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ABSTRACT

    A ruthenium-catalyzed reconstitutive cycloisomerization 

reaction has been developed using N-sulfonyl-N-hydroxyamino

-alkynes as substrates. In contrast to the gold catalysis that 

forms 3-pyrrolidinones from the N-sulfonyl-N-hydroxyamino

-alkynes, the ruthenium catalysis gives lactams as the product. 

The scope and limitations as well as the mechanism of this 

catalytic 1,1-gem-difunctionalization are detailed in this 

dissertation.

Keywords: Ruthenium catalysis, metal vinylidene, reconstitutive 

cycloisomerization, lactam, terminal alkyne
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INTRODUCTION

    Atom-transfer reactions have received intense attention due 

to their aspect of increasing the molecular complexity of simple 

organic molecule atom- and redox-economically.  Weak N-O 

bonds are used to produce various atom- and redox-economical 

transformation through oxygen atom transfer to π bonds.   

Recently, many transition metal-catalyzed oxygen transfer redox 

reactions have been published, and nitrones  , amine-N-oxides

 , oximes , hydroxamates  , and hydroxylamine derivatives  

are used as a oxygen source. Scheme 1 shows some examples 

of gold-catalyzed oxygen transfer redox reactions.  

Scheme 1. Au-catalyzed oxygen-transfer redox reactions

      In previous studies carried out in the Lee laboratory, a 

transition metal-catalyzed 1,1-addition reaction through metal 
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vinylidene intermediates was developed using rhodium catalyst, 

pyridine-N-oxides, and terminal alkynes (Scheme 2). 

Scheme 2. Rh-catalyzed oxygenative addition reactions

    With this  background, we planned to develop the transition 

metal-catalyzed reconstitutive cycloisomerization reaction using 

N-sulfonyl-N-hydroxyaminoalkynes through metal vinylidene 

intermediates (Scheme 3). This unexplored reaction could offer  

a highly atom- and redox-econimic transformation that forms 

two carbon-heteroatom bonds in a single step. As a result of 

the reaction, highly useful lactam products  can be prepared by 

a new way. 

Scheme 3. Proposed reactions
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RESULT AND DISCUSSION

1. Reaction Discovery and Optimization

1.1 Preparation of substrates

    In order to prepare the suitable model system having an 

internal oxidant, substrate 3a with nucleophile and terminal 

alkyne groups within the same molecule, was synthesized 

following the report of Shin (Scheme 4).  

Scheme 4. Synthesis of N-sulfonyl-N-hydroxyaminoalkyne

    Firstly, hydroxylamine hydrochloride was protected with 

tert-butyldimethylchlorosilane and then reacted with 

benzenesulfonyl chloride to provide 1a. Then, sulfonamide 1a 

was coupled with 3-butyn-1-ol using the Mitsunobu reaction. 

Subsequently, deprotection of the tert-butyldimethylsilyl group 

under acidic conditions gave the desired product 3a.
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1.2 Catalysts

    Our initial effort was focused on screening the metal catalyst 

known to make metal vinylidene species (Table 1).

Table 1. Screening of catalysts
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    A series of ruthenium and rhodium catalysts were tested. 

The reaction was performed with alkyne 3a, and 5 mol% of 

catalyst in N,N-dimethylformamide (DMF) at 75 °C. Only in the 

presence of ruthenium complex produced the desired product 4a. 

Especially, CpRu(PPh)Cl gave the product with the highest 

yield. With this result, we could assume that ruthenium catalyst, 

Cp ligand and PPh were essential to the reaction. 

1.3 Solvents

Table 2. Screening of solvents
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   Solvent screening studies showed that DMF was the best 

solvent for reconstitutive cycloisomerization reaction (Table 2). 

In the case of DMF, it gave the highest yield of the product 

within 3 hours. When methanol (MeOH) was used as a solvent 

(Table 2, entry 6), a 17% of side product 5 was produced by 

MeOH addition (Scheme 5).

Scheme 5. Reaction in methanol

1.4 Temperature and Concentration

    The reconstitutive cycloisomerization reaction was performed 

at various temperatures and concentrations (Table 3). Firstly, 

the reaction temperature was checked at the same concetraion, 

0.1 M (Table 3, entry 1-6). A series of experiments showed 

that high temperatures provided better results in terms of the  

reaction rate and yield. Through the concentration screening 

experiments, it was found that dilute conditions gave better 

results (Table 3, entry 5-9). It seemed that this reconstitutive 

cycloisomerization is an intramolecular reaction.
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Table 3. Screening of temperature and concentration

1.5 Additives

    Experiments for finding out counteranion effects in the 

transition metal-catalyzed reconstitutive cycloisomerization was 

performed by adding various silver salts in the same amount as 

the ruthenium catalyst (Table 4). Before adding substrate 3a, the 

reaction mixture with CpRu(PPh)Cl and a silver salt in DMF 
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was stirred for 5 minutes for anion exchange. There was no 

significant difference displayed by the counteranion (Table 4, 

entry 1-7). When more chloride anion was added, the yield of 

the desired product was slightly decreased (Table 4, entry 8).

