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The present paper deals with the progress of multi-dimensional limiting process (MLP)
and discuss the issues for further improvements. MLP, which has been originally devel-
oped in finite volume method (FVM), provides an accurate, robust and efficient oscillation-
control mechanism in multiple dimensions for linear reconstruction. This limiting philoso-
phy can be hierarchically extended into higher-order Pn approximation or reconstruction.
The resulting algorithm, called the hierarchical MLP, facilitates the capturing of detailed
flow structures while maintaining the formal order-of-accuracy in smooth region and pro-
viding accurate non-oscillatory solutions across discontinuous region. This algorithm has
been developed within the modal DG framework, but it also can be formulated into a nodal
framework, most notably the CPR framework. Troubled-cells are detected by applying the
MLP concept, and the final accuracy is determined by the projection procedure and the
hierarchical MLP limiting step. Through extensive numerical analyses and computations
ranging from scalar conservation laws to fluid systems, it is demonstrated that the proposed
limiting approach yields the outstanding performances in capturing compressible inviscid
and viscous flow features. Further issues are also mentioned to improve and extend the
current approach for higher-order simulations of high-Reynolds number compressible flows.

I. Introduction

Up to now, second-order accurate computational fluid dynamics (CFD) methods with some discontinuity-
capturing strategy are widely used to analyze compressible viscous flows. Theoretically, these approaches
guarantee the minimal accuracy to recover essential physics of high-Reynolds number compressible flows.
Indeed, they have witnessed remarkable successes in many classes of engineering and scientific applications.
At the same time, however, they also unveil some limitations, particularly in capturing unsteady vortex-
dominated flow structures due to excessive numerical diffusion. From this perspective, higher-order methods
are convincing alternatives in the sense that they can provide the detailed flow structures by upgrading the
accuracy of spatial and temporal discretization with reasonable computational resources.1–4

During the past few decades, various higher-order discretization methods have been developed. In or-
der to handle complex geometry, these methods usually combine the merits of both finite volume methods
(FVM) and finite element methods (FEM), which makes it possible to develop higher-order approxima-
tion/reconstruction for each cell with a minimal stencil. Discontinuous Galerkin (DG) method is one of the
widely-used and well-developed higher-order methods in hyperbolic conservation laws. Strong mathematical
background and numerical analysis support it though overall formulations are relatively complex and expen-
sive compared to FVM. Recently, Huynh proposed the flux reconstruction (FR) procedure,5,6 which provides
an unifying framework of many higher-order methods. In addition, Wang introduced a lifting collocation
operator7 to deal with multi-dimensional problems on simplex and mixed grids. The two approaches were
combined and renamed as correction procedure via reconstruction (CPR), which possesses many merits of
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higher-order methods in terms of accuracy and stability, while it is more simple and efficient. Recent stud-
ies also show some encouraging results in capturing compressible flow features.4 Furthermore, the energy
stability of FR was rigorously studied by Vincent et al., and as a result, energy stable flux reconstruction
(ESFR) was developed.8,9

At the same time, a few obstacles have surfaced in extending higher-order CFD methods, including CPR,
into high speed unsteady flows. One of them is to design a robust and efficient oscillation-control algorithm
to suppress unwanted oscillations around discontinuities without compromising the higher-order nature in
smooth region. The main reason for such oscillations is the lack of providing a proper diffusion mechanism.
Regarding this issue, two options are currently available. One is to add a properly tuned artificial viscosity
term around shock region.10,11 The other resorts to some limiting algorithms which are mostly borrowed
from finite volume methods.

Cockburn and Shu developed the first successful TVB-based limiter for the DG method,12 which en-
forces the TVD/TVB condition in the mean sense by controlling the reconstructed slopes. This idea was
generalized into the form of higher-order moments,13–16 and some improved versions have recently been
studied as well.17,18 On the other hand, limiting strategies based on WENO-type reconstruction were also
combined with the higher-order DG method.19–21 While most of these limiting studies are formulated in
the DG framework, it is possible to apply other higher-order methods. At the same time, it has been
noted that the fundamental issue of the limiting algorithms essentially lies in the the mathematical analyses
based on the one-dimensional convection equation, which do not in general guarantee the multi-dimensional
monotonicity.22,23

Especially, the diminished numerical viscosity triggers multi-dimensional oscillations more often, and
thus the study on the robust, accurate and efficient shock-capturing philosophy for multi-dimensional flows
has become one of the essential issues in higher-order CFD methods. Recently, the multi-dimensional
limiting process (MLP) has been successfully proposed in the FVM framework. Compared with traditional
limiting strategies, such as the TVD or ENO-type limiting, the MLP limiting can efficiently control unwanted
oscillations particularly in multi-dimensional flow situations. By imposing the MLP condition on both cell-
averaged and cell-vertex values, the MLP limiting can efficiently follow the multi-dimensional flow physics.
A series of previous researches22–25 demonstrated that the MLP limiting possesses superior characteristics
in terms of accuracy, robustness and efficiency in inviscid and viscous computations on structured and
unstructured grids within the FVM framework. Since the proposed limiting algorithm relies only on the
MLP stencil regardless of the order of approximation, it facilitates an easy extension to popular higher-
order methods, such as DG method. As a way to stabilize the higher-order DG method, the original MLP
condition is modified to take into account the behavior of local extrema produced by a cell-wise higher-
order approximation. As a consequence, the augmented MLP condition and the MLP-based troubled-cell
marker are obtained, which pave the way to obtain the hierarchical DG-MLP formulation.26 By examining
the numerical Gibbs’ phenomenon caused by the sub-cell distribution and its propagation, the P1-projected
MLP condition is newly obtained and applied to CPR method within the hierarchical DG-MLP formulation.27

In this study, we present the progress of the MLP limiting strategy for higher-order schemes and discuss
some issues to treat high-Reynolds number flows around realistic configurations. The paper is organized as
follows. The baseline discretization methods are briefly summarized in Section II. Then, the hierarchical
MLP limiting with the augmented MLP condition and P1-projected MLP condition is described in Section
III. In Section IV, extensive numerical experiments are carried out to assess the performance of the proposed
limiting strategy for inviscid and viscous compressible flows involving shocks. Issues for further improvements
are discussed in Section V. Finally, conclusions are given in Section VI.

