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ABSTRACT 

 

A Study on New Approaches for 

Developing Process of 

Vibrational Characteristic Improvement 

by using Transmissibility: 

Boundary Identification and Relative Sensitivity Analysis 
 

Kyung-Hoon Joo 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

   

When analyzing the components assembled compactly in a system 

for setting the shaker or measuring an impact force exerted on the 

component correctly, the measurement errors caused by an incorrectly 

measured force could be increased. Transmissibility includes only 

response data, unlike FRFs that include force measurements. In this 

thesis, new approaches for developing process of vibrational 

characteristic improvement that consider boundary properteis and 
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sensitivity of responses are presented. Transmissibility concepts is 

adopted to identify the boundary properties and to suggest indices for 

relative sensitivity analysis.  

A new method for identifying boundary properties are proposed. 

Equation for estimating boundary properties is derived by investigating 

the difference in transmissibilities between a component under the 

coupled condition and under the free condition. Discrete multiple 

degrees of freedom system with single boundary and multiple boundary 

conditions are used to verify of the method. The method is also applied 

to a beam which is the simplest structural form of continuous system to 

investigate whether the method still usable in practical condition. Good 

agreement is achieved when estimated properties are compared with 

exact properties. Further, Error equation using measurement noise is 

developed to assess the robustness of the method for application under 

practical conditions. 

In addition, indices based on the transmissibility are suggested to 

analyze relative sensitivity of responses. Relative senstivity of responses 

with respect to variables should be analyzed to make small design 

modifications for improving the vibrational charactertistics of a system. 

Two types of indices with respect to variables are developed for 
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indicating an appropriate position where the design variable could be 

modified and indicating an effect of the specific design variable on the 

responses. Discrete multiple degrees of freedom system and two 

numerical beam models are used to investigate whether the proposed 

indices reflect the relative changes in response to small design 

modifications. It has been found that the proposed indices exactly 

represent the sensitivity characteristics of the system by showing that the 

indices agreed well with the indicators for all frequency ranges. 

  

Keywords: Transmissibility, Boundary properties, Apparent mass, 

Accelerance, Frequency response function, Sensitivity index, 

Normalized response variation  

Student Number: 2011-20759 



 

iv 

 

TABLE OF CONTENTS 

                      Page 

ABSTRACT --------------------------------------------------------------------------ⅰ 

TABLE OF CONTENTS ---------------------------------------------------------- iv 

LIST OF TABLES ----------------------------------------------------------------- vii 

LIST OF FIGURES --------------------------------------------------------------- viii 

CHAPTER 1. INTRODUCTION ------------------------------------------------- 1 

CHAPTER 2. CONCEPT OF TRANSMISSIBILITY ---------------------- 10 

2.1 Introduction --------------------------------------------------------------- 10 

2.2 Formulation of transmissibility ----------------------------------------- 11 

C H A P T E R  3 .  I D E N T I F I C A T I O N  O F  B O U N D A R Y 

CHARACTERISTICS ----------------------------------------------------- 16 

3.1 Introduction --------------------------------------------------------------- 16 

3.2 FRF estimation using boundary properties --------------------------- 18 

3.3 Theoretical formulation for estimation of boundary characteristic   

matrix -------------------------------------------------------------------------- 20 

3.4 Verification and application examples --------------------------------- 26 

3.4.1 Verification: 2-DOF discrete system with single boundary 

condition ----------------------------------------------------------------- 26 



 

v 

 

3.4.2 Verification: 4-DOF discrete system with multiple boundary 

conditions ---------------------------------------------------------------- 30 

3.4.3 Finite beam model with multiple boundary conditions ----- 34 

3.4.4 Effects of the numbers and positions of DOFs --------------- 46 

3.5 Error analysis for assessment of robustness -------------------------- 52 

3.5.1 Derivation of error equation ------------------------------------ 52 

3.5.2 Effects of the measurement noise ------------------------------ 56 

3.5.3 Comparison of estimated properties with and without 

measurement noise ----------------------------------------------------- 59 

3.5.4 Comparison of estimation errors with and without 

measurement noise ----------------------------------------------------- 63 

3.6 Summary and Conclusion ----------------------------------------------- 66 

CHAPTER 4. SENSITIVITY INDICES FOR RELATIVE SENSITIVITY 

ANALYSIS ------------------------------------------------------------------- 68 

4.1 Introduction --------------------------------------------------------------- 68 

4.2 Sensitivity index ---------------------------------------------------------- 70 

4.2.1 Sensitivity indices related to mass ----------------------------- 74 

4.2.1.1 Sensitivity index for positions of variable: SI(mi, rk) 

--------------------------------------------------------------------- 74 

4.2.1.2 Sensitivity index for positions of response: SI(mk, ri) 

--------------------------------------------------------------------- 75 

 



 

vi 

 

4.2.2 Sensitivity indices related to stiffness ------------------------- 76 

4.2.2.1 Sensitivity index for positions of variable: SI(kij, ri) -

--------------------------------------------------------------------- 76 

4.2.2.2 Sensitivity index for positions of response: SI(kkl, ri) 

--------------------------------------------------------------------- 77 

4.2.3 Sensitivity indices related to damping ------------------------- 79 

4.2.3.1 Sensitivity index for positions of variable: SI(cij, ri) -

--------------------------------------------------------------------- 79 

4.2.3.2 Sensitivity index for positions of response: SI(ckl, ri) 

--------------------------------------------------------------------- 79 

4.3 Verification and application examples --------------------------------- 80 

4.3.1 Verification: MDOF discrete model --------------------------- 80 

4.3.2 Finite beam model ----------------------------------------------- 88 

4.3.2.1 Results for the mass variable ------------------------- 88 

4.3.2.2 Results for the stiffness variable --------------------- 95 

4.4 Summary and conclusion ---------------------------------------------- 103 

CHAPTER 5. Conclusions ------------------------------------------------------- 104 

REFERENCES -------------------------------------------------------------------- 108 

국 문 초 록------------------------------------------------------------------------ 117 

  



 

vii 

 

LIST OF TABLES 

Table                                                      Page 

3.1 Boundary properties ---------------------------------------------------- 39 

3.2 Component properties -------------------------------------------------- 40 

4.1 System parameter properties of 7-DOF model --------------------- 83 

4.2 

 

Properties of beam model for validation of sensitivity indices 

with respect to mass ---------------------------------------------------- 

 

91 

4.3 

 

Properties of beam model for validation of sensitivity indices 

with respect to stiffness ------------------------------------------------ 

 

98 

 

  



 

viii 

 

LIST OF FIGURES 

Figure                                                      Page 

2.1 Schematic model composed of three different coordinates ----- 14 

2.2 Schematic model composed of four different coordinates ------ 15 

3.1 Schematic model of component connected to boundary--------- 25 

3.2 

 

 

2-DOF discrete system: (a) free condition, (b) connected to 

boundary condition, and (c) connected to boundary condition 

with mass modification ----------------------------------------------- 

 

 

29 

3.3 

 

 

4-DOF discrete system: (a) free condition, (b) connected to 

boundary condition, and (c) connected to boundary condition 

with mass modification ----------------------------------------------- 

 

 

33 

3.4 

 

 

Beam structures: (a) free condition, (b) connected to boundary 

condition, and (c) connected to boundary condition with mass 

modification ----------------------------------------------------------- 

 

 

38 

3.5 

 

 

Comparison between estimated and exact stiffness of 

component: (a) on left-hand-side boundary and (b) on right-

hand-side boundary --------------------------------------------------- 

 

 

41 

3.6 

 

 

Comparison between estimated and exact structural damping of 

component: (a) on left-hand-side boundary and (b) on right-

hand-side boundary --------------------------------------------------- 

 

 

42 

3.7 

 

Error between estimated and exact boundary properties on both 

sides: (a) stiffness and (b) structural damping -------------------- 

 

43 

3.8 

 

 

Comparison between estimated stiffness from original and 

modified components: (a) on left-hand-side boundary and (b) 

on right-hand-side boundary ----------------------------------------- 

 

 

44 



 

ix 

 

3.9 

 

 

Comparison between estimated structural damping from 

original and modified components: (a) on left-hand-side 

boundary and (b) on right-hand-side boundary ------------------- 

 

 

45 

3.10 

 

Estimated stiffness on left-hand-side boundary using only 

single input DOF ------------------------------------------------------ 

 

48 

3.11 

 

Estimated stiffness on left-hand-side boundary using two input 

DOFs ------------------------------------------------------------------- 

 

49 

3.12 

 

Estimated stiffness on left-hand-side boundary using three 

input DOFs ------------------------------------------------------------ 

 

50 

3.13 

 

Estimated stiffness on left-hand-side boundary using four and 

six measuring DOFs ------------------------------------------------- 

 

51 

3.14 

 

Estimation errors: (a) from subtraction and (b) from calculation 

--------------------------------------------------------------------------- 

 

54 

3.15 

 

Difference between errors from subtraction and from 

calculation ------------------------------------------------------------- 

 

55 

3.16 

 

Estimated stiffness on left-hand-side boundary using 

transmissibilities contaminated by 1 % noise --------------------- 

 

57 

3.17 

 

Estimated stiffness on left-hand-side boundary using 

transmissibilities contaminated by 5 % noise ---------------------- 

 

58 

3.18 

 

 

Estimated stiffness with polluted transmissibilities: (a) on left-

hand-side boundary after smoothing and (b) on right-hand-side 

boundary after smoothing -------------------------------------------- 

 

 

61 

3.19 

 

 

Estimated structural damping with polluted transmissibilities: 

(a) on left-hand-side boundary after smoothing and (b) on right-

hand-side boundary after smoothing ------------------------------- 

 

 

62 

  



 

x 

 

3.20 

 

 

Errors between estimated and exact stiffness on both sides: (a) 

left-hand-side stiffness after smoothing and (b) right-hand-side 

stiffness after smoothing --------------------------------------------- 

 

 

64 

3.21 

 

 

Errors between estimated and exact structural damping on both 

sides: (a) left-hand-side structural damping after smoothing and 

(b) right-hand-side structural damping after smoothing --------- 

 

 

65 

4.1 Schematic model of system ------------------------------------------ 73 

4.2 7-DOF discrete model ------------------------------------------------ 82 

4.3 

 

 

(a) Sensitivity index of node 2 with respect to mass on node 𝑖, 

and (b) normalized response variations on node 2 due to small 

mass modification on node 𝑖 --------------------------------------- 

 

 

84 

4.4 

 

 

(a) Sensitivity index of node 𝑖 with respect to mass on node 2, 

and (b) normalized response variations on node 𝑖 due to small 

mass modification on node 2 ---------------------------------------- 

 

 

85 

4.5 

 

 

 

(a) Sensitivity index of node 2 with respect to stiffness between 

node 𝑖 and node 𝑗, and (b) normalized response variations on 

node 2 due to small stiffness modification between node 𝑖 and 

node 𝑗 ----------------------------------------------------------------- 

 

 

 

86 

4.6 

 

 

 

(a) Sensitivity index of node 𝑖  with respect to stiffness 

between node 2 and node 3, and (b) normalized response 

variations on node 𝑖  due to small stiffness modification 

between node 2 and node 3 ------------------------------------------ 

 

 

 

87 

4.7 

 

Beam structures: (a) Original, (b) after small mass modification 

--------------------------------------------------------------------------- 

 

90 

  



 

xi 

 

4.8 

 

 

(a) Sensitivity index of node 2 with respect to mass on node 𝑖, 

and (b) normalized response variations on node 2 due to small 

mass modification on node 𝑖 --------------------------------------- 

 

 

92 

4.9 

 

 

(a) Sensitivity index of node 𝑖 with respect to mass on node 2, 

and (b) normalized response variations on node 𝑖 due to small 

mass modification on node 2 ---------------------------------------- 

 

 

93 

4.10 Frequency response function, 𝐻21 -------------------------------- 94 

4.11 

 

Beam structures: (a) Original, (b) after small stiffness 

modification ----------------------------------------------------------- 

 

97 

4.12 

 

 

 

(a) Sensitivity index of node 10 with respect to stiffness 

between node 𝑖  and node 𝑗 , and (b) normalized response 

variations on node 10 due to small stiffness modification 

between node 𝑖 and node 𝑗 ---------------------------------------- 

 

 

 

99 

4.13 

 

 

 

(a) Sensitivity index of node 𝑖 (1~5) with respect to siffness 

between node 2 and node 7, and (b) normalized response 

variations on node 𝑖 (1~5) due to small stiffness modification 

between node 2 and node 7 ------------------------------------------ 

 

 

 

100 

4.14 

 

 

 

(a) Sensitivity index of node 𝑖 (6~10) with respect to siffness 

between node 2 and node 7, and (b) normalized response 

variations on node 𝑖 (6~10) due to small stiffness modification 

between node 2 and node 7 ------------------------------------------ 

 

 

 

101 

4.15 FRF difference between 𝐻21 and 𝐻71 --------------------------- 102 



 

1 

 

CHAPTER 1 

 

INTRODUCTION 

 

Modifying the general or material properties is generally suggested to 

reduce or block the vibrational energy generated by a source transmitted 

through a structure pathway to not be incident on the target. Studies on design 

alternatives for resolving the vibrational problem are essential, and modified 

designs need to be verified in the early design phase once design alternatives 

are suggested, if possible. For this purpose, analyses that consider the boundary 

conditions and the sensitivities of responses, which play important roles in 

improving the vibrational characteristics of the components, are required.  

