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Abstract

Numerical Investigation and Surrogate
Modeling of Aerodynamic Jet Interaction
for Continuous Type Side-Jet Controlled

Rocket

Kang Kyoung Tai
Department of Aerospace Engineering

The Graduate School

Seoul National University

The supersonic jet interaction generated by a continuous type side-jet thruster
of the missile was considered. Firstly, the jet interaction flow field was investi-
gated using numerical simulations. The simulation was made use of the three-
dimensional unstructured-based computational fluid dynamics (CFD) solver.
The numerical simulation method was validated through comparison with wind
tunnel test results. Flow fields investigation and jet interaction effects for vari-
ous flow conditions, jet magnitude, and jet direction conditions were performed.
Secondly, the jet interaction aerodynamic database based on CFD data was
developed and assessed. The generation of the jet interaction aerodynamic
database for the continuous type side-jet requires a large amount of simulation

data owing to the complex nature of jet interaction. To reduce the required



number of simulations, seven jet operating conditions were selected using geo-
metrical symmetry at first; then, three-dimensional numerical simulations were
conducted to build the jet interaction aerodynamic database in the reduced
design space. Two modeling approaches were used in developing the jet inter-
action aerodynamic database. One is CFD-based modeling with a full factorial
sampling, and the other is surrogate modeling, based on the Latin hypercube
sampling and Kriging method, for the interim database. The resulting two aero-
dynamic databases were assessed through comparison with flight test results.
Based on the comparison, both models showed a suitable representation of the
aerodynamic coefficients within 10% error during the jet operation period. This
assessment confirms that the jet interaction aerodynamic database for missiles
with continuous type side-jet thrusters can be constructed using the CFD-based
modeling approach. The surrogate model was found to perform well compared

with the CFD-based model within an acceptable error level.

Keywords: side-jet, continuous type side-jet, jet controlled missile, aerody-
namic database, aerodynamic coefficients, jet interaction, CFD, surrogate mod-
eling
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Chapter 1

Introduction

1.1 Research Background

1.1.1 Side-jet control of missile

Modern guided missiles that require target interception ability often use a side-
jet thruster as a control device to enhance maneuverability within a short time
because of its fast response time characteristics compared to the conventional
aerodynamic control devices. Generally, the side-jet control is effective in the
low dynamic pressure region, such as the launch phase, and the terminal guid-
ance phase at high altitude above the stratosphere. But it is also applicable to
high maneuvering missiles operating in low atmosphere regions to enhance the
maneuverability and response of aerodynamic control.

Despite these advantages, there is one major disadvantage in applying
the side-jet control: the jet interaction effect associated with the jet control
system. When the side-jet controller is operating in endo-atmospheric flight,
there is a strong aerodynamic jet interaction between the jet flow and free-
stream. This strong interaction creates interference forces and moments acting

on the missile frame. Thus, the total force is a combination of the thrust force
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Figure 1.1: Schlieren photograph of side-jet interaction flow field
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Figure 1.2: Schematics of side-jet interaction

and the jet interaction force. The schlieren image and a flow field schematic
of a typical side-jet control is shown in Fig. and Fig The jet plume,
which causes a strong bow shock, acts as an obstacle to the external flow. An

adverse pressure gradient upstream of the jet generates a separation of the



boundary layer and separation shock. The surface pressure at this region is
higher than ambient pressure. An expanded and separated axial flow by the jet
plume forms a recirculation region behind the jet that causes a low-pressure
region on the surface. These integrated high and low pressure regions generate
jet interaction forces and moments [1},2]. The forces induced by aerodynamic
interference could frequently be acting in different directions from that of the
jet reaction force. Therefore, an accurate estimation of the jet interaction effect
is critical in developing a reliable design for precise control of missile with a side-
jet thruster. For this purpose, a six-degrees-of-freedom (6-DOF) jet interaction

aerodynamic database should be constructed during the system development.

1.1.2 Continuous type side-jet

Two types of side-jet control of missile can be considered according to their
control method, the moment control type and the force control type. For mo-
ment control, the side-jet thruster is located in ahead of or in rear of the center
of gravity(c.g.) arising force and moment in the pitch axis. The later type has
the side-jet thruster that is located near the c.g. arising the acceleration di-
rectly. The moment control type widely uses the multiple small impulse type
jet thruster similar to PAC-3. The longer duration continuous type jet similar
to SM-3 or terminal high altitude area defense (THAAD) is suitable for the
force control type [3}4].

The continuous type side-jet control is performed using four nozzles which
are located in diametrically opposite directions in two orthogonal planes. Each
nozzle has its own switching device to control nozzle thrust. The combina-

tions of the switching units of the nozzles enable thrust vectoring. This type of



side-jet control ensures omni-directional control with short response time and
large reaction control forces. Jet interaction of the continuous side-jet thruster
is considered in this research. The jet interaction mechanism of the continu-
ous type side-jet thruster is the same as for the conventional side-jet thruster,
as explained previously. However the continuous type side-jet controller has
a bigger jet nozzle than the conventional side-jet thruster and causes a more
complex aerodynamic jet interaction between the side-jet and the supersonic
free-stream, due to the operation of multiple nozzles. So, the aerodynamic in-

terference database has to be more complicated.

1.1.3 Jet interaction aerodynamic database

The 6-DOF aerodynamic database of the vehicle is required in developing the
missile system for mission simulation and analysis. The main objective of con-
structing the database is to provide aerodynamic data to the development of
the guidance, navigation, and control systems for the vehicle [5]. For the con-
tinuous type side-jet thruster controlled missile, jet interaction aerodynamic
database should also be constructed for precise jet control. Traditionally, the
aerodynamic databases for stability and control analysis over the flight are filled
by usage of look-up tables from wind tunnel test campaigns [5-7]. Construct-
ing aerodynamic database of jet interaction with a wind tunnel test is difficult
because of difficulties in achieving similitude between a wind tunnel test and
actual flight conditions and because of requiring large amount of data to cover
all operating ranges. So aerodynamic database of jet interaction was developed
by using an unstructured based CFD (Computational Fluid Dynamics) sim-

ulation results in this study. The numerical simulation method was validated



through the comparison with limited wind tunnel test results for the validation.
The resulting aerodynamic database was assessed through the comparison to

flight test results.

1.2 Literature Review and Scope of Works

Through extensive research over the last 50 years, analytical and computational
analysis, as well as wind tunnel and flight test, has been done associated with
these aerodynamic interference effects. The understanding of the phenomena
that occur with respect to the reaction control of missiles has matured [1,2]. But
it is still difficult to predict precisely the aerodynamic jet interferences in order
to evaluate jet thruster effectiveness, because of the difficulties in achieving
similitude between a wind tunnel test and actual flight conditions [8H-11]. With
the advances in CFD technology and high performance computing, the CFD
technique has come to play an important part in predicting jet interferences of
lateral jets. In the last few decades, many research showed the capability of CFD
simulation in the prediction of jet interaction phenomena [11-15]. Chamberlain
et al. [16] reported the success achieved in the design and testing of a THAAD
interceptor through extensive utilization of CFD for the jet interaction problem
[16]. However, most studies have been confined to impulse type small single side-
jet applications. Study of the continuous type side-jet has not been published
and the construction of a jet interaction database using only CFD simulation
data has not been reported.

In this study, a numerical investigation of the jet interference effects for a

missile equipped with a continuous type side-jet thruster is presented. Three-



dimensional flow fields are simulated by using an unstructured-based CFD
solver. The accuracy of the applied numerical method was evaluated by com-
parison with wind tunnel test results. Flow field investigation with respect to
the jet interaction parameters was conducted for various flow conditions, jet
pressure ratios and jet direction conditions.

With the understanding of jet interaction phenomena of the continuous
type side-jet through the numerical investigation, the jet interaction aerody-
namic database was constructed based on numerical simulations. The devel-
opment process of the jet interaction aerodynamic database based on compu-
tational results and its system level assessment are presented in this study.
The primary focus of this study is on building the jet interaction aerodynamic
database of the continuous type side-jet using CFD data efficiently with min-
imum computational cost. First, seven jet conditions were selected to reduce
the number of simulations in building the aerodynamic database. Then, ex-
tensive CFD simulations of jet interaction flow field for the continuous type
side-jet controlled missile were conducted in the reduced design space, and a
CFD-based modeling with the full factorial sampling was applied to develop
the jet interaction aerodynamic database.

Although the CFD-based modeling can provide the jet interaction database
efficiently within sufficient accuracy, there is a gap between the initial design
stage and the delivery time in the system development cycle because of its high
computational cost. To bridge this gap, a surrogate modeling approach was
applied to supply an interim approximated database. Surrogate modeling is
increasingly being used to construct the CFD database in the aerospace com-

munity, due to its ability to reduce the resource requirements for design explo-



ration [17-19]. With effective sampling and interpolation methods, a surrogate
model can reduce the number of simulations required to construct the aero-
dynamic database to a specified accuracy. In this study, the Latin hypercube
sampling (LHS) method was used to sample the training data, and the Kriging
method was selected as an approximation model for the surrogate modeling.
The resulting two aerodynamic databases were evaluated through comparison

with flight test results.

1.3 Objective of Research

The objective of the present study is two-fold: one is to investigate jet inter-
action phenomena of continuous type side-jet with numerical approach. The
unstructured grids based Reynolds—-Averaged Navier—Stokes (RANS) solver is
used for the simulation and extensive validations are presented to show the
accuracy of applied methods. The other one is to efficiently construct jet inter-
action aerodynamic database of continuous type side-jet using CFD data. The
CFD-based modeling with a full factorial sampling and the surrogate modeling
approach are used in developing the jet interaction aerodynamic database. The

both models are assessed through the comparison with the flight test results.

1.4 Outline

The rest of present thesis is organized as follows.
In chapter 2, the applied numerical methods for jet interaction analysis
will be introduced. The unstructured grids based Reynolds—Averaged Navier—

Stokes (RANS) compressible solver and discretization methods are described.



In chapter 3, the continuous type side-jet controlled missile system is intro-
duced and numerical investigation is carried out. This chapter includes detailed
flow features of jet interaction and jet interaction characteristics according to
change in jet interaction parameter. The validation of numerical results with
wind tunnel test result also will be presented.

In chapter 4, the development process of the jet interaction aerodynamic
database based on computational results is presented. The detailed surrogate

modeling methods and its evaluation are described.

