

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사 학위논문

Task Allocation of Multiple UAVs for

Cooperative Timing Missions

동시도달을 고려한 복수 무인기 임무할당 기법

2017 년 8 월

서울대학교 대학원

기계항공공학부

오 경 택

Task Allocation of Multiple UAVs for

Cooperative Timing Missions

동시도달을 고려한 복수 무인기 임무할당 기법

지도교수 김 유 단

이 논문을 공학박사 학위논문으로 제출함

2017 년 6 월

서울대학교 대학원

기계항공공학부

오 경 택

오경택의 공학박사 학위논문을 인준함

2017 년 6 월

위 원 장 (인)

부위원장 (인)

위 원 (인)

위 원 (인)

위 원 (인)

Task Allocation of Multiple UAVs for Cooperative Timing

Missions

Gyeongtaek Oh

Department of Mechanical and Aerospace Engineering

Seoul National University

APPROVED:

H. Jin Kim, Chair, Ph.D.

Youdan Kim, Vice-Chair, Ph.D.

Chan Gook Park, Ph.D.

Sungwan Kim, Ph.D.

Jaemyung Ahn, Ph.D.

Task Allocation of Multiple UAVs for Cooperative Timing

Missions

A Dissertation

by

Gyeongtaek Oh

Presented to the Faculty of the Graduate School of

Seoul National University

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical and Aerospace Engineering

Seoul National University

Supervisor : Professor Youdan Kim

August 2017

Abstract

Task Allocation of Multiple UAVs for
Cooperative Timing Missions

Gyeongtaek Oh

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

With increasing demand for unmanned aerial vehicles (UAVs) in military and

civilian areas, coordination of multiple UAVs is expected to play a key role

in complex missions. As the number of agents and tasks increases, however,

a greater burden is imposed on ground operators, which may cause safety is-

sues and performance degradation accomplishing the mission. In particular, the

operation requiring temporal and spatial cooperation by UAVs is significantly

difficult.

This dissertation proposes autonomous task allocation algorithms for co-

operative timing missions with simultaneous spatial/temporal involvement of

multiple agents. After formulating the task allocation problem into integer pro-

gramming problems in view of UAVs and tasks, centralized and distributed

algorithms are proposed. In the centralized approach, an algorithm to find an

optimal solution that minimizes the time to complete all the missions is intro-

duced. Since the exact algorithm is time intensive, heuristic algorithms working

in a greedy manner are proposed. A metaheuristic approach is also considered

i

to find a near-optimal solution within a feasible duration. In the distributed ap-

proach, market-based task allocation algorithms are designed. The mathemat-

ical convergence and scalability analyses show that the proposed algorithms

have a polynomial time complexity. The baseline algorithms for a connected

network are then extended to address time-varying network topology including

isolated sub-networks due to a limited communication range. The performance

of the proposed algorithms is demonstrated via Monte Carlo simulations for a

scenario involving the suppression of enemy air defenses.

Keywords: Task allocation, Unmanned aerial vehicle, Cooperative timing mis-

sions, Centralized control, Distributed control

Student Number: 2010-20693

ii

Contents

Abstract i

Chapter 1 Introduction 1

1.1 Motivation and Objective . 1

1.2 Literature Survey . 3

1.2.1 Vehicle Routing Problem 3

1.2.2 Centralized and Distributed Control 4

1.2.3 Centralized Control

: Optimal Coalition Formation Problem 5

1.2.4 Distributed Control . 8

1.3 Research Contribution . 10

1.3.1 Systematic Problem Formulation 10

1.3.2 Design of a Centralized TA Algorithm for a Cooperative

Timing Mission . 11

1.3.3 Design of a Distributed TA Algorithm for a Cooperative

Timing Mission . 11

1.4 Dissertation Organization . 12

Chapter 2 Problem Statement 13

2.1 Assumptions . 13

2.2 Agent-based Formulation . 15

2.3 Task-based Formulation . 19

iii

2.4 Simplified Form of Task-based Formulation 21

Chapter 3 Centralized Task Allocation 23

3.1 Assumptions . 23

3.2 Exact Algorithm . 24

3.3 Agent-based Sequential Greedy Algorithm

: A-SGA . 26

3.4 Task-based Sequential Greedy Algorithm

: T-SGA . 28

3.5 Agent-based Particle Swarm Optimization

: A-PSO . 30

3.5.1 Preliminaries on PSO . 30

3.5.2 Particle Encoding . 33

3.5.3 Particle Refinement . 33

3.5.4 Score Calculation Considering DAG Constraint 34

3.6 Task-based Particle Swarm Optimization

: T-PSO . 38

3.6.1 Particle Encoding . 38

3.6.2 Particle Refinement . 39

3.7 Numerical Results . 41

Chapter 4 Distributed Task Allocation 49

4.1 Assumptions . 50

4.2 Project Manager-oriented Coalition Formation

Algorithm : PCFA . 51

4.3 Task-oriented Coalition Formation Algorithm

: TCFA . 63

iv

4.4 Modified Greedy Distributed Allocation Protocol

: Modified GDAP . 68

4.5 Properties . 71

4.5.1 Convergence . 71

4.5.2 Scalability . 72

4.5.3 Performance . 75

4.5.4 Comparison with GDAP 76

4.6 TA Algorithm in Dynamic Environment 79

4.6.1 Challenges in Dynamic Environment 79

4.6.2 Assumptions . 79

4.6.3 Distributed TA Architecture in Dynamic Environment . . 80

4.6.4 Rally Point . 85

4.6.5 Convergence . 87

4.6.6 Deletion of Duplicated Allocation 87

4.7 Numerical Results . 88

4.7.1 Scalability . 88

4.7.2 Application: SEAD Scenario 94

4.7.3 Discussion . 106

Chapter 5 Conclusions 107

5.1 Concluding Remarks . 107

5.1.1 Problem Statement . 107

5.1.2 Centralized Task Allocation 107

5.1.3 Distributed Task Allocation 108

5.2 Future Research . 110

Abstract (in Korean) 125

v

List of Tables

Table 1.1 Comparison of centralized and distributed control 4

Table 2.1 Summary of variables . 22

Table 3.1 Summary of the numerical results 47

Table 3.2 Conclusion on the centralized task allocation methods . . 47

Table 4.1 List of local variables of agent i 53

Table 4.2 Estimated parallel runtime 89

Table 4.3 Detailed TA progress∗ . 98

vi

List of Figures

Figure 1.1 Illustrative example of SEAD mission [1] 1

Figure 2.1 Example scenario of cooperative timing mission 16

Figure 2.2 Illustrative example for the notations in problem statement 16

Figure 3.1 Illustrative example of the exact algorithm 25

Figure 3.2 Overall procedure of T-SGA 29

Figure 3.3 Example of topological sorting 29

Figure 3.4 Overall procedure of PSO 32

Figure 3.5 Illustrative example of topological sorting 35

Figure 3.6 Score calculation procedures of A-PSO and T-PSO . . . 40

Figure 3.7 Example scenario of the SEAD mission (N=10, M=10,

D=300) . 41

Figure 3.8 Comparison of centralized task allocation schemes along

N . 44

Figure 3.9 Comparison of centralized task allocation schemes along

M . 45

Figure 3.10 Comparison of centralized task allocation schemes along

D . 46

vii

Figure 4.1 Task allocation procedures in PCFA. Broadcasting mes-

sages can be transferred when the network between the

agents is connected, where solid line in (a) denotes the

connectivity between two nodes. In this topology, direct

communications between diagonal agents are not available 52

Figure 4.2 Task allocation procedures in TCFA. Broadcasting mes-

sage can be transferred when the network between the

agents is connected, where solid line in (a) denotes the

connectivity between two nodes. In this topology, direct

communications between diagonal agents are not available 64

Figure 4.3 Task allocation procedures in GDAP. Broadcasting mes-

sage can be transferred when the network between the

agents is connected, where solid line in (a) denotes the

connectivity between two nodes. In this topology, direct

communications between diagonal agents are not available 70

Figure 4.4 Possible conflict in GDAP. Broadcasting message can be

transferred when the network between the agents is con-

nected, where solid line in (a) denotes the connectivity

between two nodes. In this topology, direct communica-

tions between diagonal agents are not available 78

Figure 4.5 Real-time distributed TA architecture 81

Figure 4.6 Choice of rally point . 86

Figure 4.7 Parallel runtime estimation (PCFA) 91

Figure 4.8 Parallel runtime estimation (TCFA) 92

Figure 4.9 Effect of problem size on amount of communication . . . 93

Figure 4.10 SEAD environment . 95

Figure 4.11 Average mission score . 102

viii

Figure 4.12 Average number of isolated sub-networks 102

Figure 4.13 Average mission completion time 103

Figure 4.14 Average maximum communications 103

Figure 4.15 Statistical results of mission score 104

Figure 4.16 Statistical results of maximum communications (base=10)105

Figure 4.17 Statistical results of mission completion time 105

Figure A.1 Graphical representation of the dependency graph G =

(K, E(P)). 124

ix

List of Algorithms

3.1 Agent-based Sequential Greedy Algorithm (A-SGA) 27

3.2 Score of a Particle . 36

3.3 A-PSO-based TA algorithm . 37

4.1 Phase 1 for agent i. 55

4.2 Phase 2 for agent i. 58

4.3 ConsensusPM(i) . 58

4.4 Phase 3 for agent i. 60

4.5 Phase 4 for agent i. 62

4.6 Modified Phase 3 for agent i. 66

4.7 PrepareApp(i,t) . 66

4.8 ConsensusApp(i) . 66

4.9 Modified Phase 4 for agent i. 67

4.10 TA Block for PCFA (i) . 83

4.11 Case 3 for TCFA . 84

x

Chapter 1

Introduction

1.1 Motivation and Objective

Unmanned aerial vehicles (UAVs) have become widely used for civilian and

military purposes because of their flying capability. The purpose of this study

lies in maximizing the potential of a UAV fleet. The primary motivation of this

study is the suppression of enemy air defense (SEAD) mission performed by

combat UAVs as shown in Fig. 1.1.

Jammer

Strike Force

Counter-Air

Counter-Air

SEAD

Decoy
Attack

Direct
Attack
Weapon
Range

Standoff
Weapon
(SOW)
Range

Short Range SAM/AAA

Airborne Interceptor
SAM Range

High Value
Target (s)

Figure 1.1 Illustrative example of SEAD mission [1]

SEAD is an offensive counter-air (OCA) mission designed to neutralize,

destroy, or degrade enemy surface-based air defenses by destructive or disruptive

means. [2] The fact that one-fourth of the United States (US) combat sorties

1

have been used for SEAD missions in recent conflicts indicates the essential role

of combat aircraft in modern warfare [3]. Since SEAD aircrafts must explore

and attack the enemy’s air defenses with a radar system, their exposure as a

target cannot be avoided, which makes the SEAD mission highly dangerous. In

this context, the US department of defense (DoD) has a plan to replace manned

vehicles with a fleet of UAVs for SEAD missions with the following two main

attributes [4]: i) aircrew loss risk elimination, and ii) enhanced survivability

through greater maneuverability beyond human tolerance.

The objective of this study is to develop an efficient task allocation (TA)

algorithm that maximizes the potential of a UAV fleet. SEAD missions are

considered as the primary application of this study. In particular, some task

locations are required to be visited simultaneously visited by multiple UAVs

to maximize the survivability and lethality of the UAVs [5]. Although much

TA research has been conducted, there is insufficient research on the consid-

eration of a task that cannot be performed by a single agent. In cooperative

timing missions, agents should not only visit given waypoints, but also be on

time at each waypoint. Hence, path planning and the TA problem are strongly

coupled. Well-known examples of cooperative timing missions include coopera-

tive rendezvous [6], timed attacks [5], sequential auto-landing, and coordinated

ground-target suppression [7].

For more clarity, the qualitative definition of the problem considered in this

paper can be stated as follows. To distinguish the problem considered in this

study from other TA problems, let us call the problem considered in this study

as a target problem. Assume that a route is a sequence of allocated tasks and the

number of required UAVs to visit is predefined for each task. Now, the target

problem asks “What is the optimal set of routes for a fleet of UAVs to visit a

given set of task locations?”

2

1.2 Literature Survey

1.2.1 Vehicle Routing Problem

From the academic perspective, the target problem defined in Section 1.1 is

a variant of the vehicle routing problem (VRP) that is an NP-hard problem

in combinatorial optimization. [8] The generic definition of the family of VRP

can be stated as follows. “When a set of points to visit and a fleet of vehicles

are given, the family of VRP determines a set of vehicle routes to visit all

(or some) points with the given vehicle fleet at minimum cost; in particular, it

decides which vehicle visits which points in which sequence so that all routes

can be feasibly executed.” [8]

There exist many variants of VRP, and their classification was excellently

reviewed in the first chapter of Ref. [8]. The target problem can be categorized in

their convention. Since each vehicle has its own starting point, the target prob-

lem is the multiple depot VRP (MDVRP). Because the vehicles are not required

to return to the depot, the target problem is the open VRP (OVRP). In addi-

tion, the target problem is the VRP with multiple synchronization constraints

(VRPMS) because different vehicles are needed to visit a task simultaneously.

The constraints of VRPMS are called inter-route constraints, where the feasi-

bility of a solution depends on how the routes and their schedules are linked.

Among several synchronization constraints in inter-route constraints, the target

problem has an operation synchronization constraint that asks different vehi-

cles at the same or different locations to visit a task simultaneously or with

precedence. Although Goel and Meisel [9] considered this kind of constraint to

solve the electricity network maintenance, only centralized scheduling schemes

were considered.

3

Table 1.1 Comparison of centralized and distributed control

Centralized Control Distributed Control

Pros

• Onboard computational
burden is low
• Optimal solution can

be expected

• More robust to a failure
in ground station
• More adequate to a

dynamic environment

Cons

• Mission area is limited
around the ground station
• Vulnerable to a failure

in ground station

• Suboptimal performance
due to local information
• Information consensus

between agents is needed

1.2.2 Centralized and Distributed Control

From an implementation perspective, prior research on TA can be classified into

centralized and distributed approaches. In the centralized approach, a single

agent or ground station receives the all agent information and sends appropri-

ate commands to each agent. In the distributed approach, each agent makes its

own decision using local information either self-obtained or through communi-

cations with neighboring agents; thus, it can address a dynamic and unexpected

situation with increased agility. Additionally, this approach can use the comput-

ing power of each agent. However, consensus on situational awareness becomes

more important in the distributed approach [10, 11]. The representative pros

and cons are summarized in Table 1.1.

For the centralized approach, the design issue is to find a near-optimal so-

lution within feasible time. For the distributed approach, computational and

communicational burdens should be within an acceptable level. Additionally,

dynamic network topology due to limited communication range should be prop-

erly accommodated. For both approaches, applicability to dynamic environment

and convergence analysis are the main issues.

Many studies have solved a TA problem using centralized [12–17] and dis-

4

tributed [18–24] approaches; however, most of them considered a task that re-

quires a single agent. Therefore, a more specific literature review of the target

problem will be followed in the subsequent section. For the topic of centralized

control, a review of the research conducted on the optimal coalition forma-

tion problem is made. Finally, distributed coalition formation algorithms are

reviewed, focusing on limited communication range.

1.2.3 Centralized Control

: Optimal Coalition Formation Problem

According to the well-known taxonomy for TA [25], the target problem is called

the single-task robots (ST)–multi-robot tasks (MR) problem, where ST means

that each robot is capable of executing at most one task at a time and MR

indicates that each task requires multiple robots for its completion. The ST-

MR problem is often referred to as a coalition formation problem, where a

coalition is a group of agents that conduct a common task [26].

Many existing works on the coalition formation problem have been con-

ducted by distributed artificial intelligence (DAI) researchers [27,28]. Generally,

coalition formation is composed of three interacting activities [29]: i) forming a

coalition structure, ii) solving the optimization problem of each coalition, and iii)

dividing the value of the solution among coalition members, where the coalition

structure is partitioned disjoint coalitions. Sandholm et al. [30] proved that find-

ing an optimal coalition structure is NP-complete; therefore, various approaches

have been proposed to obtain the optimal solution with reduced computational

load. Rahwan et al. [31] proposed an anytime algorithm to find an optimal coali-

tion structure. Chalkiadakis and Boutilier [32] provided a repeated algorithm

for the problem with uncertainties between agents. The constrained coalition

formation problem, where certain agents cannot be involved in the same group,

5

was also solved [33,34]. Studies on bio-inspired coalition formation [35,36] pre-

sented desirable grouping policies with theoretical and numerical analyses. The

primary objective of the aforementioned approaches is to find an optimal par-

tition between agents, and the result is a disjoint coalition structure in which

each agent can join only one coalition. However, the disjoint coalition is not

sufficient to describe real-world cooperative applications. For instance, if the

number of tasks is greater than the number of agents and a different number of

agents is required for each task, then the agents should repeatedly perform the

formation, split, and re-formation procedures to satisfy the given requirements.

During these procedures, each agent can improve the efficiency of the mission

by being involved in multiple coalitions.

Research on the overlapping coalition formation (OCF) problem, where

agents can join more than two coalitions, has been conducted for multi-sensor

networks. Dang et al. [37] proposed an algorithm based on a branch-and-bound

technique to find an optimal coalition structure that allows overlapping coali-

tions. Chalkiadakis et al. [38] described this problem as an OCF game, and the

stability and balance of the solution was analyzed based on cooperative game

theory. Zick et al. [39] analyzed the optimality and stability of the OCF game.

However, the aforementioned studies may not be appropriate for vehicle

routing applications using mobile robots because the task execution order is not

considered. Let us suppose that one agent is included in two different coalitions.

If the agent is sensor hardware and the task is to monitor a target, then the agent

can observe two targets simultaneously [37]. On the other hand, if the agent

is a mobile robot and the task is to visit a target location, then the visiting

order should be scheduled properly. If the visiting order is twisted, then one

agent may not be able to visit the target together with other members because

each agent has multiple appointments to meet simultaneously. Moreover, the

6

eventual performance of the mission is highly dependent on the task execution

order.

Several researchers have studied the task execution order in the coalition

formation problem. Sandholm and Lesser [29] stated that the vehicle routing

problem, combined with the coalition formation problem, is too difficult to

solve optimally. Shehory and Kraus [40] adopted a greedy policy, which pre-

cedes the higher valued coalition’s task, to determine the task execution order.

Distributed coalition formation algorithms for a multi-robot system have also

been proposed [41–43]. These methods, however, focused on a distributed algo-

rithm to make coalitions for the vehicle routing problem; thus, the performance

of the methods is usually the same as that of a greedy algorithm.

Until now, the optimal coalition formation problem considering the task

execution order has not been addressed sufficiently. Ramchurn et al. [44] aug-

mented spatial and temporal constraints to the coalition formation problem,

and simultaneity is assumed to have a synergistic effect that reduces termi-

nation time. Therefore, agents tactically cooperate to complete as many tasks

as they can. Sujit et al. [45] proposed an optimal OCF algorithm based on

particle swarm optimization (PSO) considering the task execution order. The

proposed algorithm was utilized as a benchmark solution of the distributed

approach [46]. However, the cost function does not systematically reflect the

simultaneous arrival constraint [47].