II. Higher-order CFD Methods

A. Discontinuous Galerkin Methods

In order to analyze the inviscid and viscous compressible flows, the Euler and Navier-Stokes equations are
considered.

∂Q

∂t
+∇ · (Fc − Fv) = 0, (1)

where Q is the conservative variable vector, Fc and Fv are the inviscid and viscous flux, respectively.
Discretization using the DG method starts from the weak form of Eq. (1) on the cell Tj .
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∫
Tj

∂Q

∂t
WdV +

∫
∂Tj

(Fc − Fv) · nWdS −
∫
Tj

(Fc − Fv)∇WdV = 0, (2)

where W is a test function vector, and n is the outward unit normal vector.
Distribution within a cell is then approximated by the sum of shape functions in a suitably smooth func-

tion space V n, which usually consists of polynomials of order up to n. The test function is also approximated
in the same function space V n.

Qh
j (x, t) =

ndof∑
i=1

Q
(i)
j (t)b

(i)
j (x), (3)

where Qh
j is an approximated state variable vector on the cell Tj and b

(i)
j is a shape function. In this

computation, all elements are linearly mapped to standard right triangle and we apply local orthogonal
shape function by tensor products of Jacobi polynomials.28

After applying suitable numerical fluxes, the approximated solution in V n on the cell Tj can be written
as follows. ∫

Tj

∂Qh
j

∂t
BjdV +

∫
∂Tj

Hc

(
Qh

jk,Q
h
kj

)
· nBjdS −

∫
Tj

Fc

(
Qh

j

)
· ∇hBjdV

−
∫
∂Tj

Hv

(
Qh

jk,Θ
h
jk,Q

h
kj ,Θ

h
kj

)
+

∫
Tj

Fv

(
Qh

j ,Θ
h
j

)
· ∇hBjdV = 0, (4)

where Qh
jk is the cell interface state vector in the direction from Tj to its neighboring cell Tk, and Bj is the

vector of the basis functions. Hc (QL,QR) and Hv (QL,ΘL,QR,ΘR) are the tensors of a numerical inviscid
and viscous flux function, respectively.

The viscous stress and heat flux are treated with an auxiliary variable vector,

Θ−∇Q = 0. (5)

From the BR2 scheme,29 Eq. (5) can be discretized by introducing the lift operator.

Θh
jk = ∇hQh

jk + ηre([Q
h]), Θh

j = ∇hQh
j + r([Qh]). (6)

Plugging Eq. (6) into Eq. (4), the primal formulation of the governing equations can be obtained. The
detailed derivation to treat the diffusion flux can be founded in Ref. (29). The boundary and domain
integration can be performed by the exact formulation or numerical integration with polynomials of order of
up to 2n and 2n+ 1, respectively. The present computations adopt the Keast’s quadrature rule for triangle
and tetrahedron.30

B. Correction Procedure via Reconstruction

The spatial discretization of CPR also starts from the weak form of Eq. (1) on the cell Tj . After applying
monotone numerical fluxes and integrating by part again, the approximated solution in V n on the cell Tj
can be written as follows.∫

Tj

∂Qh
j

∂t
WdV +

∫
∂Tj

(
H
(
Qh

jk,Q
h
kj

)
− F(Qh

jk)
)
· nWdS +

∫
Tj

∇h · F
(
Qh

j

)
WdV = 0, (7)

where Qh
jk is the cell interface state vector in the direction from Tj to its neighboring cell Tk, and H (QL,QR)

is the tensors of a numerical flux function.
Using the lifting operator, the second integral term can be replaced by a correction field δj ∈ V n and we

can obtain following formulation.∫
Tj

[
∂Qh

j

∂t
+∇h · F

(
Qh

j

)
+ δj

]
WdV = 0. (8)
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By projecting the second term onto V n, Eq. (8) with a proper test space can be simplified as follows.

∂Qh
j

∂t
+ Π

(
∇h · F

(
Qh

j

))
+ δj = 0, (9)

where Π is the projection operator. For the linear conservation law, the projection operator can be skipped.
In CPR method, higher-order approximation on each cell is approximated by solution points as

Qh
j (x, t) =

ndof∑
i

Qh
i,j(t)Li,j(x), (10)

where Li,j(x) is the Lagrange polynomial and Qh
i,j is the state vector at solution point xi on the cell Tj . We

use α-optimized node as a solution point for triangular and tetrahedral element. For each solution point,
Eq. (9) is imposed as

∂Qh
i,j

∂t
+ Πi

(
∇h · F

(
Qh

j

))
+ δi,j = 0, (11)

δi,j =
1

|Tj |
∑

f=ejk∈Tj

∑
l

αl,f,j [F]l,f · n|ejk|, (12)

where
[F]l,f = H

(
Qh

l,jk,Q
h
l,kj

)
− F(Qh

l,jk). (13)

Here, Qh
l,jk is the approximated value at the l -th solution point on the face ejk. The details of CPR, such

as solution points and αl,f,j , can be found in Ref. (7).
To handle the second term in Eq. (11) for non-linear flux, there are two approaches; Lagrange polynomial

(LP) and Chain Rule (CR). Both become problematic in solving non-linear equations, such as aliasing error
for LP and conservation error for CR. Recently, an efficient cure for the conservation issue was devised31

and the present development is based on the conservative CPR method.
The viscous stress and heat flux are treated with an auxiliary variable vector,

Θ−∇Q = 0. (14)

It is also discretized in CPR method.

Θi,j =
(
∇Qh

i,j

)
+

1

|Tj |
∑

f=ejk∈Tj

∑
l

αl,f,j [(Q
com
l,jk −Qh

l,jk]l,fn|ejk|. (15)

Some viscous flux schemes for DG method can be applied to CPR as well,32 and the BR2 scheme29 is
used in this work.

