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Abstract 

 

The Effect of Korean Pine Nut Oil on the Factors Involved in 

Body Fat Accumulation in Obese Mice Fed High-fat Diet 

 

Sunhye Shin 

Department of Food and Nutrition 

The Graduate School 

Seoul National University 

 

Korean pine nut oil (PNO) has been reported to suppress appetite by 

increasing satiety hormone release. However, the effects of PNO on the 

expression of satiety hormone receptors and neuropeptides have not been 

studied. Also, there is limited information on whether PNO has an influence 

on lipid metabolism. In this study, 5-wk-old C57BL/6 mice were fed control 

diets containing 10% kcal fat from PNO or soybean oil (SBO) (PC or SC) or 

high-fat diets containing 35% kcal fat from lard and 10% kcal fat from PNO 

or SBO (PHF or SHF) for 12 weeks. The mRNA expression levels of 

cholecystokinin related genes, ghrelin related genes, neuropeptides, and 

genes associated with lipid metabolism in the small intestine and white 

adipose tissue were quantified by real-time PCR. Overall, PNO-fed mice 

gained less weight (P = 0.01) and had less white adipose tissue (P < 0.01) 
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despite no difference in daily food intake between SBO- and PNO-fed mice. 

PC and PHF groups had less amount of white adipose tissue compared with 

SC group (30% less, P = 0.05) and SHF group (18% less, P = 0.03), 

respectively. Altogether, PNO-fed mice had significantly higher mRNA 

expression of Growth hormone secretagogue receptor (Ghsr, P = 0.03) and 

Agouti-related peptide (Agrp, P = 0.02), and tended to have higher mRNA 

expression of Pro-opiomelanocortin (Pomc, P = 0.08) and Cocaine- and 

amphetamine-regulated transcript (Cart, P = 0.06) in hypothalamus. PC 

group had higher Ghsr mRNA expression than SC group (1.23-fold, P = 

0.02). PHF group had higher Agrp mRNA expression than SHF group 

(2.16-fold, P = 0.02). Collectively, PNO-fed mice had lower mRNA 

expression of jejunal Cd36 (P = 0.03) and epididymal Lipoprotein lipase 

(Lpl, P = 0.02). PC group had lower Lpl mRNA expression than SC group 

(38% less, P = 0.04). Overall, PNO-fed mice tended to have lower jejunal 

Apolipoprotein A-IV mRNA expression (Apoa4, P = 0.07) and higher 

epididymal β3-adrenergic receptor mRNA expression (Adrb3, P = 0.08). 

Higher expression of Ghsr and Agrp mRNA in PNO-fed mice indicates that 

PNO-fed mice received stronger signal promoting energy consumption 

which might be due to less amount of white adipose tissue. The tendency of 

higher Pomc and Cart mRNA expression in PNO-fed mice suggests that 

mice in SHF group might have impaired POMC/CART pathway and failed 

to upregulate Pomc and Cart mRNA expression despite their higher body 
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weight. The lower expression of Cd36 and Lpl mRNA, and the tendency of 

lower Apoa4 mRNA and higher Adrb3 mRNA expression in PNO-fed mice 

imply that PNO was less efficiently absorbed and stored in the body than 

SBO, which led to less fat accumulation in PNO-fed mice. In conclusion, 

PNO reduced weight gain and alleviated the possibility of POMC/CART 

pathway dysregulation in high-fat diet-fed mice. The lower weight gain of 

PNO-fed mice seemed to be due to the effect of PNO on lipid metabolism. 

 

KEY WORDS: Korean pine nut oil, High-fat diet, POMC/CART 

pathway, Jejunal lipid absorption, Epididymal lipid metabolism 
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I. INTRODUCTION 

   Obesity is one of the major risk factors for chronic diseases such as 

hypertension, dyslipidemia, type 2 diabetes, cardiovascular disease, and 

some cancers (Must et al. 1999). Prevalence of obesity has increased in 

many countries. This has triggered global interest in finding effective, safe, 

and easy strategies to lose weight, and many natural substances have been 

studied for the possible weight loss effect which could be applied for the 

general population. 

   Pine nuts have been consumed for centuries around the world, especially 

in the Mediterranean and Asian regions. About 60 percent of the weight of 

pine nuts is composed of oils. Korean pine (Pinus Koraiensis) nut oil 

contains 4% palmitic acid (16:0), 28% oleic acid (18:1, ∆9), 47% linoleic 

acid (18:2, ∆9,12), and 14% pinolenic acid (18:3, ∆5,9,12). The percentage 

of pinolenic acid is uniquely higher in Korean pine nut oil than other pine 

nut oils (Wolff et al. 2000). Pinolenic acid, which is a kind of unsaturated 

polymethylene-interrupted fatty acids with a cis-5 ethylenic bond (Lee et al. 

2004), is the positional isomer of γ-linolenic acid (Matsuo et al. 1996).  

   Most of the studies which investigated the functional properties of 

Korean pine nut oil have been focused on its appetite suppressing effect. 

Some studies showed that Korean pine nut oil increased satiety hormone 

release and reduced appetite in overweight post-menopausal women 
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(Pasman et al. 2008) and reduced food intake in overweight women 

(Hughes et al. 2008). However, there is no information on whether Korean 

pine nut oil has an influence on expression of satiety hormone receptors and 

neuropeptides in hypothalamus which plays an important role in the 

regulation of food intake and energy expenditure (Sainsbury et al. 2002). In 

addition, no study showed whether appetite suppressing effect of Korean 

pine nut oil leads to body weight change. Moreover, the effect of Korean 

pine nut oil was studied in the form of supplementation not as a part of 

dietary consumption. 

   Previous studies have demonstrated that maritime pine (Pinus pinaster) 

seed oil, which contains 7% pinolenic acid (Asset et al. 1999), lowered 

plasma cholesterol and phospholipid in mice expressing human 

apolipoprotein B (Asset et al. 2001) and in apolipoprotein E-deficient mice 

(Asset et al. 2000). These findings showed that Korean pine nut oil can 

affect lipid metabolism. 

   Therefore, in the present study, we aimed to investigate the effects of 

Korean pine nut oil (PNO) enrichment in the diet on weight gain, appetite 

control, and lipid metabolism in C57BL/6 mice fed high-fat diets (45% kcal 

fat) or control diets (10% kcal fat from PNO or SBO) for 12 weeks. 
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II. LITERATURE REVIEW 

1. Gastrointestinal regulation of energy homeostasis 

The gastrointestinal organs and associated visceral organs, including the 

pancreas, liver, and adipose tissue, play a significant role in the regulation of 

energy homeostasis. The organs communicate with the hypothalamus, 

which regulates food intake and energy expenditure, through neural and 

endocrine pathways (Badman et al. 2005). Gastrointestinal hormones 

influence energy intake by stimulating satiety or hunger. Cholecystokinin 

(CCK), glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and 

peptide YY (PYY) are major gut hormones act to increase satiety and 

decrease food intake (Chaudhri et al. 2006). Ghrelin is the prototypical 

appetite-stimulating gut hormone (Briggs et al. 2010). 

 

Cholecystokinin (CCK) 

CCK is synthesized in the I-cells of duodenum and jejunum. It is also 

abundantly found in the central nervous system and functions as a 

neurotransmitter. Its secretion is stimulated by dietary fat, protein, or the 

products of their digestion. CCK reduces meal size and duration, but its 

effect is short-lived (Chaudhri et al. 2006).  

Two receptors for CCK which have been identified are distributed 

throughout the central nervous system and gut; however, CCK A receptors 
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Figure 1. Peripheral signals involved in energy balance1 (Badman et al. 

2005).  

1CCK, cholecystokinin; DVC, dorsal vagal complex; GIP, gastric inhibitory 

polypeptide; GLP-1, glucagon-like peptide-1; OXM, oxyntomodulin; PP, 

pancreatic polypeptide; PYY, peptide YY. 
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are prevalent in the alimentary tract, and CCK B receptors are prevalent in 

the brain. CCK promotes gallbladder contraction, increases secretion of 

pancreatic enzymes and bicarbonate, inhibits gastric acid secretion, and 

slows gastric emptying via CCK A receptors. CCK B receptors have been 

reported to correlate with anxiety and depression, and other central nervous 

system actions of CCK (Wank 1995). 

The mechanism of CCK for hunger suppression is still controversial. 

Some studies have suggested that the inhibitory effect of CCK on gastric 

emptying may contribute feeding inhibition, and CCK may stimulate gastric 

mechanoreceptors, which induces neural feedback to the brain. However, 

other studies have shown that CCK reduces food intake through nongastric 

pathways (Moran et al. 1988). 

 

Glucagon-like peptide-1 (GLP-1) 

GLP-1 is cleaved from the transcription product of the proglucagon gene. 

It is mainly released from L-cells of distal small and large intestine in 

response to the presence of nutrients in the small intestine, in particular, 

carbohydrate and fat. In common with other gut peptides, GLP-1 also acts 

as a neurotransmitter in central nervous system, and decreases appetite and 

caloric intake (Gutzwiller et al. 1999). 

Major actions of GLP-1 is promoting insulin secretion, suppressing 

glucagon release, inhibiting gastric emptying and gastric acid secretion, and 
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increasing pancreatic β-cell mass (Holst 2005).  

The GLP-1 receptors, which are a G-protein-coupled and seven-

transmembrane domain protein, are distributed in a number of areas of the 

brain important in appetite control, such as the hypothalamus and the 

brainstem (Wei et al. 1995).  

There are two scenarios regarding the pathways through with GLP-1 

reduces food intake. GLP-1 produced in the central nervous system may act 

on a circuit that mediates appetite in the brain, or GLP-1 released into the 

circulation after a meal may access to important regions of the 

hypothalamus and the brainstem and subsequently induce a feeling of satiety. 

These are not mutually exclusive, and an integrative model could explain 

the importance of the vagus nerve and the brainstem-hypothalamic 

connections (Chaudhri et al. 2006). 

 

Oxyntomodulin (OXM) 

In common with GLP-1, OXM is also made from preglucagon gene 

product and released from L-cells in response to nutrients in the form of fat 

or carbohydrate. It inhibits gastric motility and gastric acid secretion, and 

promotes insulin secretion (Schjoldager et al. 1989). 

OXM potently inhibits food intake and suppresses appetite with the 

assistance of GLP-1 like receptors, but the affinity is lower than GLP-1. 

