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    Exceptional high waves have occurred repeatedly in the East Sea of Korea. 

These disastrous waves claimed the losses of life more than 50 people during the 

ten years between 2005 and 2015 in the east coast of Korea. Several researchers 

have examined the generation mechanism and characteristics of sudden high waves. 

However, the definition of the high waves is still vague and insufficient to explain 

the characteristics of sudden high waves. Also, occurrence of sudden high waves is 

only roughly forecasted in the daily weather forecast. In this study sudden high 

waves were defined using a new intensity parameter and the generation mechanism 
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of the sudden high waves was investigated. Next, significant wave height and 

period were forecasted in the East Sea of Korea using machine-learning. Finally, 

sudden high waves were forecasted using the intensity parameter proposed and the 

forecasted significant waves in the East Sea of Korea. 

 In this study, the index of sudden high waves was suggested as 2( ) /H L t   

and it was calculated using wave data measured in Gangneung and Wangdolcho in 

2005–2012. The criteria of sudden high waves was set 80 m3/hr , which 

corresponds to the top 20% of cumulative percentage of 2( ) /H L t  . 

Next, to find the generation mechanism of sudden high waves, the evolution 

of spatial patterns of wind velocity and sea level pressures was presented during 

the sudden high wave events by CSEOF analysis and regression analysis. The wave 

data in Gangneung and Wangdolcho were used and the meteorological data were 

reanalysis data of National Centers for Environmental Prediction and National 

Center for Atmospheric Research (NCEP/NCAR). There are two peaks in the 

modes of all CSLV considered the physical process of sudden high waves. The 

patterns were categorized two groups. The first pattern was that the first peak was 

generated by low pressure moving to the north east part of the East Sea and 

easterly wind blowing for 1 day, whereas the second peak was caused by strong 

wind. The second pattern was that the first peak was affected by the wind speed in 

the east coast and the second peak was influenced by wind in the offshore area. 

To forecast significant waves in multiple locations simultaneously, an 

EOFWNN model was developed by combining the EOF analysis and wavelet 

analysis with the neural network. The wave data used in this research were 

measured at eight wave observation stations in the East Sea and the meteorological 
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data were the NCEP/NCAR reanalysis data. The results of the EOFWNN model for 

significant wave height were compared with those of a wavelet and neural network 

hybrid (WNN) model in Gangneung, Sakata and Aomori for several lead times. 

The EOFWNN model is better than the WNN model in that the former shows 

higher accuracy for longer lead times regardless of the wavelet decomposition level. 

Significant wave period series were also forecasted using the EOFWNN model. 

The results of significant wave period also show quite high accuracy. Also, the 

proposed model was employed to the numerical wave modeling data in the entire 

area of the East Sea. The results also show relatively high accuracy for one and 

three hour lead times.  

Using the proposed intensity parameter of sudden high waves and the 

forecasted significant waves by the EOFWNN model, sudden high wave was 

detected and forecasted. From the forecasted wave data at 24 hour lead time, 

 2 /H L t   was calculated in Gangneung and Sakata. Although there is a slight 

deviation between the results of observed and forecasted wave data, sudden high 

wave was detected clearly. 

 

Keywords: Artificial neural network; Empirical orthogonal function; Significant 

wave; Sudden high wave; Wave forecasting; Wavelet. 
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iv 

TABLE OF CONTENTS 

 

ABSTRACT .................................................................................... i 

 

LIST OF FIGURES ....................................................................... vi 

 

LIST OF TABLES ....................................................................... xiv 

 

LIST OF SYMBOLS ................................................................... xvi 

 

CHAPTER 1 INTRODUCTION .................................................... 1 

 1.1 Background ......................................................................... 1 

 1.2 Research objectives ............................................................ 6 

 

CHAPTER 2 THEORETICAL STUDY ........................................ 8 

 2.1 Analysis methods of mechanism of sudden high waves ..... 8 

 2.1.1 CSEOF analysis ............................................................... 9 

 2.1.2 Regreggion analysis ....................................................... 11 

 2.2 Wave forecast methods ..................................................... 13 

 2.2.1 EOF analysis .................................................................. 14 

 2.2.2 Wavelet analysis ............................................................ 16 

 2.2.3 Artificial Neural Network .............................................. 19 

 2.2.4 EOF-Wavelet-ANN (EOFWNN) model ........................ 23 

 

CHAPTER 3 CHARACTERISTICS OF SUDDEN HIGH 

WAVES ................................................................................... 27 

 3.1 Data for anlaysis of characteristics of sudden high waves ...  

  ................................................................................................ 27 

 3.1.1 Wave data ....................................................................... 27 

 3.1.2 Meteorological data ....................................................... 27 

 3.2 Definition of sudden high waves ...................................... 30 



 

 
v 

 3.3 Mechanism of sudden high waves .................................... 43 

 

CHAPTER 4 FORECASTING OF SUDDEN HIGH WAVES .... 62 

 4.1 Data for forecasting of sudden high waves....................... 62 

 4.1.1 Observed wave data ....................................................... 62 

 4.1.2 Numerical wave modeling data ..................................... 64 

 4.1.3 Meteorological data for forecasting ............................... 66 

 4.2 Forecasting of significant wave height and period using 

the observed data .................................................................... 67 

 4.3 Forecasting of significant wave height and peak period 

using the numerical modeling data ......................................... 92 

 4.4 Detecting and forecasting of sudden high waves ........... 103 

 

CHAPTER 5 CONCLUSIONS .................................................. 111 

 5.1 Summary and conclusions .............................................. 111 

 5.2 Future study .................................................................... 114 

 

REFERENCES ........................................................................... 117 

 

APPENDIX ................................................................................ 121 

 

국문초록 .................................................................................... 137 

  

  



 

 
vi 

LIST OF FIGURES 

 

Fig. 1.1 Schematic diagram of the study ........................................ 7 

 

Fig. 2.1 ANN structure.................................................................. 22 

 

Fig. 2.2 Schematic diagram of the EOFWNN model ................... 24 

 

Fig. 2.3 Predictor configuration of wave forecasting model ........ 26 

 

Fig. 3.1 Wave measurement locations by KIOST ........................ 29 

 

Fig. 3.2 Region of meteorological data ........................................ 29 

 

Fig. 3.3 Event of sudden high waves in October 2005 in 

Gangneung and Wangdolcho .................................................. 31 

 

Fig. 3.4 Illustration of high wave events ...................................... 33 

 

Fig. 3.5 Illustration of calculation of intensity parameter of 

sudden high waves in Gangnueng: (a) High wave event in 

February 23-25, 2008; and (b) High wave event in January 9-

11, 2009 .................................................................................. 35 

 

Fig. 3.6 Cumulative percentage curve of ∆(𝐻2𝐿)/∆𝑡 ................. 38 

 

Fig. 3.7 Eigenvalues of CSEOF modes for significant wave 

height data from KIOST ......................................................... 44 

 

Fig. 3.8 CSEOF mode 1 of significant wave height data from 

KIOST  ................................................................................... 45 



 

 
vii 

 

Fig. 3.9 CSEOF mode 2 of significant wave height data from 

KIOST  ................................................................................... 46 

 

Fig. 3.10 CSEOF mode 3 of significant wave height data from 

KIOST  ................................................................................... 47 

 

Fig. 3.11 Eigenvalues of CSEOF modes for sudden high wave 

index ....................................................................................... 48 

 

Fig. 3.12 CSEOF mode 1 of sudden high wave index.................. 49 

 

Fig. 3.13 CSEOF mode 2 of sudden high wave index.................. 50 

 

Fig. 3.14 CSEOF mode 3 of sudden high wave index.................. 51 

 

Fig. 3.15 Comparison of the first 2 modes of the regressed sea 

lavel pressure PC time series and significant wave height PC 

time series ............................................................................... 53 

 

Fig. 3.16 Comparison of the first 2 modes of the regressed wind 

speed PC time series and significant wave height PC time 

series  ...................................................................................... 54 

 

Fig. 3.17 Evolution of spatial patterns for the 2nd mode of 

significant wave height and meteorological variables ............ 56 

 

Fig. 3.18 Evolution of spatial patterns for the 3rd mode of 

significant wave height and meteorological variables ............ 57 

 



 

 
viii 

Fig. 3.19 Comparision of the first 2 modes of the regressed sea 

level pressure PC time series and sudden high wave index PC 

time series ............................................................................... 58 

 

Fig. 3.20 Comparision of the first 2 modes of the regressed wind 

speed PC time series and sudden high wave index PC time 

series ....................................................................................... 59 

 

Fig. 3.21 Evolution of spatial patterns for the 1st mode of sudden 

high wave index and meteorological variables ....................... 60 

 

Fig. 3.22 Evolution of spatial patterns for the 2nd mode of sudden 

high wave index and meteorological variables ....................... 61 

 

Fig. 4.1 Wave measurement locations .......................................... 63 

 

Fig. 4.2 Grid map of KORDI (2005) ............................................ 65 

 

Fig. 4.3 Grid map of numerical wave modeling data ................... 65 

 

Fig. 4.4 First to fourth mode eigenvectors for wind velocity ....... 68 

 

Fig. 4.5 First to fourth mode eigenvectors for sea level pressure .....  

  ................................................................................................ 68 

 

Fig. 4.6 First to fourth mode PC time series for wind velocity .... 69 

 

Fig. 4.7 First to fourth mode PC time series for sea level pressure ..  

  ................................................................................................ 69 

 

Fig. 4.8 Eigenvalues of EOF modes for significant wave height 



 

 
ix 

data .......................................................................................... 70 

 

Fig. 4.9 First to fourth mode PC time series for significant wave 

height ...................................................................................... 71 

 

Fig. 4.10 Decomposed wavelet components of the 1st mode of H 

PC time series ......................................................................... 72 

 

Fig. 4.11 Approximations of the 1st mode of wind speed and sea 

level pressure PC time series .................................................. 72 

 

Fig. 4.12 Largest R case for training period (Oct. 02, 2010 - Jan. 

28, 2011) and ensemble members (black) and ensemble 

average (red) (00:00:00, Jan. 29, 2011) for the 1st mode H PC 

time series for 1 hour lead time forecasting............................ 74 

 

Fig. 4.13 Largest R case for training period (Oct. 02, 2010 - Jan. 

27, 2011) and ensemble members (black) and ensemble 

average (red) (00:00:00, Jan. 29, 2011) for the 1st mode H PC 

time series for 3 hour lead time forecasting............................ 74 

 

Fig. 4.14 Largest R case for training period (Oct. 02, 2010 - Jan. 

27, 2011) and ensemble members (black) and ensemble 

average (red) (00:00:00, Jan. 29, 2011) for the 1st mode H PC 

time series for 12 hour lead time forecasting.......................... 75 

 

Fig. 4.15 Largest R case for training period (Oct. 02, 2010 - Jan. 

27, 2011) and ensemble members (black) and ensemble 

average (red) (00:00:00, Jan. 29, 2011) for the 1st mode H PC 

time series for 24 hour lead time forecasting.......................... 75 



 

 
x 

 

Fig. 4.16 Comparison of observed (black circle) and estimated 

(blue triangle) wave height at 8 stations at 00:00:00, Jan. 29, 

2011 (a) for 1 hour lead time, (b) for 3 hour lead time, (c) for 

12 hour lead time, (d) for 24 hour lead time forecasting ........ 76 

 

Fig. 4.17 Observed and forecasted significant wave heights by 

WNN and EOFWNN models with 7th decomposition level at 

24 hour lead time in Gangneung ............................................. 84 

 

Fig. 4.18 Observed and forecasted significant wave heights by 

WNN and EOFWNN models with 7th decomposition level at 

24 hour lead time in Sakata .................................................... 84 

 

Fig. 4.19 Observed and forecasted significant wave heights by 

WNN and EOFWNN models with 7th decomposition level at 

24 hour lead time in Aomori ................................................... 85 

 

Fig. 4.20 Comparison of index of agreement between EOFWNN 

and WNN model with 3, 5, and 7 decomposition level in 

several lead times in (a) Gangneung, (b) Sakata, (c) Aomori .....  

  ................................................................................................ 86 

 

Fig. 4.21 First to fourth mode PC time series for significant wave 

period ...................................................................................... 88 

 

Fig. 4.22 Observed and forecasted significant wave period by 

EOFWNN model with 7th decomposition level at 24 hour 

lead time in Gangneung .......................................................... 90 

 



 

 
xi 

Fig. 4.23 Observed and forecasted significant wave period by 

EOFWNN model with 7th dedomposition level at 24 hour 

lead time in Sakata .................................................................. 90 

 

Fig. 4.24 Observed and forecasted significant wave period by 

EOFWNN model with 7th dedomposition level at 24 hour 

lead time in Aomori ................................................................ 91 

 

Fig. 4.25 First four modes of eigenvectors for wind velocity ...... 93 

 

Fig. 4.26 First four modes of PC time series for wind velocity ... 93 

 

Fig. 4.27 First mode of eigenvector and corresponding PC time 

series of significant wave height for numerical wave 

modeling data.......................................................................... 94 

 

Fig. 4.28 Coefficient of correlation of EOFWNN model for 

numerical results of significant wave height with 7th 

decomposition level at 3 hr lead time ..................................... 95 

 

Fig. 4.29 Index of agreement of EOFWNN model for numerical 

results of significant wave height with 7th decomposition 

level at 3 hr lead time.............................................................. 96 

 

Fig. 4.30 NRMSE of EOFWNN model for numerical results of 

significant wave height with 7th decomposition level at 3 hr 

lead time.................................................................................. 96 

 

Fig. 4.31 Highest performance case of EOFWNN model for 

numerical results of significant wave height with 7th 



 

 
xii 

decomposition level at 3 hr lead time ..................................... 97 

 

Fig. 4.32 Lowest performance case of EOFWNN model for 

numerical results of significant wave height with 7th 

decomposition level at 3 hr lead time ..................................... 97 

 

Fig. 4.33 Firtst mode of the eigenvector and corresponding PC 

time series of peak period for numerical wave modeling data ...  

  ................................................................................................ 99 

 

Fig. 4.34 Coefficient of correlation of EOFWNN model for 

numerical results of peak period with 7th decomposition level 

at 3 hr lead time .................................................................... 100 

 

Fig. 4.35 Index of agreement of EOFWNN model for numerical 

results of peak period with 7th decomposition level at 3 hr 

lead time................................................................................ 100 

 

Fig. 4.36 NRMSE of EOFWNN model for numerical results of 

peak period with 7th decomposition level at 3 hr lead time .. 101 

 

Fig. 4.37 Highest performance case of EOFWNN model for 

numerical results of peak period with 7th decomposition level 

at 3 hr lead time .................................................................... 101 

 

Fig. 4.38 Lowest performance case of EOFWNN model for 

numerical results of peak period with 7th decomposition level 

at 3 hr lead time .................................................................... 102 

 

Fig. 4.39 Snapshots of 
2( ) /H L t  calculated during the period 



 

 
xiii 

of February 2-3, 1987: (a) 9am Feb. 2nd (b) 1am Feb. 3rd (c) 

6am Feb. 3rd (d) 2pm Feb. 3rd  .............................................. 104 

 

Fig. 4.40 Locations of wave observation stations of NOWPHAS 

system ................................................................................... 105 

 

Fig. 4.41 Temporal variation of 2H L  measured at three wave 

stations of NOWPHAS system in Februaru 1-5, 1987: (a) 

Hamada (b)Tottori and (c) Ka azawa  .................................. 107 

 

Fig. 4.42 Comparison of Temporal variation of 2H L  between 

observed and forecasted wave data at 24 hour lead time in 

Gangneung ............................................................................ 109 

 

Fig. 4.43 Comparison of Temporal variation of 2H L  between 

observed and forecasted wave data at 24 hour lead time in 

Sakata .................................................................................... 110 

 

Fig. 5.1 Autocorrelation of residuals of observed and forecasted 

results for significant wave height at 24 hour lead time in 

Gangneung ............................................................................ 116 

 



 

 
xiv 

LIST OF TABLES 

 

Table 3.1 Marine accidents and/or property damage along the 

coast of Gangwon-do Province and Gyeongsangbuk-do 

Province (from Geosystem Research, 2015) .......................... 37 

 

Table 3.2 Characteristics of ∆𝐻/∆𝑡  and ∆(𝐻2𝐿)/∆𝑡  in 

Gangneung .............................................................................. 38 

 

Table 3.3 Comparison of sudden high wave events of ∆(𝐻2𝐿)/

∆𝑡 ≥  80 m3/hr and marine accidents .................................. 40 

 

Table 3.4 Precipitation and maximum wind speed during marine 

accident and/or property damage due to sudden high waves .....  