Qcom
l,jk =

1

2
(Qh

l,jk + Qh
l,kj , ) (16)

∇Qcom
l,jk =

1

2
(∇Qh

l,jk + rl,jk +∇Qh
l,kj + rl,kj). (17)

Here, rl,jk reflects the jump of the conservative variable at the face ejk.

rl,jk =
∑
l

αl,f,j [(Q
com
l,jk −Qh

l,jk]l,fn|ejk|. (18)

C. Unsteady Computation

For time integration, nonlinear stable methods are applied, such as the third-order accurate TVD Runge-
Kutta method or the five-stage fourth-order accurate strong stability preserving Runge-Kutta method
(SSPRK(5,4)).33 The following definition of time step is used.

∆t =
CFL

2n+ 1

h

|λmax
c |+ d|λmax

v | 2n+1
h

, (19)

where h is the radius of the inscribed circle for triangular element. λmax
c and λmax

v are the maximum wave
speed of inviscid and viscous flux, respectively. CFL number has been set to 0.9 for DG/CPR-P2 with
third-order TVD Runge-Kutta method, and 1.4 for DG/CPR-P3 with SSPRK(5,4).
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III. Higher-order Multi-dimensional Limiting Strategy

As well as stable time integration methods, an oscillation-control mechanism is essential to resolve com-
pressible flows, especially the flows involved with shock waves. Limiting should be activated only on the
troubled-cells to maintain higher-order accuracy across smooth extrema. An accurate troubled-cell marker,
followed by a sophisticated limiting, is thus crucial to obtain an accurate monotone profile in the higher-
order approximation. Some troubled-cell markers, such as the TVB marker12 or KXRCF marker,34 have
been developed and combined with slope limiters or WENO-type limiters, but the accurate detection of the
troubled-cells is not an easy task. Keeping this in mind, we establish the hierarchical MLP limiting strategy
for the higher-order CFD methods to detect the troubled-cells. At first, we briefly summarize the MLP-u
slope limiters and propose two troubled-cell detecting conditions: the augmented MLP condition and the
newly developed P1-projected MLP condition. By combining one of the two conditions with the MLP-based
smooth extrema detector, we describes the implementation of the hierarchical MLP limiting algorithm.

A. MLP-u Slope Limiter

In order to enforce the multi-dimensional monotonicity, the MLP condition has been proposed in the finite
volume framework. This condition is simply an extension of the one-dimensional monotonicity condition by
considering the case where the direction of local flow gradient is not aligned to the local grid line. The starting
point of the MLP condition is that local extrema always occur at vertex point when sub-cell distribution
is linear. This observation manifests that, i) treatment of vertex point is essential in limiting stage, ii) all
information around vertex point should be incorporated to avoid multi-dimensional oscillations. As a result,
we have the following MLP condition.

q̄min
vi ≤ q(xvi) ≤ q̄max

vi , (20)

with
q̄min
vi = min

Tk∈Svi

(q̄k), q̄max
vi = max

Tk∈Svi

(q̄k). (21)

Here, q̄k is the cell-averaged value on Tk and xvi is the position vector at the vertex vi. Two stencils Svi

and STj
are defined by

Svi = {Tk|vi ∈ Tk for some vi ∈ Tj}, STj = {Tk|vi ∈ Tk, for all vi ∈ Tj}. (22)

In other words, Svi is the union of computational cells sharing the vertex vi and STj is the union of
computational cells sharing any vertex of the cell Tj . STj is called the MLP stencil.24,25 It is noted that the
MLP condition can be applied to any type of mesh since it does not assume particular mesh connectivity. At
the same time, it is also observed that well-controlled vertex value at interpolation/limiting stage makes it
possible to produce a monotonic distribution of cell-averaged values. Extensive numerical experiments22–25

strongly support that the full realization of Eq. (20) is quite effective to preserve accurate monotone profiles.
This philosophy can be readily extended on unstructured grids with second-order accurate reconstruction.

Sub-cell interpolation may start from the unstructured version of the MUSCL-type linear reconstruction as
follows.

qj(x) = q̄j + φj∇q̄j · (x− x̄j), (23)

where q is the the state variable, ∇q̄j is the gradient within the cell Tj . x is the position vector and x̄j is
the the centroid of the cell Tj . After applying the MLP condition to vertex point, the MLP slope limiter is
introduced to ensure multi-dimensional monotonicity by considering all the distributions around the common
vertex vi. The range of the MLP slope limiting is then obtained as follows.

0 ≤ φj ≤ max

(
q̄min
vi − q̄j

∇q̄ · (xvi − x̄j)
,

q̄max
vi − q̄j

∇q̄ · (xvi − x̄j)

)
. (24)

From Eq. (24), the MLP-u slope limiters can be obtained as follows.

φMLP = min
∀vi∈Tj

Φ(rvi,j) if ∇q̄j · rvi,j 6= 0

1 otherwise
, (25)
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where

rvi,j = max

(
q̄min
vi − q̄j

∇q̄j · (xvi − x̄j)
,

q̄max
vi
− q̄j

∇q̄j · (xvi − x̄j)

)
. (26)

By determining Φ(r) to satisfy the maximum principle, we have the MLP-u1 and MLP-u2 limiters. Detailed
implementation in unsteady and steady flows can be found in Refs. (24,25).

The stability characteristics of the MLP limiting is supported by the maximum principle. For multi-
dimensional scalar conservation law, the MLP limiting under linear reconstruction guarantees the following
local maximum principle under a suitable CFL condition.24,25

If min
Tk∈STj

(q̄nk ) ≤ q̄nj ≤ max
Tk∈STj

(q̄nk ), then min
Tk∈STj

(q̄nk ) ≤ q̄n+1
j ≤ max

Tk∈STj

(q̄nk ). (27)

In conjunction with the MLP condition (Eq. (20)), Eq. (27) simply states that the MLP limiting satisfies
the MLP condition in the cell-average sense at every time step.

The MLP condition on the MLP stencil makes it realizable to capture multi-dimensional flow physics
accurately while maintaining the second-order accuracy in smooth reagion. From Eqs. (20) and (27), the
updated solution by the MLP limiting satisfies the maximum principle both on cell-averaged and cell-vertex
values, though the stencil involved is a bit different. Thus, the MLP limiting satisfies the LED condition in
a truly multi-dimensional way.25

B. Augmented MLP Condition

The MLP condition was used to identify and control the maximum-principle-violating cells in second-order fi-
nite volume methods.24,25 For higher-order approximation greater than P1 polynomial, additional condition
is essential because local extrema no longer appear at vertex point.

