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Abstract
This article verifies the efficiency of the empirical likelihood method to es-

timate the parameters of the censored quantile regression models suggested by

Whang (2003) via simulation. We smooth the simple estimating equation in a cen-

sored quantile regression model with a nonparametric kernel function for higher-

order refinements. We show that the confidence region based on the smoothed

empirical likelihood estimator, known to be the first-order equivalent to the stan-

dard censored quantile estimator, has coverage error of order O
(
n−1

)
. Monte

Carlo experiments suggest that the Bartlett corrected smoothed empirical likeli-

hood method performs well in small samples, and it provides more accurate and

computationally efficient results than the commonly used (smoothed) bootstrap

methods. Moreover, simulation results show that the proposed confidence region

has better finite sample performance than the confidence interval obtained from

the un-corrected smoothed empirical likelihood estimation, which are consistent

with the argument of Whang (2003) that Bartlett correction can reduce the cover-

age error of smoothed empirical likelihood confidence region to order O
(
n−2

)
.

Keywords: Empirical Likelihood, Censored Quantile Regression, Smoothing, Bartlett

Correction
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1 Introduction

The quantile regression model was first introduced by Koenker and Basset (1978,

1982) and has been widely used in econometrics and survival analysis. When the

dependent variable is subject to censoring, modelling the conditional quantile in-

stead of the conditional mean offers advantages. The conditional quantile is often

identifiable under weaker distributional assumptions whereas additional distribu-

tional assumptions are required to identify the conditional mean. (see Portnoy,

2003)

There is a big literature in the estimation of parameters in the censored quan-

tile regression (CQR) model. Powell (1984, 1986) focused on a fixed censoring,

where censoring values Ci are observable. Fixed censoring often occurs in social

surveys where data are up to ceiling effect. For random censoring cases, which are

common in many survival analysis, Portnoy (2003), Peng and Huang (2008), and

Wang and Wang (2009), Huang (2010) developed estimating methods. This paper

focuses on the fixed censoring case. Under the regularity conditions, the Powell’s

CQR estimator is
√
n-consistent to the true parameter and has an asymptotic nor-

mal distribution. However, the first-order approximation might provide inaccurate

results in many applications.

The CQR estimation poses the computational complexity that is partly due

to the non-convex and piecewise linear distance function which includes multiple

local minima. The optimization algorithm for the standard CQR estimation has

been suggested by many researchers: A modified reduced-gradient algorithm by

Womersley (1986), an interior point approach by Koenker and Park (1994), an

emulation algorithm (EA) by Pinkse (1993), and a three-step algorithm by Cher-

nozhukov and Hong (2002). EA only can converge to global minima by checking

every critical point, while the other algorithms used to converge to local minima.

However, EA requires heavy computational complexity. We use the algorithm of

Stengos and Wang (2007) that has less computational load than the other methods.

The reason that the estimation of variance for the CQR estimation is known

to be difficult stems from the unsmoothness of the estimating function. Chen and

Hall (1993), Horowitz (1998) and Whang (2006) used the kernel smoothing meth-

ods to approximate the estimating function. Under the kernel smoothing, with the
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condition of the bandwidth parameter converging to zero with a proper rate, the

smoothed estimating function is known to be asymptotically equivalent to the esti-

mating equation. In the CQR estimation, the variance-covariance matrix depends

on f(0|X), unknown conditional error density function. Buchinsky (1995) and

Hahn (1995) applied the bootstrap methods to construct confidence intervals for

quantile regressions. However, the standard bootstrap method cannot be directly

applied to obtain higher-order refinements of the confidence region, because the

Edgeworth expansion usually cannot be applied to unsmooth functions. Horowitz

(1998) considers a median regression model and demonstrates that the smoothed

censored least absolute deviation estimator is asymptotically equivalent to the stan-

dard CQR estimator. He shows that the bootstrap method could achieve asymptotic

refinements on the smoothed censored quantile regression (SCQR) estimator and

it is corrected to have order of O(n−γ), where γ < 1 but close to 1. He suggests

that results could also be applied to coverage probabilities of confidence regions.

This paper mainly focuses on an empirical likelihood method (EL) for esti-

mating the parameters of the CQR models. It is shown that smoothed empirical

likelihood (SEL) estimator is first-order asymptotically equivalent to the standard

CQR estimator. Whang (2003) derives the finite sample properties that establishes

the higher order properties of smoothed unconditional EL confidence regions of the

CQR model. This paper investigates the finite sample properties of Whang (2003)

via simulation studies. To achieve higher order development of the EL confidence

region, smoothing functions are implemented to the estimating equations of CQR

parameters. Chen and Hall (1993) show that smoothed confidence intervals for

quantiles with no covariates are Bartlett correctable, and Whang (2006) extends it

to the quantile regression model.

Simulation results indicate that the Bartlett corrected SEL estimation performs

well, which supports the theory suggested by Whang (2003). The results is con-

sistent with theories of Whang (2003) that confidence regions based on the un-

corrected SEL estimator have coverage error of orderO(n−1) and Bartlett-corrected

SEL confidence regions have coverage error up to order O(n−2). Moreover, the

coverage probability of SEL is not sensitive to the choice of bandwidth at the range

we considered and Bartlett-corrected SEL provides accurate estimations among

the other compared methods. Also, its coverage error decreases faster than the
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other methods as the number of observations increases.

The rest of this article is organized as follows. Section 2 and Section 3 summa-

rize theories investigated by Whang (2003). Section 2 defines the SEL estimator

in CQR models and discusses their asymptotic properties. Section 3 contains def-

initions of confidence regions and coverage accuracy for SEL and higher-order

analysis via Bartlett correction. Section 4 explains estimating methods which are

used in simulations and compares their performances. Section 5 makes concluding

remarks and suggests some possible extensions.

2 Models

2.1 Estimators

Consider a fixed right censoring model,

Yi = min
[
Ci, X

′
iβ0 + Ui

]
i = 1, ..., n,

where a dependent variable Yi, a K × 1 vector of regressors Xi, and a censoring

value Ci is observed while a K × 1 parameter vector β0, and an error Ui are

unobserved. The error satisfies P [Ui ≤ 0|Xi] = q a.s. for 0 < q < 1.

The CQR estimator β̂CQ of β0 solves, for all β on a parameter space B,

min
β
Hn(β) =

1

n

n∑
i=1

ρq
(
Yi −min{Ci, X ′iβ}

)
,

where ρq(x) = [q−1(x ≤ 0)]x and 1(·) is an indicator function. β̂CQ satisfies the

first-order condition (Powell, 1984)

1

n

n∑
i=1

[
1(Yi ≤ X ′iβ̂CQ)− q

]
1
(
X ′iβ̂CQ < Ci

)
Xi = op(n

−1/2).

