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ABSTRACT 

 

Physicochemical Properties of Wheat Gluten Hydrolysates  

Produced by Different Proteases 

 

Yumi Choi 

Department of Food and Nutrition 

The Graduate School 

Seoul National University 

 

Hydrolysis of proteins has been widely used to produce ingredients with functional 

characteristics (foaming, solubility, emulsifying, etc.) as well as various physiological 

activities (antioxidant, antimicrobial, anti-inflammatory, anti-hypertensive activities, 

etc.). Enzymatic hydrolysis has been applied to various foods of animal and plant 

sources. Wheat gluten, which is produced while separating starch from wheat, is 

relatively inexpensive. The objective of the study was to evaluate the changes in 

chemical characteristics and antioxidant properties of wheat gluten hydrolysates 

(WGH) and utilize the WGH as an ingredient in a beverage system.  

Single (2, 6, 12 and 24 h) and sequential enzymatic hydrolyses (8, 10 and 12 h) 

were conducted to produce WGH using commercial proteases (Alcalase, 

Flavourzyme, Protamex and Neutrase). Wheat gluten was suspended in distilled water 

(20%, w/w) and hydrolyzed with the enzyme to wheat gluten ratio of 1:100 (w/w) at 

50˚C in a water bath. 
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Yields of all the produced WGH were over 50%. Degree of hydrolysis (DH) of the 

WGH significantly increased with hydrolysis time (p<0.05). DH of the WGH 

produced by Flavourzyme was the highest, independent of hydrolysis time, while that 

of the WGH by Neutrase was the lowest. Sequential enzymatic hydrolysis remarkably 

decreased the fraction with more than 10 kDa and increased the fraction with less than 

500 Da compared with the single enzymatic hydrolysis. Contents and compositions of 

free amino acids in the WGH were significantly affected by the enzyme types and 

hydrolysis conditions including the number of treated enzymes and sequences of the 

treated enzymes. DPPH radical scavenging activity of the WGH significantly 

increased with hydrolysis time (p<0.05). On the other hand, ABTS radical scavenging 

activity of the WGH was rarely affected by the enzyme types and hydrolysis 

conditions. The WGH produced by Protamex showed lower turbidity, better thermal 

stability and higher solubility, suggesting they may be suitable for beverage 

development. 

 

Keywords: Wheat gluten; Protein hydrolysate; Sequential enzymatic hydrolysis; 

Beverage 

Student Number: 2015-21711 
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INTRODUCTION 

 

Hydrolysis of proteins has been widely used to produce ingredients with 

functional characteristics (foaming, solubility, emulsifying, etc.) (Neklyudov et al., 

2000) and various bioactivities (antioxidant, antimicrobial, anti-inflammatory, anti-

hypertensive activities, etc.) (Castro and Sato, 2015). Chemicals, including 

acidic/alkaline compounds, and enzymes have been used for hydrolysis. Chemical 

treatments are difficult to control specific cleavages in amino acid sequences of 

proteins and can destroy essential amino acids (Finley et al., 1982). During 

neutralization of acidic/alkaline conditions, undesirable salts are readily formed. 

On the other hand, proteases have certain specificities for substrates, hydrolyzing 

proteins into peptides in a mild condition. The specificity and reaction conditions 

(pH, temperature and time) during enzymatic hydrolysis can affect characteristics 

of protein hydrolysates; peptide size, amino acid sequences and amount of free 

amino acids (Sarmadi and Ismail, 2010). Enzymatic hydrolysis has been utilized in 

a wide range of food materials including animal (milk, egg, beef, pork, chicken, 

etc.) and plant sources (rice, corn, soy, wheat, etc.) (Agyei and Danquah, 2012). 

Wheat is one of the cereal crops widely consumed in the world. Wheat is available 

at a low cost because it is harvested over 700 million tons annually with 

technological advances. Wheat gluten, a by-product of the wheat starch industry, is 

rarely water-soluble due to gluten forming a continuous network between gliadin 

and glutenin proteins (Shewry, 2009). Not only different functional characteristics 

(Kong et al., 2007; Wang et al., 2006) but also biological activities such as 

antioxidant (Qiu et al., 2013) and anti-hypertensive activities (Cian et al., 2015) 
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have been reported on wheat gluten hydrolysates (WGH) produced by enzymatic 

hydrolysis. 

Single enzymatic hydrolysis of wheat gluten has been investigated to determine 

the effect of enzyme types and hydrolysis time on the characteristics of 

hydrolysates (Kong et al., 2007). Liu et al. (2016) reported the effect of sequential 

enzymatic hydrolysis using endo- and exo-peptidases to reduce bitterness. Besides, 

sequential enzyme treatment was attempted to enhance the efficiency of hydrolysis 

in food proteins such as Nile tilapia proteins (Oreochromis niloticus) (Yarnpakdee 

et al., 2015), duck egg white proteins (Ren et al., 2014) and muscle of brown stripe 

red snapper (Khantaphant et al., 2011). However, little information on the changes 

in characteristics of WGH was available in terms of comparison between single 

and sequential enzymatic hydrolyses. Moreover, it is important to understand 

sensory properties of WGH because individual peptides have unique taste 

properties like sweetness, sourness, umami and bitterness (Shahidi, 2012). 

However, the evaluation of physicochemical and sensory properties of WGH in a 

beverage system has not been studied.  

The objective of this study was to evaluate the changes in chemical 

characteristics and antioxidant properties of the WGH produced by single and 

sequential enzymatic hydrolyses using commercial proteases (Alcalase, 

Flavourzyme, Protamex, and Neutrase) and also to determine turbidity, thermal 

stability, pH solubility and sensory characteristics of a beverage system made from 

the WGH. 
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MATERIALS AND METHODS 

 

1. Materials 

Wheat gluten (78.9±0.58% crude protein (N X 5.7), 4.83±0.15% water, 

4.36±0.20% crude fat and 0.60±0.02% crude ash) was obtained from Anhui 

Ruifuxiang Company (Anhui, China). Alcalase (EC 3.4.21.62, from Bacillus 

licheniformis, 2.4 AU/g), Flavourzyme 1000 L (EC 3.4.11.1, from Aspergillus 

oryzae, 1000 AU/g), Protamex (EC 3.4.24.28, from Bacillus subtilis, 1.5 AU/g) 

and Neutrase (EC 3.4.24.28, from Bacillus amyloliquefaciens, 0.8 AU/g) were 

purchased from Novozymes (Bagsvaerd, Denmark). o-Phthaldialdehyde (OPA), 

1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-

sulfonic acid) diammonium salt (ABTS), N, N-dimethyl- 2-

mercaptoethylammonium chloride (DMMAC), cytochrome C from equine heart, 

aprotinin from bovine lung, bacitracin, Gly-Gly-Tyr-Arg, Gly-Gly-Gly and 

potassium persulfate were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Sodium tetraborate decahydrate was from Junsei Chemical Co., Ltd. (Tokyo, 

Japan). 9-Fluorenylmethyl chloroformate (FMOC) was from Agilent Technologies 

(Palo Alto, CA, USA). Mite hot chocolate powder was purchased from Dongsuh 

Food Co., Ltd. (Seoul, Korea). The other chemicals used in the present study were 

of analytical grade and purchased from Samchun Chemical Co. (Seoul, Korea). 