If we assume a discontinuity near the vertex point vi, as shown in Fig. 1, higher-order Pn approximation
would trigger unwanted oscillations in the blue-shaded region. For P1 approximation, sub-cell value at any
quadrature point in Tj can be readily controlled by limiting the vertex value at which local extrema always
appear. For greater than P1 approximation, we may have a quadrature point at which sub-cell value does
lie outside the range imposed by the MLP condition (Eq. (20)), and thus the maximum principle (Eq.
(27)) can be violated. This may occur even if the vertex value does satisfy the MLP condition. Therefore,
the MLP condition imposed on a single cell Tj is not complete enough to handle higher-order distribution,
and it may allow spurious oscillations for the situation depicted in Fig. 1. As a remedy, we require all the
approximated vertex values of Svi to satisfy the MLP condition since all Tk ∈ Svi wll be eventually influenced
by the presence of the the discontinuity through the dynamic exchange of the cell-interface flexes. In other
words, when we check whether Tj is a troubled cell or not, we impose the MLP condition on Svi not just on
Tj . From this perspective, we impose a stricter constraint than the MLP condition. The augmented MLP
condition is then used as the MLP-based troubled-cell marker for higher-order approximation.

Quadrature Point

Vertex Point

jT

kT
iv

Figure 1: Discontinuity on the MLP stencil. (Dash-dot line is a discontinuity and spurious oscillations may
occur in the blue-shaded region.)
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q̄min
vi ≤ min

Tk∈Svi

(
qhk (xvi)

)
, max
Tk∈Svi

(
qhk (xvi)

)
≤ q̄max

vi . (28)

Here, qhk (xvi) indicates the approximated value at the vertex vi for Tk ∈ Svi . If any qhk (xvi) violates
Eq.(28), Tj is tagged as a troubled cell. Numerical experiments strongly support that the MLP slope limiter
with the A-MLP condition is quite successful in handling multi-dimensional oscillations.26

C. P1 -projected MLP Condition

While the augmented MLP condition is successful in detecting multi-dimensional discontinuous profile for
higher-order methods, its performance to distinguish normal cells can be further improved. A MLP-based
troubled-cell marker is newly proposed by examining the sub-cell distribution of the numerical Gibbs phe-
nomenon. For the purpose of convenience, the analysis is performed using the modal DG method, but its
consequence is equally valid to the CPR method.

In order to analyze the numerical behavior across discontinuous profiles, we consider the one-dimensional
scalar conservation law with a simple discontinuous initial data as follows.

qt + qx = 0, q0(x) =

1 0.25 < x < 0.75

0 else
. (29)

Computational domain consists of 80 cells on [0, 1]. Figure 2 shows the sub-cell distribution after a
few iterations with DG-P2 and DG-P5 approximation. The black line with the circled ends indicates the
Pn approximation (qh,Pn

j (x)), and the red line denotes cell-averaged value (q̄j) at each element. The blue
line represents the projection of the Pn approximation to the linear function space, called the P1-projected
approximation (Π1qh,Pn

j (x)). From the sub-cell distribution, it is readily noted that oscillations have already
developed in the higher-order modes and they are propagating into the cell-averaged values, though the cell-
averaged values still maintain a monotonic profile. When oscillations in the higher-order modes are triggered,
the P1-projected approximation acts as a precursor to warn non-monotone distributions by developing a steep
gradient. Figure 3 shows the sub-cell distribution of the Burgers’ equation at t = 0.3. The computational
domain is the same and the initial condition is a sine wave as follows.

q0(x) = sin(2πx). (30)

Lines and symbol are the same as in Fig. 2. As shock discontinuity is developed, oscillations start in the
higher-order modes and, as a result, steep gradients of the projected-P1 approximations are observed again.

From this observation, it is obtained that, i) oscillations are hierarchically propagating from the higher-
order modes into the cell-averaged value, ii) oscillations strongly affect the P1-projected term to produce a
monotonicity-violating steep gradient. This indicates that examining the monotonicity of the P1-projected
term is enough to detect oscillations in the higher-order modes. Thus, we newly propose a simple and efficient
limiting condition for higher-order approximations as follows.

min(q̄i, q̄i+1) ≤ Π1qh,Pn
j (xi+1/2) ≤ max(q̄i, q̄i+1). (31)

It is noted that this condition limits the linear term, and thus it can be readily extended into multiple
dimensions by embracing the MLP philosophy on vetrtex point, leading to the following P1-projected MLP
condition.

q̄min
vi ≤ Π1qh,Pn

j (xvi) ≤ q̄max
vi . (32)

Figures 4 and 5 show the computed results of the same one-dimensional linear wave equation and Burgers’
equation by applying the P1-projected MLP condition at t = 1.0 and t = 0.3, respectively. It is noted that
the P1-projected MLP condition successfully distinguishes the discontinuous profiles, spurious oscillations
are effectively suppressed, and thus the monotonicity of the cell-averaged values are well maintained. Slight
non-monotonicity in the higher-order sub-cell distribution may be observed at the head and tail of the
discontinuity, but their magnitude is well controlled by the neighboring cell-averaged values. Thus, sub-cell
oscillations do not affect the monotonicity of the cell-averaged values. Results on multi-dimensional extension
is examined in the next section.
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(a) DG-P2 (b) DG-P2, closeup

(c) DG-P5 (d) DG-P5, closeup

Figure 2: Sub-cell distribution of square wave after a few iterations
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(a) DG-P3 (b) DG-P3, closeup

(c) DG-P4 (d) DG-P4, closeup

Figure 3: Sub-cell distribution of Burgers’ equation at t = 0.3.
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(a) DG-P2 (b) DG-P5

Figure 4: Sub-cell distribution of square wave at t = 1.0 with P1-projected MLP.

(a) DG-P3 (b) DG-P4

Figure 5: Sub-cell distribution of Burgers’ equation at t = 0.3 with P1-projected MLP.

