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ABSTRACT

Motion Recognition and Planning

Using Gaussian Process Dynamical Models

by

Byungchul An

School of Mechanical and Aerospace Engineering

Seoul National University

In this thesis, we deal with the problems that the robot copes with unstructured

environments. Examples of such environments are obstacles that robots should

avoid and terrain features that are closely related to the intentions of the wearer

of an exoskeleton robot. We make robots to avoid obstacles through path planning

algorithms in joint space and its low-dimensional space. We also estimate human

motion intentions caused by terrain features using machine learning techniques.

First, we propose an algorithm based on Gaussian process dynamical models

(GPDM) to estimate motion intention of the wearer of exoskeleton robot. For the
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observed short time series input values, the corresponding low dimensional space

coordinates are obtained via Gaussian process regression. The similarity for each

model is expressed in the form of the logarithm of the conditional probability dis-

tribution of observed values and its low-dimensional coordinates given the training

data. This similarity is compared to estimate the most likely motion. We validate

our algorithm through physical experiments using an exoskeleton robot prototype

and motion tracking system.

Next, we propose a rapidly-exploring random tree (RRT) algorithm that adap-

tively determines an appropriate stepsize. Using a standard operator norm inequal-

ity and the forward kinematics equations expressed as the product of exponentials,

we derive an approximate bound on the Cartesian displacement of the open chain

tip for a given joint space displacement. Using this inequality bound, we adap-

tively determine the stepsize for a given minimum obstacle size. We verify our

algorithm by numerical experiments using a ten-dof planar open chain robot and

a seven-axis industrial manipulator.

Finally, we propose a path planning method in a low-dimensional space that

generates a human-like motion by learning the human demonstration motion using

GPDM. We extend the above inequality to the inequality between displacement in

the low-dimensional space and displacement of each links in the workspace. We use

this to map the obstacles defined in the workspace to the low-dimensional space

based on the uniform sampling. In addition, we define a measure based on the

GPDM kernel function to measure the similarity between the learned motion and

the newly generated motion. We validate the proposed method by applying it to

a simulator and an actual robot.
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1
Introduction

The most basic thing to be guaranteed when robot moves is that it does not collide

with the obstacle, the environment. Because robots generally move at high speed

and are heavy, if robot collides with the surrounding environment, it can damage

not only property but also injure people. Therefore, obstacle avoidance ability is

the most basic condition that robots should have. On the other hand, in the case

of an exoskeleton robot that directly interacts with humans and assists the work

performed by humans, contact with the surrounding environment is inevitable. In

this case, since the robot moves in response to human will, how to find a human

intention to respond to the environment is an important issue rather than avoiding

obstacles. In particular, the lower-limb exoskeleton is in contact with the terrain at

every step, so human intention and terrain are closely related. This thesis address

the problems of the functions that robots should have as a first priority: obstacle

avoidance and recognizing human motion intention.

First, we address the problem of real-time estimation of the motion intention

of the lower-limb exoskeleton wearer. Lower-limb exoskeletons are wearable devices

1



2 Introduction

that deliver additional power to the wearer’s hips, knees, or ankles and are being

developed for rehabilitation, daily activities assistance, or military purposes. In

everyday life, we perform not only walking on the flat ground but also walking

up/down the stairs, walking up/down ramps, sitting and standing. Exoskeletons

should be able to distinguish between these actions because the appropriate con-

trol law for each movement type will be different. On the other hand, due to the

kinematic structure and the various sensors, the data will naturally be of higher

dimensionality. Our method utilizes Gaussian process dynamical models (GPDM)

[1, 2] to efficiently represent common features from data belonging to the same

movement type into a low-dimensional latent space trajectory and to capture the

dynamic characteristics with the second order Markov process. The similarity be-

tween new consecutive three frames observation data and each movement type

is expressed in the form of Gaussian conditional probability distribution and es-

timates the most similar movement type therefrom. We validated our algorithm

through physical experiments with a prototype.

Most planning algorithms, including rapidly-exploring random tree-based (RRT-

based) algorithms that we will discuss in this thesis, perform path planning in a

joint configuration space. Since RRT is a sampling-based algorithm, it generates

paths by connecting randomly generated nodes in a joint space. The distance be-

tween adjacent nodes is determined by the user-specified stepsize, and the algo-

rithm may not detect the collision between two nodes according to the size of the

stepsize. The collision check is performed in the Cartesian space occupied by the

robot link. Therefore, stepsize should be chosen with appropriate value considering

the size of workspace object. To do so, using the forward kinematics expressed as

the product of exponentials and a standard operator norm inequality, we derive an

approximate bound on the Cartesian displacement of the open chain tip for a given
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joint space displacement. From this inequality, the appropriate stepsize is deter-

mined adaptively in terms of the size of the smallest workspace object and based

on this, an adaptive stepsize RRT algorithm is proposed. Our algorithm eliminates

the need to manually determine the stepsize through time-consuming trial and er-

ror process. Our adaptive stepsize algorithm has been validated through extensive

numerical experiments with a ten-dof planar open chain and a seven-axis indus-

trial arm manipulator.

In recent years, robots are not limited to the industrial and manufacturing sec-

tors but are increasingly developing in the direction of human daily life. These

robots are required not only to avoid obstacles but also to perform human-like

motions in order to improve familiarity with people. However, since these move-

ments are very complex and the robots are high dimensional, such movements are

difficult to analyze or express mathematically. To deal with this problem, recent

researchers are trying to solve these problems through statistical machine learning

techniques. In statistical machine learning methods, the object of learning is hu-

man motion. Because these motion data are high dimensional, the dimensionality

reduction is employed before or simultaneously with learning. We have attempted

to address this problem using GPDM. By GPDM learning, the dimensionality of

human demonstration motion data was reduced; regions, where collisions occur in

this reduced lower dimensional space, are mapped out by the inequality bound

we derived from the previous study; we defined a similarity measure between the

learned and newly generated paths. Based on these, we proposed a motion plan-

ning method that avoids obstacles while performing a similar motion to the human

in low dimensional space.

We now describe in more detail main contributions of this thesis.



4 Introduction

1.1 Contributions of This Thesis

1.1.1 GPDM-Based Human Motion Intention Recognition for Lower-Limb

Exoskeleton

In order for the lower-limb exoskeleton to help people efficiently motion intention

of a person (e.g., walking, walking up/down the stairs, squatting, etc.) should be

correctly estimated. Because the control law for walking on the flat ground will

be different from the control law for going up the stairs. Studies predicting hu-

man motion intention have been mainly based on electromyography (EMG) or

electroencephalogram (EEG) [3], [4], [5]. However, attaching these sensors to hu-

man bodies is very cumbersome and sensitive to a variety of environmental factors,

making them unsuitable for practical purposes, especially for military use.

However, since EMG or EEG signals are measured before the muscles of the

human body activate, basic machine learning algorithms such as linear discrimi-

nant analysis (LDA) [6] and support vector machine (SVM) [7] have well estimated

human motion intentions. For this reason, it is very challenging to estimate human

motion intent without EMG or EEG signals. Actually, in our preliminary studies,

SVMs without EMG or EEG signals did not estimate human motion intent at all.

While human motion data reside in the continuous time domain, LDA or SVM

may not reflect the dynamic nature of this data. We used GPDM to learn the

dynamic characteristics of such data.

Generally, the lower-limb exoskeleton is composed of a rigid body in order to

assist the movement without disturbing the movement of the person as much as

possible, and therefore has many joints. In order to estimate the current state of

the robot and apply appropriate control law, there are various sensors such as

AHRS, IMU, pressure sensors as well as encoders. There are also various levels
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of noise. We show that GPDM can extract meaningful features from the high di-

mensional data composed of various sensor signals, which are corrupted by various

sensor noises.

Our motion recognition method learns K GPDMs given each motion data for

K total motion intentions. Given new observation data, the latent space coordinate

corresponding to this observed data is found using Gaussian process regression.

Then calculate the log conditional density for each model using both observation

data and the corresponding latent space coordinates. Among the K log conditional

densities, the model having the maximum value is estimated as the intention of

the motion.

In order to show the effectiveness of our algorithm, we compared ours with a

HMM-based algorithm, which is one of the algorithms that can reflect the dynamic

characteristics of the data. We performed two case studies. The first is the data

obtained by capturing the movement of each part of the human body using the

VICON motion capture system and then converting it into the joint angle value.

The second is the data of the subjects wearing the lower-limb exoskeleton with

sensors except for the actuators. Movement types include walking on flat ground,

walking up/down the stairs, and walking up/down an incline. Those types are the

motions we perform in our daily lives [8]. For both data, the GPDM-based method

showed better or similar level of accuracy of motion intention recognition than the

HMM-based method.

1.1.2 An Adaptive Stepsize RRT Planning Algorithm for Open Chain

Robots

Planning algorithms that rely upon the randomly-exploring random tree (RRT) [9]

are some of the most widely used probabilistic sampling-based methods for robot
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path planning today. The basic RRT algorithm is efficient and robust, easy to

implement, and lends itself well to generalization to more complex robots (e.g.,

closed chains) and to diverse robot and task constraints (e.g., velocity and actuator

limits, dynamic balance requirements). Many extensions and improvements to the

basic RRT algorithm have been proposed in the literature; see, e.g., [10], [11], [12]

and the references cited therein.

A typical RRT-based algorithm requires that the user specify the stepsize pa-

rameter. As implied by the name, the stepsize determines the distance between

the current node and a newly generated node: a larger stepsize means that the

spacing between a pair of connected nodes is larger, implying that a feasible path

can generally be found with a sparser tree (and thus more quickly). If the stepsize

is set too large, however, the resulting path may not be feasible: because collision

checking is usually performed only at the nodes for the reason of that collision

checking is the most time-consuming process in sampling-based planning, possible

collisions with small objects (i.e., those that are small enough to fit between two

connected nodes) may go undetected. The effects of the choice of stepsize on RRT

performance are further investigated in [12]. If the size of the smallest workspace

object is known in advance, then choosing the largest possible stepsize that still

prevents these smallest objects from fitting between two connected nodes is one

practical means to ensure collision-free paths. Choosing an appropriate stepsize is

often a time-consuming trial-and-error process that makes RRT, despite its sim-

plicity and well-documented advantages, challenging to use in practice.

Instead of choosing appropriate stepsize, varying stepsize has been studied in

several literatures. The RRT-Connect [13] continues to extend for a fixed stepsize

in the direction of extending the new node until a collision occurs or the goal is

reached. The algorithm was presented based on the heuristics that extending the
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tree in this way significantly improves the speed of RRT algorithm. The RRT-

Connect does not actually change the stepsize, but the effect is the same as chang-

ing the stepsize. Further heuristics about how far to grow a tree is reported in [14].

They reported that it is better to keep about 90% of the valid part when extending

the tree in the same way as the RRT-Connect. Because the valid part close to the

collision can be difficult to expand further. For a rigid body such as a UAV and

mobile robot, methods of adaptively varying stepsize have been studied [15], [16].

In [15], a randomly sampled node and the nearest node are connected directly if

there is no obstacle between these nodes. On the other hand, an algorithm is pro-

posed to obtain more information about a given size map during the same amount

of time[16]. In that algorithm, stepsize increases with the number of nodes from

the root node to the current node.

In this study we propose an adaptive stepsize RRT planning algorithm for open

kinematic chains. Like most RRT planners, ours constructs a tree in the joint con-

figuration space, while collision checking is done in the Cartesian space occupied

by the robot links. Using a standard inequality on the matrix norm induced from

a vector norm, we derive an approximate bound on the Cartesian displacement of

the open chain tip for a given joint space displacement. This bound, which can

be computed in real-time and is useful for a range of motion planning contexts,

is then used to compute, for a given robot configuration, approximate bounds on

the maximal deviations of the points on each of the robot’s links (each link is

modeled as a convex polytope). In this regard the product of exponentials for-

ward kinematics formula [17] plays an essential role in the derivation and efficient

computation of these bounds. Not having to manually set the stepsize parameter

through a time-consuming trial-and-error process is an important feature of our

algorithm.
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1.1.3 A Gaussian Process Dynamical Model-Based Planning Method

As robot technology becomes more and more closely related to real life, robots are

required to behave like human beings. Since learning from demonstration (LfD)

simply allows the end user to program the robot by showing how the human be-

ings perform the given task, movements which are very difficult to express math-

ematically such as human-like motions can be transmitted to the robot relatively

easily.

Conventional LfD methods are HMM-based methods [18], [19], [20], [21], [22].

The main problem with HMM-based methods is the existence of unnatural dis-

continuities in describing the data and insufficient the number of data compared

to the complexity of the model.

In general, low-dimensional space is used to solve the problems caused by the

high dimensionality of robot motion. For many reasons including safety, obstacles

should be considered when generating robot motion, but it would be more effec-

tive if obstacles could be efficiently brought into the low dimensional space. How-

ever, as far as we know, no research has been done to bring the obstacles in the

workspace to the latent space.

In this study, using latent space constructed by GPDM, we proposed a plan-

ning algorithm that can generate motion similar to learned motion while avoiding

obstacles in latent space. With GPDM, it is possible to continuously bring learn-

ing motion into low dimensional space with only a small amount of data. To bring

obstacles in workspace into latent space, we use the Cartesian displacement bound

proposed in Chapter 4. We applied the GPDM mapping function to the extended

version of the inequality defined between joint space displacement and Cartesian

space displacement to latent space displacement and Cartesian space displacement
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relation. In order to exploit the learned motion, a similarity measure between the

learned motion and the generated motion is defined in terms of the GPDM kernel

function. This similarity measure is a kind of potential field that is differentiable.

Finally, the VF-RRT is used to generate a motion by utilizing the vector field

obtained by differentiating this potential field while avoiding obstacles.

We verified our algorithm by simulating the motion of grasping a cylinder-

shaped object on a table and applying it to an actual robot.

1.2 Organization

In Chapter 2 we first present Gaussian processes and their extensions. We first

examine Gaussian process regression. Then we examine Gaussian process latent

variable model and it is followed by Gaussian process dynamical model. We then

briefly review the forward kinematics of serial open chain relying on the product

of exponentials.

In Chapter 3 we propose a motion intention recognition algorithm for lower-

limb exoskeleton. We encode given training data belongs to the same movement

type through a GPDM. Then the similarity of a newly observed data to the given

training data is calculated as a probabilistic model. We present two case studies

with physical experiments data obtained from a prototype lower-limb exoskeleton

and motion tracking system.

In Chapter 4 we propose an adaptive stepsize RRT planning algorithm for open

chain robots. First, we derive a Cartesian displacement bound for open chains.

Then we provide our detailed algorithms for determining an adaptive stepsize us-

ing the bound and an idea to speed up our algorithm derived from the bound.

Finally, we present our numerical experimental results involving a ten-dof planar
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open chain and a seven-axis industrial robot arm.

In Chapter 5 we provide a planning algorithm that exploits GPDM latent space.

We extend the bound derived in Chapter 4 in order to determine the sampling

resolution to map out the regions where collision occurs. A similarity measure is

defined between learned paths and newly generated path. After numerical studies,

we apply it to actual robot.

In Chapter 6 we conclude this thesis with a summary of our main results, and

discuss further directions for future work.



2
Preliminaries

2.1 Introduction

In this chapter, we first review Gaussian process and its extensions. As extensions

of the Gaussian process, widely used machine learning techniques are Gaussian

process regression, Gaussian process latent variable model, and Gaussian process

dynamical model. In this paper, Gaussian process dynamical model, which is one

of the extensions of a Gaussian process, is used to efficiently compress and express

high dimensional robot motion data. We then briefly review the forward kinemat-

ics of open chains expressed in the form of the product of exponentials. This for-

ward kinematics equation is used to derive the main idea of Chapter 3.

11
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2.2 Gaussian Process

2.2.1 Gaussian Process Regression

Gaussian process (GP) is a statistical distribution and can be defined as follows.

For a given set of data {Xt}N1 , if all subsets except the empty set of this set satisfy

the multivariate Gaussian distribution, this set is called a Gaussian process. The

Gaussian process is a probability distribution over the function, different from the

Gaussian distribution, which is a probability distribution over the vector space,

and is expressed as follows:

f(x) ∼ GP
(
m(x), k(x, x′)

)
, (2.2.1)

where m is a mean function, k is a covariance function, and characteristics of GP

are determined by the covariance function.

Gaussian process regression (GPR)[23] models a given input/output pair {xi, yi}N1
as a GP as follows,

y ∼ GP
(
m(x), k(x,x′)

)
, (2.2.2)

unknown function y = f(x) is obtained as in the form of Gaussian distribution.

For a new input x∗, new output y∗ can be obtained as a conditional probability

distribution for existing data.