However, unlike GLP-1, which activates cells in the brainstem and other 
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brain regions, the stimulation of OXM is limited to the hypothalamus 

(Dakin et al. 2004). The mechanism by which OXM controls appetite may 

involve suppression of appetite-stimulating hormone ghrelin (Cohen et al. 

2003). 

 

Peptide YY (PYY) 

   PYY is mainly expressed in the L-cells of ileum and large intestine, and 

also identified in the central nervous system, including hypothalamus, 

medulla, and pons. It is released in response to a meal in relation to the meal 

composition; its release is highly promoted by isocaloric meals of fat 

compared with meals consisting of protein or carbohydrate. Intraluminal 

bile acids, gastic acid, and CCK stimulate PYY release, as well (Chaudhri et 

al. 2006).  

PYY contributes to the ‘ileal brake’ effect, which inhibits further food 

intake when nutrients have reached the distal small intestine. PYY delays 

gastic emptying and gallbladder emptying, mediated by the vagus nerve. It 

decreases the expression of orexigenic neuropeptides and increases that of 

anorexigenic neuropeptides in the hypothalamus (Batterham et al. 2002).  

 

Ghrelin 

   Ghrelin is a peripherally active appetite-stimulating gut hormone, and its 

mRNA is expressed throughout the gastrointestinal tract; however, the major 
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source of circulating ghrelin is the A-cells of gastric fundus. It is suggested 

that ghrelin may be involved in meal initiation since its level rise during 

fasting and fall on eating (Chaudhri et al. 2006). 

   Ghrelin, which is the ligand for growth hormone secretagogue receptor, 

induces growth hormone and other pituitary hormone secretion from the 

anterior pituitary. It also increases gastric motility and promotes pancreatic 

polypeptide release. Its levels are inversely correlated with body weight, 

which explains why diet-induced weight loss is difficult to be maintained. 

The lower ghrelin level in obesity is thought to be a feedback mechanism to 

reduce appetite (Cummings et al. 2002). 
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2. Hypothalamic regulation of energy homeostasis 

   The integrated regulation of food intake and energy expenditure occurs 

in the hypothalamic regions of the brain. In the hypothalamus, two major 

groups of neuropeptides involved in orexigenic and anorexigenic processes 

exist. Neuropeptide Y (NPY) and agouti-related peptide (AgRP) are the 

appetite-stimulating neuropeptides, and pro-opiomelanocortin (POMC) and 

cocaine- and amphetamine-related transcript (CART) are the appetite-

suppressing neuropeptides. To regulate food intake and energy expenditure, 

the neurons expressing these neuropeptides interact with signals from the 

periphery and with each other. When these systems are dysregulated, obesity 

often develops (Sainsbury et al. 2002).  

 

Neuropeptide Y (NPY) & Agouti-related peptide (AgRP) 

   NPY and AgRP, which increase food intake and body energy stores, are 

expressed in the arcuate nucleus in the hypothalamus. Their expression is 

stimulated by food deprivation or on low-energy diets and is affected by 

changes in various hormones (Woods et al. 1998). The levels of these 

peptides rise in response to elevated levels of glucocorticoids and ghrelin, 

and reduced levels of leptin and insulin (Leibowitz et al. 2004). 

   In negative energy balance, NPY and AgRP stimulate food intake, 

reduce glucose and lipid utilization, and promote de novo lipogenesis. The 

anabolic effects of NPY are facilitated by local γ-amino butyric acid (GABA) 
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Figure 2. Potential action of peripheral signals on the hypothalamus1 

(Badman et al. 2005). 

1αMSH, α melanocyte-stimulating hormone; AgRP, agouti-related peptide; 

CART, cocaine- and amphetamine-regulated transcript; MC3/4R, 

melanocortin 3 and melanocortin 4 receptors; NPY, neuropeptide Y; POMC, 

pro-opiomelanocortin; Y1/Y5R, Y1 and Y5 receptors. 
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neurons, which suppress the melanocortin neurons and their catabolic 

actions. These two peptides, NPY and AgRP, are evolved to guarantee the 

hunger signals during energy deficiency and enable the body to endure long 

periods of negative energy balance (Leibowitz et al. 2004). 

 

Pro-opiomelanocortin (POMC) & Cocaine- and amphetamine-related 

transcript (CART) 

   POMC and CART are synthesized in the ARC, and POMC/CART 

neurons show the same distribution pattern as NPY/AgRP neurons. Their 

expression is stimulated under conditions of positive energy balance, in 

association with excess calorie intake, elevated leptin and insulin levels, and 

reduced levels of ghrelin (Leibowitz et al. 2004). However, there is a big 

difference between two peptides, which is POMC is not stimulated by high-

fat diet consumption whereas CART is stimulated by signals related to 

dietary fat and increased circulating lipids (Wortley et al. 2004). 

   POMC and CART attenuate food intake and stimulate sympathetic 

nervous system to promote metabolic effects, including thermogenesis. 

Through this mechanism, they prevent excess body fat accumulation during 

high caloric intake (Leibowitz et al. 2004).  
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3. Lipid absorption in the small intestine 

Dietary fats, which provide essential fatty acids and fat-soluble vitamins, 

are important for health. However, increased fat consumption and changed 

dietary fat composition have significantly contributed to the increase in 

obesity, which once more provoked a big interest in the role of the small 

intestine in regulating lipid homeostasis (Abumrad et al. 2012). 

 

Cellular long-chain fatty acid uptake 

   Long-chain fatty acids (LCFA) are the major components of the dietary 

lipids. LCFA uptake by cells takes place by both spontaneous and facilitated 

transfer. Passive diffusion occurs as three successive steps. LCFA is 

adsorbed on the membrane surface, moved from external hemi-leaflet of 

bilayer to internal hemi-leaflet, and desorbed from internal bilayer into the 

inner of vesicle. Facilitated diffusion occurs by the brush border membrane 

lipid-binding proteins: the fatty acid transporter (CD36), the plasma 

membrane-associated fatty acid-binding protein, and the fatty acid transport 

protein 4 (Niot et al. 2009). CD36 is a multiligand transmembrane protein, 

expressed abundantly in the duodeno-jejunum. Intestinal CD36 gene 

expression has been shown to parallel dietary lipids contents. It also plays a 

key role in incorporation of LCFA into TG for chylomicron production 

(Drover et al. 2005).  
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Figure 3. Intestinal lipid absorption mechanism1 (Niot et al. 2009).  

1ACBP, acyl-CoA-binding protein; ACS, acyl-CoA synthetases; CE, 

cholesterol esters; CM, chylomicrons; ER, endoplasmic reticulum; FA-, 

ionized long-chain fatty acids; FABPpm, plasma membrane fatty 

acidbinding protein; FAH, protonated long-chain fatty acids; FATP4, fatty 

acid transport protein 4; I-FABP, intestinal fatty acid-binding protein; L-

FABP, liver fatty acid-binding protein; MTP, microsomal triacylglycerol 

transfer protein; PL, phospholipids; TAG, triacylglycerol (triglycerides); 

VLDL, very low density lipoproteins.
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Intracellular trafficking of long-chain fatty acid uptake 

   Once entering the small intestinal enterocyte, LCFA and fatty acid acyl-

CoA are bound to fatty acid-binding proteins (FABP) and acyl-CoA binding 

protein, respectively. In the intestine, two types of the FABP, intestinal-type 

FABP and liver- type FABP, are expressed. However, their properties and 

distributions in the intestinal tract are not identical. They deliver fatty acids 

from phospholipid membranes by different mechanisms; intestinal-type 

FABP uses collision whereas liver-type FABP uses diffusion. Also, 

intestinal-type FABP binds one fatty acid molecule while liver-type FABP 

binds two fatty acid molecules as well as other lipids, including cholesterol, 

acyl-CoA, and monoacylglycerol. Moreover, intestinal-type FABP targets 

fatty acids toward TG synthesis; however, LFABP directs fatty acids toward 

oxidation (Lagakos et al. 2011).  

 

Chylomicron assembly and trafficking 

Fatty acid acyl-CoA is re-esterified in TG in the endoplasmic reticulum 

membrane. The terminal step in TG synthesis is catalyzed by diacylglycerol 

acyltransferase (DGAT) which transfers fatty acid acyl-CoA to DG. Two 

types of DGAT are expressed in the intestine: DGAT1 and DGAT2. DGAT1 

null mice have reduced chylomicron secretion and are resistant to high-fat 

induced obesity. Otherwise, DGAT2 knockout mice are reported to die 

shortly after birth due to undernutrition and loss of skin barrier function. 
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These reports imply that DGAT2 is more essential for TG synthesis than 

DGAT1 in most tissues other than intestine (Abumrad et al. 2012). 

TG molecules are delivered into endoplasmic reticulum cisternae by the 

carnitine acyl-transferase-like system and the microsomal triacylglycerol 

transfer protein which plays a significant role in lipoprotein synthesis. TG 

molecules are used to form pre-chylomicrons. Apolipoprotein A-IV (Apo A-

IV), synthesized by enterocytes during lipid ingestion, incorportates to the 

nascent chylomicron and stabilizes the particle. Pre-chylomicrons are 

transferred from endoplasmic reticulum to the Golgi apparatus in which the 

final maturation of chylomicron takes place. Chylomicrons move from the 

intestinal mucosa into the lymphatic system, and then enter the blood (Niot 

et al. 2009). 
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4. Lipid metabolism in the white adipose tissue 

The white adipose tissue (WAT) is the predominant type of adipose 

tissue. It stores excess dietary calories as TG within lipid droplets, and 

secretes adipokines, such as leptin and adiponectin, to regulate energy 

balance. Accordingly, understanding lipid metabolism in the WAT is 

important to ameliorate or prevent obesity (Marcelin et al. 2010). 

 

Storage and mobilization of fats 

The blood carries chylomicrons to white adipose tissue. In the capillaries 

of white adipose tissue, the extracellular enzyme lipoprotein lipase (LPL) 

hydrolyzes TG to fatty acids and glycerol, which are taken up by adipocytes. 

They are re-esterified for storage as TG in lipid droplets within adipocytes 

(Davies et al. 2012). 

