ive

creat
commons

)

E D

O N S D

M

O M

C

XN & XHEAl-

)
)
A
5%
<+

ioll
)
10
ak

&l

O

3
<D

0%

W0 s

~U)

<3

oll

RJ 4D oo
oS
”) <+ 1

~ 2 O]

LICk:

El-

ZHE Metor

LICH.

!

MEXE ZEAIGHHOF &

— o
:_CI

t

¢}

MNERLEAlL A

K4 .
I
[
00 <
S
] =
Ww m
RC o0
= K’
0 oy
RC U
K &
S K
oF
)
J (@)
(o]

3l
ST
- .o
)
o 3 _Eu_JE
00 7 5
(@) LOr _
= 2 ol
o7 2 U

-
0 il
RM 5 O
= = %_”
S 19
JI Ay
5 80 gr
o=
[] []

X ESLICH

tOd

HEAH0 2 Ol8Ke als 2o ol o

E

ol

I 2

Oloiotol &

S}
=

0l N2 0| =3 & 72 (Legal Code)

Disclaimer |:|._'|

lection

Co

http://creativecommons.org/licenses/by-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-sa/2.0/kr/

TEHAL =T

From Music to Programming:
Designing Method for Introductory
Programming Using Musical
Metaphor and Auditory Feedback

2EAE A% Z2aHW 1§ Yt AT

gt Fxo} Z2aYY mES) ddneE FHOE-

20149 2€

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Contents

LISTOF TABLES ... ii
LIST OF FIGURES ...t \Y
ABSTRACT .. %
1 INErOAUCTION ... 1
1.1 Background.........cccooeiiioieiieiiee e esie e 1

1.2 Research QUESHIONcccceiierieie e 3

1.3 Research Goal and ODjJECtIVEScceverereieiininisieieiee, 3

2 LIterature REVIEWcccvvviiieii et 4
2.1 Computer Science EQUCAtION.........ccovvieieieniieiereseeeeeen 4
2.1.1 Educational Programming Languagescccccecerervrivinnnens 4

2.1.2 Introductory Programming.........ccccoceeeereneneneneneneeieeeniens 6

2.2 Music and Programming........c.ccoceeeeirienieneneneneseseseeeans 10

2.3 Summary of Literature REVIEW..........ccccovevveiieiiere e, 11

3 MethodolOgycccovviiiieiee e 13
3.1 SYSIEIM e 13
3.1.1 Programming SEYIEcccooiiiiiiiiiiseee e 13

31,2 KEY SHUCKUIES....cvieiiie ettt 16

3.1.3 Programming EnVironment..........ccccoovvivinineneneneieeennns 20

3.2 USEI SUIVEY ..ottt 23

i 2] ;

4 Experimental Evaluation............cccccocovevieiieiiie e 25

4.1 INtroduCtOry COUISEcveiveeieeiesieesieee s se et 26
4.2 TULOMIAIS .o 29
4.3 Preliminary Case StudY.........cccovoirieiineniiereseseseeeeeee, 31
4.4 QUESHIONNAITE ...ccvvecvee ettt 32
4.5 PartiCIPantS.......cccoiiieiiiie i 32
5 Results and DISCUSSION.......c.cocuerieriereiienieseesieeeesieeee e 35
51 Data ANAIYSIS ...coeiviiiieeiiiieeie et 35
5.2 Survey FeedbackK..........cccooveiiiiiiiiice e, 41
5.3 In-depth INEIVIEWc.ooviiiiiiiieee e, 46
B CONCIUSION. .. .oooiiiiieiieecee e 48
6.1 CONtriBULIONS.......oiiiiiiiiciiie e 48
6.2 Limitation and FULUre WOrKcccevvreeneiieiieieeie e, 50
ACKNOWLEDGEMENTScoiiiiice st 51
REFERENCESci oottt 53
Appendix A: Online Survey QUESLIONNAITEccceevviveiieiiee e, 57
Appendix B: Offline Survey QUESLIONNAITEcccceveriiinininieiee, 59
Appendix C: Materials from SNU-IRB..........cccccooiiiiiniiininiecee, 65
Appendix D: Examples of tutorial...........c.cccccovvveiiiiicice e, 70
ii A
A [

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8

List of Tables

Lahtinen’s (2005) check list in learning programming................. 6
Data types and SYNTAXc.ccvverererineeieieese e 14
Comparing between the two of function definitions 15
Basic algorithmscccoovveiiieic e 16
Musical settings as programming metaphors..........cc.ccccceevennne. 20
Background information of participants: Major (N=32) 33

Inductive categorization of positive feedback from the student. 42

Inductive categorization of negative feedback from the student 44

1ii

List of Figures

Figure 1 The SsyntaxX Of JAVAccccveeiiriiiicicisese e 14
Figure 2~ The concept of proposed approachccccveveieneienciniinnens 15
Figure 3 Simplified programming syntax of conditional structure............ 17
Figure 4 Simplified programming syntax of loop structure...................... 18
Figure5 Simplified programming syntax of recursive example 1............ 19
Figure6 Simplified programming syntax of recursive example 2............ 19
Figure 7 First prototype of code editor framework..............ccocevevveiininnnns 20
Figure 8 Second prototype of code editor framework.............ccceevevinnnne 21
Figure 9 Third prototype of code editor frameworkcccccovvveivninnns 21
Figure 10 An example of a Google Drive Excel sheet with the responses
data from the partiCiPantS.........cccceieieeie i 24
Figure 11 Schedule for introductory COUISE.........ccevvevieiieeieie e 26
Figure 12 Introduction of Tutorial (Study Version)..........cccccevevvveveinenenne. 30
Figure 13 Background information of participants: Age (N=32)................ 33

Figure 14 Comparison of control experimental group rating on self-
reported level of assistance and enjoyment.........cccccovvieeve v cicsie s, 36
Figure 15 Comparison of control and experimental group rating on self-
reported level of understanding and satisfaction.............cccccoeeveviiiicicinennene. 37
Figure 16 Comparison of control and experimental group rating on self-
reported level of content and understanding about the process of the course. 38

Figure 17 Comparison of control and experimental group rating on self-

reported level of response about result form..........ccccceevveviiiviinicc e, 40
Figure 18 Frequency of positive issues about the Systemccccceevvinnne 43
Figure 19 Frequency of negative issues about the systemccccvvnnne 45

Abstract

Despite advances in programming language education, many beginner
programmers face difficulties and give up in the early stages, just because
they are not familiar with the programming syntax and semantics. In this
research, we propose a method, for introductory programming using musical
metaphor with an aim to entice beginners to program. This methodology is
motivated by two concepts: first, music notation as an analogy to
programming provides an enjoyable programming experience; second, on-line
auditory feedback enables to notify the status of program for the users in a
pleasant way. We described musical the settings as programming metaphors
to help beginners learn them with ease and intuition. We built on this work
through the system by incorporating with Java API for on-line auditory
feedback. This system is to help beginners provide on-line auditory feedback
as a communication medium to immediately notify the results in a pleasant
way. We tested the methodology with 32 students as novice programmers and
found that those in the experimental condition qualified significantly more
inviting experience with this study. Participants in the control and
experimental groups took a course for introductory programming, and most
students felt that this methodology was a positive influence, particularly those
with enjoyment. These findings suggest that some useful ideas how
programming is taught, and it could be an impact on motivation to program

and influence students’ first-time experience.

Keywords: Introductory Programming; Computer Science Education;
Musical Metaphor; Auditory Feedback; Interactive Environments;
Student Number: 2012-22457

1. Introduction

1.1 Background

In order to gain and improve their knowledge in programming, novice
programmers conflict goals that occur in complex programming syntax and
semantics (Carter, 2006). People who do not write programs regularly face
many barriers in the process of learning a programming language (Fitzgerald,
2008). While there are numerous ways to teach people through educational
programming languages, it is inevitable that novice programmers often feel
difficulties in understanding abstract concepts without any similar
phenomenon in the daily life for comparison (Lahtinen, Ala-Mutka &
Jarvinen, 2005).

There are not enough resources and programming metaphors to support an
understand-able programming learning experience (Tarkan et al, 2010).
Furthermore, there is a rich history of studies on programming environments
for beginners, though; many of these methods have focused on visual
programming, because graphic aids for thinking allow amplifying cognition in
learning situations (Lee & Ko, 2011). These technologies do not provide
immediate feedback, which is essential in helping novice programmers
understand the status of their programs. There are rare cases that address the
form of result with auditory factors for interactive communication in
educational settings (Ko, Myers & Aung, 2004).

If inability to connect programs with metaphor on the environment affects

1

people’s performance on traditional programming then, does useful metaphor
affect novice programmer’s motivation and learning success? To examine this
question, we created the methodology to provide a positive programming
experience for students and introduce concepts of programming. Our decision
to use musical metaphor was motivated by the desire to make relationship
between music and programming that encourages effective interaction with
the system (Bramwell-Dicks et al, 2013; Huron, 2006). We designed on this
work through the system by incorporating with Java API for on-line auditory
feedback. The system is to help beginners provide on-line auditory feedback
as a communication medium to immediately notify the results in a pleasant
way.