D. Hierarchical MLP Limiting Algorithm

The augmented MLP and P1-projected MLP conditions in themselves do not provide any mechanism to
distinguish local smooth extrema. In order to preserve the accuracy across smooth extrema, we introduce a
MLP extrema detector by examining the behavior of local extrema around the vertex vi of the cell Tj .

First, we decompose the Pn approximation into the cell-average part, the linear part (Pn-projected slope)
and the higher-order part (P1 -filtered Pn) as follows:

qh,Pn
j (xvi) = q̄j + (Υ(xvi)− q̄j)︸ ︷︷ ︸

Pn-projected slope

+
(
qh,Pn
j (xvi)−Υ(xvi)

)
︸ ︷︷ ︸

P1 -filtered Pn

, (33)

where
Υ(xvi) = Π1qh,Pn

j (xvi). (34)

The starting point is that the Pn-projected slope can be interpreted as the average slope of the Pn
approximation. Then, from the mean value theorem, if local extrema appear in a small neighborhood of the
vertex vi, the gradient direction of qh,Pn

j (xvi) could be quite different from the direction of the Pn-projected
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slope. If one goes up, the other would go down. Even if they show the same trend, the magnitude of the
gradient of qh,Pn

j (xvi) would be smaller than that of the Pn-projected slope. From this observation, we can
readily deduce the following condition to detect smooth extrema near the vertex vi.

• C1. If there is a local maximum near the vertex vi,

Pn-projected slope > 0, P1 -filtered Pn < 0, and qh,Pn
j (xvi) > q̄min

vi .

• C2. If there is a local minimum near the vertex vi,

Pn-projected slope < 0, P1 -filtered Pn > 0, and qh,Pn
j (xvi) < q̄max

vi . (35)

The last inequalities (qh,Pn
j (xvi) > q̄min

vi , qh,Pn
j (xvi) < q̄max

vi ) are necessary to treat a stiff gradient which
may include physical discontinuities. Finally, in order to deal with a nearly constant region particularly
when local grids become very coarse, we add the following deactivation threshold.∣∣∣qh,Pn

j (xvi)− q̄j
∣∣∣ ≤ max(ε× |q̄j |, |Tj |), (36)

where ε is a small number to distinguish a constant region with machine error, 1 × 10−3 is a reasonable
choice. |Tj | is the area/volume of the cell Tj . Most of the extrema are well recognized by the condition C1
and C2, and only a very few cells are detected by Eq. (36).

By combining the A-MLP or P1-projected MLP condition (Eq. (28) or Eq. (32)) and the extrema
detector (Eq. (35) with Eq. (36)), we formulate the hierarchical MLP limiting strategy for arbitrary Pn
approximation. The limiting procedure higher than P2 approximation can be written as follows.

qh,p2
j (x) = q̄j + φMLP (P1j(x)) + ϕP2

j (P2j(x)) ,

qh,P3
j (x) = q̄j + φMLP (P1j(x)) + ϕP2

j

(
P2j(x) + ϕP3

j (P3j(x))
)
,

...

qh,Pn
j (x) = q̄j + φMLP (P1j(x))

+ ϕP2
j

(
P2j(x) + ϕP3

j (P3j(x) + ϕP4
j (...+ ϕPn

j Pnj(x)))
)
. (37)

Here,
Pmj(x) = Πmqh,Pn

j (x)−Πm−1qh,Pn
j (x). (38)

Πm indicates a projection operator to Pm space. ϕPn
j is the hierarchical MLP troubled-cell marker applied

to the Pmj mode of the cell Tj as follows.

ϕPn
j = min

∀vi∈Tj

(ψPn
vi,j). (39)

Depending on the choice of ϕPn
j , we can propose two versions of the hierarchical MLP limiting.

• Hierarchical MLP limiting with the augmented MLP condition:

ψPn
vi,j =

1 if Eq. (28) or Eq. (35) with Eq. (36) is satisfied,

0 else.
(40)

• Hierarchical MLP limiting with the P1-projected MLP condition:

ψPn
vi,j =

1 if Eq. (32) or Eq. (35) with Eq. (36) is satisfied,

0 else.
(41)

The MLP limiting procedure of Eq. (37) is applied in a hierarchical manner from a higher-order Pnj
mode to the lowest P2j mode. The implementation procedure can be summarized as follows:

1. Apply the augmented MLP or P1-projected MLP condition (Eq. (28) or Eq. (32)) to the Pn approx-
imated solution at every vertex vi of the cell Tj .
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2. Compute the hierarchical troubled-cell marker ϕPn
j (Eq. (39)).

3. If the cell Tj is tagged as a normal cell (or ϕPn
j = 1), the highest order term is kept unlimited and the

limiting procedure is completed. Otherwise (ϕPn
j = 0),

(a) if n > 2, project the entire polynomial approximation onto V n−1 space and obtain P (n− 1)j(x).
And, repeat Step 2 for P (n− 1) approximation.

(b) if n = 2, project the entire polynomial approximation onto V 1 space. P1j(x) is limited by the
MLP-u slope limiters (Eq. (25)).

In modal DG with orthogonal basis functions, the projection procedure is realized by simply truncating
the higher-order Pnj mode. In case of nodal formulation, such as CPR, the projection procedure is carried

out by obtaining qh,Pm
j (x) =

∑
l q̃

h,Pm
l,j LPm

l,j (x) (m < n) from the Pn approximation as follows.

∑
l

(∫
Tj

LPm
l,j (x)LPm

k,j (x)dV

)
q̃h,Pm
l,j =

∫
Tj

qh,Pn
j (x)LPm

k,j (x)dV. (42)

Here, LPn
i,j (x) are the n-th order Lagrange polynomial for the solution point xi on the cell Tj for Pn approx-

imation. Using this L2 projection procedure, q̃h,Pm
i,j is obtained and the hierarchical MLP is implemented

as follows. After checking the MLP troubled-cell marker for Pn approximation, the projection operator to
Pm space is defined as follows.

Πmqh,Pn
j (x) =

∑
l

q̃h,Pm
l,j LPm

l,j (x). (43)

This procedure is performed in a hierarchical manner, and the MLP-u slope limiter is finally applied to the
P2j mode. Figure 6 shows the schematic summary of the hierarchical MLP limiting procedure for the DG
and CPR methods.