In chapter 5, the assessment of constructed jet interaction databases through

post-flight test analysis is presented. Applied post-flight test method is intro-
duced and analysis results are presented.

Finally, conclusion and future works are given in Chapter 6.



Chapter 2

Numerical Method

For the simulation of supersonic jet flow, the unstructured grids based Reynolds—
Averaged Navier—Stokes (RANS) compressible solver was employed. The solver
is based on a cell vertex centered finite volume technique to solve the governing
equations. The control volumes are formed by a median-dual grid obtained from
the control surfaces for each edge. This chapter describes applied discretization

method and turbulence model for turbulence closure.

2.1 Governing Equations

The compressible Reynolds—Averaged Navier—Stokes (RANS) equations writ-

ten in a Cartesian frame of reference [20], can be expressed as

%(Z—I—V-FC—V-FUZQ (2.1)

where U = (p, puy, pus, pus, pE)T is the conservative variables, F, and F, are

respectively the convective and viscous flux matrices and @ is the source term.

On integrated form for a control volume {2, the same equations become

ou

Rl /0 . — F,)dS = Q .
o +ng(F F,)dS /QQd (2.2)



Then, the time derivative of the conservative variables can be cast in the form
—dQ = Q— (2.3)
Herewith, Eq. becomes

f?j -2 Vag(pc ~F,)dS —/QQdQ] (2.4)

The surface integral on the right-hand side of Eq. is approximated by a sum
of the fluxes passing through the faces of the control volume. If we consider a

particular volume £2;, we obtain the following equation.

dU 1 [ &
o > (Fe— Fy)mAS,, — (QQ); (2.5)
m=1

In the above equation, N denotes the number of the faces of the control volume
Qr, and the variable AS,, stands for the area of the face m, respectively. The

flux matrices resolve into Cartesian components

F. = fclnx + chny + f03nm

(2.6)
F, = fv1nz + fvzny + fv3nZ?
where

Pl 0

Po1; + puity Ti1
Je, = Poa; + pusug | » foi = T2 (2'7)

pdzi + puus Ti3

pHu; i + U;Tij

and where the shorthand notation, ¢, is used to denote derivatives with respect
to x;. The stress tensor 7 can be written as

N Buz 8Uj 2

Tij

10



where g is the dynamic viscosity and the heat flux ¢; is written as

oT
i = k—. 2.9
The thermal conductivity is given by
0
k=c,— 2.10
CP Pr ( )

where p is the viscosity and Pr is the constant Prandtl number (Pr = 0.72
for air). The total energy per unit mass E of a fluid is obtained by adding its
internal energy per unit mass, e, to its kinetic energy |u|?/2
E=e+— (2.11)
The total enthalpy is can be expressed with the total energy and the pressure
jal?

p
H=h+'"-=FE+*% 2.12
+ 5 5 (2.12)

2.2 Gas Modeling

Two different gas models were used to simulate jet interaction flow.

2.2.1 Calorically perfect gas

Assuming that the working fluid behaves like a calorically perfect gas, the

equation of state assumes the form
p = pRT (2.13)

where R denotes the specific gas constant for the perfect gas. The enthalpy and

the internal energy can be defined as

11 :



The ratio of specific heats v is the ratio of the heat capacity at constant pressure

¢p to heat capacity at constant volume ¢, as following

Cp
Y Co ( )

When the gas is the calorically perfect the internal energy of the gas is pro-
portional to the temperature and thus the ratio of specific heat, -, is constant.

The relation between R and ¢, is given by

1
R=1""¢, (2.16)

The static pressure is obtained from the conservative variables through the

following relation

p=(—1p [E — ] : (2.17)

2.2.2 Thermally perfect gas, Multiple gases

In order to simulate the behavior of the mixing of several thermally perfect
gases, the Navier-Stokes equations have to be augmented by (/N —1) additional
transport equations for the N species [21]. The equation is solved for each gas
and its fraction of the total density, its mass fraction specie ¥;, 0 < Y; < 1.

These equations, formulated in the form of equation Eq. look like:

ép)Z 631

0 ot

dQ + Y (pYiu - n)AS + Y (/o)

where ¢ is the Schmidt number. The total density will satisfy

N
> Yipi=p (2.19)
=1
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The internal energy and the effective gas constant are mass fraction weighted

sums

N N
e(T) = ZYM(T); R(T) = ZYiRi(T) (2:20)

2.3 Spatial Discretization

The finite volume discretization is obtained by applying the integral formulation
of the governing equations in Eq. to the control volume surrounding the

unknown at node

) mo Mo
¢ (UoYo) + > FepunoxSor + Y FugnokSor = QoVo, (2.21)
k=1 k=1

where myg is the number of neighbors to node vy [20,22]. The surfaces Sox
enclose the control volume for node vy and form the dual grid illustrated in
Fig. in 2D for a given triangulation. The convective flux vectors F,, and
viscous flux vector F,, are computed on the face consisting of nodes vy and

v, where Spg is given, the source term (g is computed directly at the node.
2
noSo

n

Ny

Figure 2.1: The median dual grid in 2D [22]
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2.3.1 Convective fluxes

The convective flux F , calculated with the flux difference splitting scheme of

Cok

Roe on unstructured grid [23].

Upwind Schemes

The Roe’s flux difference splitting scheme is adopted. The flux difference split-
ting schemes evaluate the convective fluxes at the face of the control volume
from the left and right state by solving the Riemann problem which was intro-
duced by Godunov [24]. In order to reduce the computational costs of Godunov
scheme, Roe’s method is applied. Roe’s upwind scheme is based on the decom-
position of the flux difference over a face of the control volume into a sum of
wave contributions. The convective fluxes are evaluated at the faces of a control

volume faces according to the formula

F

co1

[(FL(U) + Fu(U0) = Ao (U1 = Uo) (2.22)

N | =

In the above equation Eq. Apoe denotes the Roe matrix which is

computed as

_ 1 - 1 - 1~
ARoe = §RAR—1 (U — Up) = §RAL‘1 (Vi — V) = §RAdW01, (2.23)

where U and V' denote the conservative and the primitive variables respectively.
The characteristic variables are denoted by dWy, = L=1(Vy — Vo) = R~1(U; —

Up). The tensor R is the right eigenvector matrix to the flux Jacobian,

dF,

= RAR™! 2.24
94 , (2.24)

14



where the diagonal tensor A contains the eigenvalues. A similar expression can
be obtained for the tensor L belonging to the primitive variables.

The diagonal matrix A is obtained as
A =|A*|(I - D), (2.25)

where ¥ is a diagonal matrix with limiters for second order accuracy. For a Roe
flux difference splitting scheme the components of R, L, A must be computed

from the Roe averaged variables

po1 = J%ma
U1 = uo\/pT)-i- u1\/p>1’
VPtV (2.26)
Ho1 = Hov/po + thyiy
Vo +/p1
¢ty = (v —=1) [Hot — uoa|*/2] .

The diagonal matrix A* in Eq. contains the eigenvalues adjusted with

an entropy fix to prevent the eigenvalues to become zero and produce unphysical

solutions. The following Harten’s entropy fix is used for each of the eigenvalues

2 2
Aff=¢ 20 (2.27)

where ¢ is a small value, which can be conveniently set equal to some fraction

of the local speed of sound [25}26].

Solution reconstruction

To achieve second order accuracy of the convective flux calculation. Barth and

Jespersen’s [27] reconstruction method is employed. It is assumed that the
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solution is piecewise linearly distributed over the control volume.
Uface = UVvertex + VUvertea: : AT‘, (228)

where VU is the gradient of U and Ar represents the distance vector.

Evaluation of the gradients

Gradients of all primitive variables are needed to compute the characteristics in
the nodes. Here the Green-Gauss approach is applied. The gradient in a node

is computed by evaluating the surface integral of the gradient theorem

1 1 &1
Vg = — S=— - S0k 2.29
Vg Vo b wn Ve kz:l 2(vk + v0)nokSok ( )

where v denotes a component of the primitive variables. The node valued char-

acteristics dWy and dW; are obtained as

dWo = Lo(VVp - (1 — 20)),
(2.30)

dWy = Ll(vvl : (xl - 370))7

in addition to the face value dWy; in Eq. [2.23]
The minmod limiter is applied and the limiter is computed according to

the sign of the eigenvalues of the flux Jacobian,

minmod(dwo,dwm), )\2 > 0,
Y dwor = (2.31)

minmod(dwg, dwy), A; < 0.
2.3.2 Viscous fluxes

In order to evaluate the viscous flux F,,,

in Eq. compact discretization of

the fully viscous approximation is used.
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The viscous stresses for the momentum equations can be divided as
Tijng = (Tijng)a + (7ij7; ) san, (2.32)

where (7;;n;)u contains only normal derivatives and leads to a thin-layer dis-
cretization if only this term is considered. A fully viscous approximation is
obtained if also the remaining part of the viscous terms (7;;7;)tan are added.
The components of the normal are here denoted n = (ng, ny,n.) = (n1,n2, n3).

The thin-layer part can then be formulated as,

ou; ou
(Tijn5)0 = <8n + = <8n]nj> nl> . (2.33)

The normal derivatives in Eq. [2.33] can be approximated on the edges as

Ipor _ 1= o
on |z1 — xo|’

(2.34)

with the notation from Fig. and where the normal is directed from node 1
to node v;. With this formulation only two points are involved in computing
the normal gradients at the edges and hence automatically leads to a compact
second derivative.

By recalling the identity of the Laplace’s equation

9¢
ApdV = ¢ — :
/Q pdV 7@ L on ds, (2.35)

the following approximation of the Laplace’s equation at node is vy obtained

as

Pk — o
A 2.36
o ~ V Z ’xkz — .’E()| ( )

The remaining parts of the viscous terms contain gradients which may be added
using the Green—Gauss formulation in Eq. and thus a fully viscous ap-

proach can be obtained.
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2.4 Temporal Discretization

The iterative scheme used to converge the discrete residuals to zero is an explicit
g-stage Runge-Kutta scheme [28]. The equation
auv

== R(U), (2.37)

can be written
u' = u" + o AtVTIR(u"),
u? = u" 4+ AtV R(ut),
(2.38)
u? = u™ + AtV R(u?Y),

u" Tt =4,

The «; represents the stage coefficients which codetermine the stability area
and the order of accuracy of the Runge-Kutta scheme. They can be chosen in
such a way that they suit the problem to be solved.

