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ABSTRACT 

 

3D object recognition using 
scale-invariant features 

 

Jeonghun Lim 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

As 3D scanning technology has developed, it has become easier to acquire various 

3D surface data; thus, there is a growing need for 3D data registration and 

recognition technology. In particular, techniques for finding the exact positions of 

3D objects in a cluttered scene in which many parts of an object are occluded and 

multiple objects may be present is an important technology required by various fields 

such as industrial inspections, medical imaging, and games. 

Many existing studies have used local descriptors with local surface patches, and 

most of these use a fixed support radius so they cannot cope perfectly when the 

model and scene are at different scales. In this paper, we propose a new object 

recognition algorithm that exceeds the performance of existing studies. The process 

of 3D object recognition in a cluttered scene is largely composed of three steps: 

feature selection, feature description, and matching. 
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In this study, we propose a perfectly scale-invariant feature selection algorithm by 

extending the 2D SIFT algorithm to a 3D mesh. The feature selection method 

proposed in this study can obtain highly repeatable feature points and support radii 

regardless of the scale. The selected features can effectively describe local 

information using the new shape descriptor proposed in this study. Unlike existing 

shape descriptors, it is possible to perform scale-invariant 3D object recognition and 

achieve a high recognition rate when combined with the feature point selection 

algorithm proposed in this study using the gradients of the scalar functions as defined 

on the 3D surface. We also reduced the searching space and lowered the false positive 

rate by suggesting a new RANSAC-based transformation hypothesis generation 

algorithm.  

Our 3D object recognition algorithm achieves recognition rates of 99.5% and 97.8% 

when tested on U3OR and CFVD datasets, respectively, which exceeds the results 

of previous studies. 

 

Keywords: 3D object recognition, scale-invariant feature, scale-invariant 

recognition, 3D feature descriptor, RANSAC matching 

Student Number: 2010-23229 
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CHAPTER 1.  

INTRODUCTION 

 

1.1 Background 

Over the past several decades, several studies have examined feature detection and 

object recognition in 2D image areas. However, along with the recent development 

of various scanning technologies, the demand for 3D models in film, medical, 

gaming, and industrial fields has increased rapidly, and research on feature detection, 

registration, and shape retrieval for 3D models is also increasing. In particular, 3D 

object recognition technology that detects the exact position and size of a model in 

a cluttered scene is one of the most challenging and actively studied topics. For 

example, after scanning the inside of a factory, you can build an automated system 

by locating specific parts accurately. In addition, a range-based SLAM system can 

use a 3D object recognition algorithm to achieve more robust robot localization. 

Finally, non-rigid fitting can be used to recognize body movements in next-

generation human–computer interaction systems. 

Many existing studies of 3D object recognition have used local feature-based 

methods because global feature-based methods are not suited to complex cluttered 

scenes in which only a part of the object in question appears, because the shape 

details cannot be grasped and only the overall shape is considered. A typical local 

feature-based object recognition algorithm consists of three steps: feature selection, 
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feature description, and surface matching. 

The feature selection process is the most basic part of the overall process, and the 

recognition rate may vary depending on the feature detector’s performance. The 

simplest feature selection methods are surface sparse sampling and mesh decimation 

[1, 2]. However, these methods have low repeatability and are unstable. In addition, 

many existing studies cannot be applied to applications that match two objects of 

different scales because they only search for features on a fixed scale. In this paper, 

we propose a complete scale-invariant feature selection algorithm that can even be 

matched when models and scenes have different and unknown scales. This study’s 

feature selection method was derived from the 2D SIFT algorithm [3]. Many 

previous studies have been inspired by the 2D SIFT algorithm, but the scale 

invariance properties of the algorithm are not typically achieved in the process of 

extending the algorithm to 3D. However, this study makes a contribution in that it 

completely inherits the scale-invariant property in three dimensions. In addition, 

highly repeatable feature points and the support radius can be extracted regardless of 

the mesh scale, so it can be combined with many existing local surface descriptors. 

We also propose a new feature descriptor using the gradient of scalar function as 

defined on the 3D surface. The proposed feature selection algorithm uses a scalar 

function defined on the 3D surface. Therefore, the most efficient way to describe the 

selected feature is to use the surrounding scalar function. In this respect, our 

proposed feature descriptor can achieve the best performance when combined with 

the proposed feature selection algorithm. 
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Another contribution is that it improves the existing Random Sample Consensus 

(RANSAC) algorithm in the matching phase, thereby reducing false positives. Only 

rigid transforms can be considered in existing fixed-scale applications; however, in 

situations where the scale differs between the model and the scene, the searching 

space becomes very large because rigid transforms cannot express accurate 

transformations. This paper proposes a RANSAC-based transform hypothesis 

generation algorithm that takes account of similarity transformations, thereby 

effectively reducing the searching space and increasing the recognition rate. 

The 3D object recognition system used in this study follows the most general scheme 

[4-9]. We show the block diagram of the 3D object recognition system in Fig. 1.1. In 

this system, recognition tests were conducted using the UWA 3D Object Recognition 

Dataset (U3OR) [2] and Ca’ Fascari Venezia Dataset (CFVD) [10]. 
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Fig. 1.1 Block diagram of 3D object recognition system. 
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CHAPTER 2.  

RELATED WORKS 

 

In this section, we review previous works on each step of feature selection, 

description, and matching in 3D feature recognition systems. 

 

2.1 Feature selection 

As mentioned above, the feature selection stage was the first and most basic part of 

the 3D object recognition system. The existing feature selection methods can be 

divided into two groups: the fixed-scale method and the adaptive-scale method. 

 

2.1.1 Fixed-scale methods 

Mokhtarian et al. [11] used surface curvature values to detect features. If the 

curvature value of an arbitrary mesh vertex was larger than that of neighboring 

vertices, the corresponding vertex was selected as a feature. 

Yamany and Farag [12] introduced the concept of the simplex angle, which 

corresponds to the mean curvature of the surface. In this study, when the absolute 

value obtained by taking the sine function at the simplex angle of the vertex is larger 

than a certain threshold value, it is selected as the feature. 

Gal and Cohen-Or [13] used the concept of the saliency grade, which was calculated 

as a linear combination of the curvature sum and the variance of neighboring vertices. 
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Likewise, if the saliency grade was larger than the threshold value that was defined 

by the user, the vertex is selected as the feature point. In addition, methods using 

surface variation measures other than the surface curvature have been studied. 

Matei et al. [14] used the neighboring vertices to construct a covariance matrix and 

then calculated the smallest eigenvalue of the matrix to measure the surface variation. 

Zhong [15] used the ratio between the eigenvalues. Only vertices with λଵ/	 λଶ	  and 

λଵ/	 λଷ	  greater than a certain threshold were selected as features. Guo et al. [6] 

used a similar method; after decimating the given mesh, features were selected 

using	 λଵ/	 λଶ. 

Sipiran and Bustos [16] proposed a "Harris 3D" detector that extended the Harris 

detector [17] used in a 2D image to a 3D mesh. The methods described thus far have 

only chosen features on a fixed scale. Therefore, their implementation is simple and 

fast, but there are disadvantages in that almost no features can be selected in the 

planar region and all selected features have a fixed support radius. 

 

2.1.2 Adaptive-scale methods 

Adaptive scale feature selection methods have also been studied. Most adaptive scale 

feature selection methods use Gaussian smoothing as in a 2D SIFT algorithm [3] to 

create a Difference of Gaussian (DoG) pyramid and detect features in the DoG scale 

space. 

Castellani et al. [18] detected features by downsampling the mesh by the number of 

octaves and then creating a DoG pyramid for each octave. 
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Darom and Keller [19] used a density-invariant Gaussian filter, which is more robust 

to changes in mesh resolution. However, these methods used the 3D coordinates of 

the vertex directly when Gaussian smoothing was applied. Therefore, the geometry 

of the mesh changes, which breaks the characteristics of the DoG function that can 

detect stable features in a scale space. Studies have been conducted on smoothing 

the geometric attributes such as surface curvature instead of directly changing the 

mesh’s geometry to avoid this phenomenon. 