MLP-based Troubled-Cell Marker for Pn (n ≥ 2) 

Projection to 
space

If n = 2 ?

MLP-u slope limiter

1=Pnϕ 1≠Pnϕ

1−← nn

1−nV

Preserving DOF     h
jiq ,

Re-compute h
jiq ,

Re-compute h
jiq ,

Figure 6: Flowchart of the MLP limiting procedure.

E. Extension to Flow System

The troubled-cell markers and slope limiters for system of equations should reflect the flow physics. Density
or entropy variable is used for the MLP troubled-cell marker to identify physical discontinuities. The marker
by entropy variable is slightly more robust, especially resolving very strong shock or nearly vacuum state.
In this study, however, all computations are carried out with the MLP troubled-cell marker by density
variation. As in the case of FVM, the MLP limiting is applied to conservative variables since characteristic
decomposition is not essential. Negative pressure and/or density at solution points, if any, is treated by
employing a simple scaling technique.17 For efficient computation, grid partitioning by the METIS library35

and parallelization with the MPI standard are implemented.
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IV. Numerical Results

Extensive numerical experiments are carried out to assess the performance of the hierarchical MLP for
the DG and CPR methods. Some well-known test problems on 2-D triangular and 3-D tetrahedral grids
are examined up to the P3 accuracy. As a numerical flux, RoeM36 scheme and AUSMPW+37 scheme are
adopted.

A. Convergence Study

Numerical accuracy in multi-dimensional inviscid compressible flows without shock wave is examined. The
initial condition is set to be (ρ0, u0, v0, w0, p0) = (1 + 0.2 sin(π(x + y + z)), 0.5, 0.3, 0.2, 1), and the exact
solution of density is 1 + 0.2 sin(π(x+ y + z − t)). The computational domain is [0, 2]× [0, 2]× [0, 2], and a
periodic boundary condition is applied. Tetrahedral meshes are generated by Gmesh software.38 The error
between a numerical solution and the exact solution is measured by Lp error with p =∞, 1 and 2 norm. For
p ≥ 1,

Lp error =
1∑
j |Tj |

∑
j

|Tj |
ndof∑

i

|qhj (xi)− qexact(xi)|p
1/p

, (44)

where |Tj | is the area of cell Tj . L
∞ error is computed using the maximum difference among the solution

points. Table 1 shows the result of grid refinement test on tetrahedral grids. While the error of DG is smaller
than that of CPR, both methods with MLP maintains the formal order-of-accuracy in smooth region.

Table 1: Grid refinement test for Euler equations on irregular grids at t = 0.25.

DOF L2 Order CPU Time

DG-P2 10368x10 3.1261E-04 - 11.908369

24576x10 1.2678E-04 3.14 35.902534

48000x10 6.5227E-05 2.98 88.090376

82944x10 3.7780E-05 3.01 183.584061

196608x10 1.5875E-05 3.00 569.611446

DG-P3 10368x20 2.3075E-05 - 52.193214

24576x20 7.1225E-06 4.09 161.625897

48000x20 2.9425E-06 3.96 403.676706

82944x20 1.4046E-06 4.06 846.423544

196608x20 4.4356E-07 4.01 2627.760445

CPR-P2 10368x10 1.5848E-03 - 8.663248

24576x10 6.1598E-04 3.28 27.033716

48000x10 3.1822E-04 2.96 63.020937

82944x10 1.9257E-04 2.75 129.660023

196608x10 7.9686E-05 3.07 392.252533

CPR-P3 10368x20 1.2068E-04 - 29.494923

24576x20 3.5364E-05 4.27 91.234174

48000x20 1.5969E-05 3.56 226.003312

82944x20 7.1925E-06 4.37 474.947794

196608x20 2.2515E-06 4.04 1426.850471

B. Shock Tube Problems

Some well-known one-dimensional shock tube problems are computed in a three-dimensional manner to
examine the capability of resolving various linear and non-linear waves on unstructured grids.
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1. Sod and Harten-Lax Problems

This test is to examine the capability to resolve various linear and non-linear waves on unstructured grids.
The computational domain is [0, 1] × [0, 0.01] × [0, 0.01] with a tetrahedralization of 101 vertices in the
x-direction and 11 vertices in the y, z-direction. Two Riemann-type initial conditions are considered.

Sod problem:

(ρL, uL, vL, wL, pL) = (1, 0, 0, 0, 1),

(ρR, uR, vR, wR, pR) = (0.125, 0, 0, 0, 0.1). (45)

Harten-Lax problem:

(ρL, uL, vL, wL, pL) = (0.445, 0.698, 0, 0, 3.528),

(ρR, uR, vR, wR, pR) = (0.5, 0, 0, 0, 0.571). (46)

The interface is initially located at x = 0.5 and the RoeM scheme is applied.
Figures 7 show the density distributions along the x-axis at t = 0.2 (the Sod problem) and t = 0.13

(the Harten-Lax problem), respectively. Discontinuous profiles are successfully captured without spurious
oscillations. Compared to the FVM with MLP solutions, the results with the DG-MLP and CPR-MLP
methods exhibit a clear advantage in capturing contact discontinuites and expansion corners.

2. Shock-entropy Wave Interaction (Shu-Osher Problem)

As another standard benchmark test for high-resolution schemes, the interaction between a shock and an
entropy wave39 is considered. Similar to the previous cases, the one-dimensional setting is extended into
three-dimensional tetrahedral grids. The computational domain is [−5, 5] × [−0.1, 0.1] × [−0.1, 0.1] with a
tetrahedralization of 301 vertices in the x-direction and 7 vertices in the y, z-direction. The initial profile
consists of a shock and an entropy wave as follows:

(ρL, uL, vL, pL) = (3.857143, 2.629369, 0, 10.333333) if x < −4,

(ρR, uR, vR, pR) = (1 + 0.2 sin(5x), 0, 0, 1.0) else. (47)

Figure 8 compares the density distributions along the center line by DG and CPR with MLP limiting
at t = 1.8. The reference solution is the one obtained by computing the equivalent one-dimensional Euler
equations on 8,000 grid points using the TVD-MUSCL scheme. It is noted again that the MLP limiting,
successfully combined with the DG and CPR methods, accurately suppresses unwanted oscillations.