   The surface of lipid droplets in adipocytes is coated with perilipins, a 

family of phosphoproteins that restrict access to lipid droplets, preventing 

unexpected lipid mobilization. Epinephrine and glucagon, released in 

response to low blood glucose levels, activate adenylyl cyclase which 

produces cyclic AMP. Cyclic AMP-dependent protein kinase phosphorylates 

perilipin, and phosphorylated perilipin causes hormone-sensitive lipase in 

the cytosol to move to the lipid droplet surface, where it can hydrolyze TG 

to fatty acids and glycerol (Large et al. 2004). 
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Figure 4. Lipid metabolism in adipocytes1 (Sethi et al. 2007) 

1AC, adenylate cyclase; ACS, acyl-CoA synthase; AKT, AKR mouse 

thymoma viral proto-oncogene; AR, adrenergic receptor; HSL, hormone 

sensitive lipase; IR, insulin receptor; PI3K, phosphatidylinositol 3-kinase; 

PKA, protein kinase A. 

  



 

- 18 - 

 

Regulation of fat mass 

Adipokines produce changes in fuel metabolism and feeding behavior 

that hold the amount of adipose tissue at a suitable level (Marcelin et al. 

2010). Leptin, the primary adipokine, reduces energy intake and increases 

energy expenditure. It stimulates sympathetic nervous system which 

controls hydrolysis of stored energy and adaptive thermogenesis. Fuel 

utilization is regulated by β-adrenergic receptors (βARs) which are a class 

of G protein-coupled receptors. The binding of βARs to the G-proteins 

elevates intracellular cAMP level and activates PKA, which is responsible 

for activating lipolytic enzymes (Collins et al. 2010). Among the three 

subtypes of βARs, β3-ARs are reported to have a significant effect on 

insulin secretion, food intake, and energy expenditure (Grujic et al. 1997). 

Adaptive thermogenesis is involved in uncoupling the mitochondria. 

Mitochondrial uncoupling protein (UCP) allows continual oxidation of fatty 

acids without ATP synthesis. Whereas UCP1 is highly expressed in the 

brown adipose tissue, UCP2 is widely expressed in both central and 

peripheral tissues involved in glucose and lipid metabolism. UCP2 

participates in the regulation of food intake, insulin secretion, and immune 

responses (Diano et al. 2011). 

   Dietary fatty acids and their metabolic derivatives regulate the 

expression of genes central to regulate lipid homeostasis, including 

peroxisome proliferater-activated receptors (PPARs) which are a family of 
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ligand-activated transcription factors. The three PPARs, PPARα, PPARγ, 

and PPARδ, have different distribution patterns and functions (Evans et al. 

2004). 

PPARα is primarily expressed in liver and promotes fatty acid oxidation 

during fasting in order to generate ketone bodies which is an energy source 

for peripheral tissues. It also acts to lower plasma triglycerides, reduce 

adiposity, and improve hepatic and muscle steatosis. PPARγ is mainly 

expressed in liver and adipose tissue. It regulates the formation of fat cells 

and their ability to store lipids, and its expression is promoted during 

adipocyte differentiation. PPARδ is expressed abundantly throughout the 

body but not in liver. It stimulates fat-buring by inducing the transcription of 

genes involved in fatty acid catabolism and thermogenesis. Many effects of 

PPARγ coactivator-1α (PGC-1α) is mediated through PPARδ. PGC-1α 

induces genes required for mitochondrial biogenesis and uncoupling (Evans 

et al. 2004). 
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5. Characteristics of pine nut oil 

   Pine nuts, the edible seeds of pines, have been eaten in Europe and Asia. 

They are produced by about 20 species of pine, including Korean pine 

(Pinus koraiensis), maritime pine (Pinus pinaster), and stone pine (Pinus 

pinea). Korean pine is the most important species in international trade and 

widely harvested in northeast Asia. Maritime pine is a pine native to the 

western and southwestern Mediterranean region. Stone pine is produced in 

Europe (Wolff et al. 1995). 

   According to the Korean food composition table (2011), pine nuts 

contain 17.6% of carbohydrate, 15.4% of proteins, and 61.5% of fats. Pine 

nuts can be pressed to extract pine nut oil. Pine nut oil has been used for 

culinary purposes in European and American regions and for medicinal uses 

in Asian regions. 

   Korean pine nut oil has been reported to contain 4% palmitic acid (16:0), 

28% oleic acid (18:1, ∆9), 47% linoleic acid (18:2, ∆9,12), and 14% 

pinolenic acid (18:3, ∆5,9,12). Korean pine nut oil uniquely has much 

higher percentage of pinolenic acid than other pine nut oils (Wolff et al. 

2000). Maritime pine nut oil contains 7% pinolenic acid (Asset et al. 1999), 

and stone pine nut oil contains 1% pinolenic acid (Pasman et al. 2008). 

Pinolenic acid, which is a kind of unsaturated polymethylene-inturrupted 

fatty acids with a cis-5 ethylenic bond (Lee et al. 2004), is the positional 

isomer of γ-linolenic acid (Matsuo et al. 1996). 
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α-Linolenic acid (cis-9,cis-12,cis-15-Octadecatrienoic acid) 

 

 

γ-Linolenic acid (cis-6,cis-9,cis-12-Octadecatrienoic acid) 

 

   

Pinolenic acid (cis-5,cis-9,cis-12-Octadecatrienoic acid) 

 

 

Figure 5. Structures of α- and γ-Linolenic acids, and pinolenic acid 

(Ogawa et al. 2005). 
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   Korean pine nut oil has been reported to reduce appetite and food intake, 

but the results have been inconsistent. In a study of Pasman et al (2008), 

Korean pine nut oil stimulated CCK and GLP-1 secretion and decreased 

appetite in overweight women. Also, Korean pine nut fatty acids produced 

CCK release in STC-1 cell which is a murine neuroendocrine tumor cell line. 

In particular, Korean pine nut fatty acids were 8-fold more potent in 

releasing CCK than stone pine nut fatty acids. The authors explained that 

the difference in pinolenic acid concentration may be the reason for the 

discrepancy in CCK release. Hughes et al (2008) also showed that Korean 

pine nut fatty acids reduced food intake in overweight women. In detail, 2g 

of Korean pine nut fatty acids provided 30 minutes before ad-libitum lunch 

reduced grams of food intake by 9%, corresponded to 50 kcal reduction in 

energy intake compared to olive oil. 

However, Verhoef et al (2011) recently reported that Korean pine nut TG 

has no effects on satiety and energy intake. In the study, 130g of yogurt with 

either Korean pine nut oil or milk fat were given as a breakfast to healthy 

women. After 4 hours, appetite profile ratings and energy intake were 

determined; however, there were no significant difference of appetite profile 

ratings and energy intake between Korean pine nut oil group and milk fat 

group. Accordingly, to confirm the efficacy of Korean pine nut oil as an 

appetite suppressant, further studies with various designs need to be 

researched. 
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While Korean pine nut oil has been focused on its appetite suppressing 

properties, maritime pine nut oil has been focused on its lipid lowering 

properties. Korean pine nut oil and maritime pine nut oil have similar fatty 

acid profiles; however, they have different concentration of pinolenic acid. 

Whereas Korean pine nut oil contains 14% pinolenic acid, maritime pine nut 

oil contains 7% pinolenic acid and 7% sciadonic acid (Asset et al. 1999). 

Compared to lard, maritime pine nut oil decreased plasma cholesterol 

and phospholipid levels and increased plasma TG level in apolipoprotein E-

deficient mice (Asset et al. 2000). In mice expressing human apolipoprotein 

B, maritime pine nut oil lowered plasma cholesterol, TG, and phospholipid 

levels relative to coconut oil (Asset et al. 2001). In apolipoprotein E-

deficient mice, plasma total cholesterol level was lower and plasma TG was 

higher in mice fed maritime pine nut oil than in those fed lard (Asset et al. 

1999). 
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III. MATERIALS AND METHODS 

1. Animals and diets 

   Male C57BL/6N mice, aged 5 weeks, were purchased from Central 

laboratory animal Inc. (Seoul, Korea) and maintained on a chow diet for 3 

days before divided into 4 dietary groups; control diets containing 10% kcal 

fat from PNO or SBO (PC or SC) or high-fat diets containing 35% kcal fat 

from lard and 10% kcal fat from PNO or SBO (PHF or SHF). Animals were 

fed experimental diets ad libitum for 12 weeks. Table 1 shows the 

composition of the experimental diets. The fatty acid composition of the 

experimental diets is shown in Table 2. PNO used in the experiment was a 

gift from Dubio Co., Ltd. (GyeongGi-do, Korea). All mice were housed 

individually with controlled temperature (23 ± 3 °C), humidity (55 ± 10 %), 

and a 12 hour-dark/light cycle. Body weight and food intake of the mice 

were measured once and 4 times a week, respectively. At the end of the 

experimental period, mice were euthanized with CO2 asphyxiation after 12 

hour fasting. Brain, stomach, small intestine, and white adipose tissues 

(epididymal, subcutaneous, and perirenal-retroperitoneal fat depots) were 

removed, and white adipose tissues were weighed. Hypothalamus was 

dissected from the brain using surgical blades. Stomach was opened along 

the greater curvature and washed in phosphate-buffered saline. After 

contents were removed, small intestine was divided into 3 parts: duodenum 
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(the first 2 cm of the small intestine), ileum (the last 2 cm of the small 

intestine), and jejunum (rest of the small intestine). All tissues were snap-

frozen in liquid nitrogen, and stored at -80°C until subsequent analysis. All 

animal procedures were carried out in accordance with the Institutional 

Animal Care and Use Committee of Seoul National University (approval no. 