7

1.2.4 Distributed Control

Among the research on distributed TA, a market-based approach has received

much attention due to its computational efficiency in implementing a dis-

tributed decision-making process. After evaluating the market mechanisms for

the application of multiagent coordination [48,49], the market-based approach

emerged as having good properties to describe and solve distributed coordina-

tion problems. Many variants of the earliest concept have been proposed. [22,

50,51] Dias et al. [50] provided an excellent review and survey of many market-

based coordination concepts. They defined the requirements of a market-based

approach: i) a global objective function that quantifies the system designer’s

preferences, ii) an individual utility function which quantifies robots’ prefer-

ences, and iii) a relationship between the global objective function and the

individual utility function. Each participant in a virtual market makes a de-

cision seeking its own benefit, i.e., the individual utility function. This selfish

action improves the efficiency of the group, which is a global objective function.

In this virtual market, resources are distributed among participants according

to a market-like auction mechanism [51]. Choi et al. [22] proposed a polynomial-

time algorithm, called the consensus-based bundle algorithm (CBBA), which

consists of an auction-based task selection phase and a consensus phase. How-

ever, the aforementioned research did not consider a distributed coalition for-

mation problem explicitly.

Shehory and Kraus [40] presented an iterative greedy algorithm for the dis-

tributed coalition formation that operates in exponential time. Experimental

demonstrations of the distributed auction-based approach for the box pushing

problem [52, 53], cooperative load transportation [54], and disaster manage-

ment [55] were presented. The coalition formation for the simultaneous attack

8

problem was treated using a distributed scheme [46,56]. Modification of the She-

hory and Kraus’ algorithm and associated complexity analysis were presented

for a non-overlapping coalition case [57]. A consensus-based bundle algorithm

(CBBA) [22] was extended to coupled-constraint CBBA [43] to consider tightly

coupled tasks. The bio-inspired coalition formation approach was proposed to

apply to the suppression of enemy air defenses (SEAD) mission [36]. Das et al.

proposed a market-based coalition formation that allocates multiple tasks in a

centralized manner [58] as well as in a distributed manner [59]. However, the

aforementioned coalition formation algorithms did not consider a dynamic net-

work topology and limited communication range. When a distributed algorithm

runs in a dynamic network, TA results depend on the communication range.

Several TA studies dealt with the problem of limited communication range.

Beard and McLain [60] proposed a centralized cooperative path planning method

considering distance constraints between UAVs. Sujit and Beard [61] presented

a distributed auction algorithm over a limited communication range. CBBA

was extended to ensure network connectivity because a limited communication

range may result in a disconnected network [62]. Another idea to overcome the

loss of network connectivity was to make the idle agent return to the base [63].

Whereas the aforementioned research considered the ST-SR problem, studies

on the ST-MR problem over a limited communication range have also been per-

formed. Weerdt et al. [41] proposed a variant of contract net protocol (CNP) [48]

for the coalition formation over a limited communication range using the dis-

tributed sequential auction, but the qualification of a coalition leader (auction-

eer) was not considered. On the other hand, the distributed coalition formation

algorithm for UAVs to track and destroy moving targets [64, 65] was proposed

with an extensive numerical analysis of the effect of communication ranges,

delays, and the problem size. However, neighboring UAVs must share their po-

9

sition and path information continuously to predict that their sub-network is

invariant during the coalition formation process.

1.3 Research Contribution

The main contribution of this study is the design of centralized and distributed

TA algorithms for cooperative timing missions with systematic problem formu-

lation.

1.3.1 Systematic Problem Formulation

In this study, the target problem is formulated systematically. To the best of

the author’s knowledge, this is the first result of mathematical formulation. In

the target problem, even the smallest change of one vehicle’s route may yield a

different mission completion time because simultaneous arrival conditions cre-

ate extremely tight coupling between vehicle routes. Therefore, the objective

function defined as a mission completion time is highly nonlinear and discrete

with respect to vehicle routes. Although previous research [46] derived a for-

mulation for a more generalized problem, the overlapping coalition could not

be effectively handled because a constraint on the routes to resolve conflicts

was not considered. This study proposed two different problem formulations

that are designed as nonlinear integer programming problems. In the first for-

mulation, the constraint on the routes is explicitly based on graph theory. In

the second formulation, the optimization variable that inherently satisfies the

graph-theoretic constraint is adopted.

10

1.3.2 Design of a Centralized TA Algorithm for a Cooperative

Timing Mission

In this study, various algorithms are designed to solve the target problem in a

centralized manner. To obtain an exact optimal solution, an efficient exhaustive

search method is proposed. As the exact algorithm requires significant compu-

tational time, two heuristic algorithms are proposed: one has a polynomial time

complexity and the other has an exponential time complexity. To find a proper

trade-off between performance and computation time, PSO is applied to both

problems. The performances of the proposed algorithms are analyzed and com-

pared through numerical simulation.

1.3.3 Design of a Distributed TA Algorithm for a Cooperative

Timing Mission

Two market-based distributed TA algorithms are proposed for a dynamic en-

vironment with a limited communication range. In the proposed algorithms,

a leader of a coalition is elected by other agents. Each agent’s position and

plan do not have to be continuously synchronized. Analyses on convergence

and scalability are performed that are also supported by numerical results. The

performances of the proposed algorithms are demonstrated by Monte Carlo

simulations.

11

1.4 Dissertation Organization

This dissertation is organized as follows:

Chapter 1 introduces subjects related to this study. The motivation and

objective of this study are described in Section 1.1, and related research works

are provided in Section 1.2. The contribution and outline of this study are stated

in Section 1.3 and Section 1.4.

Chapter 2 provides two formulations of the target problem.

Chapter 3 presents centralized task allocation algorithms. Section 3.2 de-

scribe an exact algorithm for the target problem. Section 3.3 and 3.4 describes

heuristic algorithms which approximate the exact algorithm. In Section 3.5

and 3.6, two particle swarm optimization schemes are provided. Simulation re-

sults are provided in Section 3.7.

Chapter 4 presents distributed task allocation algorithms. The proposed

schemes are provided in Section 4.2 and 4.3, respectively. Section 4.4 describes

a benchmarking algorithm for comparative studies. Properties of the proposed

algorithms are summarized in Section 4.5. In Section 4.6, the proposed algo-

rithms are extended deal with a dynamic problem. Numerical results are shown

in Section 4.7.

Finally, Chapter 5 provides concluding remarks and future research works.

12

Chapter 2

Problem Statement

Starting with an introduction of underlying assumptions, this chapter provides

formulations of task allocation problem for cooperative timing missions. First,

the problem is formulated as an integer programming problem in view of agents.

Second, a binary integer programming problem is presented in view of tasks.

Finally, more simplified form of task-based problem is proposed.

2.1 Assumptions

Throughout this dissertation, the following assumptions are considered.

Assumption 2-1. The aim of TA algorithm is to produce a task visiting order

and corresponding arrival time for each agent.

Assumption 2-2. Every agent moves in two-dimensional space with its own

constant speed. Dynamics of agents such as maximum turn radius are neglected.

Assumption 2-3. Each agent has a finite number of homogeneous resources

and uses one resource at one task.

Assumption 2-4. The number of required agents for each task is predefined.

Assumption 2-5. There exists a feasible allocation of the given problem. In

other words, given tasks can be accomplished by given agents within finite time.

Assumption 2-6. Agents can control their arrival time by loitering around the

safe boundary of the task. It means that agents wait for their coalitions until all

13

members arrive at the specified boundary of the given task. The execution time

of a task is then decided by the arrival time of the latest member. Therefore,

once a feasible visiting order is given for all agents, corresponding arrival times

can be determined as well.

Assumption 2-7. Collisions between UAVs are autonomously avoided. De-

layed time due to collision avoidance can be resolved by a momentary speed

control.

14

2.2 Agent-based Formulation

Let us consider a TA problem with N agents and M tasks, where some task

locations should be simultaneously visited by multiple agents, as shown in Fig.

2.1. The number inside the parenthesis of each task location indicates the num-

ber of required agents for each task, which is predefined based on the properties

of the task. In this setting, the aim of this study is to determine all agents’

task visiting orders that maximize the objective function. This problem can be

formulated in terms of the integer programming problem as follows,

Maximize
P

J = s(t1(P), t2(P), ..., tM (P)) (2.1)

subject to card(ak) = zk, ∀k ∈ K (2.2)

card(p(i)) ≤ y(i), ∀i ∈ I (2.3)

isDAG(G) = 1, G = (K, E(P)) (2.4)

where I , {1, 2, ..., N} and K , {1, 2, ...,M} are the sets of indices of the

agents and tasks, respectively, and P = (pi,m) ∈ ({0} ∪ K)N×M is a N ×M

path matrix having the information regarding all agents’ task visiting orders.

For instance, pi,m = k means that task k is the m-th task of agent i, and

pi,m = 0 denotes that no task is allocated to agent i as the m-th order. The

path vector of agent i, p(i), is the i-th row of P. The objective function J can be

defined as the score function s(P) in Eq. (2.1), where tk is the termination time

of the task k. Equation (2.2) defines a constraint on the size of the coalition

for task k, where ak is a coalition vector containing indices of agents assigned

to the task k, card(·) denotes the number of nonzero elements in a set (or a

vector), and zk (≤ N) is the number of agents required for the task k. A N×M

coalition matrix A = (ai,k) ∈ {0, 1}N×M contains the information regarding

15

UAV1
UAV2

UAV3

UAV4

UAV5

T1(1)

T2(5)

T3(1)
T4(3)

T5(3)

T6(2)

T7(4)

Base

East, m 104
0 1 2 3 4 5 6 7 8

104

0

1

2

3

4

5

6

Figure 2.1 Example scenario of cooperative timing mission

the overlapping coalition structure, where ai,k = 1 if agent i is involved as a

coalition member for task k and 0 otherwise. Because A is uniquely determined

by P, ak can also be specified when P is given. An illustrative example is

introduced in Fig. 2.2 for the aforementioned notations. Equation (2.3) restricts

the maximum number of allowable tasks for agent i to y(i) (≤M). Additionally,

Eq. (2.4) is introduced to disregard the TA results when the involved agents

fail to simultaneously arrive at the allocated task locations. This process can

be conducted by filtering out the TA results that generate the directed cycle in

Task 2
1

Task 1
2

Task 3
2

Agent 1 Agent 2

Path:

Coalition:

(1)

(2)

3 2 13 2 1
3 1 03 1 0

p
P

p

1

2

3

1 2
1 1 1

1
1 0 1

1 2

a
a A
a

Figure 2.2 Illustrative example for the notations in problem statement

16

the dependency graph G = (K, E(P)), which represents the precedence between

the allocated tasks [66]. The directed edge set E(P) is defined as follows,

E(P) = {(pi,j , pi,j+1)|i ∈ I, j ∈ {1, ..., card(p(i))− 1}} (2.5)

The simultaneous arrival fails when the dependency graph contains a directed

cycle. Therefore, designating the type of the dependency graph as a directed

acyclic graph (DAG), which is a directed graph with no directed cycles [67],

results in the filtering. The function isDAG(G) is one if the graph G is DAG

and zero otherwise. A detailed explanation regarding the DAG constraint is

provided in the Appendix.

In this study, the objective function J is represented by the termination

times of given tasks. Because tasks should be visited simultaneously, tk is defined

as the required time of the latest agent among the coalition for the task k, which

is expressed as

tk(P) = max
i∈ak

(tw(i, k) + tETA(i, k)) (2.6)

where tw(i, k) denotes the required working time of agent i to perform task k

and tETA(i, k) denotes the estimated time of arrival (ETA) of the agent i to

the task k, which can be expressed as

tETA(i, k) =

∥∥∥xk − x(i)

∥∥∥/v(i), if pi,1 = k

tj + ‖xk − xj‖/v(i), otherwise
(2.7)

where xk is the position vector of task k, x(i) is the initial position vector of

the agent i, and v(i) is the average speed of the agent i. When the task k is not

the first task of agent i, the task j denotes the task conducted by the agent i

17

prior to the task k. Note that j can be expressed as j = pi,m, where the index

m satisfies pi,m+1 = k. In this study, the objective function is defined as follows

to minimize the total mission completion time tc.

J = −tc = − max
k∈K

tk (2.8)

As mentioned in Section 1.2, the target problem defined in Eqs. (2.1)–(2.4)

is a variant VRP, which is NP-hard [8]. Because the original VRP does not

consider multiple depots and multiple synchronization constraints, the problem

considered in this study is at least as complex as the VRP.

18

2.3 Task-based Formulation

In the previous section, the decision variable is set as task visiting orders of

each agent, which is intuitive and conventional [46,68]. The DAG constraint in

Eq. (2.4), however, is not a typical form of constraint for integer programming

problem. This section introduces an alternative formulation to eliminate the

DAG constraint.

Based on the fact that a dependency graph can be topologically sorted

if and only if the graph is DAG, the DAG constraint can be eliminated by

setting the precedence order of each task as an additional decision variable.

The task visiting orders of each agent P are also uniquely determined when

the coalition matrix A = (ai,k) ∈ {0, 1}N×M and the precedence order matrix

V = (vk,m) ∈ {0, 1}M×M are given. Therefore, the original TA problem in Eqs.

(2.1)–(2.4) can be reformulated as follows,

Maximize
A,V

J = s(t1(P), t2(P), ..., tM (P)) (2.9)

subject to
N∑
i=1

ai,k = zk, ∀k ∈ K (2.10)

M∑
k=1

ai,k ≤ y(i), ∀i ∈ I (2.11)

M∑
m=1

vk,m = 1, ∀k ∈ K (2.12)

M∑
k=1

vk,m = 1, ∀m ∈ K (2.13)

where ai,k = 1 if agent i is involved as a coalition member for task k, and 0

otherwise. The precedence order vk,m = 1 if task k has m-th priority, and 0

otherwise. For instance, the path matrix in Fig. 2.2 can be represented by the

19

following matrices. Note that all the decision variables are binary and the DAG

constraint is not required in this setting.

P =

 3 2 1

3 1 0

⇔ A =

 1 1 1

1 0 1

 , V =

0 0 1

0 1 0

1 0 0

 (2.14)

20

2.4 Simplified Form of Task-based Formulation

The aforementioned task-based formulation succeeded in removing the DAG

constraint. However, the number of constraints become four, which is larger

than that of the agent-based formulation. Also, the dimension of the decision

variables increases from (NM) to (NM + M2). To reduce the number of con-

straints and dimensions of the task-based formulation, the coalition matrix A

and the precedence order matrix V are replaced by the coalition vector ak and

the precedence order vector v∈ K. For instance, the precedence order matrix

V in Eq. (2.14) can be represented as v = [3 2 1], which means that the prece-

dence order is 3→ 2→ 1. Then, the Eqs. (2.12)–(2.13) are satisfied inherently.

By designating the dimension of ak to zk, Eq. (2.10) can be satisfied always.

Therefore, the simplified form of task-based TA problem in Eqs. (2.9)–(2.13)

can be reformulated as follows,

Maximize
ak,v

J = s(t1(P), t2(P), ..., tM (P)) (2.15)

subject to card(p(i)) ≤ y(i), ∀k ∈ K, ∀i ∈ I (2.16)

In summary, the problem can be completely specified by the vectors and ma-

trices in Table. 2.1. The solution of the problem is i) the path matrix P, or

ii) the pair of the coalition matrix A and the precedence order matrix V, or

iii) the pair of the coalition vectors ak and the precedence order vector v. In

subsequent chapters, the solution of the target problem formulated in three

different forms will be discussed in the centralized and distributed ways. After

introducing centralized schemes in Chap. 3, distributed schemes will be followed

in Chap. 4.

21

Table 2.1 Summary of variables

Group Symbol Description (input∗, output†, internal variables§)

Agent i

x(i) Position vector ∗

v(i) Average speed ∗

y(i) Number of resources ∗

tw(i, k) Working time for task k ∗

P Path matrix †

p(i) Path vector (i-th row of P) §

pi,m m-th visit task (m-th element of p(i)) §

tETA(i, k) Estimated time of arrival to task k §

Task k

xk Position vector ∗

zk Number of required agents ∗

A Coalition matrix †

ak Coalition vector (index set of assigned agents) †

ai,k (i, k)-element of A §

V Precedence order matrix †

v Precedence order vector †

vk,m (k,m)-element of V §

tk Termination time †

22

Chapter 3

Centralized Task Allocation

This chapter provides centralized algorithms to solve the TA problem. In the

centralized TA, the master control center or leader agent solves the problem us-

ing exact information of the whole mission, and then transmits the TA results

to the fleet. In this chapter, first, the enumerative method is proposed to obtain

the exact optimal solution. Second, two greedy algorithms are proposed as a

heuristic approach. Finally, two PSO algorithms are presented as a metaheuris-

tic approach. To demonstrate and compare the performance of the proposed

algorithms, numerical simulations for a SEAD mission are conducted.

3.1 Assumptions

Throughout this chapter, the following assumptions are considered.

Assumption 3-1. The mission control center can achieve precise information

on the entire UAVs and tasks.

Assumption 3-2. The mission control center can broadcast the commands

to the entire UAVs.

23

3.2 Exact Algorithm

In this section, the exact algorithm to solve the aforementioned TA problem

is considered. The exact algorithm considers all possible combinations of the

solutions to find the optimal solution, which guarantees finding the optimal

solution of the integer programming problem. The exact algorithm might be

unrealistic due to its computational load. The optimization variable in Eq. (2.1)

is the path matrix P ∈ ({0}∪K)N×M , and the number of possible solutions can

be roughly estimated as (M + 1)NM . For example, it is 516 ≈ 1.5 × 1011 for a

case of N = M = 4, which is computationally infeasible. Moreover, constraint

equations, Eqs. (2.2)–(2.4) should be checked for each candidate. Therefore, the

full factorial experiment may be intractable with respect to the computation

time.

In this study, the main idea is that the enormous search space can be fairly

reduced by pruning the infeasible spaces that do not satisfy the constraint equa-

tions of Eqs. (2.2)–(2.4). Using the current optimization variable P, however,

the pruning is hard to be implemented. Therefore, the simplified form of task-

based formulation introduced in Section 2.4 is considered for implementing the

exact algorithm. Possible coalitions for ak and the precedence task orders v can

be obtained by utilizing combinations and permutations. That is, the number

of possible solutions NT can be calculated as follows,

NT =

 M∏
k=1

 N

zk

×M ! (3.1)

For the aforementioned instance, where N = M = 4 and all zk = 2, NT

is 64 ≈ 3 × 104, which is far less than 1.5 × 1011. Moreover, the simplified

form of the task-based formulation has only one constraint, which means that

24

Possible
coalitions

1

2

3

[1]
[1,2,3]
[2,3]

a
a
a

T2 (3)
T1 (1)

T3 (2)

1

2

3

[1]
[1,2,3]
[1, 2]

a
a
a

Constr
?

Constr
?

(1)

(2)

(3)

{1, 2}
{2,3}
{2,3}

b
b
b

(1)

(2)

(3)

{1, 2,3}
{2,3}
{3}

b
b
b

Task
bundles Possible visiting order

(1)

(2)

(3)

[1, 2,0]
[2,3,0]
[2,3,0]

p
p
p

(1)

(2)

(3)

[1, 2,0]
[3,2,0]
[3, 2,0]

p
p
p

(1)

(2)

(3)

[2,1,0]
[3,2,0]
[3, 2,0]

p
p
p

T3T2T1

T2T3T1

T1T2T3

Choose the best

Yes

No

!

Figure 3.1 Illustrative example of the exact algorithm

substantial part of infeasible solution space is pruned successfully.

The detailed procedures of the exact algorithm are as follows. First of all, all

possible coalitions are calculated to decide which agents are allocated for each

task. For each coalition candidate, unordered task lists for each agent is built,

which is called a task bundle. When the task bundle satisfies the constraint

in Eq. (2.16), path vectors for each agent are given according to M ! possible

candidates having the corresponding visiting order. Finally, the exact algorithm

selects the best path vector as an optimal solution. The overall procedure is

shown in Fig. 3.1 with an illustrative example.