 

2. Preparation of wheat gluten hydrolysates 

Single enzymatic hydrolysis of wheat gluten using the four commercial 

proteases (Alcalase, Flavourzyme, Protamex and Neutrase) was carried out under 

the conditions as follows: Wheat gluten was suspended in distilled water (20%, 

https://www.junsei.co.jp/index_e.html
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w/w). The suspension was continuously stirred using an overhead stirrer (Wisestir 

HS-30D, Daihan Scientific Co., Seoul, Korea) at 200 rpm, and temperature was 

kept at 50±1˚C in a water bath. Wheat gluten was hydrolyzed with enzyme to 

wheat gluten ratio of 1:100 (w/w) for 2, 6, 12 and 24 h. After hydrolyzed, the 

mixture was heated for 10 min at 95˚C to inactivate the enzyme before centrifuging 

at 8,000×g for 10 min at 20˚C. Alcalase and Protamex were selected to conduct 

sequential enzymatic hydrolysis due to their high efficiency compared to the other 

two enzymes. Hydrolysis using the first enzyme was conducted for 6 h under the 

same hydrolysis conditions to the single enzymatic hydrolysis. After the 

hydrolysis, the mixture was heated at 95˚C to inactivate the first enzyme and 

cooled down to 50˚C slowly. The second enzyme was added with enzyme to wheat 

gluten ratio of 1:100 (w/w), and hydrolysis was additionally conducted for 2, 4 and 

6 h. After hydrolysis, the mixture was heated at 95˚C for 10 min to inactivate the 

enzyme before centrifuging at 8,000×g for 10 min at 20˚C. WGH powder obtained 

after lyophilization of the supernatant was stored at -20 ˚C until further analysis. 

 

3. Yield of the WGH 

Yield of WGH was calculated using the following equation: 

Yield (%) = (W1/W0) × 100, 

where W0 is weight of wheat gluten used (g, dry basis) and W1 is weight of freeze-

dried WGH (g). 

 

4. Degree of hydrolysis (DH) 

DH was determined by OPA method described by Wang et al. (2006) and 
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Frisher et al. (1988). Each sample of the WGH was dissolved at 1.25 mg/mL in 

12.5 mM sodium borate buffer (pH 8.5) containing 2% (w/v) SDS. Fifty μL of this 

solution was added to 1 mL of a reagent composed of 50 mL 0.1 M sodium borate 

buffer (pH 9.3), 1.25 mL 20% (w/v) SDS solution, 100 mg DMMAC and 40 mg 

OPA dissolved in 1 mL methanol before 2 min incubation at room temperature. 

Absorbance of the mixture was measured at 340 nm. The number of amino groups 

was determined with reference to an L-leucine standard curve (between 0.5 and 5 

mM). DH was calculated using the following equation: 

DH (%) = [(α-ni)/(nT-ni)] x 100, 

where nT is the total number of amino groups in the totally hydrolyzed gluten 

treated with 6 M HCl at 110˚C for 24 h, ni is the number of amino groups in native 

gluten and α is the number of free amino groups of WGH. 

 

5. Molecular weight (MW) distribution 

5.1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) 

SDS-PAGE was conducted according to Laemmli (1970) using 15% acrylamide 

separating gel and 5% acrylamide stacking gel. Each sample of the WGH was 

prepared in 50 mM Tris-HCl buffer (pH 6.8) containing 0.1% bromophenol blue, 

10% glycerol, 2.5% SDS and 0.1 M 1, 4-dithiothreitol, and loaded onto gel. After 

electrophoresis, gels were stained with Coomassie brilliant blue R-250 to detect 

proteins. 

 

5.2. Size exclusion chromatography (SEC) 

MW distribution of WGH was determined by SEC using an HPLC system 
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consisting of Waters 2695 and Waters 2996 PDA detector from Waters (Milford, 

MA, USA). TSK gel 2000 SWXL column (300 X 7.8 mm) from Tosoh (Tokyo, 

Japan) was used with 70:30 (v/v %) acetonitrile/water containing 0.1% 

trifluoroacetic acid (TFA) as mobile phase. Injection volume was 20 μL. Flow rate 

was 0.5 mL/min. Detection wavelength was 214 nm. Data processing was 

performed using Empower software version 2 from Waters (Milford, MA, USA). A 

MW calibration curve was prepared by following standards: cytochrome C from 

equine heart (12,500 Da), aprotinin from bovine lung (6,500 Da), bacitracin (1,450 

Da), Gly-Gly-Tyr-Arg (451 Da) and Gly-Gly-Gly (189 Da). A relationship between 

the retention times and the log of MW of the proteins used as standards was 

established. Samples were divided into the following classes: 0–500 Da, 500–1,000 

Da, 1,000-3,000 Da, 3,000–5,000 Da, 5,000–10,000 Da and above 10,000 Da. The 

relative area of each fraction was given in percentage of the total area. 

 

6. Free amino acids 

Free amino acids in the WGH were determined by an HPLC system consisting 

of Dionex Ultimate 3000 and FL detector (Dionex, Idstein, Germany). VDSspher 

100 C18 column (150 X 4.6 mm) from VDS Optilab (Berlin, Germany) was used 

with mobile phase A (40 mM sodium phosphate dibasic buffer, pH 7) and mobile 

phase B (water/acetonitrile/methanol, 10:45:45, v/v %). The gradient elution was as 

follows: 95% A and 5% B for 3 min, in 24 min to 45% A and 55% B, in 31 min to 

20% A and 80% B and 95% A and 5% B in 35 min. Flow rate was 1.5 mL/min, and 

injection volume was 0.5 μL. Immediately after injection, an auto-sampler was 

used for the inline-derivatization by FMOC/OPA post column derivatization. OPA-

derived amino acids were monitored at emission 450 nm and excitation 340 nm 
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and FMOC-derived amino acids were monitored at emission 305 nm and excitation 

266 nm. Data processing was performed using Chromeleon software 6.8 version 

from Dionex (Idstein, Germany). Individual free amino acids were expressed as 

mg/g of the lyophilized WGH. 