SNU-101029-1).  
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Table 1. Composition of the experimental diets1 

 
Control 

(10% Kcal Fat) 

High-fat 

(45% Kcal Fat) 

Casein (g) 200 200 

L-cystine (g) 3 3 

Sucrose (g) 350 172.8 

Cornstarch (g) 315 72.8 

Dyetrose (g) 35 100 

Pine nut oil2 or Soybean oil (g) 45 45 

Lard (g) 0 157.5 

t-Butylhydroquinone (g) 0.009 0.009 

Cellulose (g) 50 50 

Mineral Mix3 (g) 35 35 

Vitamin Mix4 (g) 10 10 

Choline Bitartrate (g) 2 2 

Total (g) 1045.0 848.1 

Kcal/ g diet 3.69 4.64 
1Resource : Dyets, Inc., Bethlehem, PA, USA 
2Pine nut oil was a gift from Dubio, Co., Ltd. (GyeongGi-do, Korea) 
3Thirty five grams of mineral mix (Dyets, #210099) provides 1.0g sodium, 

1.6g chloride, 0.5g magnesium, 0.33g sulfur, 59mg manganese, 45mg iron, 

29mg zinc, 6mg copper, 2mg chromium, 1.6mg molybdenum, 0.16mg 

selenium, 0.9mg fluoride, 0.2mg iodine and 3.99g sucrose. 
4Ten grams of vitamin mix (Dyets, #300050) provides 4000IU vitamin A, 

1000IU vitamin D3, 50IU vitamin E, 30mg niacin, 16mg pantothenic acid, 

7mg vitamin B6, 6mg vitamin B1, 6mg vitamin B2, 2mg folic acid, 0.5mg 

menadione, 0.2mg biotin, 10ug vitamin B12 and 9.78 sucrose. 
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Table 2. Fatty acid composition of the experimental diets1 (% of fat) 

 Control  High-fat 
 SC  PC  SHF  PHF 

Myristic acid (C14:0) .  .  0.9  0.9 
Palmitic acid (C16:0) 11.9  7.0  18.9  17.8 
Stearic acid (C18:0) 4.8  3.6  11.1  10.7 

Total SFA 16.7  10.6  30.9  29.4 
Palmitoleic acid (C16:1 Δ9) .  .  1.4  1.4 

Oleic acid (C18:1 Δ9) 21.1  27.4  34.7  36.0 

Total MUFA 21.1  27.4  36.1  37.4 
Linoleic acid (C18:2 Δ 9,12) 54.9  47.2  30.3  28.6 

α-linolenic acid (C18:3 Δ9,12,15) 7.4  0.8  2.8  1.3 
Pinolenic acid (C18:3 Δ 5,9,12) .  14.0  .  3.3 

Total PUFA 62.3  62.0  33.1  33.2 
1Total lipids were extracted from the experimental diet using a Folch 

extraction protocol (Folch et al. 1957). Extracted lipids were saponified with 

sodium hydroxide in methanol and methylated in the presence of boron 

trifluoride in methanol at 100°C. Fatty acid methyl esters were extracted 

with hexane, and 1 μL aliquots of the extracts were injected in to a GC 

Agilant 7890A (Agilent, CA, USA) equipped with a flame ionization 

detector in the split mode (1:10). Helium was used as a carrier gas at a flow 

rate of 1.5 mL/min. DB-carbowax (0.32mm × 25m, 0.2μm, Agilent) was 

used as a capillary column. The oven temperature was increased from 50°C 

to 220°C at a rate of 15°C/min and held at maxium temperature for 20min. 
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2. Determination of serum leptin concentration 

Blood was collected via heart puncture and serum was separated by 

centrifugation at 1,000 rpm for 20 min at 4°C after 2 hour clotting. Serum 

leptin concentration was measured by Quantikine® ELISA kit (R&D 

Systems, MN, USA) according to the manufacturer’s instruction. In detail, 

50 μL of 20-fold diluted serum or standard and 50 μL of assay diluent were 

added to each well of 96-well plates coated with a polyclonal antibody 

specific for mouse leptin. After incubated for 2 hours at room temperature, 

each well was washed for 5 times with 400 μL of wash buffer. Subsequently, 

100 μL of a polyclonal antibody against mouse leptin conjugated to 

horseradish peroxidase (HRP) was added and incubated for 2 hours at room 

temperature. After 5 times of washes, 100 μL of substrate solution was 

added and incubated for 30 minutes at room temperature with protection 

from light. Lastly, 100 μL of diluted hydrochloric acid solution was added to 

stop the reaction. Within 30 minutes, the optical density of each well was 

determined using a microplate reader (Spectramax 190, Molecular Devices, 

CA, USA) set to 450nm and 570nm. The leptin concentration was 

calculated by subtracting the readings at 570nm from those at 450nm. 
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3. Determination of serum triglyceride and cholesterol 

concentrations 

Serum TG concentration was determined using commercial kit (Asan 

Pharmaceutical, Korea) based on enzymatic assay. The enzyme mixture in 

the solution hydrolyzes TG to glycerol and fatty acids, phosphorylates 

glycerol into glycerophosphoric acid, and oxidizes glycerophosphoric acid. 

Oxidation of glycerophosphoric acid creates hydrogen peroxide which 

produces quinoid dyes by reacting with 4-aminoantipyrine, N-ethyl-N-

sulfopropyl-m-toluidine, and peroxidase. Serum TG content was calculated 

based on the absorbance of quinoid dyes. In this study, 2 μL of serum or 

standard (300 mg/dL of glycerol) and 300 μL of the enzyme solution were 

added to each well of 96-well plates and incubated for 10 minutes at 37°C. 

The absorbance was measured using a microplate reader (Spectramax 190, 

Molecular Devices, CA, USA) set to 550nm. 

Serum cholesterol concentration was determined using commercial kit 

(Asan Pharmaceutical, Korea) based on enzymatic assay. The enzyme 

mixture in the solution hydrolyzes esterified cholesterol to free cholesterol 

and fatty acids, and oxidizes free cholesterol into ∆4-cholestenone and 

hydrogen peroxide. The hydrogen peroxide creates quinone dyes by reacting 

with 4-aminoantipyrine, phenol, and peroxidase. Serum cholesterol content 

was calculated based on the absorbance of quinone dyes. In this study, 2 μL 
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of serum or standard (300 mg/dL of esterified cholesterol) and 300 μL of 

enzyme solution were added to each well of 96-well plates and incubated for 

5 minutes at 37°C. The absorbance was measured using an identical 

microplate reader used in quantification of serum TG level set to 500nm. 
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4. RNA extraction and cDNA synthesis 

Trizol reagent (Invitrogen, CA, USA) was used to extract total RNA 

from hypothalamus, rest of the brain, stomach, jejunum, and epididymal fat 

tissue according to the manufacturer’s instructions. Hundred mg of 

epididymal fat or 50 mg of other tissues were homogenized in 1 mL of 

Trizol reagent using a power homogenizer (IKA T10 Basic Ultra-turrax, 

IKA, Germany), and the homogenized samples were incubated for 5 

minutes at room temperature. After 0.2 mL of chloroform was added, the 

homogenized samples were shaken vigorously by vortexing for 15 seconds, 

incubated for 3 minutes at room temperature, and centrifuged at 12,000 × g 

for 15 minutes at 4°C. The colorless aqueous phase was transferred to the 

fresh tubes and mixed with 0.5 mL of isopropyl alcohol to precipitate the 

RNA. After incubated for 10 minutes at room temperature, the samples were 

centrifuged at 12,000 × g for 10 minutes at 4°C. Supernatant was removed, 

and 1 mL of 75% ethanol was added to wash the RNA pellet. After mixed 

by vortexing, the sample was centrifuged at 7,500 × g for 2 minutes at 4°C. 

Subsequently, supernatant was discarded, and the RNA pellet was dried. The 

RNA pellet was redissolved in 20 μL of diethylpyrocarbonate (DEPC)-

treated water. The concentrations of the RNA solutions were quantified 

using a spectrophotometer (DU530, Beckman, CA, USA), and the qualities 

of the RNA samples are checked by agarose gel electrophoresis using Gel-

Doc XR system (Bio-Rad, CA, USA).  
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The cDNA was synthesized from 2 μg of total RNA with PrimeScript II 

1st strand cDNA synthesis kit (Takara, Japan) using Thermal Cycler 2720 

(Applied Biosystems, CA, USA). The condition for reverse transcription 

was 42°C for 50 minutes, 95°C for 5 minutes, and 4°C for 30 minutes.  
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5. Quantification of the gene expression 

To identify the effects of PNO on appetite control pathway, the mRNA 

expression levels of cholecystokinin related genes (jejunal Cck, cerebral 

Cckar and Cckbr), ghrelin related genes (gastric Ghrelin and Goat, and 

hypothalamic Ghsr), and neuropeptides (hypothalamic Npy, Agrp, Pomc, 

and Cart) were quantified. To determine the influence of PNO on lipid 

metabolism, the mRNA expression levels of genes associated with lipid 

metabolism in small intestine (jejunal Cd36, Ifabp, Dgat2, and ApoA4) and 

those in white adipose tissue (epididymal Lpl, Plin1, Ucp2, Adrb3, Pparg, 

Ppargc1a, and Ppard) were quantified by real-time PCR with a SYBR 

Premix Ex Taq (Takara, Japan) and StepOne Real-time PCR System 

(Applied Biosystems, CA, USA).  

All reactions were performed in total of 20 μL reaction volume 

containing 1 μL of 2 ng/μL reverse-transcribed cDNA, 10 μL of SYBR 

Premix Ex Taq, 0.4 μL of 10uM forward primer, 0.4 μL of 10uM reverse 

primer, 0.4 μL of ROX reference dye, and 7.8 μL of autoclaved distilled 

water. Condition for the PCR reactions were 95°C for 30 seconds to 

initiation, 95°C for 5 seconds and 60°C for 30 seconds up to 40 cycles. After 

the PCR reactions, melting curve analyses were carried out at 95°C for 15 

seconds, 60°C for 1 minute, and 95°C for 15 seconds in order to assess the 

dissociation-characteristics of double-stranded DNA during heating. The 

threshold cycle (Ct) values, the number of PCR cycles at which the 
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fluorescence signal during the reactions reaches a fixed threshold, were 

analyzed using StepOneTM Software version 2.1 (Applied Biosystems, CA, 

USA). To normalize the results, ∆Ct was calculated by subtracting the Ct 

value of house-keeping gene Gapdh from that of interest gene; and ∆∆Ct 

was determined by subtracting the ∆Ct value of the control group from that 

of experimental groups. The relative expression of genes was calculated 

from 2-∆∆Ct. Specific primer sequences used in this study are shown in Table 

3 and Table 4. 
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Table 3. The primer sequences used for quantification of expression of genes involved in appetite control1 