  ................................................................................................ 42 

 

Table 4.1 Information on wave measurement stations and 

statistical properties of wave data at each station ................... 63 

 

Table 4.2 Test results of WNN model for H in Gangneung, 

Sakata and Aomori for several lead times .............................. 78 

 

Table 4.3 Test results of EOFWNN model for H at 1 hr lead time 

depending on decoposition level ............................................ 80 

 

Table 4.4 Test results of EOFWNN model for H at 3 hr lead time 

depending on decoposition level ............................................ 81 

 

Table 4.5 Test results of EOFWNN model for H at 12 hr lead 

time depending on decoposition level .................................... 82 



 

 
xv 

 

Table 4.6 Test results of EOFWNN model for H at 24 hr lead 

time depending on decoposition level .................................... 83 

 

Table 4.7 Test results of EOFWNN model for T at 8 stations for 

several lead times with decomposition level 7 ....................... 89 

 

Table 4.8 Disaster damage occurred in February 3-4, 1987, in 

Shimane Prefecture, Japan (unit = 1,000 Japanese Yen) ...... 105 

  



 

 
xvi 

LIST OF SYMBOLS 

 

Comprehensive Explanations 

 Unless otherwise stated, all the wave parameters are those of significant 

waves (e.g. H  = significant wave height). 

 

Latin Uppercase 

A: approximation 

𝐵𝑛(𝑥): eigenfunction 

𝐵𝑛(𝑥, 𝑡), 𝐶𝑛(x, 𝑡), 𝐷𝑛(x, 𝑡): cyclo-stationary loading vector (CSLV) 

D: detail 

H: wave height (m) 

𝐼𝑎: index of agreement 

L : wave length (m) 

NRMSE: normalized root mean square error 

R: correlation coefficient 

RMSE: root mean square error 

T : wave period (s) 

T (x,t), P (x,t): spatio-temporal series 

𝑇𝑛(𝑡), 𝑃𝑛(𝑡): principal component (PC) time series 

 

Latin Lowercase 

a: scale factor 

b: shift factor or ANN bias 



 

 
xvii 

d: nested period 

slp: sea level pressure series 

t, 𝑡′: time  

w: ANN weight 

wnd: wind velocity series 

x, 𝑥′: space 

 

Greek Lowercase 

α𝑚
{𝑛}

: regression coefficient 

ε{𝑛}(𝑡): regression error time series 

𝜆𝑛: eigenvalue 

𝜙: scaling function 

𝜓𝑛: wavelet function 



 

 
1 

CHAPTER 1. INTRODUCTION 

 

1.1 Background 

 

Recently, exceptional high waves have caused many casualties and serious 

property damage in the East Sea of Korea. On 21 October 2006, the significant 

wave height reached 9.69 m and its peak period was 12.8 s near Sokcho Harbor, 

which was the maximum wave height ever observed on the east coast of Korea 

(Jeong, Oh, and Lee 2007). Meanwhile, similar events have been repeatedly 

reported on the west coast of Japan. Many researchers examined the most 

remarkable event occurred on 24 February 2008 at Toyama Bay, which was 

highlighted by the significant wave height of 9.92 m (Mase et al. 2008, Lee et al. 

2010). These disastrous waves claimed the losses of life more than 50 people 

during the ten years between 2005 and 2015 in the east coast of Korea because they 

suddenly occurred under the relatively mild weather in the winter season.  

Although storm waves about two times higher than 50 year return period of 

deep water design waves have been observed in the east coast, sudden high waves 

have not been considered until now when estimating design waves of coastal 

structures. The high waves occur repeatedly every year and the risk of sudden high 

waves will increase due to anomaly climate such as global warming, so it is 

necessary to take into account such high waves when estimating design waves 

(Jeong, Oh, and Lee 2007). Since figuring out sudden high waves is the key factor 

not only in coastal damage and disaster but also in the design of coastal structures, 

it is critical to forecast sudden high waves accurately.  

Sudden high waves in the East Sea have been recognized and studied since 



 

 
2 

long ago (Kitaide 1952, Isozaki 1971, Isozaki and Yoshio 1972). Recently, as 

casualties and property damage caused by sudden high waves have been increased, 

researches have been made actively (Jeong 2009, Lee et al. 2010, Oh et al. 2010, 

Kashima and Hirayama 2011, Ahn et al. 2013, Oh and Jeong 2013, Lee et al. 2014). 

The studies are divided into two major parts: analysis of the characteristics and 

mechanism of sudden high waves and forecasting of sudden high waves using 

numerical method.  

Definition of sudden high waves 

Kim and Lee (2008b) analyzed the observed swells in Wangdolcho on 22 – 28 

February 2008 using wavelet method. They showed that the peak frequency moves 

to the lower frequency and the wave energy increases dramatically during the event.  

Oh et al. (2010) analyzed several events and described the causes of high waves for 

each case. They defined such high wave as large-height swell-like wave, which 

often has a larger height than general swell (H > 3 m) and a relatively long period 

(T > 9 s). Since their research, many researchers have followed their definition of 

large-height swell-like waves. Also, the many have classified such waves according 

to only its height and period. However, the definition and criteria of the high waves 

is vague and insufficient because the high waves have the characteristics of both 

swell and wind wave and the definition does not reflect the rapid increase of waves 

in a few hours. In this study, sudden high wave was used as a new terminology to 

include the characteristics of such high waves.  

Generation mechanism of sudden high waves 

The mechanism of sudden high waves have been analyzed not only in the field 

of coastal engineering but also meteorology. According to Kitaide (1952), the 

waves called “Yorimawari wave” in Japan are generated due to the strong north 
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and northeasterly winds formed by a quasi-stationary developed atmospheric low-

pressure area. Isozaki (1971) and Isozaki and Yoshio (1972) examined the 

characteristics of abnormal high waves and described the predictability based on 

meteorological observations of past events. Joung et al. (1984) studied the 

generation process of a low-pressure system developed on 2 January 1981 by using 

the results from an adiabatic inviscid quasi-geostrophic model. Jeong, Oh, and Lee 

(2007) analyzed the characteristics of the high waves observed at 5 stations in the 

East Sea on 23–24 October 2006 with wind data. According to them, sudden high 

waves occurs due to superposition of wind waves and swell generated by strong 

East Sea twister. Oh and Jeong (2013) analyzed the characteristics of sudden high 

waves and meteorological conditions during the events using the observed wave 

data at multiple stations along the east coast of Korea. According to them, 

important is not only the pressure drop during the movement of low pressure 

system but also other factors such as moving trajectory and staying time of the low 

pressure system together with arrangement of neighboring atmospheric pressure 

fields. They also found that the spectral density of the high waves increases two 

times on 23 February 2008. It was found that the characteristics of waves would be 

predominantly governed by long-traveled swell in the former case but in contrast, it 

would be a result of local wind sea development in the latter case. Although many 

researches related to generation mechanism of sudden high waves have been 

studied, they are only for a few cases based on casualties or damage of properties. 

It is necessary to analyze the overall generation mechanism of sudden high waves 

using the wave data measured long period. 

Forecasting of sudden high waves 

The forecasting of sudden high waves in the East Sea, as another major part, 
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have been conducted (Ahn et al. 2013, Hatada and Yamaguchi 1998, Kim and Lee 

2008a, Kim et al. 2011, Lee et al. 2008, Lee et al. 2014, Mase et al. 2008). Even 

though many researches for forecasting of sudden high waves have been done, they 

have been studied only using numerical methods. There is no research for 

forecasting of sudden high waves using statistical method such as machine-learning 

until now. 

Machine-learning forecasting of significant wave heights  

Despite of considerable advances in computational techniques, the solutions 

obtained by numerically solving the equations of wave growth are neither exact nor 

uniformly applicable at all sites and at all times due to the complexity and 

uncertainty of the wave generation phenomenon (Deo et al. 2001). Prediction of 

waves is basically uncertain and random process and hence difficult to model by 

using deterministic equations. Therefore, many researchers have established the 

forecasting of waves using stochastic models such as auto-regressive moving 

average (ARMA), auto-regressive integrated moving average (ARIMA) or 

artificial neural networks (ANN). 

    Deo et al. (2001) explored the possibility of employing neural networks for 

weakly mean wave forecasting based on wind speeds. They mentioned that neural 

network modeling is proper to predict waves since it is primarily aimed at 

recognition of a random pattern in a given set of input values and does not require 

knowledge of the physical process as a precondition. However, their results are not 

very satisfactory, possibly due to the uncertainties of the wind-wave relationship. 

After their research, many researchers have investigated wave forecasting using 

artificial neural network by training the observed wave records directly (Tsai, Lin, 

and Shen 2002, Makarynskyy et al. 2005, Londhe and Panchang 2006). Their 
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results showed the short-term forecasts (3 and 6 hours) of the wave parameters are 

more accurate than longer-term forecasts. Meanwhile, some researchers have 

examined the effects of other meteorological factors on wave height forecasting 

using ANN (Günaydın 2008, Zamani et al. 2008). However, there is no significant 

improvement of the forecasting results.  

Even though ANN has flexibility, it may not be able to cope with non-

stationary data without any preprocessing of the input and output data (Cannas et al. 

2006). In the recent years, hybridization of ANN with other techniques has been 

used in wave height forecasting to provide effective modeling. Ö zger (2010) 

proposed the combination of wavelet and fuzzy logic approaches to forecast wave 

height up to 48 hour lead time. Deka and Prahlada (2012), Prahlada and Deka 

(2015) used wavelet neural network (WNN) for wave height forecasting up to 48 

hour lead time. Dixit and Londhe (2016) also used neuro wavelet technique for 

extreme wave heights forecasting up to 36 hour lead time. Shahabi, Khanjani, and 

Kermani (2016) developed genetic programming based wavelet transform to 

forecast significant wave height up to 48 hour lead time. Hybrid model results 

showed better prediction performance than single ANN model. Although their 

results indicates good predictions at lower lead times but slight deviation is 

observed at higher lead times. Also there are limitations that their models cannot 

interpret the relationship between spatially distributed meteorological variables and 

waves and cannot forecast spatially distributed wave height at once. In other words, 

in their researches modeling is performed for forecasting wave height at different 

locations separately.  
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1.2 Research Objectives 

 

The ultimate goal of this study is to forecast sudden high waves in the East Sea of 

Korea based on the meteorological data and wave data using machine-learning. To 

forecast the waves, the first objective is to define a new intensity parameter of 

sudden high waves. Second, the generation mechanism of the waves are 

investigated by analyzing the relation between waves and meteorological variables. 

Third, significant wave height and period are forecasted in the East Sea of Korea 

using machine-learning. Finally, sudden high waves are detected and forecasted 

from the proposed intensity parameter and the forecasted significant waves in the 

East Sea of Korea. Fig. 1.1 shows the schematic diagram of this study. 

This thesis is organized in the following order. Chapter 2 explains the 

statistical methods to analyze and forecast sudden high waves. Chapter 3 consists 

of three parts; (1) description of data (2) definition of sudden high waves and (3) 

generation mechanism of sudden high waves. Chapter 4 consists of four parts; (1) 

description of data (2) forecasting of the significant wave height and period using 

the observed data along the coast of the East Sea, (3) forecasting of the significant 

wave height and period using the numerical modeling data in the entire area of the 

East Sea and (4) detection and forecast of sudden high waves. In Chapter 5, the 

conclusions are given and future work is discussed. 
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Fig. 1.1 Schematic diagram of the study 
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CHAPTER 2. THEORETICAL STUDY 

 

2.1 Analysis methods of mechanism of sudden high waves 

 

Some geophysical and climatic variables have periodically time-dependent 

covariance statistics or non-stationarity. Stationarity assumption is often not 

appropriate for such geophysical and climate variables even after removing the 

diurnal cycle or the seasonal cycle (Kim, Hamlington, and Na 2015). A proper 

recognition of the time-dependent response characteristics is vital in accurately 

extracting physically meaningful modes and their space-time evolutions from data. 

Cyclostationary empirical orthogonal function (CSEOF) analysis is an alternative 

to regular EOF analysis or other eigen-analysis techniques based on the stationarity 

assumption to extract physical modes. In this study, the CSEOF analysis was used 

to examine the physical processes of sudden high waves. When a physical process 

undergoes a stochastic variation for some reasons, two physical variables 

describing the process evolve in the same fashion (Kim, Hamlington, and Na 2015). 

If the system is linear, their relationship may be linear. However, due to the 

complexity of the system, it is difficult to find the relationship between the physical 

variables directly. Therefore, a proper distinction from stochastic undulation and 

explanation of time-dependent physical response are vital in accurately 

determining physically consistent or teleconnection response in different variables. 

This can be achieved by the regression analysis in CSEOF space (Kim and Chung 

2001, Seo and Kim 2003, Hamlington et al. 2011, Kim, Hamlington, and Na 2015). 
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2.1.1 CSEOF analysis  

 

Kim, North, and Huang (1996) and Kim and North (1997) introduced the concept 

of CSEOF analysis to capture the time-varying spatial patterns and longer-time-

scale fluctuations in geophysical data. The difference between EOF analysis and 

CSEOF analysis is the ability of CSEOF analysis to extract spatial patterns varying 

in time and space. This is possible because the CSEOF spatial patterns are time 

dependent, whereas EOF spatial patterns are only varying spatially (Strassburg et al. 

2014).  

In a CSEOF analysis, space-time data are decomposed into: 

 

( , ) = ( , ) ( )n nn
T x t B x t T t ,                         (2.1) 

 

where ( , ) ( , )n nB x t B x t d   are the CSEOF loading vectors (CSLV), which are 

multiple (d) spatial patterns and repeat themselves in time and ( )nT t  are the 

corresponding principal component (PC) time series (Kim, North, and Huang 1996, 

Kim and North 1997). In other words, ( , )nB x t are time-dependent physics and 

( )nT t are the stochastic undulation of the physical processes. The CSLVs and the 

corresponding PC time series are obtained by solving:  

 

  ' ' ' ', ; , ( , ) ( , )n n nC x t x t B x t B x t ,                     (2.2) 

 

with x and 'x representing different points in space and time, respectively. The 
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space-time covariance function is periodic in time with the nested period d.  