Bariya et al. [20], Novatnack and Nishino [21] used a mesh parameterization 

technique to obtain a 2D normal map image, and then detected features by applying 

a geodesic Gaussian kernel. This method is robust to mesh resolution changes, but it 

has the disadvantage of requiring a complicated parameterization technique. 

Zaharescu et al. [22] proposed a MeshDoG algorithm that computes the DoG 

function for arbitrary scalar functions defined on the mesh. However, since the 

Gaussian kernel used at this time only considers the one-ring neighbor, it cannot be 

said that a proper DoG function is obtained. This paper proposes a feature selection 

method that takes advantage of the features of the stable DoG function in the scale 

space while minimizing the disadvantages of the methods mentioned above. 
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2.2 Feature description 

After selecting the features on the surface, the geometry information of the local 

surface around the feature can be described in various ways. The existing feature 

description methods can be divided into signature-based methods and histogram-

based methods depending on how they encode the surrounding geometry 

information. 

 

2.2.1 Signature-based methods 

Signature-based methods describe the local surface by encoding one or more 

geometric measurements that are individually calculated at vertices around a feature. 

Chua and Jarvis [23] proposed a descriptor called Point Signature. They first 

obtained a contour on a surface by intersecting a sphere with a support radius ݎ 

around the feature point. They then calculated the plane that approximates the 

contour and projected each vertex of the contour onto the plane. The projected 

vertices could be expressed as the distance from the feature point and the rotation 

angle from the direction, which was defined as the unit vector from the feature point 

to the projected vertex that has the largest distance. The Point Signature was 

expressed by a discrete set of distance and angle values and was robust to noise but 

sensitive to varying the mesh resolution. 

Malassiotis and Strintzis [24] proposed a Snapshot descriptor. They first constructed 

a Local Reference Frame (LRF) via an eigenvalue decomposition method, and then 
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they projected the local surface vertices onto the image plane of the virtual camera 

that was aligned to the LRF. 

Castellani et al. [18] proposed a Hidden Markov Model (HMM) descriptor. They 

first built a clockwise spiral pathway around the feature point and extracted 

information such as the saliency level, curvature, and normal deviation along the 

pathway. Then, they used a discrete time Hidden Markov Model to encode this 

information. The HMM descriptor was robust to non-uniform sampling and varying 

mesh resolution. 

do Nascimento et al. [25] proposed a Binary Robust Appearance and Normal 

(BRAND) descriptor; they extracted a local patch around the feature point from an 

RGB-D image and aligned that local patch with a dominant direction. The BRAND 

descriptor used the intensity variations and surface normal displacements. 

 

2.2.2 Histogram-based method 

Histogram-based methods describe the local neighborhood of a feature point by 

using histograms of geometric or topological measurements. In [7], existing 

algorithms was classified "spatial distribution histograms" and "geometric attribute 

histograms." 

Spatial distribution histogram-based descriptors generate histograms using the 

coordinates of the surface vertices. They also use LRF or Local Reference Axis 

(LRA) to gain invariant rotation and translation properties. 

Johnson and Hebert [1] proposed the Spin Image (SI) descriptor. The surface normal 
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of feature point was used as the LRA. The vertices on the local surface are 

represented by two parameters, the horizontal distance from the feature point and the 

vertical distance from the LRA. These two parameter spaces were discretized into a 

2D array, and the SI descriptor was generated by accumulating the local surface 

vertices into the 2D array. 

Frome et al. [26] proposed a 3D Shape Context (3DSC) descriptor. The support 

region was divided into several bins along the radial, azimuth, and elevation 

dimensions and the 3DSC descriptor was generated by counting the weighted 

number of vertices falling into each bin of the 3D grid. Unique Shape Context (USC) 

[27] is an extension of 3DSC that avoids gaining multiple descriptors at a feature 

point. 

Guo et al. [6] proposed a Rotational Projection Statistics (RoPS) descriptor. First, 

they constructed a unique LRF and rotated the local surface around the three axes of 

the LRF. For each rotation, the vertices of the surface were projected onto the three 

planes of the LRF and three distribution matrixes were generated by dividing each 

plane into several regions and counting the number of vertices that fell into each. 

Each distribution matrix was encoded with five statistics, and the RoPS descriptor 

was generated by concatenating all of these statistics. 

The Tri Spin Image (TriSI) [8, 28] is similar to the RoPS. After constructing the LRF, 

three SI were generated using three axes of the LRF. The TriSI was generated by 

concatenating the three SI. 

Geometric attribute histogram-based descriptors generate histograms using 
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geometric attribute information such as the normal or curvature rather than 

coordinate information. 

Chen and Bhanu [29, 30] proposed a Local Surface Patch (LSP) descriptor that is a 

2D histogram formed by accumulating vertices along two dimensions. One 

dimension is the shape index [31] and the other is the cosine of the angle between 

the surface normals. 

Point Feature Histogram (PFH) [32] is a multi-dimensional histogram over several 

features of vertex pairs in the support region. PFH is generated by accumulating 

vertices in specific bins along the four dimensions. Four features are calculated for 

each pair of vertices in the local surface using the Darboux frame, the normal vectors, 

and positions. Fast Point Feature Histogram (FPFH) [33], is an improvement on PFH 

in which features are generated for each local surface vertex by calculating the 

relationships between that vertex and its neighbors. 

Salti et al. [34], Tombari et al. [35] proposed the Signature of Histogram of 

Orientations (SHOT) descriptor. LFR was constructed from local surface vertices 

and the support region was divided into several regions along the azimuth, elevation, 

and radial axes. The SHOT descriptor was generated by concatenating all of the local 

histograms computed in each region. 

In this study, we proposed a new descriptor that uses the histogram generated from 

gradient of the scalar function as defined on a 3D surface. Many previous studies 

have considered feature selection and feature description methods separately, some 

studies have focused on feature selection methods, and some studies have only 
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focused on feature description methods. The feature descriptor proposed in this study 

improves the efficiency and performance of the 3D object recognition algorithm 

using the same scalar function as used in the feature selection method that is 

proposed in this study. 

 

2.3 Surface matching 

The surface matching of most existing studies can be divided into three stages of 

feature matching, hypothesis generation and verification. The Nearest Neighbor 

Distance Ratio (NNDR) is the most frequently used in feature matching [36] and the 

Iterative Closest Point (ICP) algorithm [37] is the most commonly used trend in the 

verification phase, which is the process of determining whether the hypotheses 

obtained through the hypothesis generation process are true. Unlike the other two, 

relatively different techniques have been proposed for the hypothesis generation 

stage. Rodolà et al. [10] used the Game Theory technique in which all 

correspondences obtained at the feature matching stage start competing in a non-

cooperative game. As competition continues, only reliable correspondences survive 

and these are used to calculate transform hypotheses. Guo et al. [6, 8] used a pose 

clustering method that began with the assumption that similar hypothesis 

transformations will form a group in the transformation space near the ground truth. 

However, this method has the drawback that it can only be used when the scales of 

the model and the scene are the same. Taati and Greenspan [5] and Papazov et al. 

[38, 39] used a RANSAC-based method. Recognition in a cluttered scene has many 
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outliers. Therefore, the RANSAC algorithm has a suitably good outlier removal 

performance for this, and the algorithm is simple and easy to implement. The 

RANSAC algorithm first arbitrarily selects a minimum set of correspondences to 

calculate a rigid transformation that can align a model to a scene, and then computes 

the number of correspondences that match this transformation. Finally, the 

transformation that involves the largest number of inliers is considered the 

hypothesis. This paper proposes a new RANSAC-based algorithm that considers 

both rigid transformation and similarity transformation to cope with an unknown 

scale situation. In addition, in selecting the inliers, the angular difference between 

the vertex normal of the model and the scene feature is taken into consideration to 

obtain a more stable result. 
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CHAPTER 3.  

Datasets 

 

Before describing the 3D object recognition algorithm, this Chapter describes the 

two datasets that are used in this study. As mentioned earlier, this study uses the 

U3OR and the CFVD datasets. 