The local time step is computed for each node vy according to

Atg = min CFLinvicidﬁg CFLviscous& 9 (239)
)\0 )\V

0

where V) is the volume, \¢ is the integrated convective spectral radius and Ay,

is corresponding viscous spectral radius.

2.5 Turbulence Modeling

The k — w Shear Stress Transport (SST) turbulence model of Menter [29,|30]
is applied for the turbulence closure. The SST model seeks to combine the

positive features of the & — € model and the k — w model of Wilcox [31]. It
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is well known that the k£ — w SST model is superior to the k — € approach in
adverse pressure flows and in compressible flows.

The k — w SST model is given by the following formulations. The trans-
port equations for the turbulent kinetic energy and the specific dissipation of

turbulence read in differential form
Opk N d(pvik) 0
ot Ox; " Oz

Ok
[(M + Uklf«t)a } + T£Sz-j — B" pwk;,
J ]

Opw  O(pvjw) 0 ow Cup
= — 7S 2.4
ot 8,1,'] 8$] (N—i_o’wlu’t)a ;i + Lt TZ] SZ] ( O)
pPOw2 Ok Ow

— Bpw? + 2(1— f1)

w Ox;dx;
The right-hand side terms in Eq. represent conservative diffusion, eddy-
viscosity production and dissipation. The last term in w-equation describes the

cross diffusion. The turbulent eddy viscosity is computed from

park
= A 2.41
pe max(ajw, 2f3) (2.41)
Each of constants is blended of an inner (1) and outer (2) constant
¢ = fior + (1 — f1)po, (2.42)

where ¢ is constant 1 and ¢, represents constant 2. Additional functions are

given by:
f1 = tanh(argy),

. [ <\/E 500u> 4pow2k]
arg; = min |ma . )

B*wd pwd? | " CDy,,d?
C Dy, = max <2 pows Ok Ow 10—20> , (2.43)
w 830] 8.%]

fa = tanh(args),

arg, = max 2vk 5004
92 = Brwd’ pwd? |
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The coefficients are given by:

or1 =0.85, 0,1 =05, B =0.075,
Cun = B1/B" = 0u1k?/\/B* = 0.533,

ok = 1.0, o4y =0.856, B2 = 0.0828, (2.44)
Cua = Bo/B* — 0u2k?//B* = 0.440,

g*=0.09, k=041, a; =0.31.
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Chapter 3

Numerical Investigation of
Continuous Type side-jet

3.1 Configuration and Computational Grid

Numerical simulation of jet interaction has been conducted for continuous type
side-jet controlled missile. Detailed configuration of missile system is presented
in Fig. which consists of ogive nose, canard, side-jet thruster and tail. The
missile uses four canard surfaces to provide integrated control forces in normal
flight state. In final guidance state, the side-jet thruster is used to get additional
steering forces. The length of missile is about 17 calibers(z/D) and side-jet
thruster is located at 7 calibers from the nose.

The continuous type side-jet controller consists of four equally-spaced noz-
zles along the circumferential position. The nozzle shape is rectangular and each
nozzle has the their own thrust control devices connected to solid propellant
gas generator. They generate jet forces for the desired direction with the com-
bination of four nozzles.

About 15 million tetrahedral mesh cells were constructed for the body-
canard-tail configuration missile with side-jet, and 25 prism layers were used

for near wall boundary calculation. Fine grids were used in the nose, control

21 :



surfaces and jet injection region to capture complex jet interaction flow fields.

shows constructed unstructured grid system around the missile. The

rectangular-shaped nozzle configuration of the jet thruster was modeled from
the throat region and the stagnation inlet boundary condition was applied with

the jet chamber conditions.

Canard

Nose

Continuous Type Side Jet

Figure 3.1: Configuration of missile with continuous type side-jet thruster

Figure 3.2: Constructed unstructured meshes around the vehicle
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3.2 Jet Interaction Parameters and Evaluation

The principle objective in the analysis of jet interaction is to assess the aero-
dynamic forces induced by the jet. It is common to define the net control force
and moment produced by jet control in terms of a parameter referred to as the
amplification factor [32]. Two amplification factors are used. One is the force
amplification factor Kr. The other is the moment amplification factor Kj;.
The amplification factors are defined as the ratio of total force and moment

produced to the jet thrust. They are defined as

Kp = (F; + F;)/F;
(3.1)
Ky = (M; + M;)/M;
where F; and M; are jet interaction force and moment respectively. The nozzle
delivered thrust F; is calculated as F; = F, + (P; — Ps)A; and the moment
induced by the jet thrust is defined as M; = Fjl;, where [; is moment arm of
nozzle thrust.

The jet amplification factors help understanding jet interaction effects in-
tuitively and it can simply converted to physical values for the fixed jet thrust
condition. But for the continuous type side-jet thruster, this approach is not
practical. Because the jet thrust can be varying according to the nozzle com-
bination and the jet interaction effect is exist even in the null thrust state. So

the difference of aerodynamic coefficients with and without jet flow (Eq is

used to measure jet interaction effects.

AC,,,, = Cy(with jet) — Cy, (without jet) (3.2)

wjrI

In general, the jet interaction effects of missile are function of many param-

eters including nozzle shape, jet location, jet thrust, missile attitude angle and
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free-stream conditions. For the continuous type side-jet controller, the jet inter-
action effects are can be defined as a function of flight Mach number, altitude,
angle of attack, roll angle of missile, magnitude of jet forces and desired jet
direction as shown in Eq[3.3] Considering all operation regions of jet thruster,
large amount of design spaces are exist in analyzing jet interaction effects. It
also means that huge number of aerodynamic data are needed in modeling of

jet interaction aerodynamic database.

AC17UJI = f(MOOaHv ata¢, |F‘30]) (33)

3.3 Jet Direction and Scale of Continuous Type Side-
jet

The continuous type side-jet thruster consists of four equally-spaced nozzles
along the circumferential position. Each nozzle has a switching device to alter
nozzle thrust and a single solid propellant gas generator supplies compressed
gas to the nozzle. It generates jet forces for the desired direction with the
combination of four nozzles. Fig[3.3] shows the mechanism of thrust vectoring
with continuous type side-jet and its possible operating thrust ranges accord-
ing to the desired jet direction. The pressure of supplying chamber should be
sustained constantly for safety reason during the operation. It means that the
summation of nozzle thrusts cannot exceed the maximum thrust(7},q. ). There-
fore, thrust of each nozzle(N1 ~ N4) has the following relations in Eq[3.4 with

desired thrust(Fy) and jet direction(d;). The resultant jet thrust scale can be
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defined as normalized value by maximum thrust at each jet direction(Eq. [3.5]).

N1+ N2+ N3+ N4 = jﬁnzar
N1 — N3 = Fy x cost);

N2 — N4 = Fy x sinb;

|l7|:: }21/l1nax

N4

<Rear View>

Possible operating region
of jet thruster

Figure 3.3: Thrust vectoring mechanism and possible operating region of con-

tinuous type side-jet

3.4 Simulation Conditions

The numerical method in Chap. [2|is applied for the simulation of continuous

type side-jet. The jet gas is modeled as a lumped chemical mixture for the

simulation. This implies that the simulation of the specific heat ratio v; of 1.24
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is the same as the real gas; however, the chemical reaction effect of exhaust
gases is not considered.

Considering the operation mechanism of the continuous type side-jet, four
jet direction conditions are selected for the numerical simulation and its valida-
tion. The selected four jet directions are displayed in Fig. The jet direction
FO means null state of zero thrust, the jet direction F1, F3, and F5 are full
thrust state at jet direction 6; = 0°, 22.5°, and 45.0° respectively. The simula-
tion was carried out for theses jet direction conditions at various free-stream
conditions. Two free-stream Mach numbers (3.0 and 3.6), angle of attack ranges

from 0° to 28° and a missile roll angle ranges from 0° to 360° are considered.

Side Jet Thrust

Reaction Force

Figure 3.4: Selected jet directions for the simulation (Rear View)
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3.5 Wind Tunnel Test and Validation of Numerical
Method

Because the investigation and the development of aerodynamic database of
jet interaction were conducted from CFD simulations, evaluation process of
uncertainty between CFD results and physical results is needed. So, the wind
tunnel test has been conducted on a sub-scale model representing a missile
with continuous type side-jet in the wind tunnels. Test model was designed to
simulate jet flow for four defined jet directions:F0, F1, F3, F5. Compressed air
gas was supplied to the jet nozzle from reservoir for generating various chamber
pressure conditions. Five components(Cy, Cz, Cl, C'm,Cn) balance was used to
measure aerodynamic coefficients during the test. Jet interaction aerodynamic
coeflicients were obtained from differences between jet-on and jet-off tests.
For the validation of the numerical methods, additional CFD simulations
were performed at the wind tunnel test conditions. All simulations for the
investigation were conducted using the lumped hot gas model (v; = 1.24) for
jet flow. The cold gas model (y; = 1.4) was used for the validation simulations

at the wind tunnel test conditions.

3.5.1 Jet interaction similitude parameter

Test conditions were designed to simulate various flow conditions in the CFD
simulation cases. But there is difficulties in simulating jet flow conditions in the
wind tunnel with compressed air gas. In order to obtain identical aerodynamic
coefficients for a wind tunnel model and its scaled up vehicle, the surface pres-

sure coefficient (C},) should be the same at each point on the body. For this
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purpose two jet interaction scaling parameters are widely used. One is the pres-

sure ratio and the other is the jet to free-stream momentum parameter ratio

(MPR), as defined in Eq. and Eq.

P;
PR = P—J (3.6)
uPM; (A,
MPR = harz 4, (&)

R. Chamberlain [16] explained that the MPR, defined as the ratio of mo-
mentum flow out of the jet to the free-stream momentum flow, is the most
important parameter to achieving similitude in jet interaction. Holding the
MPR as constant ensures that the flow blockage due to the jet exhaust, the
wrap-around shock strength, and the low pressure wake characteristics remain
similar. So, MPR was selected as a simulation parameter to match actual flight
conditions. Table specifies the test MPR conditions corresponding Mach

number and altitude.

