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Abstract

This article verifies the efficiency of the empirical likelihood method to es-
timate the parameters of the censored quantile regression models suggested by
Whang (2003) via simulation. We smooth the simple estimating equation in a cen-
sored quantile regression model with a nonparametric kernel function for higher-
order refinements. We show that the confidence region based on the smoothed
empirical likelihood estimator, known to be the first-order equivalent to the stan-
dard censored quantile estimator, has coverage error of order O (nil). Monte
Carlo experiments suggest that the Bartlett corrected smoothed empirical likeli-
hood method performs well in small samples, and it provides more accurate and
computationally efficient results than the commonly used (smoothed) bootstrap
methods. Moreover, simulation results show that the proposed confidence region
has better finite sample performance than the confidence interval obtained from
the un-corrected smoothed empirical likelihood estimation, which are consistent
with the argument of Whang (2003) that Bartlett correction can reduce the cover-

age error of smoothed empirical likelihood confidence region to order O (n~?).

Keywords: Empirical Likelihood, Censored Quantile Regression, Smoothing, Bartlett
Correction
Student Number: 2011-20172
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1 Introduction

The quantile regression model was first introduced by Koenker and Basset (1978,
1982) and has been widely used in econometrics and survival analysis. When the
dependent variable is subject to censoring, modelling the conditional quantile in-
stead of the conditional mean offers advantages. The conditional quantile is often
identifiable under weaker distributional assumptions whereas additional distribu-
tional assumptions are required to identify the conditional mean. (see Portnoy,
2003)

There is a big literature in the estimation of parameters in the censored quan-
tile regression (CQR) model. Powell (1984, 1986) focused on a fixed censoring,
where censoring values C; are observable. Fixed censoring often occurs in social
surveys where data are up to ceiling effect. For random censoring cases, which are
common in many survival analysis, Portnoy (2003), Peng and Huang (2008), and
Wang and Wang (2009), Huang (2010) developed estimating methods. This paper
focuses on the fixed censoring case. Under the regularity conditions, the Powell’s
CQR estimator is /n-consistent to the true parameter and has an asymptotic nor-
mal distribution. However, the first-order approximation might provide inaccurate
results in many applications.

The CQR estimation poses the computational complexity that is partly due
to the non-convex and piecewise linear distance function which includes multiple
local minima. The optimization algorithm for the standard CQR estimation has
been suggested by many researchers: A modified reduced-gradient algorithm by
Womersley (1986), an interior point approach by Koenker and Park (1994), an
emulation algorithm (EA) by Pinkse (1993), and a three-step algorithm by Cher-
nozhukov and Hong (2002). EA only can converge to global minima by checking
every critical point, while the other algorithms used to converge to local minima.
However, EA requires heavy computational complexity. We use the algorithm of
Stengos and Wang (2007) that has less computational load than the other methods.

The reason that the estimation of variance for the CQR estimation is known
to be difficult stems from the unsmoothness of the estimating function. Chen and
Hall (1993), Horowitz (1998) and Whang (2006) used the kernel smoothing meth-

ods to approximate the estimating function. Under the kernel smoothing, with the



condition of the bandwidth parameter converging to zero with a proper rate, the
smoothed estimating function is known to be asymptotically equivalent to the esti-
mating equation. In the CQR estimation, the variance-covariance matrix depends
on f(0|X), unknown conditional error density function. Buchinsky (1995) and
Hahn (1995) applied the bootstrap methods to construct confidence intervals for
quantile regressions. However, the standard bootstrap method cannot be directly
applied to obtain higher-order refinements of the confidence region, because the
Edgeworth expansion usually cannot be applied to unsmooth functions. Horowitz
(1998) considers a median regression model and demonstrates that the smoothed
censored least absolute deviation estimator is asymptotically equivalent to the stan-
dard CQR estimator. He shows that the bootstrap method could achieve asymptotic
refinements on the smoothed censored quantile regression (SCQR) estimator and
it is corrected to have order of O(n~"7), where 7 < 1 but close to 1. He suggests
that results could also be applied to coverage probabilities of confidence regions.

This paper mainly focuses on an empirical likelihood method (EL) for esti-
mating the parameters of the CQR models. It is shown that smoothed empirical
likelihood (SEL) estimator is first-order asymptotically equivalent to the standard
CQR estimator. Whang (2003) derives the finite sample properties that establishes
the higher order properties of smoothed unconditional EL confidence regions of the
CQR model. This paper investigates the finite sample properties of Whang (2003)
via simulation studies. To achieve higher order development of the EL confidence
region, smoothing functions are implemented to the estimating equations of CQR
parameters. Chen and Hall (1993) show that smoothed confidence intervals for
quantiles with no covariates are Bartlett correctable, and Whang (2006) extends it
to the quantile regression model.

Simulation results indicate that the Bartlett corrected SEL estimation performs
well, which supports the theory suggested by Whang (2003). The results is con-
sistent with theories of Whang (2003) that confidence regions based on the un-
corrected SEL estimator have coverage error of order O(n~!) and Bartlett-corrected
SEL confidence regions have coverage error up to order O(n~2). Moreover, the
coverage probability of SEL is not sensitive to the choice of bandwidth at the range
we considered and Bartlett-corrected SEL provides accurate estimations among

the other compared methods. Also, its coverage error decreases faster than the



other methods as the number of observations increases.