System components should be analyzed under the coupled condition. The 

boundary model has very important properties for estimating the vibration 

characteristics of components coupled with the system. Note, however, that it 

is very difficult to define the analytical model of boundary characteristics 

accurately. Only a few simple conditions are possible, if at all. However, the 

boundary properties of real structures consist of many different types of 

boundary systems, and it is not possible to formulate mathematical models for 

all types of boundary systems. Therefore, instead of characterizing the 
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boundary properties directly, an experimental approach is studied as an 

alternative method to determine the boundary properties of a real structure by 

investigating the difference in vibration characteristics between a component 

with and without boundary properties. Thus far, studies aimed at determining 

the boundary properties or coupling components with the boundary have 

attracted much attention. To identify the boundary properties, all studies use the 

frequency response functions (FRFs), the most important property showing the 

component vibration characteristics. Tsai and Chou [1] determined the single 

bolt joint properties through the substructure synthesis method using 

equilibrium and compatibility equations on the joint coordinate. The FRFs 

between substructures are used to develop the idea of the proposed method. 

Wang and Liou [2] introduced Tsai and Chou's research to determine the joint 

properties more accurately by reducing the measurement noise in FRFs. Yang 

et al. [3] improved previous studies by considering the joint as a coupled 

stiffness matrix and not just as a translational spring and a rotational spring. 

Ren and Beards [4] had the same basic idea as other methods. However, this 

method was expanded to be applicable to structures connected to multiple joints, 

and the joint properties are considered to be composed of the mass, stiffness, 

and damping matrices unlike previous methods using massless spring-damper 

models as a joint model. The final objective of this study is to reduce the 
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measurement error effect. Čelič and Boltežar [5] improved Ren and Beards's 

theory by containing the rotational effects. They also derived a new equation 

for identifying the joint properties for experimental use. In the following work, 

they studied how coordinate reduction affects joint identification by simulating 

the method numerically [6]. According to this literature, insufficient FRFs of 

internal DOFs affect the estimation accuracy because measurement noise plays 

an important role in joint identification with inadequate DOFs. Thus, Wang et 

al. [7] developed a method of estimating unmeasured FRFs using measured 

FRFs. They tried to overcome the disadvantages of joint identification from 

insufficient information on partially measured FRFs by using additional 

unmeasured FRFs estimated from measured FRFs. The joint identification 

methods involving iteration for estimated FRFs that are to be fitted to measured 

FRFs have also been studied. Tol and others [8] identified the joint model using 

the FRF decoupling method without employing joint system FRFs and used an 

algorithm for updating the joint parameters by minimizing the difference 

between the estimated receptance and actual receptance. Cao et al. [9] proposed 

an FE model updating method for joint identification, which is a process of 

minimizing the difference between simulated FRFs and measured FRFs, in 

order to estimate the joint properties more accurately. Unlike approaches to 

identify the joint properties, as explained previously, Hwang [10] derived the 
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joint identification method by using the equation of motion of the structure 

instead of the compatibility and equilibrium conditions when a structure is 

attached to another connection using FRFs. This method is very simple because 

only the difference between the inverted FRFs of components with and without 

boundary properties is used for identifying the connection properties. 

Mehrpouya et al. [11] proposed a methodology for identifying the joint 

properties based on the inverse receptance coupling (IRC) method using only 

the translational FRFs of an assembled structure to estimate the joint FRFs and 

introduced the point-mass joint model to assess the error resulting from the 

assumption in the IRC method. In addition, many studies used modal 

parameters acquired from modal testing; however, as mentioned above, the 

difficulties in extracting modal parameters accurately are forcing researchers to 

use a response model for identifying the joint properties [3-11]. 

The component should be modified to improve the vibrational 

characteristics of a system with problems. A general approach involves making 

small design modifications to the system parameters. For this, it is necessary to 

analyze the relationship between the dynamic responses and the design 

variables. Sensitivity analysis is the study of variations of specific physical 

quantities with respect to the design variables, and it indicates the positions 

where small design modifications could be applied to improve the vibrational 
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characteristics. Sensitivity analysis is widely used to indicate the direction for 

the optimal design of a system with iterating process. The frameworks of 

sensitivity analysis have been studied by several researchers [12-16]. Many 

researches about the sensitivities of eigenvalues and eigenvectors [17-19], 

sensitivities of frequency responses [20-22], and sensitivities of dynamic 

responses [23-26] have been studied. Further, the sensitivity analysis is 

increasingly used in various branches of dynamic analysis such as damage 

detection [27, 28], model updating [29, 30], and structural-acoustic problems 

[31]. This article focuses on the sensitivity analysis of dynamic responses. Haug 

and Arora [23] developed an efficient method to calculate the derivatives of the 

responses of elastic structures by adopting an adjoint variable method. Zhang 

and Der Kiureghian [24] presented a finite element solution method for 

analyzing the response sensitivities of inelastic structures. Liu et al. [25] 

proposed a new algorithm for a more efficient calculation of the response 

sensitivities and Hessian matrix, with respect to earthquake excitation. Further, 

they [26] utilized the Gauss precise time step integration method to obtain the 

derivatives of the dynamic response under transient loading condition. There 

have been efforts to enhance the accuracy of the algorithms used for calculating 

the derivatives. Kirsch and Papalambros [32] adopted a combined 

approximation approach to develop an efficient method of approximating the 
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response and response derivatives. Kirsch et al. [33] developed an improved 

and efficient solution for calculating the displacement derivatives using global 

finite differences, as they can be implemented more effectively than analytical 

derivatives. Bogomolni et al. [34] calculated the response sensitivities using the 

displacement and sensitivities of eigenvectors, under dynamic loading 

condition. The proposed approach simplifies differential equations so that they 

can be solved more efficiently. Several authors have proposed the time-domain 

approach for the sensitivity analysis of dynamic responses. Su and Xu [35] 

presented an explicit time-domain formulation for dynamic responses under 

non-stationary random excitation. Hu et al. [36] developed a more efficient and 

concise expression by using the direct differentiation method. 

In this thesis, transmissibility concept is applied to two subjects explained 

above. The transmissibility expressed by the two frequency response functions 

represents the ratio between two response data. Because the same force is 

exerted on the component, the force effect is eliminated. Therefore, it does not 

require the measurement of the force. Liu and Ewins [37] studied the 

transmissibility properties of an MDOF system that is composed of a chain-like 

mass-spring system. Ribeiro et al. [38] and Maia et al. [39] expanded this 

transmissibility concept to be more generalized for applying practical cases by 

introducing the input and output response matrices called as the transmissibility 
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matrix. These are basic studies on using the MDOF transmissibility concept in 

recent years. The transmissibility concept is applied to various branches of 

research dealing with vibration characteristics. Noumura and Yoshida [40] 

proposed a path contribution analysis using the transmissibility matrix instead 

of transfer functions showing the characteristics of paths. Because time-

consuming processes of measuring FRFs and calculating the force exerted on 

paths do not need to be performed, this is a very attractive method. This method 

uses operating data. The area of operational transfer path analysis (OTPA) is 

still being studied by some researchers, such as Gajdatsy et al. [41, 42] 

Tcherniak and Schuhmacher [43], and De Klerk and Ossipov [44], for 

complementing the basic idea of OTPA. The transmissibility concept was also 

used to identify the modal parameters. Guillaume et al. [45] showed how to 

extract the modal parameters from only response data using the frequency-

domain maximum likelihood estimator. Subsequently, unlike previous studies 

that used white noise as a source for identifying the modal parameters with only 

response data, Devriendt and Guillaume [46] suggested a new operational 

modal analysis (OMA) technique using transmissibility that does not need any 

assumption about the force so that parameters can be estimated from non-white-

noise, thus reducing the possibility of wrong identification. Further studies on 

this topic are being reported [47-49]. In addition to the OTPA and OMA, the 
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concept of transmissibility is used for damage detection [50-52], force 

identification [53], model updating [54], predicting the transmitted force to the 

ground when a component is moving on flexible ground [55], estimating 

unmeasured FRFs [56, 57] and sensitivity analysis [58]. 

This thesis is organized as follows. In Chapter 2, general concept of 

transmissibility is introduced before applied to boundary identification and 

relative sensitivity analysis. The two expressions of transmissibility that can be 

formed by the receptance and dynamic stiffness are obtained. Further, the 

relation between the two definitions is also shown. In Chapter 3, the 

formulation of a method for identifying boundary properties as a response 

model is presented. The boundary properties can be estimated by comparing 

the characteristics of the components under three different conditions. By using 

the transmissibilities that are obtained from three different conditions, explicit 

relation between the transmissibilities and boundary characteristics is derived. 

The derived equation is verified using a discrete multiple degrees of freedom 

system with single boundary and multiple boundary conditions and by 

application to a beam, which is the simplest continuous structural form to 

validate the feasibility of the theory. The transmissibility defined by the 

apparent mass matrix is used for verifying the derived equation for identifying 

the boundary properties in the discrete system. However, when applying the 
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equation to practical cases, as is the purpose of this research, the transmissibility 

matrix should be defined using only the response data. For this purpose, the 

accelerance matrix is modified slightly to the response matrix using the input 

as a unit force. This transmissibility matrix composed of response data is used 

for validating the equation in a continuous system. Furthermore, the effects of 

measurement noise are also investigated to assess the robustness of the method 

for application under practical conditions. In Chapter 4, new sensitivity indices 

based on the transmissibility concept are presented for analyzing the relative 

sensitivity of responses with respect to the design variables that are used to 

indicate the sensitive positions where small design modifications can be applied 

and to analyze the effect of these modifications on the responses. 7-DOF 

discrete model is adopted to verify the indices. The indices are compared to 

indicators representing normalized response variations between the 

components before and after applying the small design modifications. 

Furthermore, two beam models are used to validate the indices with respect to 

mass and stiffness in more practical applications. Finally, conclusions of the 

thesis are presented in Chapter 5. 

In summary, applying the transmissibilty concept to identify the boundary 

model and to suggest the sensitivity indices related to variables for relative 

sensitivity analysis are the main purpose of this thesis.  
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CHAPTER 2 

 

CONCEPT OF TRANSMISSIBILITY 

 

2.1 Introduction 

 

In recent years, as the response data are used for identifying the system 

parameters and analyzing the path contribution, the transmissibility concept 

becomes more important in dynamic analysis. The transmissibility is the ratio 

between the frequency response functions when the input force is applied on 

the same position. The transmissibility is therefore expressed as the ratio of the 

two response data, excluding the force effect. Because of this advantage, many 

researchers tried to use the transmissibility for analyzing the dynamic 

characteristics of the system. The concept of transmissibility is described 

briefly as a basis for developing process of vibrational characteristic 

improvement. Two approaches to evaluate transmissibility from receptance and 

dynamic stiffness are described in this Chapter. 
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2.2 Formulation of transmissibility  

 

There are two ways of obtaining transmissibility by using receptance and 

dynamic stiffness. In this section, the definitions of transmissibility are 

presented. 

The MDOF system’s equation of motion can be defined by using 

receptance 𝐇 

𝐱 = 𝐇𝐅, (2.1) 

where x, H, and F are the displacement, receptance, and Force, respectively. 

Consider the schematic model composed of three different coordinates as 

shown in Fig. 2.1. If external forces are applied to coordinate 𝑘, displacements 

at coordinate 𝑎 is expressed as  

𝐱𝑎 = 𝐇𝑎𝑘𝐅𝑘, (2.2) 

where 𝐇𝑎𝑘 is receptance matrix between coordinates 𝑘 and 𝑎. In the same 

way, displacements at coordinate 𝑏 is also expressed as 

𝐱𝑏 = 𝐇𝑏𝑘𝐅𝑘, (2.3) 

where 𝐇𝑏𝑘 is receptance matrix between coordinates 𝑘 and 𝑏. Rearranging 

Eq. (2.2) by multiplying pseudo-inverse of 𝐇𝑎𝑘 to eliminate the applied force 

at coordinate 𝑘 in Eq. (2.3) gives  

(𝐇𝑎𝑘)
+𝐱𝑎 = 𝐅𝑘 . (2.4) 

Substitute Eq. (2.4) for Eq. (2.3) to obtain the relation between diplacements 
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at coordinate 𝑎 and coordinate 𝑏.  

𝐱𝑏 = 𝐇𝑏𝑘(𝐇𝑎𝑘)
+𝐱𝑎. (2.5) 

The transmissibility can be defined as 

𝐓𝑏𝑎,𝑓𝑘 = 𝐇𝑏𝑘(𝐇𝑎𝑘)
+. (2.6) 

𝐓𝑏𝑎,𝑓𝑘  is the transmissibility of the displacement between the coordinate 𝑎 

and coordinate 𝑏 when the external forces are exerted on coordinate 𝑘. 𝐱𝑎 

and 𝐱𝑏 can be related by using transmissibility 

𝐱𝑏 = 𝐓𝑏𝑎,𝑓𝑘𝐱𝑎. (2.7) 

Transmissibility also could be expressed by using dynamic stiffness. The 

equation of motion can be described as 

𝐙𝐱 = 𝐅, (2.8) 

where 𝐙 , 𝐱 , and 𝐅  are dynamic stiffness, displacement, and Force, 

respectively. Consider the schematic model composed of four different 

coordinates as shown in Fig. 2.2. Coordinates 𝑎 and 𝑏 are subsets related to 

displacements while coordinates 𝑘  and 𝑙  are subsets where external forces 

can be applied. Eq. (2.8) can be expressed as 

[
𝐙𝑘𝑎 𝐙𝑘𝑏
𝐙𝑙𝑎 𝐙𝑙𝑏

] {
𝐱𝑎
𝐱𝑏
} = {

𝐅𝑘
𝐅𝑙
}. (2.9) 

Assume that the external forces are only applied to cooridnate 𝑘 and there are 

no external forces on coorinate 𝑙. It is possible to obtain following equation 

from Eq. (2.9) by using 𝐅𝑙 = 𝟎. 