 

3.1 U3OR dataset 

The U3OR dataset was first introduced in [2] and has been the most widely used 

dataset ever since [5, 6, 8-10, 20, 40, 41]. This dataset consists of five models and 

50 real scenes. Each scene was scanned using a Minolta Vivid910 scanner with four 

or five models randomly positioned. There were 217 objects included in the 50 

scenes in total. Excluding the Rhino model, that number is 188. The reason the Rhino 

model may be excluded is that spin image-based methods have failed to recognize it 

in all 50 scenes because the model includes a large hole [6, 40]. Fig. 3.1 shows five 

models and nine of the 50 scenes. 
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Fig. 3.1 (a) Five models (from the left Chef, Chicken, Para, Rhino and T-rex) and (b) 
nine of the 50 scenes in the U3OR dataset. 
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3.2 CFVD dataset 

The CFVD dataset was first introduced in [10]; it contains 20 models and 150 scenes, 

each of which was captured using a virtual camera and contains three to five models. 

There are 497 objects in all scenes. The size of the dataset is the largest available 3D 

object recognition dataset. Existing studies [6, 8-10] have excluded two models in 

this dataset to produce additional clutter; we show nine of the 150 scenes in Fig. 3.2 

and all 20 models in Fig. 3.3. 

 

 

Fig. 3.2 Nine examples of scenes in the CFVD dataset. 
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Fig. 3.3 All models of the CFVD dataset. The final two models were excluded from 
the recognition test. 
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CHAPTER 4.  

FEATURE SELECTION 

 

4.1 Concepts 

As described above, the feature selection method in this paper is based on the idea 

of the existing 2D SIFT algorithm [3]. As mentioned in [42], the most stable and 

invariant features of the scale space are the extrema of the normalized Laplacian of 

Gaussian (LoG) function. The most effective method of approximating the LoG 

function is to use the DoG function. We define ॸ as the set of all polygonal meshes 

that can be defined in Թଷ. We will consider a special uniformly sampled triangular 

mesh ܯ ∈ ॸ  because the surface curvature can be obtained more reliably in a 

uniformly sampled mesh. A uniform mesh can be obtained from a non-uniform mesh 

using the algorithm proposed in [43]. The triangular mesh ܯ can also be expressed 

as a graph, ܯሺܸ, ܸ ሻ whereܧ ൌ ሼݒ௜ ∈ Թଷ|݅ ൌ 1,… , ݊௏ሽ is the set of mesh vertices 

and ܧ ൌ ൛݁௜௝ห݅, ݆ ൌ 1,… , ݊௏, ݅ ൏ ݆ൟ  is the set of mesh edges that connect two 

adjacent vertices. The average edge length of ܯ is defined as ݁௔௩௚. 

We consider the scalar function, ݂:ॸ → Թ , to define the discrete convolution 

operator on a mesh. The convolution of the function ݂ with a Gaussian kernel ݃ is 

defined as 

݂ ∗ ݃ሺݒ௜, ሻߪ ൌ
∑ ݃൫ฮݒ௝ െ ,௜ฮݒ ௜ሻ௩ೕ∈ேೝሺ௩೔ሻݒ൯݂ሺߪ

∑ ݃൫ฮݒ௝ െ ,௜ฮݒ ൯௩ೕ∈ேೝሺ௩೔ሻߪ
, 
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݃ሺݔ, ሻߪ ൌ
exp	ሺെ

ଶݔ

ଶሻߪ2

ߨ2√ߪ
. 

 ௜ሻ is the set of verticesݒis the standard deviation of the Gaussian kernel ݃. ௥ܰሺ ߪ

whose distance from ݒ௜  is within ݎ . As ݎ  increases, the number of features 

decreases. Instead, features take more time to acquire because this requires more 

computation. Therefore, it is important to choose an appropriate value for ݎ. Fig. 4.1 

shows the number of features according to the change of ݎ; this decreases sharply 

until ݎ  is 3݁ߪ௔௩௚ , and the decrease is not large thereafter. This paper uses ݎ ൌ

 .௔௩௚݁ߪ3

Only one-ring neighbors have been considered in many existing studies. If only one-

ring neighbors are considered, it cannot be said that a proper Gaussian kernel has 

been applied. Additionally, stable and scale-invariant features cannot be obtained. 

The DoG function ܦሺݒ௜,  ሻ, which represents the difference between two Gaussianߪ

functions with a constant multiple filter scale, can be defined as 

,௜ݒሺܦ ሻߪ ൌ ݂ ∗ ݃ሺݒ௜, ሻߪ݇ െ ݂ ∗ ݃ሺݒ௜,  .ሻߪ

In this study, the scalar function ݂ was defined using the surface mean curvature. 
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Fig. 4.1 The number of features according to ݎ in the U3OR dataset. 
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4.2 Gaussian and DoG pyramid 

The first step in selecting features is creating a Gaussian pyramid and a DoG pyramid. 

If the number of intervals for each octave is ݊ூ, then ݊ூ ൅ 3 Gaussian functions 

should be created. The first Gaussian function ଵ݂ is constructed by convolving the 

initial scalar function ଴݂ with a Gaussian kernel of initial sigma ߪ଴. In this paper, 

଴݂ is the mean curvature of the triangular mesh ܯ଴ at the start. 

ଵ݂ ൌ ଴݂ ∗ ݃ሺߪ଴ሻ. 

The second Gaussian function ଶ݂ can be obtained by convolving the initial scalar 

function ଴݂ with the Gaussian kernel of ݇ߪ଴, but this calculation ( ଶ݂ ൌ ଴݂ ∗ ݃ሺ݇ߪ଴ሻ) 

is inefficient, so we use the previous Gaussian function as follows. 

݃ሺ݇ߪ଴ሻ ൌ ݃ሺߪ଴ሻ ∗ ݃ ቀඥ݇ଶ െ 1	 ଴ቁߪ ,	

ଶ݂ ൌ ଴݂ ∗ ݃ሺ݇ߪ଴ሻ ൌ ଴݂ ∗ ݃ሺߪ଴ሻ ∗ ݃ ቀඥ݇ଶ െ 1	 ଴ቁߪ ,	

ଶ݂ ൌ ଵ݂ ∗ ݃ሺඥ݇ଶ െ 1	  .଴ሻߪ

In this manner, an arbitrary ݅-th Gaussian function ௜݂ can be calculated as follows; 

in this paper, ݇ ൌ 2ଵ/௡಺, ଴ߪ ൌ √2݁௔௩௚. 

௜݂ ൌ ௜݂ିଵ ∗ ݃ሺߪ௜	 ሻ,	

௜ߪ ൌ ݇௜ିଶඥ݇ଶ െ 1	 ,଴ߪ ݅ ൌ 1,… , ݊ூ ൅ 3.	

Once all ூܰ ൅ 3  Gaussian functions have been computed, a new mesh ܯଵ  is 

created such that the average edge length of ܯଵ is twice that of ܯ଴. This process 

corresponds to downsampling in the 2D SIFT algorithm; most previous studies 
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omitted the downsampling operation. If the number of octaves is ݊ை, then we need 

to create ݊ை െ 1  downsampled meshes ܯଵ,ܯଶ,…  ௡ೀିଵ . The first Gaussianܯ,

function ଵ݂ of the second octave can be obtained by linearly sampling ௡݂಺ାଵ from 

the previous octave. The reason for using ௡݂಺ାଵ is that the σ of ௡݂಺ାଵ is twice that 

of ߪ଴ . Afterwards, the above steps are repeated for all octaves. Fig. 4.2 shows 

examples of downsampling. 

After obtaining ሺ݊ூ ൅ 3ሻ ൈ ݊ை  Gaussian functions in all octaves, we can obtain 

ሺ݊ூ ൅ 2ሻ ൈ ݊ை  DoG functions by calculating the difference between pairs of 

adjacent Gaussian functions. Example Gaussian and DoG pyramids can be observed 

in Fig. 4.3. 