To evaluate this design decision, we conducted a study comparing the
conventional method for introductory programming with Python and
involving observation and interviews of 32 students as novice programmers.
Our result shows that the process of introductory course in each condition was
easy for students to understand. However, this research offers several
significant advantages from learning perspective of introductory programming.
Among these, this research is more inviting and provides better support for
motivation to program. We hope that this study will provide concrete
evidence that using musical metaphor and on-line auditory feedback for
introductory programming can be an effective way to promote intrinsically

supported educational activities for students.

1.2 Research Question

There are two research questions being investigated in this study.

RQ1. Can this research assist students develop positive experience towards
programming?

RQ2. Can on-line auditory feedback proposed in this research effectively aid

students notify the status of program?

1.3 Research Goal and Objectives

The main goal of this research is:
To help students develop positive attitude towards programming and lower the
barriers to programming with the assistance of musical metaphor and on-line

auditory feedback.

The research goal leads the implementation of a set of research objectives
supporting the purpose of this study and its formulation. The research
objectives are:
a) To gain empirical evidences of the realities on the students’ learning
experience associated with this research.
b) To validate the musical features proposed in this research effectively

attract students to programming.

2. Literature Review

2.1 Computer Science Education

2.1.1 Educational Programming Languages

With respect to education, Wing stated that every educated person in the 21°
century will know core computer science concepts, known as computational
thinking (Wing, 2006). The key point of computational thinking is that
information and tasks would be processed more systematically and efficiently
on the premise that one has knowledge in programming. This knowledge
assists students comprehend how system works. There are numerous ways to
equip students with dealing information systematically, teaching programming
is appropriate educational approach for thinking about computational thinking
and enticing students to design and modify program to adapt their needs
(Swan, 1991). We discuss our research on computer programming education
as an expanded concept of computational thinking.

There is a rich history of research on educational programming language since
Storytelling Alice. It was one of the first applications that demonstrated the
potential for the storytelling-style of programming and studies for novice
programmers have motivated learners to acquire programming skills (Kelleher,
Pausch & Kiesler, 2007). Alice helps students learn programming by
constructing 3D virtual stories. To encourage young people, the study focused

on inviting beginners to create and share stories. As computers play an

4

important role in our everyday lives, familiarity with computer and
programming becomes essential and many researches have explored methods
to introduce programming. The research with Alice had result that
performance and interest in programming depended on previous programming
experience (Kelleher, Pausch & Kiesler, 2007). Scratch, the most famous
language in computer science education, focused on a graphical programming
environment where young people could build interactive characters on game,
and art by creating blocks (Resnick, 2009). A lot of experiments have proven
the effectiveness and appealing points of Scratch, and many recent languages
have also adopted a puzzle piece metaphor incorporating with the concept of
connection interlocking visual elements. Today, this methodology of
providing a syntax-free programming interface that involves drag and drop of
the construct into program leads the trends of teaching programming (Horn,
Solovey & Jacob, 2008). Following a long tradition of computer science
education, we designed our method for introductory programming using
musical metaphor and auditory feedback.

In the case of feedback in learning, most introduced methods for
programming education use a familiar feedback of programming results (Lee
& Ko, 2011). Based on studies in education, negative feedback discourages
learners to proceed on further tasks (see Table 1). As Atlas reports, there was
considerable work in the area of self-reported motivation for programming
(Atlas, Taggart & Goodell, 2004). This research found that students’
awareness to negative feedback have a strong relationship to self-reported

performance levels in the course. However, these works failed to track the

5)

status of the program and the notifying errors intuitively, which are significant

processes of the basic programming curricular (Wolz, 2009).

Table 1. Lahtinens (2005) checklist in learning programming

Rank | What kind of issues you feel difficult in learning programming?

1 How to design a program to solve a certain task
2 Dividing functionality into procedures
3 Finding bugs from their own programs

Rank | Which programming concepts have been difficult for you to learn?

1 Recursion
2 Pointers and references
3 Abstract data types

Rank | What kinds of materials have helped you in learning programming?

1 Example programs
2 Interactive visualizations
3 Lecture notes/copies of transparencies

2.1.2 Introductory Programming

Even though everyone uses a computer and interacts with integrated programs,
only a very few of them can program their own interactive media. As we live

in a society which is a full of interactive objects, familiarity with computers

and programs is becoming significant, and many studies are challenging
methods to introduce computer programming (Robins, Rountree & Rountree,
2003). The creation of the program requires challenge for learning about
traditional programming language. For experienced programmers who have
pursued computer science, it is also challenging for them. Research showed
that learning how to program may have a valuable effect on students’
achievement, not in problem solving skills, but also in information science
education (Clements, 1999). The decades of studies about introductory
programming have been diverse, and the methods in which the activities are
integrated in with the broader curriculum (Horn, Solovey, Crouser, & Jacob,
2009; Clements, 1999).

There was a previous effort to make programming concepts easier for novice
programmers by dedicating some degree of conventional programming
language such as BASIC (Kelleher, Pausch & Kiesler, 2007). Today, Python is
another good example with many advantages for supporting as an
introductory model (Pears et al, 2007). The simple, pseudocode like syntax of
Python makes the description of code easier for students. Even though, C,
Java, and C++ top the list of the most widely used programming language for
both industry and educational area, usages of these languages were considered
as traditional views of learning and moving to knowledge about a particular
programming language.

Furthermore, increasing focus on initial enthusiasm for introducing
programming to children has occurred in a worldwide. Most previous studies

mentioned the factors about the difficulties of introductory programming.

7

There were many factors (Pears et al, 2007), such as “First, early
programming languages were too difficult to use. Many children had
difficulty mastering the syntax of programming languages. Second,
programming was often introduced with activities that were not connected to
children’s interests or experiences. Third, children did not have access to a
literature of interesting computer programs. Even though young writers are
often inspired by reading great works of literature, there was no analogous
literature of programming projects to inspire new programmers. Fourth,
programming was often introduced in contexts where no one had the expertise
needed to provide guidance when things went wrong, or encourage deeper
explorations when things went right.”

Moreover, research on computing education also follows a long tradition.
Considering the key concepts which is essential for introductory programming
would be significant in the process of introductory programming (Pears et al,
2007). Schneider argued that there are the ten essential concepts and
objectives of an initial programming course in Computer Science (Schneider,

1978). This research have motivated some of these objectives

® The single most important concept in a programming course is the
concept of an algorithm.
® The presentation of a computer language should concentrate on

semantics and program characteristics not syntax.

Even though most traditional views of learning programming priorities the

8

structure and syntax of the language itself (Resnick et al, 2009). However, in
contrast to prior work, this study is not structured according to the constructs
of the particular programming language used.

There are many contributions for how to success in introductory programming
(Porter, Guzdial, McDoweel & Simon, 2013). Introduction of introductory
programming is important to invite students to take a course in computer
science, including students in non-programmers. Most of systems for
beginners and children were designed to assist in constructing correct
programs. For example, programming metaphors support an accessible
programming learning experience. Tarkan designed that cooking scenarios
were used as programming metaphor and the programs were created pictorial
recipes which controlled in a kitchen environment animation (Tarkan et al,
2010). Using virtual animation, children could strengthen cognitive skills such
as planning abilities and experience with problem-solving heuristics. To
explore ways in which to provide concrete real-world scenarios, a lot of
studies focused on iterative design work around programming. Another
metaphor was also suggested by Esper which they referred to as Codespells,
using the metaphor of wizardry (Esper, Foster & Griswold, 2013). They
created a unique novice experience with a new domain, because it could be
considered what expert programmers can do is regarded as “magical”.
Codespells allowed getting novice programmers immersed in programming
area and a positive view of their ability. The use of this approach has been
more child-focused activity and several advantages from programming

learning perspective. Without translation from program to real-world scenario,

9

students would be guided to focus on self-directed learning and to allow

creating knowledge through exploration.

2.2 Music and Programming

There was a previous attempt done by Dannenberg who drew analogies
between programming and music based on Pascal, and did a lecture on
teaching programming to musicians by programmatically creating audio
(Dannenberg & Dannenberg, 1984). The goal of the lecture was not focused
on programming education, but music composition. Most researchers
investigated the approach between music and programming on tasks for
composing and designed to examine music universalities in the music culture
(Wang & Cook, 2004).

On the other hand, studies on audio-based applications have shown that using
auditory feedback can develop and rehearse cognition (Baldis, 2001). Most of
these studies focused on the constructing cognition through audio-based
interfaces such as short-term memory, abstract memory, spatial abstraction,
and haptic perception. Based on this approach, Audio Programming Language
for blind learner was also introduced to assist novice blind programmers using
text-to-speech system (Sanchez & Aguayo, 2005).

In the field of Human Computer Interaction, auditory feedback can assist
exceptional cognition to express the way in which internal and external
representations and processing weave together in thought (Card, 1999). This

approach was to apply a similar idea to develop a programming education

10

method that attracts novice programmers to write code. Furthermore, this
approach focused on using music to facilitate introductory programming
concepts for learning process.

Another area that inspired our research was about students’ motivation and
performance related to the effects of sensitivity (Atlas, Taggart & Goodell,
2004). This literature considered not programming education, but music
education. Regarding responses of music students to performance feedback,
performance anxiety appears to be related with levels of enjoyment and self-
perceptions of ability in such domain. This approaches explored the
relationship between music and education related to the enjoyment of the
activity and interaction. Moreover, research on music and education showed
that familiar component affects learning. Many of educational technologies
with music have focused on increasing learner motivation by educational

factors to entice learners to explore new activities.