Table 3.1: MPR conditions for wind tunnel test

Mach \ Altitude H1  H2  H3

3.0 0.34 1.02 3.05

3.6 024 0.71 2.12
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3.5.2 Jet-off cases

The jet interaction aerodynamic coefficients are obtained from the difference of
aerodynamic coefficients with and without jet flow. Therefore, the accuracy of
the numerical simulation for jet-off cases was evaluated at first. Figures[3.5]—[3.7]
show comparison of the experimental and the simulation data for jet-off state
at M = 3.0 and ¢ = 0° — 45°. Each aerodynamic coefficient is normalized to
the maximum values of each coefficient in the wind tunnel test. The predicted
aerodynamic coefficients at the roll angle of 0 degree are in good agreement
with the experimental value, and it can be seen that the error increases as
the roll angle increases. The largest difference is 5% in pitching moment at
the roll angle 45 degrees, which, in addition to being well within wind tunnel

uncertainties, is not a significant error range.

3.5.3 Jet-on cases

The axial distribution of pressure coefficients from the simulation is compared
with the experimental value in Fig. - In the wind tunnel test, the
longitudinal pressure distribution was measured only along nozzle N1, so the
pressure distribution along the centerline of nozzle N1 was compared for var-
ious missile roll angle and jet direction conditions. A very satisfactory match
between the computational and experimental values is obtained. It is shown
that the simulation captures well the shock induced separation points and the
recirculation regions. The features of the longitudinal profiles are typical: 1) a
rise in pressure in ahead of the jet nozzle where the separation shock (A shock)

forms owing to the boundary layer separation; 2) a second higher pressure rise
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indicating the main jet bow shock; 3) the nozzle exit pressure is off-scale; and
4) a low pressure region behind the jet that asymptotes toward the jet-off case
pressure far downstream of the nozzle [33].

The typical jet interaction force and moment coefficients are compared
with numerical simulation results in Fig. [3.13] where the jet interaction effects
versus MPR at M = 3.0, o = 0°, ¢ = 0°, and jet direction index F1 are
displayed. The error bar of the wind tunnel test data in the figure shows the
uncertainties of measurements. The jet interaction normal force and moment
coefficients of the simulations are in agreement with the experimental data with
less than 8% error range at MPR = 3.05. The jet interaction effects for hot
gas and cold gas simulation results show the same behavior along the MPR
change and the difference is relatively small. The result shows that the MPR
is a suitable similitude parameter to describe jet interaction effects. This is
consistent with a previous study that reported the requirement of constant
MPR during scaling attempts to ensure similar jet flow characteristics [16].

Figures[3.14 and [3.15|show a comparison of jet interaction normal force and
pitching moment response surfaces between cold gas CFD simulations results
and wind tunnel test data at M = 3.0 and MPR = 1.02. The trends of the
overall jet interaction with respect to the change of angle of attack and roll
angle are qualitatively the same. The differences increase in accordance with
the angle of attack. This appears to be the effect of the strong interaction
between the jet flow and cross flow of the missile at large angle of attack. It
can be seen that the difference between wind tunnel test and simulation results
is large in the jet direction F3 and F5. It is believed that this is due to the high

uncertainty of the wind tunnel test data in asymmetric jet injection condition
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and the less accurate prediction of the jet interaction between two jets under
multiple jet injection condition. The uncertainty level of the constructed jet
interaction data was evaluated from the differences between the cold gas CFD
simulation results and the wind tunnel test data. The root mean square (RMS)
of the force coefficient differences was less than 0.1, while that of the moment
coefficient differences was less than 0.5. The maximum error of the change of
the center of pressure (AX,,) owing to the jet interaction was measured as less

than 1 caliber.
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Figure 3.5: Comparison of jet-off aerodynamic coefficients, M = 3.0 and ¢ = 0°

11

32



=3,¢=225°

Jet-off, Mach

—Wind Tunnel Data

—®—CFD Data

1.2

20

16

=3, ¢=225°

Jet-off, Mach

'Wind Tunnel Data

—®—CFD Data

0.2

(b) Cm

Figure 3.6: Comparison of jet-off aerodynamic coefficients, M = 3.0 and ¢
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Figure 3.7: Comparison of jet-off aecrodynamic coefficients, M = 3.0 and ¢ = 45°
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Figure 3.12: Comparison of surface pressure distribution, F5, M = 3.0 and MPR

= 3.05
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Figure 3.15: Jet interaction pitching moment coefficients for defined jet direc-

tions at M = 3.0 and MPR = 1.02
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3.6 Investigation of Jet Interaction for Continuous Type

Side-jet
3.6.1 Simulation results of continuous type side-jet

Numerical simulation was conducted for four jet direction conditions at various
free-stream flow conditions. The qualitative features of jet interaction flow for
the jet directions (F0, F1, F3, F5) at M = 3.0, MPR = 1.02 and oy = 0°
is presented in terms of Mach number distribution in Fig. The Mach
contours at the side view and at the cross section of the nozzle center are
compared for different jet direction conditions. The bow shock generated by
obstruction of the jet changes all flow fields behind the side jet thruster. For
the jet direction FO case, jet interaction occurs symmetrically because the side
jet turns on all thrusters in two orthogonal planes with the same strength. A
slight asymmetry of the jet plume is caused by the orientation of nozzle throat
opening device which is defined in Fig. For the jet direction F1 case, a large
jet interaction is observed at the fully opened thruster. Similar jet interaction
flow characteristics according to jet thruster states are captured for the jet
direction F3 and F5 cases. Figure show the Mach contour under MPR =
3.05 condition. The qualitative flow change due to the jet injection is similar
to the previous MPR = 1.02 condition, and the intensity of the obstruction by
the jet is increased.

Figure shows the contour of surface pressure coefficient in x-y plane
for the jet directions (FO, F1, F3, F5) at M = 3.0, MPR = 1.02 and «a; = 0°.
The distribution of surface pressure coefficient at MPR = 3.05 is shown in Fig.

The high pressure region in front of the nozzle exit and extensive low
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pressure region behind the nozzle are observed. Each nozzle has a different jet
strength according to their jet conditions and the high pressure regions moves
forward as the strength of the jet increases. For jet direction F0O, asymmetric
pressure distribution in the circumferential direction due to the orientation of
nozzle throat opening device. For jet direction F3 and F5, shock interaction
occur at the point where the shock waves generated in two nozzle that are
90 degrees apart in the circumferential direction meet, resulting in different

pressure distributions.
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(a) Jet Direction FO

(b) Jet Direction F1

(c) Jet Direction F3

(d) Jet Direction F5

Figure 3.16: Mach contour of continuous type side-jet simulation results (M =

3.0, MPR = 1.02, ay = 0° and ¢ = 0")45
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(a) Jet Direction FO

(c¢) Jet Direction F3

(d) Jet Direction F5

Figure 3.17: Mach contour of continuous type side-jet simulation results (M =
3.0, MPR = 3.05, ay = 0° and ¢ = 0°)
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Jet Direction FO

Jet Direction F1

Jet Direction F3

Jet Direction F5

Figure 3.18: Surface pressure coefficient contour for different jet directions (M

= 3.0, MPR = 1.02, oy = 0° and ¢ = 0°)
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Jet Direction FO

Jet Direction F1

Jet Direction F3

Jet Direction F5

Figure 3.19: Surface pressure coefficient contour for different jet directions (M

= 3.0, MPR = 3.05, oy = 0° and ¢ = 0°)
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3.6.2 Flow Features of Jet Interaction for Continuous Type

side-jet
Shock structure

The main shock features that characterize the supersonic jet interaction flow
field is shown in Mach number contours on the x — z plane of the computational
domain in Fig. [3.20(a). The result of simulation at jet direction F1, M = 3.0,
ay = 0%, and ¢ = 0° is displayed. The highly underexpanded supersonic jet ex-
hausting into the supersonic cross flow produces an inclined barrel shock which
terminates in a Mach disk. The barrel shock acts as a blunt body obstruction
to the incoming flow thus forming a detached bow shock. A fully developed
turbulent boundary is formed at the upstream of jet and, as it approaches the
adverse pressure gradient created by the bow shock wave, it separates from
the incoming flow. The separated boundary layer induces another shock wave,
identified as the induced separation shock. Figure [3.20(b) shows the isometric
view of density gradient around the vehicle, and the three-dimensional shape
of the shock wave can be seen. Different from the case of the jet injection on
the flat plate [34], the bow shock and the separation shock wave are formed in
the form of wrapping around the body. Corresponding the longitudinal surface
pressure coefficients C), along the centerline containing nozzle N1 are shown
in Fig. [3.9(a). The first increase in pressure is due to the separation induced
shock and the second pressure rise represents bow shock due to barrel shock.
The momentum of free-stream causes the jet plume to trail downstream
and to lose its axial symmetry. Looking at the interior volume of the barrel

shock, a large expansion fan is present with its boundaries defined by a recom-
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pression shock that ends with a Mach disk. Figure shows the simulated
shadowgraph of jet interaction flow field at F1, M = 3.0, oy = 0°, and ¢ = 0°.
The shadowgraph contour show that the separation shock and the bow shock
caused by jet injection are captured well. Figure shows an isometric view
of the iso-surface around the jet nozzle exit with streamlines. The iso-surface
of Mach number represents shape of the barrel shock induced by jet expan-
sion. The barrel shock wave is shaped to have a narrow width according to the
shape of the nozzle exit, and is bent downward by the free-stream. It is evident
that the barrel shock acts as an obstacle to the external flow and causes a flow

separation at upstream of the jet.

Vortical structure

The Q-criterion was employed for the vortical structure identification, which
represents the local balance between shear strain rate and vorticity magnitude.
It defines vortices as areas where the vorticity magnitude is greater than the

magnitude of rate of strain as follows

1

Q == (I2*=ISI?) > o, (3.8)

O |

where 2 is the vorticity tensor and S is the rate of strain tensor [35,36] .

The jet interaction flow field and its vortical structures is provided by the
isometric view of Q-criterion, as shown in Fig. 3.23|(a). The result of simulation
at jet direction F1, M = 3.0, oy = 0°, and ¢ = 0° is displayed. This figure illus-
trates four types of vortical structures: (1) a pair of counter-rotating vortices
whose axis is aligned with the downstream direction; (2) the horseshoe vortex

of upstream of the jet originated from boundary layer separation; (3) the trail-
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ing lower vortices behind the jet; (4) the trailing vortices stemming from the
separation region that are formed in far downstream. These vortical structures
of the jet interaction flow field is similar to the case of the crossflow over a flat
plate [34137] except for the wrapping around effect of horseshoe vortices [38].
Unlike the flow over a flat plate, it can be seen that the separated flow ahead of
the jet spreads laterally and downwards to the bottom of the body indicating
the path of the horseshoe vortices.