Gene Forward primer Reverse primer 

Cck TCC AGC AGG TCC GCA AA CCA GGC TCT GCA GGT TCT TAA 

Cckar ATA AAA GTT GGA GTA TTG TGT GAG CTT C TTA AGT GTT TTC AAC ACT AAT TTT GCA 

Cckbr TGG GAC CTA ACC CTA CTC CGG TGA T CAA ATG AGA GGG TGT ACT CAG GA 

Ghrelin TCC AAG AAG CCA CCA GCT AA AAC ATC GAA GGG AGC ATT GA 

Goat ATT TGT GAA GGG AAG GTG GAG CAG GAG AGC AGG GAA AAA GAG 

Ghsr ACC GTG ATG GTA TGG GTG TCG CAC AGT GAG GCA GAA GAC CG 

Npy TCC GCT CTG CGA CAC TAC AT TGC TTT CCT TCA TTA AGA GGT CTG 

Agrp AGC TTT GGC GGA GGT GCT GCC ACG CGC AGA ACG A 

Pomc  TGA ACA TCT TTG TCC CCA GAG A TGC AGA GGC AAA CAA GAT TGG  

Cart  GCC AAG GCG GCA ACT C TCT TGC AAC GCT TCG ATC TG 

Gapdh GGA GAA ACC TGC CAA GTA AAG AGT GGG AGT TGC TGT TG 
1Cck, Cholecystokinin; Cckar, Cholecystokinin A receptor; Ccrbr, Cholecystokinin B receptor; Goat, Ghrelin O-acyltransferase; 

Ghsr, Growth hormone secretagogue receptor; Npy, neuropeptide Y; Agrp, Agouti-related peptide; Pomc, Pro-opiomelanocortin; 

Cart, Cocaine- and amphetamine-regulated transcript; Gapdh, Glyceraldehyde 3-phosphate dehydrogenase. 
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Table 4. The primer sequences used for quantification of expression of genes involved in lipid metabolism1 

Gene Forward primer Reverse primer 

Cd36 CCA AGC TAT TGC GAC ATG ATT TCT CAA TGT CCG AGA CTT TTC A 

Ifabp AGA GGA AGC TTG GAG CTC ATG ACA TCG CTT GGC CTC AAC TCC TTC ATA 

Dgat2 TGG GTC CAG AAG AAG TTC CAG AAG TA ACC TCA GTC TCT GGA AGG CCA AAT 

Apoa4 TTC CTG AAG GCT GCG GTG CTG CTG CTG AGT GAC ATC CGT CTT CTG 

Lpl TTA TCC CAA TGG AGG CAC TTT C CAC GTC TCC GAG TCC TCT CTC T 

Plin1 CAT CTC TAC CCG CCT TCG AA TGC TTG CAA TGG GCA CAC TG 

Ucp2 CAG GTC ACT GTG CCC TTA CCA CAC TAC GTT CCA GGA TCC CAA 

Adrb3 ACC AAC GTG TTC GTG ACT ACA GCT AGG TAG CGG TCC 

Pparg CAG CAG GTT GTC TTG GAT GTC AGC CCT TTG GTG ACT TTA TGG 

Ppargc1a CCG TAA ATC TGC GGG ATG ATG CAG TTT CGT TCG ACC TGC GTA A 

Ppard AGC CAT ATT CCC AGG CTG TCT C CCT AGG CAG CAC AAG GGT CAT 

Gapdh GGA GAA ACC TGC CAA GTA AAG AGT GGG AGT TGC TGT TG 
1 Cd36, Cluster of differentiation 36; Ifabp, Intestinal fatty acid binding protein; Dgat2, Diacylglycerol O-acyltransferase 2; Apoa4, 

Apolipoprotein A-IV; Lpl, Lipoprotein lipase; Plin1, Perilipin 1; Ucp2, Mitochondrial uncoupling protein 2; Adrb3, Beta-3 

adrenergic receptor; Pparg, Peroxisome proliferater-activated receptor gamma; Ppargc1a, PPAR gamma coactivator 1 alpha; Ppard, 

Peroxisome proliferator-activated receptor delta; Gapdh, Glyceraldehyde 3-phosphate dehydrogenase. 
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6. Statistical analysis 

SPSS software version 19.0 (SPSS Inc., Chicago, IL) was used for 

statistical analyses. Significant differences were analyzed by Two-way 

ANOVA for the overall effects of fat amount, oil type, and the interaction 

between the two followed by Fisher’s LSD multiple comparison test for 

individual group comparisons. Differences were considered statistically 

significant at P < 0.05.  

  



 

- 38 - 

 

IV. RESULTS 

1. Body weight changes, food intake, food efficiency, white 

adipose tissue weight, and serum leptin concentration 

Overall, high-fat diet-fed mice had significantly higher weight gain (P < 

0.01), white adipose tissue amount (P < 0.01), and serum leptin 

concentration (P < 0.01) than control diet-fed mice. Altogether, PNO-fed 

mice had lower weight gain (P = 0.01), amount of white adipose tissue (P < 

0.01), and serum leptin concentration (P = 0.02) than SBO-fed mice. There 

were no significant difference in daily food intake and daily energy intake 

between SBO- and PNO-fed mice; therefore, food efficiency was lower (P = 

0.01) in PNO-fed mice (Table 5). 

   In particular, PHF-fed mice had significantly lower body weight (10% 

less, P = 0.02), less weight gain after 12 weeks of feeding (18% less, P = 

0.02), and lower food efficiency (17% less, P = 0.01) than SHF-fed mice. 

PC and PHF groups had significantly less amount of white adipose tissue 

compared with SC (30% less, P = 0.05) and SHF groups (18% less, P = 

0.03), respectively. A significantly positive correlation was observed 

between the amount of white adipose tissue and weight gain (r = 0.92, P < 

0.01). Mice in PHF group had significantly lower serum leptin level than 

those of SHF group (33% less, P = 0.03).
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Table 5. Body weight, weight gain, food intake, food efficiency, white adipose tissue weight, and serum leptin concentration 
of the mice fed control or high-fat diets1 

 Control   High-fat  Fat 
amount 

(P-value) 

Oil 
Type 

(P-value) 

Inter-
action 

(P-value)  SC  PC  SHF  PHF  

Body weight at 0 wk (g) 17.30 ± 0.51  16.74 ± 0.45  17.01 ± 0.36  17.04 ± 0.34  0.97 0.56 0.50 

Body weight at 12 wk (g) 32.76 ± 0.96ab  30.51 ± 0.64a  38.49 ± 1.45c  34.58 ± 1.42b  < 0.01 0.01 0.49 

Body weight gain (g) 15.48 ± 0.84ab  13.76 ± 0.59a  21.48 ± 1.42c  17.53 ± 1.31b  < 0.01 0.01 0.32 

Daily food intake (g) 3.20 ± 0.06b  3.20 ± 0.31b  2.82 ± 0.05a  2.76 ± 0.04a  < 0.01 0.54 0.48 

Daily energy intake (kcal) 11.80 ± 0.21a  11.82 ± 0.11a  13.11 ± 0.22b  12.82 ± 0.20b  < 0.01 0.50 0.43 

Food efficiency (mg/kcal)2 15.56 ± 0.68a  13.83 ± 0.52a  19.43 ± 1.11b  16.18 ± 1.03a  < 0.01 < 0.01 0.40 

White adipose tissue (g) 3.10 ± 0.22b  2.18 ± 0.18a  5.34 ± 0.38c  4.38 ± 0.39d  < 0.01 < 0.01 0.95 

Serum leptin (μg/L) 19.89 ± 2.82ab  12.61 ± 1.96a  43.26 ± 6.82c  29.19 ± 4.52b  < 0.01 0.02 0.46 

Data are presented as means ± SEM, n = 10-11 for each group.  
1Two-way ANOVA was used to determine the significant effect of fat amount and oil type. Different superscripts indicate significant 
differences at P < 0.05 by Fisher’s LSD multiple comparison test.  
2Food efficiency (mg/kcal) = Weight gain (mg) / Total food intake (kcal) 
SC, 10% soybean oil; PC, 10% pine nut oil; SHF, 10% soybean oil + 35% lard; PHF, 10% pine nut oil + 35% lard 
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2. Serum triglyceride and cholesterol concentrations 

Serum triglyceride concentration was not affected by fat amount and oil 

type, while serum cholesterol tended to be lower in PNO-fed mice (P = 

0.09). Interaction between fat amount and oil type was not significant 

(Table 6). 
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Table 6. Serum triglyceride and cholesterol concentrations1 

 Control   High-fat  Fat 

amount 

(P-value) 

Oil 

type  

(P-value) 

Inter-

action 

(P-value) 
 SC  PC  SHF  PHF  

Serum triglyceride (mg/dL) 115.96 ± 8.41  133.48 ± 10.39  165.10 ± 34.43  122.20 ± 15.31  0.36 0.54 0.15 

Serum cholesterol (mg/dL) 282.80 ± 10.45  250.19 ± 15.66  284.73 ± 22.06  258.05 ± 16.17  0.77 0.09 0.86 

Data are presented as means ± SEM, n = 10-11 for each group. 
1Two-way ANOVA was used to determine the significant effect of fat amount and oil type.  

SC, 10% soybean oil; PC, 10% pine nut oil; SHF, 10% soybean oil + 35% lard; PHF, 10% pine nut oil + 35% lard
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3. Expression of genes involved in appetite control 

The mRNA expression of Ghsr, the ghrelin receptor, was significantly 

higher in control diet-fed mice (P = 0.03) and in PNO-fed mice (P = 0.03). 

Ghsr mRNA level of the PC group was 1.23-fold greater (P = 0.02) than that 

of the SC group. Ghsr mRNA expression was negatively correlated with 

body weight at 12wk (r = - 0.47, P = 0.03) and the amount of white adipose 

tissue (r = - 0.46, P = 0.03). On the other hand, neither the fat amount nor 

the oil type influenced mRNA levels of a major satiety hormone, Cck, and 

its receptors, Cckar and Cckbr. The mRNA levels of Ghrelin, which 

promotes food intake; and Goat, the Ghrelin activating enzyme, were not 

affected by fat amount and oil type, as well (Table 7). There were no 

significant correlations between Ghrelin and Npy or Agrp mRNA level 

although ghrelin is known as to promote the expression of NPY and AgRP. 