2.3 Summary of Literature Review

The novelty of this approach is that it utilizes meaningful musical analogies
on the programming method for basic programming courses and uses on-line
auditory feedback for recognizing the status of the program. Novice
programmers can code by ‘listening’ to the behavior of the implemented
program. Our research builds on the ideas from related works by designing
method for introductory programming using musical metaphor that will

cooperate with the similarities between music and programming. To help

11

engage students, we find several key concepts in programming language
syntax and semantics, and translate them into music notation to help beginner
programmers learn them with ease and intuition. For validating that our
prototype would make it possible for students to introduce programming, we
designed semi-structured interviews and surveys from previous research
tradition (Fincher, Tenenberg & Robins, 2011). Previous researches
accomplished its own mission to enabling novice programmers to introduce
programming in different ways. All of these researches attempted to entice
learners with their intrinsic interest about programming. Although there have
been applies to bring together music and programming via music composition
area, we wanted to formulate the method for introductory programming
focusing on basic concept of computer science education. Our approach
therefore, has been on exploring new design directions for computational
thinking that can support students who are explicitly experienced in
programming.

In the case of programming, students are encouraged to depart from daily life
and focus on programming syntax in details. We designed examples and a
learning support environment, allowing users to learn to program by them.
Moreover, we use music notation as an analogy to programming based on the
observation that there are similar attributes between the two, and provide
users with on-line auditory feedback to immediately notify the status in a

pleasant way.

12

3. Methodology

3.1 System

In this section, the specification for programming and details of
implementation about the system is described. First, we describe about
programming style related to conventional programming language, Java,
which is one of the most famous language in the world. Furthermore, we
describe key structures of this methodology, programming environment and

user survey for notation what was used in this research.
3.1.1 Programming Style

We illustrate several key concepts in programming language syntax and
semantics of our approach, and music notation for helping beginners learn
them with ease and intuition. It is important to recognize that novice
programmers would have difficulties with the syntax of any programming
language in early stage. This study proposed new concept of programming
language style with music notation (see Table 2). Based on our finding
between music and programming syntax, we were interested in the following
concepts. First, each musical note was assigned to basic variable for
programming and we defined as groups of sounds consisting of at least basic
scale in notes itself. For this prototype, we were interested in standard pitch in

scales. Second, students are allowed to increase their chances of programming

13

with melody, which is function or method of traditional programming
language. We conducted this approach for broadening knowledge of
programming from introductory programming to further in traditional way.
Third, repetition, loop, and ending signed were assigned to similarities based
on our observation for examples. More details might be advantageous in our

discussion of the results.

Table 2. Data types and syntax

Data type Description Example
Notes A pitched sound itself Do Re Mi Fa

Measures Melody segment First melody
Sign Musical symbols Repetition, ending

There is the syntax of Java which is easily we could see when we learn Java
in the class. We translated them into music notation to help beginners learn

them with ease and intuition.

// add
50 = 49 + 1;
16 = 15++;

// for loop

for (int i = 0; i < 100; i++){
System.out.println(“i Value = ” + i);

}

// variables

int var;

long temp;

// method
java.lang.Math.sqrt();

Figure 1. The syntax of Java

The purpose of musical metaphor was to support students to realize how the
14

program works by comparing it with realistic alternative methods. We
formulated simplified programming language syntax to promote a conceptual
understanding of programming and lesson the load of learning programming
syntax (see Figure 2, Table 3).

Musical metaphor approach supports programming education because it
shares various similar aspects between the two, such as reusable signs, control
statements, and the combinations of sequential and algorithmic structures. In
addition, the simplicity of musical symbols provides an easy and enjoyable

learning experience through familiar notations.

=
=T

(RIS MEinf OIC|RE ~ MBS SHM OIC7ER]) |
00HZC] Hhs;

\
Ay
r

[T

2

}

/4 47| M

mot=, Hio|gEl, ER;

/1 A7 AFE
|0t .GEZE .. HUR2C|MM () ;

Figure 2. The concept of proposed approach

Table 3. Comparing between the two of function definitions

Original version

Using melody as method

int Fibonacci (int n)
{
if (n<2)
return n;
else
return
Fibonacci (n-1)
+ Fibonacci (n-2);

}

melody (notes)
{
if (Do)
Do;
else
melody (notes-1)
+ melody (notes-2);
}

15

3.1.2 Key Structures

This section describes key control structures in the system. It is crucial that
the programming code should be written accurately based on precise
procedures. We introduced a set of basic algorithms with musical analogies by
providing an easy-to-understand methodology (see Table 4). This approach
allows learners to concentrate on the achieving the solution to the problems

rather than facing difficulties and give up in the early stages (see Table 5).

Table 4. Basic algorithms

Sequence Conditional Loop

! b

if-statement
NO l
YES l

YES
\ Statement 1 | ‘ Statement 2 ‘ 0
Statement 2 l <—| lNO

Statement 1

II

Sequence
Sequence is a linear series where one task is performed sequentially after
another. Sequential control is indicated by writing one action after another,

the actions are performed in the sequence (top to bottom) that they are

16

written (Leiserson, Rivest & Stein, 2001).

In this research, we portrayed the sequence algorithm as playing several
melodies. Each action on a line by itself and all actions aligned sequentially.
Sequence is allowed to make a key structure for music composition, and

notes and melodies are arranged based on the consecutive order.

Conditional / Loop structures

Conditional statements, conditional expressions and structures describe
various computations and tasks based on Boolean condition, such as true or
false, and perform selectively changing the flow by different condition. Loop
statement describes program to be repeatedly executed.

The conditional is considered as the first-and-second ending notation in
music and the loop corresponds to its musical analogy as the repetition (see
Figure 3, Figure 4). Students can enhance their ability to understand the
knowledge of programming through other types of concepts (Esper, Foster &

Griswold, 2013).

1. [2.
f | | .
¥ | |) 3 | | | 3 | |
.l f | | | | f [d
¢ e~ B B e e B |
St | | a8 |]
e 4 4 T g

melody(happy) { do do sol sol }
melody(first ending) { mi re do }
melody(second ending) { la la seol }

if(happy once) {
first ending;
} else {
second ending;

}

Figure 3. Simplified programming syntax of conditional structure

17

@

| 10
| 1HES

i I
"

BN

melody(twinkle)
{ do do sol sol }

repeat (twinkle, twice);

Figure 4. Simplified programming syntax of loop structure

Arithmetic operations

Designing approaches for education suggested that instructions should
combine both concept of knowledge and strategies for the student in the
learning process. To do so, we implemented arithmetic and logic operations
using the chords in music.

This strategy would let novice programmers define arithmetic operation
functions, which is one of the cognitively complex tasks for novices to
acquire correct results. By using this method, students might be able to solve
an addition, for example, with on-line auditory feedback. In the traditional
method, the process of leading to the correct answer of an arithmetic

operation is as follows:

1) Defining the method correctly
2) Calling in the appropriate position

3) Printing out the result

However, this research provides on-line auditory results that correspond with

18

what the student defined. To make problems easier for novice programmers,
the strategy of this research would provide interesting exercises that novices

can understand intuitively.

Recursion / Solving a certain task

In the Computer Science curriculum, dealing with program functionality or
function definitions is an essential construct in programming concepts. To
explore ways to help novice programmers with programming experience and
skills, we used musical melodies as method definitions in programming.
This could prove to be a useful perception, since the connection between
melody and function might support the iterative development of recursion
programming experience (see Figure 5, Figure 6).

fa . l
" i

G | . I

change(note) {
note+change (note+1);
}

change(note) {
note+change (note+2);
}

Figure 5. Simplified programming syntax of recursive example 1

Fa]

o T

melody(note) {
if(note==do) do;
else
melody(note-1)+melody(note-2)
}

Figure 6. Simplified programming syntax of recursive example 2
19

i
S— |

Table 5. Musical settings as programming metaphors

Concepts

Musical settings

Arithmetic operation

Using a chord as the addition of notes

Function definition

Using a melody and making a sequence

with a variety of predefined melody

Conditional structures

First and second endings

for an if-else statement

Loop structures

Repetition for loops

Recursion

in a sequence

Calling a rhythm and melody repeatedly

Solving a certain task

Task with sorting example

Understanding the flow of program

for communication

Using an on-line auditory feedback

3.1.3 Programming Environment

Compesing your song

Song {
Meledy()

}

Do Re Mi Do;

! R"ﬂ_f‘ Cancel

{ // Play Default Song

Figure 7. First prototype of code editor framework

20

S—

806

Composing your song

sol = fa+l;
ni o= res+;

piano, violin, flute;

do, re, mi, do

)

Run Cancel

// parameter: once, twice, thrice, notes, note, ending, bar
/7 type: melody, repetition,

melody(first ending) { // #0iC| o442 cf Wac| o1z
i

Ctrl+Z: Undo function

Figure 8. Second prototype of code editor framework

800

Code editor

melody() {

¥ nlsé {
second ending;
}

meledy{first bar) {
do do sol sol;
}

melody(second bar) {
la la sol rest;
}

repeat (first bar, twice);

Figure 9. Third prototype of code editor framework

To allow for musical metaphor programming in the development environment,

we created a prototype of programming language. We were careful to make

the simplified programming language to be simply readable by students based

on common music notation and the programming environment providing on-

line auditory feedback and listening to the results immediately. Moreover,

interface should be related by analogy to daily experience and easy to

21

___;rx_-l! _CI_':I_ .I_ll :

understand.