 

7. Antioxidant properties 

7.1. DPPH radical scavenging activity 

DPPH radical scavenging activity was determined according to the method 

described by Kong et al. (2008) with some modification. Each sample of the WGH 

was dissolved in distilled water at 5 mg/mL. Two hundred μL of the solution was 

mixed with 200 μL 0.2 mM DPPH dissolved in 95% (v/v) ethanol. The mixture 

was shaken and then incubated in the dark for 20 min. The mixture was centrifuged 

at 8,000×g for 10 min after incubation. Absorbance of the supernatant was 

measured at 517 nm. DPPH radical scavenging activity was calculated using the 

following equation: 

DPPH radical scavenging activity (%) = [(A0 – As)/A0] × 100, 

where A0 is absorbance of blank mixture (200 μL distilled water mixed with 200 

μL DPPH solution) and As is absorbance of the WGH. 

 

7.2. ABTS radical scavenging activity 

ABTS radical scavenging activity was determined as described by Re et al. 

(1999). ABTS radical solution was prepared by reacting 7 mM ABTS with 2.45 

mM potassium persulfate at a ratio of 1:1 (v/v). The mixture was allowed to stand 

in the dark for 12-16 h before use. The ABTS radical solution was diluted with 

distilled water to an absorbance of 0.7±0.05 at 734 nm. Then 50 μL of WGH was 
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added to 950 μL diluted ABTS radical solution. The mixture was shaken and then 

incubated in the dark for 10 min. The mixture was centrifuged at 8,000×g for 10 

min. Absorbance of the supernatant was measured at 734 nm. ABTS radical 

scavenging activity was calculated using the following equation: 

ABTS radical scavenging activity (%) = [(A0 – As)/A0] × 100, 

where A0 is absorbance of blank mixture (50 μL distilled water mixed with 950 μL 

ABTS solution) and As is absorbance of the WGH. 

 

8. Physicochemical properties of WGH solution 

8.1. Turbidity and thermal stability 

WGH were dissolved in distilled water at 50 mg/mL. Turbidity of the samples 

was determined by measuring the optical density (OD) at 600 nm using a 

spectrophotometer (Optizen 2120UV; Mecasys, Daejeon, Korea). To determine 

thermal stability, the samples were heated at 90˚C for 10 min and cooled down to 

room temperature. The turbidity of the samples was determined as mentioned 

above. Distilled water was used as blank. 

 

8.2. pH solubility 

The WGH were suspended at 50 mg/mL in a buffer solution using 0.2 M 

sodium phosphate and 0.1 M citric acid at pH 3, 5 and 7. The mixture was 

centrifuged at 15,000×g for 10 min. The supernatant was discarded, and the pellet 

was oven-dried at 105˚C for 1 h. The solubility (%) was calculated using the 

following equation: 

Solubility (%) = (W0-W1/W0) × 100, 

where W0 is weight of dry wheat gluten used (g) and W1 is weight of dried WGH 
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(g). 

 

8.3. Color 

WGH were dissolved in distilled water at 50 mg/mL. Color of WGH solution 

was measured using a colorimeter (CM-5, Konica Minolta Co., Tokyo, Japan). 

Results are given as lightness (L*), redness (a*) and yellowness (b*). 

 

9. Sensory evaluation 

Sensory evaluation was conducted two times. Firstly, the WGH produced by the 

single and sequential enzymatic hydrolyses for 12 h were selected for sensory 

evaluation. The WGH suspended at 1% concentration in water were presented for 

evaluation at room temperature in a randomized order. Thirty six participants 

scored all the samples for flavor, appearance, taste, bitterness and overall 

acceptability. Flavor, appearance, taste and overall acceptability were scored on 15 

cm line scales with anchors labeled ‘dislike very much’ (0) and ‘like very much’ 

(15). Bitterness was scored on a 15 cm line scale with anchors labeled ‘very weak’ 

(0) and ‘very strong’ (15). Secondly, based on the results of the first sensory 

evaluation, the WGH produced by 12 h hydrolyses using Alcalase and Protamex 

were selected as ingredients of a chocolate beverage because of their higher overall 

acceptability than the others. The chocolate beverage was prepared using Mite hot 

chocolate powder at 18% (w/w) concentration in hot water. The WGH were added 

at two different concentrations of 2.5 and 5% (w/w). The beverages were served at 

room temperature in a randomized order and evaluated under the same procedure 

of the first sensory evaluation. 
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10. Statistical analysis 

All the data were obtained by the tests conducted in triplicate. Results were 

subject to one-way analysis of variance (ANOVA) and Duncan’s new multiple 

range test at significance level of p<0.05 using SPSS 23.0 software (SPSS Inc., 

Chicago, IL, USA). 
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RESULTS AND DISCUSSION 

 

1. Yield and DH 

Yields of the WGH hydrolyzed by all the tested proteases were over 50% at any 

hydrolysis conditions (Table 1). Hydrolysis time little affected the yield of the 

WGH produced by Alcalase. On the other hand, the yield of the WGH by 2 h 

hydrolysis using Flavourzyme increased from 59.2% to 67.4% by 24 h hydrolysis. 

Yields of the WGH produced by Protamex and Neutrase tended to decrease during 

the enzymatic hydrolysis. These results indicate that Alcalase and Flavourzyme are 

more efficient to produce water-soluble hydrolysates than Protamex and Neutrase 

with hydrolysis time. The sequential enzymatic hydrolysis using Alcalase after 6 h 

hydrolysis with Protamex produced more water-soluble hydrolysates than the 

hydrolysis using only Protamex, implying that the sequential enzymatic hydrolysis 

may overcome low yield of single enzymatic hydrolysis using Protamex. 