Consider the following function:

y = f(x) + η (2.2.3)

where f : RD → R is a nonlinear function, x ∈ RD, and η is a zero-mean isotropic

Gaussian white noise process. Function f can be expressed as a linear combination

of scalar basis functions φi(x) ∈ R:

f(x) =

m∑
i

aiφi(x) (2.2.4)
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Figure 2.1: Gaussian process regression. 1

where A = [a1, a2, · · · , am]T ∈ Rm is a weight vector of the basis function. Assum-

ing Gaussian prior to A, i.e. p(A) = N (0, Im), Im is the Rm×m identity matrix,

one can get a probability distribution for the function f(x). For arbitrary input

data x, mean and variance of f(x) are expressed as

E[f(x)] = φT (x)E[A] = 0 (2.2.5)

E[f(x)f(x′)] = φT (x)E[AAT ]φ(x′) = φT (x)φ(x′), (2.2.6)

since φT (x)φ(x′) is a symmetric positive semi-definite function, it can be expressed

as any kernel function k(x,x′).

For a given set of data {xi, yi}N1 , X = xi
N
1 , Y = yi

N
1 , marginal distribution on

1C. E. Rasmussen, Gaussian processes for machine learning, 2006.
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Y is given as follows:

p(Y |X, θ) = N (0,K) (2.2.7)

where K ∈ RN×N is a kernel matrix whose elements Ki,j are defined by the fol-

lowing kernel function k(xi,xj) and θ is the kernel hyperparameter. The most

widely used kernel in the Gaussian process is the radial basis function (RBF) ker-

nel, which is the form of squared exponential function

k(xi,xj) = θ1 exp

(
−θ2

2
||xi − xj ||2

)
+ θ3δi,j . (2.2.8)

In the above equation, θ = [θ1, θ2, θ3] is the kernel hyperparameter and δi,j is the

Kronecker delta function.

Learning

Learning Gaussian process regression is to estimate kernel hyperparameter θ

from the given input/output data pair {X,Y }. Estimation of the kernel hyperpa-

rameter is done by optimizing log-likelihood function log p(Y |X, θ) with respect to

θ. Log-likelihood function log p(Y |X, θ) is given as

log p(Y |X, θ) = −1

2
Y TK−1Y − 1

2
log |K| − N

2
log(2π). (2.2.9)

Kernel hyperparameter θ can be obtained by following optimization

θ̂ = argmax
θ

log p(Y |X, θ), (2.2.10)

which can be solved by gradient-based optimization methods. Generally, there are

many local minima.

Prediction
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Figure 2.2: New output prediction using Gaussian process regression. 2

Once the kernel hyperparameter θ is determined by learning, for new input x∗,

new observation y∗ has a Gaussian distribution. The probability distribution for

y∗ can increase the reliability of the estimation by expressing them as conditional

probabilities for given data and its form is the same as the conditional probability

distribution of Gaussian distribution and has the following equation

y∗ ∼ N
(
µ(x∗), σ2(x∗)

)
(2.2.11)

µ(x) = Y TK−1k(x) (2.2.12)

σ2(x) = k(x,x)− kT (x)K−1k(x). (2.2.13)

In the above equation, µ(x), σ2(x) are mean and covariance respectively, and k(x) =

[k(x1,x), · · · , k(xN ,x)]T ∈ RN .

2C. E. Rasmussen, Gaussian processes for machine learning, 2006.
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2.2.2 Gaussian Process Latent Variable models

The Gaussian Process Latent Variable Model (GPLVM)[24] can be viewed as a

kind of non-linear dimensionality reduction methods using the Gaussian process,

It is a type of machine learning technique that expresses a non-linear mapping be-

tween given data and its low-dimensional variables (or latent variables) as proba-

bility density function.

Data such as joint trajectory or robots, image sequence, etc. resides in very

high dimensional space and high-dimensionality causes many problems in opti-

mization, motion planning, machine learning and so on. Algorithms such as Prin-

cipal Component Analysis (PCA)[25], Locally Linear Embedding (LLE)[26], and

Isomap[27] have been studied to solve these problems by embedding high dimen-

sional data in low-dimensional space. GPLVM is a method of modeling observation

data into a Gaussian process and finding latent space and latent variables and has

been applied to motion generation based on style-specific inverse kinematics[28], a

method of naturally generating the motion of the animation characters from the

motion capture data of a person[29], and etc.

For a given training data {yi}N1 , yi ∈ RD, it can be modeled as a Gaussian

process using the following equation:

yi = f(xi) (2.2.14)

= [f1(xi), f2(xi), · · · , fD(xi)]
T

fk = GP (m(xi), k(xi, xj)) i, j = 1, · · · , N (2.2.15)

where m(x) is a mean function, k(x, x′) is a kernel function, and low-dimensional

latent variables {xi}N1 , xi ∈ Rd, D > d corresponding to training data are un-

knowns. For the sake of simplicity, it is assumed that the mean of given data
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µ ∈ RD is deducted from the data, and in this case, the mean function of the

Gaussian process m(x) is 0. As mentioned in Section 2.2.1, the characteristics of

the Gaussian process depends on how you define the kernel function. In previous

papers on motion data learning, RBF kernels have been most widely used and are

defined as follows:

k(xi,xj) = α1 exp
(
−α2

2
||xi − xj ||2

)
+ α3δi,j , (2.2.16)

where α = [α1, α2, α3] is kernel hyperparameter and δi,j is Kronecker delta func-

tion.

If the given data is expressed in a matrix form as Y = [Y1, Y2, · · · , YD] ∈ RN×D,

then Yk = [y1k, y2k, · · · , yNk]T ∈ RN which is a collection of data corresponding to

the k-th dimension of the given data. Conditional probability of training data Y

given latent variables X = [x1, x2, · · · , xN ]T ∈ RN×d and hyperparameter α is

expressed as follows:

p(Yk|X,α) = N (0,K) (2.2.17)

=
1√

(2π)N |K|
exp

(
−1

2
Y T
k K

−1Yk

)
(2.2.18)

p(Y |X,α) =

D∏
1

p(Yk|X,α) (2.2.19)

=
1√

(2π)ND|K|D
exp

(
−1

2
tr
(
K−1Y Y T

))
(2.2.20)

where K is a kernel matrix whose elements Ki,j are defined by kernel function

k(xi,xj).

Learning
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Learning GPLVM is to find latent variables X corresponding to given training

data Y and kernel hyperparameter α. Learning is done by optimizing log posterior

distribution log p(X,α|Y ). That is, it can be obtained by maximizing the following

equation

min
X,α

L = − log p(X,α|Y ) (2.2.21)

= − log p(Y |X,α)p(X)p(α). (2.2.22)

In the above equation, the prior distribution for X assumes that

p(X) =

D∏
1

N (0, IN×N ). (2.2.23)

To solve this optimization problem, we use the Scaled Conjugate Gradient (SCG)

algorithm proposed in the previous paper. By solving this optimization problem,

we can obtain latent variables X corresponding to training data Y , kernel hyper-

parameter α, and a smooth mapping from latent space to given data space.

New Pose Generation

After obtaining latent variables X corresponding to training data Y and kernel

hyperparameter α, probability density function of new observation y for the new

latent variable x is given as:

p(y|x,X, α) = N
(
µ(x), σ2(x)ID×D

)
(2.2.24)

µ(x) = Y TK−1k(x) (2.2.25)

σ2(x) = k(x, x)− kT (x)K−1k(x), (2.2.26)

where k(x) = [k(x1, x), k(x2, x), · · · , k(xN , x)]T ∈ RN and ID×D is D ×D identity

matrix. As in GPR, µ(x) and σ2(x) have the same shape as the mean and variance
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of the conditional probability distribution of Gaussian distribution, respectively.

The variance σ2(x) is a value that reflects the uncertainty in reconstruction from

latent space to data space.

2.2.3 Gaussian Process Dynamical Models

The Gaussian Process Dynamical Model (GPDM)[1, 2] is an extension of GPLVM.

GPDM is a model that has been studied to reflect the time series information con-

tained in observation data into GPLVM. Unlike GPLVM, GPDM gives dynamical

prior to latent variables. A common way to incorporate time series information

into a model is to assume that the dynamics is parametrized time series informa-

tion and determine the parameters that best fit the given data using optimization.

In these model identification studies, there are many difficulties on the parame-

terized model (1) when the data is limited, (2) when the model is complex, and

(3) when the number of parameters is high. One of the advantages of GPLVM /

GPDM is that it can greatly reduce the burden of the algorithm finding many pa-

rameters (infinite parameters in RBF kernel case) by assuming them as Gaussian

random variables and marginalizing these parameters.

Unlike GPLVM, GPDM finds latent variables through learning process by as-

signing dynamical prior to latent variables, obtains a nonlinear mapping between

given data and latent variables as a closed-form probability density function, and

also obtains the dynamical model between adjacent latent variables as a closed-

form probability density function. These two functions can be represented by only

a handful of hyperparameters that represent kernel functions by marginalizing many

parameters.

For given training data Y = {yi}T1 , yi ∈ RD and corresponding latent variables
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X = {xi}T1 , xi ∈ Rd, assuming the stochastic Markov dynamics process in the low-

dimensional space Rd, we can model the mappings as

xt = f(xt−1) + nx,t (2.2.27)

yt = g(xt) + ny,t (2.2.28)

where f : Rd → Rd, g : Rd → RD are nonlinear functions, nx,t, ny,t are zero-mean

isotropic Gaussian white noise process, and latent variables X are unknown. In

the GPDM framework, the above two functions f and g can be expressed as a

linear combination of the scalar basis functions φ(x), ψ(x) ∈ R:

f(x) =

m∑
i

aiφi(x) (2.2.29)

g(x) =
l∑
j

bjψj(x) (2.2.30)

where A = [a1, a2, · · · , am]T ∈ Rm×d , B = [b1, b2, · · · , bl]T ∈ Rl×D. Assuming that

each column of AandB is isotropic Gaussian prior, conditional probability density

of the data Y and the latent variable X can be obtained. First, if the parameter

B is marginalized for the function g, then the conditional probability density of

the data Y given X and β̄ is

p(Y |X, β̄,W ) =
|W |N√

(2π)ND|KY |D
exp

(
−1

2
tr(K−1

Y YW 2Y T )

)
, (2.2.31)

where β̄ is kernel hyperparameter and depends on how we define the kernel. W

is a weight matrix, KY ∈ RN×N is a kernel matrix whose elements are defined by

following RBF kernel:

kY (x, x′) = β1 exp

(
−β2

2
||x− x′||2

)
+ β3δx,x′ (2.2.32)

where β̄ = {β1, β2, β3} and δx,x′ is Kronecker delta function.
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Similarly, marginalizing the parameter A for the function f results in the con-

ditional probability density of data X as

p(X|ᾱ) =
p(x1)√

(2π)(N−1)d|KX |d
exp

(
−1

2
tr(K−1

X XoutX
T
out)

)
, (2.2.33)

where ᾱ is kernel hyperparameter and Xout = {xt}N2 are all latent variables except

x1. Therefore, the kernel matrix is defined as KX ∈ R(N−1)×(N−1) which consists

of Xin = {xt}N−1
1 . The kernel function that reflects the dynamical characteristics

of time series data is a linear kernel combined with the RBF kernel and can be

defined as follows:

kX(x, x′) = α1 exp
(
−α2

2
||x− x′||2

)
+ α3x

Tx′ + α4δx,x′ (2.2.34)

where ᾱ = {α1, α2, α3, α4} are kernel hyperparameters.

Learning

Learning GPDM is to find latent variables X corresponding to given training

data Y and kernel hyperparameter ᾱ, β̄. Learning is to find {X, ᾱ, β̄} that maxi-

mizes posterior distribution p(X, ᾱ, β̄|Y ). This is equivalent to minimizing negative

log-posterior. In other words,

min
X,ᾱ,β̄

L = − log p(X, ᾱ, β̄|Y ) (2.2.35)

= LY + LX +
∑
i

lnαi +
∑
j

lnβj

where

LX =
d

2
ln |KX |+

1

2
tr
(
xT1 x1

)
LY =

D

2
ln |KY |+

1

2
tr
(
K−1
Y YW 2Y T

)
−N ln |W |.
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As in GPLVM, we use the SCG algorithm to optimize the above objective func-

tion.

New Pose Generation

Once the model parameter β and the latent variable X have been determined,

the new observational space coordinate y∗ for the new latent space coordinate x∗

is given by the following probability density function:

y∗ ∼ N
(
µY (x∗), σ2

Y (x∗)ID
)

(2.2.36)

µY (x) = Y TK−1
Y kY (x) (2.2.37)

σ2
Y (x) = kY (x, x)− kTY (x)K−1

Y kY (x) (2.2.38)

where kY (x) = [kY (x1, x), kY (x2, x), · · · , kY (xN , x)]T ∈ RN and ID is D-dimensional

identity matrix. The mean function µY (x) is the mean of the GP for pose recon-

struction as a function of the latent space position x. The variance σ2
Y (x) is a value

that reflects the uncertainty in reconstruction from latent space to data space.

Propagation in Latent Space

If latent variables X and dynamical model parameter ᾱ in latent space are

determined, for new latent coordinate x∗t , we can obtain a probability distribution

for the next probable coordinate x∗t+1. A new motion can be generated from this

probability distribution.

x∗t+1 ∼ N
(
µX(x∗t ), σ

2
X(x∗t )Id

)
(2.2.39)

µX(x) = XT
outK

−1
X kX(x) (2.2.40)

σ2
X(x) = kX(x, x)− kTX(x)K−1

X kX(x) (2.2.41)

where kX(x) = [kX(x1, x), kX(x2, x), · · · , kX(xN−1, x)]T ∈ RN−1, Id is d-dimensional
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identity matrix and Xout = {xt}N2 for the first-order Markov process assumption.

The mean function µ(x) is the function that represents the next most likely coordi-

nate from the current latent space coordinate x. The variance σ2
X(x) is a measure

of the uncertainty of the predicted coordinates from the current coordinate x.

2.3 Forward Kinematics of Open Chains

The Special Orthogonal Group

The Special Orthogonal Group SO(3) is defined as follows:

SO(3) = {R ∈ R3×3|RRT = RTR = I, det(R) = +1}. (2.3.42)

The Lie algebra of SO(3), denoted so(3), consists of the real n × n skew-

symmetric matrices:

so(3) = {[ω] = R3×3|[ω]T = −[ω], ω ∈ R3}, (2.3.43)

the square bracket notation [ω] defined as the following 3×3 skew-symmetric ma-

trix representation of ω:

[ω] =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.3.44)

The Special Euclidean Group

The Special Euclidean Group SE(3) is defined as follows:

SE(3) = {M ∈ R4×4|M =

 R p

0 1

 , R ∈ SO(3), p ∈ R3}, (2.3.45)

,for convenience we will also use the more compact notation M = (R, p) ∈ SE(3).
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The Lie algebra of SE(3), denoted se(3), is of the form

[S] =

 [ω] v

0 0

 , (2.3.46)

where [ω] ∈ so(3) and v ∈ R3. [S] will be written in the equivalent six-dimensional

column vector form as S ∈ R6, and also using the notation S = (ω, v) ∈ R6.

Product of Exponentials Formula

Consider an m-degree of freedom open chain whose forward kinematics is rep-

resented in the following product of exponentials form [17, 30, 31]:

f(θ) = e[S1]θ1 · · · e[Sm]θmM, (2.3.47)

where θi, i = 1, . . . ,m denote the joint variables, and M ∈ SE(3) and [Si] ∈ se(3)

are of the form

M =

 RM pM

0 1

 , [Si] =

 [ωi] vi

0 0

 , (2.3.48)

with RM ∈ SO(3), pM ∈ R3.

Adjoint Map and Jacobian

For any X = (R, p) ∈ SE(3), the 6 × 6 adjoint matrix [AdX ] is defined as

follows:

[AdX ] =

 R 0

[p]R R

 . (2.3.49)

Letting p ∈ R3 be the Cartesian position of the end-effector frame expressed

in fixed frame coordinates, its velocity ṗ is then given by

ṗ = ωs × p+ vs, (2.3.50)
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where  ωs

vs

 = Js(θ)θ̇ =
[
S ′1 · · · S ′m

]
θ̇ (2.3.51)

S ′i =
[
Ad

e[S1]θ1 ···e[Si−1]θi−1

]
Si, (2.3.52)

with the adjoint matrix [Ad(·)] as defined in (2.3.49). Each of the six-dimensional

vectors S ′i = (ω′i, v
′
i) depends explicitly on θ, and represents the screw motion cor-

responding to the i-th joint axis when the robot is at the configuration θ.
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3
GPDM-BasedHumanMotion

Intention Recognition for

Lower-LimbExoskeleton

3.1 Introduction

Exoskeleton robots have been studied for military purposes, work assistance in in-

dustrial settings, and assisting people with disabilities or needing rehabilitation

[32, 33]. In order to effectively assist the human movement, the exoskeleton robot

should effectively recognize the human motion intention and apply the appropri-

ate control algorithm. Studies to recognize or predict human motion intentions

have relied primarily on electromyography (EMG) signals [3], [4], [5]. EMG sig-

nals can be acquired immediately before the muscle is activated, and thus it is

possible to predict the user’s motion intention quickly. On the other hand, it is

27
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necessary to calibrate the sensor value before using the EMG signal because the

intensity of the signal is different for each person and also depending on the at-

tachment position of the EMG sensor and the condition of the user [34, 3, 35].