The rest of this article is organized as follows. Section 2 and Section 3 summa-
rize theories investigated by Whang (2003). Section 2 defines the SEL estimator
in CQR models and discusses their asymptotic properties. Section 3 contains def-
initions of confidence regions and coverage accuracy for SEL and higher-order
analysis via Bartlett correction. Section 4 explains estimating methods which are
used in simulations and compares their performances. Section 5 makes concluding

remarks and suggests some possible extensions.

2 Models

2.1 Estimators

Consider a fixed right censoring model,
Y; = min [Cz, X{ﬁo + Uz] 1=1,..,n,

where a dependent variable Y;, a K x 1 vector of regressors X;, and a censoring
value C; is observed while a K x 1 parameter vector [y, and an error U; are
unobserved. The error satisfies P[U; < 0|X;] = g a.s. for0 < ¢ < 1.

The CQR estimator BCQ of By solves, for all 5 on a parameter space B,

min B () = 3 py (¥; — min{Cr, X[6})
=1

where p,(z) = [¢— 1(z < 0)]= and 1(-) is an indicator function. So( satisfies the
first-order condition (Powell, 1984)

LS [10% < Xthcg) -] 1 (Xiboo < ) X, = o,(n™ 7).
=1

To motivate our estimator, an unbiased estimating function g is defined as

E[g(Y;, X3, Bo)] = 0, where
9(Y:, X, 8) = [1(Y; < X[B) —q] 1 (X8 < (i) X,



The CQR estimator BCQ can be estimated by the empirical likelihood method.
However, it is difficult to achieve high-order refinements because the estimating
equation g contains an indicator function, which is not differentiable. In this paper,
g is smoothed with the nonparametric kernel function K that satisfies assumptions
on section 2.2. Let G(z) = [*  K(u)du and Gi(z) = G(x/h). Then, the
estimating equation which is smoothed with the kernel function is

Zi(B) = (Gr(Yi — XiB) — ¢)Gr(XiB — C;) X;.

Empirical likelihood can be applied to this framework by maximizing

L=ar@)=]r
i=1 =1

subject to restrictions on p; = dF'(z;) = Pr(X = z;)

n n
pi>0, Y pi=1, > piZi(B) =0
i=1 =1

The maximum value can be found via Kuhn-Tucker methods. Let

n n n n
=Y logp ) (1 . zpi) S + S
i—1 i=1 i=1 =1

where \, p; and t = (1,19, ..., t;)" are Kuhn-Tucker multipliers. Taking deriva-

tives with respect to p;, we have

1

1
A N AL

With the restrictions on p; above,
n

0= 21%2@‘(5) = %Z Hzﬁ’lZZ([B’)Zzw)

=1



Then, the (profile) empirical log-likelihood function for 3y is now defined to be

Lhw):lﬁ[{i‘lﬁ}z@-(ﬁ)}'

i=1

Because H?:l p; is maximized for p; = 1/n (see Qin and Lawless, 1994), the
empirical log-likelihood ratio is

Ih(B) = Zlog[l +t(B) Zi(B)).

By definition, the SEL estimator BE of By minimizes In(B) for g € B.

2.2 Assumptions and additional notation
2.2.1 Assumptions

The assumptions are as follows:
Assumption 1. {(Y;, X;) : i = 1,...,n} are i.i.d random vectors.

Assumption 2. 3y is an interior point of the compact parameter space B, which
is a subset of RX,

Assumption 3. X; has bounded support, P(X/3y = 0) = 0, and E[1(X[b >
€)]X; X is positive definite for some ¢ > 0 and all b in a neighborhood of 3.

Assumption 4.
(a) F(0|x) = ¢ for almost every x.
(b) For all w in a neighborhood of C; and almost every x, f(u|z) exists, is bounded

away from zero, and is r times continuously differentiable with respect to w.

Assumption 5.

(a) K(-) is bounded and compactly supported on [-1, 1].



(b) For some constant C* = 0, K (-) is an rth-order kernel, that is,

1 ifj=0
/qu(u)du =<0 if1<j<r—1
cK ifj=nr.

(©) Let G(u) = ([G(u)], [G(w)]?, ..., [G(u)]*+1)’ for some L > 1, where G/(u) =
J* . K(v)dv. Forany 6§ € RE* satisfying ||6]| = 1, there is a partition of [-1,1],

—1=ap < a; < .. <ary1 = 1 such that @G (u) is either strictly positive or
strictly negative on (a;_1,a;) forl =1, ..., L + 1.

Assumption 6. A smoothing parameter h satisfies
(a) nh?" — 0

(b) nh/logn — oo as n — oc.

Assumptions 1-5 are similar to assumptions that are used in Horowitz (1998); As-
sumption 3 is modified for the censored model. Assumptions 1-5(b) define the
model and ensure that 3 is identified. Also, based on these assumptions, asymp-
totic normality of 5y and the Taylor expansion for higher-order asymptotic approx-
imation can be derived. Assumption 5(c) is used to establish a modified form of
Cramér’s condition in Edgeworth expansion of [;(5y). Assumption 6 states the
rate of convergence of bandwidth i compared to the rate of divergence of n. As-
sumption 6(a) implies that kernel smoothing parameters need to converge to zero
fast enough as n — oo. Itis required that if h oc n ™", where % <k < lforr > 2.
On the other hand, part (b) indicates that h should not be too small. This condition
is required to maintain smoothness of [;,(fp) to derive Cramér’s condition in the

Edgeworth series analysis.