 

   ' ' ' ', ; , , ; , .C x t x t C x t d x t d                       (2.3) 

 

Since the covariance matrix cannot be written as a square matrix, Eq. (2.2) cannot 

be solved in the same manner as EOF analysis. Instead, it can be solved by taking 

Fourier transform twice with respect to t  and 't , making use of the assumption 

that the covariance matrix is periodic. The PC time series in Fourier space are easy 

to obtain, and then both the CSLVs and PC time series are transformed back to 

physical space (Kim, North, and Huang 1996, Hamlington et al. 2011).  

While the assumption of periodic statistics may be reasonable for many 

geophysical variables, it is difficult to prove the periodicity of statistics and identify 

the period. The periodicity is called “nested period”. The nested period is often 

determined based on a priori physical understanding of the physical process to be 

investigated (Kim, Hamlington, and Na 2015). However, sometimes the period of a 

physical process is not obvious mainly because of the lack of understanding of the 

underlying physical process. It is also difficult to find the nested period because 

multiple physical processes have different periods. Let us consider a dataset 

consisting of several physical processes 

 

( , ) ( , )n n nB x t B x t d                           (2.4) 

 

where 
nd is the period of a physical process ( , )nB x t . If it is assumed that the PC 

time series, ( )nT t , are stationary, then the first two moment statistics are: 
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   

 

 

, , ( , ) ( )
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           ,
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x t T x t B x t T t
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x t d





 

    

 



             (2.5) 

         
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C x t x t T x t T x t B x t B x t T t T t

B x t d B x t d T t d T t d

T x t d T x t d C x t d x t d

 

   

     

 

        (2.6) 

 

if d is given as the least common multiple of  nd , i.e.,  nd LCM d . Under the 

assumption of stationarity of PC time series, the first two moment statistics are 

functions of time lag 't t . Thus, the period of the first two moment statistics of a 

given dataset is the least common multiple of all physical periods in the dataset. 

The consequence of the nested period being the least common multiple of all 

physical periods is that physical processes with period less than d are shown to 

repeat in CSLVs. Although the nested period can be set to be an integral multiple of 

least common multiple of all physical periods, the minimum period should be used 

in order to minimize the contamination of covariance statistics by sampling errors 

(Kim, Hamlington, and Na 2015). 

 

2.1.2 Regression analysis 

 

First, the CSEOF analysis is conducted on a target variable (wave height and wave 

period) and predictor variable (meteorological data): 

 

- Target variable: 
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( , ) = ( , ) ( )n nn
T x t B x t T t                        (2.7 a) 

- Predictor variable: 

( , ) = ( , ) ( )m mm
P x t C x t P t                       (2.7 b) 

 

where ( , )nB x t  and ( , )mC x t  are the CSLVs of the target and predictor variables, 

respectively, and ( )nT t  and ( )mP t  are the PC time series of the target and 

predictor time series, respectively. Then, conducting regression analysis between 

the two PC time series gives:  

 

         
1

,     1,2,
M n n

n m mm
T t a P t t n


               (2.8) 

 

where 
  n

ma are the regression coefficients,    n
t is the regression error time 

series, and M is the number of predictor time series modes used in the regression. 

The regression coefficients are determined so that the variance of regression error 

is minimized. Using the regression coefficient, the evolution of the predictor 

variable, which is physically consistent with the target evolution, is obtained: 

 

     
1

, ,
M n

n m mm
D x t a C r t


                          (2.9) 

 

where  ,mC x t  is the CSLV of predictor variable and  ,nD x t  is the consistent 

CSLV with the target variable. In this way, the evolution of any variables can be 

achieved to be physically consistent with that of the target variable. The consistent 

patterns of two physical variables may not generally have the same physical 
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response characteristics. However, the physical relationship between physically 

consistent patterns of two or more physical variables should be dictated by a 

governing equation describing the particular physical process they represent. It is 

the stochastic component of undulation that should be identical in the evolution of 

two physical variables originating from the same physical process (Kim, 

Hamlington, and Na 2015).  

 

2.2  Wave forecast methods 

 

Prediction of waves is basically uncertain and random process and hence difficult 

to model by using deterministic equations. Artificial neural network (ANN) is 

suitable for partially understood underlying physical processes such as wind-wave 

relationship. In spite of suitable flexibility of ANN, it may not be able to cope with 

non-stationary data if pre-processing of the input and output data is not performed 

(Cannas et al. 2006). Also it is difficult to interpret the relationship between 

spatially distributed meteorological variables and waves. Principal component 

analysis (PCA), also called the empirical orthogonal function (EOF) analysis is a 

useful tool to interpret physical processes in the data. The assumption in the EOF 

analysis is the stationarity of the data. It means that the covariance function of the 

data does not depend on time. As I mentioned in previous section, the stationarity 

assumption is often not appropriate for such geophysical and climate variables. In 

previous section, CSEOF analysis was suggested as an alternative to EOF analysis 

to extract physical modes. However, to forecast wave series, spatial components 

and temporal components should be separated completely. Thus, in this section, 
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EOF analysis is introduced to interpret the relationship between waves and 

meteorological data. Also, EOF analysis make the proposed model to forecast wave 

data at multi-stations simultaneously. To overcome stationarity assumption of the 

EOF analysis, wavelet analysis is combined. Wavelet analysis can handle non-

stationary and transient signals as well as fractal-type structure (Murguia and 

Campos-Cantón 2006). In this study, a hybrid empirical orthogonal function 

analysis (EOF)–wavelet analysis–ANN (EOFWNN) model is introduced and 

employed to forecast significant wave height (or period). The decomposed time 

series are used as inputs to ANN which can handle non-stationarity and non-

linearity efficiently. 

 

2.2.1 EOF analysis 

 

EOF analysis, also known as the principal component analysis, or singular value 

decomposition method, can be utilized effectively to link the spatial and temporal 

patterns of a data field (Legler 1983). This method partitions the temporal variance 

of the data into orthogonal spatial patterns called eigenvectors.  

Space-time data can be decomposed in terms of EOFs. That is, 

 

     , n n

n

T x t T t B x            (2.10) 

 

where   nB x  are called eigenfunctions and   nT t  are expansion of 

coefficients that are functions of time. Eq. (2.10) is called EOF decomposition only 
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if   nB x are mutually orthogonal to each other and   nT t are mutually 

uncorrelated. That is,  

 

       
1

1 N

n m n m nm

x

B x B x B x B x
N




                 (2.11) 

       
1

1 N

n m n m n nm

t

T t T t T t T t
N

 


                   (2.12) 

 

where 
nm is Kronecker delta and 

n is eigenvalues. Often,   nB x are called  

loading vectors,   nT t principal component (PC) time series. Spatial covariance 

function defines covriance between two spatial points x and x’: 

 

     , ' , ',C x x T x t T x t                   (2.13) 

 

which under the stationarity aussumption can be written as 

 

     
1

1
, ' , ',

N

t

C x x T x t T x t
N 

                   (2.14) 

 

In terms of EOFs, spatial covariance matrix is 

 

         

       

   

, ' '

             '

             '

n n m m

n m

n m n m

n m

n n n

n

C x x T t B x T t B x

B x B x T t T t

B x B x







 





          (2.15) 
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Dot product of Eq. (2.15) with  'mB x yields 

 

         

   

, ' ' ' '

                         

m n n n m

n

n n nm m m

n

C x x B x B x B x B x

B x B x



  

  

 




         (2.16) 

 

It is called the Karhunen-Loѐvé equation. It is similar to the eigenvalue problem 

(Kim, Hamlington, and Na 2015).  

 

2.2.2 Wavelet analysis 

 

Wavelet analysis (WA), which provides a perfect filtering characteristic, has been 

used in various fields of mathematics, science, and engineering. Through the 

decomposition and reconstruction of a signal, WA can be performed to determine 

the transient identity in the time-frequency domain (Wang, Lee, and Zhang 2004). 

Unlike Fourier technique or EOF analysis, the basis function of the wavelet 

transform has the key property of localization in time (or space) and frequency. 

This makes the wavelets ideal for handling non-stationary and transient signals, as 

well as fractal-type structures (Murguia and Campos-Cantón 2006). 

Wavelet analysis is used to decompose or reconstruct a signal using the 

wavelet functions. The wavelets are a family of orthogonal functions of type, 

 

   
1/2

, ( ) ( ) / ,   , ,  0a b t a t b a a b R a 


        (2.17) 

 

generated from a “mother” wavelet function ( )t by dilation and translation 
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operations, which are governed by the scale factor a  and shift factor b , 

respectively. 

The continuous wavelet transform (CWT) and its reconstruction version of a 

signal 2( ) ( )f t L R  are defines as, 

 

     
1/2 *

,( , ) ( ) ( ) / ( ), ( )f a bW a b a f t t b a dt f t t



           (2.18) 

1 2

,( ) ( , ) ( ) /f a bf t C W a b t a dadb
 




 

                    (2.19) 

 

where,  * ( ) /t b a   is the complex conjugate of  ( ) /t b a  ,

2

( ) / ,  ( )C F d F   


  


  is the Fourier transform of ( )t . 

To avoid the redundancy in CWT, a so-called dyadic discrete wavelet 

transform DWT, is usually adopted in engineering practice. Letting 2 ,ja   

2 jb k  ( , )j k Z , Eq. (3.18) and (3.19) may be rewritten in a dyadic discrete 

form, 

 

     𝑊𝑓(𝑎, 𝑏) = 𝑊𝑓(2𝑗, 2−𝑗𝑘) = 2𝑗 ∫ 𝜓(2𝑗𝑡 − 𝑘)𝑓(𝑡)𝑑𝑡
∞

−∞
       (2.20) 

( ) (2 ,2 ) (2 )j j j

fj k
f t W k t k                  (2.21) 

 

The theory is referred to Wang et al. (2004).  

In wavelet analysis, original series are decomposed into approximation and 

detail. The approximations are the high-scale, low-frequency components of the 

signal. The details are the low-scale, high-frequency components. The filtering 

process, at its most basic level, the original signal passes through two 

complementary filters and emerges as two signals. The selection of a suitable level 

for the hierarchy depends on the signal and experience. Often the level is chosen 
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based on a desired low-pass cutoff frequency. 

In this process, the length of data becomes twice as much data as started. They 

are the signals A and D. To fix the extended length into the original length, 

downsampling is necessary. Through the process of downsampling, two sequences 

called cA and cD are achieved. After this process, DWT coefficients are produced. 

The decomposition can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken down into many lower resolution 

components. This is called the wavelet decomposition tree. 

The organizing parameter, the scale a , is related to level j by 2 ja  . If 

resolution is defined as 1/ a , then the resolution increases as the scale decreases. 

The greater the resolution, the smaller and finer are the details that can be accessed. 

From a technical point of view, the size of the revealed details for any j is 

proportional to the size of the domain in which the wavelet or analyzing function of 

the variable  ,  /x x a  is not too close to 0. 

The process of reconstruction assembles the decomposed components back 

into the original signal without loss of information. The mathematical manipulation 

that produces this synthesis is called the inverse discrete wavelet transform 

(IDWT). Where wavelet analysis involves filtering and downsampling, the wavelet 

reconstruction process consists of upsampling and filtering. Upsampling is the 

process of lengthening a signal component by inserting zeros between samples. 

The low- and high-pass decomposition filters (L and H), together with their 

associated reconstruction filters (L` and H`), form a system of what is called 

quadrature mirror filters.  

There are several types of wavelet families such as Daubechies, Biorthogonal, 

Coiflets, Symlets, Morlet, etc. In this study, Coiflet5 (coif5) was used. This wavelet 

function   has 2N moments equal to 0 and the scaling function   has 2N-1 

moments equal to 0. The two functions have a support of length 6N-1. The coifN 

  and   are much more symmetrical than the dbNs (Daubechies). With respect 
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to the support length, coifN has to be compared to db3N or sym3N (Symlets), 

which belong to yet another wavelet family. The wavelet analysis was carried out 

using MATLAB toolbox. 

 

2.2.3 Artificial Neural Network 

 

Artificial neural network (ANN) is suitable for partially understood underlying 

physical processes such as wind-wave relationship. Fig. 2.1 shows the structure of 

feed forward back propagation type of ANN, which consists of an input layer, one 

or more hidden layers, and an output layer. These layers have one or more nodes. 

The source nodes in the input layer propagate through the network in a forward 

direction. Each node of a layer connects that of the next layer. The back-

propagation learning consists of two passes through the different layers of the 

network: a forward pass and a backward pass. In the forward pass, an input vector 

is applied to the sensory nodes of the network and its effect propagates through the 

network layer by layer. Finally, a set of outputs is produced as the actual response 

of the network. During the forward pass, all the synoptic weights of the networks 

are fixed. During the backward pass, on the other hand, all the synoptic weights are 

adjusted in accordance with an error correction rule (Günaydın 2008).  

The outputs of the hidden layer are calculated from 

 

 11
. ( ) ,     1,2, ,

n

j j ij ii
H O f net f w IO b j n


                (2.22) 

 

where 
1b  is the first layer bias,  f  is the transfer function between input and 
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hidden layers. In the present study, a sigmoid transfer function of the type 

    1/ 1 expj jf net net    is used. Outputs of the output layer are determined 

as follows: 

 

 20
. ( ) . ,     1

mh

k k jk jj
O O f net f w H O b k


                   (2.23) 

 

where 
2b  is the second layer bias,  f  is the transfer function between hidden 

and output layers. In this study, a linear transfer function ( )k kf net net is used. 

To avoid the problem of overfitting that may occur while an ANN is being 

trained, the number of nodes in the hidden layer, z, of the nets employed in the first 

stages of the study was computed using one of the empirical expressions mentioned 

by Fletcher and Goss (1993) 

 

1/22n m                              (2.24) 

 

where n is the number of input nodes and m is the number of output nodes. 

In training schemes the difference or the error between the network-yielded 

and the target or actual output is minimized using a particular mathematical 

algorithm. The global (mean sum squared) error (E), is defined as follows: 

 

 
2

1

1
.

2

l

p k kk
e T O O


                      (2.25) 
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where 
kT is the target (observed) output at the kth output node, . kO O is the 

predicted output at the kth output node, P is total number of training patterns, and 

pe is the error for the pth training pattern. The procedure of back propagation 

network is to propagate the error at the output layer backward from the output to 

hidden layer in order to adjust the weights in each layer of the network. 

There are several training algorithms such as Resilient back-Propagation (RP), 

Scaled Conjugate Gradient (SCG), Conjugate Gradient Powell-Beale (CGB), 

Broyden, Fletcher, Goldfarb (BFG), and Levenberg-Marquardt (LM). The rate of 

change of error with respect to the connection weights, i.e. the error gradient is 

used as a path to do so. A general conjugate gradient scheme involves performing a 

search along the conjugate or orthogonal direction in order to determine the step 

size to minimize the performance function. Among the algorithms, the LM is the 

fastest method for training moderate-sized feedforward neural networks. However, 

it requires the storage of some matrices that can be quite large for certain problems. 

In this research, the network is very large, so one of the conjugated gradient 

algorithms is recommended (Demuth and Beale 2000). Kalra et al. (2005) 

compared the prediction performance of the five algorithms and mentioned that the 

CGB produced the most accurate results among the algorithms. Therefore, the 

CGB scheme was used in this study. The ANN model implementation was carried 

out using MATLAB toolbox. 
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Fig. 2.1 ANN structure 
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2.2.4 EOF-Wavelet-ANN (EOFWNN) model 

 

In this study, the combination of neural network, EOF analysis and wavelet 

analysis was employed to forecast significant wave height and period from 

observed wave data and reanalysis meteorological data. Fig. 2.2 is the schematic 

diagram of the EOFWNN model, which is the detailed flow chart of the right side 

of Fig. 1.1. First, EOF analysis was conducted for wave data and meteorological 

data to separate spatial and temporal components for training period. Second, 

wavelet analysis was applied to each PC time series of wave data and 

meteorological data. Next, training was conducted with the decomposed wavelet 

component time series of wind speed, sea level pressure and wave height (or period) 

data as input data and each PC time series of wave height (or period) data for 

various lead times for target. Finally, the forecasted wave height (or period) PC 

time series and the LVs obtained in the first step were reconstructed to calculate the 

wave height (or period) time series. 