C. Double Mach Reflection

This is one of the most well-known test cases for high-resolution schemes.40 With the computational domain
of a tube with a 30 degree ramp, a strong moving shock with Ms = 10 impinges on the ramp. The RoeM
scheme is used as the numerical flux, and computation is carried out until t = 0.2.

Figure 9 shows the density contours of the DG and CPR methods on triangular grids (h = 1/100). The
proposed limiting methods successfully provide monotonic solutions. The higher-order DG and CPR with
MLP methods can significantly improve the resolution of the sheer layer and the vortex which is developed
from the shock triple point and the Mach stem. It is also noted that the P1 -projected MLP condition turns
out to be more accurate in captureing detail flow structure.

D. Interaction of Shock Wave with 2-D Wedge

This test case is known as the Scharldin’s problem.41 As a moving shock strikes a two-dimensional wedge,
reflected shock waves and a complex vortex pattern are generated after the wedge end. A regular triangle
with the unit length is contained in the [−2.5, 4.6]× [−2.5, 2.5] computational domain, and the wedge tip is
positioned at the origin. As the initial condition, a moving shock with Ms = 1.34 is located at x = 0. The
downstream state is (ρ0, u0, v0, p0) = (1.4, 0, 0, 1.0). The RoeM flux scheme is applied.

Figures 10 compares the numerical Schlieren images produced by the FVM, DG and CPR with MLP at
t = 3.25. The computed results confirm again that the higher-order DG and CPR with the MLP provides a
resolution sufficient to capture the detailed shock pattern and flow structures. Compared with experimental
visualization,42 the small vortices produced by the first shock-vortex interaction at the wedge corner are
particularly well captured by the hierarchical limiting with the P1-projected MLP condition.
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(a) Sod problem (b) Harten-Lax problem

Figure 7: Density distributions along center line (Shock tube problem).

(a) DG-MLP (b) CPR-MLP

Figure 8: Density distributions along center line (Shock-entropy wave Interaction).
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Figure 9: Comparison of density contours around the double Mach stem

E. Interaction of Shock Wave With Density Bubble

The unsteady flow physics of shock-bubble interactions has been extensively studied because it can provide
a numerical testbed for the generation of vorticity and turbulence in compressible flows.43 The bubble
dynamics, belonging to a two-phase flow field, is simplified with a single-phase gas model by assuming a
density difference across the bubble interface. As a moving shock impinges on density bubble, the Kelvin-
Helmholtz instability from the tail of the counterclockwise primary vortex is developed along the bubble
interface resulting in complex vortical structure.

Exploiting the flow symmetry, computational domain is a quadrant of shock tube with the interval of
[0, 3L] in the x-direction and [0, L]× [0, L] in the y-z plane with L = 4.45. Initially, the quarter of spherical
bubble with r = 2.5 is placed at x = 3.5, and the moving shock with Ms = 3.0 is located at x = 0.5. Grid
system consists of 8.90 million tetrahedral elements. With Tachyon 2 supercomputer at KISTI, MPI parallel
computation was performed with 1024 CPUs to reach at t = 3.5.

Figures 11 and 12 shows the three-dimensional density contours by CPR-P3 with the hierarchical MLP
limiting with P1-projected MLP condition. The primary and secondary vortex structure caused by the baro-
clinic torque, the tail vortical structure after the primary vortex, and the 3-D monotonic shock are well cap-
tured. Figure 13 compares the density contours on the x-y plane. Higher-order approximation/reconstruction
with MLP captures distortion of the primary vortex and the instability around the tail.

F. Oblique Shock Mixing Layer Interaction

This test is carried out to examine the resolution of small scale vortical structures interacting with a shock
discontinuity.44 A spatially developing compressible mixing layer produces a series of vortices, and the
oblique shock originating from the upper-left corner impinges on the mixing layer. The oblique shock is
deflected by the shear layer and then reflects again from the bottom slip wall, leading to the interaction
between downstream vortices and the reflected shock.
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(a) FVM (b) DG-P1

(c) DG-P2, P1 -projected MLP (d) DG-P3, P1 -projected MLP

(e) CPR-P2, P1 -projected MLP (f) CPR-P3, P1 -projected MLP

Figure 10: Comparison of numerical Schlieren images of interaction of shock wave with 2-D wedge at t = 3.25.
(Bottom left corner: Close-up view around the primary vortex)
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Figure 11: Density contours of interaction of 3-D density bubble with shock wave at t = 3.5.

Figure 12: Close-up view around vortex torus at t = 3.5.
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(a) DG-P2 (b) CPR-P2

(c) DG-P3 (d) CPR-P3

Figure 13: Density contours on x-y surface (Shock-entropy wave interaction).

As the initial condition, a hyperbolic tangent velocity profile and a convective Mach number are imposed.

u = 2.5 + 0.5 tanh(2y), (48)

Mc =
u1 − u2

c1 − c2
= 0.6. (49)

An oblique shock with a shock-angle of β = 12◦ is imposed on the upper boundary, and a slip wall condi-
tion is applied to the lower boundary. Periodic boundary condition is applied for both ends of z-surfaces.
Fluctuation adding to the mean in-flow is given by

v′ =

2∑
k=1

ak cos(2πkt/T + z/Lz + φk) exp(−y2/b), (50)

with a period T = λ/uc, a wavelength λ = 30 and a convective velocity uc = 2.68. The other parameters
are as follows: a1 = a2 = 0.05, φ1 = 0, φ = π/2 and b = 10. Lz, the extrusion length, is 40. The
Reynolds number and the Prandtl number are 500 and 0.72, respectively. The computational domain is
[0, 200] × [−20, 20] × [−20, 20]. Grid system consists of 3.5 million tetrahedral elements. With Tachyon 2
supercomputer at KISTI, MPI parallel computation was performed with 512 CPUs to reach at t = 120.
For a better resolution, many filter methods have computed this problem on meshes clustered along the
y-direction, but the present computation employs uniformly distributed triangular grids of h = 0.75.