To motivate our estimator, an unbiased estimating function g is defined as

E [g(Yi, Xi, β0)] = 0, where

g(Yi, Xi, β) =
[
1(Yi ≤ X ′iβ)− q

]
1
(
X ′iβ < Ci

)
Xi.
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The CQR estimator β̂CQ can be estimated by the empirical likelihood method.

However, it is difficult to achieve high-order refinements because the estimating

equation g contains an indicator function, which is not differentiable. In this paper,

g is smoothed with the nonparametric kernel function K that satisfies assumptions

on section 2.2. Let G(x) =
∫ x
−∞K(u)du and Gh(x) = G(x/h). Then, the

estimating equation which is smoothed with the kernel function is

Zi(β) = (Gh(Yi −X ′iβ)− q)Gh(X ′iβ − Ci)Xi.

Empirical likelihood can be applied to this framework by maximizing

L =
n∏
i=1

dF (xi) =
n∏
i=1

pi,

subject to restrictions on pi = dF (xi) = Pr(X = xi)

pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piZi(β) = 0.

The maximum value can be found via Kuhn-Tucker methods. Let

H =
n∑
i=1

log pi + λ

(
1−

n∑
i=1

pi

)
+ t′

n∑
i=1

piZi(β) +
n∑
i=1

µipi,

where λ, µi and t = (t1, t2, ..., tk)
′ are Kuhn-Tucker multipliers. Taking deriva-

tives with respect to pi, we have

pi =
1

n
· 1

1 + t′Zi(β)
.

With the restrictions on pi above,

0 =
n∑
i=1

piZi(β) =
1

n

n∑
i=1

1

1 + t′Zi(β)
Zi(β).
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Then, the (profile) empirical log-likelihood function for β0 is now defined to be

Lh(β) =

n∏
i=1

{
1

n
· 1

1 + t′Zi(β)

}
.

Because
∏n
i=1 pi is maximized for pi = 1/n (see Qin and Lawless, 1994), the

empirical log-likelihood ratio is

lh(β) =
n∑
i=1

log[1 + t(β)′Zi(β)].

By definition, the SEL estimator β̂E of β0 minimizes lh(β) for β ∈ B.

2.2 Assumptions and additional notation

2.2.1 Assumptions

The assumptions are as follows:

Assumption 1. {(Yi, Xi) : i = 1, ..., n} are i.i.d random vectors.

Assumption 2. β0 is an interior point of the compact parameter spaceB, which

is a subset of RK .

Assumption 3. Xi has bounded support, P (X ′iβ0 = 0) = 0, and E[1(X ′ib >

ε)]XiX
′
i is positive definite for some ε > 0 and all b in a neighborhood of β0.

Assumption 4.

(a) F (0|x) = q for almost every x.

(b) For all u in a neighborhood of Ci and almost every x, f(u|x) exists, is bounded

away from zero, and is r times continuously differentiable with respect to u.

Assumption 5.

(a) K(·) is bounded and compactly supported on [-1, 1].
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(b) For some constant CK 6= 0, K(·) is an rth-order kernel, that is,

∫
ujK(u)du =


1 if j = 0

0 if 1 ≤ j ≤ r − 1

CK if j = r.

(c) Let G̃(u) = ([G(u)], [G(u)]2, ..., [G(u)]L+1)′ for some L ≥ 1, where G(u) =∫ u
−∞K(v)dv. For any θ ∈ RL+1 satisfying ‖θ‖ = 1, there is a partition of [-1,1],

−1 = a0 < a1 < ... < aL+1 = 1 such that θ′G̃(u) is either strictly positive or

strictly negative on (al−1, al) for l = 1, ..., L+ 1.

Assumption 6. A smoothing parameter h satisfies

(a) nh2r → 0

(b) nh/ log n→∞ as n→∞.

Assumptions 1-5 are similar to assumptions that are used in Horowitz (1998); As-

sumption 3 is modified for the censored model. Assumptions 1-5(b) define the

model and ensure that β0 is identified. Also, based on these assumptions, asymp-

totic normality of β0 and the Taylor expansion for higher-order asymptotic approx-

imation can be derived. Assumption 5(c) is used to establish a modified form of

Cramér’s condition in Edgeworth expansion of lh(β0). Assumption 6 states the

rate of convergence of bandwidth h compared to the rate of divergence of n. As-

sumption 6(a) implies that kernel smoothing parameters need to converge to zero

fast enough as n→∞. It is required that if h ∝ n−κ, where 1
2r < κ < 1 for r ≥ 2.

On the other hand, part (b) indicates that h should not be too small. This condition

is required to maintain smoothness of lh(β0) to derive Cramér’s condition in the

Edgeworth series analysis.

2.2.2 Additional notation

For further discussion, additional notation is required. We let

λ = Ω1/2
n t and Wi = Ω−1/2n Zi for i = 1, ..., n,
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where t = t(β0), Zi = Zi(β0) and Ωn = EZiZ
′
i.

Also, let W j
i denote the jth component of Wi and define

αj1...jk = EW j1
i . . .W jk

i , Āj1...jk = n−1
n∑
i=1

W j1
i . . .W jk

i ,

and Aj1...jk = Āj1...jk − αj1...jk

In particular, αjkjl = δjkjl , where δjkjl is the Kronecker delta.

Finally, the Einstein summation convention is used (i.e. αiikk and αikm) for

the convenience of expression and calculation. The rules of the summation con-

vention are: (i) In any term in an equation, an index can appear at most twice. (ii)

Repeated indices (dummy index) are implicitly summed over. (iii) If an index ap-

pears only once (free index), the same index must appear only once in other terms.

For example, the summation convention αijαi is same as
∑
i
αijαi. Let Q̄ be the

vector of all distinct first L+ 1 order multivariate centered moments of Wi that

Q̄ =
(
A1, ..., AK , A11, ..., AKK , ..., A11···1, ..., AKK···K

)′ ≡ 1

n

n∑
i=1

Qi.

Here, Qi includes elements such as

{
(G(−Ui/h)− q)(G(X ′iβ0 − Ci/h))

}|ν|
W ν1
i · · ·W

νk
i

for 1 ≤ k ≤ L+ 1, where |ν| = ν1 + · · ·+ νk

so that it covers all terms of lh(β0).