The decomposed wavelet signals of wave data and meteorological data used as 

the input to the ANN were those of all the decomposed PC time series of 

significant wave height and the approximations of 90% PC time series of 

meteorological data. To consider the dominance of persistence in the wave height 

time series, the significant wave heights at the present time and the previous two 

time steps were used as predictors. To consider the time lag effect of 

meteorological data, the meteorological data at the forecast lead time and at one 

and six time steps ahead of that time were used as predictors. In summary, the 

scenario formed by predictor configuration to predict ( )H t n t   is H(t),  
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Fig. 2.2 Schematic diagram of the EOFWNN model 
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( )H t t , ( 2 )H t t  , ( )wnd t n t  , ( )wnd t n t t   , ( 6 )wnd t n t t    , 

( )slp t n t  , ( )slp t n t t   , ( 6 )slp t n t t    . Where, H(t) is the wavelet 

component of the present wave height, ( )H t t and ( 2 )H t t   are previous 

time steps, ( )H t n t   is the PC time series of significant wave height at the 

forecast lead time, ( )wnd t n t  and ( )slp t n t  are the wavelet components of 

wind speed and sea level pressure at the forecast lead time, and ( )wnd t n t t   , 

( 6 )wnd t n t t    , ( )slp t n t t   , ( 6 )slp t n t t     are those at previous 

time steps from the forecast lead time, and ‘ n t ’ denotes the forecast lead time. 

The lead times were fixed as 1, 3, 12, and 24 hours with the use of 0.5 hrt  . 

The meteorological data at t and 6 t  ahead of the forecast lead time were 

arbitrarily chosen by supposing that the wave height at a certain time would be 

closely related to the meteorological conditions at 30 minutes and 3 hours ahead of 

the time. Fig. 2.3 shows the predictor configuration of wave forecasting model. 

The performance was repeated 20 times, and then ensemble members were 

averaged. After removing the two cases of the largest root mean squared error 

(RMSE) between ensemble average and each member, the remaining 18 ensemble 

members were averaged. 
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Fig. 2.3 Predictor configuration of wave forecasting model 
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CHAPTER 3. CHARACTERISTICS OF 

SUDDEN HIGH WAVES 

 

3.1 Data for analysis of characteristics of sudden high waves 

 

3.1.1 Wave data  

 

To examine the characteristics of sudden high waves that caused marine accidents 

and property damage, investigations were made into the wave data at Gangneung 

and Wangdolcho on the east coast of Korea. The wave data were provided by 

KIOST (Korea Institute of Ocean Science and Technology). Fig. 3.1 shows the 

locations of wave measurement. The wave data of KIOST was measured every 0.5 

s using pressure gauge and sampling rate is ∆𝑓 ≈ 0.008 𝐻𝑧. Wave spectrum was 

calculated every 30 minutes from the collected wave series. The water depths at the 

wave measurement stations were 15.0 and 15.3 m, respectively. Experiments were 

conducted for the winter season from October to February, when sudden high 

waves occur frequently. The period is 5 years in 2005, 2008, 2010-2013 (Oct. 

2005-Feb. 2013).  

 

3.1.2 Meteorological data 

 

The meteorological data used in this study were National Centers for 

Environmental Prediction and National Center for Atmospheric Research 

(NCEP/NCAR) reanalysis data provided by National Oceanic and Atmospheric 
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Administration/Climate Diagnostics Center (NOAA/CDC) (Kalnay et al. 1996). 

The sea level pressures and 10 m height wind speeds in the u-direction (east-west) 

and v-direction (north-south) were used to analyze the relationship between 

meteorological variables and waves. This dataset can be downloaded from a 

website (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html).  

The temporal resolution is 30-min interval interpolated from 6 hour interval 

data, and the spatial resolutions are 2.5 ° × 2.5 ° grid for sea level pressure data 

and T62 Gaussian grid for wind speed data, which roughly corresponds to 220 km 

in the u-direction and to 280 km in the v-direction. Fig. 3.2 shows the region of 

meteorological data, which is 127°-142° E, 33°-46° N.  
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Fig. 3.1 Locations of wave observation by KIOST 

Fig. 3.2 Region of meteorological data 
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3.2 Definition of sudden high wave 

 

Sudden high waves, which occur frequently in the winter season in the east coast of 

Korea, have caused serious property damage and many casualties. These high 

waves are called yorimawari waves in Japan (Nagai et al. 2009, Lee et al. 2010). 

Nagai et al. (2009) used the terminology of sudden peculiar long period swell. 

These high waves have a broader frequency band than a swell, and their significant 

height is frequently greater than 5 m. Also, they have a wave period greater than 9 s, 

which exceeds that of ordinary wind seas. Therefore, they have characteristics of 

both swell and wind waves. Oh and Jeong (2013) used the terminology of high 

swell-like waves to describe the waves having a relatively long period (T > 9 s) and 

large height (H > 3 m). This terminology, however, does not represent the 

suddenness of the waves. In this study, therefore, the terminology of sudden high 

waves was used. Fig.3.3 shows the event of such high waves in October 2005 in 

Gangneung and Wangdolcho in which both wave height and period suddenly 

increased from a calm state of sea. The parameter describing sudden high waves 

should include two information: suddenness and magnitude (i.e. height and period) 

of the waves. The purpose of this study is to introduce a parameter that includes 

such information and propose a criterion of sudden high waves that would cause 

marine accidents and property damage.  

Prior to proposing a criterion of sudden high waves, high wave events should 

be determined. Since in general the wave period changes in proportion to the wave 

height as shown in Fig. 3.3, the high wave events are determined based on the time 

series of wave height. Here, a high wave event indicates a time span during which 

the calm sea surface becomes rough with increasing wave height and then retrieves 
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Fig. 3.3 Event of sudden high waves in October 2005 in Gangneung and 

Wangdolcho 
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a calm sea state. The slight sea of Degree 3 of Douglas sea scale indicates the sea 

state of wave heights between 0.5 and 1.25. In this study, the upper bound value, 

1.25 m, was used as the criterion of calm sea state.   

    Referring to Fig. 3.4, the high wave events were determined as follows. The 

triangles in the figure indicate the start and end of an event. If we only use the 

criterion that the calm sea state becomes rough and retrieves a calm state, too many 

high wave events are counted. To resolve this problem, a comparison period of 

minimum wave height is introduced. Fig. 3.4 is the result of using 60 hours of 

comparison period. If the wave height at a time satisfies the calm sea state 

condition and it is the minimum between before and after the comparison period 

from the time, the time is determined as the starting point of a high wave event. 

This method enables one to find the minimum value from a graph which is not 

differentiable due to severe fluctuation as in Fig. 3.4.  

    The most important variable to represent sudden high waves may be the wave 

height, which best represents the magnitude of waves and most directly affects the 

damage due to waves. However, as shown in Fig. 3.3, the wave period also 

increases rapidly during the occurrence of sudden high waves. Since the 

wavelength increases with the wave period, 
2H L  could be a candidate to 

represent the effects of both height and period of sudden high waves, which also 

represents the wave energy in one wavelength. Kim and Lee (2008b), using the 

wavelet analysis, have shown that wave energy increased rapidly during the sudden 

high wave event in February 23-24, 2008. On the other hand, the most important 

characteristic of sudden high waves is its suddenness. To represent the suddenness, 

the time interval t  has to be considered during which the waves are developed 

from a calm sea to a rough sea. In this study, therefore, I selected /H t   and 
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Fig. 3.4 Illustration of high wave events  
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2( ) /H L t   as the parameters to represent the intensity of sudden high waves, 

where H  and 
2H L  are the increments of H and 

2H L , respectively, during 

the time interval t . 

    First, during the period of a high wave event, the point of maximum H or 

2H L  was taken. In the case of more than two of the same maximum value, the 

first one was taken. The start point of sudden high waves was then taken as the 

point where  /H t   or 2( ) /H L t   becomes maximum among the points 

where H or 
2H L  is smaller than 1/10 of its maximum value and where the wave 

height is smaller than 1.25 m, i.e., the upper bound value of slight sea of Degree 3 

of Douglas sea scale. Since the rapid increase of H or 
2H L  is important for the 

suddenness of high waves, the points where H or 
2H L  is smaller than 1/10 of its 

maximum value were considered as the candidates for the starting point of sudden 

high waves. 

    Fig. 3.5 shows the time series of 
2H L  during two high wave events at the 

Gangneung wave station. The triangle indicates the maximum value, while the 

diamond indicates the starting point of sudden high waves. In the event of February 

2008, shown in Fig. 3.5 (a), the point of maximum 2( ) /H L t   is located in the 

24th day, but the point was not selected as the starting point of sudden high waves 

because it did not satisfy the criteria that the wave height is smaller than 1.25 m 

and 
2H L  is smaller than 1/10 of its maximum value. In the other hand, in the 

event of January 2009, shown in Fig. 3.5 (b), a point at the beginning of the 9th day 

was selected as the starting point because it satisfied the criteria for the starting 

point of sudden high waves while showing the maximum 2( ) /H L t  . Even   
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(a)

(b)

Fig. 3.5 Illustration of calculation of intensity parameter of sudden high 

waves in Gangnueng: (a) High wave event in February 23-25, 2008; and 

(b) High wave event in January 9-11, 2009. 
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though the maximum wave energy in the 2008 event is greater than that in the 2009 

event, the values of 2( ) /H L t   are calculated as 40.7 and 98.2 3m / hr  for each 

event in 2008 and 2009, respectively. This indicates that the suddenness of high 

waves is well represented by the parameter 2( ) /H L t  . The above procedure 

enables one to distinguish sudden high waves from ordinary high waves. 

The wave data at the Gangneung station gave 208 and 206 high wave events 

for H and 
2H L , respectively. The high wave events were then compared with the 

marine accidents and property damage on the coast of Gangwon-do Province in 

which the Gangneung station is located. Table 3.1 shows the marine accidents and 

property damage occurred on the coast of Gangwon-do Province and 

Gyeongsangbuk-do Province during the winter season between 2005 and 2012. On 

the other hand, Table 3.2 shows the characteristics of high wave events at the 

Gangneung station at the times when marine accidents and property damage 

occurred on the coast of Gangwon-do Province. A comparison of the intensity 

parameters of sudden high waves shows that the ranks of 2( ) /H L t   are higher 

than those of /H t   in most events. It is also observed that not only loss of lives 

but also severe property damage occurred over a wide area during the 2005 and 

2006 events when 2( ) /H L t   showed the highest ranks, indicating that 

2( ) /H L t   is proportional to the severity of the events. Therefore, 2( ) /H L t 

seems to be more appropriate than /H t   to measure the intensity of sudden 

high waves. 

On the other hand, the wave data at the Gangneung and Wangdolcho stations 

gave 206 and 155 high wave events, respectively, for
2H L . For each event,   
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Table 3.1 Marine accidents and/or property damage along the coast of Gangwon-

do Province and Gyeongsangbuk-do Province (from Geosystem Research, 2015). 

Date Area Specific area 

Life 

damage 

(Death) 

Remarks 

2005 

 

10.21 Pohang 
Ship at 7 km 

offshore 
14(9) 

One ship sank, nine 

crew members 

disappeared 

10.22 Pohang 
Imgok-ri 

breakwater 
2(2) Two children killed 

10.22 Donghae Daejin Port 3(0) Breakwater damage 

10.22 Donghae Cheongok Port 3(0) Breakwater damage 

10.22 Gangneung 
Jumunjin Port 

breakwater 
1(1) One tourist killed 

10.23 Sokcho Yeongrang-dong - 

Three houses 

partially destroyed, 

road damage 

10.23 Sokcho Jangsa Port - Two ships sank 

2006 

10.08 Pohang 
Yangpo Port 

breakwater 
13(2) 

Eleven tourists 

injured, two killed 

10.09 Ulleung 
Jeodong Inner Port 

breakwater 
1(1) One tourist killed 

10.23 
East/Japan 

Sea 
Entire area - 

110 ships, 270 

houses damaged 

10.23 Sokcho 
Ship at 100 km 

offshore 
7(4) One ship sank 

10.23 Goseong 
Bongpo Port 

breakwater 
4(1) 

Four tourists swept 

away, one killed 

2007 10.28 Sokcho 
Seashore rocks off 

Yeonggeum-jeong 
3(1) 

One tourist killed, 

two injured 

2008 2.24 Gangneung Anmok Port 18(3) Three tourists killed 

2009 

1.10 Gangneung 
Jumunjin Port 

breakwater 
1(1) One tourist killed 

1.13 Gangneung 
Jumunjin Port 

north breakwater 
5(3) 

Three out of five 

tourists killed 

2012 

1.1 Pohang 
Seashore rocks off 

Youngam-ri 
2(0) All rescued 

1.20 Samcheok 

Seashore rocks at 

Namaemul, 

Wondeok-eup 

2(1) 
One angler killed, 

one rescued 

11.20 Gangneung Namhangjin 4(0) 

One barge damaged, 

rescue of human 

lives 
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Table 3.2 Characteristics of /H t   and 
2( ) /H L t  in Gangneung 

Date 
/H t   

2( ) /H L t   

Value (m/hr) Rank (Percent) Value (m3/hr) Rank (Percent) 

2005/10/21 0.807 1 (0.48) 523.6 1 (0.49) 

2006/10/23 0.367 3 (1.44) 353.2 2 (0.98) 

2007/10/29 0.128 32 (15.3) 38.6 73 (35.4) 

2008/02/24 0.080 65 (31.2) 40.7 67 (32.5) 

2009/01/09 0.052 89 (42.8) 98.2 22 (10.7) 

2012/01/22 0.012 197 (94.7) 39.4 70 (34.0) 

2012/11/20 0.075 71 (34.1) 59.0 47 (22.9) 

 

 

Fig.3.6 Cumulative percentage curve of 
2( ) /H L t   
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2( ) /H L t  was also calculated. Fig. 3.6 shows the cumulative percentage curve 

of the 361 observed values of 2( ) /H L t   along with the generalized extreme 

value distribution estimated by L-moments, the cumulative distribution function of 

which is given by 

 

1/0.39

20.39( 22.02)
( ) exp 1 ; ( ) /

27.15

x
F x x H L t

   
       

   

      (3.1) 

 

The estimated distribution is adequate at the level of significance of 5% with the 

Kolmogorov-Smirnov goodness-of-fit test. The rapidly increasing curve for small 

values of 2( ) /H L t   levels off at about 80% of cumulative percentage. 

Therefore, the criterion of sudden high waves was determined as 

2( ) / 77.3 80H L t     3m / hr , which corresponds to the top 20% on the 

estimated distribution. 

Table 3.3 shows a comparison between sudden high wave events of 

2 3( ) / 77.3 80  m / hrH L t     (at one or both of the two wave stations) and 

marine accidents and property damage occurred on the coast of Gangwon-do 

Province and Gyeongsangbuk-do Province. By specifying the period of each event, 

we examined whether the time of the accident was within the period of the event. 