This characteristic is ineffective in the practical use of the exoskeleton robot, and

can hardly be used especially for military purposes. In order to solve these draw-

backs, research [6] has been conducted to capture the motion intention without us-

ing EMG signals. In that study, using joint angle, joint angular velocity, and joint

torque data, they studied three different movement types using Linear Discrimi-

nant Analysis (LDA), which is one of the machine learning techniques. However,

in order to describe a person’s intentions, three are not enough and the LDA is a

machine learning algorithm that cannot reflect the dynamic characteristics of the

motion. In [7], they used Support Vector Machine (SVM) to identify five types of

movement states: walking on a flat ground, walking up and down the stairs, and

walking up and down the incline. Including sensor information such as EMG sen-

sor, pressure sensor, and joint angle, the accuracy of motion recognition of 99%

was shown. However, SVM is also a machine learning algorithm that does not

reflect the dynamic characteristics of motion. In our preliminary study analysis

without using the EMG sensor, we showed very low motion recognition rate using

SVM.

In this chapter, we applied the Gaussian process dynamical model (GPDM)

[1, 2], which is a nonlinear machine learning method. GPDM can reflect the dy-

namic characteristics of the exercise data to recognize the intentions of the wearer

of exoskeleton robot. GPDM is able to express human motion efficiently even in

three dimensions and has been used in fields such as human tracking[36], anima-

tion graphics[37], and so on. To verify the algorithm, the algorithm was applied

to the human motion data and the exoskeletal robot measurement data. Then we
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compared ours with the standard continuous HMM[38]-based motion recognition

algorithm.

The remainder of this chapter is organized as follows. The Section 3.2 intro-

duces our motion intention recognition algorithm using GPDM. Section 3.3 de-

scribes two kinds of data used in the experiments of this chapter. Section 5.3

presents experimental results using our method and an HMM-based method. Dis-

cussion about experimental results are made in Section 3.5. Then conclusion re-

marks are described in Section 5.4.

3.2 Human Motion Intention Recognition using GPDM

By learning GPDM K times for given K different motion data Yk ∈ RNk×D, k =

1, · · · ,K, a low dimensional variable (latent variable) Xk and a parameter set

λk = {ᾱk, β̄k,Wk} can be obtained. Given the new observation data Y ∗, the latent

variable X∗k for each motion model can be obtained through Gaussian process re-

gression (GPR). The motion intention estimation of the new observation data Y ∗

can be estimated by comparing the following conditional probability distributions

Lk = p(Y ∗|Yk, Xk, λk)p(X
∗|Xk, λk) (3.2.1)

and choosing the model k, which represents the greatest probability. That is,

λ∗ = argmax
λk

logLk (3.2.2)

= argmax
λk

log (p(Y ∗|Yk, Xk, λk)p(X
∗|Xk, λk)) . (3.2.3)

By selecting the model λk corresponding to Lk, which has the maximum value in

the above equation, the current motion corresponding to the current data can be

estimated.
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3.3 Data Description

There are two main datasets used in this chapter: the human motion data and the

sensor mock-up data. The former is a data that is obtained by attaching markers

to each part of the body, tracking the position of the three-dimensional markers

using the 3D motion capture system, and then converting them into the joint angle

values using the dynamics simulation information. The latter is the data collected

after a human being actually wears the sensor mock-up (lower-limb exoskeleton

robot with sensors only, without actuator). On the flat, stair, and slope model-

ing the actual operating environment of the robot, walking, sitting and standing,

etc. were performed. Each data consists of various sensor information such as joint

angle, IMU (Inertial Measurement Unit) and AHRS (Attitude and Heading Ref-

erence System).

3.3.1 Human Motion Capture Data

Before making the Lower-Limb Exoskeleton Robot, human body kinetic analysis

data was collected to analyze the human kinetic performance, and its character-

istics were reflected in the robot design. This data is based on motion capture

and ground reaction force measurements for all 12 subjects. The average height of

the subjects was 172.3 ± 5.4cm and the average weight was 71.35 ± 6.18kg. Mo-

tion capture is done by the VICON motion capture camera system. The detailed

specification of the motion capture system is summarized in the following table

3.1.

The position of the markers attached to the human body for motion capture

is shown in the following Figure 3.1.

The ground reaction force was measured by the AMTI ground reaction force
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Table 3.1: VICON motion capture camera system

Model VICON MX-T160

SW VICON Nexus 1.8

Capture rate 100Hz

Marker Set VICON Plug-in Gait

Figure 3.1: Marker positions for motion capture system.

measurement system, and the detailed specifications are shown in the table 3.2.

The motion capture data representing the three-dimensional position of the mark-

ers was converted into joint angles information through dynamics simulation in

combination with information such as human body model and ground reaction

force. The joint angle information is composed of 30 dimensions in total.

Using the above measurement system, twelve subjects performed six actions

(walking on flat ground, walking across the incline, walking up/down the incline,

walking up/down the stairs) three times each. The experimental environment in
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Table 3.2: AMTI ground reaction force measurement system

Model AMTI-OR6-7-2000

Capture rate 1000Hz

Figure 3.2: The experimental environment for human kinetic analysis.

which each operation is performed can be seen in the Figure 3.2.

Each measured gait data was normalized to 100 frames for 1 gait cycle, be-

ginning at one foot of the heel strike (HS) and ending up to the foot HS. The

terminology and sequence for the walking cycle are described in Figure 3.3.

Human kinetic analysis data information is summarized in the table 3.3.
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Table 3.3: Human Motion Capture Data

Item Value note

subject 12 person
Height: 172.3± 5.4cm

Weight: 71.35± 6.18kg

movement types 6 types

walking on flat ground,

walking across the incline,

walking up/down the incline,

walking up/down the stairs

frames 100 frame 1 gait cycle

sets per movement type 3 sets

data dimension 30 dimension joint angles

3.3.2 Sensor Mock-up Data

Sensor mock-up data is a collection of data that subjects, wearing lower-limb ex-

oskeleton robot with sensors only (actuators are not attached), walk on terrain

that models the actual operating environment of the robot, such as flat ground, ob-

stacles, stairs, and inclines. These data were obtained from four subjects and sen-

sor information such as joint angle, IMU, and AHRS were collected. The average

height of the subjects was 173.7±2.7cm and the average weight was 74.58±5.18kg.

The joint structure of sensor mock-up is shown in Figure 3.4. The hip joint con-

sists of five revolute joints, the ankle joint has three revolute joints, and the knee

has one revolute joint. It has a total of 18 joints and the total weight is 6.5kg.

Each joint value is measured by an encoder. The AHRS sensor is attached to the

back plate. The IMU sensors are attached to both feet. Two values of roll and
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Figure 3.3: Gait cycle. 1

pitch were used in the AHRS sensor values except for the yaw value. In the IMU

sensor, the values of 3-axis linear acceleration and 3-axis orientation are obtained,

so 12-dimensional data is used as a result. There is a total of 32 data dimensions

including 18 joints, 2 in AHRS, and 12 in IMU sensors.

All measurements values were measured at every 16ms and the frame rate was

62.5Hz.

Wearing the above sensor mock-up, four subjects performed nine motions: walk-

ing on flat ground, walking across the incline, walking up/down the incline, walk-

ing up/down the stairs, squat, walking over an obstacle, and walking sideways

three times each. The experimental environment in which each movement is per-

formed can be seen in the Figure 3.5.

The experimental data that subjects carried loads on their back were also mea-

sured, but they were not used in this study. Unlike the human kinetic analysis

data, it was not normalized to the gait cycle and was recorded at a certain time

1http://epomedicine.com/clinical-medicine/physical-examination-gait/
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Figure 3.4: Sensor mockup

interval according to the frame rate. Data was recorded during 1 to 4 gait cy-

cles according to the movement types. Walking on flat ground was measured over

the longest period and walking over an obstacle was measured for one gait cy-

cle. For walking on flat ground, the walking speed was about 2km/h according to

the metronome, and other movements were measured freely. Sensor mock-up data

information are listed in the Table 3.4.

3.4 Experiments

3.4.1 Previous Research

In this section, we examined whether the SVM algorithm, which was used in pre-

vious study [7] to identify the motion intention of the wearer of the prosthetic
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Figure 3.5: Sensor mock-up experiment environment.

leg, can be applied to data given without EMG signals. In the previous study [7],

including the EMG signals, the force and moment at the sole from the load cell

and pressure at the contact area with the prosthesis were measured. The pres-

sure of the sole was used to divide the gait cycle into four steps (combinations

of swing phase and stance phase for both feet). Based on the EMG, force, and

moment values for each step, they performed a study of learning and classify-

ing a total of 5 movements (walking on flat ground, walking up/down the incline,

walking up/down the stairs) using SVM. In this study, classification accuracy was

91.79 ∼ 100% for each movement type.

In order to verify the above data without EMG signal, the SVM algorithm

was applied to sensor mock-up data. The Figure 3.6 is a confusion matrix that

indicates how accurate the class is classified. In the Figure 3.6, the vertical axis

represents the actual movement type and the horizontal axis represents the pre-

dicted movement type. The numbers in the confusion matrix have 0 ∼ 1 values

and indicate how the actual movement type is classified by the movement type



3.4. Experiments 37

Table 3.4: Sensor Mockup Data

Item Value Note

Subject 4 person
height: 173.7± 2.7cm

weight: 74.58± 5.18kg

movement types 9 types

walking on flat ground,

walking across the incline,

walking up/down the incline,

walking up/down the stairs,

squat, walking over a obstacle,

and walking sideways

frames 500 ∼1000 frame 1 ∼ 4 gait cycles

sets per movement type 3 sets

data dimension 32 dimension joint angle, IMU, AHRS

of the horizontal axis. The closer the value is to 1, the whiter the color becomes.

The closer to 0, the blacker. For example, walking up the stairs was classified as

walking on flat ground with an accuracy of 59.97% and as walking up the stairs

with an accuracy of 38.07%. Thus, the closer the diagonal color is to white, the

better the motion is classified.

As shown in Figure 3.6, if there are no EMG signals, most of the data is classi-

fied as walking on flat ground and cannot be classified well by the original motion.

Based on these results, we assumed that the SVM using joint angles, IMU and

AHRS values does not capture the dynamic characteristics of the data. Therefore,

we considered the three consecutive data as one data and applied the SVM. That

is, for existing data yt ∈ RD, t = 1, · · · , N , after concatenating three consecutive
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Figure 3.6: SVM without EMG

data as ȳt = [yTt , y
T
t+1, y

T
t+1]T ∈ R3D, t = 1, · · · , N − 2, then we applied SVM on

the concatenated data {ȳt}N−2
1 .

As shown in Figure 3.7 confusion matrix, it can be seen that the results are

worse when three consecutive data are regarded as one data. In other words, even

if three consecutive data are used as one data, it can be seen that the SVM does

not capture the dynamic characteristics of the data. Based on these two results, we

recognized that there is a limitation of SVM when only joint angle, IMU, AHRS

sensor values are available. Therefore, GPDM-based motion intention recognition

that can reflect the dynamic characteristics of data is studied and compared with

an HMM-based motion intention recognition method.
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Figure 3.7: SVM without EMG. Three consecutive data are concatenated as a da-

tum.
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Figure 3.8: GPDM latent trajectories of human motion capture data.

3.4.2 Human Motion Capture Data

Before performing motion intention recognition using GPDM, we investigate the

trajectory of low-dimensional space by learning the six motions of human kinetic

analysis data using GPDM in three - dimensional space. As shown in Figure 3.8,

each movement has learned in the same three-dimensional space but has different

characteristics. Therefore, if enough frames of new observation data come in, it will

be possible to distinguish motion intention by only comparing the low dimensional

trajectory shape.

The experiment proceeded as follows. GPDM with 2nd-order Markov process

in latent space is applied to the data of Table 3.3. Two sets of three sets of mo-

tion were used for learning and the remaining one set of motion was used as test

data. Since the second-order Markov process is used, at least three frames of data

are required to determine the motion intention based on the GPDM. Using the

GPDM-based motion intention recognition algorithm in the previous Section 3.2,
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the confusion matrix is constructed as shown in Figure 3.9. The classification ac-

curacy for the six movement types that make up this data is 87.97± 10.39%. The

motion classification accuracy of the walking up the stairs and walking down the

incline is somewhat lower, and the remaining movement types are accurate to more

than about 89%. Intuitively, it is anticipated that walking up and down the in-

cline will be similar to walking up and down the stairs, respectively. As you can

see from the Figure 3.9, the walking up the stairs is highly likely to be misclassi-

fied as walking up the incline, and the walking down the stairs is highly likely to

be misclassified as walking down the incline.

In order to compare with HMM-based motion recognition algorithm, a confu-

sion matrix in Figure 3.10 is constructed by learning HMM under the same condi-

tion. For the efficiency of HMM learning, it was reduced to five-dimensional space

using LDA and then learned by HMM. If the data has high dimensionality, there

are many local minimums, and HMM learning is easy to fall to the local mini-

mum because it uses the EM algorithm. Therefore, we reduce the dimensionality.

LDA is one of the most basic classification algorithms in machine learning and

can be reduced to a maximum of C − 1 dimensions for C classes. Since we have

six types of motion, we have reduced the data to five dimensions. Average motion

recognition accuracy is 78.75± 5.74%, which is somewhat lower than the GPDM-

based algorithm. However, similar to the GPDM-based method, we can see that

the walking up the stairs is similar to the walking up the incline and down the

stairs is similar to down the incline.

In order to analyze more deeply, we investigated how the motion recognition

accuracy varies according to the number of frames used for motion recognition and

gait cycle. The result is shown as graphs in the Figure 3.11 and the Figure 3.12.

In both graphs, the vertical axis represents the motion recognition accuracy and
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the horizontal axis represents the number of frames used for motion recognition.

The color of the graph indicates the starting position of the data used for motion

recognition in the gait cycle and represents the walking phase. We used up to 20

frames from the minimum number of frames required for motion recognition. The

starting position of the data changed stepwise from the first frame to the 80th

frame. The first frame (1 frame) of the data represents the HC (Heel Contact)

and the 100th frame is the frame immediately before the next HC appears.

The GPDM-based algorithm showed a slight increase in classification accuracy

as the number of frames used increased, but showed a tendency not to be signifi-

cant. On the other hand, as the number of frames used increases, the HMM-based

algorithm increases the classification accuracy and shows a maximum difference

of about 25%. The HMM-based algorithm showed good performance with data

close to 20 frames. On the other hand, the GPDM-based algorithm showed sim-

ilar performance to the HMM-based algorithm, which uses 20 frames, with only

the minimum number of frames (3 frames) required for motion recognition by the

2nd-order Markov model assumption. This means that the GPDM-based algorithm

can extract the dynamic characteristics of motion with only three frame data. In

case of GPDM based algorithm, the performance is good when the start position

of data is 4, 80% frame. This shows that the posture information before and af-

ter HC is used as a more important factor in recognizing the intention of motion

than information at the stance phase of the gait cycle. For the HMM-based al-

gorithm, the data starting from 1, 10% frame showed the best performance. This

shows that, unlike the GPDM-based algorithm, the posture information immedi-

ately after the HC is used as an important factor in recognizing the intention of

the motion.
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Figure 3.9: GPDM confusion matrix for human kinetic analysis data.

Figure 3.10: HMM confusion matrix for human kinetic analysis data.
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Figure 3.11: Effect of the number of frames used and gait cycle: GPDM case.

3.4.3 Sensor Mock-up Data

Based on the result of the Section 3.4.2, we applied GPDM and HMM-based mo-

tion recognition algorithm to sensor mock-up data. As before, the 2nd-order Markov

model was applied to the GPDM and the HMM was applied to the 8-dimensional

data whose dimensionality had been reduced using the LDA. Two sets of three sets

of motion were used for learning and the remaining one set of motion was used as

test data. Each classification performance for the nine movement types that con-

stitute this data is shown as a confusion matrix in Figure 3.13 for GPDM and in

Figure 3.14 for HMM, respectively. The classification accuracy for the nine move-

ment types is 89.02± 6.14% for GPDM and 94.28± 6.16% for HMM. Whereas in
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Figure 3.12: Effect of the number of frames used and gait cycle: HMM case.

the case of human motion data, the average classification accuracy of the GPDM-

based algorithm was better than that of the HMM-based algorithm, in the case

of sensor mock-up data, that of the HMM-based algorithm is better than that of

the GPDM-based algorithm.