Figure (b) shows the vorticity magnitude contour on the cross plane
(y — z pane) of the body. It is evident that the counter-rotating vortices and
the horseshoe vortices are strong vortical sources of the jet interaction flow
field. Entrainment of crossflow of free-stream appears to be clearly enhanced
as the jet is deformed and as vortex rollup results in the formation of counter-
rotating vortices [39]. These counter-rotating vortices are strong enough to
reach far back of the body. The horseshoe vortices originated from boundary
layer separation form and move away from the centerline of the jet. The horse-
shoe vortices move along the sideway of body surface.

The lower trailing vortices are formed from the flow separation of free-
stream as it moves away from the jet as barrel shock expands around the
nozzle and as it moves back to the center when the barrel shock detaches from
the surface. These vortices remain attached to the solid surface as it entrains
fluid from the surrounding boundary layer. The trailing vortices are formed
boy the recirculating fluid close to the plane of symmetry, and it follows the
leading edge of the barrel shock away from the solid surface.

For the single jet injection case F'1, it can be seen that the vortical structure

become very complicated as the angle of attack increases in Fig The
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horseshoe vortex are detached from the body and the body vortices originated
from cross flow are interact with vortices formed from the jet. At the angle
of 20 degrees, canard vortices and body vortices are merged with the vortices
generated by the jet. When the crossflow component of the free-stream is blown
in the direction of jet injection, the strong counter-rotating vortices impinges
on the windward body surface. Therefore, strong jet interaction occurs at the
jet injection into the windward side.

Figures [3.24] [3:26] and [3:27] show the vortical structure for multiple jet

injection conditions of the continuous type side-jet (F0, F3, and F5). The four
types of vortical structures are formed at each jet injection nozzle with different
strength according to their own jet magnitude and they are interact with ca-
nard vortices and body vortices depending on the attitude angle of the missile.
The largest jet interference on the body occurs when the jet is injected in the

windward direction.
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(a) Mach number and surface pressure coefficient contour

(b) Density gradient isosurface

Figure 3.20: Shock structure of jet interaction (F1, M = 3.0, MPR = 1.02,

ap = 0% and ¢ = 0°)
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Figure 3.21: Simulated shadowgraph of jet interaction flow field (F1, M = 3.0

and MPR = 1.02)

Figure 3.22: Isometric view of Mach 3.4 iso-surface with streamlines (F1, M =

3.0 and MPR = 1.02)
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(a) Isometric view of Q-criterion
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(b) Vorticity magnitude in the y — z plane

Figure 3.23: Vortical structure of jet interaction (F1, M = 3.0, MPR = 1.02,

ap = 0% and ¢ = 0°)
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Jet-on, a.=0° ¢ =45° Jet-on, . =8°, ¢ =45° Jet-on, a = 20°, ¢ = 45°

Jet-off, o= 0°, ¢ = 45° Jet-off, o0 = 8°, § = 45° Jet-off, o0 = 20°, ¢ = 45°

Jet-on, 0, =8°, ¢ = 90° Jet-on, o, = 20°% ¢ = 90°

Figure 3.24: Comparison of Q-criterion iso-surface for various flow condi-

tions(F0, M=3.0 and MPR = 1.02)
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Jet-on, a.=0° ¢ =0° Jet-on, a.=8°, ¢=0° Jet-on, a.=20° ¢ = 0°

Jetoff, = 0°, ¢ =0° Jet-off, 0. = 8°, 6= 0°

Jet-on, 0. = 8%, ¢ = 180° Jet-on, o = 20°, ¢ = 180°

Figure 3.25: Comparison of Q-criterion iso-surface for various flow condi-

tions(F1, M=3.0 and MPR = 1.02)
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Jet-on, a.=0° ¢ =0° Jet-on, a.=8°, ¢=0° Jet-on, a.=20° ¢ = 0°

Jet-off, a = 0°, 9= 0Q° Jet-off, a = 8°, 9 =0° Jet-off, o = 20°, ¢ = 0°

Jet-on, 0. = 8%, ¢ = 180° Jet-on, o = 20°, ¢ = 180°

Figure 3.26: Comparison of Q-criterion iso-surface for various flow condi-

tions(F3, M=3.0 and MPR = 1.02)
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Jet-on, a.=0° ¢ =0° Jet-on, a.=8°, ¢=0° Jet-on, a.=20° ¢ = 0°

Jet-off, a = 0°, 9= 0Q° Jet-off, a = 8°, 9 =0° Jet-off, o = 20°, ¢ = 0°

Jet-on, 0, =8°, ¢ = 90° Jet-on, o, = 20°% ¢ = 90°

Figure 3.27: Comparison of Q-criterion iso-surface for various flow condi-

tions(F5, M=3.0 and MPR = 1.02)
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3.6.3 Effect of jet interaction parameters

The effects of the angle of attack and the roll angle on jet interaction normal
forces and pitching moments for the various jet directions are shown as a surface
plot in Fig. All jet interference aerodynamic coefficients are measured in
the aerodynamic axis system. The peak jet interference for each jet direction
case occurs when the main thruster, the largest opened nozzle, is located in the
windward direction. It is clear from the Figure that with the increase in angle
of attack, the jet interference has increased. The maximum jet interference is
observed in the jet direction F1 at ¢ = 180°. The change of jet interaction effects
along the roll angle in the jet direction FO case is small because all nozzles
are symmetrically opened. The jet interaction acts on unfavorable direction
because they diminish normal forces and increase pitching moments at the
center of gravity.

Figure[3.29shows the changes of side force and yawing moment coefficients
due to jet interaction. The asymmetrical side forces and yawing moments are
generated according to the angle of attack and flow bank angle in the jet di-
rections F1 — F3. But the magnitude of jet interference side forces and yawing
moments are small compared to normal forces and pitching moments.

To evaluate the asymmetry effect of the jet, a numerical simulation was
carried out for the jet direction §; = 67.5° with the same flow conditions.
The results are shown in Fig. The peak jet interference occurs at a roll
angle of ¢ = 90° when the main thruster is located in the windward direction.
The interaction effect for the jet direction 6; = 67.5° and F3 can be replaced
reciprocally because they show the same jet interaction characteristics at a

phase-shifted roll angle. These results are rationalized by the symmetry of the
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jet nozzle and it supports the neglect of the orientation of the nozzle throat
opening device.

From the investigation of jet interaction with various roll angles, jet inter-
ference aerodynamic coefficients for jet directions FO, F1 and F5 repeat in the
flow roll angle with the period of w/2, m and 7 respectively. These periodicities
in roll angle come from mirror symmetry of jet flow on the cross sectional plane.
A significant number of cases for constructing a 6-DOF aerodynamic database
of jet interference can be reduced for by using this characteristic.

Figure [3.31] presents the results obtained at differing MPR conditions for
the jet direction FO at Mach number = 3.0. The free-stream Mach number
effect on jet interference at MPR = 1.02 is shown in Fig. We observe
that when MPR increases, the jet interaction forces are increased due to a
larger obstruction of jet flow. This is because increased jet momentum at a
high MPR condition causes a larger separated low pressure region behind of
jet flow. The differences of jet interaction effect between M = 3.0 and M = 3.6
are small at a low angle of attack. At a high angle of attack (a; > 14°), as Mach
number increased, the jet interaction forces decrease. When the Mach number
increases, the pressure in the recirculation region increases. As a result, the
induced jet interaction force decreases when the Mach number increases. This
effect is distinct at a high angle of attack because a large amount of normal
forces are generated on the body. These trends are consistent with the previous

results from comparison of simulation with wind tunnel test.
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(a) ACz

Figure 3.28: Jet interaction normal force

= 3.0 and MPR = 1.02)
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Figure 3.29: Jet interaction side force and yawing moment coefficients (M =

and MPR = 1.02)
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Jet Direction , = 67.5°

Figure 3.30: Jet interaction normal force coefficient for the jet direction 6; =

67.5° at M = 3.0 and MPR = 1.02
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Figure 3.31: Effect of MPR on jet interaction force coefficient (FO and M = 3.0)
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Figure 3.32: Effect of free-stream Mach number on jet interaction force coeffi-

cient (FO and MPR = 1.02)
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Chapter 4

Surrogate Modeling of Jet Interaction
Aerodynamic Database for
Continuous Type side-jet

4.1 Jet interaction aerodynamic database of continu-

ous type side-jet

In the missile development stage, the aerodynamic database has to be developed
to provide aerodynamic data that are used to develop the guidance, naviga-
tion and control(GN&C) systems and to simulate the trajectory of the vehicle.
For the continuous type side-jet thruster controlled missile, the jet interaction
aerodynamic database is needed as well as nominal aerodynamic database.
The modeling approach of aerodynamics for the missile is to use an in-
cremental forms as shown in Eq[4.I] The each term is isolated and evaluated
separately, then combined by linear superposition to produce the final data.
Although this approach has the disadvantage of neglecting coupling effects
between the terms, it can simplify the model and reduce the number of experi-
ments and simulations [40]. Aerodynamic coefficients of zero deflection Cy,o and
the increment terms of control surface deflections ACy,; ; ; were developed

from wind tunnel test data and computational simulation results. Additional
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aerodynamic data due to jet interaction(AC)

wjr

) were constructed by CFD

simulation data with a certain level of confidence.

Cw = Cyo + Acwap + Acway + Acwar + ACUJJI (41)

wherea Cw = Cow Cya C27 Cl7 Cma Cn

Recall that the incremental aerodynamic data of jet interaction are func-
tion of many parameters including flight Mach number, altitude, angle of at-
tack, roll angle of missile, magnitude of jet forces and desired jet direction as
shown in Eq[3.3] Considering all operation regions of side-jet thruster, large
amount of aerodynamic data are needed in modeling of jet interaction aerody-

namic database.