25

3.3 Agent-based Sequential Greedy Algorithm

: A-SGA

In this section, a traditional sequential greedy algorithm (SGA) [47] is briefly

summarized. The SGA matches a capable coalition with its corresponding task

repeatedly in a short-term perspective. That is, the SGA decides a pair of the

coalition leader and the target task by choosing the match that has the shortest

ETA. After the coalition leader and the corresponding task are determined,

agents having less ETA for the target task are selected as coalition members.

This procedure is repeated until the whole tasks are allocated. To distinguish

between the traditional SGA and the proposed SGA, which will be introduced

in the following section, the traditional one is called agent-based SGA (A-SGA)

in this study.

The merit of the A-SGA is that the DAG constraint is automatically sat-

isfied, because newly allocated task is augmented at the end of the current

sequence of the tasks, thereby a directed cycle does not appear. Also, compu-

tational burden can be significantly reduced compared to the exact algorithm.

Therefore, the A-SGA may be a possible choice for practical application of the

cooperative timing mission. The detailed procedure of the A-SGA is summa-

rized in Algorithm 3.1.

26

Algorithm 3.1 Agent-based Sequential Greedy Algorithm (A-SGA)

1: procedure P=A-SGA(I,K)

2: P = 0N×M

3: K0 = K
4: for iter=1:card(K) do

5: (i∗, k∗) = arg min
(i,k)∈I×K0

(tw(i, k) + tETA(i, k))

6: b∗ = card(p(i∗)) + 1

7: pi∗,b∗ = k∗

8: I0 = I \ {i∗}
9: for z=1:(zk∗ − 1) do

10: j∗ = arg min
j∈I0

(tw(j, k∗) + tETA(j, k∗))

11: c∗ = card(p(j∗)) + 1

12: pj∗,c∗ = k∗

13: I0 = I0 \ {j∗}
14: end for

15: K0 = K0 \ {k∗}
16: end for

17: end procedure

27

3.4 Task-based Sequential Greedy Algorithm

: T-SGA

In A-SGA, two greedy decisions are made for each matching between a task

and its coalition: i) a target task and its corresponding coalition leader are de-

termined concurrently by greedy sense, and then ii) several agents are selected

as the coalition members by greedy sense. In cooperative timing missions, how-

ever, the first decision is much more important than the second one because task

execution order is fixed by the first one. In addition, greedy selection of team

members is a reasonable strategy because termination time of a task is deter-

mined by a latest member. Based on these intuitions, the task-based sequential

greedy algorithm (T-SGA) is proposed in this study.

The fundamental idea of the T-SGA is to replace the important decision of

the A-SGA with the process of exact algorithm, which means that all possible

task execution orders are investigated. For instance, M ! task execution orders

are considered when M tasks are given. Coalition members including a leader

for each task are determined in a greedy manner. Among the resultant objec-

tive functions for each task execution order, the case having maximum-value is

selected as the solution of the T-SGA. It can be seen that T-SGA solves the

task-based problem by using two-step approach because greedily pruned space

of A is investigated for each possible V, which is the reason why it is called

task-based SGA. Overall procedure of the T-SGA is shown in Fig. 3.2.

28

Given tasks

T1

T2

T3

All permutations

T3T2T1

T2T3T1

For each permutation,
tasks are sequentially assigned to
coalitions in a greedy sense

T1 T2 T3 Select best results
among all permutations

Figure 3.2 Overall procedure of T-SGA

The solution of the T-SGA naturally satisfies Eq. (2.2). It is known that

a graph can be sorted topologically if and only if the graph is DAG [69]. The

topological sorting of a directed graph G is a linear ordering of all the vertices; if

G contains an edge (u, v), then u appears before v in the order. The illustrative

example of the topological sorting of dependency graph G is shown in Fig. 3.3.

Because the T-SGA considers all possible permutations of task execution order,

all feasible domain of Eq. (2.2) can be investigated by the T-SGA.

Note that the T-SGA is not a polynomial algorithm; it may require much

computation time for big problems with large (N,M). For problems with mod-

erate size of (N,M), however, the computation time will not become a serious

issue because the computational load for tETA is not heavy. In addition, the

solution of the T-SGA is always better than or at least same as that of the

A-SGA, because candidates of the task execution order of the T-SGA include

the task execution order determined by the A-SGA.

T1

T2T3

T1T2T3

Topological Sorting

Figure 3.3 Example of topological sorting

29

3.5 Agent-based Particle Swarm Optimization

: A-PSO

In the previous section, the exact algorithm was presented to find an exact op-

timal solution of the TA problem. However, it is obvious that significant time is

required as the size of the problem increases. In this section, PSO, a metaheuris-

tic approach, is adopted to solve the problem with reduced computational load.

The original idea to solve the problem by using PSO was proposed by Sujit et

al. [45]. In this study, the existing PSO method is revised to solve the problem

in a systematic manner.

3.5.1 Preliminaries on PSO

Let us briefly summarize the PSO algorithm. The PSO, a population-based

stochastic optimization technique developed by Kennedy and Eberhart [70],

encodes the optimization variable as a position vector of a particle, which is

updated by a velocity vector of the particle. Recent and comprehensive review

on PSO can be found in [71,72].

Assuming that the dimension of the optimization variable is Nd, the update

rule of the PSO can be represented as follows,

V n+1
s = ω V n

s + c1r
n
s1(P

n
s −Xn

s) + c2r
n
s2(P

n
g −Xn

s) (3.2)

Xn+1
s = round(Xn

s + χV n+1
s) (3.3)

where Xn
s and V n

s are the Nd–dimensional position vector and the velocity vec-

tor of the s-th particle in the n-th iteration (s ∈ {1, 2, ..., Ns}, n ∈ {1, 2, ..., Ni}),

respectively, Ns is the number of particles, Ni is the number of iterations, Pns

is the s-th particle’s best position, Png is the swarm’s best position, ω is the

30

inertia weight, positive scalars c1 and c2 are the cognitive and social parame-

ters, respectively, rns1 and rns2 are Nd–dimensional row vectors whose elements

are uniformly distributed random variables within [0, 1], and χ is a constriction

factor. Note that the tuning parameters of the PSO are ω, c1, c2, and χ. The

physical meaning of ω is the level of belief in the previous decision (velocity).

Large ω leads to global exploration, whereas small ω focuses on local explo-

ration nearby the best positions (Pns , Png). Therefore, gradually declining ω is

recommended in general. Parameters c1 and c2 compensate for the differences

of Xn
s to Pns and Xn

s to Png , respectively. In most implementations of the PSO,

χ is calculated as follows [73–75],

χ =
2

|2− φ−
√
φ2 − 4φ|

(3.4)

where φ = c1 + c2 > 4. Typically, φ is set to 4.1, with c1 = c2 = 2.05 [73]. In

this study, the type of optimization variable is an integer, and therefore, the

round operation is adopted to round its argument to the nearest integer [74].

Figure 3.4 shows the procedure of the standard PSO algorithm.

31

yes

Update Update
all particles

For iteration,
(run times or run until stopping criterion is satisfied)

For particle (),

Particle
refinement

Calculate
score function

is better
than ?Update as

yes

Return
best particle

Figure 3.4 Overall procedure of PSO

32

3.5.2 Particle Encoding

To solve the TA problem defined by Eqs. (2.1)–(2.4) using PSO, the opti-

mization variable should be represented as the position vector of a particle,

which can be performed by reshaping the N by M path matrix P into a NM–

dimensional column vector Xn
s [45]. Because the path matrix is encoded as a

particle, this approach is called agent-based PSO (A-PSO). For example sce-

nario of (N,M) = (2, 3), the path matrix can be transformed into the position

vector of a particle as follows,

P =

 1 3 0

2 3 0

 ⇔ Xn
s =

[
1 3 0 2 3 0

]T
(3.5)

3.5.3 Particle Refinement

A particle may have inappropriate elements that prevent evaluation of the score

function. On the other hand, in the previous study [45], this issue was not

addressed explicitly. In this study, three refinement schemes are proposed to

treat this problem. First, if an element of the position vector is outside the range

[0,M], then the element is replaced by a random integer in [0,M]. Second, if

a row vector of the path matrix contains a zero between the nonzero elements,

then the zero is moved to the right, as follows,

Xn
s =

[
1 0 3 2 3 0

]
T ⇒ P =

1 0 3

2 3 0

⇒ P =

1 3 0

2 3 0

 (3.6)

Finally, if a row vector of the path matrix has more than two identical tasks,

then the row vector is replaced by a random permutation of Nx elements chosen

from one to M , where Nx is the number of nonzero elements of the original row

33

vector. For instance,

Xn
s =

[
1 0 1 2 3 0

]
T ⇒ P =

1 0 1

2 3 0

⇒ P =

3 1 0

2 3 0

 (3.7)

Because the update law of the PSO algorithm does not consider the feasible

space of the position vector, these refinements may reduce the computation time

by recovering the meaningless particles into the feasible particles that satisfy

the problem constraints.

3.5.4 Score Calculation Considering DAG Constraint

The existing algorithm [45,46] has two limitations in the score calculation pro-

cess for each particle. First, the generated path from the particle does not

guarantee the simultaneous arrivals to the tasks because the DAG constraint in

Eq. (2.4) is not considered. In this study, to deal with this issue, a check logic

of the DAG constraint is included. Second, the calculation order of the termi-

nation time for each task, i.e., tk, is not systematic. The topological sorting

scheme is considered in this study to treat this problem.

Let us consider following path vectors which satisfy the DAG constraint.

p(1) = [4 3 2 0], p(2) = [4 1 3 0], p(3) = [1 2 0 0] (3.8)

The valid calculation order of the termination time can be determined by using

the modified path matrix P, which is obtained by shifting elements in each row

to the right/left to make each column have only one task, i.e., the same number

34

T1

T4

T2 T3

Topological
sorting

T4 T1 T3 T2

Figure 3.5 Illustrative example of topological sorting

in each column, as follows,

P =

4 3 2 0

4 1 3 0

1 2 0 0

⇒ P =

4 0 3 2

4 1 3 0

0 1 0 2

 (3.9)

In this manner, the valid visiting order for each task is revealed as 4 → 1 →

3 → 2, and the calculation order of the termination time is t4, t1, t3, and t2.

Note that for some path vectors, P cannot be obtained. Conditions on the path

vectors with proper visiting schedule is summarized in Appendix. The above

procedure can be carried out by sorting the graph G = (K, E(P)) topologically.

The topological sorting of a directed graph G is a linear ordering of all the

vertices; if G contains an edge (u, v), then u appears before v in the order [69].

According to the definition of G = (K, E(P)), the vertices denote tasks to

be performed, while the edges are precedents between two tasks. Therefore,

topological sorting of G = (K, E(P)) yields a valid sequence for the tasks to be

performed, which is equivalent to the valid calculation order of the termination

time. Moreover, a graph can be topologically sorted if and only if the graph is

DAG, which means that G = (K, E(P)) satisfying Eq. (2.4) can be topologically

sorted, as shown in Fig. 3.5.

Once the calculation order is determined, termination time for each task

35

Algorithm 3.2 Score of a Particle

1: procedure J=Score(P)
2: if P satisfies Eqs. (2.2)–(2.4) then
3: k = topologically sorted vertices of G = (K, E(P))
4: Initialize tk (∀k ∈ K) as 0
5: for idx = 1 : card(K) do
6: k = k(idx)
7: tk = max

i∈ak

(tw(i, k) + tETA(i, k))

8: end for
9: J = − max

l∈K
tl

10: else
11: J = −∞
12: end if
13: end procedure

can be calculated. By adopting the policy where the faster agent waits for the

slower agent, the termination time of the task is the estimated time of the latest

agent among the coalitions. The procedure of the score function and the entire

process of the A-PSO are summarized in Algorithms 3.2 and 3.3, respectively.

36

Algorithm 3.3 A-PSO-based TA algorithm

1: procedure [gbest, PNs
g] =A-PSO-based TA algorithm(I,K, Ns, Ni)

2: S , {1, 2, ..., Ns}
3: Initialize particles X0

s , V 0
s , P 0

s = X0
s , ∀s ∈ S

4: Transform X0
s to path matrix P0

s, ∀s ∈ S
5: pbests = SCORE(P0

s), ∀s ∈ S
6: for n = 1 : Ni do
7: for s = 1 : Ns do
8: Transform Xn

s to path matrix P
9: Particle refinement

10: Jns = SCORE(P)
11: if Jns > pbests then
12: pbests = Jns
13: Pns = Xn

s

14: else
15: Pns = Xn−1

s

16: end if
17: end for
18: s∗ = arg max

s∈S
pbests

19: gbest = pbests∗

20: Png = Pns∗
21: Update particles using Eqs. (3.2) and (3.3)
22: end for
23: end procedure

37

3.6 Task-based Particle Swarm Optimization

: T-PSO

In the previous section, A-PSO is proposed to find an optimal solution using

a metaheuristic approach. Because A-PSO follows the problem statement in

Section 2.2, the particle was encoded as a path matrix P. However, the num-

ber of particles not satisfying the constraints is still considerable despite the

refinement procedure. To deal with this problem, task-based PSO (T-PSO) is

proposed in this section.

The main idea of T-PSO is the modification of particle encoding, which

follows the problem statement in Section 2.4. In T-PSO, the particle is encoded

as a coalition vector ak and precedence order vector v. It can be stated that

T-PSO solves the problem defined in Eqs. (2.15)–(2.16) instead of Eqs. (2.1)–

(2.4). There exist two main differences between T-PSO and A-PSO with regard

to the particle encoding and the particle refinement procedures.

3.6.1 Particle Encoding

Let Xn
s be the particle encoded for T-PSO, which represents coalition members

and precedence order of tasks given by

Xn
s = [a1 a2 · · · aM v]T, ak ∈ Nzk , ∀k ∈ K, v ∈ RM (3.10)

where Nzk is the set of zk–dimensional natural number vector. The precedence

order of tasks is encoded as v. The k-th element of v denotes a precedence

value of task k. In this study, the smaller precedence value implies that the task

would be performed sooner than other tasks having larger precedence value.

When several precedence values are equal, the task with smaller index has the

priority. For instance, v = [0.5, 0.2, 0.2] indicates a precedence order 2→ 3→ 1.

38

This encoding has several advantages compared to that of A-PSO. First,

the constraint of Eq. (2.10) is inherently satisfied because card(ak) = zk. In

addition, the DAG constraint of Eq. (2.13) is always satisfied because the prece-

dence order of tasks is clearly determined by v. The graph having a topological

order is DAG. Finally, the dimension of the particle is (ΣM
k=1zk +M), which is

much smaller than that of the vectorized A and V, (NM +M2).

The score of the particle is calculated as A-PSO because the path matrix

P can be uniquely determined by A and V. Figure 3.6 summarizes the score

calculation procedures of A-PSO and T-PSO, respectively, using an illustrative

example.

3.6.2 Particle Refinement

The procedure of particle refinement in T-PSO is summarized as follows. First,

if an coalition element of the position vector is outside the range of [1, N], then

the element is replaced by a random integer in [1, N]. Second, if there exist

duplicated elements among ak, all elements in ak are replaced by a random

permutation. Finally, if a particle does not satisfy the constraint of Eq. (2.16),

then the particle is entirely and randomly regenerated to meet the constraint

of Eq. (2.16).

39

1 3 0
2 3 0

P

Convert to
path matrix P

1 0 3
2 0 3

P

Particle
refinement

Eqs.
(2.2)~(2.4)
Satisfied?

Score calculation

()y SCORE P

s-th Particle
@ n-th iteration

 1 0 3 2 0 3n T
sX

(1)

(2)

1 3 0

2 3 0

p

p

yes

(a) A-PSO

s-th Particle
@ n-th iteration 1 2 1 1 0.2 0.3 0.1n T

sX

Convert to coalition
structure and

precedence order

1

2

3

1

2

1 1

a

a

a

 0.2 0.3 0.1v

Particle refinement

1

2

3

1

2

1 2

a

a

a

 0.2 0.3 0.1v

Convert to
task bundles

3 1 0
3 2 0

PConvert to
path matrices

1

2

{1, 3}

{2, 3}

b

b
 0.2 0.3 0.1v

Score calculation ()y SCORE P

(b) T-PSO

Figure 3.6 Score calculation procedures of A-PSO and T-PSO

40

3.7 Numerical Results

A SEAD mission is considered to investigate the performance of the five pro-

posed algorithms: i) exact algorithm, ii) A-SGA, iii) T-SGA, iv) A-PSO, and

v) T-PSO. To compare the performances of the algorithms, computation time

and mission completion time are evaluated for various test problems. The

configuration of the test problem is characterized by the number of UAVs

N ∈ {1, 2, ..., 10}, the number of tasks M ∈ {1, 2, ..., 10}, and the length in kilo-

meters of a side of the square mission area D ∈ {100, 200, 300} [76]. That is, 300

different configurations are considered. For instance, problem ‘N10M10D300’ in-

dicates that there are ten UAVs and ten tasks in the square mission area with

a side of 300 km as shown in Fig. 3.7.

Figure 3.7 Example scenario of the SEAD mission (N=10, M=10, D=300)

41

The number inside the parenthesis in Fig. 3.7 denotes the number of required

UAVs. The dotted circle around a task is related to the safe range, i.e., the

radius of which indicates the detection range of the radar, which is set to 30

km. In this study, it is assumed that every UAV moves in 2–dimensional space

with a speed of 200 m/s, and collision between UAVs is not considered. It is

also assumed that the task execution time at the task is relatively short for the

SEAD mission, tw is set to zero in this study.

For each of the 300 configurations, 100 random test problems are generated

where the positions of UAVs and targets are randomly chosen. Also, the required

number zk of UAVs for task k is randomly selected as 1 ≤ zk ≤ min(N, 3). To

ensure the existence of the solution, the maximum number y(i) of tasks allowed

for agent i is randomly selected as 1 ≤ y(i) ≤ max(M, 3).

Simulation is performed using a desktop computer with an Intel Core i5-

4670 @ 3.40 GHz with 16 GB of RAM and MATLAB on a Windows 7 operating

system. Moreover, parfor-loops in the Parallel Computing Toolbox of MAT-

LAB is utilized to speed up the computation of the exact algorithm. Populations

of particles for A-PSO and T-PSO are set as 500 and 120, respectively. T-PSO

requires less particles than A-PSO because a particle of T-PSO satisfies several

constraints inherently. Initial positions of 1% of the total population are set as

the solution of A-SGA so that both PSOs have at least same performance with

A-SGA. For both PSOs, the maximum iteration number Ni is set to 1,000. As

an additional stop condition of PSOs, the maximum stall number Nstall is set

to min(max(15Nd, 100), 500) where Nd is the dimension of a particle. That is,

the algorithm stops if the best fitness function value are not improved during

the recent Nstall generations. PSO parameter ω is set to 1.0, and c1 = c2 = 2.05

and χ = 0.729 in Eq. (3.4).

To investigate the effect of N , the averaged mission completion time and

42

the log-scaled average computation time through 100 trials are shown in Fig.

3.8. M and D are set to 5 and 200, respectively. Considering the averaged mis-

sion completion time, T-SGA shows almost same performance with the exact

algorithm and outperforms the other methods. The performance of T-PSO is

better than A-PSO and A-SGA. However, the performance gap between dif-

ferent methods decreases as N increases. In view of average computation time,

A-SGA uses the shortest time while the exact algorithm spends much time as

N increases. Note that A-PSO is more sensitive to N than T-PSO, because

the particle’s dimension of A-PSO is NM (Eq.(3.5)) whereas that of T-PSO is

Σzk +M that is independent of N (Eq. (3.10)).