Java API with audio arguments

In this research, prototype of programming language provides a code editor as
the development environment using JFugue. JFugue is a Java API that allows
students to create MIDI files in the Java language. It is an open source
programming library for creating and playing music in real-time. To generate
music, the programmer defines a series of musical events in their Java
application. For example, this is an example of a Java program that plays the
C-major scale using JFugue. Programmers, who had previously taken
programming courses, who had the ability to write their own computer
programs, or who had contributed towards the development of computer
programs, could use this library to create an application with a variety of
formats. As mentioned previously, however, this research focused on the
beginners, and it was safe to assume that they were not aware of this library.
We utilize JFugue to implement this method for on-line auditory feedback as a

communication medium.

With simple syntax, novice programmers write their program and listen to the
results in line by line immediately through the code editor. This makes it
possible to notify the programmer about the status of program and aids users
in fixing them. We illustrated several key aspects of the code editor we
implemented (see Figure 7, Figure 8 and Figure 9). First, unlike previous code

editors, this code editor is simple and powerful for students and enables the

22

creation of codes using music notation. Second, the editor provides an
immediate on-line auditory feedback on the status of the program. When the
students write the program in the code editor, the string is inserted into the
source code, and every line in the source code triggers the system of what we
implemented to construct parse tree. By carefully monitoring every change in
the code editor, this research approach provides an appropriate on-line
auditory feedback of what students define and update for syntax highlighting,
which makes it easy and enjoyable for students to use. Finally, we display
only the essential functions of the code editor. A simple interface will be less

of a burden for beginner programmers in writing their own code.

3.2 User Survey

Before we presented our novel approach to teaching programming using
music notation, we reviewed the description by our previous research (Ko &
Lee, 2013) — especially the familiarity of music notation. We conducted a
survey that asked the level of understanding of music scores and experience in
music training. 132 respondents answered that they understood music scores
with an average degree of understanding of 3.54 on a scale of 1 to 5 (SD =

1.09). We offered a choice of five scales:

0) Not familiar with the notation
1) Somewhat unfamiliar

2) Undecided

23

3) Somewhat familiar

4) Very familiar with the notation

4. 37 BAH(E,E,D
200" SR2 ARE 3 MY SAGHA) w SAWK) 01912 SOF
LSS £ S A ASUN AR (OGS ALS W2 AR UAS 5 SAYSES We
Timestamp Slaun? E% 49 2t5) = A9l FAR. un? SHS FA0ALIR? SeAdE SEAL LI
£/9/2013 0:42:01 U SHT] U2(H2 S 5 104 HEHAFS 42 &6l O 25
5/9/2013 16:48:45 1| 5M7| (K3t 58 4|moke 0] of 25
5/9/2013 16:49:11 DfLI2 He s 2| = Mokx 29 ol o 30
SMA] U2 (HE S
PR B
5/9/2013 16:49:14 U] 2 5|74 Gl i} 25
5/9/2013 16:50:07 1| 5HMA] L2 (HY S0 2 e eE e EE o 25
5/9/2013 16:64:34 U] 597 A (A2 S20) 2[14 ol i 2
5/9/2013 16:54:37 OILI2. HERE) 1/21e ol of 2
5HM7] 2 (H2 S0
5/9/2013 16:54:41 B 4|94 Gl of 25
5/9/2013 16:58:15 L] 57| U (AL 52 4| Mofe. Bi0| 22 0| o 23
5/9/2013 16:69:24 4| 5MEI 2 (2t 22 2 o g5
5HMA] 22 (H2 S8
5/9/2013 16:59:42 1| B 5 moke 94 Gl of 25
5/9/2013 17-00:37 OiLI2 e gis 3/34 0| o 24
5/9/2013 17:01:04 4| 5ME] U2 S 31 ol =) 27
5/9/2013 17:01:59 1| 5M7| O (] 2 S0 324 ol of 25
5/9/2013 17:06:13 | 5097] 2(H 2 S0 4| mofe 49T ol o 23
5/9/2013 17:07:25 U 5ME] 2 (2 SO 4 ol i} 2
5/9/2013 17-08:06 Ul 5MEI 2 (2t 22 5|5 il i} 23
5/9/2013 17-08:23 4| SMA| 22 (A2 S0 4|54 ol o 25

Figure 10. An example of a Google Drive Excel sheet with the responses

data from the participants

We wanted to highlight our own stances under comfortableness with music
symbols and indication that music could be a great tool for education and

communication medium.

24

4. Experimental Evaluation

In this section, we described our experimental setting for evaluation. This
research conducted two user studies. The first study asked the level of
understanding of music scores and experiences in music training. To validate
our proposal, we deployed the first study to generalize music notation, which
was used in this study could be a great tool for education and communication
mediums under comfortableness with music symbols.

Based on the first one, a second study was also conducted. We observed 32
students in two conditions — control and experimental — validating an aim to
entice students to program using music notation, as an analogy to
programming. By supporting an accessible programming learning experience,
this research focused on the first-time programmers’ experiences in
introductory course. In the control condition, 16 students participated the class
for introductory programming using Python. Python was introduced as a
programming language itself with the basic concepts of assignment and
instruction of reading and writing statements. Python presents many
advantages for introductory programming (Pears et al, 2007). The simple
syntax like pseudocode of Python allows the beginning students to code easier
(Agarwal & Agarwal, 2006). There is a large community that supports Python
and many excellent books. Our research followed this tradition of
introductory programming to make control condition for user study. In

contrast, the experimental condition introduced the methodology of this

25

research as a gateway to programming language itself with the key concepts
in educational programming settings that make use of similar attributes
between music notation and programming. 16 students also participated the
class for introductory programming using the methodology of this research.
To allow for their first experience of programming, researcher focused on peer
mentoring. Both of them focused on increasing learner motivation by
collaborating various factors to invite learners to participate computational

activities (Lahtinen, Ala-Mutka & Jarvinen, 2005).

In the rest of this section, we present the process of introductory course in
more detail and discuss the preliminary study designed to investigate the

hypothesis.

4.1 Introductory Course

Lecture Lecture Quiz
Pre-survey Post-survey
In-depth - © In-depth
Inverview - . Inverview

Figure 11. Schedule for introductory course

An introductory programming course should always be taken into account

within the structure of a computing curriculum (Kelleher, Pausch & Kiesler,

26

2007). In tradition, most students who pursue their major in computer
science followed a computing curriculum. What are the key aspects in
university computing curricula?

Most of introductory computing course embodies a number of assumptions:
first, a computing course always makes assumptions regarding
computational metaphor and programming paradigm; second, a computing
course must focus on the spectrum of possible choices that want to
emphasize a particular them throughout the course (Utting et al, 2010). Our
intention was to provide an overview of learning about programming:
getting broader perspectives on and insight into the students’ experience, and
being familiarity with the didactic techniques and that have been
demonstrated to have a positive impact on learning experience.

One of the most traditional views of introductory programming prioritizes
the syntax of the language itself (Resnick et al, 2009). However, some of
most influential movements include the component-first approach advocated
in. In this research, we put the contents of introductory courses before
tradition and designed the process of course specifically for the beginning

students. These fall into three steps (see Figure 11):

Day 1

In the introductory course, students were guided through sequence of course
with the cognition of basic learning in the introductory programming. During
the course, students followed the instruction interacting with researcher, in

other words, participated peer mentoring. Quantitative data involving student

27

behavior were recorded automatically as well as manually by the researcher.

The primary activity in the course was to learn how to get a result from the
system “hello world”. In experimental condition, we designed default
melody for students’ first programming experience. The descriptions,
examples, tasks were designed to teach specific aspects of programming.
Each of examples focused on obscuring or elucidating the key features in
programming domain. In the beginning of the course, we introduced about
general concepts about programming, such as the structure and constructs.
Using the examples based on curricular, we previewed how we can code and
get a result from the code editor. Not only did it explained what action it is
taking in each step and heard these changes to the sequence in program, but
also students would be allowed to realize the status of system and how it
works. In each condition, students achieved the task for introduction, and
interactively programmed with the use of a particular language.

The aim of this course was to concentrate on instructional settings for
learning about programming. The contents of course were based on the
tutorial what we designed for the class and described in the followed section.
We implemented the questionnaire for quantitative and qualitative data to get
the insights about this methodology. Students were asked about the overall
opinion about programming through each condition. In addition, we asked a
leading question in the last part, which was “Do you want to continue this

introductory programming for gaining more details?”

Day 2

28

In the second day of the course, students who wanted to get a course
continually were guided specifically about the tasks of examples in peer
mentoring situation. In both conditions, the tutorial was designed to be easy
to access students know how we makes the program with the key structures.
A peer mentoring could be a scalable approach to improving control in this
tutoring (Lahtinen, Ala-Mutka & Jarvinen, 2005). All participants were
educated to degree level and came from a variety of programming area

including basic concepts using the course materials.

Day 3

Finally, students were guided to participate quick quiz for checking the
experience about introductory programming. We examined several students’
submissions in detail, to familiarize the programming not only with the

process of writing code but reading and understanding that of others.

4.2 Tutorials

In this session, we describe how the programming courses contents were
covered with two lectures and five problems sets on each condition. To
develop a variety of programming concepts, we then established a set of

instructional design principles that can help student deal with each concept.