2.2.2 Additional notation

For further discussion, additional notation is required. We let

A= QY% and W; = QY%7 fori=1,..,n,



where t = t(fo), Z; = Z;i(Bo) and Q,, = EZ,; Z].
Also, let Wz] denote the jth component of W; and define

n
oI = EWI W, AT = gy W W,
i=1

In particular, a/*Jl = §7kJi | where §7+7! is the Kronecker delta.

Finally, the Einstein summation convention is used (i.e. "k and o) for
the convenience of expression and calculation. The rules of the summation con-
vention are: (i) In any term in an equation, an index can appear at most twice. (ii)
Repeated indices (dummy index) are implicitly summed over. (iii) If an index ap-
pears only once (free index), the same index must appear only once in other terms.

For example, the summation convention oo’ is same as Y a”a’. Let Q) be the

K
vector of all distinct first L + 1 order multivariate centered moments of W; that
1 n
_ !
Q= (A', .., AR AN AR AT AR R = Z N,
L

Here, Q); includes elements such as

{(G(~Ui/h) — ) (G(X1Bo — Ci/h) Y W - we

7

forl1 <k<L+1, where |v|=v;+ -+ 1y

so that it covers all terms of {5, ().

2.3 Asymptotic properties

Powell (1984, 1986) show /n-consistency and asymptotically normality of ﬁcQ.
Asymptotic equivalence of the SEL and CQR estimator are established and the

asymptotic distribution of SEL estimator is derived.



Theorem 1 Under Assumptioins 1-5(b) and 6(a), as n — oo, we have

(a) Vi1 (B — Boq) = o(1),

(b) Vi (B — o) = N (0,V0).
where Vy = Dy 'TyDy ', Do = E [ X[ X, f (0]X;) 1 (X[8 < Cy)],
To = E [X/X;1 (X8 < C))]

(a) implies that under the assumptions of section 2.2, CQR and SEL estimators
are asymptotically equivalent. Therefore, using (a) and asymptotic normality of
B shown by Powell (1984, 1986), (b) can be derived.

3 Confidence regions and coverage accuracy

3.1 Smoothed empirical likelihood confidence regions

Asymptotic equivalence and the distribution of estimators can be used to construct
confidence regions for /3. First, the SEL confidence region for 3y € R¥ is defined

as

Ispr = {8 : n(B) < c},

where ¢ > 0 determines its coverage probability P (5 € Isgr) = P(l1,(5o) < c¢).
Theorem 2 establishes the asymptotic distribution of I},(5p).

Theorem 2 Suppose assumptions 1-5(b) and 6(a) hold. Then, as n — oo, we

have,
d 2
Ih(Bo) = Xk

If ¢ = cq is chosen from X% distribution as P(x% < ¢,) = «, then Theorem
2 implies that the asymptotic coverage probability of the SEL confidence region

Iggr, will be .. Therefore, as n — oo,

P(ﬁo € ISEL) = P(lh(ﬁo) < Ca) = Oé+0(1).

10



The higher order properties of SEL confidence region is established in Theorem
3. Whang (2003) uses an Edgeworth expansion of the distribution of [;(8y) to
show that the asymptotic coverage error of the SEL confidence region has an order

O(n=1).

Theorem 3 Suppose c = c,, is given as Theorem 2, and assumptions 1-6 hold. If

it is further to be assumed that sup,, nh" < oo, as n — oo,
P(ﬁo ([ ISEL) = o+ O(nil).

3.2 Bartlett corrected smoothed empirical likelihood confidence re-
gions

With appropriate h, coverage error of the SEL confidence region has the order
O(n~1). This relatively low order partly stems from the difference between the
mean of [,(5p) and x7% distribution. (i.e. E[l,(80)] # K) Therefore, error can be
diminished by adjusting {1, (/3p) to have the correct mean. This method is known
as the Bartlett correction. As shown by DiCiccio et al. (1991), the empirical
likelihood method for constructing confidence intervals is Bartlett-correctable. It
is established that Bartlett correction can further reduce the coverage error to order
O(n~2). From the Taylor expansion of n~11,,(8y), if nh*" — 0,

Elln(Bo)] = K(1 +n"'b) + o(n™'), where
b= Kfl(aiikk/Q _ aikmaikm/?))

From the result above, a confidence region corrected with the Bartlett factor b can

be considered as

Iepr ={B:1n(B) < c(1+n""b)}.

However, the Bartlett factor b is not observed in practice, and has to be estimated.
Whang (2003) suggested two estimated Bartlett factors, b and b, for censored quan-
tile regression models. Let B is y/n-consistent estimator of 3y such as SEL esti-

mator B £ or usual CQR estimator BC‘Q-

11 1 &



First, b is defined to be

b= K&k /2 — 4Fm e /3) - where

n
2
~iikk _ o —1 A (11 y.
amtt =n E 5j (Xan X]> ,

Azkm_ -1 A3A71/2 & —1/2 n—1/2 v
= E W ijnm/ X,

jm

dlkm&lkm — 2 E § 535? < le> ’
7j=11=1

/\

_1 Z A2X X and éj = (Gh(XJ/,B — Y}) — q) Gh(X]/,B — Cz)

and oi;;il/ 2 is the ith row of 0O,

defined to be

/2 The SEL confidence region corrected with bis

Iopr ={B: n(B) < c(1+n"'h)}.
Also, the other suggested estimated Bartlett factor b is defined with

o = g7 (1= )N (1 - 3¢ + 367 B [(X]50X,)?] + O(h),

ikm _ — - ~1/2 ~1/2 -
o — 21— )21 = 2)B (572 (5, X)) (53,12 K) | + O(h),
where Sy = E[1(X/fp < C;)X;X]] and si_l/2 denote the ith row of 50_1/2.