Table 4. Screening of additives
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2. Substrate Scope

2.1 Substituents modification

    With the optimized reaction conditions, we proceeded to 

perform a series of experiments to investigate the scope of the 

ruthenium catalyzed reconstitutive cycloisomerization reaction. 

The desired product was formed well with sulfonamide 

substrates (Table 5, entry 1-4). It was also found that 

substrates with a stronger electron-withdrawing group gave 

better yields. In an effort to confirm this tendency, we also 

tested other substrate with weaker electron-withdrawing groups 

than sulfonyl group (Table 5, entry 5). With carbobenzyloxy 

(cbz) substituted substrates, the yield of the product was 

decreased to a considerable degree.

    We also checked the reactivity of various aryl and alkyl 

substituted substrates in the tether, and it gave reasonable 

yields of corresponding lactams (Table 5, entry 6-8).
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Table 5. Substrate scope of reconstitutive cycloisomerization
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2.2 Chain length modification

    After a set of experiments we carried out first to find the 

scope of Ru-catalyzed reconstitutive cycloisomerization reaction 

was focused on the synthesis of γ-lactams, we investigated the  

scope of the ring size of the product. Substrates were prepared 

using the same method for 3a (Scheme 4). The first experiment 

with 3i was performed at 100 °C which provided β-lactam 

product 4i in 20% yield. But the reaction also produced many 

side products that were hard to identify. Because we thought 

this result was caused by the high reactivity of 3i, we tested it 

again at lower temperature, 60 °C (Table 6, entry 1). The 

reaction took 24 h to give the product but only the desired 

product was formed with moderate yield. And we also tested 3j 

to get a δ-lactam product (Table 6, entry 2). It stirred for one 

day at 100 °C, but conversion was very low. Due to the entropy 

effect, it seemed to hard to meet activated alkyne and hydroxyl 

group. So we designed gem-dimethyl group introduced substrate 

3k at homopropargylic position. Result of experiment with 

substrate 3k gave better yield than one with 3j (Table 6, entry 

3). Using Ru-catalyzed reconstitutive cycloisomerization reaction, 

we could get β-, and δ-lactam as well as γ-lactam.
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Table 6. Substrate scope of reconstitutive cycloisomerization



14

3. Proposed Reaction Mechanism

    A plausible mechanism for the reconstitutive 

cycloisomerization is presented in Scheme 6. There are two 

possible mechanisms, the metal ketene pathway (Scheme 6, left 

cycle)    and Fischer carbene pathway (Scheme 6, right cycle).

 

Scheme 6. Proposed mechanism

    In the metal ketene mechanism, firstly metal vinylidene 

species A is formed by the reaction of the metal with a terminal 

alkyne. Then, the hydroxyl group adds to the Ru-carbene to 

form B, which is deprotonated to intermediate C. At this stage, 
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the ruthenium center may cause the cleavage of weak N-O bond 

to form metal ketene intermediate D. The nucleophilic addition of 

the nitrogen to the ketene followed by protonation forms the 

desired product and generates the catalyst.

    In Fischer carbene mechanism, as the metal ketene 

mechanism, metal vinylidene A formed first. Then, Fischer 

carbene intermediate E is generated by the addition of hydroxyl 

group to the carbon-carbon double bond. At the second step, 

there are two possible pathways. The one involves the attack of 

the electon-rich nitrogen atom to the carbene carbon to form a 

center ring fused intermediate F. In the other pathway, the 

ruthenium donates two electrons, which induces N-O bond 

cleavage to generate acyl ruthenium intermediate G. F turns to 

the product by the N-O bond cleavage, and G is transformed to 

the lactam by nitrogen atom attack to the carbonyl carbon.

    Regardless of the mechanism, several features were notable. 

First, substrates with a stronger electron-withdrawing group on 

nitrogen atom gave better results (Table 5, entry 1-5). The 

N-O bond cleavage step in the mechanism (Scheme 6) is 

believed to be the rate-determining step, since the more 

electron-withdrawing group, the faster the product formation. 