29

Tutorial

Introduction

2 FYE|of 27|

HelloWorld

void main (String []1 args

FY ARAPL flo] Z2OYE MAAIZICHH ABXIC| slHfl= “Hello World!” 2H= 2M
Holc, Z2TUE Haligx| f2 =EXe| HL ALE 4HEMHM 58 £ Qe BE
27 & Zolct, { } o|E 552 /X|? System.out 0|21 H1? class Helloworld 0|71 = #0F..,
public static void main(String [] args) 0/Zd???

T2 chsh HiRs 22 20 s =2iHe= MEn YHENCeR FIsts YWe oot
Mg 22340 chat B2 o, Javaet 22 AE A SO, OFR2| Zictet AAE stoAt ER(2t
& E2ET= M22 A0S ujeD Zdsh=s HWE uhof =iot

Figure 12. Introduction of Tutorial (Study version)

In the first of the course, we introduced students to the most fundamental
constructs of programming, such as statements, boolean expressions,
conditions, loops, and functional definition. We first presented each construct
in the context of pseudocode based on the traditional methodology. We
explained each construct in the context of programs written in each condition,
conditional and experimental. With each of examples, students were allowed
to ask some questions what make them embarrassed. The tutorial of each

condition also included the usage of the environment itself (see Appendix D).

In the first set on Python, students were presented with a challenge of first-

programming experience. They were guided:

1) Print out the result like “Hello world!”
30

2) Make the program using one condition
3) Make the program using one loop

4) Define the function using previous example

Throughout we considered assigning several examples and tasks, each
focused on one or more concepts, we generally covered the key concepts for

introductory programming.

4.3 Preliminary Case Study

Since the scope of this research focused on the introductory programming, we
designed two versions of the user study discussing the factor of helping
students understand programming concepts with more ease. The control
version of the user study used Python, which is simple language as a first
language and its potential effect on future learning of more complex
languages (Agarwal & Agarwal, 2006); the experimental version used the
metaphor of music for programming with on-line auditory feedback based on
similar attributes between music score and programming.

We chose to investigate three key aspects of this research that were not
examined in most previous programming education. The goal of this research
is to examine the role of musical metaphor and on-line auditory feedback on
novices’ motivation to program. To do this, this study used interview and

survey to elicit the parameters held by students in an introductory course.

31

4.4 Questionnaire

The Institutional Review Board of the Seoul National University for
Research approved the experimental procedures, and each subject provided
written informed consent. We described our questionnaire for preliminary
study of this research. The questionnaire was formed based on second topics:
expected completeness, comprehensiveness, enjoyment, and overall

feedback about the system (see Appendix B).

4.5 Participants

We observed 32 individuals from the undergraduate students at the Ewha
Womans University and each participant was randomly assigned one of the
two conditions (16 for the control condition and 16 for the experimental
condition). Of these, all of the participants were female ranging from 19 to 25
years old (M=21.63, SD=1.90), and we did in-depth interview with one of
participants for collecting intensive observation. Participants who completed
tasks in 2 hour session got rewards from researcher. The Institutional Review
Board of the Seoul National University for Research approved the
experimental procedures, and each subject provided written informed consent

(see Appendix C).

32

Age

Number of Participants
-

Figure 13. Background information of participants: Age (N=32)

Table 6. Background information of participants: Major (N=32)

Item Frequency
Liberal Arts 14
Social Sciences 7
ngﬁgzlof Art and Design 6
Natural Science 4
Education 1
Total 32

Students were given a pre-survey and a unique code to receive payment for
their submission. The survey was designed to get demographic information
(age, gender, major), identify prior music and programming experience, and
elicit feedback and attitudes about the methodology. To validate supporting
first-time programmers’ experience, we conducted a user study with constraint
as a novice programmer. We clarified all of the participants have never taken a
programming class, part in the development of a computer program. We
wanted to interact with the students through think aloud method in observing

during the introductory course.

In this study, our null hypothesis was:
33

HO: There is no difference in influencing a first-time programming experience
between the control condition, using traditional, soundless, off-line feedback
and the experimental condition, using musical metaphor and on-line auditory

feedback.

34

5. Results and Discussion

5.1 Data Analysis

Preliminary study was conducted to compare the effectiveness of the method
for introductory programming in two groups, control and experimental group.
The study was consistent with the observation of participants and analysis of
the results based on the data obtained during the course of introductory
programming. In this section, we present quantitative and qualitative results
that demonstrated measurement about the first-time programming experience.
This measures were normally dependent on parametric tests were used for
analyses. The level of confidence in this research was set at a=0.05. Due to
the explorative nature of this introductory study, meaningful results were

collected from the participants in both conditions.

Difference in the level of attraction to programming

Based on prior formative evaluation of the introductory programming, we
expected this research methodology to be highly inviting. We hoped that the
use of familiar objects like musical metaphor in this study would transform an
unfamiliar experience into an inviting experience. For comparison, we ran an
independent samples t-test for validating this hypothesis. The results, shown
in Figure 14, indicated that the form of programming result matters a great
deal for inviting. This case rejected the null hypothesis based on the

significant difference in the degree of accessibility (t(30)=4.87, p<0.0001).

35

Overall, students were significantly more likely satisfied with the result using
on-line auditory feedback (M=4.06, SD=0.90) rather than with a text form
(M=2.64, SD=0.79). This was especially true that students preferred to form
of auditory feedback. The self-reported average level of enjoyment in the
experimental condition was 4.00 (SD=0.94). The self-reported average level
of assistance in the control condition was 2.53 (SD=0.72). The difference
between two condition was significant (t(30)=5.14, p<0.0001). To gain some
insight into this effect, during the course, | asked the students’ which form of
the results was more enjoyable. Ten of the students who answered
guestionnaire that auditory feedback were more attractive than the
conventional way. We want to discuss more about this insight in the
discussion section.

Afttraction to programming

5 M Experim...

4.06 4.00 B control

Attraction Enjoyment

Figure 14. Comparison of control and experimental group rating on self-

reported level of assistance and enjoyment

Similarly, the ratio of participation in the next step was 56.25% (experimental

group), while the ratio in another group was 12.5%.

36

Difference in the level of knowledge acquisition

Knowledge Acquisition

M Experi..
W Control

3.59

Understanding Satisfaction

Figure 15. Comparison of control and experimental group rating on self-

reported level of understanding and satisfaction

As we mentioned in introduction, one of our hypothesis was that the
experimental condition would be easier for students to understand than the
control condition. This hypothesis was caused by musical metaphor because
we felt that students would be familiar with it. Despite early expectations,
when participants were asked about “How much do you understand about
programming through this class?” the results of the study showed that there
was no significant difference between the two conditions (t(30)=1.87, p=0.07)
(see Figure 15). For the experimental group, 41% of students answered that
musical metaphor greatly help them visualize the overall picture of the
program. Students had a higher rating on understanding (M=3.18, SD=1.13)
compared to conditional group (M=2.53, SD=0.87). Based on this
introductory programming, participants in each group had similar level of

understanding. On the question of the measurement of satisfaction of the

37

system, the overall rating was high with experimental group (M=3.59,
SD=1.28), and different in conditional group (M=2.29, SD=0.99). In general,
participant felt satisfaction in the case of experimental group (t(30)=3.31,
p=0.002). This again supports the observation that even in introductory course
focused on intermediate level, understanding the overall picture of the

program can affect their satisfaction.

No Difference in the process of the course

Process of the Course

W Experimental
W Control

4 3.71 3.82

Content Understanding

Figure 16. Comparison of control and experimental group rating on self-
reported level of content and understanding about the process of the

course

We measured the contentment in terms of the overall session for each group.
The average contentment of the course was 3.71 (SD=0.92) for the
experimental condition and 3.24 (SD=0.90) for the control condition. A two
sample t-test showed no significant difference between the two means
(t(30)=1.50, p=0.14) (see Figure 16). To put these results into perspective,

previous research on contentment in introductory programming showed that
38

the contents of the course ware really important to novice programmer (Pears
et al, 2007). Likewise, there was no significant difference in the contentment
participants felt about the course. There was, however, a significant difference
in participants’ reporting that they understood programming through the
course (t(32)=4.96, p<0.0001). Participants in the experimental condition
(M=3.82, SD=1.19) were significantly more likely that those in the control

condition (M=2.12, SD=0.78) to agree to the statement.

Reaction-Time

During periods of observation, quantitative data involving student behavior
were obtained automatically as well as manually by the researcher. We
measured the time of reaction when students got the result from the program.
The minimum time spent recognizing the status of program for the control and
experimental condition was 4.84 seconds and 4.08 seconds, respectively. The
median overall reaction time for the control and experimental conditions were
4.35 seconds and 4.1 seconds, respectively. There was no significant
difference in the length of time participants in either condition programmed

tasks overall. We addressed possible explanations for this in the discussion.

Difference in the form of result

39

Form of Result

W Experimental
M Control

4 3.82

Comprehendable Responsible

Figure 17. Comparison of control and experimental group rating on self-

reported level of response about result form

To measure the level of understandable, we assigned a level of understandable
and responsible from the logs. The distribution of ‘comprehendible’ showed
that a number of participants from experimental group (M=3.82, SD=1.19)
and conditional group (M=2.65, SD=0.93) checked difference between the
two (t(30)=3.22, p=0.003) (see Figure 17).