2.3 Asymptotic properties

Powell (1984, 1986) show
√
n-consistency and asymptotically normality of β̂CQ.

Asymptotic equivalence of the SEL and CQR estimator are established and the

asymptotic distribution of SEL estimator is derived.
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Theorem 1 Under Assumptioins 1-5(b) and 6(a), as n→∞, we have

(a)
√
n
(
β̂E − β̂CQ

)
= op(1),

(b)
√
n
(
β̂E − β0

)
→ N (0, V0) ,

where V0 = D−10 T0D
−1
0 , D0 = E

[
X ′iXif (0|Xi) 1

(
X ′iβ < Ci

)]
,

T0 = E
[
X ′iXi1

(
X ′iβ < Ci

)]
(a) implies that under the assumptions of section 2.2, CQR and SEL estimators

are asymptotically equivalent. Therefore, using (a) and asymptotic normality of

β̂E shown by Powell (1984, 1986), (b) can be derived.

3 Confidence regions and coverage accuracy

3.1 Smoothed empirical likelihood confidence regions

Asymptotic equivalence and the distribution of estimators can be used to construct

confidence regions for β0. First, the SEL confidence region for β0 ∈ RK is defined

as

ISEL = {β : lh(β) ≤ c},

where c > 0 determines its coverage probability P (β0 ∈ ISEL) = P (lh(β0) ≤ c).

Theorem 2 establishes the asymptotic distribution of lh(β0).

Theorem 2 Suppose assumptions 1-5(b) and 6(a) hold. Then, as n → ∞, we

have,

lh(β0)
d→ χ2

K .

If c = cα is chosen from χ2
K distribution as P (χ2

K ≤ cα) = α, then Theorem

2 implies that the asymptotic coverage probability of the SEL confidence region

ISEL will be α. Therefore, as n→∞,

P (β0 ∈ ISEL) = P (lh(β0) ≤ cα) = α+ o(1).
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The higher order properties of SEL confidence region is established in Theorem

3. Whang (2003) uses an Edgeworth expansion of the distribution of lh(β0) to

show that the asymptotic coverage error of the SEL confidence region has an order

O(n−1).

Theorem 3 Suppose c = cα is given as Theorem 2, and assumptions 1-6 hold. If

it is further to be assumed that supn nh
r <∞, as n→∞,

P (β0 ∈ ISEL) = α+O(n−1).

3.2 Bartlett corrected smoothed empirical likelihood confidence re-
gions

With appropriate h, coverage error of the SEL confidence region has the order

O(n−1). This relatively low order partly stems from the difference between the

mean of lh(β0) and χ2
K distribution. (i.e. E[lh(β0)] 6= K) Therefore, error can be

diminished by adjusting lh(β0) to have the correct mean. This method is known

as the Bartlett correction. As shown by DiCiccio et al. (1991), the empirical

likelihood method for constructing confidence intervals is Bartlett-correctable. It

is established that Bartlett correction can further reduce the coverage error to order

O(n−2). From the Taylor expansion of n−1lh(β0), if nh2r → 0,

E[lh(β0)] = K(1 + n−1b) + o(n−1), where

b = K−1(αiikk/2− αikmαikm/3)

From the result above, a confidence region corrected with the Bartlett factor b can

be considered as

IbSEL = {β : lh(β) ≤ c(1 + n−1b)}.

However, the Bartlett factor b is not observed in practice, and has to be estimated.

Whang (2003) suggested two estimated Bartlett factors, b̂ and b̃, for censored quan-

tile regression models. Let β̂ is
√
n-consistent estimator of β0 such as SEL esti-

mator β̂E or usual CQR estimator β̂CQ.
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First, b̂ is defined to be

b̂ = K−1(α̂iikk/2− α̂ikmα̂ikm/3), where

α̂iikk = n−1
n∑
j=1

ε̂4j

(
X ′jΩ̂

−1
n Xj

)2
,

α̂ikm = n−1
n∑
j=1

ε̂3j ω̂
−1/2
ni Xjω̂

−1/2
nk Xjω̂

−1/2
nm Xj ,

α̂ikmα̂ikm = n−2
n∑
j=1

n∑
l=1

ε̂3j ε̂
3
l

(
X ′jΩ̂

−1
n Xl

)3
,

Ω̂n = n−1
n∑
j=1

ε̂2jXjX
′
j , and ε̂j =

(
Gh(X ′j β̂ − Yj)− q

)
Gh(X ′j β̂ − Ci)

and ω̂−1/2ni is the ith row of Ω̂
−1/2
n . The SEL confidence region corrected with b̂ is

defined to be

I b̂SEL = {β : lh(β) ≤ c(1 + n−1b̂)}.

Also, the other suggested estimated Bartlett factor b̃ is defined with

αiikk = q−1(1− q)−1(1− 3q + 3q2)E
[
(X

′
jS0Xj)

2
]

+O(h),

αikm = q−1/2(1− q)−1/2(1− 2q)E
[
(s
−1/2
i Xj)(s

−1/2
k Xj)(s

−1/2
m Xj)

]
+O(h),

where S0 = E[1(X ′iβ0 < Ci)XiX
′
i] and s

−1/2
i denote the ith row of S−1/20 .

If it is suggested using S̃ = n−1
∑n

j=1 X̃jX̃
′
j and X̃j = 1(X ′j β̂ < Cj)Xj for

j = 1, ..., n, the Bartlett factor b̃ can be found as

b̃ = K−1

1

2
· q−1(1− q)−1(1− 3q + 3q2)

n−1
n∑
j=1

(X̃ ′jS̃
−1X̃j)

2


−1

3
· q−1(1− q)−1(1− 2q)2

n−2
n∑
j=1

n∑
l=1

X̃ ′jS̃
−1X̃j)

3


 ,
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where β̂ is defined same as above. Then the SEL confidence region rescaled with

the Bartlett factor b̃ is

I b̃SEL = {β : lh(β) ≤ c(1 + n−1b̃)}.

The estimation of b̃ is computationally simpler than the estimation of b̂ because b̃

is approximated with terms that do not depend on bandwidth h.

Theorem 4 below shows that the SEL confidence region adjusted with b has

coverage error of order O(n−2) and b̂ also decreases its coverage error of the same

order as b. However, b̃ reduces asymptotic coverage accuracy only to be order

O(n−1h). It can be derived using b̃ = b+O(n−1/2) +O(h).