As shown in Table 1, DH of the WGH was up to 52.9% depending on the 

enzyme types and hydrolysis conditions including hydrolysis time and the number 

of treated enzymes. The hydrolysis of wheat gluten with the proteases seemed to 

slow down after 6 h hydrolysis. DH of the WGH produced by Flavourzyme was 

the highest, indicating that Flavourzyme is the most efficient for wheat gluten 

hydrolysis. After 24 h hydrolysis, DH of the WGH produced by Alcalase was 

similar to that of the WGH produced by Protamex, while that of the WGH 

produced by Neutrase was the lowest. Kechaou et al. (2009) reported that Alcalase 

was the best to hydrolyze cuttlefish viscera (Sepia officinalis) and sardine viscera 

(Sardina pilchardus) among commercial proteases (Alcalase, Flavourzyme and 

Protamex).  
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The sequential enzymatic hydrolysis using Alcalase after 6 h hydrolysis with 

Protamex showed higher efficiency than the single enzymatic hydrolysis with 

Protamex. On the other hand, the sequential enzymatic hydrolysis using Protamex 

after 6 h hydrolysis with Alcalase showed lower efficiency than the single 

enzymatic hydrolysis with Alcalase. The sequential enzymatic hydrolysis seemed 

to be more efficient on the production of WGH than the single enzymatic 

hydrolysis. However, MW distribution determined by SEC should be considered to 

evaluate the hydrolysis efficiency because DH was only calculated by the number 

of amino groups. 
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Table 1. Yield and degree of hydrolysis (DH) of wheat gluten hydrolysates 

produced by single and sequential enzymatic hydrolyses 

 Enzyme 
Hydrolysis 

time (h) 
Yield (%) DH (%) 

Single 

Alcalase 2 64.2±0.39e 8.74±1.21e 

 6 64.9±0.06d 13.5±0.79d 

 8 66.4±0.06c 16.2±2.05cd 

 10 66.9±0.11b 18.4±2.31bc 

 12 67.5±0.08a 22.5±1.96ab 

 24 66.8±0.11b 26.3±4.18a 

Flavourzyme 2 59.2±0.70c 13.4±0.77d 

 6 63.1±0.71b 33.3±0.30c 

 12 66.9±0.46a 38.7±2.03b 

 24 67.4±0.42a 52.9±2.76a 

Protamex 2 66.4±0.59a 7.15±1.26e 

 6 63.7±2.20b 14.0±1.78d 

 8 62.8±0.18b 14.2±0.87cd 

 10 60.0±0.13c 16.2±0.63c 

 12 59.4±0.25c 18.8±1.01b 

 24 55.8±1.46d 25.4±0.71a 

Neutrase 2 64.4±0.07a 5.65±0.60d 

 6 66.4±1.03a 8.83±0.37c 

 12 60.9±0.05b 13.0±0.53b 

 24 54.6±0.77c 22.1±1.29a 

Sequential 

Alcalase→ 6→2 66.7±0.07a 13.9±1.59b 

Protamex 6→4 66.9±0.46a 18.7±0.53a 

 6→6 65.4±0.50b 20.1±1.46a 

Protamex→ 6→2 62.6±0.17 17.3±2.96 

Alcalase 6→4 63.1±0.13 17.6±2.08 

 6→6 63.0±0.37 21.3±2.11 

 

All data represent the mean and standard deviation (n=3). 

Different small letters in the same columns indicate significant differences among 

wheat gluten hydrolysates produced by same enzyme (p<0.05; one-way ANOVA 

and Duncan’s multiple range test). 

  



 

 14 

2. MW distribution of the WGH 

MW of all the WGH in the SDS-PAGE patterns dramatically decreased to 

below 15 kDa (data not shown), compared with raw wheat gluten, which consisted 

of high MW subunit of glutenin (67-88 kDa), low MW subunits of glutenin (32-35 

kDa) and gliadin (28-55 kDa) (Wieser, 2007). 

As shown in Table 2, the SEC revealed that the fraction of the hydrolysates with 

more than 10 kDa decreased during hydrolysis, while the fraction with less than 1 

kDa increased on all the WGH. After 2 h hydrolysis, Alcalase was the best to 

hydrolyze wheat gluten into peptides among the treated enzymes. The WGH 

produced by Alcalase contained the smallest amount of the fraction with more than 

10 kDa and the largest amount of the fraction with less than 500 Da. The WGH 

produced after 6 h hydrolysis by Flavourzyme contained smaller amount of the 

fraction with more than 10 kDa and larger amount of the fraction with less than 500 

Da than those produced by the other enzymes. However, it is hard to evaluate 

whether Flavourzyme is more efficient for the production of WGH with lower MW 

because it has both endo- and exo-protease activities. Therefore, the amount of free 

amino acids should be considered. On the other hand, Neutrase showed the lowest 

efficiency to hydrolyze wheat gluten into peptides for all the hydrolysis times. The 

WGH produced by Neutrase contained the largest amount of the fraction with more 

than 10 kDa and the smallest amount of the fraction with less than 500 Da at any 

hydrolysis times. Therefore, Neutrase may not be a suitable enzyme to hydrolyze 

wheat gluten effectively. 

MW distributions of the WGH produced by the single and sequential enzymatic 

hydrolyses are shown in Fig. 1. The sequential enzymatic hydrolysis decreased the 

fraction with more than 10 kDa and increased the fraction with less than 500 Da 
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compared to the single enzymatic hydrolysis during the same hydrolysis time. The 

fraction with more than 10 kDa remarkably was less in the WGH produced by 2 h 

hydrolysis using Protamex after 6 h hydrolysis using Alcalase (3.0%) than by 8 h 

hydrolysis using Alcalase (7.8%). Moreover, the fraction with less than 500 Da was 

much more in the WGH produced by 2 h hydrolysis using Protamex after 6 h 

hydrolysis using Alcalase (45.5%) than by 8 h hydrolysis using Alcalase (37.8%). 

The fraction with more than 10 kDa in the WGH produced by Alcalase after 6 h 

hydrolysis using Protamex (2.3%) was also less than by 8 h hydrolysis using 

Protamex (10.4 %). Therefore, adding the second enzyme effectively hydrolyzed 

wheat gluten into smaller peptides.
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Table 2. Molecular weight distribution of wheat gluten hydrolysates produced by single enzymatic hydrolysis 

Enzyme 
Hydrolysis 

time (h) 
>10 kDa 5-10 kDa 3-5 kDa 1-3 kDa 0.5-1 kDa <500 Da 

Alcalase 2 18.2±1.40aD 7.75±0.72aC 7.79±0.68a 24.1±0.71aA 15.9±0.73cA 26.4±0.67dA 

 6 9.97±1.51bB 6.09±0.38bB 6.75±0.48bB 24.7±0.32aB 18.1±0.72bB 34.4±1.67cA 

 12 3.02±0.47cB 3.54±0.38cC 5.40±0.51cB 22.4±0.69bC 20.1±0.44aA 45.5±1.91bA 

 24 1.57±0.25cB 2.50±0.25dC 4.41±0.44cB 19.7±0.34cC 19.5±0.68aB 52.3±1.06aB 

Flavourzyme 2 31.1±1.28aB 10.1±0.10aAB 8.44±1.01a 22.5±0.84cB 10.6±0.53cC 17.4±0.56dB 