𝐙𝑙𝑎𝐱𝑎 + 𝐙𝑙𝑏𝐱𝑏 = 𝟎. (2.10) 
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Rearranging Eq. (2.10) to obtain the transmissibility 

𝐱𝑏 = −(𝐙𝑙𝑏)
+𝐙𝑙𝑎𝐱𝑎. (2.11) 

The transmissibility can be defined as 

𝐓𝑏𝑎,𝑓𝑘 = −(𝐙𝑙𝑏)
+𝐙𝑙𝑎. (2.12) 

𝐓𝑏𝑎,𝑓𝑘 expressed by dynamic stiffness is obtained. 

𝐓𝑏𝑎,𝑓𝑘 = −(𝐙𝑙𝑏)
+𝐙𝑙𝑎 = 𝐇𝑏𝑘(𝐇𝑎𝑘)

+. (2.12) 

Finally, the tranmissibility is expressed by using dynamic stiffness and 

receptance. Note that the receptance matrices between coordinates related to 

displacement and coordinate where the external forces are applied are used 

while the dynamic stiffness matrices between the coordinates related to 

displacement and the coordinate where the external forces are not applied are 

used. 
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Figure 2.1 Schematic model composed of three different coordinates 
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Figure 2.2 Schematic model composed of four different coordinates 
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CHAPTER 3 

 

IDENTIFICATION OF BOUNDARY CHARACTERISTICS 

USING TRANSMISSIBILITY 

 

3.1 Introduction 

 

As described in Chapter 1, all methods use FRFs for developing the theory, 

even though the idea of the research is slightly different. In this Chapter, a new 

approach to determine the boundary characteristics using transmissibility 

composed of only the response data is suggested and validated. An explicit 

relation between the transmissibility concept and the boundary characteristic 

matrix is derived. FRFs, of course, are very important data for analyzing the 

vibration characteristics of a component theoretically. However, in practice, 

many difficult cases are encountered when measuring an input force exerted on 

a component connected to a full system. As a result, the input force can be 

measured incorrectly based on who excites a component. However, the force 

effects are excluded by using the transmissibility. This means that the force 

should be excited; however, it does not need to be measured. Even if the force 

is excited in the wrong direction, it does not matter if the distributed force 
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exciting the right direction is enough to excite the component. Consequently, 

less experimental errors are included in the transmissibility than in FRFs as 

long as the sensors for measuring the response data are installed properly.  

The objective of this Chapter is to suggest a new approach for identifying 

the boundary characteristics using the transmissibility. Three types of 

transmissibilities are needed for identifying the boundary properties from the 

equation derived from the theory. These conditions are as follows: 

(1) Free condition. 

(2) Connected to boundary condition. 

(3) Connected to boundary condition with mass modification. 

The proposed method is applicable for almost all boundary conditions as 

far as sensors can be attached. The identified matrix gives the response model 

properties of the boundary conditions.  

The method is validated using discrete models containing a single 

boundary condition and multiple boundary conditions. Estimating the single 

boundary constant is a very simple and intuitive process, unlike the multiple 

boundary constant estimation using the transmissibility matrix. Validations 

with discrete models show very obvious results. The boundary characteristic 

matrix can be identified exactly from the proposed method. In sequence, the 

continuous model of a real structure beam is used to demonstrate the numerical 
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validity of the method. After estimating the boundary properties, the boundary 

characteristic matrix (BCM) can be applied to the modified component with the 

free condition that could be obtained from the finite element model in the early 

design phase before making the real product using the equation for estimating 

the FRFs of modified component connected to boundary. 

 

3.2 FRF Estimation using Boundary Properties  

 

The FRFs of the component connected to the boundary can be estimated 

by the method coupling substructures A and B [59, 60]. The admittance of 

substructure B in the interface could be considered to substitute for the 

boundary conditions. Therefore, it can be explained by the following process. 

The MDOF system's equation of motion is 

𝐌𝐱̈ + 𝐂𝐱̇ + (j𝐃 + 𝐊)𝐱 = 𝐅, (3.1) 

where 𝐌 , 𝐂 , 𝐃 , 𝐊 , 𝐱̈ , 𝐱̇ , and 𝐱  are the mass, viscous damping, structural 

damping, stiffness, acceleration, velocity, and displacement, respectively. 

(𝐌 −
𝐊eq

𝜔2
)𝐚 = 𝐅, (3.2) 

where 

𝐊eq = j𝜔𝐂 + j𝐃 + 𝐊. (3.3) 

The complex stiffness 𝐊eq  containing the viscous damping, structural 
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damping, and stiffness is used for simplifying the equation. 

The MDOF system's equation of motion can be also defined using 

accelerance 𝐇, 

𝐚 = 𝐇𝐅. (3.4) 

Multiplying inversion of 𝐇 to Eq. (3.4) yields 

𝐇−1𝐚 = 𝐅. (3.5) 

Then, the apparent mass 𝐌app is expressed as 

(𝐌 −
𝐊eq

𝜔2
) = 𝐇−1. (3.6) 

The boundary properties can be applied to the apparent mass in the free 

condition composed of system parameters for determining the component FRFs 

connected to the boundary. In this Chapter, the matrix of the boundary 

properties is called the BCM. Therefore, the apparent mass connected to the 

boundary is given by 

𝐌app,free + 𝐁𝐂𝐌 = 𝐌app,bc. (3.7) 

The subscript ``free'' represents the free condition and the subscript ``bc'', the 

connected to boundary condition. The apparent mass of the component and the 

inversion of the component accelerance matrix applied to the boundary 

condition is obtained by using the apparent mass of the free condition and BCM. 

By the reinversion of 𝐌app,bc, the accelerance of the component connected to 

the boundary can be estimated as 

(𝐌app,bc)
−1
= 𝐇bc. (3.8) 
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The main objective of this Chapter is to define the boundary properties 

using the transmissibility. 

 

3.3 Theoretical Formulation for Estimation of Boundary 

characteristic matrix 

 

Many studies have identified the joint properties using experimental data. 

However, all methods use the FRF data, which is thought to be easily 

measurable through experiments. In this section, transmissibilities obtained 

using only the response data are used for deriving an equation to identify the 

boundary properties. The newly proposed method for defining the BCM needs 

three types of transmissibilities obtained under different conditions: (1) free 

condition, (2) connected to boundary condition, and (3) connected to boundary 

condition with mass modification. The boundary properties can be estimated 

with these transmissibility data. 

Consider the model schematically illustrated in Fig. 3.1, where two 

coordinate sets defined as non-boundary set 𝑖 and boundary set 𝑗 constitute 

the model coordinates. The governing equations for the structure having two 

coordinates are expressed as 
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[
𝐌app𝑖𝑖

𝐌app𝑖𝑗

𝐌app𝑗𝑖
𝐌app𝑗𝑗

] {
𝐚𝑖
𝐚𝑗
} = {

𝐅𝑖
𝐅𝑗
}. (3.9) 

𝐌app𝑖𝑗
  is the apparent mass matrix between coordinates 𝑖  and 𝑗 . 

Assume that the force is exerted on non-boundary sets and there is no external 

force on the boundary sets. Only the internal force 𝐅𝑗  arise because of the 

boundary condition. When the component is in the free condition, where 𝐅𝑗 =

𝟎, 

𝐌app𝑗𝑖
𝐚𝑖 +𝐌app𝑗𝑗

𝐚𝑗 = 𝟎. (3.10) 

Eq. (3.10) can be rearranged to obtain the transmissibility 

𝐚𝑖 = −(𝐌app𝑗𝑖
)
+
𝐌app𝑗𝑗

𝐚𝑗. (3.11) 

Then, 𝐓𝑖𝑗,free can be defined as 

𝐓𝑖𝑗,free = −(𝐌app𝑗𝑖
)
+
𝐌app𝑗𝑗

. (3.12) 

𝐓𝑖𝑗,free is the transmissibility of the acceleration between the boundary sets of 

free condition and non-boundary sets when the force is exerted on non-

boundary sets. 

When the component is connected to the boundary, the reaction force 𝐅𝑗 

arises because of the existence of the boundary model composed of system 

parameters. Eq. (3.10) is changed as 

𝐌app𝑗𝑖
𝐚𝑖 +𝐌app𝑗𝑗

𝐚𝑗 = −𝐅𝑗. (3.13) 

Rearranging Eq. (3.13) in terms of transmissibility gives 
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𝐚𝑖 = −(𝐌app𝑗𝑖
)
+
(𝐅𝑗 +𝐌app𝑗𝑗

𝐚𝑗). (3.14) 

The transmissibility of the component connected to the boundary has another 

term composed of the reaction force, unlike the free condition component 

transmissibility. The term composed of the reaction force can be considered as 

the modified component properties of boundary sets by rearranging Eq. (3.14) 

as 

𝐚𝑖 = −(𝐌app𝑗𝑖
)
+
(𝐅𝑗

𝟏

|𝐚𝑗|
𝟐
𝐚𝑗
T +𝐌app𝑗𝑗

)𝐚𝑗. (3.15) 

Then, 𝐓𝑖𝑗,bc can be defined as 

𝐓𝑖𝑗,bc = −(𝐌app𝑗𝑖
)
+
(𝐅𝑗

𝟏

|𝐚𝑗|
𝟐
𝐚𝑗
T +𝐌app𝑗𝑗

). (3.16) 

By considering 𝐅𝑗
𝟏

|𝐚𝑗|
𝟐 𝐚𝑗

T as ∆𝐌app𝑗𝑗
, 𝐓𝑖𝑗,bc is changed to 

𝐓𝑖𝑗,bc = −(𝐌app𝑗𝑖
)
+
(∆𝐌app𝑗𝑗

+𝐌app𝑗𝑗
). (3.17) 

𝐓𝑖𝑗,bc  can be expressed using the variation of 𝐌app𝑗𝑗
 . In other words, the 

boundary sets of the component connected to the boundary are changed to the 

boundary sets of the modified component in the free condition. This means that 

the apparent mass of the component connected to the boundary can be easily 

modified from the apparent mass of the free condition by adding variation to 

the boundary coordinate sets. 
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To eliminate terms other than ∆𝐌app𝑗𝑗
, subtract Eq. (3.17) from Eq. (3.

12),  

𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bc = (𝐌app𝑗𝑖
)
+
∆𝐌app𝑗𝑗

. (3.18) 

However, 𝐌app𝑗𝑖
 still exists. It should be eliminated so that ∆𝐌app𝑗𝑗

 can be 

estimated using only the response data. The mass modification technique is 

introduced for eliminating 𝐌app𝑗𝑖
  by giving more information about the 

dynamic characteristics of the component. Only adding some mass on the 

boundary sets is required. By the same method as that for obtaining 𝐓𝑖𝑗,bc, the 

transmissibility of the component connected to the boundary with mass 

modification on boundary sets can be derived by adding mass, ∆𝐦𝑗𝑗 , to 

boundary sets of apparent mass 

𝐌app𝑗𝑖
𝐚𝑖 + (𝐌app𝑗𝑗

+ ∆𝐦𝑗𝑗) 𝐚𝑗 = −𝐅𝑗. (3.19) 

Eq. (3.19) can be rearranged to obtain the transmissibility 

𝐚𝑖 = −(𝐌app𝑗𝑖
)
+
(𝐅𝑗

𝟏

|𝐚𝑗|
𝟐
𝐚𝑗
T +𝐌app𝑗𝑗

+ ∆𝐦𝑗𝑗)𝐚𝑗. (3.20) 

By using 𝐅𝑗
𝟏

|𝐚𝑗|
𝟐 𝐚𝑗

T = ∆𝐌app𝑗𝑗
, 

𝐓𝑖𝑗,bcmm = −(𝐌app𝑗𝑖
)
+
(∆𝐌app𝑗𝑗

+𝐌app𝑗𝑗
+ ∆𝐦𝑗𝑗). (3.21) 

𝐓𝑖𝑗,bcmm is the transmissibility of the acceleration between the boundary sets 

with mass modification and non-boundary sets. 
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Subtract Eq. (3.21) from Eq. (3.12) 

𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bcmm = (𝐌app𝑗𝑖
)
+
(∆𝐌app𝑗𝑗

+ ∆𝐦𝑗𝑗). (3.22) 

Eq. (3.18) is modified to substitute (𝐌app𝑗𝑖
)
+

 in Eq. (3.22), 

(𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bc) (∆𝐌app𝑗𝑗
)
−1
= (𝐌app𝑗𝑖

)
+
. (3.23) 

Substitute Eq. (3.23) for Eq. (3.22) 

𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bcmm = (𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bc) (∆𝐌app𝑗𝑗
)
−1

(∆𝐌app𝑗𝑗
+ ∆𝐦𝑗𝑗). (3.24) 

(𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bc)
+
(𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bcmm) = 𝐈 + (∆𝐌app𝑗𝑗

)∆𝐦𝑗𝑗, (3.25) 

where 𝐈 is the identity matrix. Then, ∆𝐌app𝑗𝑗
 can be derived as 

∆𝐌app𝑗𝑗
= ∆𝐦𝑗𝑗 {(𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bc)

+
(𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bcmm) − 𝐈}

−1
. (3.26) 

Finally, one can obtain 

∆𝐌app𝑗𝑗
= ∆𝐦𝑗𝑗(𝐓𝑖𝑗,bc − 𝐓𝑖𝑗,bcmm)

+
(𝐓𝑖𝑗,free − 𝐓𝑖𝑗,bc). (3.27) 

By multiplying −𝜔2 with the BCM ∆𝐌app𝑗𝑗
, the boundary properties can be 

identified as −𝜔2∆𝐌app𝑗𝑗
. 