Theorem 4 Define c = cα as above. Suppose Assumptions above hold. If it is

assumed further that supn n
3h2r <∞, then as n→∞,

(a) P (β0 ∈ IbSEL) = α+O(n−2)

(b) P (β0 ∈ I b̂SEL) = α+O(n−2)

(c) P (β0 ∈ I b̃SEL) = α+O(n−1h).

4 Simulation

In this section, we conduct a simulation study to compare the numerical perfor-

mance of parameter estimating methods: Censored Quantile Regression (CQR),

Bootstrap Censored Quantile Regression (BCQR), Smoothed Quantile Regression

(SCQR), unsmoothed Empirical Likelihood (EL), and Smoothed Empirical Like-

lihood (SEL) and Bartlett corrected with Bartlett factor b̃ and b̂ SEL (i.e. SEL1 and

SEL2).

4.1 Compared Models in Simulation

4.1.1 Censored Quantile Regression

In this paper, the CQR estimator β̂CQ is estimated using the algorithm proposed

by Stengos and Wang (2007). The algorithm reduces computational loads in the
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CQR estimation problem. The method uses the distance function Θ(β) defined as

Θ(β) =
n∑
i=1

{q · 1(di > 0) + (1− q) · 1(di < 0)} · |di|,

where di = Yi −max(X ′iβ,Ci), and q ∈ (0, 1) is the quantile. Θ(β) is piecewise

linear, non-convex, and has local minima. The suggested algorithm is designed to

find the minimum point by comparing the values of critical points. It requires only

O(k×n2) operations with n observations and k regressors, which are simpler than

other algorithms.

Powell (1984, 1986) suggests an asymptotic covariance matrix V̂0 for V0 as

V̂0 = D̂−10 T̂0D̂
−1
0 , where

D̂0 =
2

nh

n∑
i=1

X ′iXiK

(
Yi −X ′iβ̂CQ

h

)
1(X ′iβ̂CQ < Ci),

T̂0 =
1

n

n∑
i=1

X ′iXi1(X ′iβ̂CQ < Ci),

Therefore, the confidence regions based on β̂CQ is

ICQR =

{
β : n

(
β̂CQ − β

)′

V̂ −10

(
β̂CQ − β

)
≤ cα

}
where cα is a α-quantile of the χ2

2 distribution. In this simulation, the second order

kernel function K1(u) =
(
15
16

)
(1− u2)1(|u| ≤ 1) is used. (see Horowitz, 1998)

4.1.2 Bootstrap Censored Quantile Regression

We consider the confidence region for BCQR by

IBCQR =

{
β : n

(
β̂CQ − β

)′

V ∗−1
(
β̂CQ − β

)
≤ cα

}
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where V ∗ is a bootstrap estimator of V0 (see Efron, (1979, 1982) and Buchinsky

(1995)) defined as below.

V ∗ =
n

B

B∑
b=1

(β̂∗CQb −
¯̂
β∗CQ)(β̂∗CQb −

¯̂
β∗CQ)′,

where ¯̂
β∗CQ = (1/B)ΣB

b=1β̂
∗
CQb and {β̂∗CQb : b = 1, ..., B} are B estimates of

β0, calculated in the bootstrap samples from the estimation data {(Yi, Xi) : i =

1, ..., n}. The bootstrap method has an advantage in that it is not necessary to

choose the optimal bandwidth h. However, the bootstrap estimation requires the

heavier computational load than the kernel-based estimation.

4.1.3 Smoothed Censored Quantile Regression

Let β̃S be a SCQR estimator of β0. It solves

min
β∈B

H̃n(β) ≡ 1

n

n∑
i=1

gsc (Yi, Xi, Ci, h, β) where

gsc(y, x, c, h, β) =
{

(y − x′β)
[
K̃
(
y−x′β
h

)
− q
]
− y
}
K̃
(
x′β−c
h − 2

)
.

where K̃ is the integral of a fourth-order kernel for the nonparametric density

estimation (Müler, 1984) given as

K̃(u) =


0 if u < −1,

0.5 + 105
64

[
u− 5

3u
3 + 7

5u
5 − 3

7u
7
]

if |u| ≤ 1,

1 otherwise

The smoothed version of 1(X ′iβ > Ci) on the censored quantile regression

model is G̃
(
X′

iβ−Ci

h

)
. However, to prevent asymptotic bias G̃

(
X′

iβ−Ci

h − 2
)

is

used instead. Under conditions given by Horowitz (1998),
√
n(β̂CQ − β̃S) =

15



op(1). V0 is estimated consistently by

Ṽ = D̃n(β̃S)−1T̃nD̃n(β̃S)−1, where

D̃n(β̃S) = (nh)−1
n∑
i=1

X ′iXiK̃
(1)
(
Yi−X′

iβ̃S
h

)
1(Yi > 0),

T̃n(β̃S) = (n)−1
n∑
i=1

[
∂gc(Yi, Xi, h, β̃S)/∂β)

] [
∂gc

(
Yi, Xi, h, β̃S

)
/∂β

]′
where K̃(1)(·) denote the first derivative of K̃(·). Therefore, the confidence region

based on SCQR estimator is

ISCQR =

{
β : n

(
β̃S − β

)′

Ṽ −1
(
β̃S − β

)
≤ c̃α

}
.

The critical value c̃α is obtained from the following bootstrap analogue.

(i) Generate a bootstrap sample {(Y ∗i , X∗i ) : i = 1, ..., n} by sampling from esti-

mation data.

(ii) Compute the SCQR estimate β̃∗S using the same algorithm used in the CQR es-

timation, and calculate its variance estimate Ṽ ∗. Derive S∗n = n(β̃∗S−β̃S)
′
Ṽ ∗−1(β̃∗S−

β̃S).

(iii) Estimate the bootstrap distribution of S∗n by the empirical distribution that is

obtained by repeating (i)-(ii) with the bootstrap iteration number B times.

(iv) The bootstrap critical value c̃α is estimated by taking α-quantile of this empir-

ical distribution.

4.2 Setup

We consider a right censored model

Yi = min
[
Ci, X

′
iβ0 + Ui

]
, for i = 1, ..., n

where Xi = (1, X2i)
′, β0 = (β01, β02)

′ is a 2×1 parameter vector whose true

value is β0 = (1, 1)′. In this paper, three different scenarios for generating random

error Ui are considered:

16



◦ Scenario 1: Student t distribution with 3 degrees of freedom rescaled to have

variance 2

◦ Scenario 2: Heteroskedastic Ui = 0.25(1 +X2i)Vi, where Vi ∼ N(0, 1)

◦ Scenario 3: χ2 distribution with 3 degrees of freedom recentered to have median

zero but skewed

Scenario 1 and 2 are the same as Horowitz (1998), and Scenario 3 is used by

Chen and Hall (1993).