The second observation is that the reaction with substrate 3i is 

too fast to control at 100 °C while reaction with 3j was very 
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slow (Table 6). According to proposed mechanism, substrates 

should pass intermediate B or E which is cycle containing N-O 

bond. 3i can form intermediate B or E much easier than 3j 

because of entropy effect. So substrate 3k, which is improved 

than 3j to form 7-membered ring intermediate B or E, gave 

better result than 3j.
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CONCLUSION

  In summary, we have developed the ruthenium-catalyzed 

reconstitutive cycloisomerization reaction of 

N-sulfonyl-N-hydroxyaminoalkynes through the ruthenium 

vinylidene intermediates.  This method is highly useful for the 

synthesis of lactams atom- and redox-economically.
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EXPERIMENTAL SECTION

General information. Unless otherwise noted, all reactions 

of substrates preparation were conducted in flame-dried 

glassware under an argon atmosphere using anhydrous solvent 

(obtained by passing through activated alumina columns of 

solvent purification systems from Glass Contour). Commercially 

abailable reagents were used without further purification. The 

progress of reaction was checked on thin layer chromatography 

(TLC) plates (Merck 5554 Kiesel gel 60 F254), and the spots 

were visualized under 254 nm UV light and/or charring after 

dipping it into a vanillin solution, a KMnO solution, or a 

phosphomolybdic acid solution. Flash column chromatography was 

performed on silica gel (Merck 9385 Kiesel gel 60) using 

hexanes-ethyl acetate (v/v). H and C NMR spectra were 

obtained in CDCl , on an Agilent 400-MR DD2 Magnetic 

Resonance System (400 MHz) and a Varian/Oxford As-500 

(500 MHz) spectrophotometer. H NMR spectra were reported in 

parts per million (ppm) on the δ scale from an internal standard 

of residual chloroform (7.26 ppm). Data for H NMR were 

reported as follows chemical shift, multiplicity (s = siglet, t = 

triplet, q = quartet, m = multiplet, br = broad), coupling 

constant in Herts (Hz) and integration. Data for C NMR spectra 
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were reported in terms of chemical shift in ppm from the central 

peak of CDCl (77.23 ppm). And gas chromatography data were 

obtained on a Hewlett Packard HP 6890 Series GC systems.

Preparation of substrates

N-sulfonyl-N-hydroxyaminoalkynes

    N-sulfonyl-N-hydroxylamine derivatives 3 were prepared 

according to the procedure described in the reference literature 

: A flame-dried round-bottomed flask with a magnetic stirbar 

was filled with hydroxylamine hydrochloride (2.085 g, 30 mmol) 

and tert-butyldimethylsilyl chloride (4.522 g, 30 mmol) in 

anhydrous DMF (75 mL). To the reaction mixture triethylamine 

(18.8 mL, 120 mmol) was added dropwise at 0 °C and warmed 

to room temperature. After 1 h, the solution was cooled to 0 °C 

and benzenesulfonyl chloride (3.45 mL, 27 mmol) was added in 
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one portion, and stirred for another 1 h at room temperature. 

The reaction mixture was extracted with n-hexane for three 

times and the combined organic layers was washed with HO, 2N 

HCl solution, dried over MgSO , filtered and concentrated under 

reduced pressure. N-benzenesulfonyl-O-silylhydroxylamine 1a 

(6.054 g, 21.1 mmol, 78% yield).

    To a mixture of N-benzenesulfonyl-O-silylhydroxylamine 1a 

(1.5 g, 5.22 mmol), 3-butyn-1-ol (0.43 mL, 5.74 mmol) and 

PPh3 (2.738 g, 10.4 mmol) in toluene/THF (21 mL, 3:1), DEAD 

(1.23 mL, 7.83 mmol) was added slowly at 0 °C. After stirring 1 

h at this temperature, the reaction mixture was washed with 

water and extracted with EtOAc. The combined organic layer 

was washed with water, dried over MgSO and concentrated. 

Purification by flash column chromatography on a silica gel gave 

the product 2a (1.666 g, 4.91 mmol, 94% yield) as a viscous oil.

    Substrate 2a (1.5 g, 4.42 mmol) was dissolved in water 

saturated CHCl and CHCN (24 mL, 1:1) and TfOH (0.78 mL, 

8.84 mmol) was added dropwise at 0 °C. The reaction mixture 

was stirred for 1 h at this temperature and sat. NaHCO (aq. 12 

mL) was added. After separation of layers, the aqueous layer 

was extracted with CHCl. The combine organic phase was 

dried over MgSO and solvent was removed by evaporator. 

Purification was performed with silica gel chromatography to give 
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desired product 3a (965.8 mg, 4.29 mmol, 97% yield) as white 

crystal.

Benzyl but-3-yn-1-yl(hydroxy)carbamate

    Benzyl but-3-yn-1-yl(hydroxy)carbamate 3e was prepared 

according to the modified procedure described in the reference 

literature   : To Benzyl ((tert-butyldimethylsilyl)oxy)

carbamate 1e (1.652 g, 5.87 mmol) solution in DMF (11.7 mL), 

LiHMDS (1.0M in THF 5.87mL, 5.87 mmol) was added slowly  

at 0 °C. After 30 min 4-bromo-1-butyne (0.55 mL, 5.87 

mmol) was added at 0 °C and warmed to room temperature. 