In short, the BCM is estimated by the proposed method using three types 

of transmissibilities of the component. Before applying the proposed method to 

practical cases, the dimensions of the coordinate sets are considered [61]. The 

non-boundary coordinate sets #𝑖 should outnumber the boundary coordinated 

sets #𝑗 at least for calculating the matrix operation. 
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Coordinate i

Coordinate j

Boundary system

 

Figure 3.1 Schematic model of component connected to boundary 

 

  



 

26 

 

3.4 Verification and Application Examples 

 

To verify the proposed method, numerical studies are performed. The 

method is verified on an MDOF system with a single boundary condition for 

better understanding the procedure intuitively. Then, it is expanded to a system 

with multiple boundary conditions using the transmissibility matrix. Two types 

of discrete systems are adopted. 

(1) 2-DOF discrete system with single boundary condition 

(2) 4-DOF discrete system with multiple boundary conditions 

Subsequently, a finite beam model is adopted for identifying whether the 

method is still usable in a continuous system through a simulation.  

 

3.4.1 Verification: 2-DOF Discrete System with Single 

Boundary Condition  

 

A 2-DOF discrete system assembled by a spring and damper is illustrated 

in Fig. 3.2. A single boundary property characterized by 𝑘𝑅 is connected to 

mass 𝑚2. 𝑘eq.1, the sum of 𝑘1 and j𝜔𝑐1, is used for simplifying calculations 

in this validation. The equation of motion is 
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[
𝑚1 −

𝑘eq.1

𝜔2
𝑘eq.1

𝜔2

𝑘eq.1

𝜔2
𝑚2 −

𝑘eq.1

𝜔2

] {
𝑎1
𝑎2
} = {

𝐹1
𝐹2
}. (3.28) 

In the free condition, where the reaction force is 𝐹2 = 0, 

𝑘eq.1

𝜔2
𝑎1 + (𝑚2 −

𝑘eq.1

𝜔2
) 𝑎2 = 0. (3.29) 

Thus, 

𝑇12.free =
𝑎1

𝑎2
=
𝜔2𝑚2 − 𝑘eq.1

𝑘eq.1
. (3.30) 

When a 2-DOF discrete system is connected to the single boundary 

condition characterized by 𝑘eq.𝑅, 

𝑘eq.1

𝜔2
𝑎1 + (𝑚2 −

𝑘eq.1

𝜔2
−
𝑘eq.𝑅

𝜔2
)𝑎2 = 0. (3.31) 

Note that 
𝑘eq.𝑅

𝜔2
𝑎2  represents the reaction force 𝐹2  resulting from boundary 

properties. Thus, the transmissibility of the component connected to the 

boundary is 

𝑇12.bc =
𝑎1

𝑎2
=
𝜔2𝑚2 − (𝑘eq.1 + 𝑘eq.𝑅)

𝑘eq.1
. (3.32) 

In the same way, when the component is connected to the boundary with 

mass modification, 

𝑇12.bcmm =
𝑎1

𝑎2
=
𝜔2𝑚2 − (𝑘eq.1 + 𝑘eq.𝑅) + 𝜔

2𝑚𝑅

𝑘eq.1
. (3.33) 

Substituting Eqs. (3.30), (3.32), and (3.33) into Eq. (3.27) gives 
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∆𝑀app22
= 𝑚𝑅 (

−𝜔2𝑚𝑅

𝑘eq.1
)

−1

(
𝑘eq.𝑅

𝑘eq.1
) 

                     = −
𝑘eq.𝑅

𝜔2
. 

(3.34) 

The boundary property 𝑘eq.𝑅  is extracted exactly by multiplying −𝜔2 

with ∆𝑀app22
. 
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Figure 3.2 2-DOF discrete system: (a) free condition, (b) connected to boundary 

condition, and (c) connected to boundary condition with mass modification 
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3.4.2 Verification: 4-DOF Discrete System with Multiple 

Boundary Conditions 

 

The 4-DOF system is illustrated in Fig. 3.3. All masses are connected to 

each other, and double boundary properties characterized by 𝑘eq.𝐿 and 𝑘eq.𝑅 

are connected to mass 1 (𝑚1) and mass 4 (𝑚4), respectively. 𝑘eq.𝑖𝑗, the sum of 

𝑘𝑖𝑗 and j𝜔𝑐𝑖𝑗, is used for simplifying the calculations in this validation. The 

apparent mass between the coordinates 𝑖 and 𝑗, 𝐌app𝑗𝑖
, is 

𝐌app𝑗𝑖
= [

𝑀app12
𝑀app13

𝑀app42
𝑀app43

]. (3.35) 

with 

𝑀app12
=
𝑘eq.12

𝜔2
, 𝑀app13

=
𝑘eq.13

𝜔2
, 𝑀app42

=
𝑘eq.24

𝜔2
,

𝑎𝑛𝑑 𝑀app43
=
𝑘eq.34

𝜔2
 . 

(3.36) 

The 𝐌app𝑗𝑗
 is 

𝐌app𝑗𝑖
= [

𝑀app11
𝑀app14

𝑀app41
𝑀app44

]. (3.37) 

with 

𝑀app11
= 𝑚1 −

𝑘eq.12 + 𝑘eq.13 + 𝑘eq.14

𝜔2
, 

𝑀app44
= 𝑚4 −

𝑘eq.14 + 𝑘eq.24 + 𝑘eq.34

𝜔2
, 𝑎𝑛𝑑 

(3.38) 
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𝑀app14
= 𝑀app41

=
𝑘eq.14

𝜔2
. 

From Eqs. (3.35) and (3.37), 𝐓𝑖𝑗,free is given as 

𝐓𝑖𝑗,free = −(𝐌app𝑗𝑖
)
−1
𝐌app𝑗𝑗

 

= −[
𝑀app12

𝑀app13
𝑀app42

𝑀app43
]

−1

[
𝑀app11

𝑀app14
𝑀app41

𝑀app44
]. 

(3.39) 

In other conditions, 𝐌app𝑗𝑗
  is changed. The only difference between 

𝐌app𝑗𝑗
 and 𝐌app𝑗𝑗.bc is the existence of 𝑘eq.𝐿 and 𝑘eq.𝑅. 

𝐓𝑖𝑗,bc = −(𝐌app𝑗𝑖
)
−1
𝐌app𝑗𝑗.bc 

= −[
𝑀app12

𝑀app13

𝑀app42
𝑀app43

]

−1

[
𝑀app11

−
𝑘eq.𝐿

𝜔2
𝑀app14

𝑀app41
𝑀app44

−
𝑘eq.𝑅

𝜔2

]. 

(3.40) 

For the condition with mass modification, some masses characterized by 𝑚𝐿 

and 𝑚𝑅 are added to boundary sets. 

∆𝑚𝑗𝑗 = [
𝑚𝐿 0
0 𝑚𝑅

]. (3.41) 

𝑚𝐿 and 𝑚𝑅 are masses added on the left-hand-side boundary and right-hand-

side boundary, respectively. 𝐌app𝑗𝑗.bcmm is acquired by adding the delta mass 

matrix to 𝐌app𝑗𝑗.bc 

𝐌app𝑗𝑗.bcmm = 𝐌app𝑗𝑗.bc + ∆𝑚𝑗𝑗. (3.42) 

and 𝐓𝑖𝑗,bcmm can be acquired as 

𝐓𝑖𝑗,bcmm = −(𝐌app𝑗𝑖
)
−1
𝐌app𝑗𝑗.bcmm (3.43) 
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= − [
𝑀app12

𝑀app13

𝑀app42
𝑀app43

]

−1

[
𝑀app11

−
𝑘eq.𝐿

𝜔2
+𝑚𝐿 𝑀app14

𝑀app41
𝑀app44

−
𝑘eq.𝑅

𝜔2
+𝑚𝑅

]. 

Finally, by using Eqs. (3.39), (3.40), and (3.43), the BCM can be obtained 

as 

𝐁𝐂𝐌 = [
𝑘eq.𝐿 0

0 𝑘eq.𝑅
]. (3.44) 

Therefore, in an MDOF discrete system with multiple boundary properties, the 

procedure for extracting boundary properties is verified clearly. 
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Figure 3.3 4-DOF discrete system: (a) free condition, (b) connected to boundary 

condition, and (c) connected to boundary condition with mass modification 
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3.4.3 Finite Beam Model with Multiple Boundary Conditions 

 

In what follows, the proposed method is applied to a finite element beam 

model, which is the simplest structural form. The numerical beam is simply 

supported on both sides with stiffness and structural damping. By applying this 

simple, but not practical, condition, the estimated properties can be easily 

compared to the exact value directly, which means that the real and imaginary 

values of the estimated properties represent the stiffness and structural damping, 

respectively. If they were validated in this condition, the real boundary 

properties identified from the proposed method might be reliable though the 

exact value of the boundary properties cannot be found. Fig. 3.4 shows the three 

boundary conditions applied to the beam structure: free condition (Fig. 3.4(a)), 

connected to boundary condition (Fig. 3.4(b)) and connected to boundary 

condition with mass modification (Fig. 3.4(c)). The accelerations at six points 

are used, including the non-boundary sets 𝑖 (2, 3, 4, and 5) and boundary sets 

𝑗 (1 and 6) shown in Fig. 3.4. The point number is 1 to 6 from left to right. The 

properties related to the boundary composed of 𝑘𝐿, 𝑘𝑅, 𝐷𝐿, 𝐷𝑅, 𝑚𝐿, and 𝑚𝑅 

are shown in Table 3.1. The subscripts 𝐿 and 𝑅 are left-hand-side and right-

hand-side for coordinates 1 and 6. The additional masses should be a 

concentrated mass as possible for estimating the boundary properties 
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appropriately. If the masses are continuous, they could have an effect on the 

other apparent mass terms in addition to 𝐌app𝑗𝑗
 causing inaccurate estimation 

of properties. The boundary properties estimated from different components are 

also compared with each other to show that the method is valid in general. A 

steel beam and aluminum beam having different cross sections are used. The 

specific properties of the beams are shown in Table 3.2. Only the z-direction 

accelerations are considered for the simulation. 

The equations have to be modified slightly to be applied to the proposed 

method using only the response acceleration. For this purpose, the 

transmissibility is derived from the equation of motion using the accelerance, 

{
𝐚𝑖
𝐚𝑗
} = [

𝐇𝑖𝑖 𝐇𝑖𝑗
𝐇𝑗𝑖 𝐇𝑗𝑗

] {
𝐅𝑖
𝐅𝑗
}. (3.45) 

Accelerances, instead of the apparent mass, are used for acquiring the 

transmissibility, which has to be defined by only the response acceleration data. 

The accelerations are obtained by substituting 𝐅𝑖 = 𝟏 . The external force 

exerted on only the non-boundary sets 𝑖 and reaction force arise differently 

according to the boundary model on boundary sets 𝑗. 

𝐅𝑗 = 𝟎 in the free condition, and therefore, Eq. (3.45) can be changed as 

{
𝐚𝑖
𝐚𝑗
} = [

𝐚𝑖𝑖 𝐚𝑖𝑗
𝐚𝑗𝑖 𝐚𝑗𝑗

] {
𝟏
𝟎
}. (3.46) 

By using the relationship 
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𝐇𝑖𝑖(𝐇𝑗𝑖)
+
= 𝐚𝑖𝑖(𝐚𝑗𝑖)

+
, (3.47) 

the transmissibility can be derived as 

𝐓𝑖𝑗 = 𝐚𝑖𝑖(𝐚𝑗𝑖)
+

 

= −[

𝑎22 𝑎23 𝑎24 𝑎25
𝑎32 𝑎33 𝑎34 𝑎35
𝑎42 𝑎43 𝑎44 𝑎45
𝑎52 𝑎53 𝑎54 𝑎55

]

−1

[
𝑎12 𝑎13 𝑎14 𝑎15
𝑎62 𝑎63 𝑎64 𝑎65

]
+

. 

(3.48) 

Finally, by using Eq. (3.48), the transmissibility matrices of the component 

on three different boundary conditions can be estimated. 

To confirm whether the results are reliable, the percent errors between the 

estimated properties and given properties are investigated. The percent error is 

defined as 

% Error =
ExP𝑗(𝑘𝑗, 𝐷𝑗) − EsP𝑗(𝑘𝑗 , 𝐷𝑗)

ExP𝑗(𝑘𝑗, 𝐷𝑗)
×100. (3.49) 

ExP  and EsP  are the exact properties and estimated properties, 

respectively. The 𝑗 coordinate is the boundary set defined at points 1 and 6 that 

respectively represent the left- and right-hand-sides of the boundary in this case. 

Specifically, the properties used for checking errors are 𝑘𝐿, 𝐷𝐿, 𝑘𝑅, and 𝐷𝑅. 