 

 

 

 

Fig. 4.2 Downsampling examples (a) ܯ଴, (b) ܯଵ, and (c) ܯଶ. 
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Fig. 4.3 An example of processing. The initial scalar function for each octave is 
repeatedly convolved with Gaussian kernels and adjacent Gaussian functions are 
subtracted to produce the DoG functions. This process is repeated with 
downsampled Gaussian functions in the next octave. 
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4.3 Local Extrema Detection 

The next step is to extract the local extreme vertices from the DoG functions of each 

octave. Determining whether ܦሺݒ௜,  ሻ is extreme requires comparing the previousߪ

and next scales and the neighboring vertices of ݒ௜  on the current scale. If the 

number of neighboring vertices of ݒ௜  is ݊௩೔ , we need to compare 3݊௩೔ ൅ 2 

vertices in total (Fig. 4.4). All extracted local extrema are selected as features. If 

,௜ݒሺܦ  ሻ  is selected as a feature, then the location of the feature will be theߪ

coordinate of ݒ௜ and the support radius will be determined by multiplying ߪ by a 

constant ܿ. The larger the value of ܿ, the greater the feature’s descriptiveness, but 

the greater the sensitivity to occlusion and clutter. The effects of parameter ܿ were 

investigated by conducting experiments using the datasets that were used in this 

study. Fig. 4.5 shows how the precision and recall changed when the value of ܿ was 

varied from 2 to 10. The precision and recall values are calculated as follows: 

݊݋݅ݏ݅ܿ݁ݎ݌ ൌ
	݁ݑݎݐ ݁ݒ݅ݐ݅ݏ݋݌
	݈ܽݐ݋ݐ ݁ݒ݅ݐ݅ݏ݋݌

, ݈݈ܽܿ݁ݎ ൌ
	݁ݑݎݐ ݁ݒ݅ݐ݅ݏ݋݌
	݈ܽ݁ݎ ݁ݒ݅ݐ݅ݏ݋݌

. 

When the value of ܿ was less than 4, both the precision and recall decrease sharply. 

Although the rate of change was relatively small when the value of ܿ was smaller 

than 4, if the value was too large then the performance was rather deteriorated. 

Therefore, in all experiments in this study, we used 4 for the value of ܿ. We show 

examples of the feature selection results in Fig. 4.6. 
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Fig. 4.4 Local extrema detection in the scale space. 
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Fig. 4.5 Change of precision and recall value according to changes in parameter ܿ. 
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Fig. 4.6 Selected features from (a) the models and (b) the scenes in the U3OR dataset. 
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CHAPTER 5.  

Feature description 

 

In this paper, we propose a new descriptor that uses the gradient of a scalar function 

defined on a 3D surface. Scalar functions are used in the same manner in the feature 

selection stage, so the scalar functions best represent the selected features. If the 

scalar function represents geometric information such as the curvature, then an 

existing descriptor generated with geometry can be used. However, if the scalar 

function does not represent the geometric information as the object’s texture 

information, then you cannot expect good results. 

 

5.1 LRF construction 

Ensuring that the selected features have rotational invariant characteristic requires 

calculating a unique and repeatable LRF/A. Most recent local descriptors use LRF/A; 

our LRF is based on the previously presented LRF in [6, 8, 44]. 

Given an arbitrary feature point ݌ and a support radius ݎ, a sphere with center ݌ 

and radius ݎ is called a support region. If there are ݊ி faces in this region, then 

any point ݍ௜ on the ݅-th face (Fig. 5.1) can be defined as: 

,ߙ௜ሺݍ ሻߚ ൌ ௜ଵݒ ൅ ௜ଶݒሺߙ െ ௜ଵሻݒ ൅ ௜ଷݒሺߚ െ  ,௜ଵሻݒ

where 0 ൑ ,ߙ ߚ ൑ 1 , and ߙ ൅ ߚ ൑  ௜ଷ  represent three of theݒ ௜ଶ  andݒ , ௜ଵݒ . 1

face’s vertices. 
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Fig. 5.1 The i-th face of support region. 

The scatter matrix ۱௜ of the ݅-th face can then be expressed as: 

۱௜ ൌ න න ሺݍ௜ሺߙ, ሻߚ െ ,ߙ௜ሺݍሻሺ݌ ሻߚ െ ߚ݀ߙሻ்݀݌
ଵିఉ

଴

ଵ

଴
	

	 	 ൌ
1
12

෍ ෍ሺݒ௜௠ െ ௜௡ݒሻሺ݌ െ ሻ்݌
ଷ

௡ୀଵ

ଷ

௠ୀଵ

൅
1
12

෍ሺݒ௜௠ െ ௜௠ݒሻሺ݌ െ ሻ்݌
ଷ

௠ୀଵ

.	  

The scatter matrix ܥ for all ݊୊ faces inside the support region is: 

۱ ൌ෍ݓ௜ଵݓ௜ଶ۱௜

௡ಷ

௜ୀଵ

. 

Here, ݓ௜ଵ is the ratio between the area of the ݅-th face and the total area of the ݊ி 

faces: 

௜ଵݓ ൌ
‖ሺݒ௜ଶ െ ௜ଵሻݒ ൈ ሺݒ௜ଷ െ ‖௜ଵሻݒ

∑ ฮሺݒ௝ଶ െ ௝ଵሻݒ ൈ ሺݒ௝ଷ െ ௝ଵሻฮݒ
௡ಷ
௝ୀଵ

. 

 ௜ଶ is a weight that is related to the distance from the feature point to the centroidݓ
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of the ݅-th face, that is: 

௜ଶݓ ൌ ൬ݎ െ ฯ݌ െ
௜ଵݒ ൅ ௜ଶݒ ൅ ௜ଷݒ

3
ฯ൰

ଶ

. 

Performing an eigenvalue decomposition on the overall scatter matrix ۱ gives us 

the three eigenvalues ߣଵ ൐ 	 ଶߣ ൐ 	  ଷ of the matrix ۱, and the three correspondingߣ

orthogonal eigenvectors ܍ଵ, ܍ଶ and ܍ଷ which respectively denote the x, y, and z 

axes of the LRF. 

The next step in [6] is to eliminate sign ambiguity among the eigenvectors. However, 

since our study only uses ܍ଷ, we simplified this step using the normal vector of the 

feature point ܖ௣. The unambiguous vector ܍෤ଷ is defined as: 

෤ଷ܍ ൌ ଷ܍ ⋅ sign൫܍ଷ ⋅ 	.௣൯ܖ  

We only use ܍෤ଷ because it has higher repeatability than the other two eigenvectors. 

The following tests were carried out to quantitatively identify this; first, features 

were extracted from all models and scenes of the U3OR dataset and all model 

features were transformed by ground truth transformation. If the distance from the 

moved model feature to the nearest scene feature was less than a certain threshold, 

the two features were paired. The threshold value was twice the ݁௔௩௚ of the model.  

We calculated the angular difference of each axis of LRF and the surface normal for 

all pairs. 
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Table 5.1 The average angular difference of each axis of LRF and surface normal 
in 4 models of U3OR dataset. (degree) 

 Chef Chicken Para Trex AVG 

Avg. axis x diff 7.18 8.90 7.73 7.65 7.87 

Avg. axis y diff 7.26 9.12 8.04 7.87 8.07 

Avg. axis z diff 2.13 1.95 2.06 2.09 2.06 

Avg. normal diff 6.74 8.44 7.59 6.97 7.43 

 

As shown in Table 5.1, the repeatability of the z-axis of LRF (i.e. ܍෤ଷ) was the most 

stable. In this paper, a new orientation could be determined by replacing the other 

two eigenvectors with the gradient of a scalar function; we call this orientation 

“feature orientation.” 
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5.2 Feature orientation assignment 

As described in Chapter 2.2.1, the SHOT descriptor [34, 35] uses the entire spherical 

support region. However, the interior of the support region is mostly empty because 

the local surface inside the support region is generally a thin disk. Therefore, using 

the entire region is inefficient. Thus, we define the plane that best represents the local 

surface without using the entire space and define the descriptor on this plane. 

Now, we can define a feature plane ܲ  that passes through feature point ݌  and 

whose normal direction is ܍෤ଷ . Assigning one or more feature orientation on the 

feature plane gives the proposed descriptor robust rotation-invariant properties; this 

requires first calculating the gradient of the scalar function. The gradient of scalar 

function at ݅-th face ܨ௜ can be defined as: 

௜ሻܨሺ݂׏ ൌ െ
1
ܣ2

	 ி೔ܖ ൈ ሺ	 ݂ሺݒ௜ଵሻ܍ଶଷ ൅ ݂ሺݒ௜ଶሻ܍ଷଵ ൅ ݂ሺݒ௜ଷሻ܍ଵଶ	 ሻ,	

௟௠܍ ൌ ௜௠ݒ െ 	,௜௟ݒ 	 	 ݈, ݉ ൌ 1,2,3. 