The findings demonstrated that musical metaphor and auditory feedback can
increase student’s motivation to program. More specifically, music notation as
an analogy to programming supported positive effects on students’ acquisition
in learning a simple programming language. Overall, on the six measures, this
methodology was more inviting, more supportive of being apprehendable, and
more effective to learn. One of the goals of this research was to notify people
that “Programming is not that hard to learn”. In fact, learning how to program

is a sort of learning any other language. We wanted to invite novice
40

X 2-1]| 8

]

1

n’

programmers to make their own ideas a reality based on the experience of
programming. In this study, we focused on using music to facilitate

introducing programming concepts for learning programming.

5.2 Survey Feedback

Positive

The purpose of musical metaphor was to enable students to figure out how
the methodology works by relating it to music. Student answered, for
example, that they could imagine the overall feature of the program based on
the music structure.

There are the six different issues noticeable in the context of learning, and
each issue is explained in Table 7 with quotes from the students:
Accessibility, creativity, enjoyment, on-line auditory feedback, overall

picture, peer tutoring, and music notation.

41

Table 7. Inductive categorization of positive feedback from the student

Issue

Description

Quotes

Accessibility

Creativity

Enjoyment

On-line auditory

feedback

Overall picture

Peer tutoring

Music notation

Lowering barriers to
programming

Relationship between
music and
programming

Playful experience with
programming

Helping people notify
the status of program

Getting the overall
picture of the program
with the assistance of
musical metaphor

Teaching programming
with similar status as
the students being
tutored

Being familiar with

music notation

“l am contented with getting lesson from this approach. | think this
approach is helpful for novice programmers who have problem in
controlling the level of difficulty during the tutoring.”

“| think it affects introductory programming to explore possibility of
education methodology. Students who are not familiar with
programming can use this approach effectively for entering to
programming area.”

“l am interested in the novelty of this research especially the
relationship between music and programming because it seems like
easy to access to programming.”

“I like the creativity of association between music (or instrument) and
programming. Students who have interest in programming might
consider this approach fresh because they didn’t know about the
connection between programming and other fields.”

“I think this introduction is good start for programming. | had fun with
music and preferred to jump into programming.”

“As a gateway to languages like traditional programming, then, this
study appears feasible choice.”

“It is fun to use the system because | can hear what | programmed.”
“| like the form of result which is music attracting me a lot.”

“The experience with this introduction helped me establish a general
idea of how to think like a programmer.”

“I can guess overall image of program through this approach. To novice
programmer, it is hard to think about the overall picture and status of
program.”

| feel peer tutoring influenced me during the tutoring time. Whenever |
wanted to use some computer program, | felt nervous because I don’t
want to make some problems or something wrong.”

“In this study, I think importance of peer tutoring is really essential.”

“In the case of traditional programming language, | have to know about
the meaning of English. However in this case, | don’t have to translate
them.”

“This notation can lower the barriers to programming.”

As shown in Figure 18, Accessibility (38.1%) appeared to be the most

common issue the students experienced in the introductory programming. On-

42

¥

line auditory feedback (16.7%) was another issues that were chosen
considerably frequently in the context of introductory programming.
Enjoyment and Overall picture (14.3%) were other issues, and the issue of

peer mentoring and creativity counted for 12.5% and 9.4% respectively.

Positive feedback (N=42)

W Accessibility
M Enjoyment
Overall picture

W On-ine auditory
feedback

W Creativity
W Feer mentaring

Figure 18. Frequency of positive issues about the system

Negative

There are also the seven different negative issues noticeable in the context of
learning, and each issue is explained in Table 8 with quotes from the
students: Error notification, range of the system, weakness, prior background,

motivation, unacceptability, and syntax.

43
A& st

Table 8. Inductive categorization of negative feedback from the student

Issue Description Quotes
Erasing the function . . .
9 . “l am afraid about errors. However, even if it gives me negative effects, |
Error of error notification . . .
: think I have to know about the existence of error in program.”
to decrease negative “When we learn something, realizing what is problem in this situation is
notification factor of runtime . v ¢ P
really important.”
error
. “l am not sure this is real programming. | think there is more serious thing
Focusing on the .
. beyond this study.”
Range introductory . .
rogrammin “Novice programmers also should know about the key concepts in
preg g programming. There is no excuse for learning only a few things.”
. “People who don’t like music at all might feel overwhelmed, because they
Being loaded from . .
Weakness the music have to know about programming and even music.”
“We can meet people quite often someone who can’t read music score.”
Basic backgrounds “Itis hard to understand what researcher wants to talk about.”
Backgrounds . X .
about programming “So what? What is programming?”
“There is no much relationship between enjoyment and willingness to learn
. Willin: learn rogramming.”
Motivation g to leal about progra g

Unacceptability

Syntax

about programming

Barriers to learning
about programming

Barriers to English
language for Korean

“I think it is totally different between just enjoying and being eager to
learn.”

“For me, it is really hard to type something on keyboard.”
“It is so complicated.”

“During the course, | was overwhelmed by the syntax. 1’ve never seen that
kinds of things in my life.”
“Why do | have to type only in English?”

Range The purpose of musical metaphor was to enable beginners to figure out

how the system works by relating it to music. However, as we developed this

metaphor, some problems arose, including inconsistencies with music

structure and complexities that do not exist in authentic music. We plan to

improve on our research along with the metaphor of music and engage

students such that they can feel positive about their experiences when learning

44

¥

their further languages.

Motivation A lot of students mentioned about the relationship between
enjoyment and motivation. They mentioned that there is no much relationship
between excitement and willingness to learn about programming. Although
students currently had a critical attitude in the field of computer science,
Kelleher pointed out that previous experience programming and time spent
programming would lead to provide them performance and interest in
programming (Kelleher, Pausch & Kiesler, 2007). We could demonstrate this
concern with empirical evidences and the importance of supporting

collaboration to engage students.

Negative feedback (N=60)

M Error notification

M Range
Weakness

W Backgrounds

W Motivation

B Unacceptability

W Syntax

Figure 19. Frequency of negative issues about the system

Error notification It is true that the experience of programming is
characterized by occasions of failure (Fitzgerald et al, 2008). The initial
experience with new programming language often leads to unexpected

results and unknown error messages from the program. Even though these

45

A&t 8

forms of feedback are important to supporting a programmer recognize what
status is and how program works, the experience might be quite
embarrassing and discouraging (Lee & Ko, 2011). Following a tradition of
previous studies, this research was also implicated in considering the form of
error messages. For most novice programmers, we decided that the system
do not notify any kinds of feedback when error occurs in program.
Traditional studies have shown that the system scold users for errors affect
users’ performance negatively (Kelleher, Pausch & Kiesler, 2007). After the
user study, we got a lot of feedbacks about the form of feedback including
not only on-line auditory feedback, but also nonoccurrence of errors in
process. In future work, we will expand the capabilities of the prototype to

account for error finding issue.

5.3 In-depth Interview

For the purposes of this study, we defined active interaction as simultaneous
active participation, and | measured it by writing down every comment during
the course. In particular, we provided the result of in-depth interview from
one participant, who interested in learning about programming. Her major is
in statistics and she had weak backgrounds in statistical programming with R.
She gave clear comments that the approach of this research did indeed excite:
“This approach, programming with musical metaphor and on-line auditory
feedback, was a full of fun, and chance to think about understanding

introductory concepts through exploration. It was really nice having auditory

46

rewards for the results instead of colorful text those randomly generated by
the environments. When | learned about programming with R, the purpose of
the lectures was testing statistical hypothesis and drawing the figure from the
data. However, in a two hour session, | had never before programmed but |
was able use a tutorial to learn how to program in this approach, and then
continue to next step for additional programming courses.” This, in itself,

would be a success.

47

6. Conclusion

In this paper, we presented a study for introductory programming with
musical metaphor and on-line auditory feedback. We believe the effects of
using music notation as an analogy for introductory programming would
improve the performance and comprehension of students. Our results
provided empirical evidence that thoughtfully designed the methodology for
introductory course could offer significant advantages over the introduction of
traditional programming language in the context of computer science
education. Among these advantages, musical metaphors can be more inviting
and more conducive to be introduced programming. Moreover, in this study,
the musical metaphors are better at encouraging students to take an active role
in exploring and learning, an effect that seems especially who have interests
in music.

The results of this research suggest several ways for future work. We want to
further implement the methodology to better understand exactly. We are
planning to evaluate the methodology and following hypothesis will be
investigated: this research can assist students in enabling to identify the

program’s flow easily in the learning process.

6.1 Contributions

We discuss this research on programming education as an expanded concept

of computational thinking. Moreover, the National Research Council
48

announced that digital fluency as “the ability to reformulate knowledge, to
express oneself creatively and appropriately, and to produce and generate
information goes beyond traditional notions of computer literacy requires a
deeper, more essential understanding and mastery of information technology
for information processing, communication, and problem solving than does
computer literacy as traditionally defined.” Due to the NRC report, ability
associated with programming take an important role in the development of
fluency (Resnick et al, 2009).

We conducted a user study comparing the methodology of this research with
other traditional programming language as a gateway to learn and introduce
programming. This study assessed the methodology and yielded results
about which features contributed to differences and statistically better.
Especially, we chose to examine two key features of the system that are not
found in traditional programming languages: musical metaphor and on-line
auditory feedback.