Fig. 3.5 shows the comparison between the estimated stiffness and the 

exact stiffness. The results indicating the stiffness estimated from the proposed 

method are in good agreement with the exact stiffness on both sides, namely, 

the left and right boundary shown in Fig. 3.5(a) and Fig. 3.5(b), respectively. In 

keeping with the stiffness estimation results, the estimated structural dampings 
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shown in Fig. 3.6 are almost the same as the exact structural dampings on both 

sides. The percentage errors between the estimated and the exact boundary 

properties are investigated. Fig. 3.7(a) shows that the estimated stiffness gives 

very high quality results, and the maximum discrepancy is below 1 % on both 

sides. The structural damping estimation also shows consistent results, as 

shown in Fig. 3.7(b), and the maximum discrepancy is around 3 % - 4 %. The 

modified component with the same boundary properties is also used to show 

that the proposed method performs well. As shown in Figs. 3.8 and 3.9, the 

estimated properties from different beam structures are almost the same. As a 

result, the estimation of the boundary properties gives satisfying results in 

different components. 
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(a) 

 

(b) 

 

    (c) 

 

Figure 3.4 Beam structures: (a) free condition, (b) connected to boundary 

condition, and (c) connected to boundary condition with mass modification 
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Table 3.1 Boundary properties 

 𝑘𝐿 𝑘𝑅 𝐷𝐿 𝐷𝑅 𝑚𝐿 𝑚𝑅 

 (N m−1) (N m−1) (kg) 

Free Condition 0 0 0 0 0 0 

Connected to b.c 106 5×106 103 5×103 0 0 

Connected to b.c with m.m 106 5×106 103 5×103 1 1 
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Table 3.2 Component properties 

 Original Modified 

Width 0.05 0.07 

Height 0.015 0.02 

Length 0.5 0.5 

Material Steel Aluminum 

Young’s modulus, E (kg m−1 s−2) 2.1×1011 7×1010 

Poisson’s ratio, nu 0.27 0.33 

Mass density (kg m−3) 7850 2712 
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(a) 

 

    (b) 

 

Figure 3.5 Comparison between estimated and exact stiffness of component: (a) 

on left-hand-side boundary and (b) on right-hand-side boundary 
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(a) 

 

(b) 

 

Figure 3.6 Comparison between estimated and exact structural damping of 

component: (a) on left-hand-side boundary and (b) on right-hand-side boundary 
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(a) 

 

(b) 

 

Figure 3.7 Error between estimated and exact boundary properties on both sides: 

(a) stiffness and (b) structural damping 
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(a) 

 

 (b) 

 

Figure 3.8 Comparison between estimated stiffness from original and modified 

components: (a) on left-hand-side boundary and (b) on right-hand-side 

boundary 
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(a) 

 

(b) 

 

Figure 3.9 Comparison between estimated structural damping from original and 

modified components: (a) on left-hand-side boundary and (b) on right-hand-

side boundary 



 

46 

 

3.4.4 Effects of the Numbers and Positions of DOFs 

 

For estimating the boundary properties, force should act at least in all of 

the boundary DOFs. Estimating the boundary properties with the data acquired 

when force is acting in fewer DOFs than the number of boundary DOFs is 

similar to solving a single equation composed of multiple variables, namely the 

equation is indeterminate. Of course, it is possible to estimate the variables 

using many mathematical techniques of approximation. However, the value 

estimated using insufficient information is not appropriate for use under 

practical conditions. Fig. 3.10 shows the difference between the stiffnesses 

estimated using an incomplete matrix of transmissibility data and a full matrix 

of transmissibility data. The left-hand-side stiffness is used for explaining the 

issue in this section. The boundary properties estimated from only a single force 

are very inaccurate. The Y axis is expressed as a log scale to show the difference 

between the estimated stiffness from the incomplete and full matrices easily. 

For this reason, the number of DOFs in which force acts should exceed the 

number of boundary DOFs. Fig. 3.11 and Fig. 3.12 show the stiffnesses 

estimated from two input DOFs and three input DOFs, respectively. In Fig. 3.11, 

the estimated values from two input DOFs are in good agreement with the exact 

value to some extent, although the result has some errors after 600 Hz when the 
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input force is acting in positions 2 and 4. Fig. 3.12 shows that the values 

estimated from three input DOFs are more accurate compared to those from 

two input DOFs. However, this condition also has errors when positions 2, 4, 

and 5 are chosen. These results mean that the positions of measuring DOFs are 

also important for estimating the properties of a continuous structure. The 

measuring DOFs and their positions have an effect on the reliable frequency 

range. Fig. 3.13 shows the two stiffnesses estimated from four and six 

measuring DOFs. The reliable frequency range for the values estimated from 

six measuring DOFs is clearly wider than that from four measuring DOFs. 

In conclusion, at least 4 measuring DOFs, 2 boundary DOFs, and 2 non-

boundary DOFs in which force is acting are needed to estimate the boundary 

properties when the component is connected to two boundary conditions. 

However, more measuring DOFs and input DOFs will be needed for more 

accurate results over a wide range of frequencies. Therefore, the number of 

measuring DOFs and input DOFs should be expanded simultaneously for 

estimating the properties as accurately as possible, whereas only the number of 

measuring DOFs should be expanded, while the number of input DOFs are 

same as the number of boundary conditions, for estimating the properties 

efficiently. 
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Figure 3.10 Estimated stiffness on left-hand-side boundary using only single 

input DOF 
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Figure 3.11 Estimated stiffness on left-hand-side boundary using two input 

DOFs 
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Figure 3.12 Estimated stiffness on left-hand-side boundary using three input 

DOFs 
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Figure 3.13 Estimated stiffness on left-hand-side boundary using four and six 

measuring DOFs 
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3.5 Error Analysis for Assessment of Robustness 

 

3.5.1 Derivation of Error Equation 

 

Because measurement noise always exists under practical conditions, the 

robustness of the proposed method should be assessed with contaminated data. 

An equation of estimation error is derived for identifying how the measurement 

errors affect the estimated property. 𝛂𝑖𝑗  and 𝛃𝑖𝑗  are used to simplify the 

derivation. 

𝛂𝑖𝑗 = 𝐓𝑖𝑗,bc − 𝐓𝑖𝑗,bcmm, 

𝛃𝑖𝑗 = 𝐓𝑖𝑗,free −𝐓𝑖𝑗,bc.  
(3.50) 

The measurement errors are added to Eq. (3.27). 

∆𝐌app𝑗𝑗
+ 𝛆𝑗𝑗,𝑒 = ∆𝐦𝑗𝑗(𝛂𝑖𝑗 + 𝛆𝑖𝑗,𝛼)

+
(𝛃𝑖𝑗 + 𝛆𝑖𝑗,𝛽). (3.51) 

where 𝛆𝑗𝑗,𝑒 , 𝛆𝑖𝑗,𝛼  and 𝛆𝑖𝑗,𝛽  are the estimation error, measurement error of 

𝛂𝑖𝑗 and measurement error of 𝛃𝑖𝑗, respectively. Eq. (3.51) is rearranged as 

(𝛂𝑖𝑗 + 𝛆𝑖𝑗,𝛼)(∆𝐦𝑗𝑗)
−1
𝛆𝑗𝑗,𝑒

= (𝛃𝑖𝑗 + 𝛆𝑖𝑗,𝛽) − (𝛂𝑖𝑗 + 𝛆𝑖𝑗,𝛼)(∆𝐦𝑗𝑗)
−1
∆𝐌app𝑗𝑗

. 
(3.52) 

𝛃𝑖𝑗 and 𝛂𝑖𝑗(∆𝐦𝑗𝑗)
−1
∆𝐌app𝑗𝑗

 are canceled. Then, 

(𝛂𝑖𝑗 + 𝛆𝑖𝑗,𝛼)(∆𝐦𝑗𝑗)
−1
𝛆𝑗𝑗,𝑒 = 𝛆𝑖𝑗,𝛽 − 𝛆𝑖𝑗,𝛼(∆𝐦𝑗𝑗)

−1
∆𝐌app𝑗𝑗

. (3.53) 
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By substituting (∆𝐦𝑗𝑗)
−1
∆𝐌app𝑗𝑗

 with (𝛂𝑖𝑗)
+
𝛃𝑖𝑗, the equation is changed 

to 

(𝛂𝑖𝑗 + 𝛆𝑖𝑗,𝛼)(∆𝐦𝑗𝑗)
−1
𝛆𝑗𝑗,𝑒 = 𝛆𝑖𝑗,𝛽 − 𝛆𝑖𝑗,𝛼(𝛂𝑖𝑗)

+
𝛃𝑖𝑗. (3.54) 

Thus, the equation of estimation error can be derived. 

𝛆𝑗𝑗,𝑒 = ∆𝐦𝑗𝑗(𝛂𝑖𝑗 + 𝛆𝑖𝑗,𝛼)
+
{𝛆𝑖𝑗,𝛽(𝛃𝑖𝑗)

+
− 𝛆𝑖𝑗,𝛼(𝛂𝑖𝑗)

+
}𝛃𝑖𝑗 . (3.55) 

𝛆𝑖𝑗,𝛼 and 𝛆𝑖𝑗,𝛽 are errors of 𝛂𝑖𝑗 and 𝛃𝑖𝑗, respectively. 

𝛆𝑖𝑗,𝛼 = 𝛆𝑖𝑗,bc − 𝛆𝑖𝑗,bcmm, 

𝛆𝑖𝑗,𝛽 = 𝛆𝑖𝑗,free − 𝛆𝑖𝑗,bc.  
(3.56) 

Finally, the estimation error is expressed as 

𝛆𝑗𝑗,𝑒 = ∆𝐦𝑗𝑗(𝛂𝑖𝑗 + 𝛆𝑖𝑗,bc − 𝛆𝑖𝑗,bcmm)
+
[𝛆𝑖𝑗,free(𝛃𝑖𝑗)

+

− 𝛆𝑖𝑗,bc {(𝛃𝑖𝑗)
+
+ (𝛂𝑖𝑗)

+
} + 𝛆𝑖𝑗,bcmm(𝛂𝑖𝑗)

+
] 𝛃𝑖𝑗 . 

(3.57) 

Fig. 3.14(a) is the estimation error obtained from subtraction of the 

estimated stiffnesses using noise-free transmissibilities and transmissibilities 

contaminated with 5 % random noise. Fig. 3.14(b) is the estimation error 

obtained by solving the equation (Eq. (3.57)) composed of measurement errors. 

They are almost same as that shown in Fig. 3.15, which shows the difference 

between errors from subtraction and calculation. The equation of estimation 

error is well derived. Thus, figuring out how each measurement error affects 

the estimation error is possible. 
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(a) 

 

(b) 

 

Figure 3.14 Estimation errors: (a) from subtraction and (b) from calculation 
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Figure 3.15 Difference between errors from subtraction and from calculation 
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3.5.2 Effects of Measurement Noise 

 

Transmissibilities contaminated with some normally distributed random 

noise with a mean value of noise-free transmissibilities and variance of 1 %,  

3 % and 5 % of the mean value are used for analyzing the sensitivity of noise 

effects. Before adding the variety level of noise to the transmissibilities, 1 % 

and 5 % random noise are used for investigating the noise effect. Fig. 3.16 

shows the left-hand-side stiffness estimated from transmissibilities 

contaminated with 1 % noise. Fig. 3.17 shows the estimated left-hand-side 

stiffness from the transmissibilities contaminated with 5 % random noise. The 

effect of random noise is shown. It is obvious that the noise effect is amplified 

as the frequency range is increased because the boundary properties are 

estimated from acceleration data. It seems that the distributed random noise is 

amplified based on the exact property, as shown in Fig. 3.16 and Fig. 3.17. The 

error of estimated stiffness from the 5 % noisy transmissibilities is larger than 

that from the 1 % noisy transmissibilities. If the noise of α𝑖𝑗 is smaller than 

α𝑖𝑗 in Eq. (3.57), the estimation error is expressed as a linear combination of 

transmissibility noises. Thus, the noise level in Fig. 3.17 is about 5 times that 

in Fig. 3.16. 
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Figure 3.16 Estimated stiffness on left-hand-side boundary using 

transmissibilities contaminated by 1 % noise 
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Figure 3.17 Estimated stiffness on left-hand-side boundary using 

transmissibilities contaminated by 5 % noise 
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3.5.3 Comparison of Estimated Properties with and without 

Measurement noise  

 

The estimated property contaminated with measurement noise cannot be 

used as is. Thus, the curves should first be smoothed to minimize the noise 

effect, and should then be compared with the exact property for assessing 

whether the estimated value is usable. Fig. 3.18 and Fig. 3.19 show the 

estimated stiffness and the structural damping, respectively, on both sides with 

contaminated transmissibilities after smoothing the curves. The estimated 

properties on both sides seem to agree well with the exact properties. However, 

errors increase as the noise level increases in the lower frequency range. 

Specifically, errors of the right-hand-side properties shown in Fig. 3.18(a) and 

Fig. 3.19(a) are larger than those of the left-hand-side properties shown in Fig. 

3.18(b) and Fig. 3.19(b). The proposed method uses the transmissibilities under 

three different conditions. In Eq. (3.27), because T𝑖𝑗,bc and T𝑖𝑗,bcmm are not 

very different in the lower frequency range where the effect of mass is small, 

accurate transmissibilities are needed for estimating the boundary properties 

accurately. For this reason, the properties are not estimated well in the lower 

frequency range even though the transmissibilities have a low level of noise. 

Of course, the accuracy can be improved by using the stiffness modification 
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technique or a heavier mass. However, use of the stiffness modification 

technique is not possible under practical conditions and increasing the mass has 

a limitation. The errors of the right-hand-side stiffness are larger than those of 

the left-hand-side stiffness at lower frequencies because identical 1 kg masses 

are used for estimating the boundary properties even though the right-hand-side 

boundary properties are 5 times higher than the left-hand-side boundary 

properties. Under these conditions, the left-hand-side boundary properties can 

be estimated more accurately than the right-hand-side-boundary properties. 