If it is suggested using S = n~_1 > Xjf(]’- and X; = l(X]’ﬂA < Cj)X; for
j =1, ...,n, the Bartlett factor b can be found as

- ol 3 i
b=k |5-q7 (1—q) (1 =3¢ +3¢") {n ! Y (X;571K,)”
j=1
1 n o n _ N
—5 a0 (1—9) T (1=29) qn 2y D XSG
Jj=11=1
12 '



where B is defined same as above. Then the SEL confidence region rescaled with
the Bartlett factor b is

Tap = {8 : 1n(B) < (1 +n "B}

The estimation of b is computationally simpler than the estimation of b because b
is approximated with terms that do not depend on bandwidth A.

Theorem 4 below shows that the SEL confidence region adjusted with b has
coverage error of order O(n~2) and b also decreases its coverage error of the same
order as b. However, b reduces asymptotic coverage accuracy only to be order
O(n~'h). It can be derived using b = b + O(n~Y/2) + O(h).

Theorem 4 Define ¢ = c,, as above. Suppose Assumptions above hold. If it is

assumed further that sup,, n>h?" < oo, then as n — oo,

(a) P(Bo € IféEL) =a+0(n?)
(b) P(Bo € I%EL) =a+0(n?)
(c) P(Bo € I5pr) = a+O(n'h).

4 Simulation

In this section, we conduct a simulation study to compare the numerical perfor-
mance of parameter estimating methods: Censored Quantile Regression (CQR),
Bootstrap Censored Quantile Regression (BCQR), Smoothed Quantile Regression
(SCQR), unsmoothed Empirical Likelihood (EL), and Smoothed Empirical Like-
lihood (SEL) and Bartlett corrected with Bartlett factor band b SEL (i.e. SEL1 and
SEL2).

4.1 Compared Models in Simulation
4.1.1 Censored Quantile Regression

In this paper, the CQR estimator BCQ is estimated using the algorithm proposed
by Stengos and Wang (2007). The algorithm reduces computational loads in the

13



CQR estimation problem. The method uses the distance function ©(/3) defined as
n
O(8) = {a-1(di >0)+ (1 =) 1(di < 0)}-|ds]
i=1

where d; = Y; — max(X/3,C;), and ¢ € (0, 1) is the quantile. O(/3) is piecewise
linear, non-convex, and has local minima. The suggested algorithm is designed to
find the minimum point by comparing the values of critical points. It requires only
O(k x n?) operations with n observations and k regressors, which are simpler than
other algorithms.

Powell (1984, 1986) suggests an asymptotic covariance matrix Vp for V as

Vo = ﬁglfoﬁ_l, where

Therefore, the confidence regions based on B(;Q is
Iogr = {5 'n <BCQ - 5) vyt (BCQ - ﬁ) < Ca}

where c,, is a a-quantile of the x3 distribution. In this simulation, the second order
kernel function K1 (u) = (33) (1 — u?)1(|u| < 1) is used. (see Horowitz, 1998)

4.1.2 Bootstrap Censored Quantile Regression

We consider the confidence region for BCQR by

Ipcqr = {5 n (BCQ - ﬂ)l vl (B’CQ - ﬂ) < Ca}

14 ;



where V* is a bootstrap estimator of Vj (see Efron, (1979, 1982) and Buchinsky
(1995)) defined as below.

U:J\S

B ~
Z Boaw — 5(;@ (Begp — BEq)
b=1

where BCQ (1/B)SE 150Qb and {ﬂCQb : b =1,..., B} are B estimates of
Bo, calculated in the bootstrap samples from the estimation data {(Y;, X;) : i =
1,...,n}. The bootstrap method has an advantage in that it is not necessary to
choose the optimal bandwidth h. However, the bootstrap estimation requires the

heavier computational load than the kernel-based estimation.

4.1.3 Smoothed Censored Quantile Regression

Let BS be a SCQR estimator of 3y. It solves

o I ¢
Iglelan(ﬁ) = Ezgsc (E)X“Chh)/ﬁ) where

setimoh ) = {29 [ (52) o] =} (4 - 2).

where K is the integral of a fourth-order kernel for the nonparametric density

estimation (Miiler, 1984) given as

0 if u<—1,
K(u)=1¢ 0540 [u—3u®+ Lud — 2u] if Ju| <1,
1 otherwise

The smoothed version of 1(X/3 > C;) on the censored quantile regression
model is G (M) However, to prevent asymptotic bias G (M 2) is

used instead. Under conditions given by Horowitz (1998), \/ﬁ(ﬁcQ - 55) =

15



op(1). Vp is estimated consistently by

‘7 = bn(BS)_lfnbn(BS)_la where

Dy(Bs) = (nh) ™ 32 XPGRW) (52 ) 1% > 0),

~ n ~ ~ /
Ta(Bs) = ()" X2 [09e(¥i, X h. 55)/06) ] |0 (¥io Xi, . Bs ) /08
where K (1)(.) denote the first derivative of K (-). Therefore, the confidence region
based on SCQR estimator is

Iscqr = {5 in (55 - ﬂ) v! (Bs - 5) < 5a} .

The critical value ¢, is obtained from the following bootstrap analogue.