3.5 Discussion

3.5.1 Comparison both Data Sets

In order to analyze the causes of the two algorithms showing different results for

the two data sets, the differences between the human kinetic analysis data and the
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Figure 3.13: Confusion matrix of GPDM for sensor mock-up data.

Figure 3.14: Confusion matrix of HMM for sensor mock-up data.
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sensor mock-up data are compared and summarized in Table 3.5. In the case of

the sensor mock-up data, the data types were more various than human kinetic

analysis data and three types of motion were added, while the number of subjects

participating in the sensor mock-up experiment was four, which is one-third of

human kinetic analysis data. Despite the differences in data, for the GPDM-based

algorithm, there is almost no difference (about 1%) in motion recognition perfor-

mance between two data sets as shown in Table 3.5. On the other hand, HMM-

based algorithm improves motion classification performance by about 15% for sen-

sor mock-up data. In this sense, GPDM-based algorithms are robust to changes

in data types, number of subjects, and movement types while motion classification

performance of HMM-based algorithms is greatly affected by data characteristics.

Especially, as the number of people increases, the noise level of the data becomes

more and more diverse. Therefore, it is difficult for the machine learning algo-

rithm to grasp the characteristics of motion. However, GPDM has the advantage

that the motion classification performance is not greatly changed for the human

body motion data having three times the number of people. Although the number

of people has changed by three times, GPDM has shown that motion classification

performance does not change much.

One of the important facts from Table 3.5 is that the dimensionality of GPDM

latent space is smaller than that of the HMM latent space. When the dimension-

ality of latent space of GPDM is made equal to that of HMM, the result is shown

as the confusion matrix of Figure 3.15. In this case, the average classification ac-

curacy is 94.37± 5.46, which is similar to the HMM-based algorithm.

Analysis by each motion type shows that GPDM-based algorithm has a rela-

tively high probability of misclassification as a vertical obstacle. This can be at-

tributed to the fact that the motion over the vertical obstacle contains some of
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Table 3.5: Data Comparison

Item Human Motion Sensor Mockup

Data type Joint angle Joint angle, IMU, AHRS

Data dimension 30 32

Number of person 12 4

Number of motion 6 9

GPDM latent dim. 3 3

HMM latent dim. 5 5

GPDM accuracy 87.97± 10.39% 89.02± 6.14%

HMM accuracy 78.75± 5.74% 94.28± 6.16%

the characteristics of all other motions. Basically, the motion over the obstacle

can be regarded as an exaggerated movement of the walking on flat ground. The

part that lifts the leg forward to overcome the obstacle is similar to the walking

up the incline/stairs motion. The part of the leg that falls beyond the obstacle is

similar to the walking down the incline/stairs. Finally, depending on the person’s

physical characteristics or habits, some people lift their feet sideways when cross-

ing obstacles. Therefore, it seems that there is a possibility that the motion over

the obstacle is misclassified as the sideways motion.

Despite the similarity of walking on flat ground and walking across the incline,

GPDM and HMM-based algorithms well distinguished them for the two data sets.

In case of walking on the incline and stairs, unlike human kinetic analysis data,

both algorithms have a high probability of being confused with walking up the

incline as walking down the stairs for sensor mockup data. In case of walking on

the incline and stairs, unlike human kinetic analysis data, both algorithms have a
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Figure 3.15: Confusion matrix of GPDM for sensor mock-up data. Dimensionality

of the latent space is 5. Average classification accuracy is 94.37± 5.46.

high probability of being confused walking up the incline with walking down the

stairs, walking down the incline with walking up the stairs, respectively for sensor

mockup data. In the GPDM-based algorithm, the probability of misclassification is

very low, but the probability of misclassification is high in the HMM-based algo-

rithm. What can be inferred from this is that wearing an exoskeleton robot subtly

changes the wearer’s gait pattern.

3.5.2 Sensitivity Analysis

The following experiment was designed to investigate what dimension of data in-

fluences original 32-dimensional data when sensor is broken during operation of

exoskeleton robot. We have examined how the motion classification performance
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Figure 3.16: Sensitivity of each dimension. (Up) Sensitivities. (Down) Labels of

each dimension.

changes after setting all the data values of each dimension to zero. The results are

shown in Figure 3.16. The most significant difference in performance is the 5th,

12th, and 27th dimensional data compared to the average classification accuracy

of 89.02% when all the normal values are received. The labels for each dimension

are Right Hip Angle Yaw 3, Right Outsole Angle Z, Left Outsole Angle Z, the

sensor positions are the third yaw angle of the right hip joint, and the roll angle

of the IMU sensor on the right and left.

The reason why the 5th data of the right hip joint is sensitive is that the walk-

ing across the incline movement was performed in a right-sloping environment such

as Figure 3.17. The yaw angle of the right hip joint seems to play an important

role in distinguishing it from other movements such as walking across the incline

and walking on flat ground. On the other hand, the reason for the 12th and 27th
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Figure 3.17: Walking across the incline. The shape of the incline is high on the

right side of the subject.

data of each foot roll is sensitive seems difficult to find the cause intuitively.

3.6 Conclusion

By comparing logarithms of conditional probability distribution of new observation

and the corresponding GPDM latent variables given training data of a certain mo-

tion type, we estimated motion intention of newly observed data. Using GPDM, we

were successfully able to extract and capture the dynamic characteristics of move-

ments on various terrains. Therefore we can recognize better the wearer’s motion

intention than an HMM-based algorithm and of course get better recognition than

static algorithms such as LDA and SVM which cannot capture dynamic nature of

a motion.

Our GPDM-based motion intention recognition algorithm has been validated

through two kinds of data sets. The first is joint angle paths which are converted

from 3D Cartesian coordinates of markers attached to subjects’ body parts and

regularized as 100 frames for a gait cycle. The second is data captured from vari-

ous sensors attached to lower-limb exoskeleton robot. Our method accurately pre-

dicted human motion intention than an HMM-based algorithm. In addition, the

performance was uniform regardless of data type, motion type, and where it was
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captured during the gait cycle. This means our algorithm is more robust and re-

liable.

When we think intuitively, the motion of walking up the stairs will be similar

to the motion of walking up the ramp, and the motion of walking down the stairs

will be similar to the motion of walking down the ramp. One of the interesting

things, however, is that if one wears an exoskeleton, the motion of walking up the

stairs is more likely to be mistaken for a walking down the ramp and the mo-

tion of walking down the stairs is more likely to be misclassified as the motion of

walking up the stairs. For motion capture data, results are consistent with our in-

tuition. What can be inferred from this is that wearing an exoskeleton robot subtly

changes the wearer’s gait pattern. This change can cause discomfort to exoskeleton

wearers. It is possible to solve these problems by changing the mechanical design,

but if not, the control algorithm should be designed considering the change of the

gait pattern.



4
AnAdaptive Stepsize RRTPlanning

Algorithm forOpenChain Robots

4.1 Introduction

In this chapter, we propose an adaptive stepsize RRT path planning algorithm for

open chain robots in which only a minimum obstacle size parameter is required

as input. Exploiting the structure of an open chain’s forward kinematics as well

as a standard inequality bound on the operator-induced matrix norm, we derive a

maximum Cartesian displacement bound between two configurations of the same

robot and use this bound to determine a maximum allowable stepsize at each it-

eration. We also extended this bound to latent space when there is a differentiable

mapping from the latent space to the joint space. In addition, we have proposed

a relaxed connection condition that can improve the existing RRT performance.

Numerical experiments involving a ten-dof planar open chain and a seven-axis in-

dustrial robot design demonstrate the practical advantages of our algorithm over

53
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standard fixed-stepsize RRT planning algorithms.

This chapter is organized as follows. The main inequality bound is derived in

Section 4.2, while the accompanying adaptive stepsize RRT algorithm is presented

in Section 4.3. Section 4.4 presents experimental results using our planning algo-

rithm for a ten-dof planar open chain and a seven-axis industrial robot manipu-

lator. We conclude with some suggestions for extension to more complex chains,

and also to planning in spaces of reduced dimension.

4.2 A Cartesian Displacement Bound for Open Chains

We first cover some preliminaries on matrix norms; see, e.g., [39] for a review of

standard results on matrix and operator norms. Given two vector norms ‖ · ‖X on

Rn, ‖ · ‖Y on Rm, and a matrix A ∈ Rm×n, the matrix operator norm induced

from the two vector norms is defined as follows:

‖A‖XY = sup
x 6=0

‖Ax‖Y
‖x‖X

. (4.2.1)

The following inequality then always holds:

‖Ax‖Y ≤ ‖A‖XY · ‖x‖X

For the basic vector norms, e.g., the 1-norm ‖ · ‖1, the Euclidean norm ‖ · ‖2, and

the sup-norm ‖·‖∞, the corresponding induced matrix norm applied to A = (aij) ∈

Rm×n are respectively

‖A‖1,1 = max
j

m∑
i=1

|aij |

‖A‖2,2 = ρmax(A) =
√
λmax(ATA)

‖A‖∞,∞ = max
i

n∑
j=1

|aij |.
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||δpmax||

(a)

||δpmax||

(b)

Figure 4.1: Two examples of the maximum Cartesian space displacement ‖δpmax‖:

(a) ‖δpmax‖ occurs at the end-effector; (b) ‖δpmax‖ occurs at the elbow.

It is well-known that the Frobenius norm ‖ · ‖F , defined as

‖A‖F =
√

Tr(ATA)

is not an induced norm of any vector norm. The following inequality also holds

for all A ∈ Rn×n:

‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2.

We now derive our main result which provides, for an open kinematic chain

whose task space is the special Euclidean group SE(3) of rigid body transforma-

tions, an inequality bound on the maximum Cartesian position displacement in

the task space for a given displacement in the input configuration space.

Proposition 4.1. Given an m-joint open chain robot with forward kinematics (2.3.47),

for a joint displacement θ 7→ θ + δθ, the end-effector Cartesian position displace-

ment p 7→ p+ δp is approximately bounded by ‖δp‖Y ≤ ‖A‖XY · ‖δθ‖X , where

A =
[
ω′1 × p+ v′1| · · · |ω′m × p+ v′m

]
∈ R6×m, (4.2.2)
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‖ · ‖X denotes a norm in joint configuration space, ‖ · ‖Y denotes a norm in the

Cartesian position space R3, and ‖ ·‖XY denotes the induced matrix operator norm

as defined in (4.2.1).

Proof. Noting that ṗ = ωs× p+ vs with ωs and vs obtained from (2.3.51)-(2.3.52),

ṗ can be written explicitly as

ṗ =

m∑
i=1

(
[ω′i]p+ v′i

)
θ̇i (4.2.3)

=
[
[ω′1]p+ v′1 | · · · | [ω′m]p+ v′m

]
θ̇, (4.2.4)

from which it follows that

δp ≈
[
ω′1 × p+ v′1 | · · · |ω′m × p+ v′m

]
δθ. (4.2.5)

The approximate bound on ‖δp‖ now follows.

Note that the vector ω′i × p + v′i ∈ R3 represents the contribution of the i-th

joint velocity θ̇i to the overall end-effector velocity ṗ.

Now suppose each link i has the shape of a convex polytope, and let Bi =

{pi1,pi2, . . .} be the set of link vertices for link i. Let pij ∈ R3 be the coordinates

of link vertex pij expressed in fixed frame coordinates. Given some joint space

displacement δθ ∈ Rm from its current configuration θ, there will exist some link

vertex pmax on the robot at which the corresponding Cartesian space displacement

will be maximized; denote this maximum displacement by δpmax ∈ R3 (Fig. 4.1

illustrates the maximum Cartesian space displacement for two different pairs of

initial-final configurations). The following corollary then holds.

Corollary 4.2. The maximum Cartesian space displacement of the m-link open
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chain is approximately bounded by

‖δpmax‖Y = max
i,j
‖δpij‖Y

≤ max
i,j
‖Aij‖XY ‖δθ‖X (4.2.6)

where

Aij =
[
ω′1 × pij + v′1 | · · · | ω′i × pij + v′i

]
, (4.2.7)

and the search for the maximum occurs over the range i = 1, . . . ,m, pij ∈ Bi.

The proof follows straightforwardly from a repeated application of the earlier

proposition.

A similar result can be derived for input spaces other than the joint space, e.g.,

a lower-dimensional space, called the latent space, together with a differentiable

mapping from the latent space to the joint space. Such situations arise when, e.g.,

dimension reduction methods are employed to construct a lower-dimensional rep-

resentation of the configuration space based on a collection of sample trajectories

(see, for example, [1]). Let g : Rd → Rm, x 7→ θ = g(x) be the local coordinate

representation of the differentiable mapping from the latent space to the joint con-

figuration space, with d ≤ m. Let δx ∈ Rd be a displacement in latent space and

δpmax be the corresponding maximum Cartesian space displacement for a point on

the robot. Denote by ‖ · ‖Z the norm on Rd. The following corollary then holds.

Corollary 4.3. The maximum Cartesian space displacement δpmax is approximately

bounded by

‖δpmax‖Y ≤ max
i,j
‖Aij‖XY

∥∥∥∥∂g∂x
∥∥∥∥
ZX

‖δx‖Z . (4.2.8)

The corollary follows directly from the fact that δθ ≈ ∂g
∂xδx.
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4.3 Adaptive Stepsize RRT

Based on the inequalities derived in the previous section, we now describe our

adaptive stepsize RRT planning algorithm. A maximum Cartesian displacement

value ∆ in the workspace is first specified; for example, ∆ can be set to be the

width of the smallest obstacle in the workspace. Setting the right-hand side of

Equation (4.2.6) to ∆, i.e.,

‖δpmax‖ ≤ max
i,j
‖Aij‖‖δθ‖ = ∆, (4.3.9)

at each joint space configuration the stepsize is then set to

‖δθ‖ =
∆

maxi,j ‖Aij‖
. (4.3.10)

Similarly, for planning in the latent space, the right-hand side of (4.2.8) is set to

∆, and the stepsize is determined as follows:

‖δpmax‖ ≤ max
i,j
‖Aij‖

∥∥∥∥∂g∂x
∥∥∥∥ ‖δx‖ = ∆ (4.3.11)

‖δx‖ =
∆

maxi,j ‖Aij‖
∥∥∥ ∂g∂x∥∥∥ . (4.3.12)

Note that the stepsizes in (4.3.10) and (4.3.12) depend on the robot’s current con-

figuration, and tend to be smaller when a robot’s links are fully extended, and

larger when the links are folded.

Algorithm 1 describes the main steps of our bounded displacement adaptive

stepsize RRT algorithm. Lines 1-7 are the same as for the standard joint space

RRT algorithm: sample a random node (θrand) in the configuration space, find its

nearest node (θnear) on the tree and the direction (v̂new) in which to extend the

tree. The adaptive stepsize (4.3.10) is evaluated (line 8) and the new node θnew

generated in the direction of v̂new (line 9). If the new node is collision-free and



4.3. Adaptive Stepsize RRT 59

Algorithm 1 Bounded Displacement Adaptive Stepsize RRT

1: Tree, ∆

2: Tree.AddNode(θinit)

3: While i < Imax do

4: i← i+ 1

5: θrand ← RandomSampling()

6: θnear ← FindNearestNodeOnTree(Tree, θrand)

7: v̂new ← GetNewDirection(θnear, θrand, Tree)

8: ‖δθ‖ ← GetStepsize(θnear, v̂new, ∆)

9: θnew ← Extend(Tree, θnear, v̂new, ‖δθ‖)

10: if CheckConstraints(θnew, constraints) then

11: Tree.AddNode(θnew)

12: if Connect(θnew, θgoal, ∆) then

13: [Tree, flag ] ← ExtendFurther(Tree, θnew, θgoal, v̂new)

14: if flag == true then

15: return Path(Tree)

16: end if

17: end if

18: end if

19: end While

20: return NULL

within the allowed joint range (line 10), then it is added to the tree (line 11).

Standard RRT algorithm and the named nodes are illustrated in Figure 4.2.

Lines 12-17 implement the adaptive stepsize planning procedure. Connect() (Al-

gorithm 3) determines if the two nodes θnew and θgoal should be connected. In the
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Algorithm 2 GetStepsize(θ, v̂, ∆)

1: c← maxi,j ‖Aij(θ)‖

2: ‖δθ‖ ← ∆
c ‖v̂‖

3: return ‖δθ‖

Algorithm 3 Connect(θa, θb, ∆)

1: Ba ← GetEachVertexPosition(θa)

2: Bb ← GetEachVertexPosition(θb)

3: if maxi,j ‖pij(θa)− pij(θb)‖ ≤ ∆ then

4: return true

5: else

6: return false

7: end if

most basic form of fixed stepsize RRT planning, the connection test is typically

done in the joint configuration space, e.g., θnew and θgoal are connected if the con-

dition ‖θnew−θgoal‖ ≤ ε is satisfied for some arbitrary user-prescribed ε. In our case

it makes more sense to use ‖δθ‖θ=θnew in place of ε, or noting from Eq. (4.3.10)

that ∆ = maxi,j ‖Aij‖ · ‖δθ‖, to connect θnew and θgoal if

max
i,j
‖Aij‖ · ‖θnew − θgoal‖ ≤ ∆ (4.3.13)

is satisfied. However, since from Corollary 4.2 we have

‖δpmax‖ = max
i,j
‖pij(θnew)− pij(θgoal)‖

≤ max
i,j
‖Aij‖ · ‖θnew − θgoal‖,

Connect() uses the less strict connection test ‖δpmax‖ ≤ ∆ to speed up planning.