Increasing the mass on the right-hand-side boundary could give improved 

results for the right-hand-side boundary properties. Thus, errors in the lower 

frequency range should be considered before using the proposed method. 
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(a) 

 

(b) 

 

Figure 3.18 Estimated stiffness with polluted transmissibilities: (a) on left-

hand-side boundary after smoothing and (b) on right-hand-side boundary after 

smoothing 
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(a) 

 

(b) 

 

Figure 3.19 Estimated structural damping with polluted transmissibilities: (a) 

on left-hand-side boundary after smoothing and (b) on right-hand-side 

boundary after smoothing 
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3.5.4 Comparison of Estimation Errors with and without 

Measurement noise  

 

Fig. 3.20 and Fig. 3.21 show the estimation errors of stiffness and 

structural damping, respectively, on both sides with contaminated 

transmissibilities after smoothing the curves. The error tends to increase as the 

noise level increases even though the curves are smoothed. Fig. 3.20(b) 

supports the hypothesis of the proposed method that the right-hand-side 

stiffness is estimated well with about 5 % error of maximum discrepancy. Fig. 

3.20(a) shows that the errors of right-hand-side stiffness look larger than those 

of left-hand-side stiffness. However, the maximum discrepancy of estimation 

error is about 10 %, which can be considered a satisfactory result. The 

estimation errors of structural damping in Fig. 3.21 show the same tendencies 

as Fig. 3.20. In conclusion, after exponential smoothing, the estimated 

properties on both sides give fairly reliable results over a wide frequency range. 
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(a) 

 

(b) 

 

Figure 3.20 Errors between estimated and exact stiffness on both sides: (a) left-

hand-side stiffness after smoothing and (b) right-hand-side stiffness after 

smoothing 
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(a) 

 

(b) 

 

Figure 3.21 Errors between estimated and exact structural damping on both 

sides: (a) left-hand-side structural damping after smoothing and (b) right-hand-

side structural damping after smoothing 
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3.6 Summary and Conclusion 

 

In this Chapter, a new methodology for using the transmissibility for 

identifying the boundary properties is proposed. This method differs from all 

previous studies that use FRFs for property estimation. The transmissibilities 

acquired from the component under three different conditions are used for 

defining the relation. In many practical cases, the force cannot be measured 

easily because the components constituting the entire system are assembled 

compactly. By using only the response data, the effects caused by incorrectly 

measured forces exerted on the component connected to the entire system could 

be reduced. This could be applied to all components connected to any boundary 

systems as far as sensors can be installed. 

This method is validated numerically using discrete and continuous 

models. A 2-DOF discrete system with a single boundary condition and a 4-

DOF discrete system with multiple boundary conditions are adopted to verify 

the proposed method. In both discrete models, the boundary properties are 

extracted exactly. This method is also validated with a beam model, which is a 

continuous system with the simplest structural form. For comparing the exact 

properties and estimated properties directly, the stiffness and structural 

damping are given as boundary properties. This means that the real values and 
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imaginary values of the estimated properties represent the stiffness and 

structural damping, respectively. The results indicated that the method is still 

valid in a continuous model system. Furthermore, the robustness of the method 

is investigated by assessing how the estimation error is affected by 

measurement noise of contaminated transmissibilities. The properties estimated 

with noisy data still give satisfactory results after smoothing the curves. Overall, 

this study shows that the proposed methodology is fully reliable, and it can be 

expected to contribute to research and development by being used for 

identifying the boundary properties and by being applied to components in the 

early design phase before producing a real component. 
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CHAPTER 4 

 

RELATIVE SENSITIVITY ANALYSIS  

 

4.1 Introduction 

 

The primary purpose of the work described in this Chapter is to suggest 

sensitivity indices expressed by transmissibility for relative sensitivity analysis 

of responses. Recently, Kim et al. [58] proposed a new approach for sensitivity 

analysis that can indicate the proper location for design modification using only 

the response data, without identifying the system characteristics under intact 

conditions. They used the transmissibility concept to derive the equation. They 

used only the output data to derive the equation for the nodal sensitivity, without 

system identification. However, the derived equation is applicable only to the 

mass variable. In addition, it was assumed that the response variation of the 

reference node with respect to a small mass modification applied to node 𝑖 is 

small enough to be ignored. This indicates that the crosstalk was not considered. 

In practical situations, the mass modification at specific node has an effect on 

the response at the other nodes according to characteristics of frequency 

response functions because mass variation could be considered as force 
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variation. Therefore, crosstalk should be considered while indicating the 

location where the design modification needs to be applied for obtaining more 

reasonable information.  

The present study does not merely adopt the transmissibility concept to 

calculate the relative sensitivity, but also considers the crosstalk effects between 

nodes. The indices, including the crosstalk effects, could give meaningful 

information about the relative sensitivity of the responses. Two types of indices 

related to each variable are proposed: sensitivity indices of the response for 

positions of variables, and the sensitivity indices of responses for positions of 

responses. The former indicates the appropriate position where the design 

variable could be modified, while the latter indicates the effect of a specific 

design variable on the responses. These indices are applicable for mass, 

stiffness, and damping. The proposed indices were analytically and numerically 

investigated to determine whether they adequately reflect the relative changes 

in response to small design modifications. The analytical model of a 7-DOF 

discrete system and two numerical beam models were used for verification and 

application examples. 
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4.2 Sensitivity Indices  

 

In this Chapter, sensitivity indices are proposed to analyze the relative 

sensitivity characteristics of responses using transmissibility. The purpose is to 

indicate sensitive position in a component with respect to design variables in a 

specific position only using response data. 

A general system composed of three different coordinates is considered as 

shown in Fig. 4.1. An external force is applied to the 𝑖 coordinate, and a small 

design modification is applied to the 𝑗 coordinate. The target set is indicated 

as the 𝑡 coordinate. The equation of motion using the apparent mass (𝐌app) 

and acceleration is 

𝐌app𝐚 = 𝐅. (4.1) 

The apparent mass is expressed as 

𝐌app = (𝐌−
𝐊+ j𝜔𝐂

𝜔2
), (4.2) 

where 𝐌 , 𝐂 , 𝐊 , 𝜔 , 𝐚 , and 𝐅  denote the mass, viscous damping, stiffness, 

angular frequency, acceleration, and force, respectively. A direct differentiation 

method is applied to Eq. (4.1) to derive the response sensitivity as follows: 

𝜕𝐌app

𝜕𝑣𝑗
𝐚+𝐌app

𝜕𝐚

𝜕𝑣𝑗
=
𝜕𝐅

𝜕𝑣𝑗
. (4.3) 

Eq. (4.3) can be rearranged using the accelerance matrix 𝐇 as follows: 
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𝜕𝐚

𝜕𝑣𝑗
= 𝐇(

𝜕𝐅

𝜕𝑣𝑗
−
𝜕𝐌app

𝜕𝑣𝑗
𝐚). (4.4) 

All apparent masses and external forces except for 𝐌app𝑗𝑗
  are excluded 

because small design modifications are only applied to the 𝑗  coordinate. 

Hence, the equation is changed as follows: 

{
  
 

  
 
𝜕𝐚𝑖
𝜕𝑣𝑗
𝜕𝐚𝑗

𝜕𝑣𝑗
𝜕𝐚𝑡
𝜕𝑣𝑗}

  
 

  
 

= [

𝐇𝑖𝑖 𝐇𝑖𝑗 𝐇𝑖𝑡
𝐇𝑗𝑖
𝐇𝑡𝑖

𝐇𝑗𝑗 𝐇𝑗𝑡
𝐇𝑡𝑗 𝐇𝑡𝑡

]{

𝟎

−
𝜕𝐌app

𝜕𝑣𝑗
𝐚𝑗

𝟎

}. (4.5) 

In Eq. (4.5), −
𝜕𝐌app

𝜕𝑣𝑗
𝐚𝑗  can be considered an infinitesimal added force 

resulting from the design variables. Consequently, response sensitivities to the 

design variables can be obtained by using the infinitesimal added force 

produced by design modifications and accelerances of the system: 

𝜕𝐚𝑖
𝜕𝑣𝑗

= 𝐇𝑖𝑗 (−
𝜕𝐌app

𝜕𝑣𝑗
𝐚𝑗), 

𝜕𝐚𝑗

𝜕𝑣𝑗
= 𝐇𝑗𝑗 (−

𝜕𝐌app

𝜕𝑣𝑗
𝐚𝑗), 

𝜕𝐚𝑡
𝜕𝑣𝑗

= 𝐇𝑡𝑗 (−
𝜕𝐌app

𝜕𝑣𝑗
𝐚𝑗). 

(4.6) 

The derivative of the apparent masses to the design variable and the responses 

play a role as an added infinitesimal force. Response sensitivities are expressed 

by this force and accelerance. Hence, a small design modification generates the 
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force that results in changes in the responses in a component. The accelerances 

should be known to obtain the exact value of response sensitivity. However, 

relative sensitivity of responses can be analyzed by introducing a sensitivity 

index based on the transmissibility concept that does not require an input force. 

The general form of sensitivity index can be defined as follows: 

𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 𝐈𝐧𝐝𝐞𝐱 =
𝑆𝑘

∑ 𝑆𝑖
𝑛
𝑖=1

. (4.7) 

𝑆𝑘 is a sensitivity of response at position 𝑘 with respect to variable. The nodes 

influencing response sensitivity are different based on the type of variable. 

Response sensitivities are affected by a single node when a design variable 

corresponds to a mass, and by two nodes connected to each other when the 

design variables correspond to stiffness and damping. 
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Figure 4.1 Schematic model of system 
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4.2.1 Sensitivity Indices with respect to Mass  

 

4.2.1.1 Sensitivity Index for Positions of Variable: 𝐒𝐈(𝒎𝒊, 𝒓𝒌)  

 

SI(𝑚𝑖, 𝑟𝑘) =
𝐻𝑘𝑖𝑎𝑖

∑ 𝐻𝑘𝑗𝑎𝑗
𝑛
𝑗=1

. (4.8) 

SI(𝑚𝑖, 𝑟𝑘) is the sensitivity index of a response at node 𝑘 with respect to 

the mass at node 𝑖, and is used to identify the sensitive position at which a 

small mass modification can be applied. By using the reciprocity theorem, the 

equation is changed as follows: 

SI(𝑚𝑖, 𝑟𝑘) =
𝑎𝑖

∑ 𝑇𝑗𝑖,𝑓𝑘𝑎𝑗
𝑛
𝑗=1

, (4.9) 

where 𝑇𝑗𝑖,𝑓𝑘  and 𝑎𝑖 denote the transmissibility from node 𝑖 to node 𝑗 when 

the external force is applied to node 𝑘  and the response in operational 

conditions, respectively. The sensitivity index can be simply expressed by 

transmissibilities as follows: 

SI(𝑚𝑖, 𝑟𝑘) =
1

∑ 𝑇𝑗𝑖,𝑓𝑘𝑇𝑗𝑖,𝑓𝑠
𝑛
𝑗=1

. (4.10) 

In Eq. (4.10), 𝑓𝑠 denotes the operating force of a source acting on a specific 

node. The specific node where the external force acts can be varied based on 

system assembly. 
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4.2.1.2 Sensitivity Index for Positions of Response: 𝐒𝐈(𝒎𝒌, 𝒓𝒊)  

 

SI(𝑚𝑘, 𝑟𝑖) =
𝐻𝑖𝑘𝑎𝑘

∑ 𝐻𝑗𝑘𝑎𝑘
𝑛
𝑗=1

. (4.11) 

SI(𝑚𝑘 , 𝑟𝑖)  denotes sensitivity index of the response at node 𝑖  with 

respect to the mass at node 𝑘 for analyzing the manner in which the responses 

are mostly affected by a small mass modification. It should be noted that 𝑎𝑘, 

which corresponds to the operating acceleration at the node where the design 

variable was modified, is excluded. The sensitivity index is simply expressed 

by transmissibility as follows: 

SI(𝑚𝑘, 𝑟𝑖) =
1

∑ 𝑇𝑗𝑖,𝑓𝑘
𝑛
𝑗=1

. (4.12) 

The SI(𝑚𝑘 , 𝑟𝑖) is independent of the source. 
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4.2.2 Sensitivity Indices with respect to Stiffness 

 

4.2.2.1 Sensitivity Index for positions of variable: 𝐒𝐈(𝒌𝒊𝒋, 𝒓𝒌) 

 

SI(𝑘𝑖𝑗, 𝑟𝑘)

=
𝐻𝑘𝑖 (−

1

𝜔2
) (𝑎𝑖 − 𝑎𝑗) − 𝐻𝑘𝑗 (−

1

𝜔2
) (𝑎𝑖 − 𝑎𝑗)

∑ ∑ {𝐻𝑘𝑟 (−
1

𝜔2
) (𝑎𝑟 − 𝑎𝑠) − 𝐻𝑘𝑠 (−

1

𝜔2
) (𝑎𝑟 − 𝑎𝑠)}

𝑛
𝑠=𝑟+1

𝑛−1
𝑟=1

. 
(4.13) 

SI(𝑘𝑖𝑗, 𝑟𝑘) corresponds to the sensitivity index of the response at node 𝑘 

with respect to stiffness between node 𝑖 and node 𝑗 to identify the sensitive 

position at which the small stiffness modification can be applied. Infinitesimal 

force is a result of the difference in acceleration between two nodes (node 𝑖 

and 𝑗) connected to each other by stiffness. There is no resultant force when 

the stiffness between node 𝑖 and node 𝑗 does not exist. Thus, it is necessary 

to calculate 𝐻𝑘𝑖 (−
1

𝜔2
) (𝑎𝑖 − 𝑎𝑗) − 𝐻𝑘𝑗 (−

1

𝜔2
) (𝑎𝑖 − 𝑎𝑗)  only when the 

stiffness exists. 