After another 2 h, reaction mixture was extracted with EtOAc, 

dried over MgSO , filtered, and concentrated. Purification was 

performed with silica gel chromatography to give product 2e 

(1.057 g, 3.17 mmol, 56% yield) as pale yellow liquid.

        Substrate 2e (580 mg, 1.74 mmol) was dissolved in 

water saturated CHCl and CHCN (9.3 mL, 1:1) and TfOH 

(0.78 mL, 3.48 mmol) was added dropwise at 0 °C. The reaction 

mixture was stirred for 1 h at this temperature and sat. NaHCO 
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(aq. 4.6 mL) was added. After separation of layers, the aqueous 

layer was extracted with CHCl . The combine organic phase 

was dried over MgSO and solvent was removed by evaporator. 

Purification was performed with silica gel chromatography to give 

desired product 3e (358.59 mg, 1.64 mmol, 94% yield) as white 

solid.

Procedure for the reconstitutive cycloisomerization 

reaction (Table 5, Table 6)

    A flame-dried reaction tube equipped with a screw cap was 

charged with N-sulfonyl-N-hydroxyamonialkyne (1.0 mmol), 

CpRu(PPh)Cl (36.3 mg, 0.05 mmol, 5 mol%) and DMF (10 

mL). After sealing the tube with a screw cap, the resulting 

orange solution was heated at 100 °C. The reaction was 

monitored by TLC analysis. Upon complete consumption of the 

starting alkyne (1 to 24 h), the reaction mixture was cooled to 

ambient temperature. The crude is extracted with diethyl ehter, 

dried over MgSO, filtered and concentrated in vacuo. Purification 

by flash column chromatography on silica gel afforded the 

desired product lactam 4 in an analytically pure form.
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Characterization of substrates

N-(But-3-yn-1-yl)-N-hydroxybenzenesulfonamide (3a)

H NMR (400 MHz, CDCl): δ 7.92 (d, J = 7.6 Hz, 2H), 7.70 

(t, J = 7.9 Hz, 1H), 7.59 (t, J = 7.8 Hz, 2H), 6.39 (s, 1H), 

3.12 (t, J = 7.2 Hz, 2H), 2.54 (td, J = 7.2, 2.6 Hz, 2H), 2.00 

(t, J = 2.7 Hz, 1H); C NMR (100 MHz, CDCl): δ 134.31, 

132.51, 129.89, 129.22, 80.64, 70.38, 51.51, 17.50.

N-(But-3-yn-1-yl)-N-hydroxymethanesulfonamide (3b)

H NMR (400 MHz, CDCl): δ 6.98 (br s, 1H), 3.38 (t, J = 7.2 

Hz, 2H), 2.95 (s, 3H), 2.61 (td, J = 7.0, 2.3 Hz, 2H), 2.04 (t, J 

= 2.6 Hz, 1H); C NMR (100 MHz, CDCl): δ 80.58, 70.53, 

51.40, 31.52, 17.71.
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N-(But-3-yn-1-yl)-N-hydroxy-4-methylbenzenesulfonamide 

(3c)

H NMR (400 MHz, CDCl): δ 7.79 (d, J = 8.2 Hz, 2H), 7.37 

(d, J = 7.9 Hz, 2H), 6.29 (s, 1H), 3.09(t, J = 7.3 Hz, 2H), 2.53 

(td, J = 7.3, 2.6 Hz, 2H), 2.46 (s, 3H), 2.00 (t, J = 2.7 Hz, 

1H); C NMR (100 MHz, CDCl): δ 145.43, 129.90, 129.86, 

129.31, 80.79, 70.26, 51.60, 21.90, 17.44.

N-(But-3-yn-1-yl)-N-hydroxy-4-nitrobenzenesulfonamide 

(3d)

H NMR (400 MHz, DMSO): δ 10.70 (s, 1H), 8.46 (d, J = 8.9 

Hz, 2H), 8.09 (d, J = 8.9 Hz, 2H), 2.98 (t, J = 6.7 Hz, 2H), 

2.88 (t, J = 2.6 Hz, 1H), 2.40 (td, J = 6.7, 2.6, 2H); C NMR 

(100 MHz, DMSO): δ 150.62, 137.91, 130.87, 124.33, 81.39, 

72.62, 51.95, 16.42.
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Benzyl but-3-yn-1-yl(hydroxy)carbamate (3e)

H NMR (400 MHz, CDCl): δ  7.42 – 7.27 (m, 5H), 5.17 (s, 

2H), 3.73 (t, J = 7.0 Hz, 2H), 2.53 (td, J = 7.0, 2.5 Hz, 2H), 

1.93 (t, J = 2.5 Hz, 1H); C NMR (100 MHz, CDCl): δ 

135.94, 128.75, 128.56, 128.37, 81.17, 70.16, 68.32, 49.21, 

44.04, 17.15; IR (neat): νm ax  3288, 2942, 1701, 1455, 1359, 

1215, 1108, 1027, 739 cm   .