This study has several contributions. First, on the basis of previous work,
more key concepts in educational programming settings were improved that
make use of similar attributes between music notation and programming.
Second, the study described system design incorporating with JAVA API for
on-line auditory feedback. Third, the study provided the possible lessons
learned from encouraging novice programmers with music, which makes

stressful situations become more pleasant and enjoyable.

49

6.2 Limitation and Future Work

Some researchers in Computer Science, Education, and Human-Computer
Interaction (HCI) gave considerable and valuable comments to our previous
works. However, they troubled because this research might be different with
other programming systems. They concerned that students learning this
methodology might be not learning essential computer science concepts and
programming skills that would be needed in the future. We provided some
rebuttals that considered in the context of computer science education.

First, this research has introduced some valuable ideas that would impact
how programming is taught and what kinds of topics are considered. Some
of students would start to learn programming and computer science through
this research. Second, the purpose of this research was to enable a wide
range of students to visualize their ideas and challenge the opportunities of
programming. Moreover, it is significant that novice programmers’ early
experiences are fulfilling ones. The problem is that most programming
systems are so complex to learn and use that most students are hard to fulfill
their goals. In this study, we focused on dealing with this problem and

helping students get familiar with the experience.

50

Acknowledgements

I would like to gratefully thank Prof. Kyogu Lee for his guidance,
understanding, insight, and his leadership during my graduate studies at
Music and Audio Research Group (MARG). He encouraged and inspired me
to explore my own individuality and self-sufficiency with independence. |
am very grateful for the many hours he spent discussing and his untiring
feedback in my research.

| would also like to thank my co-advisor, Prof. Joongseek Lee, and the other
advisors of Graduate School of Convergence Science and Technology
including Prof. Namjun Kang, Joonhwan Lee, and Bongwon Seo for their
guidance and support. Prof. Joonhwan Lee was especially generous to
suggesting the direction of the user studies and goal of the research. | was
extremely lucky to interact with advisors who cared so much about my study,
and who gave me valuable advice and support for my study. | would also
like to thank all the members of students at MARG for helping me during
my graduate studies and also providing for unforgettable memories in my
life. In particular, I would like to thank Boyeon Son, Ara Kim, and Yeonhwa
Kim for giving me heartfelt consideration, assistance and friendship.

I must express appreciation to my sincere friends, Jimin Choi, Joowon Park,
Hyunjin Joo, Julie Kim, and Shia Kim who have helped me in various ways
in my life. A special thanks to Jiexin Wang and Jason Koh whose counsel
and friendship were essential to make it possible to complete this study.

Finally, and most importantly, 1 would like to thank my family for their

51

unending encouragement and support, special thanks to my parents who
have given me quiet patience and unwavering love with their faith in me. |
would like to express my gratitude to my sister Hyun for her continued
encouragement. | am glad you have made many progresses in your life and

wish you the best of luck with your work!

52

Reference

Agarwal, K. K., & Agarwal, A. (2006). Simply python for ¢s0. Journal of Computing
Sciences in Colleges, 21(4), 162-170.

Atlas, G. D., Taggart, T., & Goodell, D. J. (2004). The effects of sensitivity to
criticism on motivation and performance in music students. British Journal
of Music Education, 21(01), 81-87.

Baldis, J. J. (2001). Effects of spatial audio on memory, comprehension, and
preference during desktop conferences. In Proceedings of the SIGCHI
conference on Human factors in computing systems (pp. 166-173). ACM.

Bramwell-Dicks, A., et al. (2013). Affective Musical Interaction: Influencing Users’
Behaviour and Experiences with Music, Music and Human-Computer
Interaction. Springer London, 67-83.

Card, S. K., Mackinlay, J. D., & Schneiderman, B. (Eds.). (1999). Readings in
information visualization: using vision to think. Morgan Kaufmann.

Carter, L. (2006). Why students with an apparent aptitude for computer
science don't choose to major in computer science. In ACM SIGCSE
Bulletin (Vol. 38, No. 1, pp. 27-31). ACM.

Clements, D. H. (1999). The future of educational computing research: The case of
computer programming. Information Technology in Childhood Education
Annual, 147-179.

Dannenberg, F. K., Dannenberg, R. B., & Miller, P. L. (1984). Teaching Programming
to Musicians.

Esper, S., Foster, S. R., & Griswold, W. G. (2013). CodeSpells: embodying the
metaphor of wizardry for programming. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science education (pp.
249-254). ACM.

Fincher, S., Tenenberg, J., & Robins, A. (2011). Research design: necessary bricolage.
In Proceedings of the seventh international workshop on Computing

education research (pp. 27-32). ACM.

53

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L.,
& Zander, C. (2008). Debugging: finding, fixing and flailing, a multi-
institutional study of novice debuggers. Computer Science Education, 18(2),
93-116.

Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J. (2009). Comparing the use
of tangible and graphical programming languages for informal science
education. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 975-984). ACM.

Horn, M. S., Solovey, E. T., & Jacob, R. J. (2008). Tangible programming and
informal science learning: making TUIs work for museums. In Proceedings
of the 7th international conference on Interaction design and children (pp.
194-201). ACM.

Huron, D. (2006). Sweet Anticipation: Music and the Psychology of Expectation.
MIT Press.

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle
school girls to learn computer programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems (pp. 1455-1464). ACM.

Ko, A. J., Myers, B. A., & Aung, H. H. (2004). Six learning barriers in end-user
programming systems. In Visual Languages and Human Centric Computing,
2004 IEEE Symposium on (pp. 199-206). IEEE.

Ko, E., & Lee, K. (2013). Using Music Notation for Teaching Computer
Programming. ICCE.

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H. M. (2005). A study of the difficulties of
novice programmers. In ACM SIGCSE Bulletin (Vol. 37, No. 3, pp. 14-18).
ACM.

Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms. T. H.
Cormen (Ed.). The MIT press.

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. In ACM
SIGCSE Bulletin (Vol. 41, No. 1, pp. 260-264). ACM.

Mclver, L., & Conway, D. (1996). Seven deadly sins of introductory programming

54

language design. In Software Engineering: Education and Practice.
Proceedings. International Conference (pp. 309-316). IEEE.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., & Paterson,
J. (2007). A survey of literature on the teaching of introductory
programming. In ACM SIGCSE Bulletin (Mol. 39, No. 4, pp. 204-223).
ACM.

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in introductory
programming: what works?. Communications of the ACM, 56(8), 34-36.

Resnick, M., Flanagan, M., Kelleher, C., MacLaurin, M., Ohshima, Y., Perlin, K., &
Torres, R. (2009). Growing up programming: democratizing the creation of
dynamic, interactive media. In Proceedings of the 27th international
conference extended abstracts on Human factors in computing systems (pp.
3293-3296). ACM.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2), 137-172.

Sanchez, J., & Aguayo, F. (2005). Blind learners programming through audio.

In CHI'05 extended abstracts on Human factors in computing systems(pp.
1769-1772). ACM.

Schneider, G. M. (1978). The introductory programming course in computer science:
ten principles. ACM SIGCSE Bulletin, 10(1), 107-114.

Swan, K. (1991). Programming objects to think with: Logo and the teaching and
learning of problem solving. Journal of Educational Computing
Research, 7(1), 89-112.

Tarkan, S., Sazawal, V., Druin, A., Golub, E., Bonsignore, E. M., Walsh, G., & Atrash,
Z. (2010). Toque: designing a cooking-based programming language for
and with children. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 2417-2426). ACM.

Utting, 1., Cooper, S., Kélling, M., Maloney, J., & Resnick, M. (2010). Alice,
greenfoot, and scratch--a discussion. ACM Transactions on Computing
Education (TOCE), 10(4), 17.

55

Wang, G., & Cook, P. R. (2004). On-the-fly programming: using code as an
expressive musical instrument. In Proceedings of the 2004 conference on
New interfaces for musical expression (pp. 138-143). National University of
Singapore.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-
35.

Wolz, U., Leitner, H. H., Malan, D. J., & Maloney, J. (2009). Starting with scratch in
CS 1. In ACM SIGCSE Bulletin (Vol. 41, No. 1, pp. 2-3). ACM.

56

Appendix A: Online Survey Questionnaire

OfH Rl& I XA
ohdstdl2. M= ME0& 1 Music and Audio Research Group AJAFFE 2%l ch
ofE et Fs S HOtEY| e 2Tt MEEAES Fstnxrt FL|ch

Ol2iESHM SHH FAE 2E UE2 SAHQ SHo2e Fso] ABELIC
J|EH 20| Afg GEE S B[22 PEERILI,

M2 A0fEFA RE BEH ZAERLCH (223 konzungi@gmail.com)
SEA Lio]

sux 4
ok
O of

1. 42 E I8 + USLIn?
Ol
) oL@

2.0 ZRe| YHE S = MUELN? (B=5 44 7k5)
LERE
SHE| ef2 (M Z2f)
HztE(=ef)
Ete et
Cther:

3. Mg Zel(sHX]) olsof cifgt O[S HEEFAR.
1 2 3 4 6
#2200 0O OO &2 ol
4. 57 2a44(E, 5,12 39a8) olelo] 2o A we Heo| UsL?
@Elle o HY E= W 48 HoiFAIR)
O e ge

() Other:

o7

5. 39 gl=g Yol e FooRiLa?
R 1= g

() #lol

) HEN HE &7 =H|

() Other:

6. T ol siod 2el2| zisEo| =B MRS Hus FH2.
12 3 4 6

e sasRlge O O O O O e as

7. H2 87 39| F20| 2510 XS MY T YT 2. (B 7hs)
[24| (Classic)

[& (Pop)

[A= (Jazz)

[&l (Hiphop)

() =2} (Korean traditional music)

[other:| |

| Submit |
Never submit passwords through Google Forms.