We show example gradient vectors in Fig. 5.2. 

The next step is to project the gradient vector of all faces in the local surface to ܲ. 

An orientation histogram that has 36 bins that span 360° of the orientation is formed 

from the projected gradient vectors. Each gradient vector is weighted with its 

magnitude and distance to the feature point as follows. 

௜ݓ ൌ ‖௜ሻܨሺ݂ߘ‖ ൈ ݃ ൬ฯ݌ െ
௜ଵݒ ൅ ௜ଶݒ ൅ ௜ଷݒ

3
ฯ ,  ,௜൰ߪ

where ߪ௜ is 0.5 times the feature’s support radius. 

The resulting histogram is smoothed three times with the Laplacian smoothing 
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technique for robustness. In the smoothed histogram, the angle to the highest peak 

determines the principal direction of local gradients. In addition, after the highest 

peak in the histogram has been detected, local peaks with heights above 80% of the 

highest peak are also selected. This means that there could be multiple features at the 

same location and support radius with different feature orientations. 

The final step is to fit a quadratic function to the histogram using the neighboring 

bins of a peak to get the feature orientation at sub-bin precision. The equation is 

expressed as follows. 

ቈ
ܽ
ܾ
ܿ
቉ ൌ ቎

ଵݔ
ଶ ଵݔ 1
ଶݔ
ଶ ଶݔ 1
ଷݔ
ଶ ଷݔ 1

቏

ିଵ

൥
ଵݕ
ଶݕ
ଷݕ
൩	

feature	 orientation ൌ െ
ܾ
2ܽ

 

Here, ܾ  and ܿ  are coefficients of the quadratic function, ݔ௜	 ሺ݅ ൌ 1,2,3ሻ  is the 

angles of the peak and the neighboring bins, and ݕ௜	 ሺ݅ ൌ 1,2,3ሻ is the histogram 

height. 
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Fig. 5.2 Examples of scalar functions and gradient vectors around features. 
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5.3 Feature vector generation 

Defining the feature orientation in Chapter 5.2 allows us to represent the gradients 

of the scalar function projected on the feature plane as relative angles to the feature 

orientation. This can be used to represent the entire local surface as a single 

histogram, but does not guarantee sufficient descriptiveness. In existing studies such 

as SIFT [3] and SHOT [34, 35], the support region is divided into several sections 

and the set of local histograms calculated in each section is used to enhance the 

descriptiveness. 

In this study, the feature plane is divided into the azimuth and radial directions. The 

total number of sections is 16, which results from eight azimuth divisions and two 

radial divisions. The grid is arranged along the feature orientation to maintain its 

rotation-invariant property. We show the location and order of each section in Fig. 

5.3. 

Now, as when calculating the feature orientation, a local histogram is generated using 

the angular difference between the gradient of the scalar function and the feature 

orientation in each section. The local histogram has eight bins and the gradient vector 

is weighted with its magnitude and distance for the feature point. 

As pointed out in [3, 34, 35], it is important to avoid boundary effects, because our 

descriptor is based on local histograms. The boundary effect means that small 

changes in feature orientation can have a large impact on the descriptor. Therefore, 

for each gradient vector accumulated into a specific local histogram bin, we perform 

trilinear interpolation with its neighbors. Therefore, each bin is incremented by a 
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weight of 1 െ ݀  for each dimension. ݀  is the current entry’s distance from the 

central value of the bin. In the azimuth dimension, ݀ is the angular distance, and ݀ 

is the Euclidean distance in the radial dimension. In addition, ݀ is normalized by 

the distance between two neighboring bins. Fig. 5.4 shows the trilinear interpolation 

process. 

After all local histograms have been generated, they are normalized to have their 

Euclidean norm equal to 1 to ensure their robustness to point density variation. 

Finally, the local histograms are concatenated in a single feature vector, the length 

of which is 2 ൈ 8 ൈ 8 ൌ 128. 

 

 

Fig. 5.3 The location and order of each section according to the feature orientation. 
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Fig. 5.4 The trilinear interpolation process. 
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CHAPTER 6.  

3D object recognition 

 

This chapter describes the process for achieving scale-invariant 3D object 

recognition in detail using the feature selection method and feature descriptor 

described above. The approximate procedure for the 3D object recognition system is 

as shown in Fig. 1.1. 

 

6.1 Offline processing 

First, we assume that we have several model meshes that we want to find in the scene, 

and that we need to construct a model library for these models. 

Given a model, first we extract the feature points using the feature selection 

algorithm described in CHAPTER 4 for this model. Then, we generate feature 

vectors for each feature point using the feature descriptor described in CHAPTER 5. 

We repeat the above procedure for all models, then collect all the feature vectors of 

all models and represent them using the k-d tree method [45] to improve the 

efficiency of online recognition. While the subsequent process should be performed 

online, the process of creating the model library can be performed offline. 
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6.2 Matching   

After constructing the model library, you must perform recognition work on the input 

scene in earnest. First, we extract feature points and feature vectors from the input 

scene in a similar manner as with the model library. Then, we should test each model 

included in the model library one at a time to see whether the model is included in 

the scene and what its exact location and size are if it is. The important factor here is 

the test order of the models. It is more efficient to test a model that is more likely to 

be included first than to test a model that has not been included in the scene. 

The order can be determined by comparing all feature vectors extracted from the 

scene with all the model feature vectors contained in the model library using the 

NNDR method. Since all the model library’s feature vectors are indexed using the k-

d tree, we can easily find the closest model feature and the second closest model 

feature for a given scene feature. If the ratio between the closest distance and second 

closest is less than a threshold ߬ெ (0 ൏ ߬ெ ൏ 1), the scene feature and its closest 

model feature are considered as corresponding and the correspondence votes for the 

model. The closer the ߬ெ is to 1, the more correspondence pairs are obtained, and 

the smaller the ߬ெ , the smaller the number of correspondence pairs that will be 

obtained. If ߬ெ is too small then an insufficient number of correspondence pairs can 

be secured, so the algorithm’s recognition rate will be low. If it is too large then both 

the number of correspondence pairs and the probability of false positives will 

increase. Fig. 6.1 shows the change in the precision and recall value according to the 
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change of ߬ெ when the algorithm of this study is tested with the U3OR dataset.  

In other words, the recall value is the same as the recognition rate. As described 

above, when ߬ெ  is 0.75, the recall value is lowered, and when ߬ெ  is 0.95, the 

precision value is lowered. In this study, 0.9 was used as the value of ߬ெ. 

Repeat this for all scene features and sort the models according to the number of 

votes received; now we will find the exact poses and sizes of the models in the scene 

in sorted order. 

 

 
Fig. 6.1 Change of precision and recall value according to change of matching 
threshold in the U3OR dataset. 
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6.3 Transformation hypothesis generation 

Once the model to be tested has been determined, the feature correspondences should 

be generated again, similar to the previous step. The difference is that it does not 

compare with all the features in the model library, only the features of the model to 

be tested. Using these new feature correspondences, transformation hypotheses that 

represent the model’s posture and size are generated. 

In this paper, a RANSAC-based algorithm is used to generate hypotheses. Unlike 

previous studies, this study assumes that the scales of the model and the scene differ, 

so we need to find a similarity transformation in consideration of the uniform scale 

for a rigid transformation. A similarity transformation can be obtained using three 

correspondences. Let each vertex position of three randomly sampled 

correspondences be ݉ଵ, ݉ଶ, ݉ଷ, ݏଵ, ݏଶ, and ݏଷ. First, we need to measure the 

scale difference between the model and the scene. The scale ratio ߩ௦௖௔௟௘   of the 

scene for the model can be obtained as follows: 

௦௖௔௟௘ߩ ൌ
∑ ௜ݏ‖ െ ܿ௦‖
ଷ
௜ୀଵ

∑ ‖݉௜ െ ܿ௠‖
ଷ
௜ୀଵ

,	

ܿ௦ ൌ
ଵݏ ൅ ଶݏ ൅ ଷݏ

3
,	

ܿ௠ ൌ
݉ଵ ൅݉ଶ ൅݉ଷ

3
. 