N-((tert-Butyldimethylsilyl)oxy)-N-(1-phenylbut-3-yn-1-yl)

benzenesulfonamide (2f)

H NMR (400 MHz, CDCl): δ 7.85 - 7.78 (m, 2H), 7.63 - 

7.56 (m, 1H), 7.50 - 7.43 (m, 2H), 7.39 (dd, J = 7.2, 1.9 Hz, 

2H), 7.27 - 7.19 (m, 3H), 5.07 (dd, J = 10.5, 3.9 Hz, 1H), 

2.65 (ddd, J = 17.2, 10.5, 2.6 Hz, 1H), 2.12-2.01 (m, 1H), 1.90 

(t, J = 2.7 Hz, 1H), 0.89 (s, 9H), 0.29 (s, 3H), -0.26 (s, 3H); 

C NMR (100 MHz, CDCl): δ 136.60, 135.69, 133.09, 129.00, 

128.56, 128.41, 128.08, 80.67, 70.83, 63.62, 25.74, 22.96, 
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18.07, -2.85, -3.55.

N-((tert-Butyldimethylsilyl)oxy)-N-(1-(naphthalen-2-yl)but-

3-yn-1-yl)benzenesulfonamide (2g)

H NMR (400 MHz, CDCl): δ 7.82 – 7.69 (m, 6H), 7.57 – 7.43 

(m, 4H), 7.35 (t, J = 7.6 Hz, 2H), 5.22 (dd, J = 10.5, 3.9 Hz, 

1H), 2.82 (ddd, J = 17.1, 10.5, 2.4 Hz, 1H), 2.21 (d, J = 17.1 

Hz, 1H), 1.91 (d, J = 2.4 Hz, 1H), 0.90 (s, 9H), 0.30 (s, 3H), 

-0.27 (s, 3H); C NMR (100 MHz, CDCl): δ 135.81, 134.08, 

133.60, 133.16, 132.88, 129.26, 128.85, 128.35, 127.92, 127.69, 

127.36, 126.46, 126.25, 80.85, 71.52, 64.77, 26.37, 19.48, 

18.78, -4.04, -4.37.

N-Hydroxy-N-(pent-4-yn-2-yl)benzenesulfonamide (3h)

H NMR (400 MHz, CDCl): δ  7.96 (d, J = 7.8 Hz, 2H), 7.66 

(t, J = 7.3 Hz, 1H), 7.56 (t, J = 7.5 Hz, 2H), 6.35 (s, 1H), 

4.17 – 4.05 (m, 1H), 2.40 – 2.25 (m, 2H), 2.01 (s, 1H), 1.02 
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(d, J = 6.5 Hz, 3H); C NMR (100 MHz, CDCl): δ 136.38, 

134.00, 129.29, 129.18, 81.00, 70.73, 55.80, 24.33, 15.10.

N-Hydroxy-N-(prop-2-yn-1-yl)benzenesulfonamide (3i)

H NMR (400 MHz, CDCl): δ  7.95 (d, J = 8.4 Hz, 2H), 7.70 

(t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.7 Hz, 2H), 6.96 (s, 1H), 

3.94 (s, 2H), 2.15 (s, 1H); C NMR (100 MHz, CDCl): δ 

134.49, 132.74, 130.09, 129.19, 75.84, 74.03, 43.32; IR (neat): 

νm ax  3391, 3292, 3059, 2979, 1336, 1174, 1063, 890, 753 cm

  .

N-Hydroxy-N-(pent-4-yn-1-yl)benzenesulfonamide (3j)

H NMR (500 MHz, CDCl): δ 7.91 (d, J = 7.3 Hz, 2H), 7.68 

(t, J = 7.7 Hz, 1H), 7.58 (t, J = 7.8 Hz, 2H), 6.33 (s, 1H), 

3.03 (t, J = 6.7 Hz, 2H), 2.30 (td, J = 7.0, 2.6 Hz, 2H), 1.97 
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(t, J = 2.7 Hz, 1H), 1.85 (p, J = 6.8 Hz, 2H); C NMR (100 

MHz, CDCl): δ 134.16, 132.43, 129.86, 129.12, 83.51, 69.29, 

51.63, 25.75, 15.90; IR (neat): νm ax  3396, 3293, 2940, 2118, 

1447, 1345, 1170, 1069, 735 cm   .