Figure 3.9 shows the results of another test problems, which are solved to

investigate the effect of M . N and D are set to 5 and 200, respectively. As M

is growing, the average mission times tend to increase proportionally. Similar

to the previous results on the effect of N , T-SGA shows the best performance

and T-PSO is better than A-PSO and A-SGA. Note that the performance

gap increases as M increases. On the other hand, the exact algorithm and T-

SGA require much computation time as M increases, because they consider

the candidates of M ! combinations. T-PSO, A-PSO, and A-SGA are still less

sensitive to M than other methods.

Figure 3.10 shows the effect of D where N and M are both set to five. It can

be stated that D is an density index of the mission environment when N and M

are constant. As D increases, the average mission time increases proportionally,

because the speed of UAVs is constant. Also, the performance gap increases as

D increases. Note that D does not influence the computation time when N and

M are fixed.

43

(a) Average mission completion time with respect to N (M=5, D=200)

(b) Average elapsed time with respect to N (M=5, D=200)

Figure 3.8 Comparison of centralized task allocation schemes along N

44

(a) Average mission completion time with respect to M (N=5, D=200)

(b) Average elapsed time with respect to M (N=5, D=200)

Figure 3.9 Comparison of centralized task allocation schemes along M

45

(a) Average mission completion time with respect to D (N=5, M=5)

(b) Average elapsed time with respect to D (N=5, M=5)

Figure 3.10 Comparison of centralized task allocation schemes along D

46

In Table 3.1, the tendencies of mission completion time and computation

according to N , M , and D are summarized. Also, the recommended algorithms

and corresponding reasons for different types of problems are presented in Ta-

ble 3.2.

Table 3.1 Summary of the numerical results

Mission completion time Runtime

N

As N increases,

mission time becomes shorter and

performance gap becomes smaller

Runtimes of exact algorithm

and A-PSO increases explicitly

as N increases

M

As M increases,

mission time becomes longer and

performance gap becomes larger

Runtimes of exact algorithm

and T-SGA increases explicitly

as M increases

D

As D increases,

mission time becomes longer,

performance gap becomes larger

The effect of D on computation

time is very small

Table 3.2 Conclusion on the centralized task allocation methods

Mission Environment Recommendation Reason

High density A-SGA
· Performance gap is small

· Fast algorithms are preferred

Low

density

Small No. of tasks T-SGA
· Sensitive to M

· Nearly optimal performance

Large No. of tasks T-PSO∗ · Less sensitive to N and M
∗The performance of T-PSO is usually better than or at least same as that of A-SGA

The performances of the proposed algorithms can be summarized by an-

alyzing the simulation results. First, there exists a close relationship between

deterministic solvers. Whereas the exact algorithm considers all possible cases of

visiting order and coalition members, A-SGA decides tham in a greedy manner.

To relax the computational burden of the exact algorithm and to improve the

efficiency of A-SGA, only coalition members are greedily selected in T-SGA.

47

As a result, T-SGA showed the same performance with the exact algorithm

using less computation time. Second, metaheuristic methods depend on prob-

lem formulations. Since the task-based formulation has reduced constraints and

relaxed integer conditions, T-PSO provided better performance than A-PSO.

48

Chapter 4

Distributed Task Allocation

This chapter provides distributed algorithms to solve the TA problem where

the master control center plays a minimal role and agents allocate tasks them-

selves. Two distributed TA algorithms are proposed based on market-based

control paradigm: project manager-oriented and task-oriented methods. After

analyzing the properties of convergence and scalability, baseline algorithms for

a connected network are extended to deal with time-varying network topol-

ogy including isolated sub-networks due to a limited communication range. To

demonstrate and compare the performance of the proposed algorithms, numer-

ical simulations for a SEAD mission are conducted.

To consider completion time as well as the priority between tasks, the ob-

jective function J and the score function sk in Eq. (2.1) are redefined as follows,

J =

M∑
k=1

sk(tk(P)) (4.1)

sk(tk(P)) = wke
−λk(tk−t0k) (4.2)

where wk is the inherent worth of the task k, λk > 0 is the time-discounting

factor for the task k, and t0k is the time when the task k is generated.

49

4.1 Assumptions

Throughout this chapter, the following assumptions are considered.

Assumption 4-1. The network topology between agents is a connected graph

that there exists a path between every pair of vertices. Some pairs of vertices

may not be directly connected due to the limited communication range, but

there are no unreachable vertices.

Assumption 4-2. The network topology does not change during the process

of TA.

Assumption 4-3. Agents communicate with each other in a synchronous

manner, i.e., each agent communicates according to the scheduled time table.

The first and second assumptions can be accepted when the communication

range is sufficiently long and the required time for TA is small. In the later

section, for extended algorithms dealing with dynamic environment, these two

assumptions will be omitted. The last assumption may not be appropriate for

real application because asynchronous communication is more efficient. How-

ever, for the purpose of the analysis of the proposed algorithms, synchronous

communication is considered in this study.

50

4.2 Project Manager-oriented Coalition Formation

Algorithm : PCFA

Preliminaries

Let us consider a virtual market consisting of N agents and M tasks. Because

the task k ∈ K requires zk agents to be performed, agents should build several

temporary coalitions, where the team members may be overlapped. The goal

of this study is to design a rule for each agent to allocate the given tasks by

themselves based on the information given by communications between agents.

Suppose that the tasks and the agents are interpreted as the projects and the

contractors [48]. In PCFA, agents once make consensus on both a project man-

ager (PM) and its task, called a target task. Then, the application and selection

procedures are conducted to build a team as shown in Fig. 4.1, where fitness

and resumé are scalar values representing quantitative suitability of agents. The

four-phase algorithm repeats until all tasks are assigned. The detailed descrip-

tion for each phase is introduced in the next subsection. One complete series of

the four phases is called one round.

In PCFA, the agent i ∈ I, inherits the following local variables: the path

list vector p(i), the time table vector t(i), the received application letter matrix

L
(i)
app, the received offer letter matrix L

(i)
off , the position vector x(i), average

speed v(i), and the winning advertisement vector A(i). Table 4.1 summarizes

the usages of local variables with an example.

On the other hand, the information of given tasks are defined as a structured

variable T, which is assumed to be updated from the mission control center. For

all k ∈ K, the task k is composed of six elements: Tp(k) (=xk), Ta(k), Tm(k)

(=zk), Tw(k) (=wk), Tλ(k) (=λk), and T0(k) (=t0k). The variable Ta(k) = 1

if the task k is assigned to some agents, and 0 otherwise.

51

(b) Consensus on PM

(c) Application (d) Task Allocation

Advertisement

(fitness)

PM

Candidate

PM

Candidate

PM

Candidate

PM

Candidate

(a) Advertisement Preparation

PM

Candidate

PM

Candidate

PM

Candidate

PM

Candidate

PM

Applicant

Applicant

Applicant

Application letter

(resumé)

PM

Applicant

Team

Member

Team

Member

Team Building

Offer letter

Figure 4.1 Task allocation procedures in PCFA. Broadcasting messages can
be transferred when the network between the agents is connected, where solid
line in (a) denotes the connectivity between two nodes. In this topology, direct
communications between diagonal agents are not available

52

Table 4.1 List of local variables of agent i

Variables Example Description

path list p(i) = [2 1] Visiting order of agent i : task 2→ task 1

time table t(i) = [100 200] Arrival times associated with p(i)

position x(i) = [10 100] Position of agent i : [10 100] (m)

average speed v(i) = 10 Average speed of agent i : 10 m/s

application
L
(i)
app =

[
j1 k r1

j2 k r2

]
Agent i knows that agents j1 and j2 applied

letter to task k with resumé r1 and r2, respectively

offer letter L
(i)
off = [j k t]

Agent i knows that agent j sent an offer letter

to agent i for task k with appointed time t

winning
A(i) = [j k f]

Agent i considers agent j as PM for task k

advertisement with fitness f

Phase 1: Advertisement Preparation

At the first phase, the agent i prepares a winning advertisement vector A(i)

as summarized in Algorithm 4.1. To discover the most appropriate task for the

agent i, fitness list f (i) is calculated for all unassigned tasks. The agent i then

selects the task k∗ with the highest value among f (i). The fitness of the agent

i regarding the task k, i.e., f (i)(k), is defined as

f (i)(k) = sk(tETA) = wke
−λk(tETA+tw−t0k) (4.3)

Each agent does not know the path list P of the all agents, and therefore agents

cannot calculate the exact score function. Instead, the approximated score in

Eq. (4.3) is utilized as an alternative in this study. Users may apply priorities

between tasks by setting wk and λk. When λk and t0k are consistent for all tasks,

the tasks with sufficiently large wk will be performed earlier than other tasks.

The diminishing rate of value can be adjusted by tuning λk. For example, the

53

urgent task having top priority and short deadline can be defined as a task

having high wk and λk.

Note that the definition of ETA in Eq. (2.7) should be modified because

the original definition of ETA is introduced to evaluate the objective function

J(P) on the premise that path list P is already determined. However, in the

distributed TA process, when agent i calculates tETA(i, k), agent i does not

have task k ; thus, pi,1 cannot be equal to k. Additionally, the time t, when

tETA is calculated, should be considered because the evaluation of tETA may

be necessary during the mission due to pop-up task. The modified definition of

tETA for the distributed TA procedure is as follows,

tETA(i, k, t) =

 t+
∥∥∥xk − x(i)

∥∥∥/v(i), if pi,1 = 0

tj + ‖xk − xj‖/v(i), otherwise
(4.4)

In PCFA, advertisement for a certain task is only allowed to the agents who

have sufficient numbers of neighborhood for the task. Agent i ’s neighborhood,

N (i) ⊂ I, consists of agents connected with the agent i. In Fig. 4.1, each agent

has two neighborhoods. When the agent i does not have sufficient neighborhood

for a certain task, fitness for that task is zero (Algorithm 4.1 line 5). Note that

Z
(i)
max(= n(N (i))+1) is the maximum number of agents that can be mobilized by

the agent i. This conditional statement restricts the candidate of team members

to the neighborhood of the PM.

Additionally, the agent i computes the previous winning advertisement

A
(i)
prev, which is designed to be shared through communications between neigh-

boring agents in the following phase. When the agent i fails to calculate the

fitness, it generates a dummy winning advertisement (Algorithm 4.1, line 14).

54

Algorithm 4.1 Phase 1 for agent i.

1: procedure Advertisement Preparation(i, t)
2: f (i) = 0n(K)×1

3: Z
(i)
max = n(N (i)) + 1

4: for k = 1 : n(K) do

5: if (Ta(k) = 0) & (Z
(i)
max ≥ zk) & (n(p(i)) < y(i)) then

6: Calculate f (i)(k) . Eq. (4.3)
7: end if
8: end for

9: if
n(K)∑
k=1

f (i)(k) 6= 0 then

10: k∗ = arg max
k∈K

f (i)(k)

11: q∗ = f (i)(k∗)
12: A(i) = [i, k∗, q∗]
13: else
14: A(i) = [i, 0, 0]
15: end if
16: A

(i)
prev = A(i)

17: end procedure

55

Phase 2: Consensus on PM

In this phase, the agent i makes effort to reach consensus on the PM and

corresponding target task for the current round by negotiating with the neigh-

boring agents as shown in Algorithm 4.2. Note that every agent prepares two

advertisement vectors in phase 1, i.e., i) previous winning advertisement vector

A
(i)
prev, and ii) winning advertisement vector A(i). The first is broadcast to the

neighboring agents, and the second is compared with the neighboring agents’

previous winning advertisement vectors. If the fitness component of A(i) is

strictly less than the neighboring agent j ’s fitness component of A
(j)
prev, then

A(i) is replaced by A
(j)
prev. Note that A

(i)
prev is updated by A(i) before proceeding

to the next iteration.

The above process is repeated until the PM is selected, and therefore, sev-

eral iterations may be required during the phase. To consider the maximum

number of the required iterations, let us consider the diameter of the network.

The diameter is defined as the maximum distance of the two arbitrary vertices

of the graph, where the distance is the length of the shortest path between two

vertices [67]. The agent i propagates the greatest fitness to the entire agents

after comparing the fitness component with its neighboring agents. By a sin-

gle broadcasting, the greatest fitness is propagated to the neighboring agents.

Therefore, by definition, it can be inferred that the number of required itera-

tions for the consensus does not exceed the diameter of the network topology.

However, the distributed agents may not be able to recognize the exact topol-

ogy of the network because the communication connection between agents may

be changed during the mission. Thus, the network diameter for the worst case,

N−1, is selected as a conservative limit (Algorithm 4.2 line 2). When the agents

have information on the exact diameter of the network, N − 1 can be replaced

56

by the network diameter.

Phase 2 is summarized in Algorithm 4.2∼4.3 where A(i)(j) denotes the j-th

element of A(i). That is, A(i)(2) is the task element, and A(i)(3) is the fitness

element of A(i). N (i)(j) denotes the j-th element of N (i). Note that tie-break

rule is applied by prioritizing agent with a lower index (Algorithm 4.3 lines

7 ∼ 9).

57

Algorithm 4.2 Phase 2 for agent i.

1: procedure Consensus on PM(i)
2: for C(i) = 1 : N − 1 do
3: ConsensusPM(i)
4: end for
5: end procedure

Algorithm 4.3 ConsensusPM(i)

1: Broadcast A
(i)
prev

2: for u = 1 : n(N (i)) do
3: j = N (i)(u)

4: if A(i)(3) < A
(j)
prev(3) then

5: A(i) = A
(j)
prev

6: else if A(i)(3) = A
(j)
prev(3) then

7: if A(i)(1) > A
(j)
prev(1) then

8: A(i) = A
(j)
prev

9: end if
10: end if
11: end for
12: A

(i)
prev = A(i)

58

Phase 3: Application

As a result of phase 2, every agent knows the PM and its target task. In phase 3,

each agent sends an application letter to PM. In PCFA, sending an application

letter to the PM is allowed only for the agents directly connected to the PM.

The resumé, which is included in the application letter, is defined as the ETA

to the target task, i.e.,

r(i)(k, t) = tETA(i, k, t). (4.5)

where tETA(i, k, t) is defined in Eq.(4.4). On the other hand, a PM is not nec-

essarily the most appropriate agent for the task because the qualification of the

PM includes the number of its neighboring agents. When applicants are better

than the PM, the role of the PM is only to recruit applicants by utilizing its

networking ability as shown in Fig. 4.1. Thus, the PM should compete with

other applicants to be a team member. Phase 3 is summarized in Algorithm

4.4, where the left arrow operator, ⇐, augments the right row vector into the

left matrix of the arrow operator.

59

Algorithm 4.4 Phase 3 for agent i.

1: procedure Application (i,t)
2: j∗ = A(i)(1)
3: k∗ = A(i)(2)
4: if (i = j∗) then

5: L
(i)
app ⇐ [i, k∗, r(i)(k∗, t)]

6: else if (zk∗ > 1)&(j∗ ∈ N (i)) then

7: L
(j∗)
app ⇐ [i, k∗, r(i)(k∗, t)]

8: end if
9: end procedure

60

Phase 4: Team Building

As a result of phase 3, PM has application letters from its neighboring agents. In

phase 4, PM evaluates the suitability of applicants by comparing resumé, which

is included in their application letters. Because the PM advertised a task that

can be accomplished by itself and the neighboring agents, there always exists

a sufficient number of applicants. The appointed arrival time is determined as

the latest arrival time of the selected team members. Then, the PM sends offer

letters to the selected team members to inform the appointed arrival time.

On the other hand, once the agent i receives the offer letter, it then augments

the task and appointed time into its own path list p(i) and time table t(i),

respectively. This team building procedure is summarized in Algorithm 4.5,

where p(i) ⊕end {k} denotes that the task k is augmented at the end of the

agent i ’s path vector p(i).

61

Algorithm 4.5 Phase 4 for agent i.

1: procedure Team Building (i)
2: j∗ = A(i)(1)
3: k∗ = A(i)(2)
4: if (i = j∗) then
5: Select zk∗ applicants based on received resumés
6: Determine appointed time t∗ as latest time
7: Send offer letters to selected applicants
8: Ta(k

∗) = 1
9: end if

10: if Agent i received offer letter on task k∗ then
11: p(i) = p(i) ⊕end {k∗}
12: t(i) = t(i) ⊕end {t∗}
13: end if
14: L

(i)
app = L

(i)
off = ∅

15: end procedure

62

4.3 Task-oriented Coalition Formation Algorithm

: TCFA

In PCFA, a coalition is organized by the agreed-upon PM who is asked to rank

applicants and send offer letters. This method can be utilized for cooperative

timing missions even if the network is not fully connected. However, the capacity

of multiple agents can be excessively limited due to the restriction that the team

members should be directly connected with the PM. For instance, suppose that

there exist four agents and a task, which should be conducted by the four agents.

When the communication network of the four agents has a ring topology, as

shown in Fig. 4.1(a), the task cannot be accomplished because the maximum

number of neighborhood is two. The motivation of TCFA is to handle this

limitation. By relaying the application letters, every agent can be a coalition

member regardless of the network topology. In TCFA, agents make consensus

on not only a PM and its target task but also team members by additionally

sharing the information of applicants. Figure 4.2 shows the overall procedure

of TCFA.

In phase 1, the condition on the number of neighborhood in PCFA is disre-

garded in TCFA when each agent prepares the advertisement. The remaining

parts of phase 1 and phase 2 are identical to those of PCFA. In phase 3, the

application letters are shared by each agent and their neighborhoods to reach

a consensus on the letter. At the first broadcasting, every agent sends its appli-

cation letter to neighboring agents, and agents augment the received letter to

its own letter matrix. At the next broadcasting, every agent sends application

letters accumulated from the previous broadcasting. In this way, all applica-

tion letters are radially propagated from each agent (vertex) to its neighboring

agents (adjacent vertices) by using one broadcasting. From the fact that the

63

(b) Consensus on PM

(c) Application (d) Task Allocation

Advertisement

(fitness)

(a) Advertisement Preparation

PM

Candidate

PM

Candidate

PM

Candidate

PM

Candidate

PM

Applicant

Applicant

Applicant

Application letter

(resumé)

PM

Team

Member

Applicant

Applicant

Team Building

PM

Candidate

PM

Candidate

PM

Candidate

PM

Candidate

Figure 4.2 Task allocation procedures in TCFA. Broadcasting message can be
transferred when the network between the agents is connected, where solid
line in (a) denotes the connectivity between two nodes. In this topology, direct
communications between diagonal agents are not available

64

diameter of the connected network is at most N − 1, every application letter

can be propagated through the whole nodes after N − 1 broadcasts. Note that

the information of the network topology are not utilized during phase 3.

However, agents do not have to share all application letters, because only

zk agents are required to perform task k. In addition, agents know that the PM

is the most proper agent to perform task k, which means that zk − 1 members

should be selected through phase 3 and phase 4. Therefore, after receiving all

application letters from neighboring agents, each agent keeps only high-scored

zk − 1 application letters and deletes the others. By this manner, the amount

of communication can be saved because zk is usually less than N . The modified

phase 3 is summarized in Algorithms 4.6∼4.8. When the agents have identical

resumé values, the agent with the lowest index is selected.

In phase 4, every agent has the same awareness; i) the PM and its target

task, and ii) zk−1 most proper members. Therefore, the target task is allocated

to the proper members and PM. Note that agents do not have to communicate

with each other in phase 4 because all the necessary information for TA is

already shared before phase 4. The modified phase 4 is summarized in Algorithm

4.9.