The mRNA level of Agrp, one of the neuropeptides that promote 

appetite and reduce energy expenditure, was significantly higher in PNO-fed 

mice (P = 0.02). The PHF group had significantly higher Agrp expression 

(2.16-fold, P = 0.02) than the SHF group. However, the mRNA level of Npy, 

another neuropeptide that acts in similar way as Agrp, was not significantly 

influenced by fat amount and oil type. The mRNA levels of Pomc and Cart, 

neuropeptides that suppress appetite and increase energy expenditure, 

tended to be greater in PNO-fed mice (Pomc, P = 0.08; Cart, P = 0.06) 

(Figure 6). While Npy and Agrp mRNA levels were negatively correlated 



 

- 43 - 

 

with the amount of white adipose tissue (Npy, r = - 0.42, P = 0.03; Agrp, r = 

- 0.44, P = 0.03), Pomc or Cart mRNA level had no correlation with it.  
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Table 7. The mRNA expression levels of cholecystokinin related and ghrelin related genes1 

 Control   High-fat  Fat 

amount 

(P-value) 

Oil 

type 

(P-value) 

Inter-

action 

(P-value)  SC  PC  SHF  PHF  

Cck 1.00 ± 0.26  0.99 ± 0.13  0.94 ± 0.15  1.04 ± 0.18  0.98 0.79 0.75 

Cckar 1.00 ± 0.28  1.14 ± 0.64  0.43 ± 0.15  0.83 ± 0.32  0.29 0.51 0.74 

Ccrbr 1.00 ± 0.16  0.99 ± 0.17  0.93 ± 0.08  0.99 ± 0.19  0.90 0.86 0.75 

Ghrelin 1.00 ± 0.09  1.13 ± 0.15  1.02 ± 0.05  0.97 ± 0.18  0.60 0.75 0.51 

Goat 1.00 ± 0.11  1.22 ± 0.08  1.08 ± 0.09  0.91 ± 0.14  0.29 0.81 0.09 

Ghsr 1.00 ± 0.06a  1.23 ± 0.09b  0.92 ± 0.06a  1.00 ± 0.05a  0.03 0.03 0.27 

Data are presented as means ± SEM, n = 5-6 for each group. All values are normalized to the levels of house-keeping gene Gapdh 

and expressed as relative mRNA level compared to the average expression level of SC group. 
1Two-way ANOVA was used to determine the significant effect of fat amount and oil type. Different superscripts indicate significant 

differences at P < 0.05 by Fisher’s LSD multiple comparison test. 

SC, 10% soybean oil; PC, 10% pine nut oil; SHF, 10% soybean oil + 35% lard; PHF, 10% pine nut oil + 35% lard 

Cck, Cholecystokinin; Cckar, Cholecystokinin A receptor; Ccrbr, Cholecystokinin B receptor; Goat, Ghrelin O-acyltransferase; Ghsr, 

Growth hormone secretagogue receptor 
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Fat amount 
(P-value) 0.10 0.36 0.71 0.18 

Oil type 
(P-value) 0.22 0.02 0.08 0.06 

Interaction 
(P-value) 0.35 0.37 0.19 0.87 
 

Figure 6. The mRNA expression levels of neuropeptides (hypothalamic 

Npy, Agrp, Pomc, and Cart). Data are presented as means ± SEM, n= 5-6 

for each group. Two-way ANOVA was used to determine the significant 

effect of fat amount and oil type. Different letters indicate significant 

difference at P<0.05 by Fisher’s LSD multiple comparison test. All values 

are normalized to the levels of house-keeping gene Gapdh and expressed as 

relative mRNA level compared to the average expression level of SC group. 

SC, 10% soybean oil; PC, 10% pine nut oil; SHF, 10% soybean oil + 35% 

lard; PHF, 10% pine nut oil + 35% lard. Npy, neuropeptide Y; Agrp, Agouti-

related peptide; Pomc, Pro-opiomelanocortin; Cart, Cocaine- and 

amphetamine-regulated transcript.  
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4. Expression of genes involved in lipid absorption 

In order to investigate whether less body weight and less white adipose 

tissue of PNO-fed mice were due to alteration in intestinal fat absorption, 

the mRNA levels of genes involved in intestinal lipid metabolism were 

determined (Figure 7). 

PNO-fed mice had significantly lower mRNA level of Cd36 which 

transports fatty acids from lumen to enterocytes (P = 0.03). PC group had a 

tendency of lower Cd36 expression (0.57-fold, P = 0.09) than SC group. 

PNO-fed mice tended to have lower mRNA level of Apoa4 which facilitates 

intestinal lipoprotein production (P = 0.07). No effects of fat amount and oil 

type on the mRNA levels of Ifabp which transports and metabolizes fatty 

acids in enterocytes; and Dgat2 which synthesizes TG from DG were 

observed.  

  



 

- 47 - 

 

 

 
Fat amount 
(P-value) 0.20 0.13 0.92 0.47 

Oil type 
(P-value) 0.03 0.60 0.74 0.07 

Interaction 
(P-value) 0.85 0.21 0.96 0.88 
 

Figure 7. The mRNA expression levels of genes associated with 

intestinal lipid metabolism (jejunal Cd36, Ifabp, Dgat2, and Apoa4). 

Data are presented as means ± SEM, n= 5-6 for each group. Two-way 

ANOVA was used to determine the significant effect of fat amount and oil 

type. Different letters indicate significant difference at P<0.05 by Fisher’s 

LSD multiple comparison test. All values are normalized to the levels of 

house-keeping gene Gapdh and expressed as relative mRNA level compared 

to the average expression level of SC group. SC, 10% soybean oil; PC, 10% 

pine nut oil; SHF, 10% soybean oil + 35% lard; PHF, 10% pine nut oil + 35% 

lard. Cd36, Cluster of differentiation 36; Ifabp, Intestinal fatty acid binding 

protein; Dgat2, Diacylglycerol O-acyltransferase 2; Apoa4, Apolipoprotein 

A-IV.  
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5. Expression of genes involved in body fat accumulation 

We also examined whether PNO had antiadiposity effect by reducing 

lipogenesis or by enhancing lipolysis and thermogenesis. 

PNO-fed mice had significantly lower mRNA expression of Lpl (P = 

0.02) which hydrolyzes TG within lipoproteins to diacylglycerol and fatty 

acids for fatty acid uptake by adipocytes. Lpl mRNA level in the PC group 

was 38% less than SC group (P = 0.04). The mRNA level of Adrb3, which 

enhances lipolysis in white adipose tissue, tended to be higher in PNO-fed 

mice (P = 0.08). The mRNA level of Ucp2, which plays a role in 

thermogenesis, was significantly higher in HFD-fed mice (P = 0.02). The 

mRNA levels of Plin1, Pparg, Ppargc1a, and Ppard were unaffected by fat 

amount and oil type (Figure 8). 
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Fat amount 
(P-value) 0.31 0.64 0.02 0.16 0.81 0.35 0.72 

Oil type 
(P-value) 0.02 0.21 0.64 0.08 0.16 0.51 0.74 

Interaction 
(P-value) 0.46 0.51 0.10 0.54 0.95 0.67 0.19 

Figure 8. The mRNA expression levels of genes associated with lipid metabolism in the white adipose tissue (epididymal Lpl, 

Plin1, Ucp2, Adrb3, Pparg, Ppargc1a, and Ppard). Data are presented as means ± SEM, n=5-6 for each group. Two-way ANOVA 
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was used to determine the significant effect of fat amount and oil type. Different letters indicate significant difference at P<0.05 by 

Fisher’s LSD multiple comparison test. All values are normalized to the levels of house-keeping gene Gapdh and expressed as 

relative mRNA level compared to the average expression level of SC group. SC, 10% soybean oil; PC, 10% pine nut oil; SHF, 10% 

soybean oil + 35% lard; PHF, 10% pine nut oil + 35% lard. Lpl, Lipoprotein lipase; Plin1, Perilipin 1; Ucp2, Mitochondrial 

uncoupling protein 2; Adrb3, Beta-3 adrenergic receptor; Pparg, Peroxisome proliferater-activated receptor gamma; Ppargc1a, 

PPAR gamma coactivator 1 alpha; Ppard, Peroxisome proliferator-activated receptor delta. 
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V. DISCUSSION 

   In the present study, the replacement of 10% kcal fat with pine nut oil 

(PNO) in place of soybean oil (SBO) in control diet or in high-fat diet 

resulted in lower body weight gain and less amount of white adipose tissue. 

The differences in fat mass between SBO- and PNO-fed mice seemed to be 

associated with the effect of PNO on lipid metabolism, not with the appetite 

suppressing effect of PNO because no difference in food intake between 

SBO and PNO groups was observed. The appetite suppressing effect of 

PNO is controversial since previous studies showed that PNO significantly 

reduced appetite (Pasman et al. 2008) or food intake (Hughes et al. 2008), 

but a recent study showed that PNO did not suppress appetite and energy 

intake (Verhoef et al. 2011). 

We did not observe differences in the mRNA levels of satiety peptides, 

such as Cck, Cckar, and Cckbr, among groups even though pine nut oil was 

reported to promote CCK release in STC-1 cell and in post-menopausal 

overweight women (Pasman et al. 2008). It is possible that 12-hour fasting 

of mice masked the satiating effect of PNO since CCK signals are induced 

when food is present in the gut lumen. Further study using refeeding 

condition is required to examine the effect of PNO on the expression of 

CCK related genes. 

The mRNA expression levels of Ghrelin, the major appetite-stimulating 
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hormone; and Goat, Ghrelin activating enzyme, were not different among 

all groups. This result is in accordance with earlier studies which showed 

that Ghrelin and Goat expression were not different between diet-induced 

obese mice and lean mice after fasting (Moesgaard et al. 2004; Morash et al. 

2010). The mRNA expression of Ghsr was significantly higher in PC group 

than other groups, which indicated that mice in PC group received the 

stronger signal that promotes energy consumption than other groups. GHSR 

is upregulated when more energy is needed to increase appetite and decrease 

energy expenditure (Holst et al. 2004). Therefore, PC group, which had the 

least stored energy among all groups, might have expressed more Ghsr 

mRNA in order to restore its energy storage. Ghsr mRNA expression was 

negatively correlated with body weight at 12wk and the amount of white 

adipose tissue, whereas Ghrelin and Goat mRNA expression levels did not 

correlate with them. It is thought that dietary effect on the mRNA 

expression of hormone receptors remains for a long-term, whereas that of 

gastrointestinal hormones and related enzymes does not. 

   Since we observed the lower fat mass in PNO-fed mice, we expected 

that the mRNA expression of Npy and Agrp, which reduce energy 

expenditure, would be lower; and the mRNA expression of Pomc and Cart, 

which increase energy expenditure, would be higher in PNO-fed mice. 