N-(2,2-Dimethylpent-4-yn-1-yl)-N-hydroxybenzenesulfonami

de (3k)

H NMR (400 MHz, CDCl): δ 7.92 (d, J = 7.1 Hz, 2H), 7.69 

(t, J = 6.8 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 6.91 (s, 1H), 

2.88 (s, 2H), 2.22 (s, 2H), 2.00 (s, 1H), 1.08 (s, 6H); C NMR 

(100 MHz, CDCl): δ 134.04, 133.43, 129.65, 129.14, 81.93, 

70.63, 61.86, 34.89, 30.28, 25.57; IR (neat): νm ax  3384, 3300, 

2966, 2116, 1447, 1336, 1169, 1090, 748 cm   .
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Characterization of products

1-(Phenylsulfonyl)pyrrolidin-2-one (4a)

H NMR (400 MHz, CDCl): δ 8.06 (d, J = 7.2 Hz, 2H), 7.66 

(t, J = 8.1 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 3.92 (t, J = 8.2 

Hz, 2H), 2.45 (t, J = 8.0 Hz, 2H), 2.14 – 2.04 (m, 2H); C 

NMR (100 MHz, CDCl): δ 173.51, 138.15, 134.17, 129.18, 

128.05, 47.43, 32.30, 18.28.

1-(Methylsulfonyl)pyrrolidin-2-one (4b)

H NMR (400 MHz, CDCl): δ   3.87 (t, J = 7.0 Hz, 2H), 3.26 

(d, J = 1.4 Hz, 3H), 2.57 (t, J = 8.1 Hz, 2H), 2.21 – 2.08 (m, 

2H); C NMR (100 MHz, CDCl): δ 174.82, 46.75, 40.66, 

32.41, 18.51.
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1-((4-methylphenyl)sulfonyl)pyrrolidin-2-one (4c)

H NMR (400 MHz, CDCl): δ 7.93 (d, J = 8.3 Hz, 2H), 7.34 

(d, J = 8.0 Hz, 2H), 3.90 (t, J = 7.0 Hz, 2H), 2.44 (s, 3H), 

2.43 (t, J = 8.1 Hz, 2H), 2.13 – 2.01 (m, 2H); C NMR (100 

MHz, CDCl): δ  173.53, 145.37, 135.35, 129.87, 128.30, 47.47, 

32.45, 21.91, 18.41.

1-((4-Nitrophenyl)sulfonyl)pyrrolidin-2-one (4d)

H NMR (400 MHz, CDCl): δ  8.39 (d, J = 9.0 Hz, 2H), 8.26 

(d, J = 10.7 Hz, 2H), 3.95 (t, J = 7.1 Hz, 2H), 2.48 (t, J = 8.1 

Hz, 2H), 2.18 – 2.08 (m, 2H); C NMR (100 MHz, CDCl): δ  

173.63, 143.59, 129.80, 124.45, 47.60, 32.23, 18.54.
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Benzyl 2-oxopyrrolidine-1-carboxylate (4e)

H NMR (400 MHz, CDCl): δ   7.45 – 7.40 (m, 2H), 7.40 – 
7.29 (m, 3H), 5.28 (s, 2H), 3.91 – 3.73 (m, 2H), 2.54 (t, J = 

8.1 Hz, 2H), 2.03 (dt, J = 15.7, 7.7 Hz, 2H); C NMR (100 

MHz, CDCl): δ 174.20, 151.71, 135.55, 128.79, 128.60, 128.43, 

68.19, 46.62, 32.99, 17.77.

5-Phenyl-1-(phenylsulfonyl)pyrrolidin-2-one (4f)

H NMR (400 MHz, CDCl): δ 7.73 – 7.64 (m, 2H), 7.59 – 7.52 

(m, 1H), 7.42 – 7.33 (m, 2H), 7.31 – 7.22 (m, 3H), 7.14 – 7.07 

(m, 2H), 5.47 (t, J = 9.7 Hz, 1H), 2.77 – 2.46 (m, 3H), 2.02 – 
1.94 (m, 1H); C NMR (100 MHz, CDCl): δ 173.68, 140.62, 

138.56, 133.91, 128.96, 128.68, 128.53, 128.28, 126.24, 63.20, 

30.80, 28.40; IR (neat): νm ax  3065, 2967, 2256, 1951, 1737, 

1448, 1360, 1169, 1089, 954, 725 cm   .
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5-(Naphthalen-2-yl)-1-(phenylsulfonyl)pyrrolidin-2-one (4g)