The aim of PM selection in TCFA is to choose the corresponding target

task. By fixing the target task at phase 2, only the fitness for the target task

needs to be shared, which reduces the communication and computational loads.

65

Algorithm 4.6 Modified Phase 3 for agent i.

1: procedure Application (i,t)
2: PrepareApp(i,t)
3: ConsensusApp(i)
4: end procedure

Algorithm 4.7 PrepareApp(i,t)

1: j∗ = A(i)(1)
2: k∗ = A(i)(2)
3: if (zk∗ > 1)&(i 6= j∗) then

4: L
(i)
app = [i, k∗, r(i)(k∗, t)]

5: L
(i)
app,prev = L

(i)
app

6: end if

Algorithm 4.8 ConsensusApp(i)

1: k∗ = A(i)(2)
2: for C(i) = 1 : N − 1 do
3: Broadcast L

(i)
app,prev

4: for u = 1 : n(N (i)) do
5: j = N (i)(u)

6: L
(i)
app ⇐ L

(j)
app,prev

7: Delete duplicated letters in L
(i)
app

8: end for
9: Maintain at most zk∗ − 1 letters by comparing resumé

10: L
(i)
app,prev = L

(i)
app

11: end for

66

Algorithm 4.9 Modified Phase 4 for agent i.

1: procedure Team Building (i)
2: j∗ = A(i)(1)
3: k∗ = A(i)(2)

4: s∗ = indexes of applicants in L
(i)
app

5: if i = j∗ or i ∈ s∗ then
6: p(i) = p(i) ⊕end {k∗}
7: Determine appointed time t∗ as latest time
8: t(i) = t(i) ⊕end {t∗}
9: Ta(k

∗) = 1
10: end if
11: L

(i)
app = L

(i)
app,prev = ∅

12: end procedure

67

4.4 Modified Greedy Distributed Allocation Protocol

: Modified GDAP

For a comparative study, greedy distributed allocation protocol (GDAP) [41] is

modified and adapted to the target problem. The coalition formation scheme,

including the advertising and applying processes of GDAP, is similar to the pro-

posed TA algorithms, but different aspects will be explained in the subsequent

section dealing with the properties of the proposed algorithms.

The idea of GDAP is as follows. There are tasks that require a certain

combination of resources, and all agents have their own resources as an initial

condition. The information of each task is randomly distributed to each agent

at the beginning of the TA process, and the agents who received the information

are called the managers of each task. If the network topology between agents is

not fully connected, then only the manager’s neighboring agents are permitted

to contribute to the task. In other words, not all agents obtain the information

about all tasks. All agents, including managers, are called contractors. Each

manager finds contractors to work with, and each contractor makes bids to

the manager who has the highest efficiency among the contractor’s neighboring

managers. If sufficient resources are supplied by contractors, the manager selects

a set of contractors randomly. If a manager fails to build a coalition for a certain

task, then the task is deleted from the manager’s task list.

To apply GDAP to the target problem, GDAP algorithm is modified as

follows. In phase 1, agent i, who is a manager of several tasks, calculates its

fitness defined in Eq. (4.3) for the tasks distributed to the agent i. In other

words, manager agent i selects the most suitable task by choosing the highest

value among f (i). Manager agent i then advertises itself to its neighborhood

via A(i) defined in Table 4.1. If Z
(i)
max is less than the number of required agents

68

for the task, the agent i hands over the task to one of its neighboring agents

instead of deleting it. This is done by transmitting the task information to one

of its neighboring agents and removing the information from agent i itself. In

phase 2, the agent i applies to the agent who advertised the highest fitness as

in PCFA and TCFA. In phase 3, if the manager has sufficient applicants, the

manager selects the best team members according to the resumé value. In this

study, each manager is not a team member of its tasks by default, but it should

compete with other applicants because the arrival time of the manager is not

always shorter than that of others. From the perspective of this study, GDAP

consists of three phases, as shown in Fig. 4.3.

Note that GDAP needs less communication and does not require iterations

due to the lack of consensus process. In dynamic environment, rapid decision

making may enhance the efficiency of the TA. Also, in distributed TA algorithm,

there exists a trade-off between the communication/computation effort and the

performance. In this context, the modified GDAP is worthwhile to be compared

with the proposed algorithms.

69

(a) Advertisement

Advertisement
(fitness)

Manager

Manager

Contractor

Contractor

Concept of GDAP

(b) Application

Application letter
(resumé)

Manager

Manager

Contractor

Contractor

(c) Task Allocation

Manager

Manager

Team
Member

Contractor

Offer letter

Team Building

Figure 4.3 Task allocation procedures in GDAP. Broadcasting message can be
transferred when the network between the agents is connected, where solid
line in (a) denotes the connectivity between two nodes. In this topology, direct
communications between diagonal agents are not available

70

4.5 Properties

4.5.1 Convergence

In this section, it is proven that a conflict-free solution generated by the pro-

posed TA algorithms converges. Convergence of a TA algorithm means that the

algorithm is capable of allocating given tasks to the agents within a finite time.

The conflict-free represents that the resultant path list is feasible with respect

to the constraints in Eqs. (2.2)∼(2.4). Theorem 4.1 shows the convergence of

PCFA in a connected network.

Theorem 4.1. Consider PCFA and given tasks with involved agents. Let us

assume that the maximum number of required agents for the given tasks is

bounded by the number of maximum available agents Z
(i)
max ∀ i ∈ I and that

the network topology is connected but not necessarily fully connected. Then,

within a finite time, PCFA converges to a conflict-free solution.

Proof. Theorem 4.1 can be proven by checking the possible bottlenecks of the

four phases. In phase 1, each agent computes its own fitness and builds a win-

ning advertisement vector, and therefore, no bottleneck exists. In phase 2, when

the network is connected, the number of iterations required to reach a consen-

sus on the PM is bounded above by N − 1. If the fitnesses of different PM

candidates are the same, then the candidate with lower agent index is selected.

This procedure is applied similarly for the case that the resumés of different

applicants are equal. In phase 3, the application does not produce a bottleneck.

In phase 4, because the agents advertised a task requiring themselves and their

neighboring agents in phase 1, PM always has a sufficient number of appli-

cants. Therefore, within a finite time, a single task will be allocated to a group

of agents during a round.

71

Because it is assumed that the number of necessary agents for the given

tasks is bounded by the number of maximum available agents, M tasks will be

assigned during M rounds within a finite time. Moreover, because each task is

augmented to the end of the existing path vector, the resulting path vector P

satisfies the DAG constraint of Eq. (2.4).

According to Theorem 4.1, the convergence of TCFA can be easily shown.

Phase 1 and phase 2 of TCFA do not form a bottleneck, as in the proof of

Theorem 4.1. In phase 3, at most, N − 1 iterations are required to reach a

consensus on the application letter. Finally, in phase 4, because every agent

recognizes the PM and the team members, a single task is allocated to one

team at a round.

4.5.2 Scalability

Communication

The amount of communication for TA is analyzed in this section. As shown in

Lemma 4.1, for a connected network, there exists a polynomial upper bound for

the number of communications which are required for allocating given tasks. It

is assumed that the agents do not know the diameter of the current network.

Note that one broadcast of an agent to its neighborhood is counted as one

communication. It can be stated that PCFA is scalable to large problems with

regard to the amount of communication.

Lemma 4.1. For completing the TA process using the PCFA, where N ≤ 256,

upper bounds of the number of communications and the total communication

overhead in terms of bytes can be computed as CTA(N,M) and BTA(N,M),

respectively.

72

CTA(N,M) = 2M(N − 1) (4.6)

BTA(N,M) = 12M(N − 1) (4.7)

Proof. By Theorem 4.1, M tasks are allocated within M rounds. Now, let us

estimate maximum number of communications for each round. In phase 1, no

communication is required. In the worst case of phase 2, each agent broadcasts

its winning advertisement A(i) = [j, k, f] for N−1 times during N−1 iterations.

In phase 3, each agent sends at most one application letter L
(i)
app = [j, k, r] to

the PM. In phase 4, the PM sends at most N − 1 offer letters L
(i)
off = [j, k, t] to

its neighboring agents. Note that the communication is required in either phase

3 or phase 4 because PM does not send an application letter to other agents.

Therefore, the number of communications for allocating a task is bounded above

by 2(N − 1), and therefore the upper bound is 2M(N − 1) for M tasks. On the

other hand, six bytes are uniformly required for each communication of A(i),

L
(i)
app, and L

(i)
off ; two bytes for two natural numbers j, k ≤ 256, and four bytes

for real numbers f, r, t with single-precision. Thus, the maximum overhead in

terms of bytes are 12M(N − 1) bytes.

The number of communications required for TCFA can be computed as in

Lemma 4.1. For TCFA, communication is required only in phase 2 and phase

3, and the maximum number of communications in phase 2 is N − 1, which

is identical to that of PCFA. Additionally, phase 3 requires at most N − 1

communications for consensus on application letters. Therefore, the maximum

number of communications for TCFA is identical to that of PCFA. However, the

total communication overhead of TCFA is greater than that of PCFA, because

Lapp is a (zk−1)×3 matrix in TCFA while Lapp is a 1×3 vector in PCFA. For

73

the target task k, the communication overhead in terms of bytes using TCFA

is 6zk(N − 1) bytes; 6(N − 1) bytes in phase 2 and 6(zk − 1)(N − 1) bytes in

phase 3.

Time Complexity

The proposed algorithms are scalable to large-sized problems in terms of time

complexity. Theorem 4.2 shows that PCFA runs in a polynomial time.

Theorem 4.2. The asymptotic worst-case time complexity of the PCFA with

M tasks and N agents can be expressed as follows,

TTA(N,M) = O(M2 +MN2 +MN log(N)) (4.8)

Proof. By Theorem 4.1, M tasks are allocated to N agents within M rounds.

Now, let us consider the time complexity of each round. In phase 1, the time

complexity of the first for statement in Algorithm 4.1 line 4 is O(M) because

the ETA is calculated for M times. The if-statement in line 9 of Algorithm

4.1 requires O(2M) time complexity. For the worst case of phase 2, each agent

compares fitness with the N − 1 neighboring agents during N − 1 iterations.

Thus, it can be concluded that the phase 2 has a time complexity of O((N −

1)2). Phase 3 has a constant time complexity, which means that the number of

maximum elementary operations in phase 3 does not depend on the number of

the involved agents and given tasks. In phase 4, at most N elements are sorted,

and it is known that the time complexity of the sorting is O(n log(n)), where n

is the number of elements to sort [69]. Therefore, the time complexity of phase

4 is O(N log(N)). By summing up the aforementioned numbers, the worst-case

time complexity of each round can be described as O(3M+(N−1)2+N log(N)).

Hence, the asymptotic worst-case time complexity can be expressed as O(M +

74

N2 + N log(N)). Finally, for M tasks, the time complexity of PCFA can be

expressed as O(M2 +MN2 +MN log(N)).

The time complexity of TCFA can be determined as in Theorem 4.2. The

time complexities of phase 1 and phase 2 of TCFA are the same as those of

PCFA, and, at most N − 1 iterations are required for phase 3 of TCFA. During

each iteration, the application letters collected by the agent i from its neighbor-

ing agents should not be duplicated. To delete duplicated letters of agent i and

agent j, at most (N−1)2 comparisons are required. Because agent i has at most

N−1 neighboring agents, no more than (N−1)3 comparisons are necessary. Af-

ter deleting the duplicated application letters, a comparison sort is performed,

and this process requires O((N−1) log(N−1)). Therefore, it can be stated that

the phase 3 has a time complexity of O((N − 1)4 + (N − 1)2 log(N − 1)). For

phase 4, the time complexity of O(N −1) is demanded to check the acceptance.

Thus, the asymptotic worst-case time complexity of TCFA can be described as

follows,

TTA(N,M) = O(M2 +MN +MN2 +MN2 log(N) +MN4) (4.9)

4.5.3 Performance

The performance of the proposed TA algorithms is described in this section. A

drawback of the proposed algorithms is that the optimal solution may not be ob-

tained because the TA problem is addressed in a distributed manner. However,

the proposed algorithms have several merits. First, the proposed algorithms

are applicable for various types of network topologies within a connected net-

work. Specifically, for a connected network, the adjacency matrix of the network

topology does not have to be shared by all of the agents. Therefore, the agents

require only the indices of the neighboring agents, and this information can be

75

easily obtained by the ping test.

Second, the algorithms induce less computational and communicational bur-

den because the required calculations are composed of fundamental arithmetic

operations or logical operations such as comparison. The number of communi-

cations and total required overhead are upper bounded by a polynomial.

Third, the proposed algorithms can be extended to various cooperative TA

problems that the fitness and resumé are defined. Proof of convergence can be

equivalently applied to various cooperative TA problems regardless of the defi-

nition of fitness and resumé. In addition, any impact-time-control guidance law

can be integrated as a low level controller, because the proposed TA algorithm

only decides the sequence of the path list and corresponding time table.

4.5.4 Comparison with GDAP

There exists an significant difference between the proposed algorithms and the

GDAP. While the selection of the auctioneer is negotiated for each round in

the proposed methods, all auctioneers are randomly chosen in the GDAP. As a

result, different TA solutions are provided even in the fully connected network.

In other words, every agent using the proposed algorithms calculates its fitness

for all tasks to be a PM. In the GDAP, however, only the manager agents

calculate their fitness for the tasks allowed to them.

In the resource management problem, which is the target problem of the

GDAP, the choice of an auctioneer is not an important factor. However, in the

TA problem considering mission completion time, the choice of an auctioneer

may improve the efficiency. For example, suppose a dynamic environment has

several disconnected sub-networks with a limited communication range. In this

case, if the manager of a certain task is too far from the corresponding task,

the GDAP will form an inefficient coalition.

76

The GDAP has strong points with respect to less rounds and communica-

tion, and it can allocate multiple tasks during one round even in the connected

network. However, a conflict may occur in the GDAP when the network is not

fully-connected. In the fully-connected network, all pairs of vertices are directly

connected. Let us consider an example shown in Fig. 4.4. Suppose that a man-

ager broadcasts an advertisement of itself in phase 1. The manager may apply

to the neighboring manager with higher fitness in phase 2. In phase 3, there

are sufficient agents applied to the manager, and the manager also becomes a

member of the team. In this case, if the manager is also selected by another

manager, then the manager is simultaneously assigned to two different teams.

To resolve this conflict, more cross-checking is necessary.

77

(a) Advertisement

Advertisement
(fitness)

Manager

Contractor

Manager

Contractor

Possible conflict by using GDAP

(b) Application

Application letter
(resumé)

Manager

Contractor

Manager

Contractor

(c) Task Allocation

Manager

Contractor

Manager

Contractor

Offer letter

Team Building
Offer
letter

Figure 4.4 Possible conflict in GDAP. Broadcasting message can be transferred
when the network between the agents is connected, where solid line in (a)
denotes the connectivity between two nodes. In this topology, direct communi-
cations between diagonal agents are not available

78

4.6 TA Algorithm in Dynamic Environment

4.6.1 Challenges in Dynamic Environment

In dynamic environment, additional tasks may be given to agents. Assuming

that network connectivity depends on the relative distance between agents, the

network topology can be changed or even may be disconnected due to the mo-

bility of the agents. The proposed algorithms may not work properly in dynamic

environment as intended, because a static and connected network during each

TA round is assumed. Especially, a disconnection during consensus progress

may cause a conflict, i.e., two disconnected subgroups may have different ideas

about who the PM is. Also, a disconnection during the application phase may

create a disagreement about who the team member is.

In fact, conflicts over a disconnected network are inevitable when a dis-

tributed TA algorithm is used, especially for a strongly coupled problem such

as coalition formation. The major issue is how to minimize performance degra-

dation over the disconnected network.

4.6.2 Assumptions

Throughout this section, the following assumptions are considered.

Assumption 4-4. Agents communicate with each other in a synchronous

manner, i.e., each agent communicates with other agent according to the sched-

uled time table.

Assumption 4-5. There is a mission control center (MCC) that monitors all

of the agents, and the MCC and all of the agent update the task information

T mutually.

Assumption 4-6. The clocks of agents are synchronized.

Assumption 4-7. Each agent knows the list of agents in its sub-network.

79

4.6.3 Distributed TA Architecture in Dynamic Environment

In this section, the proposed TA algorithms are extended to treat the problem

in dynamic environment. Let us consider that each agent has TA block for a

high-level controller and guidance/control block for a low-level controller. Once

TA block calculates the path list and corresponding time table, the low-level

controller drives the vehicle to arrive at the target in time. Guidance and control

block runs every Tc time-step, and TA block runs every Td time-step, where Td

depends on communication bandwidth. Figure 4.5 shows the architecture of the

proposed TA algorithm for real-time implementation.

TA block consists of four phases, and one of four phases is performed at each

execution of TA block. In the phase requiring several iterations for consensus

with neighboring agents, only one iteration is performed at each execution of

TA block. For instance, it takes (N −1)Td seconds for phase 2 of PCFA. In this

study, the phase token K(i) is adopted, which indicates the phase number to be

executed. The agent i resets the phase token K(i) to one for the following two

cases. First, if there are no unassigned tasks, agents do not have to do TA pro-

cess and reset the phase token to one. Another case is that members of agent i ’s

sub-network are changed during the mission. Note that the proposed algorithm

requires synchronous phase scheduling in each sub-network, and therefore, all

members of the sub-network should have the same value of phase token.

In phase 2, consensus of the PM requires at most n
(i)
s − 1 iterations where

n
(i)
s is the number of nodes in the agent i ’s sub-network. But, the information of

the network topology is not used yet. In phase 3, the resumé should be changed

because there exists a time gap between the application time and the team

building time. Simultaneous arrival may fail if this gap is neglected. Therefore,

80

T
a
s
k

A
ll
o
c
a
ti
o
n

G
u
id

a
n
c
e

&
C
o
n
tr

o
l

V
e
h
ic

le

@
 1

/

T
a
s
k

A
ll
o
c
a
ti
o
n

G
u
id

a
n
c
e

&
C
o
n
tr

o
l

V
e
h
ic

le

@
 1

/

@
 1

/ @
 1

/
(
)

(
)

,
j

j
p

t

(
)

(
)

,
i

i
p

t
u

u

(
)i p

U

(
)j

p
U

M
is

s
io

n
C
o
n
tr

o
l

C
e
n
te

r

T
a
s
k

In
fo

rm
a
ti
o
n

U
p
d
a
te

F
ig

u
re

4.
5

R
ea

l-
ti

m
e

d
is

tr
ib

u
te

d
T

A
ar

ch
it

ec
tu

re

81

the resumé of PCFA is modified as follows,

r(i)(k, t) = tETA(i, k, t) + 2Td (4.10)

where 2Td compensates for the time gap as well as the moving distance of the

agent i during Td time-step. The entire process of PCFA dealing with dynamic

environment is presented in Algorithm 4.10.

Similarly, TCFA can be extended to deal with the dynamic environment.

Agents prepare the application letter in the first run of phase 3 and then start

making a consensus in the second run. The resumé of TCFA is modified as

r(i)(k, t) = tETA(i, k, t) + 2(n(i)s − 1)Td (4.11)

where 2(n
(i)
s −1)Td compensates for the time gap as well as the moving distance

of agent i during (n
(i)
s − 1)Td time-step. The modified pseudocode of case 3 for

TCFA is presented in Algorithm 4.11 where F
(i)
3 is initialized to zero at the

case 1 of TCFA.