The cells shaded grey in the table indicate either the case of 

2 3( ) / 80 m / hrH L t   or the case that the time of the accident is not included in 

the period of the event. It can be seen that 13 out of 18 accidents occurred during 

sudden high wave events of 2 3( ) / 80 m / hrH L t   . The other five accidents 
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Table 3.3 Comparison of sudden high wave events of 
2 3( ) / 80 m / hrH L t    

and marine accidents 

Gangneung Wangdolcho Accident 

Period 

2( ) /H L t   

( 3m /hr ) 
Period 

2( ) /H L t   

( 3m /hr ) 
Date Area 

2005/10/21 

17:30 – 

2005/10/24 

06:30 

523.6 

2005/10/21 

21:00 – 

2005/10/24 

18:30 

128.4 

2005/10/21 Pohang 

2005/10/22 Pohang 

2005/10/22 Donghae 

2005/10/22 Donghae 

2005/10/22 Gangneung 

2005/10/23 Sokcho 

2005/10/23 Sokcho 

2006/10/11 

21:30 – 

2006/10/12 

15:00  

80.1 

2006/10/12 

01:30 – 

2006/10/12 

20:00 

47.7 

2006/10/08 Pohang 

2006/10/09 Ulleng 

2006/10/22 

21:00 – 

2006/10/25 

18:00 

353.2 

2006/10/23 

03:00 – 

2006/10/25 

23:30 

274.8 

2006/10/23 

Entire 

East/Japan 

Sea 

2006/10/23 Sokcho 

2006/10/23 Goseong 

2008/02/23 

04:30 – 

2008/02/25 

20:00 

40.7 

2008/02/23 

06:30 – 

2008/02/25 

18:00 

371.6 2008/02/24 Gangneung 

2009/01/09 

01:30 – 

2009/01/11 

08:30 

98.2 

2009/01/09 

07:30 – 

2009/01/11 

19:00 

146.1 

2009/01/10 Gangneung 

2009/01/13 Gangenung 

2012/01/01 

18:00 – 

2012/01/03 

10:30  

112.1 

2012/01/01 

21:30 – 

2012/01/03 

15:30 

530.8 2012/01/01 Pohang 

2012/01/21 

21:00 – 

2012/01/23 

20:30 

39.4 

2012/01/22 

09:30 – 

2012/01/24 

12:00 

108.7 2012/01/20 Samcheok 

2012/11/20 

05:30 – 

2012/11/21 

12:30 

59.0 

2012/11/23 

06:30 – 

2012/11/24 

15:30 

84.8 2012/11/20 Gangneung 
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seem to occur due to ordinary high waves or other causes. 

The total number of high wave events at the Gangneung and Wangdolcho 

stations is 361. Since the criterion of sudden high waves was taken as

2 3( ) / 80 m / hrH L t   , which corresponds to the top 24.7% of the observed 

values, the total number of sudden high wave events is 89. However, as shown in 

Table 3.3, the number of events that caused accidents while satisfying the criterion 

of sudden high waves is only 9. This means that no accident occurred during the 

remaining 80 sudden high wave events. It can be seen that, therefore, in most cases 

no accident occurs even though sudden high waves occur. 

Lastly, to examine the possibility that the accident during a sudden high wave 

event was simply due to bad weather, the precipitation and maximum wind speed 

in the area of the accident were investigated as shown in Table 3.4. The data of 

Korea Meteorological Administration (2005 to 2012) were used. A heavy rain 

warning is issued when 80 mm or more of rainfall is expected during 24 hours, 

whereas a high wave warning is issued when 10-minute average wind speed over 

14 m/s continues more than 3 hours. The sudden high wave event accompanied by 

such warnings of bad weather occurred only in October 23, 2006. It seems that bad 

weather and sudden high waves occurred simultaneously on that day. The 

remaining accidents occurred due to sudden high waves, not by bad weather. 

Therefore, all the 13 accidents in Table 3.3 could be considered to occur due to 

sudden high waves. 
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Table 3.4 Precipitation and maximum wind speed during marine accident and/or 

property damage due to sudden high waves 

Date Area Specific area 
Precipitation 

(mm) 

Max wind 

speed (m/s) 

2005 

10/21 Pohang 
Ship at 7 km 

offshore 
0.4 8.3 

10/22  Pohang 
Imgok-ri 

breakwater 
2.0 3.6 

10/22 Donghae Daejin Port 4.5 10.7 

10/22 Donghae Cheongok Port 4.5 10.7 

10/22 Gangneung 
Jumunjin Port 

breakwater 
1.5 6.9 

10/23 Sokcho 
Yeongrang-

dong 
- 4.8 

10/23 Sokcho Jangsa Port - 4.8 

2006 

10/23 
East/Japan 

Sea 
Entire area 232 30.5 

10/23 Sokcho 
Ship at 100 km 

offshore 
232 30.5 

10/23 Goseong 
Bongpo Port 

breakwater 
232 30.5 

2008 2/24 Gangneung Anmok Port - 5.2 

2009 1/10 Gangneung 
Jumunjin Port 

breakwater 
- 8.1 

2012 
1/1 Pohang 

Seashore rocks 

off Youngam-ri 
- 4.9 

11/20 Gangneung Namhangjin - 4.6 
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3.3 Mechanism of sudden high waves 

 

Many studies have been performed for the generation process of high waves in 

winter season in the east coast of Korea. Oh and Jeong (2013) analyzed the 

characteristics of high swell-like waves and meteorological conditions during the 

events using the observed wave data at multiple stations along the east coast of 

Korea. According to them, important is not only the pressure drop during the 

movement of low pressure system but also other factors such as moving trajectory 

and staying time of the low pressure system together with arrangement of 

neighboring atmospheric pressure fields. In this study, the CSEOF analysis and 

regression analysis established for wave data and meteorological data are used in 

order to find the generation mechanism of sudden high waves.  

The CSEOF analysis was applied to significant wave height and 

meteorological data, respectively. Nested period was chosen as 15 day period after 

checking if the characteristics of sudden high waves were detected or not from the 

wave series. Significant wave data provided by KIOST at Gangneung and 

Wangdolcho wave stations were used to analyze the mechanism of sudden high 

waves. Although the physical patterns of the events in the east coast of Korea and 

the west coast of Japan are similar, local characteristics could be different. 

Therefore, the wave data in the east coast of Korea were used to investigate the 

characteristics of sudden high waves more precisely.  

Significant wave height series were decomposed into 40 modes, which 

corresponded 99% variance of the series. Fig. 3.7 shows the normalized and 

cumulative eigenvalues of CSEOF modes for the significant wave height. Fig. 3.8-

Fig. 3.10 represent the CSEOF mode 1-3 of significant wave height. The first panel 
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of each figure is the physical pattern during the 15 day period. Blue line is for 

Gangneung and green line is for Wangdolcho. The second panel is the PC time 

series and the third panel is the reconstructed significant wave height of the mode. 

The last panel is the zoom view of the reconstructed significant wave height, which 

is to check if peak occurs or not during the reported marine accidents date on 21-23 

October 2005. The shapes of the second and third CSLVs are similar to sudden 

high waves, so they were regarded as the physical process of sudden high waves. 

Also, the second and third modes have a large peak on 21-23 October 2005. 

Therefore, two modes were considered as the physical process of sudden high 

waves. 
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Fig. 3.7 Eigenvalues of CSEOF modes for significant wave height data 

from KIOST 
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Fig. 3.8 CSEOF mode 1 of significant wave height data from KIOST 
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Fig. 3.9 CSEOF mode 2 of significant wave height data from KIOST 
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Fig. 3.10 CSEOF mode 3 of significant wave height data from KIOST 
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To detect sudden high wave modes, the index of sudden high waves, 𝐻2𝐿 was 

analyzed using CSEOF analysis. It is decomposed into 33 modes. Fig. 3.11 

presents the normalized and cumulative eigenvalues of CSEOF modes for the 

index. Fig. 3.12-Fig.3.14 show the first 3 modes for the index. The shapes of the 

modes are similar to those of significant wave height but they are more distinct. 

The first 3 modes are similar to sudden high waves. However, comparing the 

reported events and the reconstructed series, the third mode did not correspond. 

Therefore, the first two modes were considered as the physical process of sudden 

high waves. 
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Fig. 3.11 Eigenvalues of CSEOF modes for sudden high wave index 
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Fig. 3.12 CSEOF mode 1 of sudden high wave index 
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Fig. 3.13 CSEOF mode 2 of sudden high wave index 
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Fig. 3.14 CSEOF mode 3 of sudden high wave index 



 

 
52 

Next, regression analysis was conducted to find the consistent physical relation 

between waves and meteorological variables. Fig. 3.15 and Fig. 3.16 show 

comparisons of the first two modes of the regressed sea level pressure PC time 

series and wind speed PC time series with the significant wave height PC time 

series, respectively.  

By multiplying the regression coefficients to CSLVs of meteorological 

variables, the processes of meteorological variables corresponding to the physical 

processes of significant wave height were produced. Fig. 3.17 shows the evolution 

of spatial patterns of the second mode of significant wave height and 

meteorological variables. They are the snapshots of the spatial patterns at the point 

of the red spot on the graph of the significant wave height CSLV. It shows the 

physical patterns of the meteorological variables when the second mode of physical 

pattern of the wave height occurred. Until two days before the rapid growth of the 

wave height, sea level pressure patterns show high pressure in the west of Korea 

and low pressure in the east and wind had blown continuously. From two days 

before the occurrence of sudden high waves, high pressure stayed over the east 

coast of Korea and wind on the east coast of Korea was very weak, but wind in the 

northwest of Japan was strong. The weather in the Korean peninsula was mild in 

those days. As high pressure moved to the east, the weather condition changed 

rapidly, so wind speed in the East Sea increased. Low pressure passed to the east 

side before the wave height grew. There are two peaks in the second mode of 

CSLV for H. The first peak seemed to be generated by low pressure and easterly 

wind blowing for 1 day, whereas the second peak seemed to be caused by strong 

wind. Fig. 3.18 represents the evolution of spatial patterns of the third mode. 

Variation of sea level pressure was very small over the period. Wind blew strongly 
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Fig. 3.15 Comparison of the first 2 modes of the regressed sea level pressure PC 

time series and significant wave height PC time series 
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Fig. 3.16 Comparison of the first 2 modes of the regressed wind speed PC time 

series and significant wave height PC time series 
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over the period, but there was a spatial variation before the rapid increase of the 

wave height. Wind on the east coast of Korea was very weak, but wind far from the 

coast was strong. The first peak of the third mode of wave height seemed to be 

come from the northern part of the East Sea. After the arrival of the first peak of the 

wave height, wind blew strongly over the East Sea. The second peak seemed to be 

affected by strong wind near Gangneung.           

Fig. 3.19 and Fig. 3.20 show comparisons of the first two modes of the 

regressed sea level pressure PC time series and wind speed PC time series with the 

index of sudden high waves, 𝐻2𝐿, respectively. The physical processes of sudden 

high waves and the corresponding processes of meteorological variables were 

compared by multiplying the regression coefficients to the CSLVs of 

meteorological variables. Fig. 3.21 shows the evolution of the spatial patterns of 

the first mode of sudden high wave index and meteorological variables. The first 

mode of sudden high wave index has negative values, so sudden high waves will 

occur when it combines with the negative PC time series. Until the rapid growth of 

the index, there was spatial variation in wind speed. Wind near the east coast of 

Korea was very weak, but wind in the northeast part of the East Sea was strong. As 

the spatial variation reduces gradually, the wind speed increased near the east coast 

of Korea and the value of index grew rapidly. After the increase of the magnitude 

of the index, the wind speed decreased gradually on the east coast, but wind in the 

offshore area blew continuously. It was inferred that the first peak of the index 

seemed to be affected by the wind speed on the east coast to increase and the 

second peak seemed to be influenced by wind in the offshore area. For the second 

mode of sudden high wave index, there was no distinct change in the spatial 

patterns of meteorological variables during the period. 
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Fig. 3.17 Evolution of spatial patterns for the 2nd mode of significant wave height 

and meteorological variables 
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Fig. 3.18 Evolution of spatial patterns for the 3rd mode of significant wave height 

and meteorological variables 
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Fig. 3.19 Comparison of the first 2 modes of the regressed sea level pressure PC 

time series and sudden high wave index PC time series 
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Fig. 3.20 Comparison of the first 2 modes of the regressed wind speed PC time 

series and sudden high wave index PC time series 
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Fig. 3.21 Evolution of spatial patterns for the 1st mode of sudden high wave index 

and meteorological variables 



 

 
61 

 

1 3 5 7 9 11 13 15
-5

-4

-3

-2

-1

0

1
CSLV Mode: 1, Time Step: 175

CSLV of H2L in Gangneung

128 130 132 134 136 138 140 142

34

36

38

40

42

44

CSLV of Meteorological Data

 

 

-1

-0.5

0

0.5

1

1 3 5 7 9 11 13 15
-5

-4

-3

-2

-1

0

1
CSLV Mode: 1, Time Step: 229

CSLV of H2L in Gangneung

128 130 132 134 136 138 140 142

34

36

38

40

42

44

CSLV of Meteorological Data

 

 

-1

-0.5

0

0.5

1

1 3 5 7 9 11 13 15
-5

-4

-3

-2

-1

0

1
CSLV Mode: 1, Time Step: 283

CSLV of H2L in Gangneung

128 130 132 134 136 138 140 142

34

36

38

40

42

44

CSLV of Meteorological Data

 

 

-1

-0.5

0

0.5

1

1 3 5 7 9 11 13 15
-5

-4

-3

-2

-1

0

1
CSLV Mode: 1, Time Step: 313

CSLV of H2L in Gangneung

128 130 132 134 136 138 140 142

34

36

38

40

42

44

CSLV of Meteorological Data

 

 

-1

-0.5

0

0.5

1

1 3 5 7 9 11 13 15
-5

-4

-3

-2

-1

0

1
CSLV Mode: 1, Time Step: 337

CSLV of H2L in Gangneung

128 130 132 134 136 138 140 142

34

36

38

40

42

44

CSLV of Meteorological Data

 

 

-1

-0.5

0

0.5

1

1 3 5 7 9 11 13 15
-5

-4

-3

-2

-1

0

1
CSLV Mode: 1, Time Step: 349

CSLV of H2L in Gangneung

128 130 132 134 136 138 140 142

34

36

38

40

42

44

CSLV of Meteorological Data

 

 

-1

-0.5

0

0.5

1

1 3 5 7 9 11 13 15
-5

-4

-3

-2

-1

0

1
CSLV Mode: 1, Time Step: 373

CSLV of H2L in Gangneung

128 130 132 134 136 138 140 142

34

36

38

40

42

44

CSLV of Meteorological Data

 

 

-1

-0.5

0

0.5

1

1 3 5 7 9 11 13 15
-5

-4

-3

-2

-1

0

1
CSLV Mode: 1, Time Step: 415

CSLV of H2L in Gangneung

128 130 132 134 136 138 140 142

34

36

38

40

42

44

CSLV of Meteorological Data

 

 

-1

-0.5

0

0.5

1

Fig. 3.22 Evolution of spatial patterns for the 2nd mode of sudden high wave 

index and meteorological variables 
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CHAPTER 4. FORECASTING OF  

SUDDEN HIGH WAVES 

 

4.1 Data for forecasting of sudden high waves 

 

4.1.1 Observed wave data 

 