H NMR (400 MHz, CDCl) δ 7.88 – 7.78 (m, 1H), 7.75 (d, J = 

8.5 Hz, 1H), 7.69 (d, J = 7.9 Hz, 2H), 7.66 – 7.60 (m, 1H), 

7.57 – 7.44 (m, 4H), 7.28 (dd, J = 12.8, 4.8 Hz, 2H), 7.17 (dd, 

J = 8.5, 1.8 Hz, 1H), 5.64 (dd, J = 8.4, 1.9 Hz, 1H), 2.81 – 
2.51 (m, 3H), 2.08 – 1.99 (m, 1H); C NMR (100 MHz, CDCl): 

δ  173.85, 138.51, 137.76, 133.99, 133.13, 129.13, 128.70, 

128.63, 128.14, 127.83, 126.81, 126.59, 125.26, 123.78, 63.37, 

30.83, 28.44; IR (neat): νm ax  3059, 2971, 2256, 1952, 1737, 

1448, 1360, 1169, 1089, 953, 910, 819, 726 cm   .

5-Methyl-1-(phenylsulfonyl)pyrrolidin-2-one (4h)

H NMR (400 MHz, CDCl): δ 8.07 (d, J = 8.3 Hz, 2H), 7.64 

(t, J = 8.1 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 4.61 – 4.48 (m, 

1H), 2.64 – 2.50 (m, 1H), 2.43 – 2.21 (m, 2H), 1.79 – 1.67 (m, 
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1H), 1.47 (d, J = 6.4 Hz, 3H); C NMR (100 MHz, CDCl): δ  

173.45, 139.14, 133.99, 129.02, 128.30, 56.60, 30.65, 26.75, 

21.61; IR (neat): νm ax  3068, 2978, 1902, 1732, 1448, 1355, 

1168, 1120, 1089, 956, 733 cm   .

1-(Phenylsulfonyl)azetidin-2-one (4i)

H NMR (400 MHz, CDCl): δ 8.00 (d, J = 8.2 Hz, 2H), 7.68 

(t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.1 Hz, 2H), 3.67 (t, J = 5.1 

Hz, 2H), 3.05 (t, J = 5.2 Hz, 2H); C NMR (100 MHz, CDCl): 

δ 163.72, 138.54, 134.37, 129.70, 127.51, 40.28, 37.12.

1-(Phenylsulfonyl)piperidin-2-one (4j)

H NMR (400 MHz, CDCl): δ  8.01 (d, J = 7.3 Hz, 2H), 7.61 

(t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 3.91 (t, J = 9.4 

Hz, 2H), 2.41 (t, J = 6.7 Hz, 2H), 1.94 – 1.86 (m, 2H), 1.82 – 
1.73 (m, 2H); C NMR (100 MHz, CDCl): δ 170.36, 139.23, 

133.82, 128.83, 128.76, 47.15, 34.25, 23.47, 20.52.
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5,5-Dimethyl-1-(phenylsulfonyl)piperidin-2-one (4k)

H NMR (400 MHz, CDCl): δ  7.99 (d, J = 7.2 Hz, 2H), 7.60 

(t, J = 8.1 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 3.62 (s, 2H), 

2.40 (td, J = 7.1, 2.3 Hz, 2H), 1.57 (td, J = 7.2, 1.8 Hz, 2H), 

1.06 (s, 6H); C NMR (100 MHz, CDCl): δ 170.32, 139.08, 

133.81, 128.79, 128.76, 57.46, 33.61, 31.27, 30.68, 25.90; IR 

(neat): νm ax  3351, 3059, 2963, 1972, 1683, 1449, 1344, 1167, 

1087, 1024, 920, 876, 750 cm   .
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국문 초록

  루테늄 촉매를 이용하여 엔-설포닐-엔-하이드록시아미노알카인이 분

자 재배치를 통한 환이성화 반응을 통해 락탐을 형성하는 반응을 개발하

였다. 이 반응에서 말단 알카인이 루테늄에 의해 루테늄 vinylidene을 

형성한 후, 산소 원자의 anti-Markovnikov 첨가 반응이 진행되어  

metallacycle이 형성된다. 그 후 약한 결합인 N-O 결합이 끊어지고 질

소 원자가 전자가 부족한 탄소에 첨가하며 락탐 고리를 형성한다. 이 반

응을 통해 다양한 크기의 락탐 고리를 효율적으로 합성할 수 있다.

주요어: 루테늄 촉매반응, metal vinylidene, 환이성화 반응, 아미드 결

합, 락탐, 말단 알카인

학번: 2012-20266



39

감사의 글

    긴장되고 설레는 마음으로 대학원에 들어와 실험실 생활을 시작한 

지 어느덧 2년 반이라는 시간이 훌쩍 지났습니다. 많은 분들의 도움이 

있었기에 석사학위 과정을 알차게 보낼 수 있었기에 이 자리를 빌어 감

사의 인사를 드리려합니다.