However, contrary to our expectations, Agrp mRNA expression was 

significantly lower in SHF group compared to PHF group. The lower Agrp 
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mRNA expression in SHF group could be a compensatory mechanism to 

regulate food intake and energy homeostasis since the mice in SHF group 

had higher body weight and more amount of white adipose tissue than those 

in PHF group. This explanation is supported by the fact that the mRNA 

expression levels of Npy and Agrp were negatively correlated with body 

weight at 12wk and white adipose tissue. 

   Collectively, Pomc and Cart mRNA expression tended to be greater in 

PNO-fed mice. The tendency seemed to be mainly due to the low expression 

of Pomc and Cart in SHF group. It is possible that mice in SHF group failed 

to increase Pomc and Cart mRNA expression despite their higher white 

adipose tissue weight and leptin level. Leptin stimulates Pomc and Cart 

mRNA expression and inhibits Npy and Agrp mRNA expression to maintain 

energy homeostasis by decreasing food intake and weight gain (Badman et 

al. 2005). Therefore, low mRNA expression of Pomc and Cart in SHF group 

suggests that certain degree of leptin resistance was present in SHF group, 

which might cause the POMC/CART pathway dysregulation. The lower fat 

mass of PHF group might have prevented the development of leptin 

resistance.  

Lin et al. (2000) reported that POMC/CART pathway was damaged at 

earlier stage of high-fat diet-induced obesity compared with the NPY/AgRP 

pathway, which are similar to the results of the present study. In a study by 

Lin et al. (2000), 8 week high-fat diet feeding did not lead to upregulation of 
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Pomc mRNA expression. Rather, after 19 weeks of high-fat diet feeding, 

Pomc mRNA expression was downregulated. On the contrary, Npy mRNA 

expression was downregulated properly by high-fat feeding at both 8 and 19 

weeks of time point. 

   The differences in the expression of the appetite controlling genes are 

considered to be caused by the differences in body weight and the amount of 

white adipose tissue. Since there was no significant difference in food intake 

between SBO- and PNO-fed mice, we speculated that other effects of PNO, 

not satiating effect, have contributed to the lower weight gain and less 

amount of white adipose tissue. Therefore, we examined whether PNO 

replacement altered lipid metabolism in intestine and white adipose tissue. 

   To investigate the effect of PNO on lipid absorption in small intestine, 

jejunal Cd36, Ifabp, Dgat2, and Apoa4 mRNA expression were determined. 

CD36, which is a membrane protein, enhances fatty acids absorption in 

small intestine and peripheral utilization (Drover et al. 2005). ApoA-IV, 

which regulates chylomicron assembly, increases the efficiency of intestinal 

lipid absorption and it eventually facilitates weight gain and adipose tissue 

lipid storage (Simon et al. 2011). IFABP targets dietary fatty acids for TG 

synthesis (Lagakos et al. 2011), and DGAT2 catalyzes the final step in TG 

synthesis (Abumrad et al. 2012). Mice fed chronic high-fat diet were 

reported to adapt to the fat content of the diet by increasing mRNA 

expression of these genes (Petit et al. 2007; Uchida et al. 2012). 



 

- 55 - 

 

   In the present study, PNO-fed mice had significantly lower CD36 

mRNA expression and tended to have lower Apoa4 mRNA expression than 

SBO-fed mice. These results suggest that dietary lipids may not have been 

efficiently absorbed with inclusion of PNO in the diet. This may have led to 

the lower fat mass and body mass in PNO-fed mice. In other study with 

similar study design, non-esterified fatty acid (NEFA) levels in feces of 

PNO-fed mice were significantly higher than those of SBO-fed mice (P = 

0.04). Fecal NEFA excretion in PHF group was significantly higher than 

those in SHF group (37% higher, P < 0.01) (Appendix 3). This data 

supports the idea that PNO is less efficiently absorbed than SBO. No 

differences in the mRNA expression of Ifabp and Dgat2 were detected 

among groups. These results indicated that PNO did not affect TG synthesis 

from dietary fatty acids. 

   To investigate the effect of PNO on body fat accumulation in white 

adipose tissue, epididymal Lpl, Plin1, Ucp2, Adrb3, Pparg, Ppargc1a, and 

Ppard mRNA expression were determined. Lipoprotein lipase promotes 

influx of TG from lipoprotein to adipocyte (Mead et al. 2002). Perilipin 1 

coats lipid droplets to prevent lipid mobilization (Large et al. 2004). 

Uncoupling protein 2 regulates adaptive thermogenesis (Diano et al. 2011), 

and β3-adrenergic receptor enhances hydrolysis of stored energy in white 

adipocyte (Collins et al. 2010). PPARγ regulates the formation of fat cells 

and their ability to store lipids. PGC-1α induces the expression of genes 
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essential for mitochondrial biogenesis. PPARδ stimulates fat-burning by 

inducing the expression of genes involved in fatty acid oxidation and 

thermogenesis to prevent obesity (Evans et al. 2004). It is reported that 

high-fat diet-induced obesity could be alleviated by decreasing Lpl, Plin1, 

and Pparg mRNA expression and increasing Ucp2, Adrb3, and Ppargc1a 

mRNA expression (Lee et al. 2011; Chen et al. 2012). 

   In PNO-fed mice, Lpl mRNA expression was significantly lower, and 

Adrb3 mRNA expression tended to be higher compared with the SBO-fed 

mice. These results indicate that PNO has the potential for attenuating the 

body fat accumulation. PNO does not seem to affect thermogenesis since 

Ucp2 mRNA expression was affected by fat amount, but not by oil type. 

Higher expression of Ucp2 mRNA expression in high-fat diet-fed mice was 

also observed by others, and this was considered as a defense mechanism 

against diet-induced obesity (Rippe et al. 2000). The mRNA expression 

levels of Plin1, Pparg, Ppargc1a, and Ppard were not significantly different 

among groups. 

   In conclusion, PNO-enriched diet feeding reduced weight gain in high-

fat diet induced obese mice and the amount of white adipose tissue in both 

control diet- and high-fat diet-fed mice. The low mRNA expression levels of 

Pomc and Cart in SHF group suggest the possibility of POMC/CART 

pathway dysregulation in SHF group, which was not observed in PHF group. 

The lower Cd36 mRNA expression and the tendency of lower ApoA4 
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mRNA expression in PNO-fed mice indicate that PNO has the lower 

efficiency of absorption in small intestine. The lower Lpl mRNA expression 

and the tendency of higher Adrb3 mRNA expression suggest that PNO is 

less efficiently stored in white adipose tissue. These characteristics of PNO 

seemed to contribute to a less accumulation of fat mass in PNO-fed mice.   
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VI. SUMMARY 

In this study, the effects of Korean pine nut oil (PNO) compared with 

soybean oil (SBO) on the factors involved in body fat accumulation were 

investigated. After feeding mice for 12 weeks with control diets containing 

10% kcal fat from PNO or SBO (PC or SC) or high-fat diets containing 35% 

kcal fat from lard and 10% kcal fat from PNO or SBO (PHF or SHF), body 

weight, food intake, the amount of white adipose tissue, serum leptin, 

triglyceride, and cholesterol levels, and the expression of genes involved in 

appetite control and lipid metabolism were measured. The results of the 

present study were as follows:  

1) PNO-fed mice had significantly lower body weight at 12wk and 

weight gain than SBO-fed mice although there was no difference of 

daily food intake between SBO- and PNO-fed mice. PHF group had 

significantly lower body weight at 12wk and weight gain than SHF 

group. 

2) PNO-fed mice had significantly less white adipose tissue and serum 

leptin level than SBO-fed mice. PC group had significantly less white 

adipose tissue than SC group. PHF group had significantly less white 

adipose tissue and serum leptin level than SHF group. 

3) No significant difference in serum TG level was detected while PNO-

fed mice had the tendency of lower serum cholesterol level than 
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SBO-fed mice. 

4) PNO-fed mice had significantly higher Ghsr and Agrp mRNA 

expression and tendency of higher Pomc and Cart mRNA expression 

than SBO-fed mice in hypothalamus. PC group had significantly 

higher Ghsr mRNA expression than SC group, and PHF group had 

significantly higher Agrp mRNA expression than SHF group. 

5) PNO-fed mice had significantly lower Cd36 mRNA expression and 

had the tendency of lower Apoa4 mRNA expression in small intestine.  

6) PNO-fed mice had significantly lower Lpl mRNA expression and the 

tendency of higher Adrb3 mRNA expression in white adipose tissue. 

PC group had significantly lower Lpl mRNA expression than SC 

group. 

   These results indicate that PNO-enriched diet feeding reduced weight 

gain and the amount of white adipose tissue. The low mRNA expression 

levels of Pomc and Cart in SHF group suggest the possibility of 

POMC/CART pathway dysregulation in SHF group, which was not 

observed in PHF group. PNO has the lower efficiency of absorption and 

storage in the body. These characteristics of PNO seemed to contribute to a 

less accumulation of fat mass in PNO-fed mice.  
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APPENDICES 

Appendix 1. Determination of fecal lipid concentrations 

In other study with similar study design, feces were collected for 3 days 

during the 12th week of feeding the experimental diets and freeze-dried for 

72 hours. Fecal lipids were extracted using a Folch extraction protocol 

(Folch et al. 1957). Briefly, 50mg of freeze-dried feces was homogenized in 

2 mL of chloroform and 1 mL of methanol. After 1 mL of distilled water 

was added, the homogenized samples were shaken by a see-saw rocker for 

20 minutes at room temperature and centrifuged at 3000 rpm for 20 minutes 

at room temperature. The lower phase of each sample was transferred to the 

fresh tubes and dried overnight. The dried lipid samples were redissolved in 

1 mL of isopropanol to determine the concentrations of triglyceride (TG), 

non-esterified fatty acids (NEFA), and cholesterol. 

Fecal TG concentration was determined using commercial kit (Asan 

Pharmaceutical, Korea) based on enzymatic assay. The enzyme mixture in 

the solution hydrolyzes TG to glycerol and fatty acids, phosphorylates 

glycerol into glycerophosphoric acid, and oxidizes glycerophosphoric acid. 