In our later experiments we compare the results of using both the joint space and

Cartesian space metrics for the connection test.
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Algorithm 4 ExtendFurther(Tree, θ, θgoal, v̂)

1: While j < Jmax do

2: ‖δθ‖ ← GetStepsize(θ, v̂, ∆)

3: θ′ ← Extend(Tree, θ, v̂, ‖δθ‖)

4: if CheckConstraints(θ′, constraints) then

5: Tree.AddNode(θ′)

6: if (||θ′ − θgoal|| ≤ ‖δθ‖) then

7: return [Tree, true]

8: else

9: θ ← θ′

10: end if

11: else

12: return [Tree, false]

13: end if

14: j ← j + 1

15: end While

16: return [Tree, false]

If θnew and θgoal are close enough to pass the above connection test, then in

principle they could be connected and the algorithm terminated. In practice, θnew

and θgoal may be quite distant from each other relative to other connected node

pairs (we have observed in our later planar robot experiments that these values

sometimes exceed more than thirty times typical values of ‖θi − θi+1‖). Although

the condition ‖δpmax‖ ≤ ∆ ensures that there is no obstacle larger than ∆ between

pij(θnew) and pij(θgoal),∀i, j, depending on the path taken between θnew and θgoal,

a collision cannot be ruled out.
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Initial node

Goal node

Random node

Nearest node

New node

Stepsize

Figure 4.2: The stepsize and the named nodes for RRT.

We therefore invoke the routine ExtendFurther() in Algorithm 4, which seg-

ments the path between θnew and θgoal into smaller segments of appropriate step-

size, and sequentially checks whether the nodes of these smaller segments are valid.

If one of the nodes is not valid, the algorithm returns to the main loop and adds

the recently accrued valid nodes to the tree. Specifically, if ‖δpmax‖ ≤ ∆, the tree

is extended toward θgoal in the direction v̂ = (θgoal−θnew)/‖θgoal−θnew‖, with step-

size determined from (4.3.10), while checking for collisions with obstacles and joint

limits (lines 2-4). If a collision occurs or joint limits are exceeded at the extended

node θ′new, then the algorithm terminates (lines 4 and 12). Otherwise, the algo-

rithm continues to extend the node toward θgoal until the distance ‖θ′new − θgoal‖

is less than the stepsize ‖δθ‖θ=θ′new
evaluated at θ′new, at which point the two nodes

are connected.
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4.4 Experiments

Our proposed adaptive stepsize RRT algorithm is evaluated through two sets of

numerical experiments, the first involving a ten-dof planar open chain, the second

involving a standard seven-axis industrial robot design. For the numerical experi-

ments we compare our adaptive stepsize RRT algorithm with two versions of the

standard fixed stepsize RRT algorithm and two versions of the RRT-Connect al-

gorithm (in the latter case, the two versions correspond to using a joint space

metric versus a Cartesian space metric for the connectivity test). We give a goal

bias [40] of probability 5% toward the goal node. Like most RRT-based panning

methods, our algorithm is implemented as a bi-directional search algorithm. A

non-incremental 3D collision checking algorithm is used for our numerical experi-

ments. The numerical experiments for the ten-dof planar chain and the seven-axis

industrial robot arm are performed using code written in C++ and running on an

Intel Core i7-4790 3.50 GHz platform with 24 GB RAM.

Although evaluating the operator-induced norm is in general NP-hard, those

induced from the one- and two-norms are more straightforward to compute [41,

42]. For our experiments we take the one-norm ‖ · ‖1 in the input configuration

space and the two-norm ‖ · ‖2 in the Cartesian task space; the corresponding in-

duced operator norm ‖ · ‖1,2 is then evaluated as

‖A‖1,2 = max
j

(∑
i

|aij |2
)1/2

. (4.4.14)

Pseudo code for calculating ‖A‖1,2 is provided in Algorithm 5, where θ denotes

the current configuration and B = {B1, · · · ,Bm} is the set of link vertices. See,

e.g., [31] for a treatment of how to convert Denavit-Hartenberg parameter-based

forward kinematics into product of exponentials form. For comparison purposes we
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Figure 4.3: Experiments with a ten-dof planar open chain. (a) Circular obstacles

are placed symmetrically about the robot base, the initial arm posture is shown in

blue, the final posture is shown in red. (b) Results of using standard RRT in joint

space with stepsize 0.5; observe that collisions occur with the upper-right obstacle.

(c) Results of adaptive stepsize RRT in joint space with ∆ = 1.5. (d) Results of

adaptive stepsize RRT in latent space with ∆ = 1.5.
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also perform the same set of experiments using ‖ · ‖2 for the input configuration

space. We observe ‖A‖2,2 is bigger than ‖A‖1,2, and that all measures, with the

exception of elapsed time, vary by a factor of two; the mean and maximum values

of ‖δpmax‖ are reduced by half while the number of iterations and path length are

doubled. Results of experiments using the two-norm are included in Table 4.1 for

comparison purposes.

Algorithm 5 OperatorNorm 12(θ,B)

1: amax ← −inf

2: JS ← getSpaceJacobian(θ)

3: For i = 1 to m

4: For j = 1 to numberOfV ertexOfLink i

5: For k = 1 to i

6: ret← ‖ωk × pij + vk‖2

7: if ret > amax then

8: amax ← ret

9: end if

10: end For

11: end For

12: end For

13: return amax

4.4.1 Ten-Dof Planar Robot

We consider a planar ten-dof open chain consisting of ten unit-length links con-

nected by revolute joints. Four circular obstacles of radius 2 are placed symmet-

rically about the robot base as shown in Fig. 4.3-(a). In the initial configuration
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the arm is outstretched along the horizontal axis (indicated in blue); in the goal

configuration (indicated in red), the arm is outstretched along the vertical axis.

For our first set of experiments, we fix the stepsize to 0.5 and perform 100

trials of the standard fixed stepsize RRT algorithm in joint space; results are la-

belled “RRT joint space metric” in Table 4.1 and one result from a single trial

run is shown in Fig. 4.3-(b). The mean value of ‖δpmax‖ taken over each step

is 1.55 ± 0.95, while the maximum value of ‖δpmax‖ averaged over 100 trials is

4.37 ± 0.75. For the fixed stepsize value 0.5, in the latter case the mean maxi-

mum displacement exceeds the diameter of the obstacle, and as can be seen from

the results, the planner is unable to detect obstacles, producing infeasible paths

that result in collisions. Reducing the stepsize further to 0.3, the standard fixed

stepsize RRT algorithm still cannot detect the workspace obstacles and fails to

produce feasible collision-free paths, despite a significant increase in the number

of iterations and computation times as seen from Table 4.1.

We also pair the standard fixed stepsize joint space RRT algorithm with the

Cartesian space metric condition ‖δpmax‖ ≤ ∆ for the node connection test: for

each link vertex, we calculate its maximum Cartesian space displacement; the nodes

are connected if this value is less than the user-specified ∆ = 1.5. To find an ap-

propriate fixed stepsize for meaningful comparison, the mean value of ‖δpmax‖ is

measured by gradually decreasing the stepsize as shown in Fig 4.4. In this case the

stepsize is selected such that the mean value of ‖δpmax‖ is similar to the corre-

sponding value obtained for our adaptive stepsize RRT when ∆ = 1.5. Because our

user-specified parameter is ∆, which limits ‖δpmax‖, we compare the cases where

the mean values of ‖δpmax‖ are similar. The average stepsize of our RRT adap-

tive stepsize algorithm is also indicated by diamonds. Results of these trials are
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also summarized in Table 4.1 (labelled as “RRT Cartesian space metric”). Com-

pared to fixed stepsize RRT using a joint space metric for the connection test, the

RRT Cartesian space metric algorithm has significantly better convergence. Even

with the stepsize reduced to a fourth of its initial value 0.3, the number of itera-

tions is considerably reduced and the elapsed time is decreased by approximately

95%. The results imply that despite the additional computation imposed by the

calculation of Cartesian displacements for each link vertex, performance improves

considerably. It is worth emphasizing, however, that in both versions of the fixed

stepsize RRT algorithm, it is difficult to know in advance an appropriate step-

size; often the stepsize must be chosen in a cumbersome trial-and-error fashion.

As shown in the Fig. 4.5-(a), by trial-and-error we find that when the stepsize is

less than 0.1, the maximum value of ‖δpmax‖ becomes smaller than 1.5, resulting

in a feasible path. Note that for algorithms using Cartesian connectivity condi-

tions, the maximum value of ‖δpmax‖ converges to the ∆ value set a priori. This

is a natural outcome of not including the ExtendFurther function in Algorithm 4.

We now perform 100 trials of our adaptive stepsize RRT algorithm, setting

∆ = 1.5 and using (4.3.10) to automatically determine the stepsize. As shown in

Table 4.1, the mean value of ‖δpmax‖ for our adaptive stepsize RRT is 0.30±0.20.

When the stepsize for the RRT Cartesian space metric algorithm is fixed to 0.07,

the mean value of ‖δpmax‖ is similar to that of our adaptive stepsize RRT. Com-

paring these cases, our adaptive stepsize RRT has the smallest number of iter-

ations and also the shortest planning times. (The additional step (Algorithm 4)

needed in the adaptive stepsize RRT algorithm is counted as part of the num-

ber of iterations). The path length, which is calculated in joint space, is also the

shortest when adaptive stepsize RRT is applied.
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Our adaptive stepsize RRT algorithm is also applied and compared to RRT-

Connect. Similar to the previous experiments, we set ∆ = 1.5; the stepsizes for

RRT-Connect are then set to 0.07 and 0.075 (so that the mean values of ‖δpmax‖

are similar to those obtained for our adaptive stepsize RRT algorithm). Results are

also shown in Table 4.1. Compared to our original adaptive stepsize RRT method,

RRT-Connect has fewer iterations and also shorter planning times. Planning times

increase slightly when the Cartesian space metric condition is applied to RRT-

Connect, but the number of iterations is similar. Path lengths are also found to

decrease.

Finally, we combine our adaptive stepsize RRT method with RRT-Connect.

The RRT-Connect adaptive stepsize algorithm has the smallest number of itera-

tions, the shortest planning times, and the shortest path lengths. Again, it is worth

emphasizing that in standard fixed stepsize RRT algorithms, the stepsize needs to

be specified a priori by the user, typically in trial-and-error fashion, while in our

adaptive stepsize RRT algorithm, only the very intuitive obstacle minimum size

parameter ∆ needs to be specified.
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Table 4.1: RRT performance statistics for a ten-dof planar robot

stepsize ∆
‖δpmax‖

# iterations time(s) path length
mean max

RRT joint space metric 0.5 - 1.55± 0.95 4.37± 0.75 6090.9± 4654.0 0.74± 0.79 122.9± 32.1

RRT joint space metric 0.3 - 0.97± 0.63 3.32± 0.55 95767.4± 81743.6 52.51± 70.44 309.7± 79.3

RRT Cartesian space metric 0.07 1.5 0.30± 0.20 1.34± 0.14 4254.8± 1722.1 0.61± 0.39 274.5± 60.5

RRT Cartesian space metric 0.06 1.5 0.26± 0.18 1.35± 0.15 5199.7± 1840.8 0.82± 0.46 323.6± 65.5

RRT adaptive stepsize ‖ · ‖1,2 - 1.5 0.30± 0.20 1.18± 0.20 3337.1± 1282.0 0.46± 0.27 259.4± 60.5

RRT adaptive stepsize ‖ · ‖2,2 - 1.5 0.15± 0.10 0.67± 0.07 7552.9± 2621.5 2.72± 1.21 495.3± 110.4

RRT-Connect joint space metric 0.07 - 0.30± 0.19 0.94± 0.09 3655.9± 1127.7 0.27± 0.13 242.1± 53.3

RRT-Connect joint space metric 0.075 - 0.33± 0.21 1.01± 0.10 3310.9± 983.8 0.23± 0.11 227.0± 45.7

RRT-Connect Cartesian space metric 0.07 1.5 0.32± 0.21 1.38± 0.10 3689.4± 1141.7 0.29± 0.14 229.4± 48.4

RRT-Connect adaptive stepsize - 1.5 0.32± 0.23 1.37± 0.06 2870.5± 833.3 0.23± 0.10 206.7± 40.7

Table 4.2: RRT performance statistics for a ten-dof planar robot in latent space

reference algorithm stepsize ∆
‖δpmax‖

# iterations time(s)
mean min max

fixed stepsize
fixed stepsize 0.1 - 0.56± 0.41 0.08± 0.047 1.89± 0.59 4.18E + 02± 1.93E + 02 0.85± 0.39

fixed stepsize 0.05 - 0.28± 0.21 0.03± 0.019 0.98± 0.31 1.00E + 03± 4.48E + 02 2.05± 0.93

(‖δθ‖ = 0.3)
fixed stepsize 0.03 - 0.17± 0.12 0.02± 0.007 0.62± 0.19 1.94E + 03± 8.55E + 02 4.06± 1.83

adaptive stepsize - 1.5 0.18± 0.13 0.02± 0.006 0.68± 0.13 1.25E + 03± 4.08E + 02 5.71± 1.71

adaptive stepsize
fixed stepsize 0.1 - 0.33± 0.23 0.04± 0.019 1.28± 0.34 6.49E + 02± 2.30E + 02 1.31± 0.46

fixed stepsize 0.05 - 0.17± 0.12 0.02± 0.006 0.70± 0.20 1.44E + 03± 5.30E + 02 2.94± 1.08

(∆ = 1.5)
fixed stepsize 0.03 - 0.10± 0.07 0.01± 0.004 0.44± 0.11 2.62E + 03± 9.16E + 02 5.47± 1.95

adaptive stepsize - 1.5 0.19± 0.13 0.02± 0.007 0.70± 0.16 9.50E + 02± 3.30E + 02 5.23± 1.72
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4.4.2 Ten-Dof Planar Robot Case II: Latent Space RRT

We now consider planning in a lower-dimensional latent space. For the construc-

tion of the latent space, we use the method of dimension reduction based on the

Gaussian process dynamic model as described in [1] and Section 2.2.3, which we

now briefly review. Letting x ∈ Rd be the latent space variable, the correspond-

ing joint variable θ(x) ∈ Rm is assumed to have a Gaussian density with mean

function m(x) and covariance function k(x, x′):

θ(x) ∼ GP(m(x), k(x, x′)).

In addition, we assume the stochastic Markov dynamics process in the latent space:

xt ∼ GP(mX(xt−1), kX(xt−1, xτ−1)).

GPDM is to find latent variables X = [x1, · · · , xN ]T ∈ RN×d for a given repre-

sentative path in joint space Θ = [θ1, · · · , θN ]T ∈ RN×m. Once the GPDM latent

variables X = [x1, · · · , xN ]T are learned from a sample data matrix of represen-

tative path Θ = [θ1, · · · , θN ]T , a mapping from new latent space coordinate x∗ to

joint configuration space coordinate g(x∗) is of the form

g(x∗) = ΘTK−1k(x∗) (4.4.15)

which is the same as Eq. (2.2.37) where K ∈ RN×N is a kernel matrix whose

elements are (K)ij = k(xi, xj), k(x) = [k(x1, x), · · · , k(xN , x)]T ∈ RN is a vec-

tor of covariances between X and x, and N is the number of nodes of the path.