In this paper, coverage probabilities of confidence regions of β0 are presented.

Ci is given by 0 and q is given as median (i.e. q = 1/2). The second-order kernel

K(u) = (34)(1− u2)1(|u| ≤ 1) is used to smooth empirical likelihood.

In cases with computing CQR, SCQR and SEL confidence regions, it is re-

quired to choose a bandwidth h. This paper considers a rule of thumb h = c0 n
γ

in our simulations and take γ ∈ [−0.16,−0.32,−0.48,−0.64,−0.80]. We take

c0 = 0.06 for CQR, c0 = 1.0 for BCQR and SCQR, and c0 = 3.5 for SEL.

However, as will be seen from the simulation results, coverage error probabilities

of the SEL confidence regions show small differences over wide variations of c0
and γ values. We set the number of simulation repetition as 5, 000 for CQR, EL

and SEL methods. For BCQR and SCQR estimations, the number of repetition is

1, 000 due to the heavy computation with bootstrapping. The number of bootstrap

repetitions is restricted to B = 100. Simulations are conducted with five different

sample sizes n ∈ [20, 30, 40, 50, 60]. The Intel Core i5 2.3GHz with 4GB memory

computer is used under the same conditions.

4.3 Results

Tables 1-3 summarize simulation results for Scenario 1, 2, and 3, respectively.

Results show that the coverage probabilities of the CQR confidence regions are

relatively poor and very sensitive to the choice of bandwidth h. For example, for

Scenario 1 with n = 40, the coverage probability is 0.856 when σ = 0.16 whereas

the coverage probability is 0.330 when σ = 0.80.

On the other hand, coverage probabilities of BCQR, SCQR, and SEL confi-

dence regions are relatively stable across different error cases. However, the SEL
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Table 1: Estimated true coverage probabilities of α-level confidence region (Sce-
nario 1)

n −γ CQR BCQR SCQR EL SEL SEL1 SEL2

α = 0.90
20 0.16 0.576 0.948 0.913 0.874 0.818 0.818 0.837

0.32 0.421 0.948 0.926 0.874 0.839 0.839 0.858
0.48 0.301 0.948 0.934 0.874 0.852 0.852 0.868
0.64 0.399 0.940 0.945 0.874 0.862 0.862 0.878
0.80 0.363 0.938 0.952 0.874 0.867 0.867 0.880

40 0.16 0.856 0.950 0.899 0.889 0.869 0.869 0.882
0.32 0.669 0.946 0.930 0.889 0.882 0.882 0.892
0.48 0.487 0.942 0.943 0.889 0.893 0.893 0.904
0.64 0.389 0.944 0.945 0.889 0.893 0.893 0.901
0.80 0.330 0.944 0.946 0.889 0.893 0.893 0.902

60 0.16 0.945 0.940 0.911 0.896 0.891 0.891 0.899
0.32 0.803 0.932 0.923 0.896 0.894 0.894 0.904
0.48 0.601 0.920 0.927 0.896 0.897 0.897 0.903
0.64 0.454 0.932 0.935 0.896 0.897 0.897 0.904
0.80 0.375 0.920 0.932 0.896 0.897 0.897 0.901

α = 0.95
20 0.16 0.612 0.970 0.954 0.923 0.873 0.873 0.893

0.32 0.449 0.982 0.968 0.923 0.894 0.894 0.908
0.48 0.325 0.974 0.969 0.923 0.906 0.907 0.919
0.64 0.404 0.968 0.974 0.923 0.914 0.914 0.926
0.80 0.366 0.976 0.977 0.923 0.920 0.920 0.930

40 0.16 0.875 0.966 0.956 0.944 0.935 0.935 0.941
0.32 0.702 0.964 0.971 0.944 0.943 0.943 0.948
0.48 0.522 0.968 0.978 0.944 0.944 0.944 0.949
0.64 0.403 0.964 0.974 0.944 0.943 0.943 0.949
0.80 0.336 0.964 0.977 0.944 0.945 0.945 0.950

60 0.16 0.950 0.954 0.951 0.944 0.944 0.944 0.947
0.32 0.823 0.958 0.954 0.944 0.949 0.949 0.953
0.48 0.632 0.962 0.962 0.944 0.949 0.949 0.951
0.64 0.474 0.960 0.967 0.944 0.947 0.947 0.951
0.80 0.384 0.966 0.976 0.944 0.949 0.949 0.952
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Table 2: Estimated true coverage probabilities of α-level confidence region (Sce-
nario 2)

n −γ CQR BCQR SCQR EL SEL SEL1 SEL2

α = 0.90
20 0.16 0.546 0.924 0.894 0.885 0.830 0.831 0.852

0.32 0.406 0.932 0.920 0.885 0.851 0.851 0.869
0.48 0.312 0.922 0.937 0.885 0.863 0.863 0.879
0.64 0.383 0.934 0.938 0.885 0.870 0.871 0.887
0.80 0.356 0.934 0.947 0.885 0.876 0.878 0.894

40 0.16 0.828 0.934 0.912 0.897 0.885 0.885 0.897
0.32 0.625 0.926 0.938 0.897 0.891 0.891 0.900
0.48 0.455 0.928 0.945 0.897 0.895 0.895 0.905
0.64 0.370 0.928 0.943 0.897 0.894 0.895 0.900
0.80 0.321 0.924 0.949 0.897 0.895 0.895 0.901

60 0.16 0.936 0.930 0.886 0.903 0.889 0.889 0.896
0.32 0.794 0.928 0.904 0.903 0.891 0.891 0.898
0.48 0.591 0.934 0.910 0.903 0.891 0.891 0.899
0.64 0.445 0.928 0.921 0.903 0.894 0.894 0.897
0.80 0.394 0.922 0.923 0.903 0.896 0.896 0.901

α = 0.95
20 0.16 0.582 0.962 0.951 0.938 0.890 0.891 0.907

0.32 0.432 0.966 0.963 0.938 0.905 0.905 0.918
0.48 0.327 0.966 0.972 0.938 0.919 0.920 0.931
0.64 0.389 0.960 0.973 0.938 0.926 0.926 0.937
0.80 0.362 0.952 0.977 0.938 0.931 0.931 0.940