The wave data used in this study were observed at two different locations 

(Gangneung and Wangdolcho) provided by KIOST (Korea Institute of Ocean 

Science and Technology) and at six different buoys (Rumoi, Aomori, Sakata, Fukui, 

Tottori, and Genkainada) by NOWPHAS (Nationwide Ocean Wave information 

network for Ports and HArbourS). Fig. 4.1 shows the locations of wave 

measurement and Table 4.1 represents the information of the stations. The wave 

data of KIOST and NOWPHAS were measured every 0.5 s using pressure gauge 

and sampling rate is ∆𝑓 ≈ 0.008 𝐻𝑧. Wave spectrum was calculated every 30 

minutes from the collected wave series, whereas the wave data of NOWPHAS 

were calculated every 20 minutes. Therefore, the latter were converted into 30 

minutes. The data at every hour were used as they were, but the data at 30 minutes 

after every hour were calculated by taking the average of the data observed at 20 

and 40 minutes after the hour. Experiments were conducted for the winter season 

from October for February, when sudden high waves occur frequently. The period 

is 1 years in 2010-2011 (Oct. 2010-Feb. 2011).  
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 Table 4.1 Information on wave measurement stations and statistical properties of 

wave data at each station 

   

Station No. Location 

Waver 

depth 

 (m) 

Min  

(m) 

Max 

(m) 

Mean 

(m) 

Gangneung 1 128° 55′ 43.2″ E, 37° 47′ 50.8″ N 15.0 0.05 5.65 0.79 

Wangdolcho 2 129° 43′ 52.9″ E, 36° 43′ 10.3″ N 15.3 0.06 5.89 1.10 

Genkainada  3 130° 28′ 05″ E, 33° 56′ 02″ N 39.5 0.16 5.76 1.34 

Tottori 4 134° 09′ 41″ E, 35° 33′ 16″ N  30.9 0.13 5.12 1.61 

Fukui 5 136° 04′ 30″ E, 36° 09′ 50″ N 36.7  0.13 6.75 1.83 

Sakata  6 139° 46′ 45″ E, 39° 00′ 31″ N  45.9 0.14 8.64 1.87 

Aomori  7 140° 44′ 21″ E, 40° 51′ 10″ N 24.9  0.09 1.89 0.32 

Rumoi 8 141° 28′ 07″ E, 43° 51′ 59″ N 49.8 0.12 5.74 1.46 

     Fig. 4.1 Wave measurement locations 

①
②

③

④ ⑤

⑥

⑦

⑧
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4.1.2 Numerical wave modeling data 

 

The numerical wave modeling results provided by KORDI (Korea Ocean Research 

& Development Institute) were used to analyze the spatial patterns of sudden high 

waves. KORDI (2005) produced long-term wave data in 1979-2003. They 

simulated wave modeling for typhoon and non-typhoon period separately. The 

HYybrid PArametrical wave prediction (HYPA) model and a third generation wave 

model (WAM) model were used for non-typhoon and typhoon period, respectively. 

The wind field used in the continuous wave simulation is the reanalyzed wind data 

conducted by European Midrange Weather Forecast (ECMWF) (Lee and Jun 2006). 

Temporal resolution is 1 hour interval and spatial resolutions are about 18 km 

(1/6 °) both in longitude and latitude direction. Fig. 4.2 shows the grid map of 

KORDI (2005). Total number of grid in the region is 91×103, 9373. However, to 

reduce the number of grids, data were picked with a spacing of 1 ° in the region. 

Then the number of grid is 16×13, 208 and for the sea area is 96 except the east 

coast of Japan. Fig. 4.3 shows the grid map of the wave data. Red area is land and 

blue area is sea. 
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Fig. 4.2 Grid map of KORDI (2005) 
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Fig. 4.3 Grid map of numerical wave modeling data 
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4.1.3 Meteorological data for forecasting 

 

To forecast wave height (or period), the meteorological data used in this study were 

NCEP/NCAR reanalysis data provided by NOAA/CDC (Kalnay et al. 1996). The 

sea level pressures and 10 m height wind speeds in the u-direction (east-west) and 

v-direction (north-south) were also used. The temporal resolution is 30-min interval 

interpolated from 6 hour interval data. The region of meteorological data is same as 

Fig. 3.2, which is 127°-142° E, 33°-46° N.  

In order to forecast significant wave series using numerical wave modeling 

data, the ERA-Interim reanalysis data provided by European Center for Midrange 

Weather Forecasts (ECMWF) were used (Dee et al. 2011), which were 10 m height 

wind speeds in the u-direction (east-west) and v-direction (north-south).This 

dataset can be downloaded from a website (http://apps.ecmwf.int/datasets/data/ 

interim-full-daily/levtype=sfc/). The temporal resolution is 1 hour interval 

interpolated from 6 hour interval data, and the spatial resolutions are N128 reduced 

Gaussian grid, which are 0.703125 ° × 0.703125 ° grid. The region of the data is 

same as Fig. 3.2. 
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4.2 Forecasting of significant wave height and period using the observed 

data 

 

In recent years, hybridization of ANN with other techniques has been used in wave 

height forecasting to overcome the limitation of ANN and to provide effective 

modeling. In this study, an EOFWNN model is developed by combining the EOF 

analysis and wavelet analysis with the neural network to forecast significant wave 

heights (or period) in multiple locations simultaneously. The input data of the 

model are the past wave height (or period) and the past and future meteorological 

reanalysis data in all the locations. The wave data used in this study were provided 

by KIOST and NOWPHAS and the meteorological data were the NCEP/NCAR 

reanalysis data. The model then calculates the wave heights (or periods) in the 

locations simultaneously for various lead times. The developed model was 

employed to forecast significant wave heights (or periods) at eight wave 

observation stations in the coast waters around the East Sea. Experiments were 

conducted for winter season from October to February. The period used in this 

study was from October 2010 to February 2011. 

The first stage of the EOFWNN model was the EOF analysis of the wave and 

meteorological data. Through the EOF analysis, the input time series were 

decomposed into several modes and separated into spatial and temporal 

components. Fig. 4.4 and Fig. 4.5 show the first four modes of the eigenvectors of 

wind velocity and sea level pressure, respectively. They represent the physical 

patterns of the spatial distribution of the meteorological data. Fig. 4.6 and Fig. 4.7  

show the corresponding PC time series. Significant wave height series were 

decomposed into 8 modes, which corresponded 99.9% variance of the series. Fig.  
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Fig. 4.4 First to fourth mode eigenvectors for wind velocity 
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Fig. 4.6 First to fourth mode PC time series for wind velocity 
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Fig. 4.7 First to fourth mode PC time series for sea level pressure 
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4.8 shows the normalized and cumulative eigenvalues of EOF modes for the 

significant wave height. Fig. 4.9 represents the first four modes of the PC time 

series for significant wave height.  

Next, by employing the wavelet analysis for each PC time series for 3, 5, and 7 

decomposition levels, several wavelet components were produced. Fig. 4.10 shows 

the wavelet components for the 3rd decomposition level of the first mode of the 

significant wave height PC time series, which consist of one approximation and 

three details. Fig. 4.11 shows the approximations of the 1st wind speed PC time 

series and sea level pressure PC time series.  

 

 

Fig. 4.8 Eigenvalues of EOF modes for significant wave height data 
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Fig. 4.9 First to fourth mode PC time series for significant wave height 
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Fig. 4.10 Decomposed wavelet components of the 1st mode of H PC time series 
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time series 
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Third, as mentioned before, the decomposed wavelet signals of wave data and 

meteorological data were used as the input to the ANN. Experiments were 

conducted for the winter season from October to February during which 

extratropical storms frequently occur in the East Sea. The experimental period in 

this study was from October 2010 to February 2011. Two models were used for 

forecasting real time significant wave heights. The first model is for one and three 

hour lead times, and the second is for 12 and 24 hour lead times. In the first model, 

training was conducted for 120 days (00:00 October 1, 2010 to 23:30 January 28, 

2011), and testing was conducted for 7 days (00:00 January 29, 2011 to 23:30 

February 4, 2011) using the weights and bias obtained from the training period. In 

the second model, training was conducted for 120 days before each forecast time, 

and testing was conducted for the consecutive 3 day period.  

Fig. 4.12 shows the results of the 1st mode PC time series of significant wave 

height for 1 hour lead time forecasting. The upper panel is the result of the largest 

R case among the 20 ensemble members for training period and the lower panel is 

the ensemble members (black line) and ensemble averaged result (red line) at 

00:00:00, Jan. 29, 2011. The value of R is close to 1.0 and RMSE is close to zero. 

Fig. 4.13-Fig. 4.15 show the results for 3, 12 and 24 hour lead time forecasting, 

respectively.  

By reconstructing the estimated PC time series and given LV of significant 

wave height, the wave height series were predicted at the eight stations shown in 

Fig. 4.16. Figure shows the forecasted significant wave height at 00:00:00, Jan. 29, 

2011 at 8 stations for several lead times.  

The results of the EOFWNN model are compared with those of a wavelet and 

neural network hybrid (WNN) model at Gangneung, Sakata and Aomori wave  
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stations, which is developed and run for each location separately. The first two 

stations are located at the open coasts on the Korean side and Japanese side, 

respectively, with similar latitudes, whereas the Aomori station is located inside a 

bay where the wave heights are relatively small. Only decomposed wavelet 

components of significant wave heights were used as the input data to the WNN 

model, which were 3, 5 and 7 decomposed levels. To evaluate the performance of 

the models, three different performance indices are employed, which are 

correlation coefficient (R), index of agreement (𝐼𝑎) and normalized root mean 

square error (NRMSE) calculated by Eqs. (4.1) to (4.3). 
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where 𝑥𝑖, 𝑦𝑖, 𝑥̅, 𝑦̅ and n are the observed wave height, forecasted wave height, 

mean of observed wave height, mean of forecasted wave height, and the number of 

observations, respectively. Table 4.2 shows the results of the WNN model at 

Gangneung, Sakata and Aomori for several lead times. For 1 and 3 hour lead times, 

the values of R and 𝐼𝑎 were close to one regardless of the decomposition level, and 

the NRMSE values were distributed between 0.073and 0.164. For longer lead times, 

the values of R and 𝐼𝑎 decreased drastically and the NRMSE values increased. The   
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Table 4.2 Test results of WNN model for H in Gangneung, Sakata and Aomori for 

several lead times 

Lead 

time 
Station 

Decomposition 

Level 
R NRMSE 

Index of  

Agreement 

1 hr 

Gangneung 

3 0.991 0.101 0.995 

5 0.991 0.099 0.995 

7 0.991 0.097 0.996 

Sakata 

3 0.991 0.073 0.995 

5 0.990 0.074 0.995 

7 0.991 0.074 0.995 

Aomori 

3 0.971 0.128 0.985 

5 0.971 0.127 0.985 

7 0.972 0.125 0.986 

3 hr 

Gangneung 

3 0.982 0.145 0.990 

5 0.987 0.121 0.993 

7 0.987 0.117 0.994 

Sakata 

3 0.987 0.088 0.993 

5 0.989 0.079 0.994 

7 0.990 0.077 0.995 

Aomori 

3 0.952 0.164 0.974 

5 0.957 0.153 0.978 

7 0.962 0.146 0.981 

12 hr 

Gangneung 

3 0.448 0.305 0.667 

5 0.851 0.177 0.910 

7 0.882 0.161 0.934 

Sakata 

3 0.374 0.333 0.622 

5 0.748 0.208 0.849 

7 0.868 0.141 0.927 

Aomori 

3 -0.256 0.446 0.086 

5 0.293 0.340 0.538 

7 0.522 0.238 0.708 

24 hr 

Gangneung 

3 -0.463 0.391 0.134 

5 -0.113 0.361 0.280 

7 0.809 0.208 0.860 

Sakata 

3 0.008 0.391 0.431 

5 0.212 0.357 0.559 

7 0.870 0.140 0.927 

Aomori 

3 0.074 0.367 0.365 

5 0.736 0.375 0.661 

7 0.461 0.289 0.672 
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model prediction accuracy is reduced with increasing lead time, whereas it is 

enhanced with higher decomposition level. It is worthy of note that the model 

accuracy at Aomori is lower than those at other stations because the wave heights 

are relatively small at Aomori which is located inside a bay. The results obtained 

from the EOFWNN model at the eight stations are summarized in Tables 4.3 to 4.6 

for different lead times. The performance of the EOFWNN model for short lead 

times (i.e. 1 and 3 hours) was similar to those of the WNN model. The values of R 

and 𝐼𝑎 were close to one regardless of the decomposition level, and the NRMSE 

values were distributed between 0.074 and 0.265. The EOFWNN model showed 

high accuracy even for longer lead times (i.e. 12 and 24 hours). Even at the 3rd 

decomposition level, the values of NRMSE were under 0.226. Figs. 4.17 to 4.19 

show the observed and forecasted significant wave height time series by the WNN 

and EOFWNN models with the 7th decomposition level at 24 hour lead time in 

Gangneung, Sakata and Aomori, respectively. Both models forecasted the overall 

behavior of the observed data, but the EOFWNN model proposed in this study 

showed more accurate results than the WNN model. Figures for other lead times 

are attached in appendix. Fig. 4.20 compares the index of agreement of the 

EOFWNN and WNN models corresponding to different decomposition levels for 

different lead times at Gangneung, Sakata and Aomori. Both models show lower 

accuracy with increasing lead time and higher accuracy with increasing 

decomposition level. The accuracy of the WNN model with low decomposition 

level drastically declined for longer lead times. However, the accuracy of the 

EOFWNN model was not significantly affected by the decomposition level. The 

accuracy of the EOFWNN model was much better than that of the WNN model for 

longer lead times. 
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Table 4.3 Test results of EOFWNN model for H at 1 hr lead time depending on 

decomposition level 

Station 
Decomposition 

Level 
R NRMSE 

Index of  

Agreement 

Gangneung 

3 0.992 0.096 0.996 

5 0.991 0.097 0.996 

7 0.992 0.098 0.995 

Wangdolcho 

3 0.988 0.103 0.994 

5 0.988 0.104 0.994 

7 0.988 0.106 0.993 

Genkainada 

3 0.989 0.080 0.995 

5 0.990 0.078 0.995 

7 0.989 0.080 0.995 

Tottori 

3 0.990 0.080 0.995 

5 0.990 0.079 0.995 

7 0.990 0.081 0.995 

Fukui 

3 0.991 0.080 0.995 

5 0.991 0.081 0.995 

7 0.990 0.084 0.995 

Sakata 

3 0.990 0.074 0.995 

5 0.990 0.075 0.995 

7 0.990 0.080 0.994 

Aomori 

3 0.967 0.135 0.983 

5 0.967 0.136 0.983 

7 0.967 0.136 0.983 

Rumoi 

3 0.956 0.080 0.978 

5 0.958 0.078 0.979 

7 0.956 0.079 0.978 
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Table 4.4 Test results of EOFWNN model for H at 3 hr lead time depending on 

decomposition level 

Station 
Decomposition 

Level 
R NRMSE 

Index of  

Agreement 

Gangneung 

3 0.979 0.164 0.988 

5 0.987 0.125 0.993 

7 0.987 0.125 0.992 

Wangdolcho 

3 0.981 0.139 0.989 

5 0.988 0.105 0.994 

7 0.986 0.129 0.990 

Genkainada 

3 0.980 0.124 0.986 

5 0.988 0.088 0.993 

7 0.987 0.091 0.993 

Tottori 

3 0.988 0.091 0.994 

5 0.988 0.087 0.994 

7 0.988 0.089 0.994 

Fukui 

3 0.989 0.091 0.994 

5 0.990 0.086 0.995 

7 0.989 0.093 0.993 

Sakata 

3 0.987 0.094 0.992 

5 0.989 0.081 0.994 

7 0.990 0.081 0.994 

Aomori 

3 0.891 0.265 0.923 

5 0.953 0.160 0.975 

7 0.955 0.169 0.975 

Rumoi 

3 0.923 0.108 0.957 

5 0.945 0.093 0.971 

7 0.942 0.092 0.969 
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Table 4.5 Test results of EOFWNN model for H at 12 hr lead time depending on 