The kernel function k(x, x′) is specified by the user; a common choice also used in

[1] is the radial basis kernel k(x, x′) = α1 exp (−α2
2 ‖x− x

′‖2) and we use it. The

derivative of g(x) is then
∂g

∂x
= ΘTK−1∂k(x)

∂x
, (4.4.16)
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Figure 4.4: Stepsize versus mean ‖δpmax‖. Average stepsizes for RRT with adaptive

stepsize and RRT-Connect with adaptive stepsize are marked with diamonds and

stars, respectively. (a) 10-dof planar robot. (b) An enlarged view of the region of

overlap for the 10-dof planar robot. (c) 7-dof industrial arm. (d) An enlarged view

of the region of overlap for the 7-dof industrial arm.
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Figure 4.5: Stepsize versus maximum ‖δpmax‖. Average stepsizes for RRT with

adaptive stepsize and RRT-Connect with adaptive stepsize are marked with dia-

monds and stars, respectively. (a) Maximum ‖δpmax‖ for 10-dof planar robot. (b)

An enlarged view of the region of overlap for the 10-dof planar robot. (c) Elapsed

time for 10-dof planar robot. (d) An enlarged view of the region of overlap for the

7-dof industrial arm.
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Figure 4.6: Stepsize versus time. Average stepsizes for RRT with adaptive stepsize

and RRT-Connect with adaptive stepsize are marked with diamonds and stars,

respectively. (a) Elapsed time for 10-dof planar robot. (b) An enlarged view of the

region of overlap for the 10-dof planar robot. (c) Elapsed time for 7-dof industrial

arm. (d) An enlarged view of the region of overlap for the 7-dof industrial arm.
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Figure 4.7: Stepsize versus number of iterations. Average stepsizes for RRT with

adaptive stepsize and RRT-Connect with adaptive stepsize are marked with dia-

monds and stars, respectively. (a) Number of iterations for 10-dof planar robot. (b)

An enlarged view of the region of overlap for the 10-dof planar robot. (c) Number

of iterations for 7-dof industrial arm. (d) An enlarged view of the region of overlap

for the 7-dof industrial arm.
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Figure 4.8: Stepsize versus path length. Average stepsizes for RRT with adaptive

stepsize and RRT-Connect with adaptive stepsize are marked with diamonds and

stars, respectively. (a) Path length for 10-dof planar robot. (b) An enlarged view

of the region of overlap for the 10-dof planar robot. (c) Path length for 7-dof in-

dustrial arm. (d) An enlarged view of the region of overlap for the 7-dof industrial

arm.



76 An Adaptive Stepsize RRT Planning Algorithm for Open Chain Robots

where ∂k(x)
∂x ∈ RN×d, and the i-th row of ∂k(x)

∂x is ∂k(x,xi)
∂x . Then Corollary 4.3 be-

comes

‖δpmax‖Y ≤ max
i,j
‖Aij‖XY

∥∥∥∥ΘTK−1∂k(x)

∂x

∥∥∥∥
ZX

‖δx‖Z . (4.4.17)

Corollary 4.3 is now applied for the mapping from the latent space to the joint

configuration space as defined above. Ten paths (Θ1, · · · ,Θ10) generated by the

adaptive stepsize RRT algorithm in the previous section (∆ = 1.5) are randomly

chosen, and the corresponding three-dimensional latent spaces are constructed. For

comparison, ten paths generated by the basic fixed stepsize RRT algorithm in

the previous section (stepsize = 0.3) are randomly chosen, and the corresponding

three-dimensional latent spaces are constructed. For each latent space, we perform

adaptive stepsize RRT planning ten times with ∆ set to 1.5 and the stepsize auto-

matically determined from Equation (4.3.12). Since the latent space dimension is

three, we replace Algorithm 3 and Algorithm 4 by the usual connection test used

in standard fixed stepsize RRT planning (but now used in the latent space). In

addition, we perform basic fixed stepsize RRT ten times with decreasing stepsize

‖δθ‖ from 0.1 to 0.03. Results of our numerical experiments are summarized in

Table 4.2.

As shown in Table 4.2, when basic RRT is applied to GPDM latent space for

basic RRT path, we can see that the maximum of ‖δpmax‖ exceeds ∆, generating

an infeasible path depending on the stepsize. On the other hand, if adaptive step-

size RRT is applied, a feasible path is generated without a trial-and-error process.

In the GPDM latent space for adaptive stepsize RRT path, if stepsize is 0.1, it may

be an infeasible path, but it generates path more stable than basic RRT’s GPDM

latent space. Therefore, it can be seen that planning with basic RRT in latent

space is affected not only by stepsize but also by learning objects. On the other
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(a) (b)

Figure 4.9: Experiments with a seven-axis industrial robot arm: (a) Initial config-

uration; (b) Goal configuration.

hand, when adaptive stepsize RRT is used, it can be seen that a constant level

of the path is generated irrespective of the quality of the reference path. (Com-

pare the ‖δpmax‖ values of the two cases.) On the other hand, the Cartesian space

metric condition is not applied to this experiment, so the adaptive stepsize RRT

algorithm is slower. Nevertheless, we want to emphasize the advantage of not hav-

ing to determine the stepsize as a trial-and-error fashion to get the feasible path.

4.4.3 Seven-DoF Industrial Robot Arm

We now evaluate the performance of our adaptive stepsize algorithm for a seven-

axis industrial robot manipulator of the type shown in Fig. 4.9. For easier cal-

culation of the positions of the link vertices, each link is modeled as a three-

dimensional rectangular box. The objective is to find a collision-free path from the

initial (left figure) to the final configuration (right figure). The robot’s maximum

length is set to 1 m, and for this problem we set ∆ = 7cm for the variable stepsize

algorithm. For the standard RRT algorithm, we set the fixed stepsize initially to
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0.1 and successively reduce its value to 0.02 (memory overflow occurs due to the

high number of nodes generated, thereby preventing any further reduction of the

stepsize). The results of our numerical experiments are summarized in Table 4.3.

For the standard fixed stepsize RRT algorithm, we first compare the use of the

joint space metric versus the Cartesian space metric for the stepsize value 0.1. Us-

ing the Cartesian space metric leads to a nearly two-fold improvement in efficiency.

However, note that for this case the maximum value of ‖δpmax‖ (8.14 ± 0.51) is

greater than ∆ (7.0). What this implies is that collisions with small objects may

potentially occur that could go undetected. This example highlights one of the

pitfalls of using the Cartesian space metric without using the accompanying in-

equality bound: the range of ‖δpmax‖ cannot be accurately estimated since the

bound is not known. Furthermore, when the stepsize is 0.3 and 0.5, it fails to sat-

isfy the Cartesian condition and oscillates near the goal, failing to connect the two

trees. After repeated numerical trials, we determine that a stepsize value of 0.0375

leads to a mean value ‖δpmax‖ of 1.63± 0.65, which is approximately equal to the

mean ‖δpmax‖ when ∆ of adaptive stepsize RRT is 7. The mean values of ‖δpmax‖

for the changes in stepsize are shown in Fig. 4.4. As shown in Fig. 4.5-(c), when

the stepsize becomes smaller than 0.085, the maximum value of ‖δpmax‖ becomes

smaller than ∆ = 7 cm, and the resulting path becomes feasible.

The computational performance of our adaptive stepsize RRT algorithm is ap-

proximately of the same order as the fixed stepsize RRT algorithm with step-

size values in the range 0.035-0.04. Compared to when the fixed stepsize is set

to 0.0375, the number of iterations for the adaptive stepsize RRT algorithm is re-

duced by about 7%, while the planning time is reduced by about 5%. Note, how-

ever, that the maximum displacement for the adaptive stepsize case (4.20±0.32) is

smaller than the the corresponding maximum displacements for the fixed stepsize
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case (6.28± 0.66).

A performance comparison of RRT-Connect versus our adaptive stepsize al-

gorithm is shown in Table 4.3. With ∆ = 7, all of the performance indices, i.e.,

the number of iterations, planning time, and path length, between the adaptive

stepsize RRT-Connect algorithm and RRT-Connect are very similar. The results

suggest that the advantages of the adaptive stepsize RRT algorithm appear to am-

plify with increasing degrees of freedom.

In the connectivity test, two adjacent points θ1, θ2 ∈ Rd in joint configuration

space must be within a d−dimensional sphere of radius ∆
maxi,j ‖Ai,j‖ . When apply-

ing the Cartesian connectivity condition, two adjacent points p1(θ1), p2(θ2) ∈ R3

must lie in the three-dimensional sphere of radius ∆. As a result, despite the in-

creased computational complexity, our analysis would suggest that planning times

are faster when using the Cartesian condition for d >> 3.

Finally, we compare RRT-connect with classic RRT adaptive stepsize. The clas-

sic RRT adaptive stepsize algorithm continues to extend toward the target node

when our Cartesian connectivity test condition is satisfied. (In our algorithm, we

execute the ExtendFurther() function when the Connect function is satisfied.) RRT-

Connect, on the other hand, believes that the nearest node can be connected to

the target node from the beginning, so it continues to extend to the target node

as long as there is no collision between them. The target node acts like a sink

in a potential field, drawing in the nearest node. RRT-connect is equivalent to

this sink affecting the entire configuration space, whereas classic RRT with adap-

tive stepsize affects only nodes within a certain radius that satisfies the following

equation:

max
i,j
‖Aij‖ · ‖θnew − θgoal‖ ≤ ∆. (4.4.18)
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As a result, it can be seen that RRT-connect, which affects the entire configuration

space, does find the path more quickly. Due to these factors, the Cartesian space

metric condition applied to the RRT-Connect may degrade performance.

On the other hand, when combining RRT-connect with adaptive stepsize, the

resulting algorithm determines in a flexible way whether the stepsize should in-

crease or decrease at the current configuration. As a result, it can be seen that

RRT-connect and RRT-Connect adaptive stepsize do not differ greatly in terms

of speed. However, if we combine RRT-Connect with the adaptive stepsize algo-

rithm, the above connection check Eq. (4.4.18) seems unnecessary as described

above in relation to the potential field interpretation (Connect() and ExtendFur-

ther() functions), since the algorithm will extend the tree to the target node until

‖θnew − θgoal‖ ≤ ε is satisfied. The results presented in these tables are a result of

including both functions. If these two functions are omitted, it is likely that the

performance of RRT-connect with adaptive stepsize can be further improved.
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Table 4.3: RRT Statistics for Seven-Axis Robot Arm

stepsize ∆
‖δpmax‖ (cm)

# iterations time(s) path length
mean max

RRT joint space metric 0.1 - 4.36± 1.56 7.82± 0.52 9500.7± 8077.6 0.72± 1.08 254.7± 88.0

RRT Cartesian space metric 0.1 7 4.35± 1.61 8.14± 0.51 5540.4± 2408.8 0.33± 0.21 273.9± 93.6

RRT Cartesian space metric 0.0375 7 1.63± 0.65 6.28± 0.66 20978.5± 6839.3 1.84± 0.86 816.1± 255.2

RRT adaptive stepsize - 7 1.63± 0.69 4.20± 0.32 19450.5± 6277.1 1.74± 0.82 814.0± 258.6

RRT-Connect joint space metric 0.04 - 1.85± 0.86 3.94± 0.18 10169.7± 3047.0 0.86± 0.33 706.4± 149.4

RRT-Connect Cartesian space metric 0.04 7 1.86± 0.84 4.54± 0.33 10120.6± 3038.7 0.85± 0.33 703.3± 148.7

RRT-Connect adaptive stepsize - 7 1.84± 0.96 4.42± 0.21 10283.0± 3076.1 0.91± 0.35 707.1± 146.4
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4.5 Conclusion

Using a standard operator norm inequality and exploiting the structure of an open

chain’s forward kinematics equations as captured by the product of exponentials

formula [17], we have presented an adaptive stepsize RRT planning algorithm for

open kinematic chains. The key result is an approximate bound on the Carte-

sian displacement of the open chain tip for a given joint space displacement. This

bound, which can be computed in real-time and is useful in other motion planning

contexts described below, is used to compute, for a given robot configuration, ap-

proximate bounds on the maximal deviations of the points on each of the robot’s

links (each link is modeled as a convex polytope). Not having to manually set the

stepsize parameter through a time-consuming trial-and-error process is one of the

important advantages of our algorithm.

One by-product of our approach is a Cartesian space metric that can be used

to determine whether or not to connect two nodes in standard fixed-stepsize RRT

planning algorithms. Despite the increased computation, in many cases the overall

performance of the algorithm is enhanced compared to the standard joint space

metric threshold test that is more commonly used. The main drawback of having

to manually determine an appropriate stepsize still remains, however.

Our adaptive stepsize algorithm has been validated through extensive numeri-

cal experiments with a ten-dof planar open chain and a seven-axis industrial arm

manipulator. The computation times are generally faster than fixed-stepsize RRT

algorithms, and the advantages tend to become more pronounced for robots with

higher degrees of freedom. The fact that the stepsizes can be automatically deter-

mined simply by the user specifying the size ∆ of the smallest workspace obstacles
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is the most obvious advantage of our adaptive stepsize algorithm. Our experimen-

tal studies further indicate that in many cases the actual maximum displacements

are less than the specified ∆, confirming the conservative nature of the displace-

ment bound used.

Recently, for robots with many degrees of freedom, machine learning-based di-

mension reduction methods, in which a lower-dimensional representation of the

configuration space (the latent space) is constructed from a collection of represen-

tative motions, have become a popular means of reducing the complexity of the

planning problem. Provided the mapping from the latent space to the configura-

tion space is well-characterized and smooth, our method can also be extended to

this situation as well.

The bounds used in our algorithm can also be used in other motion planning

contexts. Regions in the latent space corresponding to collisions may need to be

mapped out, usually by sampling methods; our bound can be used to determine

an appropriate sampling resolution from knowledge of the sizes of the obstacles

relative to the robot. Although our results have only been established for open

chains, robots with more complex structures like closed loops and non-convex link

shapes can likely be modeled with appropriate extensions.
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5
AGaussian ProcessDynamical

Model-BasedPlanningMethod

5.1 Introduction

As robot technology becomes more and more closely related to real life, robots

are required to behave like human beings. Planning such motion is a very difficult

problem since such movements are very difficult to express mathematically and

robots have many joints. To solve these problems, learning from demonstration

(LfD) has been attracting attention to robotics because learning from demonstra-

tion allows users to define tasks simply. Unlike traditional programming, the end

user does not have to design all the controllers to handle all situations. LfD simply

allows the end user to program the robot by showing how the human beings per-

form the given task. Nonetheless, LfD still suffers from the curse of dimensionality

arising from many joints of the robot. To solve this problem, many dimensionality

reduction methods have been studied. In particular, in the case of human motion,

85
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because each joint move in harmony, one can find a suitable low-dimensional latent

space. Then, a given motion and its variation can be expressed very efficiently. In

addition, if constraints such as obstacles or joint limits can be well mapped into

low dimensional space, conventional sampling-based path planning algorithms can

be applied to low-dimensional space.

The existing learning from demonstration methods have devised methods based

on the Hidden Markov Model (HMM). However, due to the complexity of the

model, HMMs typically require large amounts of data. HMM-based methods have

been applied to simple tasks such as walking, sitting and standing [18], pouring

water into a cup [19], hand gestures [20], punching and kicking [21], and lifting

objects [22]. In the above studies, joint angle trajectories, end effector’s three-

dimensional Cartesian coordinate system trajectories (i.e., trajectories of the palm)

or paths of markers attached to the human body in continuous time domain have

been used as learning data. However, the main problem with HMM-based methods

is the existence of unnatural discontinuities in describing the data and insufficient

the number of data compared to the complexity of the model.

A more recent approach uses Gaussian Mixture Regression (GMR) and Gaus-

sian Mixture Models (GMM) [43, 44]. These algorithms provide a more flexible

model for generalizing various tasks. However, these algorithms undergo an op-

timization process called Expectation Maximization (EM). In this EM process,

many parameters fall into the local maxima frequently, which makes the optimiza-

tion process difficult.

In similar motivations, the Gaussian Process Latent Variable Model (GPLVM)

has been studied to deal with high-dimensional human motion [45]. Previous stud-

ies using GPLVM have shown that even with a small demonstration, the shared

latent space between human postures and their corresponding robot postures[46],
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or between human postures and their corresponding animation character postures

[29] can be found. The Gaussian Process Dynamical Model (GPDM) [1] has been

extended from GPLVM by combining a model that can reflect dynamic character-

istics in latent space. GPDM has been applied to visual tracking [36], generating

various style gait patterns [47], and optimization using latent space [48].

In this study, we use GPDM to efficiently represent common features of human

motion and robot motion. By using GPDM, it was possible to reduce the number

of dimensions in a nonlinear way, and it was possible to express efficiently in a low

dimensional space with only a small demonstration. In this chapter, we propose

a motion planning method that can produce a collision-free path in latent space

for reproducibility. This can be achieved by separating the latent space where the

collision occurs and the space that does not occur in physical space. We first sam-

pled the latent space at uniform intervals and then labeled these samples as for

whether a collision occurs in physical space. Then typical SVM is trained with

these labeled samples. Since the mapping between the latent space and the physi-

cal space is non-linear, uniform samples in the latent space have uneven distances

in the physical space. Therefore, the sampling distance should be selected in con-

sideration of this non-uniformity. We theoretically derive the maximum distance in

the physical space of neighboring points in latent space. The relationship between

the distance of neighboring points in latent space and the distance of these points

in physical space is derived from the forward kinematics expressed in the form of

the product of exponentials (POE). After bringing the obstacles into the latent

space, a collision-free planner was introduced to generate a collision-free path in

the latent space. Using the rapidly-exploiting random tree (RRT) to generate a

collision-free path would be the most reasonable choice. However, using the basic

RRT in the latent space does not reflect the information about the demonstration
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movement. To use information about the demonstration, we use a kernel function

derived from GPDM learning to define a potential function, which has the low-

est cost along the path of demonstrated motion in latent space. We used a vector

field RRT (VF-RRT) that finds a path with a low potential in the potential field,

thereby avoiding obstacles while generating motion similar to the learned motion.

