (B.4) for 𝛌𝑠(𝜎), and finally calculate Equation 

(B.3) using 𝐮𝑠(𝜎)  and 𝛌𝑠(𝜎) . Therefore, only two forward modelling 

processes for one shot-gather and a single Laplace constant are necessary to 

yield the gradient ∇𝐸(𝑝). 

 

Hessian-vector product computation 

The Hessian 𝐇(𝑝) can be expressed as follows: 

 𝐇(𝑝) =∑∑𝐋(𝑠, 𝑝, 𝜎)𝑇𝐋(𝑠, 𝑝, 𝜎)

𝑠𝜎

 (B.5) 

By putting Equation (B.2) into (B.5), we can obtain the Hessian-vector product: 

 

𝐇(𝑝)𝐱 =∑∑[
𝜕𝐒(𝜎)

𝜕𝑝
𝐮𝑠(𝜎)]

𝑇

𝐒(𝜎)−1
𝑇
𝐑(𝑠, 𝜎)𝑇

𝑠𝜎

𝐑(𝑠, 𝜎)𝐒(𝜎)−1 [
𝜕𝐒(𝜎)

𝜕𝑝
𝐮𝑠(𝜎)] 𝐱 

=∑∑[
𝜕𝐒(𝜎)

𝜕𝑝
𝐮𝑠(𝜎)]

𝑇

𝛏𝑠(𝜎)

𝑠𝜎

 

(B.6) 

where  
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 𝐒(𝜎)𝛏𝑠(𝜎) = 𝐑(𝑠, 𝜎)
𝑇𝐑(𝑠, 𝜎)𝐒(𝜎)−1𝛂𝑠(𝜎) 

(B.7) 

and  

 𝐒(𝜎)𝛂𝑠(𝜎) = [
𝜕𝐒(𝜎)

𝜕𝑝
𝐮𝑠(𝜎)] 𝐱. 

(B.8) 

To obtain the Hessian-vector product, we first solve Equation (B.8) for 𝛂𝑠(𝜎), 

Equation (B.7) for 𝛏𝑠(𝜎). And finally calculate Equation (B.6) using 𝛂𝑠(𝜎) 

and 𝛏𝑠(𝜎). If the Laplace-domain wavefield 𝐮𝑠(𝜎) is stored in a computer’s 

memory, it does not have to be recomputed. Thus, only two forward modelling 

processes for a single shot-gather and a single Laplace constant are necessary 

to yield the Hessian-vector product 𝐇(𝑝)𝐱. 
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Algorithm 1 Truncated Gauss-Newton method (Métivier et al., 2013) 
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초    록 

 

라플라스 영역에서의 파동경로 분석과  

이에 따른 파형역산의 전략 

 

권 정 민 

에너지시스템공학부 

서울대학교 대학원 

 

라플라스 영역 파형역산 알고리즘은 장파장 탄성파 속도 모델 

추정 기술로서, 주파수 영역 및 시간 영역 파형역산과 같은 

고해상도 속도 모델 추정 기술에 초기 속도 모델을 제공하는 

용도로 사용된다. 주파수 영역 및 시간 영역 파형역산은 초기 속도 

모델에 대단히 민감하기 때문에, 라플라스 영역 파형역산의 

정확성은 전체 속도 모델 추정 과정에 있어서 대단히 중요한 

요소이다. 또한 라플라스 파형역산에서 사용되는 라플라스 영역 

파동장은 얻는 과정에서 많은 비용을 요구하기 때문에, 기술의 

경제성 측면에서 라플라스 파형역산의 수렴속도 및 효율성은 역산 

과정의 성패를 가르는 중요한 요소이다. 그러나 기존의 라플라스 

파형역산에 대한 연구들에서는 모델 파라미터와 자료간의 관계를 

나타내는 파동경로(wavepath)에 대한 고찰이 불충분한 관계로 

모델 해상도 및 수렴속도 분석을 수행하는 데 어려움이 있었다. 본 

연구는 기존의 연구에서 밝히지 못하였던 라플라스 영역의 

파동경로의 성질을 규명하고, 이를 통해 기존의 연구에서 제대로 
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수행하지 못하였던 라플라스 영역 파형역산에 대한 수렴속도 및 

모델 해상도, 그리고 효율성 분석을 수행한다. 먼저 공간 영역에 

대한 라플라스 상수라 할 수 있는 감쇠 상수(attenuation 

constant)라는 개념을 도입함으로써 라플라스 영역의 파동경로가 

근사적으로 감쇠 상수 벡터와 공간 벡터의 곱을 지수로 하는 실 

지수함수 기저임을 증명한다. 이에 더하여 본 연구는 라플라스 

영역의 파동 경로가 큰 조건수를 가지는 실 지수함수인 것을 통해, 

빠른 수렴속도를 위해서는 라플라스 영역 파형역산에 

가우스뉴턴법을 적용하는 것이 합리적임을 밝힌다. BP 벤치마크 

모델의 수치 예제는 이러한 라플라스 영역 파형역산 알고리즘에서 

가우스뉴턴법이 가지는 효용성을 증명해준다. 그리고 감쇠 상수 

벡터가 라플라스 상수와 파의 입사 각도에 대한 함수임을 

증명함으로써, 라플라스 영역 파형역산을 통해 높은 해상도의 

모델을 얻기 위해서는 넓은 범위의 입사 각도가 필수적임을 밝힌다. 

이러한 모델 해상도와 입사 각도 범위와의 관계는 오프셋-

심도비(offset-depth ratio)가 증가함에 따라 모델 해상도가 

낮아지는 이유를 설명해주며, 탐사환경에 따른 수평 및 수직 

해상도의 변화 역시 예측할 수 있게 한다. 마지막 본 연구는 

라플라스 영역 파형역산의 효율성을 향상시키는 방법으로 효율적인 

라플라스 상수 선택 전략을 제안한다. 본 연구에서 제안하는 방법을 

통해 선택된 라플라스 상수는 감쇠상수의 범위의 연속성을 

유지시킴으로써 모델 해상도를 보장하며, 감쇠상수의 불필요한 

중복을 최소화함으로써 효율성을 향상시킨다. 수치 예제로부터 

제안된 라플라스 상수 선택 전략이 기존 연구에서 쓰여왔던 

등간격으로 라플라스 상수 선택하는 전략에 비해 효율성 및 
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정확성의 두 가지 측면에서 월등한 결과를 산출해 내는 것을 

확인할 수 있다. 

 

주요어: 라플라스 영역 파형 역산, 파동경로, 가우스뉴턴법, 모델 

해상도, 라플라스 상수 선택법 
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