Then, the new model vertices ݉ଵ
ᇱ  , ݉ଶ

ᇱ   and ݉ଷ
ᇱ   are obtained sing ߩ௦௖௔௟௘   as 

follows: 

݉௜
ᇱ ൌ 	,௦௖௔௟௘݉௜ߩ 	 	 ݅ ൌ 1,2,3. 
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The rigid transformation ܂௥  that transforms ݉ଵ
ᇱ  , ݉ଶ

ᇱ  , and ݉ଷ
ᇱ   into ݏଵ , ݏଶ , and 

 ଷ can easily be obtained using the singular value decomposition technique. Theݏ

reliability of ܂௥ can be confirmed using the root mean square error ݁௥௠௦, which is 

measured as follows: 

݁௥௠௦ ൌ
∑ ௥݉௜܂‖

ᇱ െ ‖௜ݏ
ଷ
௜ୀଵ 	

3
 

If ݁௥௠௦/ߩ௦௖௔௟௘  is greater than a certain threshold ߬ௗ  then the same operation is 

repeated by sampling other correspondences. The reason for dividing ݁௥௠௦  by 

 ௦௖௔௟௘ is to compensate for the scale difference between the model and scene. Ifߩ

݁௥௠௦/ߩ௦௖௔௟௘ ൏ ߬ௗ, the reliability check is performed again using the normal vector. 

Let the vertex normal vector that corresponds to ݉௜ be ܖ௠೔
 and the vertex normal 

vector that corresponds to ݏ௜ be ܖ௦೔ . Then, we can obtain ܖ′௠೔
 by transforming 

௠೔ܖ
 by ܂௥. If the angle difference between ܖ′௠೔

 and ܖ௦೔  is smaller than ߬௔, the 

similarity matrix ܂௦ is finally obtained by multiplying the diagonal component of 

 .௦௖௔௟௘ߩ ௥ by܂

We now return to the RANSAC algorithm, and should get at least one transformation 

hypothesis, randomly sampled from a set of correspondences. The number of 

correspondences sampled simultaneously is three because a similarity 

transformation can be obtained using three correspondences. We increase the 

efficiency in the random sampling process by first calculating the combination list 

of the correspondence set. If there are ݊஼   correspondences, the total number of 

cases that can be selected in threes is ܥ௡೎
	
ଷ. If you create a full list of combinations 
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in this manner and then shuffle the list, you can effectively perform sampling without 

duplication, rather than randomly sample three correspondences one at a time. Once 

the three correspondences have been obtained in this manner; they are used to 

calculate the similarity transformation ܂௦ . If the obtained ݁௥௠௦  of the ܂௦  is too 

large or one of the three correspondence fails in the normal vector direction check, 

the next three correspondences are sampled again. If not, we can calculate the 

consensus number of the ܂௦  using the rest of the correspondences. If the model 

feature point of the ݅-th correspondence is ݉௜ and the scene feature point is ݏ௜, the 

consensus number of ܂௦ increases by one when the condition ‖܂௦݉௜ െ ‖௜ݏ ൏ ߬ௗ 

is satisfied and the correspondence is saved. If the consensus number of ܂௦  is 

greater than one, a new transformation matrix ܂෩௦  can be recalculated using all 

stored correspondences. As in the calculation of ܂௦, this time, the root mean square 

error check and the normal direction check are performed using all the 

correspondences that were used to calculate ܂෩௦ . Then, ܂෩௦  is saved as 

transformation hypothesis when the tests pass. 

  



44 

6.4 Verification and segmentation 

After obtaining several transformation hypotheses through the RANSAC algorithm 

for a given model, the next step is verifying each hypothesis. 

Before starting the verification, the transformation hypotheses should be sorted 

according to the consensus number. If the consensus numbers are the same, they are 

sorted in ascending order of ݁௥௠௦. The verification is performed by applying ICP to 

the transformed model by the ordered transformation hypotheses. 

The following parameters exist in the ICP algorithm: the sampling ratio, the 

maximum iteration number, and the convergence condition. Basically, we assume 

that the model mesh is well aligned on the scene with respect to the transformations 

that are true. Therefore, we use a sampling ratio of 0.01, the maximum iteration 

number of 30, and the convergence condition of 0.5݁௔௩௚ . If the ICP algorithm 

converges, then the transformation hypothesis is a true transformation and the model 

is verified. Conversely, if no transform hypotheses converge, then the model is 

considered not included in the scene and the next model is then tested continuously. 

When the ICP algorithm converges, the scene segmentation and visible proportion 

calculations of the model are also performed. The reason for scene segmentation is 

to remove the already found model from the scene to reduce the searching space and 

improve the efficiency when examining the next model. The method of scene 

segmentation is as follows: All of a scene’s feature points are projected onto a model 

mesh that is arranged by a verified transformation matrix. If the distance between 
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the projected point and the scene feature point is less than 2݁௔௩௚ of the model mesh, 

label the scene feature. Fig. 6.2 (d) shows the state of the scene after segmentation; 

the red color is the visible part of the model in the scene and the scene feature points 

in this region are excluded from the next model test (Fig. 6.3). 

The model’s visible proportion is calculated to apply a similar process to scene 

segmentation to the model mesh. This time, all vertices of the aligned model mesh 

are projected onto the scene mesh. As before, if the distance from the projected point 

is less than 2݁௔௩௚, label the vertex. Then, for all faces of the model mesh, calculate 

the total area of the faces for which all three points are labeled and divide this by the 

total area of the model mesh. The resulting value is the model’s visible proportion. 

In Fig. 6.2 (e), the red area of the model represents the part of the scene in which the 

model is visible. We can use the visible proportion value to perform additional 

validation; if the visible proportion is too small, then the model cannot be considered 

to have been properly found. In our study, ܂෩௦ is only considered true if the visible 

proportion is greater than ߬௩௜௦௜௕௟௘. We show a total segmentation example in Fig. 6.4 
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Fig. 6.2 The example of scene segmentation and the visible proportion of the model. 
(a) Well aligned model, (b) scene mesh, (c) model mesh, (d) scene mesh after 
segmentation and (e) model mesh after visible proportion calculation. 
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Fig. 6.3 An example of feature points segmentation of a scene. Among the feature 
points in the scene, the overlapping part of the Chef model was segmented in 
yellow. 
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Fig. 6.4 Total segmentation results. 
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The effect of the ߬௩௜௦௜௕௟௘  value on the results is investigated by measuring the 

precision and recall by varying the value of ߬௩௜௦௜௕௟௘ from 0.03 to 0.06 (Fig. 6.5). 

When the ߬௩௜௦௜௕௟௘ value was low, the precision of the CFVD dataset was drastically 

reduced. As the ߬௩௜௦௜௕௟௘ value increased, the precision tended to increase. However, 

if ߬௩௜௦௜௕௟௘ is too large, the recall may decrease because the visible proportion of the 

object may be smaller than ߬௩௜௦௜௕௟௘. In fact, Fig. 6.5 shows that the recall of the 

U3OR dataset is reduced when ߬௩௜௦௜௕௟௘ is 0.06. In this study, the value of ߬௩௜௦௜௕௟௘ 

was chosen as 0.05 because it was almost impossible to find the correct answer if the 

visible proportion was less than 0.05.  
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Fig. 6.5 Change of precision and recall value according to change of ߬௩௜௦௜௕௟௘. 
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CHAPTER 7.  

Experiments 

 

The performance of the proposed 3D object recognition algorithm was evaluated and 

experiments were performed using the most famous U3OR data set and CFVD data 

set among publicly available datasets. These datasets contained multiple objects in 

each scene in the presence of occlusion and clutter; a more detailed description of 

these datasets has already been discussed in CHAPTER 3. 

 

7.1 Results for the U3OR dataset 

Since many existing studies have excluded the rhino model from the U3OR dataset, 

the experiment was carried out without the rhino model, and an experiment including 

the rhino model was also performed. 