(i) Generate a bootstrap sample {(Y;*, X*) : ¢ = 1, ...,n} by sampling from esti-
mation data.

(i) Compute the SCQR estimate Bg using the same algorithm used in the CQR es-
timation, and calculate its variance estimate V*. Derive Sk =n( B;— Bg)'f/**l (BE—
Bs).

(iii) Estimate the bootstrap distribution of \S;; by the empirical distribution that is
obtained by repeating (i)-(i1) with the bootstrap iteration number B times.

(iv) The bootstrap critical value ¢, is estimated by taking a-quantile of this empir-

ical distribution.

4.2 Setup

We consider a right censored model
Y; = min [CZ,X{IBO + Uz] , fort=1,...n

where X; = (1,X%)’, Bo = (Bo1, Boz)’ is a 2x1 parameter vector whose true
value is By = (1,1)’. In this paper, three different scenarios for generating random

error U; are considered:

16 3



o Scenario 1: Student t distribution with 3 degrees of freedom rescaled to have
variance 2

o Scenario 2: Heteroskedastic U; = 0.25(1 + X2;)V;, where V; ~ N (0, 1)

o Scenario 3: x? distribution with 3 degrees of freedom recentered to have median

zero but skewed

Scenario 1 and 2 are the same as Horowitz (1998), and Scenario 3 is used by
Chen and Hall (1993).

In this paper, coverage probabilities of confidence regions of (3 are presented.
C; is given by 0 and ¢ is given as median (i.e. ¢ = 1/2). The second-order kernel
K(u) = (3)(1 — u?)1(Ju| < 1) is used to smooth empirical likelihood.

In cases with computing CQR, SCQR and SEL confidence regions, it is re-
quired to choose a bandwidth h. This paper considers a rule of thumb h = ¢y n”
in our simulations and take v € [—0.16, —0.32, —0.48, —0.64, —0.80]. We take
co = 0.06 for CQR, ¢y = 1.0 for BCQR and SCQR, and ¢y = 3.5 for SEL.
However, as will be seen from the simulation results, coverage error probabilities
of the SEL confidence regions show small differences over wide variations of cg
and v values. We set the number of simulation repetition as 5,000 for CQR, EL
and SEL methods. For BCQR and SCQR estimations, the number of repetition is
1,000 due to the heavy computation with bootstrapping. The number of bootstrap
repetitions is restricted to B = 100. Simulations are conducted with five different
sample sizes n € [20, 30, 40, 50, 60]. The Intel Core i5 2.3GHz with 4GB memory

computer is used under the same conditions.

4.3 Results

Tables 1-3 summarize simulation results for Scenario 1, 2, and 3, respectively.
Results show that the coverage probabilities of the CQR confidence regions are
relatively poor and very sensitive to the choice of bandwidth h. For example, for
Scenario 1 with n = 40, the coverage probability is 0.856 when ¢ = 0.16 whereas
the coverage probability is 0.330 when o = 0.80.

On the other hand, coverage probabilities of BCQR, SCQR, and SEL confi-

dence regions are relatively stable across different error cases. However, the SEL

17 .
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Table 1: Estimated true coverage probabilities of a-level confidence region (Sce-
nario 1)
n —v CQR BCQR SCQR EL SEL SEL1 SEL2

a=0.90
20 0.16 0576 0948 0913 0.874 0.818 0.818 0.837
0.32 0421 0948 0926 0.874 0.839 0.839 0.858
048 0301 0948 0934 0.874 0.852 0.852 0.868
0.64 0399 0940 0945 0.874 0.862 0.862 0.878
0.80 0363 0938 0952 0.874 0.867 0.867 0.880

40 0.16 0.856 0950 0.899 0.889 0.869 0.869 0.882
0.32 0.669 0946 0930 0.889 0.882 0.882 0.892
048 0.487 0942 0943 0.889 0.893 0.893 0.904
0.64 0389 0944 0945 0.889 0.893 0.893 0.901
0.80 0330 0944 0946 0.889 0.893 0.893 0.902

60 0.16 0945 0940 0911 0.896 0.891 0.891 0.899
0.32 0.803 0932 0923 0.896 0.894 0.894 0.904
048 0.601 0920 0927 0.896 0.897 0.897 0.903
0.64 0454 0932 0935 0.896 0.897 0.897 0.904
0.80 0375 0920 0932 0.896 0.897 0.897 0.901

a = 0.95
20 0.16 0.612 0970 0954 0923 0.873 0.873 0.893
0.32 0449 0982 0968 0923 0.894 0.894 0.908
048 0325 0974 0969 0923 0.906 0.907 0919
0.64 0.404 0968 0974 0923 0914 0914 0.926
0.80 0366 0976 0977 0923 0.920 0.920 0.930

40 0.16 0.875 0966 0956 0944 0935 0935 0941
032 0.702 0964 0971 0944 0943 0.943 0.948
048 0.522 0968 0978 0944 0944 0944 0.949
0.64 0403 0964 0974 0944 0943 0.943 0.949
0.80 0.336 0964 0977 0944 0945 0.945 0.950