82

Algorithm 4.10 TA Block for PCFA (i)

1: if There exist unassigned tasks then

2: n
(i)
s = number of nodes of sub-network

3: Update location of RP
4: if nodes of sub-network are changed then
5: K(i) = 1
6: L

(i)
app = ∅

7: end if
8: switch K(i) do
9: case 1

10: Advertisement Preparation(i,t)
11: K(i) = 2
12: F

(i)
2 = 0

13: case 2
14: ConsensusPM(i)

15: F
(i)
2 = F

(i)
2 + 1

16: if F
(i)
2 = n

(i)
s − 1 then

17: K(i) = 3
18: end if
19: case 3
20: Application(i,t)
21: K(i) = 4
22: case 4
23: TeamBuilding(i)
24: K(i) = 1
25: else
26: K(i) = 1
27: end if

83

Algorithm 4.11 Case 3 for TCFA

1: case 3
2: if F

(i)
3 = 0 then

3: PrepareApp(i)
4: else
5: ConsensusApp(i)
6: end if
7: F

(i)
3 = F

(i)
3 + 1

8: if F
(i)
3 = n

(i)
s then

9: K(i) = 4
10: end if

84

4.6.4 Rally Point

In the ST-MR problem, multiple agents form a coalition to perform a com-

mon task, and communication between agents is required for negotiating which

agents will be included in the coalition. In dynamic environment, however, the

number of members in the sub-network may not be sufficient to perform the

given task due to a limited communication range. This problem can be resolved

by adopting the concept of rally point (RP) which is a designated place to visit

when an agent does not have any tasks to perform. Agents around the RP are

connected, and thus, they can be put into the TA process again.

The adaptive positioning of the RP would be better than the stationary RP

in many applications. For instance, in a friendly region, the geometric center

of uncompleted tasks may be a time-efficient candidate for the RP. During

the SEAD mission, however, the preferable location of RP may be on the safe

border of the dangerous region and concurrently close to the ally’s base.

The RP determination law should provide the same location of RP to all

agents without using agents’ positions, because the precise position informa-

tion of agents is hard to be obtained. To derive the adaptation law for the

determination of the RP position in SEAD mission, convex hull and Minkowski

sum [77] are utilized. In the algorithm, the disk representing the surface to

air missile (SAM) radar, which is the uncompleted task, is approximated as

a hexagon, and the node points are made up of vertices of the uncompleted

tasks. Now, the convex hull of the node points becomes the boundary points of

the dangerous region. Considering safe distance from the dangerous region, the

Minkowski sum of the convex hull with a loitering circle is calculated. Finally,

as shown in Fig. 4.6, the closest point from the base among the convex hull of

the Minkowski sum is selected as the RP.

85

x (km)

0 50 100 150 200 250

0

50

100

150

200

Base

SAM site

Convex hull

Convex hull of Minkowski sum

RP

Figure 4.6 Choice of rally point

86

4.6.5 Convergence

In this subsection, convergence of the proposed algorithms in dynamic environ-

ment is analyzed. In this section, the convergence means that all tasks can be

allocated to the agents within a finite time. Let us remind the assumptions in

Section 4.1; agents are allowed to communicate with each other synchronously

and the network should be static and connected. For the synchronous commu-

nication, the phase token and its update rules are used, which reset the token

when members of sub-network are changed. The concept of RP is adopted for

the static and connected network. By gathering the agents not having any tasks

around the RP, the static and connected network can be achieved. Therefore,

according to Theorem 4.1, convergence of the proposed algorithms are guaran-

teed in the dynamic environment.

4.6.6 Deletion of Duplicated Allocation

Disconnected sub-networks due to the limited communication range may yield

duplicated allocations, because each sub-network does not have the information

of the other sub-networks. In this study, it is assumed that mission control cen-

ter resolves this problem by noticing the status of the completed tasks to the

agents. When the mission control center receives the completion notice reported

by the coalition who visited the task, then the MCC broadcasts the complete-

ness of tasks as shown in Fig. 4.5. Note that this treatment may degrade the

performance of TA because multiple coalitions may head to the same task until

one coalition completes the task.

87

4.7 Numerical Results

Numerical simulations are carried out to demonstrate the performance of the

proposed TA algorithms. The scalability in a connected network is verified via

a Monte Carlo simulation. Also, the proposed algorithms are applied to the

dynamic SEAD scenario, a primary application of this study. The simulation

is executed using a desktop personal computer equipped with an Intel Core

i5-4670 @ 3.40 GHz, and 16 GB of RAM. MATLAB on Windows 7 operating

system is used.

4.7.1 Scalability

The scalability of the proposed algorithms is examined for a problem with a

static and connected network. By Theorem 4.2, the proposed TA algorithms

have polynomial time complexity, and therefore, the parallel runtime, which

is obtained by dividing the total runtime by N [78], can be estimated by the

time complexity formula. The estimated parallel runtime t̂r can be obtained by

adapting two unknown parameters for the simplified time complexity formula

as

t̂cr = αcM
2 + βcMN2, (4.12)

t̂dr = αdM
2 + βdMN2 log(N), (4.13)

where αc and βc are unknown estimator parameters of PCFA, and αd and βd

are those of TCFA. The estimator parameters are identified by the least squares

method, and Monte Carlo simulations are carried out to obtain the data for the

identification.

The runtime for various sizes of the problems are obtained by considering

88

M tasks and N agents where 1 ≤ M ≤ 30 and 1 ≤ N ≤ 30, which results

in 900 different problem sizes. For each problem, 100 Monte Carlo simulations

are performed, and therefore 90,000 different problem cases are generated. The

initial positions of agents and tasks are randomly generated within a 300 km

by 200 km area, and the number of UAVs required for each task zk is randomly

chosen between 1 to Zmax = max
i∈I

Z
(i)
max, where Z

(i)
max ≡ n(N (i)) + 1 for phase 1.

Thus, it can be stated that the network topology determines Zmax. The random

walk approach, which generates a connected network by connecting two random

vertices with an edge, is used for each simulation. The graph connectivity is

determined by examining the Laplacian matrix. The graph is determined to

be connected [67] when the second smallest eigenvalue of the Laplacian matrix

is greater than zero. For more general random network, Nr pairs of random

vertices are connected with edges after the graph is connected, where Nr is

randomly selected between 1 and 30.

For each problem size, the maximum parallel runtime tr of the 100 Monte

Carlo simulations is chosen as the worst-case value. The 900 sets of the (N,M, tr)

are used to identify the unknown parameters, and the goodness of fit [79] is

evaluated by using the normalized mean square error R2.

Table 4.2 Estimated parallel runtime

Formula t̂cr = αcM
2 + βcMN2 t̂dr = αdM

2 + βdMN2 log(N)

Parameters αc 2.7833 ∗ 10−5 αd 1.9975 ∗ 10−4

βc 3.2584 ∗ 10−6 βd 1.0549 ∗ 10−5

Goodness of Fit R2 0.9671 R2 0.9356

The identification results are summarized in Table 4.2, and Fig. 4.7(a) shows

a comparison between t̂r and tr for each problem size. The estimated runtime

shows good agreement with the worst-case runtime. Figure 4.7(a) shows that the

89

estimator reasonably represents the worst-case runtime. The difference between

the estimated runtime and the worst-case runtime of PCFA and TCFA are

shown in Fig. 4.7(b) and Fig. 4.8, respectively.

The polynomial time complexity was validated by using R2 of the fitting

results for a specific problem size. The simulation results show that the proposed

TA algorithms can solve large-size problems. For example, for the case that N

and M are both 30, the proposed algorithms solve the problem within one

second. Note that network bandwidth was not considered in the simulation,

and therefore, the presented runtime can be considered as an ideal lower bound

for a practical application.

The number of communications for the 100 Monte Carlo simulations is also

compared with the communication bound stated in Lemma 4.1. To take the

worst case, the maximum number of communications is saved during the Monte

Carlo simulations. Figure 4.9 shows the maximum communications with upper

bound with respect to the problem size N(=M). As derived in Eq. (4.6), the

number of communications grows quadratically with the problem size. PCFA

has some margin from the upper bound as shown in Fig. 4.9, because the

number of offer letters is generally less than N − 1. On the other hand, the

number of communications for TCFA is same as the bound value. The reason

is that N − 1 iterations are performed in phase 2 and phase 3, as the network

topology is assumed to be unknown.

90

Estimated runtime (sec)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Goodness of fit: R2 = 0.96712

(a) Runtime comparison

30

Number of agents, N

25
20

15
10

55
10

Number of tasks, M

15
20

25

-0.02

-0.01

0

0.01

0.02

30

F
it
ti
n
g
 e

rr
o
r

(s
e
c
)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b) Estimation error of the worst-case runtime

Figure 4.7 Parallel runtime estimation (PCFA)

91

Estimated runtime (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Goodness of fit: R2 = 0.93556

(a) Runtime comparison

30

Number of agents, N

25
20

15
10

55
10

Number of tasks, M

15
20

25

0.2

0.3

0

-0.1

-0.2

0.1

-0.3

30

F
it
ti
n

g
 e

rr
o

r
(s

e
c
)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(b) Estimation error of the worst-case runtime

Figure 4.8 Parallel runtime estimation (TCFA)

92

Size of problem, N(=M)

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

The maximum number of communications

Upper bound of communications

(a) PCFA

Size of problem, N(=M)

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

The maximum number of communications

Upper bound of communications

(b) TCFA

Figure 4.9 Effect of problem size on amount of communication

93

4.7.2 Application: SEAD Scenario

SEAD Environment

Figure 4.10(a) shows the two-dimensional battlefield considered for the SEAD

mission, of which the objective is the complete destruction of the entire targets,

i.e., surface-to-air missiles (SAMs), as soon as possible. Because SAMs are very

dangerous, they must be simultaneously attacked by multiple UAVs. In Fig.

4.10, the number inside the parentheses of the task represents the number of

required UAVs, which implies the degree of risk. The solid line connecting two

UAVs means that those UAVs are within communication range. A UAV is con-

sidered as a point mass, and the collision between UAVs is neglected. The speed

of the UAV is set to 200 m/sec. Figure 4.10(b) shows the dynamic environment

at 800 sec., where T6 and T7 are pop-up tasks and T1 and T3 are completed

tasks. The dashed line connecting a UAV and a task is the remaining path of

the UAVs.

94

UAV1

UAV2 UAV3

UAV4

UAV5UAV6

UAV7

T1(3)

T2(1)
T3(1)

T4(1) T5(2)

Base

RP

East (km)

0 50 100 150 200 250

0

50

100

150

200

(a) Simulation snapshot at 0 sec

East km

0 50 100 150 200 250

0

50

100

150

200

UAV1
UAV3

UAV2

T4(1)

UAV6

UAV7

T1(3)

T2(1)

T3(1)

T5(2)

T6(2)

T7(2)

Base

RP

UAV4

UAV5

k
m

(b) Simulation snapshot at 800 sec

Figure 4.10 SEAD environment

95

Path Planning for SEAD

The simultaneous arrival strategy for the SEAD mission is described in this

subsection. Let us remind that each UAV has its own path list and correspond-

ing time table. The proposed algorithms augment the newly allocated task at

the end of the path list. In addition, the appointed time is decided as the latest

time of the team; thus, the scheduled time table and path list make the UAVs

arrive at the common task simultaneously. If a UAV arrives at the given task

earlier, then it loiters around the task at a radius Rsafe, where Rsafe is the

radius of the loitering pattern for the task position. When the estimated time

to the task is same as the appointed time, UAVs steer their way to the task. It is

assumed that task execution time at the target is relatively short for the SEAD

mission, and therefore tw is set to zero in this study. After the completion of

the task, each UAV moves to the next task. A UAV returns to the RP when

all the tasks assigned to it are completed. If every UAV is loitering around the

RP after finishing all the tasks of the mission, they return to the base.

TA Results in Dynamic Environment with Various Communication Ranges

In this section, the performance of the proposed algorithms is analyzed with

respect to various communication ranges through Monte Carlo simulations.

Detailed TA Progress of Sample Scenario

Detailed TA progress by TCFA is shown in Table 4.3. Table 4.3 shows TA

results at some specified times for the sample scenario in Fig. 4.10(b) where

the description on each variable can be found in Table 4.1. In the scenario,

the communication range is 40 km, and the period of TA block, Td, is 1 sec.

According to the definition of fitness in Eq. (4.3), the inherent worth wk of

task k denotes the priority of the task k. In this study, however, the difference

of priority among tasks is not considered, and wk is set as 100 that is the

96

maximum score for convenience. Time-discounting factor λk is set as 0.001 to

reduce the score to ‘1/e’ of wk exponentially as 1,000 seconds have passed from

the occurrence of the task.

In Table 4.3, each UAV receives the information of pop-up tasks T6 and

T7 from the MCC at time t = 800 sec., and therefore UAVs make an adver-

tisement of themselves. Note that the waypoint number 100 denotes the RP.

There are three disconnected sub-networks; i) group 1 consists of UAV1, UAV2,

and UAV3, ii) group 2 consists of UAV4 and UAV5, and iii) group 3 consists

of UAV6 and UAV7. At 801 sec., each sub-network tries to make a consensus

on the PM. Note that the numbers of required iterations for each group are 2,

1, and 1, respectively (see Algorithm 4.10 line 16). Group 2 and 3 agree that

the PM is UAV4 and UAV6, respectively. At 802 sec., group 1 makes a con-

sensus on the PM as UAV3, while group 2 and 3 prepare application letters

for consensus in phase 3 (Algorithm 4.11 line 3). At 803 sec., group 2 and 3

make a consensus on the application letter, while UAV1 and UAV2 in group 1

prepare application letters. At 804 sec., members in group 2 and 3 allocate T7

simultaneously, while members in group 1 now start to make a consensus on

the application letter. As in this case, duplicated allocations can occur in the

dynamic environment due to the limited communication range, which cannot

be avoided without more communication between the mission control center

and the UAVs. In this study, duplicated allocations are resolved by deleting

completed tasks in the path list and the time table based on the assumption

that completeness of tasks is updated by the mission control center. At 805

sec., group 1 makes a consensus on the application letter, while group 2 and 3

intend to begin the TA process for T6. At 806 sec., group 1 allocates T6. At

807 sec., phase tokens for all UAVs are reset to one and stop the TA process

because all tasks are assigned (see Algorithm 4.10 line 26).

97

Table 4.3 Detailed TA progress∗

Time i K(i) A(i) L
(i)
app p(i) t(i)

(sec.) = [j, k, f] = [j, k, r] = [p1, ...] = [t1, ...]

800

1 1 [1,6,51.925] [] [100,1,2] [0,726,1139]

2 1 [2,6,60.583] [] [100,1,100] [0,726,1026]

3 1 [3,6,60.599] [] [100,1,100] [0,726,1026]

4 1 [4,7,70.515] [] [100,3,100] [0,734,884]

5 1 [5,7,65.891] [] [100,4] [0,934]

6 1 [6,7,55.31] [] [100,5] [0,1072]

7 1 [7,7,55.31] [] [100,5] [0,1072]

801

1 2 [3,6,60.599]

unchanged unchanged unchanged

2 2 [3,6,60.599]

3 2 [3,6,60.599]

4 2 [4,7,70.515]

5 2 [4,7,70.515]

6 2 [6,7,55.31]

7 2 [6,7,55.31]

802

1 2

unchanged

[]

unchanged unchanged

2 2 []

3 2 []

4 3 []

5 3 [5,7,1223]

6 3 []

7 3 [7,7,1398]

803

1 3

unchanged

[1,6,1463]

unchanged unchanged

2 3 [2,6,1311]

3 3 []

4 3 [5,7,1223]

5 3 [5,7,1223]

6 3 [7,7,1398]

7 3 [7,7,1398]

98

Time i K(i) A(i) L
(i)
app p(i) t(i)

(sec.) = [j, k, f] = [j, k, r] = [p1, ...] = [t1, ...]

804

1 3

unchanged

[2,6,1311] [100,1,2] [0,726,1139]

2 3 [2,6,1311] [100,1,100] [0,726,1026]

3 3 [2,6,1311] [100,1,100] [0,726,1026]

4 4 [] [100,3,100,7] [0,734,884,1223]

5 4 [] [100,4,7] [0,934,1223]

6 4 [] [100,5,7] [0,1072,1398]

7 4 [] [100,5,7] [0,1072,1398]

805

1 3 [3,6,60.599]

unchanged unchanged unchanged

2 3 [3,6,60.599]

3 3 [3,6,60.599]

4 1 [4,6,29.709]

5 1 [5,6,29.709]

6 1 [6,6,24.938]

7 1 [7,6,24.938]

806

1 4 [3,6,60.599] [] [100,1,2] [0,726,1139]

2 4 [3,6,60.599] [] [100,1,100,6] [0,726,1026,1311]

3 4 [3,6,60.599] [] [100,1,100,6] [0,726,1026,1311]

4 2 [4,6,29.709] [] [100,3,100,7] [0,734,884,1223]

5 2 [4,6,29.709] [] [100,4,7] [0,934,1223]

6 2 [6,6,24.938] [] [100,5,7] [0,1072,1398]

7 2 [6,6,24.938] [] [100,5,7] [0,1072,1398]

∗ Variable definition: Table 4.1.

99

Monte Carlo Simulation

For Monte Carlo simulations, 100 random scenarios are generated. For each

random scenario, 10 tasks and 10 agents are considered, and initial positions of

tasks are randomly determined within a 300 km by 200 km area without over-

lapping on each other’s perimeters while agents are located around the base.

The number of required agents for each task, zk, is also randomly chosen be-

tween one to five, and Rsafe of each task is chosen between 20 km to 50 km

proportional to zk. The maximum number of allowable tasks for each agent y(i)

is set as 5. Among 10 tasks, the information regarding random two tasks, the

other random two tasks, and the last random task is disseminated to agents at

800, 1,500, and 1,800 sec., respectively. On the other hand, the eight commu-

nication ranges are considered; 20, 30, 50, 100, 150, 200, 300, and 400 km. For

each communication range, 100 random scenarios are applied. The performance

of the proposed algorithms are compared with the performance of the GDAP

algorithm [41], which is introduced in Section 4.4.

Figure 4.11 shows the average mission score with respect to communication

ranges. The inherent worth of tasks wk and time-discounting factor λ are set

as 100 and 0.001, respectively. For task k, its score sk is added to the mission

score if zk agents arrive at task k at the same time, and the second arrival by

another team is not reflected in that score. The blue, red, and black solid lines

indicate the results of PCFA, TCFA, and modified GDAP, respectively, when

the period of TA block Td is 1 sec. The dashed lines denote the results of the

algorithms when Td is 0.2 sec. Contrary to the expectation that TCFA provides

more efficient solution than the others, PCFA performs better than the other

methods for all communication ranges when Td is 1 sec. The degradation of

TCFA stems from the dynamic environment, which will be discussed later in

detail. As Td becomes 0.2 sec., the scores of PCFA and TCFA are enhanced

100

significantly than that of the modified GDAP, which implies that PCFA and

TCFA are more sensitive to Td than the modified GDAP.

As shown in Fig. 4.12, the network is mostly connected during the mission

for the communication range beyond 200 km, and thus, TCFA solves the TA

problem as in the fully connected network. Due to the time delay in phase 3,

however, the performance of the TCFA is degraded. For each task, the addi-

tional time for consensus on application letters in a connected network is 9 sec.,

because N is 10. This delay cancels out the advantage of TCFA. Therefore,

when Td is 0.2 sec., TCFA provides better performance, and the score gap be-

tween PCFA is decreased because the additional time from phase 3 of TCFA is

reduced from 9 sec. to 1.8 sec.

Figure 4.13 shows the average of mission completion time, which is defined

as the time spent until every agent arrives at RP after finishing the given

tasks. The average mission completion time decreases as communication range

increases, which means that the dense network improves the efficiency of the

TA result even when the TA algorithms are greedy. The decreasing trend of the

average mission completion time is well matched with the increasing trend of

the average mission score in Fig. 4.11.