decomposition level 

Station 
Decomposition 

Level 
R NRMSE 

Index of  

Agreement 

Gangneung 

3 0.938 0.126 0.964 

5 0.909 0.141 0.953 

7 0.923 0.131 0.960 

Wangdolcho 

3 0.893 0.121 0.944 

5 0.907 0.112 0.951 

7 0.924 0.101 0.961 

Genkainada 

3 0.909 0.095 0.952 

5 0.930 0.085 0.964 

7 0.945 0.077 0.971 

Tottori 

3 0.912 0.090 0.951 

5 0.905 0.093 0.950 

7 0.928 0.081 0.963 

Fukui 

3 0.935 0.097 0.962 

5 0.947 0.088 0.973 

7 0.955 0.080 0.977 

Sakata 

3 0.898 0.124 0.943 

5 0.959 0.080 0.979 

7 0.962 0.078 0.981 

Aomori 

3 0.687 0.193 0.813 

5 0.538 0.228 0.714 

7 0.696 0.201 0.826 

Rumoi 

3 0.863 0.143 0.921 

5 0.922 0.111 0.959 

7 0.921 0.114 0.958 
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Table 4.6 Test results of EOFWNN model for H at 24 hr lead time depending on 

decomposition level 

Station 
Decomposition 

Level 
R NRMSE 

Index of  

Agreement 

Gangneung 

3 0.904 0.164 0.941 

5 0.924 0.138 0.957 

7 0.926 0.130 0.961 

Wangdolcho 

3 0.891 0.126 0.937 

5 0.861 0.141 0.924 

7 0.902 0.117 0.949 

Genkainada 

3 0.923 0.088 0.956 

5 0.936 0.084 0.964 

7 0.943 0.076 0.971 

Tottori 

3 0.893 0.103 0.937 

5 0.893 0.099 0.940 

7 0.911 0.094 0.953 

Fukui 

3 0.929 0.103 0.959 

5 0.938 0.094 0.967 

7 0.960 0.078 0.979 

Sakata 

3 0.918 0.112 0.954 

5 0.946 0.093 0.972 

7 0.958 0.083 0.978 

Aomori 

3 0.625 0.226 0.765 

5 0.653 0.209 0.798 

7 0.725 0.196 0.841 

Rumoi 

3 0.906 0.122 0.946 

5 0.900 0.123 0.945 

7 0.925 0.107 0.961 
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Fig. 4.17 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 24 hour lead time in 

Gangneung 
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Fig. 4.18 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 24 hour lead time in Sakata 
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Fig. 4.19 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 24 hour lead time in Aomori 
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Fig. 4.20 Comparison of index of agreement between EOFWNN and WNN 

model with 3, 5, and 7 decomposition level in several lead times in (a) 

Gangneung, (b) Sakata, (c) Aomori 
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Forecasting of significant wave period series was also conducted using 

EOFWNN model. The procedure is same as that of significant wave height. Fig. 

4.21 represents the first four modes of the PC time series for significant wave 

period. Since the effect of wavelet decomposition level was shown before, the 

wavelet decomposition level was fixed as 7th level for prediction of significant 

wave period. The results obtained from the EOFWNN model at the eight stations 

are summarized in Tables 4.7 for different lead times. The model shows lower 

accuracy with increasing lead time. The model showed high accuracy for short lead 

times. The values of R and 𝐼𝑎 were close to one except Aomori, and the NRMSE 

values were distributed between 0.034 and 0.087. The model showed relatively 

high accuracy even for longer lead times. Figs. 4.22 to 4.24 show the observed and 

forecasted significant wave period time series by the EOFWNN models with the 

7th decomposition level at 24 hour lead time in Gangneung, Sakata and Aomori, 

respectively. The forecasted time series follow the trend of the observed one, but it 

does not show the small peaks clearly. Figures for other lead times are attached in 

appendix.  
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Fig. 4.21 First to fourth mode PC time series for significant wave period 
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Table 4.7 Test results of EOFWNN model for T at 8 stations for several lead 

times with decomposition level 7 

 

 

 

 

Lead 

time 
Station R NRMSE 

Index of  

Agreement 

1 hr 

Gangneung 0.931 0.038 0.964 

Wangdolcho 0.966 0.038 0.982 

Genkainada 0.979 0.042 0.989 

Tottori 0.977 0.037 0.988 

Fukui 0.985 0.034 0.992 

Sakata 0.983 0.035 0.991 

Aomori 0.739 0.083 0.857 

Rumoi 0.932 0.034 0.965 

3 hr 

Gangneung 0.929 0.039 0.963 

Wangdolcho 0.963 0.040 0.980 

Genkainada 0.978 0.044 0.988 

Tottori 0.972 0.042 0.983 

Fukui 0.982 0.038 0.990 

Sakata 0.980 0.038 0.989 

Aomori 0.706 0.087 0.839 

Rumoi 0.924 0.036 0.961 

12 hr 

Gangneung 0.874 0.039 0.934 

Wangdolcho 0.890 0.042 0.943 

Genkainada 0.786 0.048 0.883 

Tottori 0.884 0.037 0.937 

Fukui 0.896 0.043 0.944 

Sakata 0.882 0.045 0.938 

Aomori 0.607 0.077 0.767 

Rumoi 0.770 0.046 0.876 

24 hr 

Gangneung 0.858 0.043 0.934 

Wangdolcho 0.900 0.040 0.948 

Genkainada 0.756 0.052 0.866 

Tottori 0.879 0.038 0.936 

Fukui 0.898 0.044 0.947 

Sakata 0.911 0.039 0.954 

Aomori 0.709 0.069 0.835 

Rumoi 0.769 0.046 0.875 
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Fig. 4.22 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 24 hour lead time in Gangneung 

2011-01-29 2011-01-30 2011-01-31 2011-02-01
0

1

2

3

4

5

6

7

8

9

10

Time (YY-MM-DD)

P
e
ri
o
d
 (

s
)

 

 

Observed

Forecasted

Fig. 4.23 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 24 hour lead time in Sakata 
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Fig. 4.24 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 24 hour lead time in Aomori 
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4.3 Forecasting of significant wave height and peak period using the 

numerical modeling data 

 

The numerical wave modeling data were used to employ the EOFWNN model to 

the entire area of the East Sea. In the case of forecasting of numerical wave 

modeling data, wind velocity and wave heights (or periods) were used for input 

variables. The lead times were fixed as 1 and 3 hours with the use of 1 hrt  . 

The experimental period in this study was from October 1999 to February 2000. 

Training was conducted for 120 days (00:00 October 1, 1999 to 23:00 January 28, 

2000), and testing was conducted for 7 days (00:00 January 29, 2000 to 23:00 

February 4, 2000) using the weights and bias obtained from the training period. 

Through the EOF analysis, wind velocity and wave height time series were 

decomposed into several modes and separated into spatial and temporal 

components. Fig. 4.25 shows the first four modes of the eigenvectors of wind 

velocity and Fig. 4.26 represents corresponding PC time series. Fig. 4.27 shows the 

first mode of the eigenvector and corresponding PC time series of significant wave 

height. The wavelet decomposition level was fixed as 7th level for prediction of 

significant wave height.  
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Fig. 4.25 First four modes of eigenvectors for wind velocity 
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Fig. 4.26 First four modes of PC time series for wind velocity 
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Fig. 4.27 First mode of the eigenvector and corresponding PC time series of 

significant wave height for numerical wave modeling data 
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To evaluate the performance of the models, correlation coefficient (R), index of 

agreement (𝐼𝑎) and normalized root mean square error (NRMSE) are also employed. 

The figures of the results of the EOFWNN model for numerical results of 

significant wave heights at 1 hour lead time are attached in Appendix. The values 

of R were distributed between 0.872 and 0.995 and for IOA were between 0.925 

and 0.997. The range of NRMSE values were from 0.044 to 0.228. Fig. 4.28- Fig. 

4.30 show the performance of the EOFWNN model for 3 hour lead time. The 

results were similar to those of 1 hour lead time. The values of R were distributed 

between 0.863 and 0.994 and for IOA were between 0.919 and 0.997. The range of 

NRMSE values were from 0.048 to 0.259. Fig. 4.31 shows the highest performance 

case for IOA and Fig. 4.32 shows the lowest performance case. Since the wave 

heights are relatively small for the lowest performance case, the accuracy is lower 

than those at other locations.  
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Fig. 4.28 Coefficient of correlation of EOFWNN model for numerical results of 

significant wave height with 7th decomposition level at 3 hr lead time 
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Fig. 4.30 NRMSE of EOFWNN model for numerical results of significant wave 

height with 7th decomposition level at 3 hr lead time 

Fig. 4.29 Index of agreement of EOFWNN model for numerical results of 

significant wave height with 7th decomposition level at 3 hr lead time 

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
33

34

35

36

37

38

39

40

41

42

43

44

45  
NRMSE

Longitude (o)

 

L
a
tit

u
d
e
 (

o
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5



 

 
97 

 

 

Fig. 4.31 Highest performance case of EOFWNN model for numerical results of 

significant wave height with 7th decomposition level at 3 hr lead time 
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Fig. 4.32 Lowest performance case of EOFWNN model for numerical results of 

significant wave height with 7th decomposition level at 3 hr lead time 
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Forecasting of numerical results of peak period series was also conducted 

using EOFWNN model for 1 and 3 hour lead times. The procedure of forecasting is 

same as that of numerical results of significant wave height. Fig. 4.33 shows the 

first mode of the eigenvector and corresponding PC time series of significant wave 

period. The figures of the results of the EOFWNN model for numerical results of 

peak periods at 1 hour lead time are attached in Appendix. The values of R were 

distributed between 0.722 and 0.990 and for IOA were between 0.850 and 0.995. 

The range of NRMSE values were from 0.027 to 0.249. The range of R and IOA for 

peak period was wider than those of significant wave height, but the values of 

NRMSE was similar to those of significant wave height. Fig. 4.34-Fig. 4.36 show 

the performance of the EOFWNN model for 3 hour lead time. The results were 

similar to those of 1 hour lead time. The values of R were distributed between 

0.676 and 0.974 and for IOA were between 0.819 and 0.987. The range of NRMSE 

values were from 0.042 to 0.247. Fig. 4.37 shows the highest performance case for 

IOA and Fig. 4.38 shows the lowest performance case. Even the lowest 

performance case, the peaks are shown clearly. In future work the EOFWNN 

model will be employed for longer lead times. 
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Fig. 4.33 First mode of the eigenvector and corresponding PC time series of 

peak period for numerical wave modeling data 
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Fig. 4.34 Coefficient of correlation of EOFWNN model for numerical results of 

peak period with 7th decomposition level at 3 hr lead time 

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
33

34

35

36

37

38

39

40

41

42

43

44

45  
Index of Agreement

Longitude (o)

 

L
a
tit

u
d
e
 (

o
)

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 4.35 Index of agreement of EOFWNN model for numerical results of peak 

period with 7th decomposition level at 3 hr lead time 
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Fig. 4.37 Highest performance case of EOFWNN model for numerical results of 

peak period with 7th decomposition level at 3 hr lead time 
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Fig. 4.36 NRMSE of EOFWNN model for numerical results of peak period with 

7th decomposition level at 3 hr lead time 
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Fig. 4.38 Lowest performance case of EOFWNN model for numerical results of 

peak period with 7th decomposition level at 3 hr lead time 
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4.4 Detecting and forecasting of sudden high waves 

 

In the previous chapter 3.2, a criterion of sudden high waves based on wave 

measurement data and the record of marine accidents and property damage was 

proposed. It also could be used for forecasting of sudden high waves based on 

wave forecast data. To examine this possibility, the spatio-temporal variation of 

2( ) /H L t   was calculated in the East Sea using the wave hindcast data provided 

by the KORDI. Fig. 4.39 shows several snapshots taken from the spatio-temporal 

variation of 2( ) /H L t   calculated during the period of February 2-3, 1987. In 

order to forecast sudden high waves at each time step, 2( ) /H L t   was calculated 

at each time step using the maximum value detected from the minimum point of 

the preceding data to each time step. Note that the maximum value of 
2H L  during 

a high wave event can be obtained at each time step and the value of 2H L during 

non-event time is zero. As shown in Fig. 4.39, the high values of 2( ) /H L t   

formed a string, which traveled southeastward across the sea, indicating that a high 

wave event could suddenly occur from a calm sea. The string arrived near the 

northwest coast of Honshu, Japan, around 2pm February 3, 1987, as shown in Fig. 

4.39 (d). 

In order to validate the calculated results in Fig. 4.39, the wave data measured 

along the coast of Japan by the NOWPHAS system was used, which were  

measured at three locations at the northwest coast of Honshu, Japan, i.e., Hamada, 

Tottori, and Kanazawa, as shown in Fig. 4.40. Fig. 4.41 shows the temporal 

variation of 
2H L  measured at these stations in February 1-5, 1987. The values of 

2H L  were small until near the noon February 3rd, after which they increased  
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(a)

(b)

(c)

(d)

Fig. 4.39 Snapshots of 2( ) /H L t   calculated during the period of February 2-

3, 1987: (a) 9pm Feb.2nd (b) 1am Feb. 3rd (c) 6am Feb. 3rd (d) 2pm Feb. 3rd  



 

 
105 

 

 

 

 

Table 4.8 Disaster damage occurred in February 3-4, 1987, in Shimane Prefecture, 

Japan (unit = 1,000 Japanese Yen) 

Classification 

(Date) 

Civil 

facilities 

Fishery port 

facilities 

Agricultural 

products 

Fishery 

products and 

facilities 

Total 

Winter wind 

waves 

(February 3-4) 

139,249 300,340 18,665 400,689 858,943 

 

  

Fig. 4.40 Locations of wave observation stations of NOWPHAS system 



 

 
106 

rapidly to reach their maxima near the midnight. According to Fig. 4.39, it is 

expected that the sudden high wave events would occur during the late afternoon or 

early evening February 3rd, which corresponds well with the results from the 

measurement shown in Fig. 4.41. The values of 2 /H L t   for the events shown 

in Fig. 4.41 were 138.4, 221.9, and 35.8 𝑚3/hr at Hamada, Tottori, and Kanazawa, 

respectively. According to the criterion proposed in the present study, a sudden 

high wave event would have occurred at Hamada and Tottori, but not at Kanazawa.  

It may be interesting to investigate if any marine accident or property damage had 

occurred in these areas during this period. Table 4.8 shows a part of the record of 

the disaster damage occurred in 1987 in Shimane Prefecture, Japan, in which 

Hamada is located (Shimane Prefecture, 1987). In February 3-4, 1987, there was no 

human casualty or injury, but property damage of 858,943,000 Japanese Yen 

occurred by winter wind waves mostly for civil and fishery port facilities and 

marine products facilities. This indicates that the proposed intensity parameter is a 

good measure for sudden high waves and it could be used to forecast sudden high 

waves.  