40 0.16 0.852 0.958 0.956 0.948 0.935 0.935 0.941
0.32 0.660 0.960 0.968 0.948 0.943 0.943 0.948
0.48 0.486 0.960 0.975 0.948 0.944 0.944 0.949
0.64 0.386 0.960 0.978 0.948 0.943 0.943 0.949
0.80 0.326 0.956 0.977 0.948 0.945 0.945 0.950

60 0.16 0.944 0.966 0.953 0.951 0.942 0.942 0.947
0.32 0.815 0.968 0.957 0.951 0.948 0.948 0.953
0.48 0.625 0.966 0.964 0.951 0.947 0.947 0.950
0.64 0.466 0.976 0.970 0.951 0.948 0.948 0.951
0.80 0.402 0.960 0.965 0.951 0.948 0.948 0.951
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Table 3: Estimated true coverage probabilities of α-level confidence region (Sce-
nario 3)

n −γ CQR BCQR SCQR EL SEL SEL1 SEL2

α = 0.90
20 0.16 0.419 0.888 0.930 0.877 0.842 0.842 0.859

0.32 0.350 0.876 0.951 0.877 0.861 0.861 0.877
0.48 0.302 0.894 0.953 0.877 0.866 0.866 0.884
0.64 0.419 0.886 0.965 0.877 0.867 0.867 0.885
0.80 0.388 0.896 0.957 0.877 0.872 0.872 0.885

40 0.16 0.598 0.914 0.928 0.891 0.874 0.874 0.884
0.32 0.456 0.920 0.934 0.891 0.885 0.885 0.894
0.48 0.385 0.902 0.937 0.891 0.891 0.891 0.898
0.64 0.379 0.898 0.945 0.891 0.891 0.891 0.898
0.80 0.358 0.916 0.948 0.891 0.891 0.891 0.901

60 0.16 0.763 0.904 0.927 0.888 0.882 0.882 0.889
0.32 0.578 0.894 0.932 0.888 0.890 0.890 0.896
0.48 0.446 0.886 0.933 0.888 0.892 0.892 0.896
0.64 0.410 0.912 0.944 0.888 0.891 0.892 0.896
0.80 0.396 0.894 0.941 0.888 0.875 0.895 0.900

α = 0.95

20 0.16 0.435 0.940 0.973 0.932 0.900 0.901 0.914
0.32 0.358 0.924 0.983 0.932 0.915 0.915 0.924
0.48 0.305 0.938 0.981 0.932 0.922 0.922 0.933
0.64 0.420 0.932 0.985 0.932 0.925 0.926 0.937
0.80 0.388 0.938 0.986 0.932 0.927 0.927 0.937

40 0.16 0.634 0.944 0.966 0.944 0.933 0.933 0.939
0.32 0.475 0.952 0.972 0.944 0.941 0.941 0.947
0.48 0.394 0.952 0.970 0.944 0.943 0.943 0.948
0.64 0.382 0.948 0.980 0.944 0.944 0.944 0.948
0.80 0.360 0.948 0.977 0.945 0.941 0.941 0.947

60 0.16 0.782 0.938 0.960 0.945 0.934 0.934 0.939
0.32 0.604 0.936 0.970 0.945 0.942 0.942 0.945
0.48 0.464 0.952 0.975 0.945 0.944 0.944 0.948
0.64 0.418 0.950 0.967 0.945 0.945 0.945 0.948
0.80 0.398 0.944 0.971 0.945 0.944 0.944 0.948
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Figure 4.1: Estimated coverage error (SCQR and SEL2)
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Table 4: Average estimation time per 100 iteration (seconds)
n CQR BCQR SCQR EL SEL SEL1 SEL2

20 4.540 1001 138.6 4.320 4.890 4.770 4.790
30 12.60 2373 148.1 11.58 12.56 13.49 13.23
40 24.92 5003 155.7 24.34 26.06 25.63 24.78
50 41.64 7620 173.6 43.18 39.83 43.69 43.28
60 62.18 11620 195.0 63.12 64.39 62.65 61.72

Figure 4.2: Estimated coverage error (SEL, SEL1, and SEL2)

confidence region is less sensitive to the bandwidth h than BCQR and SCQR con-

fidence regions, especially for n ≥ 40.

The increasing number of sample size reduces coverage errors of confidence

regions for all methods. However, the SEL confidence region Bartlett corrected

with b̂ (SEL2) outperforms in most cases especially when n is relatively large.

Figure 4.1 indicates that errors of SEL2 decrease faster than SCQR as the sample

size increases. This confirms Theorem of Whang (2003) that the SEL2 confidence

region coverage error has order of O(n−2), which is higher than SCQR coverage

error order of O(n−a) for a < 1.

The unsmoothed EL method shows similar or better performance than SEL

22



or SEL1. The SEL confidence region with no Bartlett correction (SEL) shows

almost the same performance as the confidence region of Bartlett corrected with

b̃ (SEL1). SEL2 shows better performance than SEL and SEL1 (see Figure 4.2).

This result suggests that implementing smoothing equations is not necessary unless

researchers want to achieve higher-order improvements using Bartlett correction.

Also, it verifies Theorem 4 in which the order of coverage errors of SEL and SEL1

are similar (O(n−1) and O(n−1h) each) whereas order of coverage accuracy of

SEL2 is higher (O(n−2)).

Table 4 demonstrates the estimation of each compared methods. It is estimated

based on Scenario 1, and time is estimated of average seconds per 100 iteration.

BCQR requires the longest time whereas CQR, EL, SEL, SEL1, and SEL2 show

similar estimation time. SCQR also needs relatively longer time than CQR, EL,

and SEL based methods. However, the amount of additional time required as n

increase is almost similar to other methods except BCQR.

5 Concluding Remarks and Extensions

This paper verifies finite sample properties of Whang (2003) that consider the

smoothed empirical likelihood-based method on the censored quantile regression

model. We have shown that SEL confidence regions achieve the first-order asymp-

totic properties. Simulation results show that the Bartlett-corrected SEL confi-

dence region has higher-order refinements, which are better than the refinements

based on the bootstrap methods.

In a future study, one can compare the SEL methods and the random censoring

methods. Koenker (2008) compared a standard Powell Estimator for fixed cen-

soring with random censoring methods of Portnoy (2003) and Peng and Huang

(2008). It would be interesting to examine Bartlett corrected SEL and random

censoring methods especially for small sample cases. In addition, there are several

directions to extend simulation studies. Experiments could be conducted under

different error types. This paper only considers error structures which are aimed

to analyze the quantile regression model. However, other error types can be im-

plemented in the simulation study, such as error cases of Chernozhukov and Hong

(2002), and Pang, et al. (2010) designed for the CQR model. Also, simulations
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under different censoring values and quantiles could be considered.
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APPENDIX

Lemma 1. Under Assumptions 1-5(b) and 6(a), as n→∞,

(a) EZi(β0) = (−h)r
(

1

r!