Oxidation of glycerophosphoric acid creates hydrogen peroxide which 

produces quinoid dyes by reacting with 4-aminoantipyrine, N-ethyl-N-

sulfopropyl-m-toluidine, and peroxidase. Fecal TG content was calculated 

on the absorbance of quinoid dyes. In this study, 5 μL of lipid samples or 
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standard (300 mg/dL of glycerol) and 300 μL of the enzyme solution were 

added to each well of 96-well plates and incubated for 10 minutes at 37°C. 

The absorbance was measured using a microplate reader (Spectramax 190, 

Molecular Devices, CA, USA) set to 550nm. 

Fecal NEFA concentration was determined using commercial kit 

(Shinyang Diagnostics, Korea) based on enzymatic assay. The enzyme 

mixture in the solution converts NEFA to Acyl-CoA and oxidizes Acyl-CoA 

into 2,3-trans-enoyl-CoA and hydrogen peroxide. The hydrogen peroxide 

creates quinone dyes by reacting with 4-aminoantipyrine, N-ethyl-N-(2-

hydroxy-3-sulfopropyl)-m-toluidine, and peroxidase. The contents of NEFA 

in feces are calculated on the absorbance of quinone dyes. In this study, 5 μL 

of lipid samples or standard (1 mEq/L of oleic acid) and 200 μL of the 

enzyme solution-1 were added to each well of 96-well plates and incubated 

for 10 minutes at 37°C. After incubation, 100 μL of the enzyme solution-2 

was added and incubated for 10 minutes at 37°C. The absorbance was 

measured using an identical microplate reader used in quantification of fecal 

TG concentration set to 546nm and 600nm. Fecal NEFA content was 

calculated by subtracting the absorbance at 600nm from that at 546nm.  

Fecal cholesterol concentration was determined using commercial kit 

(Asan Pharmaceutical, Korea) based on enzymatic assay. The enzyme 

mixture in the solution hydrolyzes esterified cholesterol to free cholesterol 

and fatty acids, and oxidizes free cholesterol into ∆4-cholestenone and 
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hydrogen peroxide. The hydrogen peroxide creates quinone dyes by reacting 

with 4-aminoantipyrine, phenol, and peroxidase. Fecal cholesterol content 

was calculated on the absorbance of quinone dyes. In this study, 5 μL of 

lipid samples or standard (300 mg/dL of esterified cholesterol) and 300uL of 

enzyme solution were added to each well of 96-well plates and incubated for 

5 minutes at 37°C. The absorbance was measured using an identical 

microplate reader used in quantification of fecal TG concentration set to 

500nm. 
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Appendix 2. Body weight, weight gain, food intake, and feces of the mice1 

 Control   High-fat  Fat 
amount 

(P-value) 

Oil 
Type 

(P-value) 

Inter-
action 

(P-value)  SC  PC  SHF  PHF  
Body weight at 0 wk (g) 16.85 ± 0.23  17.04 ± 0.35  16.90 ± 0.22  16.92 ± 0.21  0.89 0.68 0.73 
Body weight at 12 wk (g) 32.69 ± 0.70a  32.82 ± 0.88a  43.35 ± 0.91b  42.53 ± 0.77b  < 0.01 0.70 0.59 
Body weight gain (g) 15.83 ± 0.81a  15.78 ± 0.82a  26.45 ± 1.01b  25.61 ± 0.71b  < 0.01 0.64 0.68 
Daily food intake (g) 3.37 ± 0.04b  3.37 ± 0.06b  3.01 ± 0.03a  2.98 ± 0.04a  < 0.01 0.68 0.63 
Daily energy intake (kcal) 12.95 ± 0.14a  12.97 ± 0.23a  14.25 ± 0.15b  14.09 ± 0.18b  < 0.01 0.67 0.61 
Feces2 (g/day) 0.27 ± 0.01  0.25 ± 0.01  0.24 ± 0.01  0.25 ± 0.01  0.16 0.56 0.35 
Freeze-dried feces3 (g/day) 0.23 ± 0.01  0.22 ± 0.01  0.21 ± 0.01  0.22 ± 0.00  0.04 0.72 0.45 
Data are presented as means ± SEM. 
1Two-way ANOVA was used to determine the significant effect of fat amount and oil type. Different superscripts indicate significant 

differences at P < 0.05 by Fisher’s LSD multiple comparison test. 
2Feces were collected for 3 days during the 12th week of feeding the experimental diets.  
3Feces were freeze-dried for 72 hours. 

SC, 10% soybean oil, n=14; PC, 10% pine nut oil, n=7; SHF, 10% soybean oil + 35% lard, n=14; PHF, 10% pine nut oil + 35% lard, 

n=10. 
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Fat amount (P-value) < 0.01  Fat amount (P-value) < 0.01  Fat amount (P-value) 0.84 
Oil type (P-value) 0.41  Oil type (P-value) 0.04  Oil type (P-value) 0.06 
Interaction (P-value) 0.84  Interaction (P-value) < 0.01  Interaction (P-value) 0.14 

 

 

Appendix 3. Fecal TG, NEFA, and CHOL levels. A, Fecal triglyceride level. B, Fecal non-esterified fatty acid level. C. Fecal total 
cholesterol level. Data are presented as means ± SEM. Feces were collected for 3 days during the 12th week of feeding the 
experimental diets, and fecal lipid contents were measured by enzymatic assay. Two-way ANOVA was used to determine the 
significant effect of fat amount and oil type. Different letters indicate significant difference at P<0.05 by Fisher’s LSD multiple 
comparison test. SC, 10% soybean oil, n=14; PC, 10% pine nut oil, n=7; SHF, 10% soybean oil + 35% lard, n=14; PHF, 10% pine 
nut oil + 35% lard, n=10.  
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국문초록 

 

고지방 식이로 유도된 비만 마우스에서 

잣기름이 체지방량 조절 관련 요인에 

미치는 영향 
 

 

서울대학교 대학원 식품영양학과 

신 선 혜 

 

잣기름은 소화관 호르몬 분비에 영향을 주어 식욕을 줄이고 식이섭취량

을 감소시킨다고 보고되어 왔다. 그러나 잣기름이 소화관 호르몬 수용체

나 신경펩타이드에 미치는 영향에 대해서는 연구된 바가 없으며, 잣기름

이 지질 대사에 미치는 영향에 대한 연구도 부족한 실정이다. 본 연구에

서는 잣기름이 체지방량 조절 관련 요인에 미치는 영향을 알아보고자 하

였다. 5 주령의 수컷 C57BL/6 mice 를 네 군으로 나눈 후 네 가지 실험

식이를 각각 12 주간 제공하였다. 실험 식이는 총 식이 칼로리의 10%를 

콩기름이나 잣기름으로 공급하는 저지방 식이(SC 또는 PC)와 총 식이 

칼로리의 45% 중 35%는 라아드로, 10%는 콩기름이나 잣기름으로 공

급하는 고지방 식이(SHF 또는 PHF)였다. Cholecystokinin 관련 유전

자, Ghrelin 관련 유전자, 신경펩타이드, 그리고 소장 및 백색 지방에서
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의 지질 대사 관련 유전자의 mRNA 발현량을 Real-time PCR 로 측정

하였다. 전체적으로 잣기름 섭취군에서 체중 증가량(P = 0.01)과 백색 

지방량(P < 0.01)이 적었으나, 콩기름 섭취군과 잣기름 섭취군의 식이 

섭취량에는 차이가 없었다. PC 군과 PHF 군의 백색 지방량은 각각 SC

군 (30% 적음, P = 0.05)과 SHF 군의 백색 지방량(18% 적음, P = 

0.03) 보다 적었다. 잣기름 섭취군의 시상하부에서 Growth hormone 

secretagogue receptor 및 Agouti-related protein 의 발현량은 유의

적으로 높았고 (Ghsr, P = 0.03; Agrp, P = 0.02), Pro-

opiomelanocortin 과 Cocaine- and amphetamine-regulated trascript

의 발현량도 높은 경향성을 보였다 (Pomc, P = 0.08; Cart, P = 0.06). 

PC 군은 SC 군에 비해 더 높은 Ghsr 발현량을 보였고 (1.23 배, P = 

0.02), PHF 군은 SHF 군에 비해 더 높은 Agrp 발현량을 보였다 (2.16

배, P = 0.02). 공장에서의 Cd36 과 Lipoprotein lipase 의 발현량은 잣

기름 섭취군에서 유의적으로 낮았으며 (Cd36, P = 0.03; Lpl, P = 

0.02), PC 군은 SC 군에 비해 더 낮은 Lpl 발현량을 보였다 (38% 적음, 

P = 0.04). 잣기름 섭취군은 또한 콩기름 섭취군과 비교했을 때, 낮은 

경향성의 공장 Apolipoprotein A-IV 발현량 (P = 0.07)과 높은 경향성

의 공장 β3-adrenergic receptor 발현량을 보였다 (P = 0.08). 잣기

름 섭취군에서 Ghsr 과 Agrp 의 발현량이 높았던 것은 콩기름 섭취군 

보다 백색 지방량이 적었던 잣기름 섭취군에서 에너지 섭취를 촉진하는 

신호가 더욱 강하게 발생 및 전달되었다는 것을 의미한다. 그리고 잣기
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름 섭취군에서 Pomc 와 Cart 의 발현량이 높은 경향성을 보였던 것은 

비만 정도가 더 심했던 SHF 군에서 POMC/CART 신호 전달 경로가 손

상되었을 가능성이 있다는 것을 암시한다. 반면, 체중과 체지방량이 적

었던 PHF 군에서는 이 POMC/CART 신호 전달 체계가 손상되지 않은 

것으로 추측된다. 잣기름 섭취군에서 유의적으로 낮았던 Cd36 및 Lpl 

발현량과, 낮은 경향성의 Apoa4 발현량, 그리고 높은 경향성의 Adrb3 

발현량은 잣기름이 콩기름보다 적게 흡수 및 저장됨을 의미한다. 결론적

으로 본 연구는 고지방 식이를 섭취한 마우스에서 잣기름이 체중 증가량

과 백색 지방량을 줄임으로써 POMC/CART 신호 전달 체계가 손상될 

가능성을 줄일 수 있음을 시사한다. 그리고 잣기름 섭취군의 낮은 백색 

지방량은 잣기름이 지질 대사에 미치는 영향에 의한 것이라 사료된다. 

 

주요어: 잣기름, 고지방 식이, POMC/CART 신호 전달 체계, 공장 지질 

흡수, 부고환 지방 지질 대사 
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