60 0.16 0950 0954 0951 0944 0944 0944 0.947
0.32 0.823 0958 0954 0944 0949 0949 0.953
048 0.632 0962 0962 0944 0949 0949 0.951
0.64 0474 0960 0967 0944 0947 0947 0.951
0.80 0384 0966 0976 0944 0949 0949 0.952
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Table 2: Estimated true coverage probabilities of a-level confidence region (Sce-
nario 2)
n —v CQR BCQR SCQR EL SEL SEL1 SEL2

a=0.90
20 0.16 0546 0924 0.894 0.885 0.830 0.831 0.852
0.32 0406 0932 0920 0.885 0.851 0.851 0.869
048 0312 0922 0937 0.885 0.863 0.863 0.879
0.64 0383 0934 0938 0.885 0.870 0.871 0.887
0.80 0356 0934 0947 0.885 0.876 0.878 0.894

40 0.16 0.828 0934 0912 0.897 0.885 0.885 0.897
032 0.625 0926 0938 0.897 0.891 0.891 0.900
048 0455 0928 0945 0.897 0.895 0.895 0.905
0.64 0370 0928 0943 0.897 0.894 0.895 0.900
0.80 0321 0924 0949 0.897 0.895 0.895 0.901

60 0.16 0936 0930 0.886 0903 0.889 0.889 0.896
0.32 0.794 0928 0904 0903 0.891 0.891 0.898
048 0.591 0934 0910 0903 0.891 0.891 0.899
0.64 0445 0928 0921 0903 0.894 0.894 0.897
0.80 0394 0922 0923 0903 0.896 0.896 0.901

a = 0.95
20 0.16 0582 0962 0951 0938 0.890 0.891 0.907
032 0432 0966 0963 0938 0905 0.905 0918
048 0.327 0966 0972 0938 0.919 0.920 0.931
0.64 0389 0960 0973 0938 0926 0.926 0.937
0.80 0.362 0952 0977 0938 0.931 0.931 0.940

40 0.16 0.852 0958 0956 0948 0935 0935 0941
0.32 0.660 0960 0968 0948 0943 0.943 0.948
048 0486 0960 0975 0948 0944 0944 0.949
0.64 0386 0960 0978 0948 0943 0.943 0.949
0.80 0.326 0.956 0977 0948 0.945 0.945 0.950

60 0.16 0944 0966 0953 0951 0942 0942 0.947
0.32 0.815 0968 0.957 0951 0948 0948 0.953
048 0.625 0966 0964 0951 0947 0947 0.950
0.64 0466 0976 0970 0951 0948 0.948 0.951
0.80 0.402 0960 0965 0951 0948 0948 0.951
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Table 3: Estimated true coverage probabilities of a-level confidence region (Sce-
nario 3)
n —v CQR BCQR SCQR EL SEL SEL1 SEL2

a=0.90
20 0.16 0.419 0.888 0930 0.877 0.842 0.842 0.859
0.32 0350 0.876 0951 0.877 0.861 0.861 0.877
048 0302 0.894 0953 0.877 0.866 0.866 0.884
0.64 0419 0.886 0965 0.877 0.867 0.867 0.885
0.80 0388 0.896 0957 0.877 0.872 0.872 0.885

40 0.16 0.598 0914 0928 0.891 0.874 0.874 0.884
0.32 0456 0920 0934 0.891 0.885 0.885 0.894
048 0385 0902 0937 0.891 0.891 0.891 0.898
0.64 0.379 0.898 0945 0.891 0.891 0.891 0.898
0.80 0358 0916 0948 0.891 0.891 0.891 0.901

60 0.16 0.763 0904 0927 0.888 0.882 0.882 0.889
0.32 0.578 0.894 0932 0.888 0.890 0.890 0.896
048 0446 0.886 0933 0.888 0.892 0.892 0.896
0.64 0410 0912 0944 0.888 0.891 0.892 0.896
0.80 039 0.894 0941 0.888 0.875 0.895 0.900

a = 0.95

20 0.16 0435 0940 0973 0932 0.900 0.901 00914
0.32 0358 0924 0983 0932 0915 0915 0.924
048 0305 0938 0981 0932 0922 0922 0.933
0.64 0420 0932 0985 0932 0925 0926 0.937
0.80 0.388 0.938 0986 0932 0.927 0927 0.937

40 0.16 0.634 0944 0966 0944 0933 0933 0.939
032 0475 0952 0972 0944 0941 0941 0.947
048 0394 0952 0970 0944 0.943 0943 0.948
0.64 0382 0948 0980 0944 0944 0.944 0.948
0.80 0.360 0.948 0977 0945 0.941 0941 0.947

60 0.16 0.782 0938 0960 0945 0934 0934 0.939
0.32 0.604 0936 0970 0945 0942 0942 0.945
048 0464 0952 0975 0945 0944 0944 0.948
0.64 0418 0950 0967 0945 0945 0.945 0.948
0.80 0.398 0944 0971 0945 0.944 0944 0.948
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Figure 4.1: Estimated coverage error (SCQR and SEL2)
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Table 4: Average estimation time per 100 iteration (seconds)

n CQR BCQR SCQR EL SEL SEL1 SEL2
20 4.540 1001 138.6 4320 4.890 4.770 4.790
30 12.60 2373 148.1 11.58 1256 13.49 13.23
40 2492 5003 155.7 2434 26.06 25.63 24.78
50 41.64 7620 173.6 43.18 39.83 43.69 43.28
60 62.18 11620 195.0 63.12 64.39 62.65 61.72

Figure 4.2: Estimated coverage error (SEL, SEL1, and SEL2)
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confidence region is less sensitive to the bandwidth A than BCQR and SCQR con-
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fidence regions, especially for n > 40.