)
CKF (Yi|Xi)E

[
Xif

(r−1)(0|Xi)
]

+ o(hr)

(b) EZi(β0)Zi(β0)
′ = q(1− q)S0 + o(1)

(c) E
∂Zi(β0)

∂β′
= D0 + o(1).

where S0 = E[1(X ′iβ0 < Ci)XiX
′
i] and D0 = E[f(0|Xi)1(X ′iβ0 < Ci)XiX

′
i].

Proof of Lemma 1. By a change of variables, we have

EZi(β0) = E

[{∫
[F (−uh|Xi)− F (0|Xi)]K(u)du

}
×
{∫

F (Yi − uh|Xi)K(u)du

}
Xi

]
.

By applying a Taylor expansion to the each equation in the integral, (a) can be

derived. Similarly, parts (b) and (c) can be derived by using

EZ(β0)Z(β0)
′

= q(1− q)E[1(X ′iβ0 < Ci)XiX
′
i]

+ 2E

{∫
[F (−uh|Xi)− F (0|Xi)][G(−u)− q]

[
1(X ′iβ0 < Ci)

]
K(u)duXiX

′
i

}
,
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and

E
∂Z(β0)

∂β′

= E[f(0|Xi)1(X ′iβ0 < Ci)XiX
′
i]

+ E

[∫
[f(−uh|Xi)− f(0|Xi)]K(u)du · 1(X ′iβ0 < Ci)XiX

′
i

]
+ E

[∫
{f(−uh|Xi) · (G((X ′iβ0 − Ci)/h)− 1(X ′iβ0 < Ci)) ·K(u)du}XiX

′
i

]
.

Lemma 2. Suppose Assumptions 1-5(b) and 6(a) hold. Then,

(a) There exists a K × 1 vector β̂E ∈ int(B) such that lh(β) attains its minimum

value at β̂E
(b) β̂E satisfies t(β̂E) = 0 and Qn(β̂E) = 0, where Qn(β) = n−1

∑n
i=1 Zi(β)

with probability 1 as n→∞.

Proof of Lemma 2. Lemma 2 can be proved using Lemma 2 and Lemma 3

of Whang (2006).

Proof of Theorem 1. By Lemma 1 and the weak law of large numbers, we

have ∂Qn(β0)/∂β
′ p→ D0. Letting Gni ≡ [G(−Ui/h) − 1(Ui ≤ 0)][G(X ′iβ/h)]

and rearranging terms, we have

√
nQn(β0) =

1√
n

n∑
i=1

[G (−Ui/h)− q]
[
G
(
X ′iβ0 − Ci/h

)]
Xi

=
1√
n

n∑
i=1

[1(Ui ≤ 0)− q]
[
1(X ′iβ0 < Ci)

]
Xi

+
1√
n

n∑
i=1

[1(Ui ≤ 0)− q]
[
G

(
X ′iβ0 − Ci

h

)
− 1(X ′iβ0 < Ci)

]
Xi

+
1√
n

n∑
i=1

[GniXi − EGniXi] +
√
nEGniXi
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Here, the third term is Op(h1/2) and hence op(1) since, for each ε > 0,

P

(∥∥∥∥∥ 1√
n

n∑
i=1

[GniXi − EGniXi]

∥∥∥∥∥ > ε

)

≤ ε−2E

[{
G

(
−Ui
h

)
− 1(Ui ≤ 0)

}2{
G

(
X ′iβ − Ci

h

)}2
]
‖X‖2

≤ C · P (−h ≤ U ≤ h) = O(h).

Also, the last term is o(1) since using Assumption 6(a), we have
√
nEGniXi =

√
nEZi(β0) = O(n1/2hr)→ 0.

Therefore, a Taylor series expansion of Qn(β̂E) about β0 yields,

√
n
(
β̂E − β0

)
= −D−10

1√
n

n∑
i=1

[1(Ui ≤ 0)− q]
[
1(X ′iβ0 < Ci)

]
Xi + op(1).

Now applying a Bahadur representation of the censored quantile regression to the

equation above leads to the result of Theorem 1.

Proof of Theorem 2. Theorem 2 can be proved with same arguments of

Whang (2006, Theorem 2) after checking following conditions. Re-write lh(β0)

as

lh(β0) = 2

n∑
i=1

log
(
1 + λ′Wi

)
,

where λ satisfies

1

n

n∑
i=1

Wi

(1 + λ′Wi)
= 0.

Let λ ≡ λ(β0) denote the solution of the equation above. It is easy to see that

n−1
∑
WiW

′
i

p→ EWiW
′
i = IK by a weak law of large numbers, n−1

∑
Wi =

Op(n
−1/2 + hr), and maxi ‖Wi‖ = Op(1).

λ = Op(n
−1/2 + hr). Also, by Lemma 1(a), we can check αj = O(hr),
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Āj = Aj + αj = Op(n
−1/2 + hr), Ajk = Op(n

−1/2), and Āj1···jk = Op(1) for

k ≥ 3.

Lemma 3. Let t be a vector that has the same dimension withQ. Define I(t, h) =

E{exp[it′Q]}, where i =
√
−1. Under assumptions 1-6, we have, for each ε > 0,

some C > 0, all t satisfying ||t|| > ε, and all sufficient small h,

|I(t, h)| < 1− Ch.

In Lemma 3, the modified version of the Cramér’s condition for the Edgeworth

expansion is established.

Proof of Lemma 3. The proof of Lemma 3 is similar to Horowitz (1998,

Lemma 9) and Whang (2006, Lemma 4). G satisfies |G(v)| = 0 or 1 if |v| ≥ 1.

Let δ− = G(v) if v ≤ −1 and δ+ = G(v) if v ≥ 1.