The remainder of this chapter is organized as follows. Section 5.2 introduces

our learning from demonstration framework, which deals with bringing new poses

in joint space into latent space and generating collision-free paths in latent space.

Section 5.3 describes the simulation results and the results applied to the robot

platform Mahru. The conclusion remark and future directions are described in Sec-

tion 5.4.

5.2 Learning from Demonstration Framework

In this section, we are going to introduce a learning from demonstration framework

using GPDM latent space. The framework ranges from learning demonstrations

using GPDM to generating collision-free paths and is shown in Fig. 5.1.

There are two ways to use GPDM latent space for learning from demonstra-

tion. The first is when a human demonstration motion and its corresponding robot

motion are both given. The second is when the robot’s motion is given in the

same way as kinesthetic teaching. The difference between the former and the lat-

ter is that the shared latent space can be composed of human demonstration and

robot motion. Then, using this shared latent space, a new human motion can be

transferred to the robot’s motion. However, since the collision-free motion is not

guaranteed for this transferred motion, the user must generate a new motion that

is suitable for the new environment and that is suitable for the new purpose, to
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avoid obstacles. Therefore, it is recommended that finding the coordinates in the

latent space for the starting point and the goal point corresponding to robot’s

configuration space and applying our motion planning method.

In order to regenerate a new motion path, two processes must be preceded.

First, we have to find a new configuration in the latent space and bring the con-

straints into the latent space. The former can be achieved by using Gaussian pro-

cess regression (GPR) and the latter by using a support vector machine (SVM).

In order to use SVM, it is necessary to uniformly sample in latent space and ver-

ify that the samples meet constraints in workspace or configuration space. Due to

nonlinear mapping from latent space to workspace or joint space, even though the

samples are uniformly sampled in the latent space, its coordinates become very

uneven in the corresponding workspace or joint space. Therefore, it is necessary

to predict the maximum deviation distance in the target space. Fortunately, the

mapping from latent space to joint space in GPDM is in closed form. Using this,

we propose a proposition about the sampling distance in the latent space and the

corresponding maximum deviation distance in the workspace.

Finally, in this section, we proposed a motion planning method to reach the

target point while avoiding obstacles in the latent space. Since the motion plan-

ning is performed in the low-dimensional latent space, the advantages are that it

is more efficient than the motion planning in the original high dimensional joint

space and that a motion similar to the learned motion can be generated. However,

when bringing obstacles from the workspace into the latent space, the RRT-based

motion planning method is suitable because the shape of obstacles in latent space

is generally very complicated.

The remainder of this section consists of a description of each block in the

Figure 5.1. The contents of each block are; how to get a new posture from the
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Figure 5.1: Block diagram of learning from demonstration framework using GPDM

workspace into the GPDM latent space, how to bring obstacles from the workspace

into the latent space, and VF-RRT, a collision-free planner that generates more

natural motion in latent space than other RRT-based motion planning methods.

5.2.1 Learning a New Pose in the Latent Space

Generally, to generate a new motion, the posture of the starting point and the goal

point are given in the workspace. Latent space coordinates for these two postures

given in the workspace must be found through the joint space coordinates of the

robot. This section explains how to find latent space coordinates corresponding to

given configuration in joint space.

Let P ∗ be a new posture given in workspace. Let Z∗ be the new configuration

in the robot joint space obtained by solving inverse kinematics for P ∗. The method

of finding the latent space coordinate for the GPDM can be expressed as follows.

X∗ = arg max
x

p(Z∗|x,ΓZ), (5.2.1)

where Z∗ is a new robot pose, X∗ is a corresponding latent space coordinate, and
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ΓZ = {X,Z, β̄} is the learned GPDM model. The new coordinate X∗ in the la-

tent space can be obtained by minimizing the negative logarithm of the Equa-

tion (5.2.1). However, solving the Equation (5.2.1) is very computationally expen-

sive and difficult due to the many local minimums. Using GPR to find the new

pose in latent space for new robot pose is a great help in calculation speed[46].

The Gaussian process for given observations Z and its corresponding latent vari-

ables X can be expressed as

X ∼ G.P (0,K(Z,Z)), (5.2.2)

where K is a kernel matrix and a kernel function is defined as

k(z, z′) = θ1 exp

(
−θ2

2
||z − z′||2

)
+ θ−1

3 δz,z′ , (5.2.3)

where θ̄ = {θ1, θ2, θ3} is the hyper parameter. Then the new latent space coordi-

nate X∗ for the new observation Z∗ is given by

X∗ = K(Z∗, Z)K−1(Z,Z)X. (5.2.4)

5.2.2 Constraints in Latent Space

In joint space, considering constraints (e.g., obstacles) defined in a workspace is

very difficult due to the non-linearity of the mapping between these two spaces.

Therefore, it is very rare that these constraints are defined as closed-form in joint

space. Similarly, it is difficult to consider the constraints defined in joint space in

latent space. It is also difficult to bring obstacles in the workspace into the latent

space naturally.

However, it is very simple to determine whether any coordinates in the latent

space satisfy constraints in joint space or work space. Since the mapping from the
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GPDM latent space to the joint space exists in a closed-form, constraint condi-

tions in the joint space can be confirmed by putting latent space coordinates into

this closed-form mapping function. Constraints in the workspace can be checked

whether the constraints are satisfied by solving inverse kinematics.

Although it is simple to check constraints on arbitrary coordinates in the latent

space, there is still a difficulty in optimizing the motion trajectory in the latent

space or generating a new motion [49]. We introduce a support vector machine

(SVM) which is a machine learning algorithm for motion planning or optimization

in latent space while considering constraints defined in joint space or work space. If

SVM can be used to directly consider constraints in latent space (that is, without

mapping from latent space to workspace or joint space), then the burden of RRT-

based motion planning algorithm to check each constraint in physical space per

every node in latent space is reduced, so that it can plan a path more efficiently.

SVM is a machine learning method that is used mainly in classification and

regression analysis. Here, we apply SVM to our algorithm as a method of using

binary classification of whether or not constraints are satisfied. By learning SVM

for c constraints, inequality constraints Ci(X) ≤ 0, i = 1, · · · , c can be obtained

and we can define the admissible region satisfying the constraint as follows

Tc(x) = {x ∈ Rd | Ci(x) ≤ 0, for i = 1, · · · , c}. (5.2.5)

5.2.3 Mapping Obstacle into Latent Space

Finding the region of obstacles in a joint space is very difficult due to the high

dimensionality of joint space as well as the nonlinearity of the map between the

joint space and the workspace. If the dimensionality of the joint space is reduced to
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Figure 5.2: Cloud-like objects are the mapped constraints by SVM on the 3-

dimensional latent space.
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less than three, it is possible to bring obstacles into low-dimensional space. How-

ever, if the dimension is reduced by a nonlinear method such as GPDM uniform

samples in the latent space become highly uneven samples in the workspace and

joint space. To avoid missing important obstacles in the workspace due to this

non-uniformity it is very important to predict how much the uniform samples in

the latent space will deviate in the workspace. In this section using the previous

chapter’s Corollary 4.3

‖δpmax‖Y ≤ max
i,j
‖Aij‖XY

∥∥∥∥∂g∂x
∥∥∥∥
ZX

‖δx‖Z .

we predicted how much distance the two adjacent samples in the latent space can

have in the workspace and proposed a method to determine the appropriate sam-

pling distance.

We consider a planar ten-dof open chain consisting of ten unit-length links con-

nected by revolute joints. Four circular obstacles of radius 2 are placed symmetri-

cally about the robot base as shown in Figure 4.3-(a). In the initial configuration

the arm is outstretched along the horizontal axis (indicated in blue); in the goal

configuration (indicated in red), the arm is outstretched along the vertical axis.

Then ten two-dimensional GPDM latent spaces are learned from ten paths gener-

ated by adaptive stepsize RRT.

Since sampling distance ‖δx‖1 depends on the current latent space coordinate,

it is realistic to obtain the average sampling distance in the region of interest and

perform uniform sampling. To estimate the average sampling distance ‖δx‖1, we

uniformly divided the region of interest by Ni = 100 for each dimension, then
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Table 5.1: Example of Sampling Distance and Number of Sampling

c̄ Sampling Distance # of sampling

17.85± 6.22 0.0065± 0.0028 472656

calculated average sampling distance as following:

c(x) = max
i,j
‖Aij‖

∥∥∥∥∂g∂x
∥∥∥∥ (5.2.6)

c̄(x) =
1

V

∫
c(x)dV

' 1

V

∑
c(x)dV

=
dV

V

∑
c(x)

=
1∏
iNi

∑
c(x) (5.2.7)

||δx||1 =
∆

c̄(x)
. (5.2.8)

For a region of interest in latent space with ([−2.2642, 2.1871]× [−2.3666, 2.0943])

and ∆ = 0.1, average sampling distance is 0.0065 and required number of sam-

pling is 472656 (see Table 5.1). Actually, dividing the region of interest with such

large required number of sampling is computationally inefficient. In case of colli-

sion geometry is more complex than this example or dimensionality of latent space

is bigger, checking whether all the samples are in collision or not is intractable.

To make it computationally tractable and to estimate whether the coordinates of

the unsampled area collides in the workspace, we introduce SVM and rely on its

regression.

For above
∏
iNi samples, labels, i.e. collision space or collision-free space, are
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assigned and then SVM is trained with RBF kernel

k(x, x′) = exp

(
− 1

σ2
(x− x′)T (x− x′)

)
. (5.2.9)

Depending on the value of σ, decision boundaries are affected[50]. If σ is large,

classifier becomes robust to overfitting but does not capture the complexity of

data. If σ is small, classifier is prone to overfitting but does capture the complex-

ity of data. In order to classify the obstacles correctly, SVM should capture the

complexity of data, i.e., obstacle shape in latent space. So, σ should be small for

our problem. After SVM learning, we obtain decision boundary

B(x) =
∑
i

αik(si, x) + b (5.2.10)
<= 0, for obstacles,

> 0, for collision-free space.

(5.2.11)

where αi are coefficients from Lagrange multiplier of optimization procedure of

SVM learning, si are support vectors, and b is a bias.

Let Dtrain be a set of samples which are sampled uniformly with Ni = 100

along each dimension, and let Dtest be a set of samples which are sampled at

uniform interval (5.2.8) along each dimension. For the set of kernel width σ =

[1, 0.5, 0.1] and ∆ = 0.1, we measure that: error rate elearn of SVM learning, which

is rate of samples having different label by decision boundary function B(x) among

Dtrain samples; generalization error rate ecv obtained from 10-fold cross valida-

tion; and misclassification rate etest that is rate of misclassified samples by de-

cision boundary function B(x) from Dtest. For those misclassified samples of set

Dtest, we measure the distance distlatent from the decision boundary B(x) = 0 in

latent space, and also measure the distance distfeature in feature space. For ten la-

tent spaces of GPDM, we measure the statistics and their results are summarized
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in Table 5.2.
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Figure 5.3: Obstacle region (black) and misclassified samples (blue and red). (a) σ = 1 (b) σ = 0.5 (c)

σ = 0.1
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Figure 5.3 shows obstacle region (black objects) according to the RBF kernel

width σ. As mentioned before, small (narrow) obstacle region, which is treated

as a just outlier (which is misclassified by decision boundary function) since it

is small and apart from big obstacle region, become meaningful obstacle region

decided by decision boundary Eq. (5.2.10) as the value of σ decreases. In general

small σ makes SVM overfitted to given data. This is not recommended for data

classification because overfitted classifier does not work well to new data. In this

problem, however, mapping from latent space to workspace is not considered as

noise corrupted function. Thus, overfitting improves performance to capture the

shape of obstacles in latent space. Red and blue points are misclassified samples.

Reds are misclassified as obstacle and blues are the opposite cases. As σ decreases,

misclassified region decreases towards decision boundary. Statistics in Table 5.2

also supports these result. (As σ decreases, distlatent decreases.) As value of σ

decreases, not only classifier has small cross validation error ecv with training data

Dtrain, but also error etest of test data Dtest is reduced.

Distance from decision boundary in data space, i.e. in latent space, cannot be

obtained directly while distance in feature space is easy. Distance distlatent from

decision boundary can be obtained by following optimization, for a given misclas-

sified sample x′

L = min
x

1

2
||x− x′||2 s.t. B2(x) = 0. (5.2.12)

As shown in Table 5.2, if σ = 0.1, average distance distlatent between decision

boundary and misclassified samples from Dtest is less than average sampling dis-

tance ||δx||1 computed from Dtrain. It means that most of the misclassified samples

are within the average sampling interval. Thus, most of them are not sampled with

average sampling distance (5.2.8). That is, if the value of σ is small enough, the



100 A Gaussian Process Dynamical Model-Based Planning Method

obstacle can be mapped to the latent space to a desired level with a small amount

of data. The SVM learning time is also reduced by a small amount of data.
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Table 5.2: SVM Statistics

elearn (%) ecv (%) etest (%) distlatent distfeature ||δx||1

σ = 1 6.04± 2.76 6.30± 2.78 6.10± 2.80 0.21± 0.075 0.010± 0.0020

0.0066± 0.0023σ = 0.5 1.74± 1.19 2.17± 1.20 1.85± 1.20 0.095± 0.096 0.0067± 0.0031

σ = 0.1 0.038± 0.019 1.19± 0.27 0.63± 0.092 0.0053± 0.0013 0.0053± 0.0011
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5.2.4 Motion Planning in Latent Space

As mentioned earlier obstacles in the observation space are mapped into a highly

complex shape in the latent space. We used VF-RRT (Vector Field Rapidly-Exploiting

Random Tree) [51] [52] to plan a new path in this environment. Although generic

RRT methods ensure that they generate motion paths that avoid obstacles in any

complex obstacle environment, they are not suited for learning from demonstration

that takes account of accumulated work knowledge because of the inherent ran-

domness of the algorithm. However, if one generates an appropriate vector field

that reflects the accumulated knowledge of the work, one can apply VF-RRT to

learning from demonstration. This is because the VF-RRT has the property of

extending the search tree in such a way as to generate random nodes along the

direction of a given vector field.

5.2.4.1 Vector Field RRT

In previous literature [51, 52], the authors defined an upstream criterion to quan-

titatively measure the difference between a path moving along the direction of

a vector field and a path moving against a given vector field. This quantitative

measure is given as a functional form of path integrals and can be obtained as

a direct consequence of the Cauchy-Schwarz inequality. For given unit-speed path

q : [0, L] → Qfree and piecewise continuous vector field f : Q → T Q, upstream

criterion U(q) is defined as follows:

U(q) =

∫ L

0
{||f(q(s))|| −

〈
f(q(s)), q′(s)

〉
}ds, (5.2.13)

where Q ⊆ Rn is n−dimensional configuration space manifold in n−dimensional

Euclidean space, Qfree is a free space, T Q is a tangent space of Q, and || · ||

is the norm induced from the inner product < ·, · >. The greatest property of
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the minimum upstream path is that it can be regarded as the minimum control

effort path. The new node in the RRT tree can be determined by a combination of

random sampled directions and vector field effects. A weighting factor of the vector

field is sampled from a probability density function, which is closely related to the

upstream criterion. In this probability density function, the lower the upstream

cost, the higher the probability. For the conservative vector field, the following

potential function V (q) exists

f(q) = −∇V (q). (5.2.14)

It is also applicable to VF-RRT when the potential function is continuous or the

piecewise C1 function. For further properties and mathematical details, we refer to

the reader [51], [52].

5.2.4.2 Potential Function for VF-RRT

We have tried to use the similarity measure in latent space between learned motion

and newly generated motion as a potential function for VF-RRT. If a potential

function is defined to have such characteristics, the VF-RRT can generate a motion

similar to the learned motion. Because it is difficult to reflect physical properties

in the GPDM latent space, a similarity measure is defined as follows using the

kernel function of GPDM latent space.

V (x) = −
(
1TN−1K

−1
X kX(x)

)2
, (5.2.15)

where 1N−1 is N − 1 dimensional vector consisting of all elements of 1, X =

[x1, · · · , xN ]T ∈ RN×d, KX(x) ∈ RN−1×N−1 is a kernel matrix whose elements

(KX)ij are kX(xi, xj), i, j = 1, · · · , N−1, and kX(x) = [kX(x1, x), · · · , kX(xN−1, x)]T .
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The feature of this similarity measure is that the cost of the learned motion is

the lowest as seen in the Figure 5.4a, and the cost around it increases monotoni-

cally as it moves away from the learned motion. The vector field in the GPDM la-

tent space can be obtained by differentiating the above potential function Eq. (5.2.15):

∇V (x) = −2
(
1TN−1K

−1
X kX(x)

)(
1TN−1K

−1
X

∂kX(x)

∂x

)
. (5.2.16)

The proposed potential map and its vector field are shown in Figure 5.4. The

feature of our proposed vector field Eq. (5.2.16) is similar to the dynamics of

GPDM latent space. The dynamics in the GPDM latent space can be expressed

as the most probable next state Eq. (2.2.40) in the probability density function

Eq. (2.2.39).