Figure 4.14 exhibits the averaged number of maximum communications with

respect to communication ranges. The modified GDAP requires fewer communi-

cations because it does not include the consensus process. In PCFA and TCFA,

more communications are required because more resets occur over shorter com-

munication ranges. In connected networks, the number of communications by

PCFA and TCFA are below 180, which is the upper bound calculated from Eq.

(4.6).

101

Communication range (km)

0 50 100 150 200 250 300 350 400
400

410

420

430

440

450

460

470

480

490

PCFA (1 sec)

TCFA (1 sec)

Modified GDAP (1 sec)

PCFA (0.2 sec)

TCFA (0.2 sec)

Modified GDAP (0.2 sec)

Figure 4.11 Average mission score

Communication range (km)

0 50 100 150 200 250 300 350 400
1

1.5

2

2.5

3

3.5

PCFA (1 sec)

TCFA (1 sec)

Modified GDAP (1 sec)

PCFA (0.2 sec)

TCFA (0.2 sec)

Modified GDAP (0.2 sec)

Figure 4.12 Average number of isolated sub-networks

102

Communication range (km)

0 50 100 150 200 250 300 350 400
3400

3600

3800

4000

4200

4400

4600

PCFA (1 sec)

TCFA (1 sec)

Modified GDAP (1 sec)

PCFA (0.2 sec)

TCFA (0.2 sec)

Modified GDAP (0.2 sec)

Figure 4.13 Average mission completion time

0 50 100 150 200 250 300 350 400

Communication range (km)

0

20

40

60

80

100

120

140

160

180

200

PCFA (1 sec)

TCFA (1 sec)

Modified GDAP (1 sec)

PCFA (0.2 sec)

TCFA (0.2 sec)

Modified GDAP (0.2 sec)

Figure 4.14 Average maximum communications

103

Figures 4.15∼4.17 show the statistical results of Monte Carlo simulations

when Td is 0.2 sec. On each box, the upper/lower edges of the box denote

the 25th and 75th percentiles, the central mark is the median, and the whiskers

denote 99.3% coverage if the data are normally distributed. In Fig. 4.16, outliers

outside the whiskers are plotted together. Considering the outliers, the proposed

algorithms sometimes use significantly more communications than the modified

GDAP when the communication range is short; however, the trend is relaxed

for the problems with longer communication ranges. Therefore, the modified

GDAP can be a compromise when the communication range is much shorter

than the diameter of a mission area. The proposed algorithms show better

performance in terms of mission score and mission completion time using more

communications.

Communication range (km)

20km 30km 50km 100km 150km 200km 300km 400km
200

250

300

350

400

450

500

550

600

650

PCFA

TCFA

Modified GDAP

Figure 4.15 Statistical results of mission score

104

20km 30km 50km 100km 150km 200km 300km 400km

Communication range (km)

1

1.5

2

2.5

3

3.5

PCFA

TCFA

Modified GDAP

Figure 4.16 Statistical results of maximum communications (base=10)

Communication range (km)

20km 30km 50km 100km 150km 200km 300km 400km

2500

3000

3500

4000

4500

5000

5500

6000

Figure 4.17 Statistical results of mission completion time

105

4.7.3 Discussion

Numerical simulation demonstrates that the proposed distributed coalition for-

mation algorithms can be applied to the dynamic environment where time-

varying as well as isolated sub-networks may appear due to the limited commu-

nication range. Comparative study with the modified GDAP shows a trade-off

relationship between communication burden and efficiency.

However, the proposed coalition formation algorithms suffer from several

limitations. First, problem statement and proposed algorithms neglect the con-

straint on finite energy of agents. By limiting the actions of advertisement and

application for the case that the remaining fuel is not sufficient, the constraint

can be treated. A precise model of fuel consumption, however, is hard to obtain

and depends on the vehicle type such as a fixed-wing UAV or multi copter UAV.

Thus, the consideration of finite energy constraint and the corresponding anal-

ysis should be conducted for future work. Second, Monte Carlo simulations are

not sufficient to prove the performance based on synchronous communication.

Hardware experiments including flight tests are required to verify the perfor-

mance of the proposed algorithms. Finally, the scalability analysis with respect

to the computation and communication in dynamic environment was not per-

formed in this study. The time-varying network topology due to the limited

communication range makes the convergence analysis very hard. Probability of

isolated sub-networks makes this problem more challenging.

106

Chapter 5

Conclusions

5.1 Concluding Remarks

In this dissertation, the task allocation problem was studied, in which some

tasks must be executed simultaneously by a predefined number of agents. The

main results of this study are summarized in the following sections.

5.1.1 Problem Statement

The problem under consideration was systematically defined as an integer pro-

gramming problem. In agent-based formulation, routing and overlapping coali-

tion formation were explicitly treated by setting the agent visiting schedule

as a decision variable. A directed acyclic graph constraint on a dependency

graph was adopted for feasible routes of the cooperative timing mission. In task-

based formulation, coalition members and task visiting order were considered

as decision variables. As constraint equations could be satisfied relatively easily,

heuristic methods based on task-based formulation performed better than those

based on the agent-based formulation.

5.1.2 Centralized Task Allocation

If the mission control center frequently receives the required information on

the mission environment and can broadcast the commands to the entire UAV

fleet, then the centralized approach is recommended. In this dissertation, five

107

centralized methods to solve the task allocation problem of multiple UAVs for

cooperative timing mission were presented: i) an exact algorithm, ii) agent-

based sequential greedy algorithm (A-SGA), iii) task-based sequential greedy

algorithm (T-SGA), iv) agent-based particle swarm optimization (A-PSO), and

v) task-based particle swarm optimization (T-PSO). Numerical simulation re-

sults showed that the proposed methods successfully solved the given problems.

For dense mission environments, the average performance does not vary

much by method. Thus, T-PSO is recommended for dense missions because it

can provide a better or at least an equal solution compared to that of A-SGA

within a relatively short time.

For relatively sparse missions having less than eight tasks, T-SGA is rec-

ommended because its performance corresponded to the solution of the exact

algorithm. The computation time of T-SGA is less than the exact algorithm;

however, T-SGA still suffers from the scalability issue as the number of tasks

increases.

For relatively sparse missions having more than eight tasks, T-PSO is rec-

ommended. Compared to A-PSO, T-PSO was found to be a better solution than

A-SGA, even while using a smaller runtime. Compared to T-SGA, the growth

of T-PSO computation time is less sensitive to the number of tasks than to that

of other methods.

5.1.3 Distributed Task Allocation

If the mission environment is dynamically changing, it is harder for the mission

control center to receive real-time UAV information. In this case, the distributed

approach is preferable, but a high level of agent autonomy is required.

In this dissertation, two market-based distributed task allocation algorithms

were proposed: i) project manager-oriented coalition formation algorithm (PCFA)

108

and ii) task-oriented coalition formation algorithm (TCFA). Scalability analysis

regarding time complexity and communication load was conducted in a con-

nected network. Since the network can be disconnected during the mission in

dynamic environment, proposed algorithms were extended to deal with the dy-

namic environment. For a comparative study, the greedy distributed allocation

protocol (GDAP) was modified and implemented as a benchmark. A Monte

Carlo simulation showed that the proposed algorithms performed better than

the modified GDAP; however, additional communications are required.

For applications having strict limitation on communications and/or short

communication range, the modified GDAP can be a reasonable choice for the

task allocation. On the other hand, if the communication range is long enough

to maintain the connected network, the PCFA or TCFA is recommended be-

cause they showed better performance within an upper bounded number of

communications.

109

5.2 Future Research

Regarding the problem statement, the task allocation problem with more gen-

eral temporal constraints, such as timed attacks and heterogeneous agents hav-

ing various resources, is worth studying. The vehicle routing problem with

multiple synchronization constraints (VRPMS) in [8] might be an appropriate

starting point for this research. The SEAD mission consists of various tasks,

including escort, electronic warfare (such as jamming), destruction of enemy

radars or ground targets, and asset. In particular, some tasks may have tempo-

ral and/or spatial constraints. To formulate this kind of problem, the research

conducted by Goel and Meisel [9] on electricity network maintenance, in which

continuous variables were introduced, may prove helpful. In addition, Deng et

al. [80] provided the graph theoretic scheme to investigate the violation of the

task precedence. Alternatively, a relaxation of the target problem into linear

programming or into a convex optimization problem may provide an upper

bound of the objective function.

Regarding centralized task allocation, the approximation factor [81] of A-

SGA should be analyzed. Since A-SGA is a deterministic and polynomial-time

algorithm, the guaranteed performance might be favorable for practical appli-

cation.

Regarding distributed task allocation, an asynchronous algorithm is desir-

able for real applications. Therefore, analyses on convergence and scalability

should be performed for the asynchronous algorithm. The assumptions of net-

work connectivity relying only on relative distance should be changed to reflect

realistic network environments such as the log-distance path loss model. In

addition, a sensitivity analysis on communication delay should be performed.

Note that the proposed algorithms were validated through Monte Carlo

110

numerical simulations in this study. Experimental demonstrations including

ground and field flight tests are required for the verification of the proposed

algorithms. For the implementation of the centralized approach, the communi-

cation capability of the ground station might be the key issue. For the imple-

mentation of the distributed approach, abrupt and irregular disconnection of

the data link may degrade the efficiency of the task accomplishment, and there-

fore ground experiments with flight control system including data link should

be performed prior to the field flight tests.

111

Bibliography

[1] Kraak, A. F., “F-35 Introduction: A Small Country Per-

spective,” PowerPoint, Royal Netherlands Air Force, 2015.

http://flytoazuresky.tistory.com/392.

[2] US Air Force, “Counterair Operations,” Air Force Doctrine Document 2-

1.1, 2008.

[3] Bolkcom, C., “Military Suppression of Enemy Air Defenses (SEAD): As-

sessing Future Needs,” CRS Report for Congress RS21141, Congressional

Research Service, Library of Congress, WA, USA, 2005.

[4] US DoD, “Unmanned Aircraft Systems Roadmap 2005-2030,” 2005, pp. 1–

62.

[5] McLain, T., “Coordinated Control of Unmanned Air Vehicles,” Technical

Report ASC-99-2426, Air Vehicles Directorate of the Air Force Research

Laboratory, 1999.

[6] McLain, T. W., Chandler, P. R., Rasmussen, S., and Pachter, M., “Cooper-

ative Control of UAV Rendezvous,” IEEE American Control Conference,

Arlington, VA, Jun. 2001.

[7] Xargay, E., Kaminer, I., Pascoal, A., Hovakimyan, N., Dobrokhodov, V.,

Cichella, V., Aguiar, A., and Ghabcheloo, R., “Time-Critical Cooperative

Path Following of Multiple Unmanned Aerial Vehicles over Time-Varying

112

Networks,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2,

2013, pp. 499–516.

[8] Toth, P., and Vigo, D., Vehicle Routing: Problems, Methods, and Appli-

cations, 2nd Edition, Mathematical Optimization Society and the Society

for Industrial and Applied Mathematics, Philadelphia, PA, 2014.

[9] Goel, A., and Meisel, F., “Workforce Routing and Scheduling for Electricity

Network Maintenance with Downtime Minimization,” European Journal of

Operational Research, Vol. 231, No. 1, 2013, pp. 210–228.

[10] Olfati-Saber, R., and Murray, R. M., “Consensus Problems in Networks

of Agents with Switching Topology and Time-Delays,” IEEE Transactions

on Automatic Control , Vol. 49, No. 9, 2004, pp. 1520–1533.

[11] Ren, W., Beard, R. W., and Atkins, E. M., “Information Consensus in Mul-

tivehicle Cooperative Control,” IEEE Control Systems Magazine, Vol. 27,

No. 2, 2007, pp. 71–82.

[12] Bellingham, J., Tillerson, M., Richards, A., and How, J. P., “Multi-Task

Allocation and Path Planning for Cooperating UAVs,” Conference on Co-

operative Control and Optimization, Gainsesville, FL, Nov. 2001.

[13] Alighanbari, M., Task Assignment Algorithms for Teams of UAVs in Dy-

namic Environments, MS Thesis, Department of Aeronautics and Astro-

nautics, Massachusetts Institute of Technology, Cambridge MA, Jun. 2004.

[14] Shaferman, V., and Shima, T., “Unmanned Aerial Vehicles Cooperative

Tracking of Moving Ground Target in Urban Environments,” Journal of

Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1360–1371.

113

[15] Shima, T., and Schumacher, C., “Assigning Cooperating UAVs to Simul-

taneous Tasks on Consecutive Targets Using Genetic Algorithms,” Journal

of the Operational Research Society , Vol. 60, No. 7, 2009, pp. 973–982.

[16] Edison, E., and Shima, T., “Integrated Task Assignment and Path Op-

timization for Cooperating Uninhabited Aerial Vehicles Using Genetic

Algorithms,” Computers and Operations Research, Vol. 38, No. 1, 2011,

pp. 340–356.

[17] Karaman, S., Shima, T., and Frazzoli, E., “A Process Algebra Genetic

Algorithm,” IEEE Transactions on Evolutionary Computation, Vol. 16,

No. 4, 2012, pp. 489–503.

[18] Chandler, P. R., “Decentralized Control for an Autonomous Team,” AIAA

2nd Unmanned Unlimited Conference, San Diego, CA, Sep. 2003.

[19] Alighanbari, M., Robust and Decentralized Task Assignment Algorithms for

UAVs, Ph.D. Dissertation, Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology, Cambridge MA, Sep. 2007.

[20] Choi, H., Kim, Y., and Kim, H., “Genetic Algorithm Based Decentralized

Task Assignment for Multiple UAVs in Dynamic Environments,” Interna-

tional Journal of Aeronautical and Space Sciences, Vol. 12, No. 2, 2011,

pp. 163–174.

[21] Shaferman, V., and Shima, T., “Task Assignment and Motion Planning for

Multiple UAVs Tracking Multiple Targets in Urban Environments,” AIAA

Guidance, Navigation, and Control Conference, Chicago, IL, Aug. 2009.

114

[22] Choi, H.-L., Brunet, L., and How, J. P., “Consensus-Based Decentralized

Auctions for Robust Task Allocation,” IEEE Transactions on Robotics,

Vol. 25, No. 4, 2009, pp. 912–926.

[23] Ponda, S., Redding, J., Choi, H.-L., How, J. P., Vavrina, M., and Vian, J.,

“Decentralized Planning for Complex Missions with Dynamic Communi-

cation Constraints,” IEEE American Control Conference, Baltimore, MD,

Jul. 2010.

[24] Johnson, L., Choi, H.-L., and How, J. P., “Hybrid Information and Plan

Consensus in Distributed Task Allocation,” AIAA Guidance, Navigation,

and Control Conference, Boston, MA, Aug. 2013.

[25] Gerkey, B. P., and Matarić, M. J., “A Formal Analysis and Taxonomy of

Task Allocation in Multi-Robot Systems,” The International Journal of

Robotics Research, Vol. 23, No. 9, 2004, pp. 939–954.

[26] Sandholm, T. W., and Lesser, V. R., “Coalition Formation among Bounded

Rational Agents,” International Joint Conference on Artificial Intelli-

gence, Quebec, Canada, Aug. 1995.

[27] Ketchpel, S., “Forming Coalitions in the Face of Uncertain Rewards,”

Twelfth National Conference on Artificial Intelligence, Seattle, WA, Jul.

1994.

[28] Zlotkin, G., and Rosenschein, J. S., “Coalition, Cryptography, and Sta-

bility: Mechanisms for Coalition Formation in Task Oriented Domains,”

National Conference on Artificial Intelligence, Seattle, WA, Jul. 1994.

[29] Sandhlom, T. W., and Lesser, V. R., “Coalitions Among Computationally

Bounded Agents,” Artificial Intelligence, Vol. 94, No. 1, 1997, pp. 99–137.

115

[30] Sandholm, T., Larson, K., Andersson, M., Shehory, O., and Tohmé, F.,

“Coalition Structure Generation with Worst Case Guarantees,” Artificial

Intelligence, Vol. 111, No. 1, 1999, pp. 209–238.

[31] Rahwan, T., Ramchurn, S. D., Jennings, N. R., and Giovannucci, A., “An

Anytime Algorithm for Optimal Coalition Structure Generation,” Journal

of Artificial Intelligence Research, Vol. 34, No. 1, 2009, pp. 521–567.

[32] Chalkiadakis, G., and Boutilier, C., “Sequentially Optimal Repeated Coali-

tion Formation under Uncertainty,” Autonomous Agents and Multi-Agent

Systems, Vol. 24, No. 3, 2012, pp. 441–484.

[33] Rahwan, T., Michalak, T. P., Elkind, E., Faliszewski, P., Sroka, J.,

Wooldridge, M., and Jennings, N. R., “Constrained Coalition Formation.”

AAAI Conference on Artificial Intelligence, San Francisco, CA, Aug. 2011.

[34] Wang, W., and Jiang, Y., “Community-Aware Task Allocation for So-

cial Networked Multiagent Systems,” IEEE Transactions on Cybernetics,

Vol. 44, No. 9, 2014, pp. 1529–1543.

[35] Liang, X., and Xiao, Y., “Studying Bio-Inspired Coalition Formation of

Robots for Detecting Intrusions Using Game Theory,” IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 40, No. 3,

2010, pp. 683–693.

[36] Haque, M., Egerstedt, M., and Rahmani, A., “Multilevel Coalition Forma-

tion Strategy for Suppression of Enemy Air Defenses Missions,” Journal

of Aerospace Information Systems, Vol. 10, No. 6, 2013, pp. 287–296.

116

[37] Dang, V. D., Dash, R. K., Rogers, A., and Jennings, N. R., “Overlapping

Coalition Formation for Efficient Data Fusion in Multi-Sensor Networks,”

National Conference on Artificial Intelligence, Boston, MA, Jul. 2006.

[38] Chalkiadakis, G., Elkind, E., Markakis, E., Polukarov, M., and Jennings,

N. R., “Cooperative Games with Overlapping Coalitions,” Journal of Ar-

tificial Intelligence Research, Vol. 39, No. 1, 2010, pp. 179–216.

[39] Zick, Y., Chalkiadakis, G., and Elkind, E., “Overlapping Coalition For-

mation Games: Charting the Tractability Frontier,” International Con-

ference on Autonomous Agents and Multiagent Systems, Valencia, Spain,

Jun. 2012.

[40] Shehory, O., and Kraus, S., “Methods for Task Allocation via Agent Coali-

tion Formation,” Artificial Intelligence, Vol. 101, No. 1, 1998, pp. 165–200.

[41] Weerdt, M. d., Zhang, Y., and Klos, T., “Multiagent Task Allocation in

Social Networks,” Autonomous Agents and Multi-Agent Systems, Vol. 25,

No. 1, 2012, pp. 46–86.

[42] Oh, G., Kim, Y., Ahn, J., and Choi, H.-L., “Market-Based Task Assign-

ment for Cooperative Timing Missions over Networks with Limited Con-

nectivity,” AIAA Guidance, Navigation, and Control Conference, Kissim-

mee, FL, Jan. 2015.

[43] Whitten, A. K., Choi, H.-L., Johnson, L. B., and How, J. P., “Decentralized

Task Allocation with Coupled Constraints in Complex Missions,” IEEE

American Control Conference, San Francisco, CA, Jun. 2011.