The increasing number of sample size reduces coverage errors of confidence
regions for all methods. However, the SEL confidence region Bartlett corrected
with b (SEL2) outperforms in most cases especially when n is relatively large.
Figure 4.1 indicates that errors of SEL2 decrease faster than SCQR as the sample
size increases. This confirms Theorem of Whang (2003) that the SEL2 confidence
region coverage error has order of O(n~2), which is higher than SCQR coverage
error order of O(n™%) fora < 1.

The unsmoothed EL. method shows similar or better performance than SEL
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or SEL1. The SEL confidence region with no Bartlett correction (SEL) shows
almost the same performance as the confidence region of Bartlett corrected with
b (SEL1). SEL2 shows better performance than SEL and SEL1 (see Figure 4.2).
This result suggests that implementing smoothing equations is not necessary unless
researchers want to achieve higher-order improvements using Bartlett correction.
Also, it verifies Theorem 4 in which the order of coverage errors of SEL and SEL1
are similar (O(n~1) and O(n~1h) each) whereas order of coverage accuracy of
SEL2 is higher (O(n~2)).

Table 4 demonstrates the estimation of each compared methods. It is estimated
based on Scenario 1, and time is estimated of average seconds per 100 iteration.
BCQR requires the longest time whereas CQR, EL, SEL, SEL1, and SEL2 show
similar estimation time. SCQR also needs relatively longer time than CQR, EL,
and SEL based methods. However, the amount of additional time required as n

increase is almost similar to other methods except BCQR.

5 Concluding Remarks and Extensions

This paper verifies finite sample properties of Whang (2003) that consider the
smoothed empirical likelihood-based method on the censored quantile regression
model. We have shown that SEL confidence regions achieve the first-order asymp-
totic properties. Simulation results show that the Bartlett-corrected SEL confi-
dence region has higher-order refinements, which are better than the refinements
based on the bootstrap methods.

In a future study, one can compare the SEL. methods and the random censoring
methods. Koenker (2008) compared a standard Powell Estimator for fixed cen-
soring with random censoring methods of Portnoy (2003) and Peng and Huang
(2008). It would be interesting to examine Bartlett corrected SEL and random
censoring methods especially for small sample cases. In addition, there are several
directions to extend simulation studies. Experiments could be conducted under
different error types. This paper only considers error structures which are aimed
to analyze the quantile regression model. However, other error types can be im-
plemented in the simulation study, such as error cases of Chernozhukov and Hong
(2002), and Pang, et al. (2010) designed for the CQR model. Also, simulations
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under different censoring values and quantiles could be considered.
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APPENDIX

Lemma 1. Under Assumptions 1-5(b) and 6(a), as n — oo,

(@ B0 = (-1 () CoFOHIX)E [ 00015 + o(0)

(b) EZi(Bo)Zi(Bo)" = q(1 — q)So + o(1)

(c) Eazgé?()) = Do + o(1).

where Sy = E[l(Xz/ﬂo < CZ)XzXZ/] and Dy = E[f(O‘Xl)l(leﬂo < CZ)XlX{]

Proof of Lemma 1. By a change of variables, we have

B4 = E|{ [IF(-ublx) - FOX)IK ()}
x {/ F(Y; — uh\Xi)K(u)du} XZ} .

By applying a Taylor expansion to the each equation in the integral, (a) can be

derived. Similarly, parts (b) and (c) can be derived by using

EZ(B0)Z(Bo)’
=q(1 - q)E[1(X]Bo < C3) X; X]]

+28 {/[F(—uthi) — F(0|X)][G(—u) — q] [L(X]Bo < Ci)] K(U)duXiX{} :
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and

9Z (o)
ap!
E[f(0[X3)1(X]B0 < C1) Xi X]]

E

> [ [ unl X0 — FOIXE ) 1(XLfo < cnxz-xz]

> [ U unlx - @80~ G/~ 106050 < ) K(u)du}xz-x;] |

Lemma 2. Suppose Assumptions 1-5(b) and 6(a) hold. Then,
(a) There exists a K x 1 vector i € int(B) such that l,,(3) attains its minimum

value at BE

(b) BE satisfies t(BE) = 0and Qn(BE) =0, where Qn () =n~! Sor 1 Zi(B)

with probability 1 as n — oo.

Proof of Lemma 2. Lemma 2 can be proved using Lemma 2 and Lemma 3
of Whang (2006).

Proof of Theorem 1. By Lemma 1 and the weak law of large numbers, we

have 0Q,,(60)/88 % Dy. Letting G = [G(~U;/h) — 1(U; < 0)][G(X!3/h)]

and rearranging terms, we have
VnQn(Bo) = f Z ~U;/h) — 4] [G (X[Bo — Ci/h)] X

_ fz (U <0) — q] [1(X[Bo < Ci)] X

+% Z[l(Ui <0)—d [G (Xlﬁoh_z) — HXjbo < Gi)| X

\F Z [GriXi — EGniXy] + VnEG X;

27 .



Here, the third term is O, (h'/2) and hence o0, (1) since, for each ¢ > 0,

q )
<w|{o(T) -w <o} {o () )

< C-P(~h<U<h)=0(h).

1 n
— Z[Gm’Xi — EGpi X
Vi i~

X2

Also, the last term is o(1) since using Assumption 6(a), we have \/nEG,; X; =
VnEZi(8y) = O(n'/?h") — 0.

Therefore, a Taylor series expansion of Qn(B 1) about [ yields,

n

Vi (B — o) = —Doljﬁ SO < 0) — ] [1(X1fo < C)] X + 0,(1).
i=1

Now applying a Bahadur representation of the censored quantile regression to the

equation above leads to the result of Theorem 1.