 6 6.97±1.02bC 6.76±0.37bB 6.88±0.20bAB 26.5±0.34aA 15.9±0.34bC 37.0±0.74cA 

 12 4.04±0.35cB 5.18±0.27cB 5.79±0.09cB 24.0±0.23bB 16.9±0.10aC 44.1±0.83bA 

 24 2.02±0.39dB 1.86±0.11dC 2.78±0.15dC 14.4±0.36dD 16.1±0.25bC 62.9±1.08aA 

Protamex 2 24.4±1.41aC 9.65±0.25aB 7.73±0.64a 23.7±0.28AB 16.1±0.50bA 18.4±1.57cB 

 6 10.6±2.22bB 9.31±1.64aA 6.55±0.34aB 25.1±0.42B 20.3±0.55aA 28.2±3.43bB 

 12 3.20±1.12cB 5.30±1.29bB 5.26±0.65bB 23.7±1.11B 21.0±0.38aA 41.5±4.36aA 

 24 1.76±0.16cB 3.94±0.97bB 4.74±0.84bB 23.7±2.31B 20.8±0.17aA 45.1±3.73aC 

Neutrase 2 34.8±1.38aA 10.7±0.41aA 8.26±0.20a 21.0±0.68cC 12.2±0.33cB 13.1±0.49dC 

 6 22.3±1.15bA 10.7±0.39aA 7.55±0.40bA 24.8±0.44bB 16.1±0.52bC 18.6±0.02cC 

 12 13.5±1.94cA 10.3±0.65aA 7.76±0.14bA 26.3±0.42aA 18.3±0.82aB 23.9±0.82bB 

 24 8.29±1.49dA 8.98±0.54bA 7.56±0.10bA 26.6±0.85aA 19.3±0.86aB 29.2±0.46aD 

 

All data represent the mean and standard deviation (n=3).  

Different small letters in the same columns indicate significant differences among the wheat gluten hydrolysates produced by the same enzymes 
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(p<0.05; one-way ANOVA and Duncan’s multiple range test).  

Different large letters in the same columns indicate significant differences among the wheat gluten hydrolysates produced during the same 

hydrolysis times (p<0.05; one-way ANOVA and Duncan’s multiple range test). 
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Figure 1. Molecular weight distribution of wheat gluten hydrolysates determined by size exclusion chromatography.  

(A) Single enzymatic hydrolysis using Alcalase and sequential enzymatic hydrolysis using Protamex and Alcalase. (B) Single enzymatic 

hydrolysis with Protamex and sequential enzymatic hydrolysis using Alcalase and Protamex. Alcalase, A; Protamex, P; and numbers after A and 

P are hydrolysis times (h). All data represent the means and standard deviations (n=3). 
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3. Free amino acids of the WGH 

The enzyme types and the number of the treated enzymes significantly affected 

the amounts of free amino acids and compositions of the WGH (Table 3). 

Flavourzyme produced more free amino acids than the others. Although the 

amounts of the fractions with less than 500 Da in the WGH produced by 12 h 

hydrolyses using Alcalase, Flavourzyme and Protamex were not significantly 

different (p>0.05), the amount of free amino acids in the WGH produced by 

Flavourzyme (24.5 %) was much higher than in the WGH produced by Alcalase 

and Protamex, indicating that the WGH produced by 12 h hydrolysis using 

Flavourzyme contained less amount of peptides with less than 500 Da than the 

others at the same hydrolysis time. Free amino acids except proline in the WGH 

produced by Flavourzyme were the largest. Protamex produced significantly more 

free amino acids than Alcalase (p<0.05). Free amino acids in the WGH produced 

by 12 h hydrolysis using Protamex, except glutamic acid and threonine, were 

significantly more than in the WGH produced by 12 h hydrolysis using Alcalase. 

The WGH produced by 12 h hydrolysis using Alcalase had significantly more 

glutamic acid than by 12 h hydrolysis using Protamex (p<0.05), while the amount 

of threonine was not significantly different (p>0.05). Although total free amino 

acids were not significantly different between the WGH produced by Alcalase and 

by Neutrase, the compositions of free amino acids were remarkably different. 

Aaslyng et al. (1988) reported that free amino acids contribute to the taste of 

hydrolyzed soy proteins, and especially the content of glutamic acids is important 

for umami taste. 

Although the enzyme and time for the hydrolysis were the same, sequence of 

enzyme treatments significantly affected the compositions and total amounts of 
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free amino acids of the hydrolysates (Table 3). Total free amino acids in the WGH 

produced by 6 h hydrolysis using Alcalase after 6 h hydrolysis using Protamex 

(32.3 mg/g) were significantly higher than by 6 h hydrolysis using Protamex after 6 

h hydrolysis using Alcalase (22.9 mg/g) (p<0.05). Most of the free amino acids in 

the WGH produced by 6 h hydrolysis using Alcalase after 6 h hydrolysis using 

Protamex were significantly more than by 6 h hydrolysis using Protamex after 6 h 

hydrolysis using Alcalase (p<0.05). This might result from the changes in the 

cleavage sites available for the second enzymes due to the changes in the amino 

acid sequences of the WGH by the first enzymes. 
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Table 3. Free amino acids in wheat gluten hydrolysates produced by single and sequential enzymatic hydrolyses for 12 h (mg/g, dry basis) 