With the exception of the Rhino model, the average recognition rate of the proposed 

algorithm was 100% and there were no false positives. We found all 188 objects in 

the 50 scenes, which is an improvement over previous research results. Table 7.1 

shows the comparison with other state-to-the art techniques. The second highest 

recognition rate was 99.35% for 3D-Vor [9]. Compared to the results of other studies, 

achieving 100% recognition rate is a very meaningful result. 
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Table 7.1 Comparison with major 3D object recognition systems on the U3OR 
dataset. 

No. Method (year) Average Recognition 
Rate (%) 

1 Spin Image [3] (1999) 82.8 

2 3Dtesnsor [2] (2006) 94.6 

3 Integral invariant [46] (2009) 86 

4 Keypoint based [41] (2010) 88.5 

5 VD-LSD [5] (2011) 79 

6 EM [20] (2012) 97.5 

7 RoPS [6] (2013) 98.8 

8 TriSI [8] (2015) 95.7 

9 3D-Vor [9] (2016) 99.35 

10 Proposed 100 

 

 

 

Fig. 7.1 The change in recognition rate due to occlusion in the U3OR dataset [9]. 
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Fig. 7.2 Examples of highly occluded models. (a) Parasaurolophus, 91.4%, (b) Chef, 
91.3%, (c) Chicken, 89.7%, (d) Chicken, 89.5%, (e) Chef, 89.4%, (f) 
Parasaurolophus, 89%. 
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Fig. 7.1 shows recognition rate according to the occlusion change in other studies. 

In these experiments, occlusion was defined according to Johnson and Hebert [1]. 

݊݋݅ݏݑ݈ܿܿ݋ ൌ 1 െ
	݈݁݀݋݉ 	݂݁ܿܽݎݑݏ 	݄ܿݐܽ݌ 	ܽ݁ݎܽ ݅݊	 ݁݊݁ܿݏ

	݈ܽݐ݋ݐ 	݈݁݀݋݉ 	݂݁ܿܽݎݑݏ ܽ݁ݎܽ
 

Most other studies show a sharp decline in recognition rate for 80–90% occlusion. 

Even the most recent study, 3D-Vor, was unable to achieve a 100% recognition rate. 

Among the 188 cases that exclude the Rhino model, there were six cases in which 

occlusion was 89% or greater, which are shown in Fig. 7.2. In all of these cases, we 

successfully found the posture and size of the model, including the case with the 

highest occlusion rate of 91.4%. 

For the test that included the Rhino model, the proposed algorithm achieved an 

average recognition rate of 99.54% and no false positives. We found 216 objects out 

of a total of 217 in the 50 scenes. Fig. 7.3 shows six examples of successful 

recognition in the U3OR dataset that include the Rhino model. 

Fig. 7.4 shows the only case that failed. In the figure, the Rhino model between the 

Chef and Parasaurolophus was not recognized. In this case, the Rhino model had a 

very high occlusion of almost 95%. 
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Fig. 7.3 Six examples of successful recognition in the U3OR dataset. 
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Fig. 7.4 Failed example in the U3OR dataset. The exact posture was not found for 
the Rhino model in the middle. 
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One of the main contributions of our study is the correlation between the feature 

selection method and feature descriptors. The feature selection method and the 

feature descriptors must match each other well to attain a better performance. The 

feature selection method proves this by using the method proposed in this study, and 

recognition tests are performed by only changing the descriptor. Since the most 

recently published 3D-Vor descriptor was closely related to their feature selection 

method, the experiment was instead performed using the TriSI descriptor. The test 

method was as follows; each model was matched to the scene containing the model 

and the number of matched feature pairs that was used to calculate the resultant 

transformation in the model was saved. The better the descriptor’s performance, the 

greater the number of matched pairs, the higher the model’s occlusion, and the 

smaller the number of matched feature pairs. Fig. 7.5 shows the test results for each 

model. As expected, the model’s higher occlusion results in a smaller number of 

matching pairs. In addition, the performance of the proposed descriptor is superior 

to TriSI in all models. 
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Fig. 7.5 The number of matched feature pairs according to each model’s occlusion. 
The orange line is the result of TriSI and the gray line is the result of our descriptor. 
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We also tested for situations in which the model and the scene had different mesh 

resolutions. The ݁௔௩௚ of the half-size chef model was 0.4, and ݁௔௩௚ of the first 

scene was 0.84. 

In Fig. 7.6, we graphically plotted the number of matched features by changing the 

average edge length of the chef model to 0.75 and 1.14. As ݁௔௩௚ changed from 0.4 

to 0.75 and 1.14, the number of vertices of the model decreased from 176,560 to 

50,738 and 21,928, respectively. The coarsest model and the original first scene are 

shown in Fig. 7.7. 

As shown in Fig. 7.6, the lower the mesh’s resolution, the greater the influence on 

݊ை. Without downsampling, the number of matched feature pairs dropped to less 

than half when ݁௔௩௚ was 0.75. When the average edge length of the model was 1.14, 

it will fail to recognize whether downsampling has been performed. In Fig. 7.8, we 

show the recognition results according to the mesh resolution changes.  

As the model becomes coarser and the mesh resolution difference from the scene 

becomes larger, the recognition difficulty increases. Increasing the number of 

intervals is one way to address this situation; however, increasing the number of 

octaves is more efficient than increasing the number of intervals. Downsampling is 

one advantage of the algorithm proposed in this paper because it can effectively cope 

with situations in which the resolution difference between the model and the scene 

is large. 
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Fig. 7.6 The number of matched feature pairs according to change in average edge 
length. 

 

 

Fig. 7.7 The difference in the mesh resolution between the model and the scene. (a) 

݁௔௩௚ ൌ 1.14, (b) ݁௔௩௚ ൌ 0.84. 
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Fig. 7.8 Recognition results according to the ݁௔௩௚ of the Chef model. First column: 

݊ை ൌ 2, second column : ݊ை ൌ 1, (a) ݁௔௩௚ ൌ 0.4, (b) ݁௔௩௚ ൌ 0.75, (c) ݁௔௩௚ ൌ

1.14. 

 



62 

Finally, it should be noted that the feature selection method proposed in this study 

can extract certain features and support radii regardless of the mesh scale, so scale-

invariant recognition can be performed; this is the main contribution of our feature 

selection algorithm. Few studies have achieved scale-invariant 3D object recognition 

[10, 20, 41] and these scale-invariant recognition systems tend to be less 

recognizable than fixed-scale recognition systems. Unlike previous studies, our 

algorithm is robust at any scale (Fig. 7.9). 
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Fig. 7.9 Examples of scale-invariant recognition. The recognition results are the 
same even if the model scale has changed. The model scale is (a) 0.4, (b) 1.0, (c) 2.0. 
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7.2 Results on the CFVD dataset 

As in other studies [6, 8-10], we tested 150 scenes using the 18 out of 20 models in 

the CFVD dataset. The CFVD dataset is characterized by the fact that there are 3–5 

objects in each scene, while there are 18 tested models. Therefore, many false 

positive cases occur if the performance of the feature descriptor and matching 

algorithm is insufficient. In addition, the dataset contains several models with large 

flat and featureless areas and very similar shapes [10]. Thus, testing with the CFVD 

dataset is more challenging than with other datasets. 

The average recognition rate of the proposed algorithm was 97.8% and there are only 

one false positive; we found 441 objects out of 451 in 150 scenes. Table 7.2 shows 

the precision and recall values for each model when tested with the proposed 

algorithm. Table 7.3 and Table 7.4 show the results of comparison with other studies 

(3D-Vor [9], TriSI [8], RoPS [6], SHOT + Game [10]) for precision and recall values, 

respectively. As we can see from these two tables, the proposed algorithm 

outperformed other studies. Fig. 7.10 shows six examples of successful recognition 

in the CFVD dataset. 
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Table 7.2 Object recognition test results for the CFVD datasets. 