4.2 Defined Jet Direction Conditions

The aerodynamic database of jet interaction, which can be described by two
parameters, i.e., jet thrust scale and jet direction, should cover all possible
operating regions. Considering the side-jet operation range, the database was
constructed for jet directions from 0° to 360° in increments of 22.5° and jet
thrust scale range from 0 to 1 in increments of 0.5. However, a large number
of numerical simulations or experiments is required to fill these data space.
Thus, a defined jet direction strategy was introduced to reduce the simulation
cases. The idea of this approach is that a limited set of jet firing combinations
can represent all other jet conditions using vehicle symmetry assumptions. The
selected seven jet directions for 0°, 22.5°, and 45° from FO to F6 are shown

in Fig. and their nozzle thrust states are shown in Table A detailed
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method of extending the jet direction from 0° to 360° using seven defined jet

direction using mirror symmetry is described in Appendix. [A] The numeri-

cal simulation was conducted for these seven defined jet conditions. Then, jet

interaction effects of other jet direction conditions were reproduced from the

results of defined jet directions. There were asymmetrical sources that violate

the symmetry assumptions because of the different orientation of nozzle switch-

ing devices. However, we concluded that the effect of asymmetry is negligible

based on previous numerical investigations.

Table 4.1: Defined jet direction conditions and nozzle thrust states

Thrust angle  Fiax/Tmax Scale Thrust[%]
Jet direction index

9;[deg] 0-1  Fy/Fpee NI N2 N3 N4
1 100 O 0 0 F1
0° 1.0 0.5 62.5 12.5 12,5 125 F2
0 25 25 25 25 FO
1 70.7 293 O 0 F3
22.5° 0.765 0.5 62.5 12.5 12,5 125 F4
0 25 25 25 25 FO
1 50 50 0 0 F5
45° 0.707 0.5 375 37.5 125 125 F6
0 25 25 25 25 FO
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Figure 4.1: Defined jet directions(Rear
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4.3 Jet interaction modeling strategy

Modeling the jet interaction aerodynamic database of the missile with con-
tinuous type side-jet controller requires a large data space. Table [4.2) lists the
requiring design space of jet interaction aerodynamic database. Even with the
discrete range of angle of attack and roll angle, it demands about 90,000 data
points. It is nearly impossible to fill in all areas of the design space, espe-
cially with the time and resource constraints attached to any experimental or
numerical simulation.

In this study, the defined jet direction method in Section [£.2] was applied
to reduce the number of requiring data space. Table shows reduced design
space of jet interaction aerodynamic database with this method. An all of possi-
ble jet firing combinations are combined into the seven jet directions, resulting
in a 90% reduction of overall design space. This allows constructing aerody-
namic database with numerical simulations. However, this approach is not a
practical in the initial stage of system development, since it still requires large
amount of time and computational resources. As an alternatives, a surrogate
modeling method, using appropriate sampling and interpolation methods, was
applied in the construction of jet interaction aerodynamic database with a re-
duction of the number of computational simulations. These collective modeling

procedures are shown in Fig.
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Table 4.2: Requiring full design space of jet interaction aerodynamic database

Number of parameter

Parameter Ranges

Mach M1, M2, M3, M4, M5 5
Altitude H1, H2, H3 3
Q@ 0° ~ 28° with increment of 4° 8

10} 0° ~ 337.5° with increment of 22.5° 16

|F| 0.0, 0.5, 1.0 3

0, 0° ~ 337.5° with increment of 22.5° 16

92160

Total number of data

Table 4.3: Reduced design space of jet interaction aerodynamic database

Parameter Ranges Number of parameter
Mach M1, M2, M3, M4, M5 5
Altitude H1, H2, H3 3
o 0% ~ 28% with increment of 4° 8
& ,|F), 0; FO, F1, F2, F3, F4, F5, F6 73
8760

Total number of data
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Figure 4.2: Modeling procedure of jet interaction aerodynamic database
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4.4 CFD-Based Modeling of Jet Interaction

4.4.1 Numerical simulation for jet interaction modeling

Extensive CFD simulations were performed at the previously defined jet direc-
tion conditions. Five free-stream Mach numbers in the supersonic region and
three altitude conditions in the stratosphere were selected to fill the database
space. The jet to free-stream momentum parameter ratio (MPR) was used as
a similitude parameter of jet flow for the experiments and analysis. Table [4.4]
specifies the simulation Mach numbers, altitude, and corresponding MPR con-
ditions. The aerodynamic database covers an angle of attack range from 0°
to 28° and roll angle range from 0° to 360°. To reduce the simulation cases,
the conditions involving the least roll angles at each defined jet direction by
using symmetry relations were selected from Table for the simulation. The

simulations were conducted for jet-off and jet-on states at these flow conditions.

Table 4.4: MPR conditions for simulation Mach numbers and altitudes

Altitude \ Mach M1 M2 M3 M4 M5

H1 0.53 0.34 0.24 0.15 0.12
H2 1.59 1.02 0.71 0.45 0.37
H3 476 3.05 212 1.36 1.10
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Table 4.5: Roll angle conditions at defined jet directions

Jet direction index Missile roll angle

FO 0° — 90° in interval of 22.5°

F1 0° — 180° in interval of 22.5°

F2 0° — 180° in interval of 22.5°

F3 0° — 337.5° in interval of 22.5°

F4 0° — 337.5° in interval of 22.5°

F5 0° — 135° in interval of 22.5°, 315°, and 337.5°
F6 0° — 135° in interval of 22.5°, 315°, and 337.5°

4.4.2 CFD-based jet interaction modeling results

For the construction of the jet interaction aerodynamic database, six compo-
nents of aerodynamic coefficients were obtained from the CFD simulations. The
jet interaction effects were calculated as the difference between the aerodynamic
coefficients with and without jet flow. The bow shock, which is generated by the
jet obstruction, changes all flow fields behind the side-jet thruster, and complex
vortical structures are formed along the jet plume. As a result, the aerodynamic
coefficients of the missile are changed. For each jet direction condition, the jet
interaction occurs at jet firing nozzle planes with different strengths depending
on the jet thrust of each nozzle.

The numerical simulation results provide a finite set of data points within
the data space of the aerodynamic database. The data space that has not

been covered by the simulations is filled with modeling data using symmetry
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relations. Roll angles at each jet direction condition are extended to the range
of 0° — 360°. Then, the data for other jet direction conditions are extended
by the results of the seven defined jet direction conditions. An example of a
constructed aerodynamic database of jet interaction is shown in Figs. and
[4:4] The jet interaction normal force and pitching moment coefficients along
the change of angle of attack and roll angle are plotted at M = 3.0 and MPR
= 1.02. The jet interference aerodynamic coefficients are represented in the
aerodynamic axis system. The moment coefficients are measured at the center
of gravity of the missile, which is located behind the jet thruster. The peak jet
interference at each jet direction case occurs when the main thruster, which
is the largest opened nozzle, is located in the windward direction. The jet
interference increases with an increase in angle of attack. The maximum jet
interference is observed in the jet direction F1 at ¢ = 180°. The jet interaction
acts in an unfavorable direction because it diminishes the normal forces and
increases the pitching moments at the center of gravity. With this modeling
strategy, the jet interaction aerodynamic database was developed from CFD
simulations. The uncertainty level in the constructed database was evaluated

through comparison with the wind tunnel test data.
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Jet Direction Index FO Jet Direction Index F1 Jet Direction Index F2 Jet Direction Index F3

Jet Direction Index F4 Jet Direction Index F5
T AT

Figure 4.3: Jet interaction normal force coefficient for defined jet directions at

M = 3.0, MPR = 1.02
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Jet Direction Index F4 Jet Direction Index F5 Jet Direction Index F6

Figure 4.4: Jet interaction pitching moment coeflicient for defined jet directions

at M = 3.0, MPR = 1.02
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4.5 Surrogate Modeling Method

Surrogate model can statistically approximate the relationship between a set of
design variables and their responses, resulting in reducing the resource required
for design, search and optimizations. Surrogate modeling is generally divided
into two phases: 1) choosing an approximate experimental design in the region
of interests, 2) constructing an approximation model with the obtained sample
data [41].

A surrogate modeling using effective sampling and interpolation meth-
ods can reduce the number of simulations required to construct an aerody-
namic database to a specified accuracy [18]. This approach was applied to the
construction of the jet interaction aerodynamic database for the usage of in-
terim approximated data. Since this design problem is based on deterministic
computational data, modern design and analysis of computer experiment type
methods were selected [42]. In this study, the Latin hypercube sampling (LHS)
method was used to sample the training data, and the Kriging method was

selected as an approximation model for the surrogate modeling.

4.5.1 Design of experiments

For the deterministic computer simulations, the modern Design of Experi-
ments(DOE) methods such as orthogonal arrays and Latin Hypercube Designs
with space filling manner are preferable to the classical DOE techniques since
assumptions in classical DOE related to experimental error and non repeata-
bility are not valid [43] [44]. In this study, Latin Hypercube Design method was

used to select the sample data for surrogate modeling.
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McKay et al introduced Latin Hypercube Sampling, or Latin Hypercube
Design(LHD) [45]. This method demonstrates more accurate than random sam-
pling and stratified sampling to estimate the means, variances and distribution
functions of an output. Latin Hypercube Design samples can be obtained using
following technique. If X denotes the n x d matrix in which we want to build
sampling plan of n points in d dimension. The range of each design variable
is divided into n intervals, and one observation on the input variable is made
in each interval using random sampling. One of the observations on x is ran-
domly selected, matched with a randomly selected observations on x5, and so
on through z4. These collectively constitute a design alternative X;. One of
the remaining observations on x; is then matched at random with one of the
remaining observations on x3, and so on, to get X5. A similar procedure is
followed for X3, ..., X, which exhausts all observations and results in n LHD

sample points.