[44] Ramchurn, S. D., Polukarov, M., Farinelli, A., Truong, C., and Jennings,

N. R., “Coalition Formation with Spatial and Temporal Constraints,” In-

117

ternational Conference on Autonomous Agents and Multiagent Systems

(AAMAS-10), Toronto, Canada, May 2010.

[45] Sujit, P., George, J., and Beard, R., “Multiple UAV Task Allocation Using

Particle Swarm Optimization,” AIAA Guidance, Navigation, and Control

Conference, Honolulu, HI, Aug. 2008.

[46] Manathara, J. G., Sujit, P., and Beard, R. W., “Multiple UAV Coalitions

for a Search and Prosecute Mission,” Journal of Intelligent and Robotic

Systems, Vol. 62, No. 1, 2011, pp. 125–158.

[47] Oh, G., Kim, Y., Ahn, J., and Choi, H.-L., “PSO-Based Optimal Task

Allocation for Cooperative Timing Missions,” 20th IFAC Symposium on

Automatic Control in Aerospace, Sherbrooke, Canada, Aug. 2016.

[48] Smith, R. G., “The Contract Net Protocol: High-level Communication and

Control in a Distributed Problem Solver,” IEEE Transactions on Comput-

ers, Vol. 29, No. 12, 1980, pp. 1104–1113.

[49] Farber, D. J., and Larson, K. C., “The Structure of a Distributed Com-

puting System-Software,” Symposium on Computer-Communications Net-

works and Teletraffic, New York, NY, Apr. 1972.

[50] Dias, M. B., Zlot, R., Kalra, N., and Stentz, A., “Market-based Multirobot

Coordination: A Survey and Analysis,” Proceedings of the IEEE , Vol. 94,

No. 7, 2006, pp. 1257–1270.

[51] Bertsekas, D. P., “The Auction Algorithm for Assignment and Other Net-

work Flow Problems,” Technical Report LIDS-P-1908, MIT, Cambridge,

MA, Sep. 1989.

118

[52] Gerkey, B. P., and Matari, M. J., “Sold!: Auction Methods for Multirobot

Coordination,” IEEE Transactions on Robotics and Automation, Vol. 18,

No. 5, 2002, pp. 758–768.

[53] Vig, L., and Adams, J. A., “Coalition Formation: From Software Agents to

Robots,” Journal of Intelligent and Robotic Systems, Vol. 50, No. 1, 2007,

pp. 85–118.

[54] Maza, I., Kondak, K., Bernard, M., and Ollero, A., “Multi-UAV Cooper-

ation and Control for Load Transportation and Deployment,” Journal of

Intelligent and Robotic Systems, Vol. 57, No. 1-4, 2010, pp. 417–449.

[55] Khamis, A. M., Elmogy, A. M., and Karray, F. O., “Complex Task Allo-

cation in Mobile Surveillance Systems,” Journal of Intelligent and Robotic

Systems, Vol. 64, No. 1, 2011, pp. 33–55.

[56] Sujit, P., George, J., and Beard, R., “Multiple UAV Coalition Formation,”

IEEE American Control Conference, Seattle, WA, Jun. 2008.

[57] Service, T. C., and Adams, J. A., “Coalition Formation for Task Allocation:

Theory and Algorithms,” Autonomous Agents and Multi-Agent Systems,

Vol. 22, No. 2, 2011, pp. 225–248.

[58] Das, G., McGinnity, T., and Coleman, S., “Simultaneous Allocations of

Multiple Tightly-Coupled Multi-Robot Tasks to Coalitions of Heteroge-

neous Robots,” IEEE International Conference on Robotics and Biomimet-

ics, Bali, Indonesia, Dec. 2014.

[59] Das, G. P., McGinnity, T. M., Coleman, S. A., and Behera, L., “A Dis-

tributed Task Allocation Algorithm for a Multi-Robot System in Health-

119

care Facilities,” Journal of Intelligent and Robotic Systems, Vol. 80, No. 1,

2015, pp. 33–58.

[60] Beard, R. W., and McLain, T. W., “Multiple UAV Cooperative Search un-

der Collision Avoidance and Limited Range Communication Constraints,”

IEEE Conference on Decision and Control , Maui, HI, Dec. 2003.

[61] Sujit, P., and Beard, R., “Distributed Sequential Auctions for Multiple

UAV Task Allocation,” IEEE American Control Conference, New York,

NY, Aug. 2007.

[62] Ponda, S. S., Johnson, L. B., Kopeikin, A. N., Choi, H.-L., and How,

J. P., “Distributed Planning Strategies to Ensure Network Connectivity

for Dynamic Heterogeneous Teams,” IEEE Journal on Selected Areas in

Communications, Vol. 30, No. 5, 2012, pp. 861–869.

[63] Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodŕıguez-Aguilar, J.,

and Tambe, M., “Engineering the Decentralized Coordination of UAVs

with Limited Communication Range,” Advances in Artificial Intelligence,

Vol. 8109, Lecture Notes in Computer Science, Springer, Berlin, Germany,

2013, pp. 199–208.

[64] George, J., Sujit, P., and Sousa, J., “Coalition Formation with Commu-

nication Delays and Maneuvering Targets,” AIAA Guidance, Navigation,

and Control Conference, Toronto, Canada, Aug. 2010.

[65] Sujit, P., Manathara, J., Ghose, D., and de Sousa, J., “Decentralized Multi-

UAV Coalition Formation with Limited Communication Ranges,” Hand-

book of Unmanned Aerial Vehicles, Springer, Berlin, Germany, 2014, pp.

2021–2048.

120

[66] Balmas, F., “Displaying Dependence Graphs: A Hierarchical Approach,”

Journal of Software Maintenance and Evolution: Research and Practice,

Vol. 16, No. 3, 2004, pp. 151–185.

[67] Gross, J. L., and Yellen, J., Handbook of Graph Theory , CRC press, Boca

Raton, FL, 2003.

[68] Richards, A., Bellingham, J., Tillerson, M., and How, J., “Coordination

and Control of Multiple UAVs,” AIAA Guidance, Navigation, and Control

Conference, Monterey, CA, Aug. 2002.

[69] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction

to Algorithms, MIT University Press, Cambridge, MA, 2001.

[70] Kenndy, J., and Eberhart, R., “Particle Swarm Optimization,” IEEE In-

ternational Conference on Neural Networks, Perth, Australia, Nov. 1995.

[71] Banks, A., Vincent, J., and Anyakoha, C., “A Review of Particle Swarm

Optimization. Part I: Background and Development,” Natural Computing ,

Vol. 6, No. 4, 2007, pp. 467–484.

[72] Banks, A., Vincent, J., and Anyakoha, C., “A Review of Particle Swarm

Optimization. Part II: Hybridisation, Combinatorial, Multicriteria and

Constrained Optimization, and Indicative Applications,” Natural Comput-

ing , Vol. 7, No. 1, 2008, pp. 109–124.

[73] Clerc, M., and Kennedy, J., “The Particle Swarm-Explosion, Stability, and

Convergence in a Multidimensional Complex Space,” IEEE Transactions

on Evolutionary Computation, Vol. 6, No. 1, 2002, pp. 58–73.

121

[74] Laskari, E. C., Parsopoulos, K. E., and Vrahatis, M. N., “Particle Swarm

Optimization for Integer Programming,” World Congress on Computa-

tional Intelligence, Honolulu, HI, May 2002.

[75] Kennedy, J., “Particle Swarm Optimization,” Encyclopedia of Machine

Learning , edited by Sammut, C., and Webb, G.I., Springer, 2011, pp. 760–

766.

[76] Vela, A. E., Solak, S., Clarke, J.-P. B., Singhose, W. E., Barnes, E. R., and

Johnson, E. L., “Near Real-Time Fuel-Optimal En Route Conflict Resolu-

tion,” IEEE Transactions on Intelligent Transportation Systems, Vol. 11,

No. 4, 2010, pp. 826–837.

[77] Devadoss, S. L., and O’Rourke, J., Discrete and Computational Geometry ,

Princeton University Press, Princeton, NJ, 2011.

[78] Arslan, G., Marden, J. R., and Shamma, J. S., “Autonomous Vehicle-

Target Assignment: A Game-Theoretical Formulation,” Journal of Dy-

namic Systems, Measurement, and Control , Vol. 129, No. 5, 2007, pp. 584–

596.

[79] Rawlings, J. O., Pantula, S. G., and Dickey, D. A., Applied Regression

Analysis: A Research Tool , Springer, New York, NY, 1998.

[80] Deng, Q., Yu, J., and Mei, Y., “Deadlock-Free Consecutive Task Assign-

ment of Multiple Heterogeneous Unmanned Aerial Vehicles,” Journal of

Aircraft , Vol. 51, No. 2, 2014, pp. 596–605.

[81] Williamson, D. P., and Shmoys, D. B., The Design of Approximation Al-

gorithms, Cambridge University Press, Cambridge, England, 2011.

122

Appendix

Directed Acyclic Graph Constraint on Dependency Graph

Task allocation (TA) algorithm for cooperative timing missions should provide

the proper visiting schedules so that the tasks can be performed simultaneously.

Consider a following case that involves three agents and four tasks; z1 = z2 =

z3 = z4 = 2, y(1) = y(2) = y(3) = 3, and

p(1) = [4 3 2 0], p(2) = [4 1 3 0], p(3) = [2 1 0 0] (A.1)

The above path vectors satisfy the constraints of Eqs. (2.2) and (2.3), but the

task visiting order is twisted. According to the path vectors of agents 1 and 2,

the task visiting order is 4→ 1→ 3→ 2, whereas the order is 4→ 3→ 2→ 1

in view of agents 1 and 3. Due to the conflict of the visiting order between

tasks, it is not possible to perform simultaneous arrival.

Let us consider another example, where p3 is modified as follow to resolve

the conflict, which allows simultaneous arrivals.

p(1) = [4 3 2 0], p(2) = [4 1 3 0], p(3) = [1 2 0 0] (A.2)

Therefore, to guarantee simultaneous involvements for all given tasks, the path

matrix should be constrained in the problem statement. For the generalized

expression of the constraint on the task visiting order, let us introduce a de-

pendency graph G = (K, E(P)), where a directed edge-set E(P) is defined as in

123

Eq. (2.5). If a directed cycle exists in the graph G = (K, E(P)), then the path

matrix cannot allow simultaneous arrivals, as shown in Proposition A.1.

Proposition A.1. Let us consider a TA problem for a cooperative timing mis-

sion as defined in Eqs. (2.1)–(2.4). If there exists a directed cycle in the depen-

dency graph G = (K, E(P)), then the path matrix P cannot allow simultaneous

arrivals.

Proof. Suppose that a directed cycle exists in the dependency graph G =

(K, E(P)) and the path matrix P can allow simultaneous arrivals.

It can be stated that the directed cycle consists of arbitrary m ∈ {2, 3, ...,M}
tasks among M tasks. For convenience, let us assign these tasks as task 1, task

2,..., and task m. Then, there exist m precedents among the tasks, i.e., 1→ 2,

2 → 3,..., m − 1 → m, m → 1. The corresponding arrival time for each task

may be uniquely determined as t1, t2,..., tm. According to the aforementioned

precedents, it can be stated that t1 < t2, t2 < t3,..., tm−1 < tm, which yields

t1 < tm. The last precedence m → 1 yields an inequality tm < t1, which leads

to a contradiction. Therefore, the path matrix P cannot allow simultaneous

arrivals when its dependency graph G = (K, E(P)) has any directed cycles.

For the cases of Eqs. (A.1) and (A.2), the corresponding dependency graphs

can be graphically illustrated as in Fig. A.1. Note that a directed cycle exists

in the case of (A.1).

T1

T3T2

T4

(a) Example 1

T1

T3T2

T4

(b) Example 2

Figure A.1 Graphical representation of the dependency graph G = (K, E(P)).

124

국문초록

무인항공기의 자율비행 기술이 성숙함에 따라 무인항공기에 요구되는 임무의

복잡도와 정밀도가 증가하고 있다. 최근에는 단일 무인항공기에 의한 감시정찰 임

무에서 나아가 다수의 무인항공기의 협력적인 임무수행 능력에 관한 연구가 활발

히 수행되고 있다. 본 연구에서는 무인항공기의 협업에 의한 잠재력을 최대한으로

활용하기 위하여 다수의 무인항공기가 동시에 수행해야 하는 임무를 고려하였다.

이러한 임무로는 위험도가 높은 방어 시스템을 동시에 공격하는 임무, 넓은 재난

지역을 다수의 무인기가 동시에 수색, 물품지원, 구조 등을 수행하는 임무, 그리고

무거운물체를다수의무인항공기가협력하여수송하는임무등을고려할수있다.

이와 같이 복잡한 임무를 관리하기 위해 지상 조종사는 다수의 무인항공기를 관

제하여야 하며, 이 과정에서 과도한 업무부하는 조종사 실수를 유발하여 임무수행

효율저하로 이어질 수 있다.

본 연구에서는 다수 무인항공기의 동시도달을 고려한 협력 임무할당 문제를

정수계획법으로정식화하고,중앙집중형임무할당방식과분산형임무할당방식을

연구하였다. 무인항공기로부터 수집된 정보를 기반으로 최적에 가까운 임무할당

을 결정하는 중앙집중형 임무할당 방식으로는 모든 해 공간을 탐색하여 최적해를

계산하는 방식, 경험적인 법칙을 통해 신속하게 해를 결정하는 방식, 그리고 메타

휴리스틱 기법의 일종인 군집 최적화 기법을 활용하는 방식을 제안하였다. 분산형

임무할당 방식으로는 개별 무인항공기는 모든 무인항공기가 아닌 이웃 무인항

공기들과만 정보를 교류하고, 이를 통하여 자율적으로 임무를 할당하는 기법을

125

제안하였다. 제한된 통신반경에 따른 실시간 네트워크 위상변화 상황을 고려하기

위하여 집결지 개념을 도입하였으며, 연결된 네트워크 상황에 대하여 수렴성과

확장성을 분석하였다. 제안한 기법들의 성능을 검증하기 위하여 적 대공망 제압작

전 시나리오에 대한 수치 시뮬레이션을 수행하고, 제안한 기법 간의 성능을 비교

분석하였다.

주요어: 임무 할당, 무인항공기, 동시도달, 중앙집중형 임무할당, 분산형 임무할당

학번: 2010-20693

126

	Chapter 1 Introduction
	1.1 Motivation and Objective
	1.2 Literature Survey
	1.2.1 Vehicle Routing Problem
	1.2.2 Centralized and Distributed Control
	1.2.3 Centralized Control: Optimal Coalition Formation Problem
	1.2.4 Distributed Control

	1.3 Research Contribution
	1.3.1 Systematic Problem Formulation
	1.3.2 Design of a Centralized TA Algorithm for a Cooperative Timing Mission
	1.3.3 Design of a Distributed TA Algorithm for a Cooperative Timing Mission

	1.4 Dissertation Organization

	Chapter 2 Problem Statement
	2.1 Assumptions
	2.2 Agent-based Formulation
	2.3 Task-based Formulation
	2.4 Simplified Form of Task-based Formulation

	Chapter 3 Centralized Task Allocation
	3.1 Assumptions
	3.2 Exact Algorithm
	3.3 Agent-based Sequential Greedy Algorithm: A-SGA
	3.4 Task-based Sequential Greedy Algorithm: T-SGA
	3.5 Agent-based Particle Swarm Optimization: A-PSO
	3.5.1 Preliminaries on PSO
	3.5.2 Particle Encoding
	3.5.3 Particle Refinement
	3.5.4 Score Calculation Considering DAG Constraint

	3.6 Task-based Particle Swarm Optimization: T-PSO
	3.6.1 Particle Encoding
	3.6.2 Particle Refinement

	3.7 Numerical Results

	Chapter 4 Distributed Task Allocation
	4.1 Assumptions
	4.2 Project Manager-oriented Coalition Formation Algorithm : PCFA
	4.3 Task-oriented Coalition Formation Algorithm: TCFA
	4.4 Modified Greedy Distributed Allocation Protocol: Modified GDAP
	4.5 Properties
	4.5.1 Convergence
	4.5.2 Scalability
	4.5.3 Performance
	4.5.4 Comparison with GDAP

	4.6 TA Algorithm in Dynamic Environment
	4.6.1 Challenges in Dynamic Environment
	4.6.2 Assumptions
	4.6.3 Distributed TA Architecture in Dynamic Environment
	4.6.4 Rally Point
	4.6.5 Convergence
	4.6.6 Deletion of Duplicated Allocation

	4.7 Numerical Results
	4.7.1 Scalability
	4.7.2 Application: SEAD Scenario
	4.7.3 Discussion

	Chapter 5 Conclusions
	5.1 Concluding Remarks
	5.1.1 Problem Statement
	5.1.2 Centralized Task Allocation
	5.1.3 Distributed Task Allocation

	5.2 Future Research

	Abstract (in Korean)

<startpage>21
Chapter 1 Introduction 1
 1.1 Motivation and Objective 1
 1.2 Literature Survey 3
 1.2.1 Vehicle Routing Problem 3
 1.2.2 Centralized and Distributed Control 4
 1.2.3 Centralized Control: Optimal Coalition Formation Problem 5
 1.2.4 Distributed Control 8
 1.3 Research Contribution 10
 1.3.1 Systematic Problem Formulation 10
 1.3.2 Design of a Centralized TA Algorithm for a Cooperative Timing Mission 11
 1.3.3 Design of a Distributed TA Algorithm for a Cooperative Timing Mission 11
 1.4 Dissertation Organization 12
Chapter 2 Problem Statement 13
 2.1 Assumptions 13
 2.2 Agent-based Formulation 15
 2.3 Task-based Formulation 19
 2.4 Simplified Form of Task-based Formulation 21
Chapter 3 Centralized Task Allocation 23
 3.1 Assumptions 23
 3.2 Exact Algorithm 24
 3.3 Agent-based Sequential Greedy Algorithm: A-SGA 26
 3.4 Task-based Sequential Greedy Algorithm: T-SGA 28
 3.5 Agent-based Particle Swarm Optimization: A-PSO 30
 3.5.1 Preliminaries on PSO 30
 3.5.2 Particle Encoding 33
 3.5.3 Particle Refinement 33
 3.5.4 Score Calculation Considering DAG Constraint 34
 3.6 Task-based Particle Swarm Optimization: T-PSO 38
 3.6.1 Particle Encoding 38
 3.6.2 Particle Refinement 39
 3.7 Numerical Results 41
Chapter 4 Distributed Task Allocation 49
 4.1 Assumptions 50
 4.2 Project Manager-oriented Coalition Formation Algorithm : PCFA 51
 4.3 Task-oriented Coalition Formation Algorithm: TCFA 63
 4.4 Modified Greedy Distributed Allocation Protocol: Modified GDAP 68
 4.5 Properties 71
 4.5.1 Convergence 71
 4.5.2 Scalability 72
 4.5.3 Performance 75
 4.5.4 Comparison with GDAP 76
 4.6 TA Algorithm in Dynamic Environment 79
 4.6.1 Challenges in Dynamic Environment 79
 4.6.2 Assumptions 79
 4.6.3 Distributed TA Architecture in Dynamic Environment 80
 4.6.4 Rally Point 85
 4.6.5 Convergence 87
 4.6.6 Deletion of Duplicated Allocation 87
 4.7 Numerical Results 88
 4.7.1 Scalability 88
 4.7.2 Application: SEAD Scenario 94
 4.7.3 Discussion 106
Chapter 5 Conclusions 107
 5.1 Concluding Remarks 107
 5.1.1 Problem Statement 107
 5.1.2 Centralized Task Allocation 107
 5.1.3 Distributed Task Allocation 108
 5.2 Future Research 110
Abstract (in Korean) 125
</body>