By using reciprocity theorem, Eq. (4.13) can be rewritten as follows: 

SI(𝑘𝑖𝑗, 𝑟𝑘) =
(𝐻𝑖𝑘 −𝐻𝑗𝑘)(𝑎𝑖 − 𝑎𝑗)

∑ ∑ (𝐻𝑟𝑘 −𝐻𝑠𝑘)(𝑎𝑟 − 𝑎𝑠)
𝑛
𝑠=𝑟+1

𝑛−1
𝑟=1

. (4.14) 

Eq. (4.14) can be expressed by transmissibility using 𝐻𝑘𝑘
−1 as follows: 

SI(𝑘𝑖𝑗, 𝑟𝑘) =
(𝑇𝑖𝑘,𝑓𝑘 − 𝑇𝑗𝑘,𝑓𝑘)(𝑎𝑖 − 𝑎𝑗)

∑ ∑ (𝑇𝑟𝑘,𝑓𝑘 − 𝑇𝑠𝑘,𝑓𝑘)(𝑎𝑟 − 𝑎𝑠)
𝑛
𝑠=𝑟+1

𝑛−1
𝑟=1

. (4.15) 
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where 𝑎𝑖  and 𝑎𝑗  denote responses at operational conditions. Thus, the 

sensitivity index can be simply expressed using transmissibilities as follows: 

SI(𝑘𝑖𝑗, 𝑟𝑘) =
(𝑇𝑖𝑘,𝑓𝑘 − 𝑇𝑗𝑘,𝑓𝑘)(1 − 𝑇𝑗𝑖,𝑓𝑠)

∑ ∑ (𝑇𝑟𝑘,𝑓𝑘 − 𝑇𝑠𝑘,𝑓𝑘)(𝑇𝑟𝑖,𝑓𝑠 − 𝑇𝑠𝑖,𝑓𝑠)
𝑛
𝑠=𝑟+1

𝑛−1
𝑟=1

. (4.16) 

 

4.2.2.2 Sensitivity Index for positions of response: 𝐒𝐈(𝒌𝒌𝒍, 𝒓𝒊) 

 

SI(𝑘𝑘𝑙 , 𝑟𝑖) =
𝐻𝑖𝑘 (−

1

𝜔2
) (𝑎𝑘 − 𝑎𝑙) − 𝐻𝑖𝑙 (−

1

𝜔2
) (𝑎𝑘 − 𝑎𝑙)

∑ {𝐻𝑗𝑘 (−
1

𝜔2
) (𝑎𝑘 − 𝑎𝑙) − 𝐻𝑗𝑙 (−

1

𝜔2
) (𝑎𝑘 − 𝑎𝑙)}

𝑛
𝑗=1

. (4.17) 

SI(𝑘𝑘𝑙 , 𝑟𝑖)  denotes the sensitivity index of response at node 𝑖  with 

respect to stiffness between node 𝑘 and node 𝑙 for analyzing the manner in 

which the responses are affected by the small stiffness modification. The 

acceleration effect is excluded in this case and the equation is simplified as 

follows: 

SI(𝑘𝑘𝑙, 𝑟𝑖) =
𝐻𝑖𝑘 −𝐻𝑖𝑙

∑ (𝐻𝑗𝑘 −𝐻𝑗𝑙)
𝑛
𝑗=1

. (4.18) 

However, the index cannot be easily expressed by transmissibility because 

the equation is composed of FRFs, 𝐻𝑖𝑘 and 𝐻𝑖𝑙, which require the application 

of input forces to different positions. Thus, it is necessary to slightly modify the 

equation by using a mathematical technique to express the index by 

transmissibility. The sensitivity index related to stiffness can be redefined after 
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modifying the numerator of the index by multiplying the inverse of the driving 

point inertance at node 𝑘. This is expressed as follows: 

(𝐻𝑖𝑘 − 𝐻𝑖𝑙)𝐻𝑘𝑘
−1 = 𝑇𝑖𝑘,𝑓𝑘 −𝐻𝑖𝑙𝐻𝑘𝑘

−1. (4.19) 

The second term on the right-hand side of Eq. (4.19) can be modified using 

𝐻𝑘𝑙
−1𝐻𝑘𝑙 as follows: 

𝑇𝑖𝑘,𝑓𝑘 −𝐻𝑖𝑙𝐻𝑘𝑙
−1𝐻𝑘𝑙𝐻𝑘𝑘

−1 = 𝑇𝑖𝑘,𝑓𝑘 − 𝑇𝑖𝑘,𝑓𝑙𝐻𝑘𝑙𝐻𝑘𝑘
−1. (4.20) 

𝐻𝑘𝑙 in Eq. (4.20) can be changed as 𝐻𝑙𝑘 by using the reciprocity theorem, and 

thus the equation is expressed as follows: 

(𝐻𝑖𝑘 − 𝐻𝑖𝑙)𝐻𝑘𝑘
−1 = 𝑇𝑖𝑘,𝑓𝑘 − 𝑇𝑖𝑘,𝑓𝑙𝑇𝑙𝑘,𝑓𝑘 . (4.21) 

Although Eq. (4.21) also required the application of input forces to different 

positions, the information regarding forces does not need to be known because 

the equation was expressed in terms of transmissibilities. Finally, the index is 

redefined as follows: 

SI(𝑘𝑘𝑙 , 𝑟𝑖) =
(𝑇𝑖𝑘,𝑓𝑘 − 𝑇𝑖𝑘,𝑓𝑙𝑇𝑙𝑘,𝑓𝑘)

∑ (𝑇𝑗𝑘,𝑓𝑘 − 𝑇𝑗𝑘,𝑓𝑙𝑇𝑙𝑘,𝑓𝑘)
𝑛
𝑗=1

. (4.22) 
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4.2.3 Sensitivity Indices with respect to Damping 

 

The process to obtain the index related to damping is identical to that for 

obtaining the index related to stiffness except for the derivative of apparent 

mass. Therefore, the sensitivity indices with respect to damping are also the 

same as those with respect to stiffness. 

 

4.2.3.1 Sensitivity Index for positions of variable: 𝐒𝐈(𝒄𝒊𝒋, 𝒓𝒌) 

 

SI(𝑐𝑖𝑗, 𝑟𝑘) =
(𝑇𝑖𝑘,𝑓𝑘 − 𝑇𝑗𝑘,𝑓𝑘)(1 − 𝑇𝑗𝑖,𝑓𝑠)

∑ ∑ (𝑇𝑟𝑘,𝑓𝑘 − 𝑇𝑠𝑘,𝑓𝑘)(𝑇𝑟𝑖,𝑓𝑠 − 𝑇𝑠𝑖,𝑓𝑠)
𝑛
𝑠=𝑟+1

𝑛−1
𝑟=1

. (4.23) 

 

4.2.3.2 Sensitivity Index for positions of response: 𝐒𝐈(𝒄𝒌𝒍, 𝒓𝒊) 

 

SI(𝑘𝑘𝑙 , 𝑟𝑖) =
(𝑇𝑖𝑘,𝑓𝑘 − 𝑇𝑖𝑘,𝑓𝑙𝑇𝑙𝑘,𝑓𝑘)

∑ (𝑇𝑗𝑘,𝑓𝑘 − 𝑇𝑗𝑘,𝑓𝑙𝑇𝑙𝑘,𝑓𝑘)
𝑛
𝑗=1

. (4.24) 
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4.3 Verification and Application Examples 

 

4.3.1 MDOF discrete model 

 

The proposed indices are verified by using a one-dimensional 7-DOF 

discrete model as shown in Fig. 4.2. The system is assembled by springs and 

dampers with the system parameter properties as shown in Table 4.1. 

Normalized response variations (NRVs), when the external force is assumed as 

a unit force acting on node 1 (𝑚1 ), are adopted as indicators to verify the 

proposed sensitivity indices. The four types of NRVs are defined as follows: 

NRV(𝑚𝑖, 𝑟𝑘) =
∆𝑎𝑘(𝑚𝑖)

∑ ∆𝑎𝑘(𝑚𝑗)
𝑛
𝑗=1

,        

NRV(𝑚𝑘, 𝑟𝑖) =
∆𝑎𝑖(𝑚𝑘)

∑ ∆𝑎𝑗(𝑚𝑘)
𝑛
𝑗=1

,        

NRV(𝑘𝑖𝑗, 𝑟𝑘) =
∆𝑎𝑘(𝑘𝑖𝑗)

∑ ∑ ∆𝑎𝑘(𝑘𝑟𝑠)
𝑛
𝑠=𝑟+1

𝑛−1
𝑟=1

, 

NRV(𝑘𝑘𝑙 , 𝑟𝑖) =
∆𝑎𝑖(𝑘𝑘𝑙)

∑ ∆𝑎𝑗(𝑘𝑘𝑙)
𝑛
𝑗=1

.        

(4.25) 

Additionally, 0.01 kg mass and 15,000 N/m stiffness are added to the 

MDOF model for small design modifications. Fig. 4.3 shows the sensitivity 

indices and normalized response variations that represent SI(𝑚𝑖, 𝑟2) , and 

NRV(𝑚𝑖, 𝑟2) , respectively. Specifically, 0.01 kg mass is added on node 1 to 

node 6 sequentially to calculate the NRV(𝑚𝑖, 𝑟2). Fig. 4.4 shows the SI(𝑚2, 𝑟𝑖) 
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and NRV(𝑚2, 𝑟𝑖). In this case, a 0.01 kg mass is added on node 2 to identify 

the NRVs of nodes due to mass modification. Fig. 4.5 and 4.6 indicate results 

related to stiffness modifications in the same manner as the results related to 

mass modification shown in Fig. 4.3 and 4.4. Fig. 4.5 shows the SI(𝑘𝑖𝑗 , 𝑟2) 

and NRV(𝑘𝑖𝑗, 𝑟2) . Furthermore, a stiffness of 15,000 N/m is added on 

stiffnesses (𝑘23, 𝑘24, 𝑘34, 𝑘35, 𝑘45) to calculate the NRV(𝑘𝑖𝑗, 𝑟2). Fig. 4.6 

shows the SI(𝑘23, 𝑟𝑖)  and NRV(𝑘23, 𝑟𝑖)  that represent sensitivity 

characteristics due to stiffness 𝑘23. All the results indicate that the sensitivity 

indices exactly express the sensitivity characteristics of the system by showing 

that the NRVs (Fig. 4.3(b), 4.4(b), 4.5(b), 4.6(b)) agreed well with the SIs (Fig. 

4.3(a), 4.4(a), 4.5(a), 4.6(a)) for all frequency ranges. 
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Figure 4.2 7-DOF discrete model 
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Table 4.1 System parameter properties of 7-DOF model 

Mass (kg) Stiffness (N m−1) Damping (N s m−1) 

𝑚1 = 30 𝑘1 = 10×10
6 𝑘35 = 4×10

6  𝑐1 = 500  𝑐35 = 200 

𝑚2 = 9  𝑘12 = 1×10
6  𝑘37 = 3×10

6  𝑐12 = 100 𝑐37 = 300 

𝑚3 = 15 𝑘13 = 2×10
6  𝑘45 = 2.5×10

6 𝑐13 = 150 𝑐45 = 125 

𝑚4 = 12 𝑘23 = 1.5×10
6 𝑘46 = 3.4×10

6 𝑐23 = 125 𝑐46 = 400 

𝑚5 = 27 𝑘24 = 2×10
6  𝑘5 = 8×10

6   𝑐24 = 300 𝑐5 = 400  

𝑚6 = 15 𝑘26 = 1.2×10
6 𝑘6 = 6×10

6   𝑐26 = 300 𝑐6 = 210  

𝑚7 = 24 𝑘34 = 3.5×10
6 𝑘7 = 7×10

6   𝑐34 = 275 𝑐7 = 320  
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(a) 

 

(b) 

 

Figure 4.3 (a) Sensitivity index of node 2 with respect to mass on node 𝒊, and 

(b) normalized response variations on node 2 due to small mass modification 

on node 𝒊  
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(a) 

 

(b) 

 

Figure 4.4 (a) Sensitivity index of node 𝑖 with respect to mass on node 2, and 

(b) normalized response variations on node 𝑖 due to small mass modification 

on node 2 
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(a) 

 

(b) 

 

Figure 4.5 (a) Sensitivity index of node 2 with respect to stiffness between node 

𝑖 and node 𝑗, and (b) normalized response variations on node 2 due to small 

stiffness modification between node 𝑖 and node 𝑗 
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(a) 

 

(b) 

 

Figure 4.6 (a) Sensitivity index of node 𝑖  with respect to stiffness between 

node 2 and node 3, and (b) normalized response variations on node 𝑖 due to 

small stiffness modification between node 2 and node 3 
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4.3.2 Finite Beam Model  

 

The proposed indices related to mass and stiffness are validated below 

numerically using two different models that are sufficiently simplified to be 

investigated. A single beam and two beams connected to each other with three 

stiffnesses are used to validate the indices with respect to mass and stiffness, 

respectively. It is assumed that the external force acts on node 1 and that only 

the z-directional accelerations in the beam models are used to validate the 

indices. 

 

4.3.2.1 Results for Mass Variable 

 

Only a single beam with boundary conditions satisfies the necessary 

conditions such that it can be used to validate the indices with respect to mass. 

Both sides of the beam model are simply supported by boundary conditions. 