µX(x) = XT
outK

−1
X kX(x)

where kX(x) = [kX(x1, x), kX(x2, x), · · · , kX(xN−1, x)]T ∈ RN−1, Id is d-dimensional

identity matrix and Xout = xt
N
2 for the first-order Markov process assumption. In

the Figure 5.4b, each vector indicates the direction of the most probable next la-

tent space coordinate from each starting point by the dynamics in the latent space

by GPDM learning. The dynamics in the GPDM latent space converges to the

learned motion direction. On the latent path, it has a direction from the starting

point to the goal point.

If the learned motion data has multiple paths, the potential function can be

defined as continuous and piecewise C1 function:

Vi(x) = −
(
1TNi−1K

−1
Xi
kXi(x)

)2
(5.2.17)

V (x) = min Vi(x), (5.2.18)

where X = [XT
1 , · · · , XT

m]T , m is number of learned motions, Xi ∈ RNi×d, KXi =
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Figure 5.4: Potential map and vector field for a learned motion in 2-dimensional

latent space. Yellow trajectory is a learned motion. (a) Proposed potential map

and vector field. (b) Dynamics in latent space.

KX(Xi
in, X

i
in), kXi(x) = kX(Xi

in, x), i = 1, · · · ,m, and Xi
in = [xi1, · · · , xiNi−1]T ∈

R(Ni−1)×d.

Figure 5.5 is a potential map of the four learned motions. It can be seen that

the cost of the learned motions, as in Figure 5.5, has the smallest value and in-

creases monotonically as it moves away from these motions. One of the character-

istics of VF-RRT is that it generates a new path in the potential field with a small

potential value. Since we have designed the learned motion to have the smallest

potential value in the latent space, the VF-RRT generates a new path similar to

the learned motion. Therefore, VF-RRT generates a path that is much more nat-

ural than other RRT-based algorithms. By comparing the cost of the path gen-

erated by the basic RRT and VF-RRT, we can see which algorithm is similar to



106 A Gaussian Process Dynamical Model-Based Planning Method

 

 

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Figure 5.5: Potential map and four learned motions in latent space.

the learned motion. The VF-RRT also has a user-defined parameter called refer-

ence exploration efficiency factor, Es =∈ (0, 1). The closer this value is to one, the

greater the tendency to generate a path to a lower cost. The comparison of exper-

imental results of RRT and VF-RRT for fixed stepsize is summarized in Table 5.3

and Figure 5.6. As shown in Figure 5.6, the existing RRT shows a straight line

connecting the starting point and the goal point in an obstacle-free environment.

On the other hand, in the case of VF-RRT, it can be seen that as Es increases, it

generates a path that is more similar to the learned path. This can also be seen

by comparing the cost values of Table 5.3. Furthermore, it can be seen that the

length of the generated path is shorter and the number of iterations is smaller

even though the path of the VF-RRT is not a straight path. On the other hand,

the efficiency of the VF-RRT is low in terms of calculation time.
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(a) Es = 0.15
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(b) Es = 0.25
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(c) Es = 0.45

Figure 5.6: Effects of Es. Red line is the resulting path of VF-RRT and white line

is the resulting path of basic RRT. As Es increases, generated path is more close

to the learned path.
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Table 5.3: Comparing VF-RRT with RRT

Base RRT
VF-RRT

Es = 0.15 Es = 0.25 Es = 0.45

Cost -0.9983 -0.7855 -0.8518 -0.8714 -0.8823

Std. of Cost 0.0177 0.1470 0.0964 0.0845 0.0784

No. Iteration - 152.0 132.1 134.9 143

Path Length - 182.7 175.1 176.8 178

Time (sec) - 0.0701 0.3951 0.4152 0.4176

5.3 Experiments

5.3.1 Grasping Experiments

In this experiment, we performed motion capture of human demonstration mo-

tion through Kinect and CyberGlove II and then learned the robot. For a human

demonstration motion Y and the corresponding robot motion Z, which is obtained

by solving inverse kinematics of Y , we learned GPDM so that Y and Z have the

same latent space. In this section, we have applied the learning by demonstration

framework introduced in the previous sections to learn GPDM latent space and

then applied to the grasping motion of an arm of a humanoid.

To teach robots from human demonstrations, motion was captured using Kinect

and CyberGlove II. The dimensions of the data obtained using these instruments

were 26, 7 for the arm, and 19 for the hand. Using Kinect’s human motion tracking

function, five joint angles can be obtained from the shoulder joints, one joint from
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Figure 5.7: The MAHRU model.

elbow’s flexion and extension, and one joint from wrist’s adduction and abduc-

tion. The wrist joint values (pronation/supination) for twisting the forearm were

not measurable by Kinect, so data were collected while the palm was fixed to the

side view. In other words, the data was collected by constraining the normal vec-

tor direction of the palm to be included in the transverse plane of the anatomical

plane of the human body. The remaining 19 joint data were collected from Cyber-

Glove II and consisted of fingers and wrist motion except for pronation/supination.

The robot platform used in this experiment is a humanoid robot Mahru that

was developed by KIST (Korea Institute of Science and Technology). A manipu-

lator of the Mahru consists of a 7-DOF arm and a 3-DOF ROBOTIS PHN-33B

hand with three fingers.

Now user demonstrates the action of grasping a cylindrical object on a table.

Then the corresponding robot motion can be obtained by applying constraints to

grasp the same object placed at the same position and solving inverse kinematics.

For this experiment, we demonstrated the motion of grasping the same object in

four different places. Then we solved the inverse kinematics and got the motions
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Table 5.4: The specification of the MAHRU

Dimension 600× 1500 mm

Weight 67 kg

DOF of whole body 35

DOF of manipulator 10(arm 7 + hand 3)

of the robot. The final postures of the learned movements are shown in Figure 5.8.

We have learned GPDM so that Y and Z share the same latent space for hu-

man demonstration motion Y and its corresponding robot motion Z. Details on

learning GPDM when given multiple motions are given in [2]. Back-constraints [53]

are given between robot motion and latent space. We trained GPDM that the in-

verse mapping from the robot joint space to the latent space is smooth, so that

the final posture of the robot, which can grasp the same object located at slightly

different places, can be well mapped to the latent space.

The experimental environment is shown in Figure 5.9. There is a table (big red

box) and a book is placed on it. The demonstration environment of the learned

movements assumes that the edges of the table and the book are aligned so that

the arm of the robot does not collide with the edge of the table or the book.

In this experiment, the book protrudes 60mm from the edge of the table and is

regarded as an obstacle. The target cylindrical object (φ50 × 165mm) is on the

book.

The new final posture of the robot to grasp the same object in a position

slightly different from the final position of the learned motion was found by solving

the inverse kinematics. To make easier the problem, we assumed that the gripping

posture and gripping position are the same as one of the postures of the learned
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Figure 5.8: Four final poses of learned sequences.

Figure 5.9: Simulation results of grasp motion.
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Figure 5.10: Experiment results of grasp motion.

Table 5.5: Sampling Distances and Numbers of Sampling

# of data 114 (1 motion) 473 (4 motions)

c
5.82 ± 2.08 28.61± 4.28

mean ± std.

sampling distance
4.3× 10−3 8.74× 10−4

1
c × 0.025

# of sampling 2.02× 106 4.88× 107

motion. Using grasp planner such as GraspIt!, one can find other grasping posi-

tions and grasping postures. After solving the inverse kinematics and finding the

new final position of the robot in joint space, GPR was used to find the coordi-

nates in the latent space. Also, table and object are mapped to latent space using

general SVM. The sampling distance to avoid an obstacle of about 1 inch was

calculated through the formula Eq. (5.2.8). The number of samples needed for the

latent space area ([−2.4, 4.3] × [−2.9, 2.6] latent space) of Figure 5.11 is summa-

rized in Table 5.5. The arm length of the robot Mahru was assumed to be 1m.

As mentioned above, the value of c increases as the number of data increases.

Finally, VF-RRT was used to generate a grasping motion avoiding collision

with obstacles and target objects. The path planning results of VF-RRT are shown

in Figure 5.11. The generated path was manually smoothed using B-spline in order
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Figure 5.11: Planned path using VF-RRT in latent space. Black regions are ob-

stacles and constraints. Yellow tree is the result of VF-RRT and magenta path is

the shortcut path. White path is the manually smoothed path with B-splines.
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to apply it to the actual robot, and it was not optimized for the kinematics and

dynamics of the robot. The reason for this is to show the efficiency of VF-RRT in

latent space using the potential field formula Eq. (5.2.15) defined using the GPDM

kernel function. The robot dynamics were considered to some extent without op-

timization. Experimental results using the simulator and the robot platform are

shown in Figure 5.9 and Figure 5.10, respectively.

5.4 Conclusion

In this chapter, we have examined whether the Gaussian process dynamical model

can be extended to one of the dimensional reduction methods of the learning from

demonstration. In the large frame, we proposed a learning from demonstration

framework using GPDM. A method of mapping the obstacles in the workspace

to the latent space using SVM is proposed. In addition, a criterion is provided for

the sampling distance to avoid missing objects of the specified size. The data for

SVM learning was obtained through uniform sampling in the latent space. The

corresponding label of the data was given after checking whether it collided with

an obstacle in the workspace. The uniform sampling distance was determined by

using the proposition derived from the forward kinematics of open chain robot. In

order to test the performance of our framework, we considered the manipulator to

perform grasping while avoiding obstacles. In order to plan the obstacle avoidance

path, a potential function reflecting knowledge of the learned motions in the la-

tent space was defined and a new collision-free path was generated by using it in

VF-RRT. In this study, we focused on the method of bringing the obstacles into

the latent space when there are obstacles in the workspace, and the motion plan-

ning method reflecting the learned knowledge in the latent space through GPDM
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learning.
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6
Conclusion

This thesis has addressed the problem of planning and recognizing motion inten-

tion for high-dimensional robot systems operating in various environments which

are obstacles that should be avoided or terrains that should be identified. In or-

der to address those problems, we exploit the forward kinematics expressed as the

product of exponentials and the Gaussian process dynamical models (GPDM) .

We conclude this thesis with the following summary.

• GPDM-Based Human Motion Intention Recognition for Lower-Limb

Exoskeleton

We have proposed a real-time method of recognizing lower-limb exoskele-

ton robot wearer’s motion intention depending on the terrain on which the

wearer is moving based on GPDM. The method is to compare logarithms of

conditional probability distribution of new observation and the correspond-

ing GPDM latent variables given training data of a certain motion type. Al-

though there are many kinds of sensors and their signals are corrupted by
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different levels of noise, GPDM captures dynamic characteristics of a motion

well. So our method recognizes a wearer’s motion intention well than other

machine learning-based classifiers such as LDA, SVM, and an HMM-based

algorithm. One of the advantages of our algorithm is that it produces pretty

good results without the EMG or EEG signals that are used in most previous

studies. Proposed method is validated through two kinds of data sets: joint

angle paths which are calculated from 3D motion tracking system attached

to human body parts and sensor signals including joint angles, AHRS, and

IMUs installed in a lower-limb exoskeleton robot.

• An Adaptive Stepsize RRT Planning Algorithm for Open Chain Robots:

We have proposed an adaptive stepsize RRT path planning algorithm for

open chain robots. Our algorithm guarantees that the maximal deviations of

the points on each of the robot’s links are bounded by a minimum obstacle

size which is the only input parameter. Using a standard operator norm in-

equality as well as the structure of an open chain’s forward kinematics equa-

tions as captured by the product of exponentials formula, we derive an ap-

proximate bound on the Cartesian displacement of the open chain tip for a

given joint space displacement. We extend this bound to take into account

the points of each link which is modeled as a convex polytope. The extension

of the bound determines an allowable stepsize at each iteration. Not having

to manually set the stepsize parameter through a time-consuming trial-and-

error process is an important feature of our algorithm.

• A Gaussian Process Dynamical Model-Based Planning Method

We have proposed a motion planning method that generates a collision-free

path and a motion similar to the learned motion in GPDM latent space.
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Dimensionality of a demonstrated motion is reduced by GPDM. Using the

bound on the Cartesian displacement proposed in our previous research, an

appropriate sampling resolution for mapping obstacles into the latent space

by SVM is determined. We show that an appropriate RBF kernel parameter

should be determined properly in order to map out well regions correspond-

ing to collisions. Then the appropriate RBF kernel parameter can reduce the

required number of samples and thus allow the SVM to be trained more ef-

ficiently. To measure the similarity between the learned motion and a newly

generated motion we define a potential function using GPDM kernel func-

tion. Using this potential function, VF-RRT generates a path that avoids

obstacles and is similar to the learned motion.

There are several ways in which the above studies can be developed more mean-

ingfully. First, if a study of the motion intention estimation of lower-limb exoskele-

ton wearer can predict not only the current motion intention but also how the

wearer will move in the near future, the exoskeleton robot can more effectively as-

sist the wearer’s motion. To estimate multiple steps ahead, a higher order Markov

model may be needed that uses more observation data than the current second or-

der Markov model. In this case, however, the complexity of the model will make it

difficult to learn GPDM. Additionally, if we can exploit the zero velocity update

(ZUPT), which is mainly used for indoor navigation [54, 55], together with the

kinematic information of the lower-limb exoskeleton robot, we can predict wearer’s

next movements more accurately.

Second is to extend the bound on the Cartesian displacement of the open chain

to closed loops. Compared to serial manipulators, parallel manipulators are widely

used because of their high rigidity, high precision, and high speed. Also, when
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human and robot collaborate, there is a high possibility that closed loop is formed

between human and robot. In this case, it would be a meaningful study to extend

the above bound to a closed loop for avoiding obstacles as well as safety reasons.

This requires consideration of passive joints, redundancy, and constraints caused

by loop-closures.
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국문초록

본 논문에서는 로봇이 해석적으로 정의되지 않은 환경에 대응하는 문제에 관해 다룬

다. 이 환경에는 로봇이 피해야 하는 장애물과 하지 외골격 로봇 착용자의 동작 의도와

밀접하게 연관된 지형지물이 있다. 관절 공간과 그 저차원 공간에서의 경로 계획법을

통해 장애물을 회피 하였고 기계학습 기법을 통해 지형지물에 기인한 사람의 동작

의도를 추정하였다.

먼저 Gaussian process dynamical models (GPDM) 기반으로 하지 외골격 로봇

착용자의 운동 의도를 추정하는 알고리즘을 제안하였다. 관측한 짧은 시계열 입력 값

에 대하여 이에 상응하는 저차원 공간 좌표를 Gaussian process regression 을 통해

얻는다. 각 모델에 대한 유사도는 학습 데이터에 대한 관측 값과 그 저차원 공간 좌표

의 로그 조건부 확률분포 형태로 표현된다. 이 유사도를 비교하여 가장 가능성 있는

동작을 추정한다. 하지 외골격 로봇 프로토타입 및 동작 추적 시스템을 이용한 물리적

실험을 통해 우리의 알고리즘을 검증하였다.

다음으로는 적응적으로 스텝사이즈를 결정하는 RRT 알고리즘을 제안하였다. 지

수 곱(Product of Exponentials, PoE) 형태로 표현된 로봇의 정기구학과 표준 작용소

노름 부등식으로부터 직렬 개 연쇄 로봇의 엔드이펙터의 작업공간에서의 최대 변위와

관절 공간에서의 변위에 대한 부등식으로 유도하였다. 이 부등식을 이용하여 주어진

장애물의 최소 크기에 대하여 적응적으로 스텝사이즈를 결정하였다. 10 자유도 평면

개 연쇄 로봇과 7축 산업용 매니퓰레이터를 이용하여 우리의 알고리즘을 검증하였다.

마지막으로 사람의 시연 동작을 GPDM을 이용해 저차원 공간으로 학습하여, 사

람과 유사한 동작을 생성하는 저차원 공간에서의 경로 계획 방법을 제안하였다. 앞서

유도한 부등식을 저차원 공간에서의 변위와 작업공간에서의 각 링크의 변위에 대한

부등식으로 확장하였다. 이를 이용하여 작업공간에서 정의된 장애물을 샘플링 기반

으로 저차원 공간으로 매핑하였다. 그리고 학습한 동작과 새롭게 생성한 동작 사이의

유사성을 측정하는 측도를 GPDM 커널함수를 기반으로 정의하였다. 시뮬레이터와
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실제 로봇에 적용해 봄으로써 제안한 방법의 유효성을 검증하였다.

주요어: 가우시안 프로세스 동적 모델, 경로 계획, 잠재 공간에서의 경로 계획, 동작

의도 인식, 기계학습, rapidly-exploring random tree, 적응적 스텝사이즈, 작용

소 노름.

학번: 2009-20694
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