Amino acid A12 F12 P12 N12 A6P6 P6A6 

Aspartic acid 0.25±0.01c 2.52±0.06a 0.30±0.02b 0.19±0.01d 0.18±0.00d 0.18±0.01d 

Glutamic acid 3.57±0.14b 5.42±0.16a 1.75±0.15c 0.69±0.04e 1.21±0.09d 1.33±0.17d 

Asparagine 0.42±0.01c 5.28±0.22a 0.68±0.04b 0.37±0.04c 0.30±0.01c 0.38±0.03c 

Serine 1.94±0.05c 14.1±0.27a 3.11±0.09b 1.97±0.12c 1.22±0.05d 1.84±0.09c 

Glutamine 5.82±0.15c 81.9±1.09a 8.31±0.68b 4.24±0.03d 3.83±0.10d 4.15±0.35d 

Histidine 0.55±0.01d 7.66±0.21a 1.41±0.09b 0.71±0.02cd 0.33±0.04e 0.74±0.07c 

Glycine 0.23±0.00e 2.69±0.07a 0.95±0.06b 0.80±0.06c 0.21±0.01e 0.71±0.03d 

Threonine 1.19±0.04b 7.21±0.17a 1.32±0.04b 0.83±0.04c 0.89±0.05c 0.83±0.05c 

Arginine 3.11±0.10c 12.0±0.35a 5.17±0.22b 3.09±0.19c 2.34±0.13d 3.24±0.16c 

Alanine 1.51±0.04d 7.25±0.15a 2.70±0.09b 1.75±0.07c 1.00±0.02e 1.58±0.11d 

Tyrosine 1.34±0.03c 9.22±0.17a 3.40±0.05b 1.60±0.69c 0.77±0.04d 1.53±0.08c 

Valine 1.51±0.02c 15.3±0.29a 2.27±0.07b 1.42±0.02c 0.90±0.02d 1.05±0.08d 

Methionine 1.68±0.01c 5.76±0.09a 1.94±0.12b 1.12±0.01d 0.93±0.01e 1.16±0.09d 

Phenylalanine 2.32±0.05e 13.3±0.21a 5.28±0.13b 3.67±0.03c 1.43±0.05f 2.53±0.12d 
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Table 3. (continued) 

Amino acid A12 F12 P12 N12 A6P6 P6A6 

Isoleucine 1.12±0.03d 15.1±0.27a 2.80±0.10b 1.61±0.04c 0.66±0.01e 1.09±0.08d 

Leucine 7.78±0.19c 34.6±0.71a 11.1±0.65b 6.90±0.02d 5.51±0.07e 7.03±0.27d 

Lysine 0.75±0.02d 2.39±0.12a 1.52±0.05b 0.98±0.03c 0.68±0.04d 1.00±0.06c 

Proline 0.74±0.04e 2.89±0.07b 3.77±0.10a 2.76±0.05c 0.50±0.07f 1.90±0.04d 

Total 35.9±0.88c 244.7±3.38a 57.8±2.30b 34.7±1.12c 22.9±0.53d 32.3±1.87c 

 

Alcalase, A; Flavouzyme, F; Protamex, P; Neutrase, N; and numbers after the letters are hydrolysis times (h). 

All data represent the means and standard deviations (n=3). 

Different small letters in the same rows indicate significant differences (p<0.05; one-way ANOVA and Duncan’s multiple range test).
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4. Antioxidant properties of the WGH 

DPPH radical scavenging activity of the WGH increased up to 68.1% 

depending on the types of enzymes and hydrolysis time (Table 4). DPPH radical 

scavenging activity of the WGH generally increased with hydrolysis time. DPPH 

radical scavenging activity of the WGH produced by 24 h hydrolysis using 

Alcalase was the highest. The WGH produced by Alcalase and Protamex showed 

higher DPPH radical scavenging activity than those by Flavourzyme. These results 

revealed that protein hydrolysates with higher contents of smaller peptides might 

have higher antioxidant properties than those with lower contents of smaller 

peptides. Alashi et al. (2014) also reported similar results that the fraction with less 

than 1 kDa exhibited high antioxidant properties in Australian canola meal protein 

hydrolysates.  

 ABTS radical scavenging activity was over 60% regardless of enzyme types 

and hydrolysis time (Table 4). This result seems to be different from the result of 

DPPH radical scavenging activity, which was influenced by the enzyme types and 

correlated with hydrolysis time. ABTS radical scavenging activity of the WGH was 

little changed by the enzyme types and hydrolysis time. Khantaphant et al. (2012) 

reported the same results that DPPH radical scavenging activity in protein 

hydrolysates from the muscle of brown stripe red snapper significantly increased 

with increasing DH, but ABTS radical scavenging activity was little changed with 

increasing DH.
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Table 4. DPPH and ABTS radical scavenging activities of wheat gluten 

hydrolysates produced by single and sequential enzymatic hydrolyses 

 Enzyme 
Hydrolysis 

time (h) 
DPPH (%) ABTS (%) 

Single 

Alcalase 2 9.01±2.46e 67.2±1.60a 

 6 28.3±4.97d 64.4±0.53bc 

 8 29.8±1.17d 66.3±0.61ab 

 10 40.3±3.23c 67.1±0.90a 

 12 51.7±3.32b 64.2±0.81c 

 24 68.1±2.40a 64.7±1.43bc 

Flavourzyme 2 N.D. 64.8±0.80ab 

 6 N.D. 63.3±0.46b 

 12 10.7±1.41 63.3±0.73b 

 24 20.1±1.46 66.7±1.88a 

Protamex 2 14.7±3.72c 67.9±1.05 

 6 47.1±2.14b 67.3±0.62 

 8 48.8±3.51b 68.9±2.37 

 10 52.2±2.61b 66.8±4.92 

 12 60.4±2.76a 67.6±1.07 

 24 62.5±3.41a 73.0±1.20 

Neutrase 2 N.D. 65.2±1.77 

 6 23.7±4.47 64.4±0.68 

 12 26.9±3.17 66.1±0.66 

 24 32.9±3.57 66.0±0.46 

Sequential 

Alcalase→ 6→2 47.0±0.30c 65.2±4.38 

Protamex 6→4 53.0±2.33b 67.6±0.22 

 6→6 61.9±1.46a 66.2±1.11 

Protamex→ 6→2 46.0±3.42c 65.4±2.36 

Alcalase 6→4 53.8±2.43b 65.3±2.95 

 6→6 62.3±3.61a 65.7±2.08 

 

N.D.: not determined  

All data represent the means and standard deviations (n=3). 

Different small letters in the same columns indicate significant differences among 

wheat gluten hydrolysates produced by the same enzymes (p<0.05; one-way 

ANOVA and Duncan’s multiple range test). 
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5. Physicochemical properties of WGH solution 

The treated enzymes, except Protamex, and hydrolysis conditions including 

hydrolysis time and the number of treated enzymes significantly affected turbidity 

of WGH solution (Fig. 2). All the WGH solution had low turbidity after 12 h 

hydrolysis. The WGH solution prepared by Protamex had lower turbidity 

regardless of hydrolysis time than the others. Turbidity of the WGH solution 

prepared by Alcalase decreased after 10 h hydrolysis. Adding Alcalase after 6 h 

hydrolysis with Protamex was better to prepare a WGH solution with lower 

turbidity than adding Protamex after 6 h hydrolysis with Alcalase. Thermal 

processing little influenced turbidity of the WGH regardless of the enzyme types 

and hydrolysis conditions including hydrolysis time and the number of treated 

enzymes (Fig. 2). This result is attributed to the fact that unpredictable aggregation 

is rarely formed during thermal processing in WGH with shorter peptides due to 

the lack of secondary structures. 