Fig. 4.7(a) and 4.7(b) show the original numerical model and an example of a 

numerical model modified by adding a small concentrated mass to the node 𝑖, 

respectively to investigate the validity of the indices. A 0.0001 kg concentrated 

mass is added to achieve the normalized response variations used as indicators 

and a 20 N force acts on node 1 as an external force. The node numbers of the 
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beam model are denoted as 1 to 5 from left to right. Table 4.2 shows the 

properties of the numerical model shown in Fig. 4.7. 

Fig. 4.8(a) and 4.8(b) show SI(𝑚𝑖, 𝑟2)  and NRV(𝑚𝑖, 𝑟2) . They 

correspond well for almost all frequency ranges. However, there are some 

frequency ranges at which the indicators do not match with the index, and these 

ranges approximately correspond to 189 Hz, 610 Hz, and 1300 Hz in Fig. 4.9(a) 

and 4.9(b). Specifically, NRV(𝑚2, 𝑟𝑖)  denotes the normalized response 

variations with respect to the mass on node 2. It is necessary to obtain response 

variations due to the added mass when an external force acts on node 1. As 

shown in Fig. 4.10, 𝐻12  exhibits anti-resonance at the frequencies as 

explained above. This implies that the added mass on node 2 has little effect on 

the response variations at these frequencies. Thus, the variations obtained from 

the numerical beam model can have errors with respect to the anti-resonance 

frequencies of 𝐻12. That is, the indices yield very reliable results with respect 

to sensitivity characteristics related to mass in all frequency ranges although 

there are discrepancies between the index and indicator at the anti-resonance 

frequency of 𝐻12. 
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(a) 

 

(b) 

 

Figure 4.7 Beam structures: (a) Original, (b) after small mass modification 
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Table 4.2 Properties of beam model for validation of sensitivity indices with 

respect to mass 

 Beam Model 

Width (m) 0.05 

Height (m) 0.015 

Length (m) 0.5 

Material Steel 

Young’s modulus, E (kg m−1 s−2) 2.1×1011 

Poisson’s ratio, nu 0.27 

Mass density (kg m−3) 7850 

Stiffness of left b.c (N m−1) 106 

Stiffness of right b.c (N m−1) 5×106 

Structural damping of left b.c (N m−1) 103 

Structural damping of right b.c (N m−1) 5×103 

Small concentrated mass added on node 𝑖 (kg) 0.0001 
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(a) 

 

(b) 

 

Figure 4.8 (a) Sensitivity index of node 2 with respect to mass on node 𝑖, and 

(b) normalized response variations on node 2 due to small mass modification 

on node 𝑖 
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(a) 

 

(b) 

 

Figure 4.9 (a) Sensitivity index of node 𝑖 with respect to mass on node 2, and 

(b) normalized response variations on node 𝑖 due to small mass modification 

on node 2 



 

94 

 

 

Figure 4.10 Frequency response function, 𝐻21 
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4.3.2.2 Results for Stiffness Variable 

 

Sensitivity with respect to stiffness is important in several practical 

conditions. The most common case involves that of the joint system. However, 

as it is difficult to precisely model a real joint system, a simplified model 

composed of joints represented by simple stiffness is used. The model involves 

two beams that are simply supported by grounding stiffnesses and are 

connected to each other using joint stiffness. Although this does not represent 

practical conditions, it does not have a problem in validating the indices related 

to stiffness. Fig. 4.11(a) and 4.11(b) show the original numerical model and an 

example of a numerical model modified by adding small stiffness to node 𝑖 

and node 𝑗, respectively to investigate the validity of the indices. A stiffness of 

15,000 N/m is added to achieve normalized response variations used as 

indicators. The node numbers correspond to 1 to 5 from left to right in the upper 

beam and to 6 to 10 from left to right in the lower beam. Table 4.3 shows the 

properties of the numerical model shown in Fig. 4.11. 

Fig. 4.12(a) and 4.12(b) show SI(𝑘𝑖𝑗, 𝑟10)  and NRV(𝑘𝑖𝑗, 𝑟10) , 

respectively. They correspond well in almost all frequency ranges. However, in 

the case of the SI(𝑘27, 𝑟𝑖) and NRV(𝑘27, 𝑟𝑖), there is also a discrepancy in the 

frequency range at approximately 1340 Hz. Unlike the mass modification case, 
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the response variations with respect to stiffness are affected by two nodes that 

are connected by the modified stiffness 𝑘27 . Thus the frequency ranges of 

discrepancy between the indices and indicators are related to 𝐻21 and 𝐻71. 

The force caused by the modified stiffness (𝑘27) is the result of the difference 

between the accelerations 𝑎2  and 𝑎7 . This indicates that the errors of 

NRV(𝑘27, 𝑟𝑖)  can appear in the anti-resonance of differences between 𝐻21 

and 𝐻71 in the numerical simulation. Fig. 4.15 shows the difference between 

𝐻21 and 𝐻71. Given that anti-resonance occurs at approximately 1340 Hz, the 

indicators exhibit errors in this frequency range. Thus, the index does not 

exhibit problems in any frequency range. 
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(a) 

 

(b) 

 

Figure 4.11 Beam structures: (a) Original, (b) after small stiffness modification 
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Table 4.3 Properties of beam model for validation of sensitivity indices with 

respect to stiffness 

 Beam model 

Stiffness of upper left b.c (N m−1) 106 

Stiffness of upper right b.c (N m−1) 5×106 

Stiffness of lower left b.c (N m−1) 6×106 

Stiffness of lower right b.c (N m−1) 2×106 

Structural damping of upper left b.c (N m−1) 103 

Structural damping of upper right b.c (N m−1) 5×103 

Structural damping of lower left b.c (N m−1) 6×103 

Structural damping of lower right b.c (N m−1) 2×103 

Stiffness between node 2 and node 7 (N m−1) 106 

Stiffness between node 3 and node 8 (N m−1) 2×106 

Stiffness between node 4 and node 9 (N m−1) 3×106 

Small stiffness added on node 𝑖 and node 𝑗 (N m−1) 15,000 

 

  



 

99 

 

(a) 

 

(b) 

 

Figure 4.12 (a) Sensitivity index of node 10 with respect to stiffness between 

node 𝑖 and node 𝑗, and (b) normalized response variations on node 10 due to 

small stiffness modification between node 𝑖 and node 𝑗 
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(a) 

 

(b) 

 

Figure 4.13 (a) Sensitivity index of node 𝑖  (1~5) with respect to siffness 

between node 2 and node 7, and (b) normalized response variations on node 𝑖 

(1~5) due to small stiffness modification between node 2 and node 7 
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(a) 

 

(b) 

 

Figure 4.14 (a) Sensitivity index of node 𝑖  (6~10) with respect to siffness 

between node 2 and node 7, and (b) normalized response variations on node 𝑖 

(6~10) due to small stiffness modification between node 2 and node 7 
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Figure 4.15 FRF difference between 𝐻21 and 𝐻71 
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4.4 Summary and Conclusion 

 

In this Chapter, new sensitivity indices are proposed to analyze the relative 

sensitivity of responses with respect to design variables using transmissibility. 

More reasonable information could be obtained by considering crosstalk effects 

between nodes. Two types of sensitivity indices are proposed with respect to 

design variables and defined as SI(𝑉𝑖, 𝑅𝑘)  and SI(𝑉𝑘, 𝑅𝑖) . Specifically, 𝑉 

and 𝑅  are the variable and response, respectively. The indices provide 

information related to appropriate positions at which a small design 

modification can be applied and the manner in which the responses are mostly 

affected by the design variable at specific position. A 7-DOF discrete model is 

adopted to verify the indices. The indices are compared to indicators 

representing normalized response variations between the components before 

and after applying the small design modifications. Furthermore, two beam 

models are used to validate the indices with respect to mass and stiffness in 

more practical applications. The results in both cases indicate that the indices 

correspond well with the indicators at all frequencies. In conclusion, the 

proposed indices are validated and it is expected that the proposed indices will 

provide useful information of sensitivity characteristics to reduce vibrational 

problems in more practical conditions with easily measured response data. 
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CHAPTER 5 

 

Conclusions 

 

In this thesis, new approaches for boundary identification and relative 

sensitivity analysis by using transmissibility are presented. They are important 

parts in developing process of vibrational characteristic improvements. 

Because only responses are included in transmissibility, unlike FRFs that 

include input force measurements, the measurement errors caused by an 

incorrectly measured force can be excluded by adopting transmissibility to 

developing process. 

The equation for estimating boundary properties is derived by 

investigating the difference in transmissibilities defined by the apparent masses 

under different conditions. Discrete models containing a single boundary 

condition and multiple boundary conditions are used for verification of the 

proposed method. Single boundary properties can be estimated by a very simple 

and intuitive process, while the multiple boundary properties can be estimated 

by using transmissibility matrix. The results from discrete models show that the 

properties are estimated well. In addition, a beam model is used to investigate 

whether the method can be expanded to be applicable to real structures. It has 
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been found that the boundary properties can be estimated with very good 

accuracy. Further, the effects of the numbers and positions of DOFs have been 

studied. The number of measuring DOFs and input DOFs should be expanded 

simultaneously for estimating the properties as accurately as possible, whereas 

only the number of measuring DOFs should be expanded, while the number of 

input DOFs are same as the number of boundary conditions, for estimating the 

properties efficiently. The robustness of the method also assessed by deriving 

the error equation with measurement noise. It was found that the method is 

robust to measurement noise by showing fairly reliable results over a wide 

frequency range. 

The sensitivity indices of the response for positions of variables and the 

sensitivity indices of responses for positions of responses are developed to 

analyze relative sensitivity of responses. The indices are based on 

transmissibility. The former indicates the appropriate position where the design 

variable could be modified, while the latter indicates the effect of a specific 

design variable on the responses. Crosstalk effects are considered, and the 

indices are applicable for mass, stiffness, and damping. A 7-DOF discrete 

model and two numerical beam models are used to verify the indices by 

investigating whether the indices reflect the relative changes in response to 

small design modifications. It was found that the indices represent the relative 
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changes well by giving the reliable results in both cases.  

As for future work, it would be desirable to consider rotational DOFs. The 

general derivation of the equations with the rotational DOFs is identical to that 

explained in the thesis. For including the rotational DOFs, some matrices 

should be expanded. Thus, the derived equations have no problem for including 

the rotational DOFs theoretically. However, the response data are used under 

practical conditions for utilizing the proposed method as shown in a validation 

applied to the continuous structure. This means that transmissibilities should be 

expressed using frequency response functions. Rotational DOFs can be 

included in H matrices. If translational DOFs and rotational DOFs are coupled 

weakly, the off-diagonal terms are removed. Then, the transmissibility matrix 

can be composed of only response data. It is possible to use the proposed 

method to estimate the boundary properties including rotational DOFs. In the 

general case, however, the transmissibility matrix has diagonal terms because 

of the coupling effect between translational DOFs and rotational DOFs. 

Although the coupling effect does not cause considerable deviation in joint 

identification according to reference [11], further study is needed. Thus, 

although the derived equation has no weak point in including the rotational 

DOFs theoretically, further research related to transmissibility characteristics 

between translational DOFs and rotational DOFs should be studied to utilize 
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the method more accurately using only response data under practical conditions 

because some studies about FRFs of rotational DOFs are not enough to be used 

in estimating boundary properties and relative sensitivity analysis with only 

response data. 
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국 문 초 록 

 

촘촘하게 결합되어 있는 시스템의 경우 가진기를 설치하거나 

임팩트 힘을 정확하게 주기 힘들기 때문에, 잘못 측정된 힘에 의해 

그 측정 오차가 발생한다. 힘 측정을 포함하는 주파수 응답 함수와 

달리 전달율은 응답신호로만 정의되기 때문에 힘 측정으로 인한 오

차 요인을 줄일 수 있다. 본 논문은 결합부 특성과 응답 민감도 특

성과 같이 진동 특성 개발 과정에서 중요한 역할을 하는 연구들에 

대한 새로운 접근법 연구이며, 결합부 특성을 파악하고 상대민감도

분석을 위한 지수를 제안하기 위해 주파수응답함수가 아닌 전달율 

개념을 도입하였다. 결합부에 연결된 시스템과 그렇지 않은 시스템

의 전달율 특성 차이를 통해 결합부 특성을 추정할 수 있다. 단일결

합부와 다중결합부에 연결된 다자유도 시스템을 사용하여 제안된 

방법을 검증하고, 연속시스템인 빔에 적용함으로써 실제 시스템에 

대한 그 적용가능성을 확인하였다. 추정된 결합부 특성과 실제 결합

부 특성비교를 통해 본 방법의 신뢰성을 확인하였으며, 더 나아가 

실제 시스템 적용 시 발생할 수 있는 측정 오차에 대한 영향을 분

석하여 강건성을 평가하였다.  이어서, 응답에 대한 상대 민감도 분

석을 위해 전달율에 기초한 민감도 지수를 제안하였다. 시스템의 진

동특성 개선에 대한 설계 변경 과정에서 상대 민감도 특성 분석은 
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매우 중요한 역할을 한다. 설계 변수에 대한 두가지 유형의 지수가 

개발되었으며, 각 지수를 통해 설계변경이 필요한 위치를 선정할 수 

있고 특정 위치의 설계변경이 각 응답들에 어떠한 영향을 주는지에 

대한 분석이 가능하다. 개발된 지수가 설계변경에 대한 응답 변화를 

잘 나타내 주는지 검증하기 위해 이산 시스템과 연속 시스템에 적

용하였으며, 모든 주파수 범위에서 신뢰성 있는 결과를 확인하였다. 

 

주요어 : 주파수 응답 함수, 전달율, 응답, 결합부 특성, 상대민감도, 

민감도 지수, 설계변수  
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