I(t, h)

= E
[
exp(it′Q)

]
=

∫ ∞
−∞

∫ ∞
−∞

exp

(
i
L+1∑
r=0

[G(−U/h)G((X ′β0 − Ci)/h)]rt′rgr(X)

)
f(U |X)dUdP (X)

= I1(t, h) + I2(t, h),

where

I1(t, h) =

E

[
F (−h|X) exp

(
i
L+1∑
r=0

t′rgr(X)δ−r

)
+ {1− F (h|X)} exp

(
i
L+1∑
r=0

t′rgr(X)δ+r

)]
,

and

I2(t, h) =∫ ∞
−∞

∫ h

−h
exp

(
i

L+1∑
r=0

[G(−U/h)G((X ′β0 − Ci)/h)]rt′rgr(X)

)
f(U |X)dUdP (X).
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Here, gr(X) denote the product of elements of X which is the r-th order polyno-

mial [G(−U/h)]r in the expansion of t′Q.

First, consider I1(t, h). For h sufficiently small, by Assumption 4(b) and Tay-

lor series expansion,

|I1(t, h)| ≤

∣∣∣∣∣F (−h|X) exp

(
i

L+1∑
r=0

t′rgr(X)δ−r

)

+ {1− F (h|X)} exp

(
i
L+1∑
r=0

t′rgr(X)δ+r

)∣∣∣∣∣
≤ F (−h|X) + 1− F (h|X)

≤ 1− Ef(0|X)h

Now, consider I2(t, h). By a change of varibles,

I2(t, h) =

h

∫ ∞
−∞

∫ 1

−1
− exp

(
i

L+1∑
r=0

[G(u)G((X ′β0 − Ci)/h)]rt′rgr(X)

)
f(−uh|X)dudP (X).

Given ε > 0, for sufficiently small h, there exists δ(ε) > 0 such that∫ ∞
−∞

∫ 1

−1
|f(−uh|X)− f(0|X)| du dP (X) ≤ 2δ(ε)Ef(0|X).

Then

|I(t, h)| ≤ 1− hEf(0|X)(1− 2δ(ε)) + |I3(t, h)|,

where

I3(t, h) =

− h
∫ ∞
−∞

∫ 1

−1
exp

(
i
L+1∑
r=0

[G(u)G((X ′β0 − Ci)/h)]rt′rgr(X)

)
f(0|X)dudP (X).
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There are η > 0 and γ1 < 1 such that

2

∫
||x||≤η

f(0|X)dP (X) = γ1Ef(0|X).

With a partition of [−1, 1] that satisfies Assumption 5(c) and using an argument

similar to Horowitz (1998, Proof of Lemma 9), we have

sup
||t||>ε

∫ 1

−1

∣∣∣∣∣exp

(
i
L+1∑
r=0

[G(u)G((X ′β0 − Ci)/h)

)
t′rgr(X)

∣∣∣∣∣ = C1

for some C1 < 1. Combining above yields, for ε > 0 and for all h > 0 sufficiently

small,

sup
||t||>ε

|I(t, h)| ≤ 1− hEf(0|X)(1− 2δ(ε)− γ2) = 1− C(ε)h

where γ2 = [γ1 + (1− γ1)C1(ε)] < 1. This establishes Lemma 3.

Proof of Theorem 3. Under the modified Cramér’s condition proven at Lemma

3, the proof of Theorem 3 can be proven using the same argument with Whang

(2006, Theorem 3).

Proof of Theorem 4. From the Edgeworth expansion for the distribution of

lh(β0), for any c > 0,

P
(
lh(β0) ≤ c(1 + n−1b)

)
= P (χ2

K ≤ c(1 + n−1b))− (nαiαiK−1 + n−1b)c(1 + n−1b)gK
[
c(1 + n−1b)

]
+O(n−2) + o(nh2r).

where gK is the density of the χ2
K distribution. Therefore, gK

[
c(1 + n−1b)

]
=

gK(c) + O(n−1) and P (χ2
K ≤ c(1 + n−1b)) = P (χ2

K ≤ c) + cn−1bgK(c) +
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O(n−2). By combining above equations and Lemma 1(a),

P
(
lh(β0) ≤ c(1 + n−1b)

)
= P (χ2

K ≤ c)− cnαiαiK−1gK(c) +O(n−2) + o(nh2r)

= P (χ2
K ≤ c)− c · nh2r

(
1

r!

)2

C2
K(F (Yi|Xi))

2(ζ ′S−1ζ)q−1(1− q)−1K−1gK(c)

+O(n−2) + o(nh2r),

since nαiαi = 1
n(nhr)2 1

r!C
2
K(F (Y |X))2(ζ ′S−1ζ)q−1(1−q)−1, where ζ = E[X ·

f (r−1)(0|X)]. Here, since nh2r → 0 and supn n
3h2r <∞, for all c > 0,

P
(
lh(β0) ≤ c(1 + n−1b)

)
= P (χ2

K ≤ c) +O(n−2).

The proof of Theorem 4(a) is completed by taking c = cα that satisfies P (χ2
K ≤

cα) = α. The proof of Theorem 4(b) and (c), b̂ and b̃ are used instead of b, can

be verified as Whang (2003) and using the fact that b̂ = b + Op(n
−1/2), and

b̃ = b+O(n−1/2) +O(h).
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국문초록 

 
경험적 우도 방법을 활용한 

중도절단회귀모형 추정  
 

문 철 

경제학부 경제학 전공 

서울대학교 대학원 

 

 

본 논문에서는 중도절단회귀모형의 모수 추정을 위한 경험적 우도 

방법(Whang, 2003)의 유용성을 시뮬레이션을 통하여 검증해 보았다. 

우리는 고차 정제를 위하여 비모수 커널 함수를 이용하여 

중도절단회귀모형 추정 함수를 평활화하였다. 본 연구에서는 

중도절단회귀 추정량과 일차 동등하다고 알려진 평활화된 경험적 우도 

추정량으로 구한 신뢰 구간이 포함오차 차수 O(𝑛−1) 를 가짐을 보였다. 

몬테 카를로 실험은 바틀렛 보정된 평활화된 경험적 우도 방법이 작은 

표본에서 좋은 하였으며, 일반적으로 사용되는 부트스트랩 방법보다 더 

정확한 결과를 도출함을 나타낸다. 또한, 시뮬레이션 결과는 평활화된 

경험적 우도 방법이 비평활화된 경험적 우도 방법보다 더 나은 결과를 

도출한다는 것을 확인하였다. 이는 바틀렛 보정이 평활화된 경험적 우도 

방법 신뢰 구간의 포함 오차 차수를 O(𝑛−2) 로 줄인다는 Whang 

(2003)의 이론과 부합하는 결과를 보여준다. 

 

주요어 : 경험적 우도, 중도절단회귀모형, 평활화, 바틀렛 보정 
학   번 : 2011-20172 
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