Proof of Theorem 2. Theorem 2 can be proved with same arguments of
Whang (2006, Theorem 2) after checking following conditions. Re-write (o)

as
h(Bo) =2 log (1+ NW;),
=1

where \ satisfies

n

EZL_O
ni= (1+XNW;)

Let A = A(fp) denote the solution of the equation above. It is easy to see that
n~ S WW/ TN EW;W/! = Ik by a weak law of large numbers, n=1 > W; =
O, (n~Y2 £ 1), and max; |W;|| = O,(1).

A = Op(n~Y2 + h"). Also, by Lemma 1(a), we can check o/ = O(h"),
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Al = A o) = 0p(n~ Y2 4 1r), ATF

k> 3.

= Op(n

~1/2), and A7k = O,(1) for

Lemma 3. Let t be a vector that has the same dimension with Q). Define I1(t,h) =
E{explit’Q|}, where i = \/—1. Under assumptions 1-6, we have, for each € > 0,
some C > 0, all t satisfying ||t|| > ¢, and all sufficient small h,

I(t,h)| <1~ Ch.

In Lemma 3, the modified version of the Cramér’s condition for the Edgeworth

expansion is established.

Proof of Lemma 3. The proof of Lemma 3 is similar to Horowitz (1998,
Lemma 9) and Whang (2006, Lemma 4). G satisfies |G(v)| = 0 or 1 if |v| > 1.

Letd =

o~

I(t,h

)
exp(#Q)]

L(t, h),
where

Il (ta h) =
L+1

Z trg,,

E

F(—h|X) exp(

and

Iy(t, h) =

G)ifv < —landd" = G(v) ifv > 1.

>+{1— (h| X) }exp(

L+1

Z trgr

F

L+1
/ / exp( <U/h>G<(X’ﬁoa-)/h)rt;gT(X)) F(UIX)dUdP(X)
I h

)}

L+1
/ /exp< [G(=U/R)G((X'Bo — Ci) /h)]"t.gr (X )> fUX)dUdP(X).
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Here, g,(X) denote the product of elements of X which is the r-th order polyno-
mial [G(—U/h)]" in the expansion of ¢'Q.
First, consider I (¢, h). For h sufficiently small, by Assumption 4(b) and Tay-

lor series expansion,

[11(t, 1)

IN

L+1
F(—h|X) exp( Ztrgr )
L+1
fO-F h|X}exp< > X >

F(—h|X)+1— F(h|X)
1— Ef(0]X)h

AN

Now, consider I5(t, h). By a change of varibles,
Ly(t,h) =
L1
0[] e ( S IG@G((X 5y — o)/ g (X >) F(-ubl X)dudP(X).
Given € > 0, for sufficiently small h, there exists 6(¢) > 0 such that
/ / (—uh|X) — F(0|X)|du dP(X) < 26()Ef(0X).
Then
Lt )] < 1= REFO1X)(1 - 25(2)) + Is(t, b)),

where

I3(t,h) =

L+1
—h / /p( <>G<<Xzeo—cn/h)rt;g?«(X)) F(01X)dudP(X).
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There are 7 > 0 and vy < 1 such that
2 [ OLOAP) = EFOLX).
[ll|<n

With a partition of [—1, 1] that satisfies Assumption 5(c) and using an argument

similar to Horowitz (1998, Proof of Lemma 9), we have

1
sup /
[|t]|>e /-1

for some C; < 1. Combining above yields, for & > 0 and for all 4 > 0 sufficiently

L+1
exp ( S (G G((X B - ci>/h>> t;gr<X>‘ e

r=0

small,

sup [Z(t,h)| < 1 — REF(0]X)(1 - 26(c) —72) = 1 — C(e)h

lI¢l]>e

where 2 = [v1 + (1 — 71)C1(€)] < 1. This establishes Lemma 3.
Proof of Theorem 3. Under the modified Cramér’s condition proven at Lemma
3, the proof of Theorem 3 can be proven using the same argument with Whang

(2006, Theorem 3).

Proof of Theorem 4. From the Edgeworth expansion for the distribution of
In(Bo), for any ¢ > 0,

where g is the density of the x% distribution. Therefore, gx [c(1+ n™'b)] =
gr(c) + O(n™1) and P(x% < c¢(1 +n7t)) = P(x% < ¢) + en"thgk(c) +
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O(n~?). By combining above equations and Lemma 1(a),

P (In(Bo) < e(1 +n"'b))
= P(x% <¢) —cna' o' K tgg(c) + O(n™2) + o(nh?")

2
— PG <0 - et (1) CREGIX)PCS 00 (0 - 07 K k(o)

+0(n™?) + o(nh®"),

since na‘a’ = L(nh")2LCE(F(Y[X))2(¢'S71¢)qg  (1—¢) 1, where ( = E[X-
F=1(0]X)]. Here, since nh?" — 0 and sup,, n°h?>" < oo, for all ¢ > 0,

P (In(Bo) < c(1 +n71b)) = P(x% < ¢) + O(n~?).

The proof of Theorem 4(a) is completed by taking ¢ = ¢ that satisfies P(X%( <
¢o) = . The proof of Theorem 4(b) and (c), b and b are used instead of b, can
be verified as Whang (2003) and using the fact that b = b + O,(n~'/?), and
b="b+0Mn"12) +0(h).
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