To evaluate forecast of sudden high waves, sudden high waves were forecasted 

using the wave forecast data in the previous chapter. 2 /H L t   was calculated 

using the wave data measured at eight stations by KIOST and NOWPHAS. The 

present time was fixed at 12:00 January 29, 2011. Then, the each forecast time was 

at 13:00 January 29, 2011 for 1 hour lead time, at 15:00 January 29, 2011 for 3 

hour lead time, at 00:00 January 30, 2011 for 12 hour lead time and at 12:00 

January 30, 2011 for 24 hour lead time. Figs. 4.42 – 4.43 show the comparison of 

temporal variation of 2 /H L t   between the observed and the forecasted wave  
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(a)

(b)

(c)

Fig. 4.41 Temporal variation of 
2H L  measured at three wave stations of 

NOWPHAS system in February 1-5, 1987: (a) Hamada; (b) Tottori; and (c) 

Kanazawa 
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data at 24 lead times in Gangneung and Sakata, respectively. The red line is the 

present time, 12:00 January 29, 2011. The value of 2 /H L t   at 00:00 January 25, 

2011 in Gangneung was 314.02 m /hr , and the value during the forecast period was 

320.04 m /hr  for observed data and 317.74 m /hr  for forecasted data. During this 

forecast period, there was no sudden high waves in Gangneumg, but sudden high 

wave was detected clearly in Sakata. The value of 2 /H L t   in the afternoon 

January 28, 2011 in Sakata was 3108.93 m /hr , and the value during the forecast 

period was 3814.65 m /hr  for observed data and 3631.19 m /hr  for forecasted 

data. Although there was a slight deviation between the results of observed and 

forecasted wave data, the maximum peak was forecasted quite accurately.  
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Fig. 4.42 Comparison of temporal variation of 
2H L between observed and 

forecasted wave data at 24 hour lead time in Gangneung  
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Fig. 4.43 Comparison of temporal variation of 
2H L between observed and 

forecasted wave data at 24 hour lead time in Sakata  
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CHAPTER 5. CONCLUSIONS 

 

5.1 Summary and conclusions 

 

The main purposes of this study are to analyze the generation mechanism of 

sudden high waves and forecast sudden high waves in the East Sea of Korea using 

statistical methods. The objectives are as follows: 1) to define sudden high waves 2) 

to investigate the generation mechanism of the waves by analyzing the relation 

between waves and meteorological variables 3) to forecast significant wave height 

and period in the East Sea of Korea 4) to detect and forecast sudden high waves 

from the proposed intensity parameter and wave forecast data in the East Sea of 

Korea. 

In this study, a more clear intensity parameter and criteria of sudden high 

waves were suggested. Wave data measured in Gangneung and Wangdolcho in 

2005- 2012 provided by KIOST were used and the occurrences and damages of 

high wave events on the east coast of Korea during the period were referenced. 

Since the wave energy increases dramatically during the event, the index of sudden 

high waves set as 2( ) /H L t   and the values of 2( ) /H L t   were calculated. 

From the results it was found that 2( ) /H L t  was proportional to the severity of 

the events and the rapidly increasing curve of 2( ) /H L t   levels off at about 80% 

of cumulative percentage. Therefore, the criteria of sudden high waves was set 80 

m3/hr, which corresponds to the top 20%.  

Next, the generation mechanism of overall sudden high waves was analyzed 

unlike previous researches focusing on the specific events. Experiments were 
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conducted for the winter season from October to February, when sudden high 

waves occur frequently. The wave data provided by KIOST at Gangneung and 

Wangdolcho were used and the meteorological data were NCEP/NCAR reanalysis 

data. To detect the relationship between sudden high wave modes and 

meteorological variables, CSEOF analysis was used, which is a useful tool to 

extract the physical modes from geophysical variables. The significant wave height 

and the index of sudden high waves, 
2H L was analyzed using CSEOF analysis. 

From the shapes of the modes and comparison between the reported events and the 

reconstructed series, the second and third modes of significant wave height and the 

first two modes of the index of sudden high waves were considered as the physical 

process of sudden high waves. By regression analysis, the evolution of spatial 

patterns of wind velocity and sea level pressures was analyzed during the sudden 

high wave events. The patterns were categorized two groups. There are two peaks 

in the modes of all CSLV considered as the physical process of sudden high waves. 

The common patterns were until the rapid growth of the wave height, there was 

spatial variation in sea level pressure and wind speed, and the weather in the 

Korean peninsula was mild in those days. The first pattern was that the first peak 

seemed to be generated by low pressure moving to the north east part of the East 

Sea and easterly wind blowing for 1 day, whereas the second peak seemed to be 

caused by strong wind. The second patterns was that the first seemed to be affected 

by the strong wind in the east coast and the second peak seemed to be influenced 

by wind in the offshore area. The result was consistent with the previous researches. 

To forecast significant waves at multiple stations simultaneously, an 

EOFWNN model was developed by combining the EOF analysis and wavelet 

analysis with the neural network. The wave data used in this research were 
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measured at eight wave observation stations in the East Sea by KIOST and 

NOWPHAS and the meteorological data were the NCEP/NCAR reanalysis data. 

The period was from October 2010 to February 2011. The results of the EOFWNN 

model for significant wave height were compared with those of a wavelet and 

neural network hybrid (WNN) model in Gangneung, Sakata and Aomori for several 

lead times. The EOFWNN model which used the data at multiple locations together 

showed better performance than the WNN model which used the data at each 

location separately. The high accuracy of the EOFWNN model was attributed to 

considering the effect of spatially distributed meteorological variables by the EOF 

analysis. The EOFWNN model is better than the WNN model in that the former 

shows higher accuracy for longer lead times regardless of the decomposition level 

and that it forecasts the wave heights at multiple locations together. The results of 

significant wave period also showed quite high accuracy, although they were less 

accurate than those of significant wave height. Also, the EOFWNN model was 

employed to the entire area of the East Sea, which were numerical wave modeling 

data provided by KORDI. ECMWF reanalysis data were used for wind velocity. 

The lead time was fixed as 1 and 3 hours. Even though the number of grid for sea 

area is 96, the results showed relatively high accuracy. By combining wavelet 

analysis to neural networks, non-stationarity and non-linearity problem could be 

overcome, but WNN model has still low accuracy at higher lead times. While the 

EOFWNN model shows the high performance at higher lead times. It came from 

the reflection of the relationship between spatially distributed meteorological 

variables and waves by combining EOF analysis. Also, EOF analysis helped for 

EOFWNN model to forecast wave series at multi-stations simultaneously. 

Therefore, the EOFWNN model can be a promising tool for forecasting the 
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significant wave heights or periods at multiple locations for a relatively long lead 

time with high accuracy.  

Using the proposed intensity parameter and the forecasted significant waves 

by the EOFWNN model, sudden high wave was detected and forecasted. From the 

forecasted wave data at 24 hour lead time, 2( ) /H L t   was calculated in 

Gangneung and Sakata. During the forecast period, there was no sudden high 

waves in Gangneung, but the value of 2( ) /H L t   in Sakata was over the criteria 

of sudden high waves, 80 m3/hr. Although there was a slight deviation between 

the results of observed and forecasted wave data, sudden high wave was detected 

clearly. Until now, sudden high waves have been forecasted only using numerical 

methods. From this study, we saw the potential and reality to forecast sudden high 

waves using machine-learning. 

 

5.2 Future study 

 

Fig. 5.1 shows the autocorrelation graph of residuals of observed and forecasted 

significant wave height series at 24 hour lead time in Gangneung. Until 1 and half 

hours the values are quite correlated. Also, in Fig. 4.17 – 4.19 there are phase shifts 

about 1 – 1.5 hours. In this research, to consider the time lag effect of the 

meteorological data, the meteorological data at 30 minutes and 3 hours ahead of the 

forecast lead time as input data of EOFWNN model were arbitrarily chosen. It 

seems that the arbitrarily chosen time lags of meteorological data affect the 

forecasting results for significant waves. In the future research, the effect of 

different time lags of meteorological data will be compared. In this study, 
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forecasting lead times of the EOFWNN model were 1, 3, 12 and 24 hours. 

However, to deal with sudden high waves, more than 24 hour lead time forecasting 

is required. Thus, the EOFWNN model will be employed at longer lead times more 

than 24 hours in the future study. Lastly, it should be mentioned that the model 

showed lower accuracy at the Aomori station, which is located inside a bay and 

thus in which the wave height is small compared with other stations. It may be 

desirable to use the model for the wave stations which are located in open coasts so 

that the magnitudes of wave height are similar to one another. 
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Fig. 5.1 Autocorrelation of residuals of observed and forecasted results for 

significant wave height at 24 hour lead time in Gangneung 
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App. B1 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 1 hour lead time in Gangneung 
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App.B2 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 1 hour lead time in Sakata 
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App.B3 Observed and forecasted significant wave heights by WNN and   

EOFWNN models with 7th decomposition level at 1 hour lead time in Aomori 
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EOFWNN models with 7th decomposition level at 3 hour lead time in Gangneung 
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App.B5 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 3 hour lead time in Sakata 
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App.B6 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 3 hour lead time in Aomori 
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App. B7 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 12 hour lead time in 

Gangneung 
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App. B8 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 12 hour lead time in Sakata 
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App. B9 Observed and forecasted significant wave heights by WNN and 

EOFWNN models with 7th decomposition level at 12 hour lead time in Aomori 
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App. B10 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 1 hour lead time in Gangneung 
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App. B11 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 1 hour lead time in Sakata 
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App. B12 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 1 hour lead time in Aomori 
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App. B13 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 3 hour lead time in Gangneung 
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App. B14 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 3 hour lead time in Sakata 
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App. B15 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 3 hour lead time in Aomori 
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App. B16 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 12 hour lead time in Gangneung 
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App. B17 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 12 hour lead time in Sakata 
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App. B18 Observed and forecasted significant wave period by EOFWNN model 

with 7th decomposition level at 12 hour lead time in Aomori 
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App. B19 Coefficient of correlation of EOFWNN model for numerical significant 

wave height with 7th decomposition level at 1 hr lead time  

App. B20 Index of agreement of EOFWNN model for numerical significant wave 

height with 7th decomposition level at 1 hr lead time  
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App. B21 NRMSE of EOFWNN model for numerical significant wave height 

with 7th decomposition level at 1 hr lead time  
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App. B22 Highest performance case of EOFWNN model for numerical 

significant wave height with 7th decomposition level at 1 hr lead time  
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App. B23 Lowest performance case of EOFWNN model for numerical significant 

wave height with 7th decomposition level at 1 hr lead time 
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App. B24 Coefficient of correlation of EOFWNN model for numerical peak 

period with 7th decomposition level at 1 hr lead time 
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App. B25 Index of agreement of EOFWNN model for numerical peak period 

with 7th decomposition level at 1 hr lead time 
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App. B26 NRMSE of EOFWNN model for numerical peak period with 7th 
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App. B27 Highest performance case of EOFWNN model for numerical peak 

period with 7th decomposition level at 1 hr lead time 
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App. B28 Lowest performance case of EOFWNN model for numerical peak 

period with 7th decomposition level at 1 hr lead time 
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국문 초록 

 

동해 돌연고파의 발생 메커니즘과  

기계학습 예측모델 

 

서울대학교 대학원 

건설환경공학부 

오 지 희 

 

동해에서는 예외적으로 큰 파랑이 반복적으로 발생하고 있다. 이 처

참한 파랑은 지난 십 년 간 동해에서 50 명 이상의 인명피해를 야기시

켰다. 몇몇 연구가들은 돌연고파의 발생 메커니즘과 특성에 대하여 연구

해오고 있으나 그 정의는 여전히 모호하고 돌연고파의 특성을 설명하기

에는 불충분하다. 또한 돌연고파의 발생은 일일 기상 예보에서 대략적으

로 예측되고 있다. 본 연구에서는 새로운 강도 변수를 사용하여 돌연고

파를 정의하고 발생 메커니즘을 조사하였다. 다음으로 동해에서의 유의

파고와 유의파주기를 예측하였고 마지막으로 앞서 제안된 강도 변수와 

동해에서 예측된 유의파고와 유의파주기를 이용하여 돌연고파를 예측하

였다.  
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본 연구에서는 돌연고파 인덱스를 2 /H L t  로 제안하였고, 2005년

부터 2012년까지의 강릉과 왕돌초의 파랑 자료를 이용하여 그 값을 계

산하였다. 계산된 값에 대하여 분포를 추정한 결과, 누적 분포의 상위 

20% 에 해당하는 80 m3/hr를 돌연고파의 기준으로 삼았다.  

다음으로, 돌연고파의 발생 메커니즘을 분석하기 위하여 CSEOF 분

석과 회귀분석을 이용하여 돌연고파가 발생하는 동안의 풍속과 해면기압

의 공간적 패턴의 시간에 따른 변화를 살펴보았다. 파랑 자료는 강릉과 

왕돌초의 자료를 사용하였고, 기상 자료는 NCEP/NCAR 재분석 자료를 

사용하였다. 돌연고파의 물리적 기작과 관련있는 모든 CSLV의 성분에

는 두 개의 최고점이 있었다. 패턴은 두 그룹으로 분류할 수 있었고, 첫 

번째 패턴은 동해의 북동쪽으로 이동하는 저기압과 하루 동안 지속적으

로 부는 동풍에 의해 파고의 첫 번째 최고점이 생성되었고, 반면 두 번

째 최고점은 강한 풍속에 의한 것으로 보인다. 두 번째 패턴은 동해안에

서의 풍속에 의해 첫 번째 파고의 최고점이 생성되고 두 번째 최고점은 

원해에서의 풍속에 영향을 받은 것으로 보인다.  

여러 지점에서의 유의파고 및 유의파주기를 동시에 예측하기 위하여, 

EOF 분석과 웨이블릿 분석과 인공신경망 모형을 결합한 EOFWNN 모

델은 개발하였다. 본 연구에서 사용된 파랑 자료는 동해의 여덟 지점에

서 관측된 자료를 사용하였고 기상 자료는 NCEP/NCAR 재분석 자료를 

사용하였다. EOFWNN 모델을 이용하여 유의파고를 예측한 결과는 강릉, 

사카다, 아오모리에서의 여러 선행기간에 대하여 웨이블릿과 인공신경망 

모형을 결합한 WNN 모델과 비교하였다. EOFWNN 모델은 WNN 모델
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보다 웨이블릿 분해 단계와 상관없이 더 긴 선행 기간에 대하여 더 높은 

정확도를 보여주었다. EOFWNN 모델을 이용하여 유의파주기도 예측하

였다. 유의파주기의 결과 역시 상당히 높은 정확도를 보여주었다. 또한 

제안된 모델의 더 넒은 지역의 자료에 대한 적용 가능성을 검증하기 위

하여 파랑 수치해석 모델 자료에 적용하였다. 1 시간과 3 시간의 선행기

간에 대한 결과 역시 상당히 높은 정확도를 보여주었다.  

제안된 돌연파고의 강도 변수와 EOFWNN 모델에 의하여 예측된 

유의파고 및 유의파주기를 이용하여 돌연고파가 감지되고 예측되었다. 

24 시간 선행기간에 대해 예측된 파랑 자료로부터 강릉과 사카타에서의 

2 /H L t   값이 계산되었다. 비록 관측된 자료에 의한 결과와 예측된 자

료에 의한 결과 간에 약간의 차이는 있지만, 돌연고파는 정확하게 감지

되었다.  

 

주요어: 인공신경망; 경험직교함수; 유의파랑; 돌연고파; 파랑 예측; 웨이

블릿. 
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