4.5.2 Kriging predictor

The formulation of the Kriging model is presented here [46,/47,47]. It was im-
plemented using the DACE toolbox developed by Lophaven et al. [48]. Kriging
models a responses as a combination of a regression function f(x) and a Gaus-

sian process Z.
Y(x) = f(z) + Z(x). (4.2)

The stocahstic part Z in Eq. is assumed to be a zero-mean Gaussian pro-
cess with a covariance function ¥ defined by a process variance o2 and a

correlation matrix W.
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Consider a set of n samples, X = {a:l, . ,m”} in d dimensions and asso-
ciated function values, y = {yl, e ,y"}. For ordinary Kriging, the regression
part is equal to 1u, where 1 is a n X 1 vector, and the stochastic process is
mostly defined by the n X n correlation matrix ¥ as

Y(xr, 1) ... Y@, @)
U= : : . (4.3)
V(Ep, 1) ... P(xn,xy)
The correlation function % is parameterized by hyperparameters . Among var-

ious correlation functions, a Gaussian correlation function is defined as follows:

d
P(x,z') = exp (— 291\331 - azi|2> . (4.4)
i=1
A set of hyperparameter 0 are identified by maximum likelihood estimation

(MLE). In this study, the following likelihood method was used. The log of the

marginal likelihood is given by,

mwy:—gm@@—gmw%—%mmu—£§@—1mﬁr%y—nu(4@

The MLE of parameters can be obtained by the annihilation of the first deriva-
tives of In £ with respect to the parameters. The obtained MLE of  and o, i.e.,
fo=1Tely)/(1T¥ 1) and 62 = L(y—1p) "W~ (y—1p), can be substituted

back into Eq. to give a concentrated log-likelihood

(L) ~ — mw%—%mw\ (4.6)

n
2
after leaving out constant terms. The concentrated log-likelihood function in
Eq. is nonlinear in . Thus, finding the MLE of 0 is a problem of uncon-
strained nonlinear optimization and a global optimization scheme such as a

genetic algorithm can be used.
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The prediction of a new output 3 at a new input @ should be consistent
with the observed data and therefore with the correlation parameters. As a
result, the new prediction can be found with the maximization of the likelihood
of the sample and the prediction, given correlation parameters. To achieve
this, the augmented output ¥ = [y', 9]’ should be realizations of the same
multivariate Gaussian distribution such that Y (x) ~ N (ul, 02@) for ordinary

Kriging. The augmented correlation matrix can be constructed:

U= v . (4.7)

o1

The log-likelihood of the augmented data is

1 1 1, =~ (F—-10)T0 (g -1/
(L) = " nem - P ey - Ly - WO = 1)
2 2 262
(4.8)
which reduces to the following log-likelihood function
1< (=170 (y—1p)
In(L)~ —=In|¥|— 4.9

after the cancellation of terms that do not contain ¢. Substituting in expressions

for y and v gives

T —1
1n(ﬁ)~—1 y—1p v y— 14 (4.10)
/\2 A~ ~ ~ A ’
207\ g-n YT o1 g—i

Note that i and 62 are treated as known since they are estimated previously.

With the help of the partitioned inverse method, U1 can be expressed in terms
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of ¥ and % as follows
Gor_ [ YA -y T U hy(1 - T 1Y)
—(1=9Te 1)~ 17wt (1 —ypTu 1)t
(4.11)

This can be substituted into Eq and terms without § removed to give

1 o Uy — 1/ o
0(0) = = (g —grgmray ) ="+ (3 gy ) 0

(4.12)

The MLE of § can be found with the derivative of In(£) as shown below,

§(@) = i+ 6T (y - 10). (4.13)

4.6 Surrogate Modeling of Jet Interaction

4.6.1 Jet interaction modeling and evaluation

The construction of the jet interaction aerodynamic database modeling problem
is defined by a response y of the jet interaction aerodynamic coefficients AC,, ,
with an input z of six jet interaction parameters in Eq. The surrogate
model, ]7, can be found through Kriging modeling of the CFD simulation results

at the sampled data x for each aerodynamic coefficient.

Input z: M, H, a4,0,|F|,0; € RS (4.14)

Output y: AC,,, €R® where,w =uz,y,z1,mn

wjr

y=Jf2)=79= [f(z)
—~—~ —~—
CFD surrogate
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This design problem can be rearranged at the reduced design space in

Table[43]

Input z: M, H, ap, ¢ R (4.15)
Output y: AC,,, € R*

~q ~i

91 = g1(z)

at given i'" case

U6 = 96(x)

The size of the problem was reduced from six models with seven dimensions
to 6x7 models with four dimensions. The surrogate model, g, at each i*" jet
direction case can be obtained by the Kriging method. In this design problem,
five different sampling points were chosen for the LHS method. The quality of
the constructed surrogate model was evaluated through a model testing process.
Two measurement values were used for the model test, the root mean squared
error (RMSE) and the correlation coefficient R?, which are defined as

RMSE = M7 (4.16)
ny

Z?;l(yi - gz)z
Sty (yi — 5i)?

where n; is size of test data. The R? value requires a large number n;, which

R*=1-SSE/SST =1 - (4.17)

is not practical in a general surrogate model evaluation. However, this value is
selected as a supplemental measurement in this study because it can satisfac-
torily indicate the goodness of the model, and a sufficiently large number of

data are gathered from the CFD-based modeling.
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4.6.2 Surrogate modeling of jet interaction results

The surrogate modeling and its evaluation were performed respectively at each
jet direction condition and aerodynamic coefficient component with varying
sample size. The RMSE was calculated with an additional 50 sample points,
and R? was calculated for the rest of data points except the data used for the
modeling.

The modeling test results are shown in Figs. [£.5] - [£.12| for jet direction FO0,
F1, F3 ,and F5. It can be observed that the convergence characteristics of the
RMSE and R? are different for each model and the force coefficients achieve
faster RMSE convergence than the moment coefficients. The R? values of the
normal force and pitching moment coefficients converge faster than those of
the side force and yawing moment coefficients. These results imply that the
nonlinearity of the side force and yawing moment coefficients are considerably
higher. The results of the axial force and rolling moment coefficients are not
presented here because their jet interaction contribution is small compared with
the nominal state aerodynamic coefficients. The general error converges when
the number of samples was increased from 50 to 250. The convergence criteria
were selected based on the previous uncertainty assessment of the computa-
tional simulations where the RMSE was less than 0.1 for the force coefficients
and was less than 0.5 for the moment coefficients. With these criteria, the sam-
pling points were determined for each jet direction condition. Table shows
the final model test results for each case, listing the number of sample points,
their minimum and maximum RMSE, and minimum R?. The average of min-
imum R? is approximately 0.81, which indicates a surrogate with reasonable

predictive capabilities [46).
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Table 4.6: Final results for the surrogate model of the jet interaction

Jet direction index FO F1 F2 F3 F4 F5 F6

Sample points 200 250 250 250 200 250 250
Min. RMSE 0.0174 0.0522 0.0760 0.1000 0.0975 0.0718 0.0779
Max. RMSE 0.3985 0.4633 0.4965 0.4901 0.4820 0.4834 0.4634

Min. R? 0.8018 0.8465 0.8507 0.7826 0.7923 0.8289 0.8082

The contour plot of the constructed surrogate models with 250 samples
at jet direction F5 is shown in Figs. - It can be observed that the
surrogate model satisfactorily captures the nonlinear behavior of the response
surfaces in all of the design space. A set of 1,650 sampling points was used to
design the surrogate model at the seven jet direction conditions, and a set of
350 sampling points was selected for the model evaluation. It is approximately
22% of the full factorial sampling data, which imply a significant reduction of

the computations in constructing the jet interaction aerodynamic database.
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Jet Direction Index F3
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Figure 4.10: Evolution of R? with sampling size(F3)
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Jet Direction Index F5
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Figure 4.11: Evolution of RMSE with sampling size(F5)
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Figure 4.13: Surrogate modeling results with 250 samples at jet direction F5:

ACz

89




Aerodynamic Coefficient: ACy

Figure 4.14: Surrogate modeling results with 250 samples at jet direction F5:

ACy
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Aerodynamic Coefficient: ACz

Figure 4.15: Surrogate modeling results with 250 samples at jet direction F5:

ACz
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Figure 4.16: Surrogate
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modeling results with 250 samples at jet direction F5:
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Figure 4.17
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Surrogate modeling results with 250 samples at jet direction F5:
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Figure 4.18: Surrogate modeling results with 250 samples at jet direction F5:
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Chapter 5

Assessment of Jet Interaction
Modeling Results

Post-flight data analysis is essential activities to validate aerodynamic model
and to get more accurate mathematical models for the purpose of simula-
tion, stability analysis, and control system design and simulation [49]. The
programmed flight test was successfully conducted for the missile system in
this study. One of the major objectives of the flight test was to check the per-
formance of the continuous type side-jet during the mission. A post-flight test
analysis was performed to evaluate the jet interaction aerodynamic database

with the measurement data from the test.

5.1 Post Flight Analysis for Jet Interaction Database

Identification

The general procedure of the post-flight analysis for identification of the jet
interaction model is illustrated in Fig. Measured linear and angular accel-
erations are used to reconstruct flight-derived aerodynamic coefficients. Veloc-
ity and attitude angle of the vehicle are used to look up the 6-DoF aerody-

namic database in the flight conditions. Then, the flight-derived aerodynamic
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coefficients are compared with those interpolated from the 6-DoF model. The
side-jet thrust and operating direction are calculated from the control angle
of each side-jet nozzle. They can be used to evaluate the assessment of the
jet interaction aerodynamic database. The aerodynamic coefficients from the

measured data are computed through the following equations of motion:

Cr = (mxag)/(qSres)
cy, = (m x Ay — Ty)/(qsref) (5.1)

C. = (mxa;—T.)/(qSrer)

Cl — {Iw:vp - (Iyy - Izz)qr}/(qsrefLref)
Cm = {Iyyq — Loz = Lpg)pr — T, ($Sj - Jch)}/(quefLref) (5.2)

Cn = {Izzf - (wa - Iyy)pq - Ty(xsj - xcg)}/(qsref[/ref)

Where ¢ is the dynamic pressure, S,.s is the reference area, L,.s is the
reference length and x; is the side-jet location. Measured acceleration data are
converted to the body-axis coordinate at the center of gravity |[50]. Atmospheric
properties and wind data are measured from a radiosonde sensor during the
flight test and they supplement the post flight analysis.

The flight test analysis to evaluate jet interaction was performed during
the operation of side-jet. The side-jet direction and jet force magnitude while
jet thrusters were firing are shown in Figs.[.2land [5.3] Zero jet force magnitude
means an idle state of side-jet. The jet thrust is modeled through the ground

test and corrected at flight environments for the post flight analysis.
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5.2 Assessment of Jet Interaction Database

The flight reconstructed force and moment coefficients from the post-flight anal-
ysis were compared to the aerodynamic database during the side-jet operation.
The flight conditions were derived from the measurements: Mach number is
about 3.0, total angle of attack is between 0° and 20°, roll angle is between
270° and 315°, and altitude is between H2 and H3.