Most of the beverage industry considers food processing to avoid undesirable 

turbidity and precipitation in the final products (Pinelo et al., 2010). Moreover, a 

maintenance of clarity has been a concern in beverage products, and thermal 

treatments are required for safety and shelf stability in the beverage industry 

(Beecher et al., 2008; LaClair and Etzel, 2010). As a result, WGH with shorter 

peptides, having lower turbidity and higher thermal stability, are suitable to be 

ingredients for the beverages. Enzymatic hydrolysis could be also utilized to 

improve functional properties such as turbidity and thermal stability of proteins in 

food manufacturing.  

Solubility of wheat gluten was less than 10% at pH 3, 5 and 7, while most of the 

WGH had high solubility over 96% at pH 3, 5 and 7 except the WGH produced by 
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2 and 6 h hydrolyses using Alcalase (data not shown). This result might be 

attributed to the fact that smaller and more hydrophilic peptides are produced via 

enzymatic hydrolysis. Kong et al. (2007) also reported that solubility of WGH 

increased over 60 % by enzymatic hydrolysis using commercial proteases. 

L*, a* and b* values of the WGH solution were shown in Table 5. The L* 

values of the WGH solution prepared with single enzymatic hydrolysates decreased 

with hydrolysis time, while the b* values of the WGH solution increased with 

hydrolysis time. On the other hand, sequential enzymatic hydrolysis little affected 

the L*, a* and b* values of the WGH solution. Dong et al. (2008) also reported 

that the L* values decreased with hydrolysis time, while the b* values increased 

with hydrolysis time in the Silver carp (Hypophthalmichthys molitrix) protein 

hydrolysates produced by Alcalase and Flavourzyme.
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Figure 2. Turbidity and thermal stability of wheat gluten hydrolysates produced by single and sequential enzymatic hydrolyses using 

Alcalase, Flavourzyme, Protamex and Neutrase.  

A6P, wheat gluten hydrolysates produced by Protamex after 6 h hydrolysis with Alcalase; and P6A, wheat gluten hydrolysates produced by 

Alcalase after 6 h hydrolysis with Protamex. All data represent the means and standard deviations (n=3). Different small letters indicate 

significant differences among wheat gluten hydrolysates produced by the same enzymes (p<0.05; one-way ANOVA and Duncan’s multiple 

range test). 
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Table 5. L*, a* and b* values of wheat gluten hydrolysates produced by single and sequential enzymatic hydrolyses 

 Enzyme Hydrolysis time (h) L* a* b* 

Single 

Alcalase 2 80.6±5.26bc 1.05±0.58a 12.4±0.51c 

 6 77.6±0.74c -0.01±0.05b 12.5±0.08c 

 8 77.2±0.95c -0.06±0.08b 13.6±0.22b 

 10 85.8±1.05a -1.15±0.31c 13.8±0.62b 

 12 86.8±0.12a -2.26±0.11d 13.4±0.13b 

 24 83.9±0.30ab -2.64±0.11d 17.5±0.02a 

Flavourzyme 2 81.0±1.39c 0.44±0.12a 11.7±0.09c 

 6 85.9±0.38a -0.70±0.26c 11.9±0.59c 

 12 82.9±0.78b -0.48±0.13bc 14.6±0.31b 

 24 80.9±0.44c -0.33±0.12b 15.7±0.72a 

Protamex 2 92.3±0.06a -0.80±0.11a 8.37±0.31c 

 6 88.0±0.78b -1.37±0.40b 12.7±1.02b 

 8 87.0±0.42b -1.65±0.04bc 13.4±0.21a 

 10 86.0±1.97b -1.49±0.47b 14.1±0.78ab 

 12 86.4±0.74b -2.11±0.12c 13.1±0.26ab 

 24 87.3±2.95b -1.63±0.27bc 13.9±0.98ab 
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Table 5. (continued) 

 Enzyme Hydrolysis time (h) L* a* b* 

 

Neutrase 2 90.9±1.65a 0.05±0.54a 10.0±1.12c 

 6 89.0±0.85ab -1.20±0.22b 13.0±1.23b 

 12 85.7±0.78b -1.42±0.08bc 15.2±1.21ab 

 24 87.7±2.95ab -1.87±0.18c 14.6±0.63a 

Sequential 

Alcalase→ 6→2 83.6±2.79 -0.49±0.21a 14.1±0.06a 

Protamex   6→4 86.3±2.08 -1.23±0.24b 13.9±0.11a 

 6→6 87.9±0.09 -2.21±0.05c 13.5±0.23b 

Protamex→ 6→2 86.4±1.15 -1.22±0.65a 14.3±1.22 

Alcalase 6→4 87.7±0.26 -2.03±0.07b 13.3±0.11 

 6→6 86.6±0.05 -2.17±0.08b 14.2±0.14 

 

All data represent the mean and standard deviation (n=3). 

Different small letters in the same columns indicate significant differences among wheat gluten hydrolysates produced by same enzyme (p<0.05; 

one-way ANOVA and Duncan’s multiple range test).
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6. Sensory characteristics of WGH beverage 

Sensory profiles of WGH solutions and chocolate beverages with WGH are 

shown in Fig. 3. The WGH solutions produced by single and sequential enzymatic 

hydrolyses for 12 h differed mainly in flavor, taste, bitterness and overall 

acceptability (Fig. 3A). The WGH produced by 12 h hydrolyses using Alcalase and 

Protamex had higher overall acceptability. On the other hand, overall acceptability 

of the WGH produced by Neutrase was the lowest. The WGH produced by the 

sequential enzymatic hydrolysis had stronger bitterness than by the single 

enzymatic hydrolysis. Bitterness of the WGH produced by 12 h hydrolysis using 

Alcalase was the lowest among the tested six hydrolysates. The WGH with lower 

bitterness tasted better as expected.  

The chocolate beverage without the WGH had the highest overall acceptability, 

taste, appearance and the lowest bitterness (Fig. 3B). Bitterness of the chocolate 

beverage prepared with the WGH produced by 12 h hydrolyses using Alcalase and 

Protamex significantly increased depending on the WGH concentration. Chocolate 

beverage containing 5% (w/w) WGH prepared with the WGH produced by 12 h 

hydrolysis using Protamex had lower bitterness, better taste and higher overall 

acceptability than that produced by 12 h hydrolysis using Alcalase. Although there 

was little difference in MW distribution of the WGH produced by 12 h hydrolyses 

using Alcalase and Protamex, the differences of peptide sequence and the content 

of free amino acids in the WGH might contribute to sensory properties. Liu et al. 