Figure 14 shows the density contour and iso-surfaces at t = 120. Due to the three-dimensional per-
turbation (Eq. (50)), phase difference is induced along the z-direction. Before the oblique shock strikes
the mixing layer, spanwise vortical structure is regularly developed along the z-direction, and after the first
oblique shock-mixing layer interaction, spanwise vortical structure is noticeably deformed. After the reflected
shock hits the mixing layer again, spanwise shock-vortex interaction is further developed. Figure 15 shows
the density contours at z = 20 plane. Higher-order approximation/reconstruction with MLP maintains the
vortical structure along the downstream field.
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Figure 14: Density contours of three dimensional oblique shock-mixing layer interaction at t = 120.

(a) DG-P2 (b) CPR-P2

(c) DG-P3 (d) CPR-P3

Figure 15: Comparison of streamwise density distributions at z = 20.
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V. Issues for Further Improvements

Extensive numerical experiments validate the robustness and accuracy of the hierarchical MLP with
higher-order methods in compressible inviscid and viscous flow simulations. At the same time, there are fur-
ther rooms to improve and extend this limiting philosophy to deal with high-Reynolds number compressible
flows around realistic configurations. Several issues are selected for discussion as follows:

A. Sub-cell Resolution across Shock Waves

As other limiter-based approaches, MLP enforces the monotonicity of cell-averaged values only. Thus, it
may not completely control the sub-cell resolution around a shock wave. As observed in Figs. 4 and 5,
current hierarchical MLP yields slight overshoots in the sub-cell distribution of a numerical shock. This
may grow as a potential source of numerical instability if the order-of-accuracy is further increased, because
the MLP condition is only imposed on the averaged value of the cell in which there are many degrees of
freedom. Recently, there are some studies combining hp-refinement and limiters.45 This approach requires
both higher-order DG/CPR and FVM solvers, and computational overheads may become serious while
switching between these solvers. Unlike limiters, artificial viscosity-based approaches does not seem to suffer
from this issue. Instead, there are tuning parameters to determine the diffusion, which usually relies on the
flow structure, grid system and the desired order-of-accuracy.11 Despite some progresses to determine such
tuning parameters, it appears that artificial viscosity is not robust enough yet to resolve very strong shock
and expansion waves.46,47 In the context of MLP concept, more reserach efforts needs to be directed to this
issue by controlling the limited approximation or reconstruction.

B. Convergence for Steady Flow Problems

Up to now, the hierarchical MLP has been developed mainly for unsteady flow problems. While its perfor-
mances are validated, convergence issue for steady-state problems still remains. It is well-known that slope
limiters whose operations are non-differentiable, may fail to reach a convergent solution even in finite vol-
ume methods. Such non-differentiable operators are sensitive to the numerical fluctuations near shock wave
and they may become stalled. While we proposed the MLP-u2 slope limiters to overcome this issue,24,25

the troubled-cell detecting mechanism and projection operator for the DG and CPR methods are still non-
differentiable. In addition, higher-order CFD methods have a reduced damping mechanism for transient
error, thus this situation may become more problematic. Implicit time integrations are preferred to compute
steady flow problems, but it is quite untractable to construct an implicit operator for non-differentiable hier-
archical MLP. It appears that additional smooth transition mechanism between troubled-cell and normal-cell
is necessary.

C. Interaction of Turbulent Vortices with Shock Waves

One of the promising areas for higher-order methods is turbulent flows. Especially, researchers expect higher-
order schemes to accurately resolve interactions between shock and turbulent vortices around high-speed
vehicles. Recent researches attempt to calculate turbulence by Reynolds-averaged Navier-Stokes (RANS)
equations with Spalart-Allmaras model48 and k − ω model,29 and by DNS/LES approaches.49 Numerical
experiments reveal that current higher-order CFD methods are not robust as finite volume RANS solvers,
primarily due to the nonsmoothness introduced in turbulence models.49 Recently, there are some progresses
to improve the accuracy of turbulence models by modifying closure models,48,50 by developing hybrid RANS-
LES models,51,52 or by introducing transition models.53 The enhanced resolution of higher-order methods
makes it possible to accurately simulate highly unsteady turbulent flow and/or laminar-turbulent transitions
with improved turbulence and/or transition models. However, there are few studies to simulate turbulent
flows with shock waves with higher-order methods. Since excessive numerical viscosity of shock-capturing
schemes may easily dissipate small scale vorticial structure, accurate shock-capturing schemes are indeed
essential. From successful numerical experiments, we are expecting that the hierarchical MLP limiting may
provide a proper dissipation-controll mechanism to capture detailed turbulent flows as well as shock waves.

21 of 24

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

E
O

U
L

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
A

pr
il 

27
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

5-
31

99
 



VI. Conclusions

Guided by the MLP condition and the maximum principle, the hierarchical MLP limiting is successfully
extended into the higher-order CFD methods such as the DG and CPR methods. The extended forms of the
MLP condition, i.e., the augmented MLP condition and the P1-projected MLP condition, are proposed to
treat the solution points near discontinuities without compromising the higher-order nature in smooth region.
The uncertainty of determining a parameter for slope limiting is then eliminated by examining the behavior
of local extrema near vertex point. Finally, the hierarchical MLP limiting is formulated by combining one
of the extended MLP conditions with the MLP extrema detector.

Extensive computations, ranging from scalar conservation laws to multi-dimensional flow systems, are
carried out up to P3 approximation to examine the capability of the hierarchical MLP methods in captur-
ing multi-dimensional flow physics. Numerous comparisons and grid refinement tests on unstructured grids
demonstrate the proposed limiting provides detailed multi-dimensional flow structures without numerical
oscillations in discontinuous region, while maintaining the required accuracy in smooth region. The hierar-
chical MLP limiting is robust and efficient in the sense that it does not require any tuning parameter and
it is applied to conservative variables without characteristic decomposition. At the same time, more efforts
need to be exerted in the areas of sub-cell resolution, steady-state convergence and turbulence/transition
models in order to extend the current approcch to the simulations of high-Reynolds number compressible
flows around realistic configurations.
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