    우선 학위 과정 동안 열정으로 지도해 주신 이철범 교수님께 감사 

드립니다. 언제나 학생들에게 최고의 연구 환경을 제공해 주신 점, 그리

고 학자로서의 모범을 보여주실 뿐만 아니라, 인생을 살아가는 자세에 

대해서도 스스로를 돌아볼 수 있게 해 주신 점 진심으로 감사드립니다.

    또한 유기화학을 공부할 수 있는 소중한 첫 기회를 제공해 주셨던 

성균관대학교의 윤재숙 교수님께도 이 자리를 빌려 감사를 드립니다.

    고된 대학원 생활이었지만 다정하게 도움을 주던 실험실 동료들 덕

분에 하루하루를 즐겁게 지낼 수 있었습니다. 먼저 사수인 인수오빠. 많

이 부족한 저를 항상 이끌어주셔서 정말 감사합니다. 그리고 동기인 저

를 언제나 이것저것 챙겨주던 상원오빠, 이런 저런 생각을 제공해 주시

던 동길오빠, 실험실에 들어와 가장 처음 실험실에 적응하는데 많은 도

움 주신 3번 라인의 은혜언니, 호윤오빠, 맛있는 먹거리를 제공해주시던 

승주언니, 친절한 진이 오빠, 유쾌한 동석오빠, 쓴 소리도 마다 않는 선

우오빠, 박사 과정을 마친 혜진언니, 지금은 졸업하고 없는 재우오빠, 그

리고 희경이, 태훈이, 경민이, 보란이 모두 감사드립니다.

    그리고 누구보다도 실험실 생활을 해 나가는 데에 가장 큰 도움을 

준 성현오빠에게 감사 인사를 드립니다.



40

    실험실 동료 분들 모두 지금 진행하고 계신 연구에 좋은 결실이 있

기를 진심으로 기원하며, 원하시는 목표 모두 빠른 시일 내로 이루실 수 

있길 바랍니다.

    마지막으로 석사학위 과정을 마치는 동안 어려움도 많았는데 언제나 

든든한 지원군이 되어주신 사랑하는 아빠, 엄마 그리고 윤미언니, 수미

언니, 동환이에게 깊은 감사를 전합니다.



41

SPECTRA
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H NMR (400 MHz, CDCl) of 3a

C NMR (100 MHz, CDCl) of 3a
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H NMR (400 MHz, CDCl) of 3b

C NMR (100 MHz, CDCl) of 3b
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H NMR (400 MHz, CDCl) of 3c

C NMR (100 MHz, CDCl) of 3c
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H NMR (400 MHz, DMSO) of 3d

C NMR (100 MHz, DMSO) of 3d
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H NMR (400 MHz, CDCl) of 3e

C NMR (100 MHz, CDCl) of 3e
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H NMR (400 MHz, CDCl) of 2f

C NMR (100 MHz, CDCl) of 2f
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H NMR (400 MHz, CDCl) of 2g

C NMR (100 MHz, CDCl) of 2g
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H NMR (400 MHz, CDCl) of 3h

C NMR (100 MHz, CDCl) of 3h
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H NMR (400 MHz, CDCl) of 3i

C NMR (100 MHz, CDCl) of 3i
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H NMR (500 MHz, CDCl) of 3j

C NMR (100 MHz, CDCl) of 3j
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H NMR (400 MHz, CDCl) of 3k

C NMR (100 MHz, CDCl) of 3k
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H NMR (400 MHz, CDCl) of 4a

C NMR (100 MHz, CDCl) of 4a
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H NMR (400 MHz, CDCl) of 4b

C NMR (100 MHz, CDCl) of 4b
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H NMR (400 MHz, CDCl) of 4c

C NMR (100 MHz, CDCl) of 4c



56

H NMR (400 MHz, CDCl) of 4d

C NMR (100 MHz, CDCl) of 4d
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H NMR (400 MHz, CDCl) of 4e

C NMR (100 MHz, CDCl) of 4e
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H NMR (400 MHz, CDCl) of 4f

C NMR (100 MHz, CDCl) of 4f
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H NMR (400 MHz, CDCl) of 4g

C NMR (100 MHz, CDCl) of 4g
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H NMR (400 MHz, CDCl) of 4h

C NMR (100 MHz, CDCl) of 4h
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H NMR (400 MHz, CDCl) of 4i

C NMR (100 MHz, CDCl) of 4i
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H NMR (400 MHz, CDCl) of 4j

C NMR (100 MHz, CDCl) of 4j
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H NMR (400 MHz, CDCl) of 4k

C NMR (100 MHz, CDCl) of 4k
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