(2012) reported that smaller peptides with larger amounts of hydrophobic amino 

acids had stronger bitterness in soy protein hydrolysates and high content of free 

amino acids, especially glutamic acid, had umami taste. Moreover, the bitterness of 

protein hydrolysates has been concerned for application in food systems (Yang et 
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al., 2012). Therefore, agents inhibiting bitter taste in WGH need to be studied for 

developing a better beverage. 
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(A) Wheat gluten hydrolysates suspended in water (1%, w/w) and (B) chocolate beverages prepared with wheat gluten hydrolysates (2.5 and 

5%, w/w) produced by 12 h hydrolyses with Alcalase and Protamex. Each value represents the mean scored on a 15 cm line scale by 36 

panelists. Alcalase, A; Flavourzyme, F; Protamex, P; Neutrase, N; Control, C; numbers after the letters are hydrolysis times (h) and numbers 

before the letters are concentrations of wheat gluten hydrolysates.
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Figure 3. Sensory profile of wheat gluten hydrolysates. 
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국문초록 

 
밀 글루텐 효소가수분해물의 이화학적 특성 

 

최유미 

식품영양학과 

서울대학교 대학원 

 

단백질 가수분해는 용해도, 거품 형성능, 유화능과 같은 물리적 특성

이나 항산화, 항염증, 항균, 항고혈압과 같은 생리활성을 가지는 단백질 

가수분해물을 생산하는데 사용되어 왔다. 단백질 효소 가수분해는 우유, 

달걀, 돼지, 소, 닭과 같은 동물성 원료와 쌀, 옥수수, 밀, 콩과 같은 식

물성 원료를 포함한 다양한 식품을 활용하고 있다. 그 중 밀 글루텐은 

밀에서부터 전분을 생산하는 공정 중에 생산되기 때문에 가격이 비교적 

저렴하다. 본 연구는 상업적으로 이용되는 단백질 가수분해효소를 이용

하여 생산한 밀 글루텐 가수분해물의 화학 특성과 항산화능의 변화를 평

가하고 이를 음료의 원료로 활용하기 위하여 수행하였다.  

밀 단백질을 단백질 가수분해효소 4 종류(Alcalase, Flavouryzme, 

Protamex, Nerutrase)를 이용하여 단일(2, 6, 12, 24시간) 또는 순차적 

조합 효소 가수분해(8, 10, 12시간)를 수행했다. 밀 글루텐을 증류수에 

20%(w/w)로 넣고 효소 대 밀 글루텐의 비를 1:100(w/w)으로 첨가하
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여 50℃에서 가수분해했다. 

생산된 모든 밀 글루텐 가수분해물의 수율은 50% 이상이었다. 밀 글

루텐 가수분해물의 가수분해도는 가수분해 시간에 따라 유의적으로 증가

했다(p<0.05). Flavourzyme을 이용하여 생산한 밀 글루텐 가수분해물

의 가수분해도는 가수분해 시간에 상관없이 가장 높았으나, Neutrase를 

이용하여 생산한 밀 글루텐 가수분해물의 가수분해도는 가장 낮았다. 순

차적 조합 효소 가수분해는 단일 효소 가수분해에 비해서 분자량이 10 

kDa 이상인 분획을 현저하게 감소시켰고 500 Da 이하인 분획을 증가시

켰다. 밀 글루텐 가수분해물의 유리 아미노산의 함량과 조성은 처리한 

단백질 가수분해 효소의 수와 처리한 단백질 가수분해 효소의 순서와 같

은 가수분해 조건과 효소 유형에 의해 영향을 받았다. 특히, 

Flavourzyme을 12시간 처리한 밀 글루텐 가수분해물의 24%는 유리 

아미노산이었다. 밀 글루텐 가수분해물의 DPPH 라디칼 소거능은 가수

분해 시간에 따라 유의적으로 증가했다(p<0.05). 반면, 밀 글루텐 가수

분해물의 ABTS 라디칼 소거능은 가수분해 처리 조건과 효소 유형에 큰 

영향을 받지 않았다. Protamex를 이용하여 생산한 밀 글루텐 가수분해

물을 원료로 사용하여 제조한 음료가 탁도가 비교적 낮고, 열 안정성이 

우수하고, 용해도가 높아 이를 음료 개발에 활용하기에 적합하다고 판단

했다.  

 

주요어: 밀 글루텐; 단백질 가수분해물; 효소 가수분해; 음료  

학번: 2015-21711  


	INTRODUCTION
	MATERIALS AND METHODS
	1. Materials
	2. Preparation of wheat gluten hydrolysates
	3. Yield of the WGH
	4. Degree of hydrolysis (DH)
	5. Molecular weight (MW) distribution
	5.1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
	5.2. Size exclusion chromatography (SEC)

	6. Free amino acids
	7. Antioxidant Properties
	7.1. DPPH radical scavenging activity
	7.2. ABTS radical scavenging activity

	8. Physicochemical properties of WGH solution
	8.1. Turbidity and thermal stability
	8.2. pH solubility
	8.3. Color

	9. Sensory evaluation
	10. Statistical analysis

	RESULTS AND DISCUSSION
	1. Yield and DH
	2. MW distribution of the WGH
	3. Free amino acids of the WGH
	4. Antioxidant properties of the WGH
	5. Physicochemical properties of WGH solution
	6. Sensory characteristics of WGH beverage

	REFERENCES
	국문초록


<startpage>9
INTRODUCTION 1
MATERIALS AND METHODS 3
 1. Materials 3
 2. Preparation of wheat gluten hydrolysates 3
 3. Yield of the WGH 4
 4. Degree of hydrolysis (DH) 4
 5. Molecular weight (MW) distribution 5
  5.1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 5
  5.2. Size exclusion chromatography (SEC) 5
 6. Free amino acids 6
 7. Antioxidant Properties 7
  7.1. DPPH radical scavenging activity 7
  7.2. ABTS radical scavenging activity 7
 8. Physicochemical properties of WGH solution 8
  8.1. Turbidity and thermal stability 8
  8.2. pH solubility 8
  8.3. Color 9
 9. Sensory evaluation 9
 10. Statistical analysis 10
RESULTS AND DISCUSSION 11
 1. Yield and DH 11
 2. MW distribution of the WGH 14
 3. Free amino acids of the WGH 19
 4. Antioxidant properties of the WGH 23
 5. Physicochemical properties of WGH solution 25
 6. Sensory characteristics of WGH beverage 30
REFERENCES 33
국문초록 37
</body>