Model 
Total 

Matches 

True 

Positive 

False 

Positive 

Precision 

(%) 

Recall 

(%) 

Armadillo 30 28 0 100.0 93.3 

Bunny 35 35 0 100.0 100.0 

Cat1 25 24 0 100.0 96.0 

Centaur1 24 24 0 100.0 100.0 

Chef 13 13 0 100.0 100.0 

Chicken 27 27 0 100.0 100.0 

Dog7 22 21 0 100.0 95.5 

Dragon 19 19 0 100.0 100.0 

Face 22 22 1 95.7 100.0 

Genesha 24 24 0 100.0 100.0 

Gorilla0 23 23 0 100.0 100.0 

Horse7 34 34 0 100.0 100.0 

Lioness13 22 22 0 100.0 100.0 

Para 32 30 0 100.0 93.8 

Rhino 22 21 0 100.0 95.5 

Trex 39 39 0 100.0 100.0 

Victoria3 19 16 0 100.0 84.2 

Wolf2 19 19 0 100.0 100.0 

Total 451 441 1 99.8 97.8 
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Table 7.3 Comparison of the precision values with other studies in the CFVD test. 

Model Proposed 3D-Vor TriSI RoPS SHOT+Game 

Armadillo 100 100 100 97 100 

Bunny 100 100 100 100 100 

Cat1 100 94 100 100 78 

Centaur1 100 100 100 100 96 

Chef 100 100 93 100 93 

Chicken 100 98 100 97 93 

Dog7 100 99 100 100 95 

Dragon 100 99 100 100 100 

Face 95.7 100 100 100 91 

Genesha 100 100 100 100 89 

Gorilla0 100 97 100 100 95 

Horse7 100 100 97 100 97 

Lioness13 100 95 100 100 88 

Para 100 96 97 97 97 

Rhino 100 98 100 96 91 

Trex 100 100 100 100 97 

Victoria3 100 100 100 100 83 

Wolf2 100 98 100 100 82 

Total 99.8 98.3 99.3 99.1 93 
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Table 7.4 Comparison of the recall values with other studies in the CFVD test. 

Model Proposed 3D-Vor TriSI RoPS SHOT+Game 

Armadillo 93.3 100 100 100 97 

Bunny 100 100 100 100 97 

Cat1 96.0 70 60 44 82 

Centaur1 100 100 100 100 100 

Chef 100 100 100 100 100 

Chicken 100 100 100 100 100 

Dog7 95.5 89 91 91 86 

Dragon 100 92 100 100 89 

Face 100 99 100 100 95 

Genesha 100 100 96 100 100 

Gorilla0 100 100 100 100 91 

Horse7 100 100 100 100 100 

Lioness13 100 100 96 100 100 

Para 93.8 96 100 97 94 

Rhino 95.5 97 100 100 91 

Trex 100 100 100 100 97 

Victoria3 84.2 97 95 95 83 

Wolf2 100 93 100 100 95 

Total 97.8 96.2 96.7 96 94.7 
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Fig. 7.10 Six examples of successful recognition in the CFVD dataset. 
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Another notable point is the number of selected features. Table 7.5 shows the average 

number of features selected in the U3OR and CFVD datasets. Compared with RoPS 

[6] and 3D-Vor [9],  our study is meaningful as it uses fewer features and yet still 

achieves higher recognition rates. In particular, the number of average feature points 

in a scene is less than half that of 3D-Vor for the U3OR dataset, and less than one-

third for the CFVD dataset. This can be a great advantage, as it takes a long time to 

calculate a feature. This statistic also means that the feature selection method and the 

feature descriptor proposed in this study are superior to existing methods. 

 

Table 7.5 The average number of selected feature points in a scene and a model. 
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CHAPTER 8.  

Conclusion 

 

This paper proposes new algorithms for each element technique in 3D object 

recognition. First, we presented a novel scale-invariant feature selection method that 

successfully extended the scale-invariant nature of the 2D SIFT algorithm to the 3D 

surface. By effectively calculating the Gaussian and DoG pyramids, it is able to 

detect highly repeatable features and obtain the support radius irrespective of the 

mesh scale. 

We also proposed a new feature descriptor using the gradient of the scalar function. 

Because the scalar function was also used in the feature selection method, the 

proposed descriptor can best represent information around a feature. In addition, by 

projecting a gradient vector on a 2D plane, the surrounding information can be 

represented more compactly. We increased the robustness of the descriptor using 

LRF and by allowing more than one descriptor vector at the same feature point. 

In the feature matching step, we proposed a new RANSAC-based transform 

hypothesis generation algorithm that finds the correct correspondence groups among 

many correspondence pairs by calculating the similarity transformation with only 

three vertices. It also applies the vertex normal rejection step to reduce false positives. 

We have developed a robust 3D object recognition system that can effectively cope 

with large differences in scale between models and scenes by combining the above 

algorithms. 
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We tested our algorithm on the U3OR and CFVD datasets, which are the most widely 

used in 3D object recognition. The experimental results show that the proposed 

technique achieved recognition rates of 99.5% and 97.8%, respectively, which is 

beyond that of state-of-the-art studies. 

Another advantage of the proposed algorithm is that it uses arbitrary scalar functions 

as defined in the surface mesh. If the scalar function represents the surface 

information such as the curvature, geometric feature points can be found. Similarly, 

the same algorithm can even be applied when the scalar function represents texture 

information. As the 3D surface data including the color and texture information 

becomes more generalized, the algorithm proposed in this study can be applied more 

broadly. 

Finally, the proposed algorithm can also be applied in a data-driven approach. The 

next step in the field of object recognition is to find similar shapes in real scenes by 

building a large database rather than by looking for shapes that exactly match an 

already known template. Such an approach will require finding the features of an 

object and describing them effectively. From this perspective, the algorithm 

proposed in this study will be valuable as the underlying technology of a data-driven 

approach. 
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ABSTRACT (Korean) 

 

최근 들어서 3차원 스캐닝 기술이 발전함에 따라 다양한 3차원 표면 데

이터를 쉽게 얻을 수 있게 되었고, 이와 더불어서 3차원 데이터에 대한 

정합 및 인식 기술에 대한 수요도 나날이 증가하고 있는 추세이다. 특히 

물체의 많은 부분이 가려지고 여러 물체가 존재하는 복잡한 배경에서 3

차원 물체의 정확한 위치를 찾아내는 기술은 산업 현장의 검사, 의료 영

상, 게임 등 여러 곳에서 필요한 중요한 기술이다. 

기존의 많은 연구들은 물체의 크기가 알려지지 않은 경우나 가려진 부분

이 클 경우에는 원하는 만큼의 성능을 내지 못하였다. 본 연구에서는 기

존 연구들의 성능을 뛰어넘는 새로운 물체 인식 알고리즘을 제안하였다. 

복잡한 배경에서 3차원 물체의 위치 및 크기를 인식하는 과정은 크게 특

징점 선택, 특징점 기술, 매칭의 3단계로 이루어진다. 

본 연구에서는 2D SIFT 알고리즘을 3차원으로 확장하여 완벽한 규모 불

편의 특성을 갖는 특징점 선택 알고리즘을 제안하였다.  이 특징점 선택 

알고리즘은 3차원 표면 데이터에 정의된 스칼라 함수에 대한 Difference 

of Gaussian 피라미드를 구성하여 반복성이 높고 규모 불변한 성질을 갖

는 특징점들을 추출해낸다. 이렇게 선택된 특징점들은 본 연구에서 제안

한 새로운 형상 기술자에 의해서 효과적으로 주변 정보를 묘사할 수 있
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다. 기존의 형상 기술자들과 달리 3차원 표면 데이터에 정의된 스칼라 

함수의 Gradient를 이용함으로써 본 연구에서 제안한 특징점 선택 알고리

즘과 결합 하였을 때 높은 인식률을 달성할 수 있다. 또한 새로운 

RANSAC 기반의 Transform Hypothesis 생성 알고리즘을 제안함으로써 검

색 공간을 줄이고 False Positive의 확률을 낮췄다. 

본 연구에서 제안된 3차원 물체 인식 알고리즘을 기존의 연구에서 많이 

사용되었던 U3OR 데이터와 CFVD 데이터로 테스트 한 결과, 각각 99.5%

와 97.8% 의 인식률을 얻었으며, 이는 기존 연구들의 결과를 뛰어넘는 

수치이다. 

 

주요어: 3차원 물체 인식, 규모 불변의 특징점, 규모 불변의 물체 인식, 3

차원 특징 기술자, RANSAC 매칭 
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