Figures and show a comparison of the normal and side force co-
efficients from the flight-reconstructed data and the aerodynamic database as
well as the jet interaction. The gray regions in the plot indicate the uncertainty
level of the jet interaction aerodynamic coefficients. The two constructed jet
interaction aerodynamic databases, the CFD-based model and the surrogate
model, are compared as well. It is shown that the both databases exhibit very
similar behavior with respect to the flight envelope. Because the measured ac-
celeration contains jet force, the contribution of side-jet thrust was extracted
in the flight-derived aerodynamic force estimations. The jet interaction effects
were calculated from the jet interaction aerodynamic database and added to the
resultant aerodynamic coefficients. The aerodynamic coefficients agree closely
with the flight-derived data, which also means that the jet interaction database
satisfactorily predicts the jet interaction effects. The approximate order of mag-
nitude of discrepancy in the force coefficient was less than 10% in the analysis.

Figures|[5.6|and show a comparison of the pitching and yawing moment
coefficients at the center of gravity between the flight-derived data and aero-
dynamic database during the jet thruster operation period in the flight test.

The overall trends of the pitching and yawing moment changes in the aero-
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dynamic database agree closely with the flight test results. For the conditions
at which the side-jet was operated at 6; = 225°, significant differences exist
between the database and the reconstructed pitching moment values. These
differences could be because of the fact that the inaccuracy increases at high
angle of attack conditions owing to the strong jet interaction between the jet
flow and body cross flow; thus, the uncertainty was increased in the prediction
of moments from the flight test. However, the differences in change of the cen-
ter of pressure (AXcp) were less than 1 caliber. The total jet interaction forces
(ACY? 4+ AC2?)Y/? are compared with the side-jet thrust coefficient in Fig. [5.8
From this figure it can be seen that the jet interaction effect is remarkable and
it is even larger than the side-jet thrust at some operating conditions. Addition-
ally, to see the clearer contrast between the two jet interaction databases, the
approximated database is plotted against to the actual CFD-based database
in Figs. - It is shown that the surrogate model is a good match with
the CFD-based model. The modeling error of the moment coefficients in the
surrogate model is larger than that of the force coefficients.

From the post-flight analysis, the jet interaction aerodynamic database
constructed with CFD simulations was successfully evaluated at the flight con-
ditions. It satisfactorily represents the behavior of the jet interaction effects
within a reasonable error level. The results show that the change of aerody-
namic coefficients owing to jet interaction has a significant impact on aerody-

namic data.
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Figure 5.4: Comparison of normal force coefficient during the flight test
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Figure 5.5: Comparison of side force coefficient during the flight test
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Figure 5.6: Comparison of pitching moment coefficient during the flight test
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Figure 5.7: Comparison of yawing moment coefficient during the flight test
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Figure 5.8: Comparison of jet interaction effect with the side-jet thrust
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Figure 5.10: Comparison of two jet interaction databases during the flight test:
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Figure 5.11: Comparison of two jet interaction databases during the flight test:
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Figure 5.12: Comparison of two jet interaction databases during the flight test:
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Chapter 6

Conclusion

An extensive numerical simulation was conducted for a supersonic missile equipped

with a continuous type side-jet thruster, to gain an understanding of complex
jet interaction phenomena and to obtain aerodynamic jet interaction data. The
simulation was performed using the unstructured CFD solver. The uncertainty
level of the jet interaction simulation data was evaluated from the differences
between the cold gas CFD simulation results and the wind tunnel test data.
The root mean square (RMS) of the force coefficient differences was less than
0.1, while that of the moment coefficient differences was less than 0.5. The
maximum error of the change of the center of pressure (AX,,) owing to the jet
interaction was measured as less than 1 caliber.

The detailed flow structures of jet interaction such as shock induced sep-
aration of boundary layer, barrel shock of jet flow and the separation wake
region, are captured well. From the continuous type side-jet simulations for the
various flow and jet conditions, the maximum jet interference conditions were
found and jet interaction characteristics were investigated. The side jet direc-
tion with nozzle combinations for continuous side-jet thrusters was adopted to
analyze jet interaction.

The construction of the jet interaction aerodynamic database for missiles
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with continuous type side-jet thrusters was performed using CFD simulation.
Three-dimensional jet flow simulation was conducted using the unstructured
CFD solver for the database modeling. All jet interaction effects were accounted
for as incremental terms of the basic aerodynamic database. The design space
of the database was reduced by 90% through an efficient modeling strategy of
the defined jet direction.

Two modeling approaches were used to construct the jet interaction aero-
dynamic database. One was the CFD-based modeling with the full factorial
sampling and the other was the surrogate modeling with Kriging methods. Ap-
proximately 22% data of the CFD-based model were selected for the surrogate
modeling and evaluation.

The accuracy of the two resulting aerodynamic databases was assessed
through the identification of jet interaction effects from the flight test results.
Despite some discrepancy in moment coefficients, the overall aerodynamic coef-
ficients as well as the jet interaction effect agreed closely with the flight-derived
data. For the force coefficients, the difference between the flight data and the
database was less than 10%. This result confirms that a reasonable aerody-
namic database of jet interaction can be constructed for the continuous type
side-jet thruster-controlled missile using only CFD data. The surrogate model
was found to have a reasonable performance compared with the CFD-based
model within acceptable uncertainty levels. The use of surrogate modeling to
build the jet interaction aerodynamic database drastically reduced the number
of computations with a successful approximation of the complex jet interaction
behavior. It is expected that the surrogate modeling method will play a signifi-

cant role in jet interaction analysis in the early stage of the system development
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cycle. Additional efforts will be exerted to improve the constructed jet inter-
action aerodynamic database through a post-flight test analysis of subsequent
planned flight tests.

In this study, one surrogate modeling method is applied to construct jet
interaction aerodynamic database, and further efforts to model by using GEK
(Gradient Enhanced Kriging) method or adaptive sampling method should
be performed to improve modeling efficiency as future research. In addition,
studies on effective model evaluation methods such as cross validation and

relative error should be carried out.
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Appendix A

Extension Rules of Jet Directions

The seven jet directions for 6; = 0°, 22.5°, and 45° are selected to reduce
the number of simulations for constructing the jet interaction aerodynamic
database. The minimum roll angle conditions are chosen for each jet direction
by using symmetry relation; FO(¢1 —¢5), F1(¢1—9), F2(dp1—9), F3(dp1—d16),
F4(¢p1 — ¢16), F5(¢p1 — ¢9), and F6(¢p1 — ¢g). Figure shows the selected roll
angle conditions at the seven jet directions and a total of 73 combinations are
derived. The remaining jet conditions, 6; = 67.5° — 337.5°, can be extended by

the mirror symmetry relationship shown in Table

Table A.1: Extension rules of jet interaction

0; [deg] Fmax/Tmax ¢ [deg] (interval of 22.5°) sources

0° 1.0 0° — 180° (F1, ¢1 — ¢9)
0° 1.0 202.5° — 337.5° (F1, ¢1 — ¢9), mirrored
0° 0.5 0° — 180° (F2, ¢1 — o)
0° 0.5 202.5° — 337.5° (F2, ¢1 — ¢9), mirrored
22.5° 1.0 0° — 337.5° (F3, ¢1 — b16)
22.5° 0.5 0° — 337.5° (F4, ¢1 — ¢16)
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Table A.1: Extension rules of jet interaction

0; [deg] Fmax/Tmax ¢ [deg] (interval of 22.5°) sources
45° 1.0 45° — 135° (F5, ¢1 — o)
45° 1.0 22.5°,157.5° — 360° (F5, ¢1 — ¢9), mirrored
45° 0.5 45° — 135° (F6, ¢1 — dg)
45° 0.5 22.5°,157.5° — 360° (F6, ¢1 — ¢9), mirrored
67.5° 1.0 0° — 337.5° (F3, ¢1 — ¢16), mirrored
67.5° 0.5 0° — 337.5° (F4, ¢1 — ¢16), mirrored
90° 1.0 0° — 337.5° (F1, ¢1 — ¢9), mirrored
90° 0.5 0° — 337.5° (F2, ¢1 — ¢9), mirrored
112.5° 1.0 0° — 337.5° (F3, ¢1 — ¢16), mirrored
112.5° 0.5 0° — 337.5° (F4, ¢1 — ¢16), mirrored
135° 1.0 0° — 337.5° (F5, ¢1 — ¢9), mirrored
135° 0.5 0° —337.5° (F6, ¢1 — ¢g), mirrored
157.5° 1.0 0° — 337.5° (F3, 61 — ¢16), mirrored
157.5° 0.5 0° — 337.5° (F4, ¢1 — ¢16), mirrored
180° 1.0 0° —337.5° (F1, ¢1 — ¢9), mirrored
180° 0.5 0° — 337.5° (F2, ¢1 — ¢9), mirrored
202.5° 1.0 0° — 337.5° (F3, ¢1 — ¢16), mirrored
202.5° 0.5 0° —337.5° (F4, ¢1 — ¢16), mirrored
225° 1.0 0° — 337.5° (F5, ¢1 — ¢9), mirrored
225° 0.5 0° — 337.5° (F6, ¢1 — ¢9), mirrored
247.5° 1.0 0° —337.5° (F3, ¢1 — ¢16), mirrored
247.5° 0.5 0° — 337.5° (F4, ¢1 — ¢16), mirrored
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Table A.1: Extension rules of jet interaction

0; [deg] Fmax/Tmax ¢ [deg] (interval of 22.5°) sources
270° 1.0 0° — 337.5° (F1, ¢1 — ¢9), mirrored
270° 0.5 0° — 337.5° (F2, ¢1 — ¢9), mirrored
202.5° 1.0 0° — 337.5° (F3, ¢1 — ¢16), mirrored
292.5° 0.5 0° — 337.5° (F4, ¢1 — ¢16), mirrored
315° 1.0 0° — 337.5° (F5, ¢1 — ¢9), mirrored
315° 0.5 0° — 337.5° (F6, ¢1 — ¢9), mirrored
337.5° 1.0 0° — 337.5° (F3, ¢1 — ¢16), mirrored
337.5° 0.5 0° —337.5° (F4, ¢1 — ¢16), mirrored
All 0.0 0° —337.5° (FO, ¢1 — ¢5), mirrored
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Figure A.1: Roll angle conditions by symmetry relation
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