Fowered by This content is neither created nor endorsed by Google.
Gox *8'@ Drive Report Abuse - Terms of Service - Additional Terms

Appendix B: Offline Survey Questionnaire

IRB No. 1311/001-003 27|17k 201449 119 6

AUAE YIS Z2IY TS WO BA ME

HASHA Q.
Metistn sears7|ecist@l Music and Audio Research GroupOj|A{
-]

of
XEAE Y Z20Y DY YOI U LES VYLD AL

2 M22 o158 HE 208 HoE oy,
olaigol AFS Yet £ ARSH oloo| MOz AHK g S
&Lt

29| ArE2 konzung@snu.ackr O 2 0|0 Y HLYFA|D T =2 &L Ct
AL CH

ER-T]
QLy¥ 14y 201y

Q2 Lol

goto| Bt HEE

Q3. 7Asts A7IE HiP7LE 29 HFE K Ho2 Ho| AN QIta?
1. 54 o|™

2. 5-104

3. 10-154

4. 15-204|

5. 204 0|Z

59

IRB No. 1311/001-003

F827|2k 20144 118 6Y

Q4. 7otE Ft nFY (XS 00 SAUK)0|20 9 ugS L2 FHO|
Aorzta?
14
2. O
Q5. BHof SICHE, OfE WE|S) 8 MROIK| 2HES] HOIFAL.
Q6. MY SOUGMX) om0 Chet 0|8 =S MefsiTN 2.
1 2 3 4 5
Terrible Excellent

M

(]

Q7. Y BU(GHA|) O4EE HA O{LFE HOIEX|

Never

AP 228 25 RslgLr

CUENTS

Always

b

OlF Z22HY &8 TdstAEUCH

60

IRB No. 1311/001-003 27|72k 20144 118 6%

Main task 22

[H T

HE2 F 0| 3t Ho| 5|0 W= MY R, Task?h FO{FLICE
2ads THSE E0CE HY L2 A2|U0] EYHFA L. o E
=T EfO[E, X &&, 22| 20l S B {0 He2s Y2458 25
22|LHOf Tlet CitstAl B gL ch

Ao Bt Wot
[2Hd = (Completeness)
QL sig =212 A0S E85}0] 9|2 TasksE =X &7 O|HSHALIR?

Terrible Excellent

HHsQiLIR?
1 2 3 4 5
Terrible Excellent

Q3. 8ig T2y ol T2y ZtE WaEA HSStALIR?

Terrible Excellent

61

IRB No. 1311/001-003 S87|7k: 20144 118 6

Q4 ==Y THSHHAM Z0t20| 7|Chof Ol =F = LFSALIR?

Terrible Excellent

[0| 3} =(Comprehensiveness)]
Q5. 2 Aol XMSst= stE 2F2 ofdlst| HRLIR?
1 2 3 4 5

Terrible Excellent

Q6. 2 grggol Z=a) Yy Zutel e 0fsh3t7| HziLta?

Terrible Excellent

Q7. 2 A7 e St =21 Yof 23l of =F & O|fistAlct
YZSHAILLR?

Terrible Excellent

62

IRB No. 1311/001-003 887|127k 20144 118 6

Q8. 2 pdgg ot Z2 el o] oot X4 S50 HEA|ILLR?

Terrible Excellent

£0| £ (Enjoyment)]
Q9. & clpetHe £OXE gA =22 U0 oSt 2 0|8 %Ctn
AstAILLR?

Terrible Excellent

Q10. & AFLEo| HMIst: Hege Z2IHYS AL THs7|0f

g0 2guar

Terrible Excellent

QIL & o7t Fas7| o B ALH K|Aj0| B0| TasLte?

Strongly disagree Strongly agree

63

IRB No. 1311/001-003 2#7|7k 20144 118 62

Q12 & AFH 0| MEste stgEe 22 s&ES 2lo] ChA| o 88t
olgo| Rleilztar?

10

2. o e

QI3 & a7wHel BYS RAULIN HREA HOFHAR

Qi4. 2 R Hol HYe RAUUALITN HREA HOFUAL

Qls. Z212Yg NHSHHA £0| €l 947t AACH ARE
HolFHAI2

Ql6. Z2IajHe FWSPA B2 QU 247 UACHH ARE

HojF U2

64

Appendix C: Materials from SNU-IRB

IRB No. 1311/001-003 S27|7k 20144 118 6

HFE 220 B AT FoixHE L EBLICH

£ p70ME X2 Z2INE Y2 FiSstn IR Het 18 YHS MBstod g%
Z2a20Y flojof cist MTAS Holn X Z2aeinio] A B4 ¥ ZzIY S
Shsiel o7 WS stz #uich

o HTYR 2AUQINR?
ZEAE PPt Z2I2iY B Yot 7

o I EOIE £ U2
MY7|E: 8t 18 Al 04 654l Olstold, WA Z=2IeHY floiE Easte o oA
07t e & 3 Z2a2iY o] Hel HUE U2 +ZTE ol i &,
Zzaeid @ z2MEeo #of#t ZYo| gls &, FA® Fotstn 2 EJ|Yo|
&t &, SENMoR MEXIE o1 XYY + U X
Hel7|E: g) olato] mzaeH ¢lofyt 58 A, B2 @Kl Rstm olastx|
Rt & YoIE ¢iX| Ratn olsiskR| RstE A, FI2= Eto[Eo| E7HE A, St
HEE olAlo| e &t

o & 70l FoistAl £ PFUE ste?
£ 70 FHoiStAIH, 67 YU S JHWE ALEN B8 YHUS HBE 24y
LZ0| O|Foix|A ELch Hoixt MME Z2IeHY 2lof BH&ol AR HAHOIA CHRE
FHES YW 7I12Hs0 sastA g 2 oF fof Fols Z2a24Yol chE 7|
XA ga 20E ¥ 4 Uen, TRIMY x40 HEot ng 21 EE Bt @A
FHuch g 3" olRolE A UEXIE HMsto! MEXIC HY Algte o 15 &
HE2 ofld it sta 7|72 AT Fof s|URtet Ff ZWE AlElucH

o OCIA 3tLER7?
MECHE D SIS T|SCIEHRD &

o Eoid=e 2oot2?
Z 224 elojoi| BB x| A3} xt7HEE B Zatol| ChE AT elol dY
5000 ¥ 4o B2 H@HBY

o F7t ZHIL HIO| ULtR?
glaLict

65

IRB No. 1311/001-003 S87|7k 20143 118 6%
1% 2% 7|8k 2013 & 11 2 30 & H&|
DE cHe: 20

ZFE AEO| UL Eo{F flotE B2 2XtL OlHIJE Bolstod FAIZ| uHELICH
B2l Al Ltol, 8, Mates & J|xfsiF Al FEeiT o] pigtg callaLct
MECHE D CIXEHESHTS

A7 MUzt olm T M4

g oz 128

T3} 010-2800-4369

0|H|: konzung@snu.ac.kr

66

IRB No. 1311/001-003 F827|7k 201449 118 6%

Eodx} SolE 2IEt B

ZHAE 8t T2OeiY K Yot i

-MSCHE R 8IS R CIXYHES TS SA/QCIR AT IE-

B oFE AM2didn SHIHT CIXYHESUTZ SY/Cie ATIBAM =2
ZZIOEH0{E CHY R Z2OPHY 3ta 208 STAIZ = s 18 WY /Ysin, ns
E0E 5YslnA s AFLCE £ AFolE 2013 W 12 ¥ 31 Ltx| Tkt E2 B
32 Yol ekelo] #odstA & Zeducth

Hoixtel M U HiX7IE S CHa T ZaLch
ME71E: B 18 Ml 014 65 Al Olstoln], B4 Z2IaiY olo® staste o BAlm S0l
2lout ZEo| HE3 &, B%E FobsriL U5 X, STsoz NEXIE oD HuY 4
2lon] 2238y mRof Hoist| Metaitin BEEE &

HMol7|Z: # 7 ol4te] m2IEHY eloj7t 5B &, B2 x| RetD olshetx] Fott A,
YoiE /x| BT olaHstx| Rt A, FEE Efol™ol Ete &, 2F Tl Hofsil
ofgictn BEHEls X

FHofste WHE B §2ME o1 dYS oM ¥ Rty oAl2 ZFstol MYSHAIR EuCh

EHofstAIE A7t MEXIE HYstn M 0] F £ A7 YU2 S NLE ALHY 28
YE M8 Z2IaeiY K0l O|Roix|A Euch MY]I UR ol AQAZH2
158 Y2 o4, 2 6T &of £ole T2 Yol chet 7| X x|4 3 S0HE A8 &
oo, 1to| Y =3 Wyt wA EHilckh

THHeR el 22 BItot o|F o0& Huch

o QATEHEH YE o], Y
o ATHojof pE HE -ZE2I2HY FH /T, A VIZXKM L nS #Y BY
o Aol #Et ALE R Bt

2 oi7ol HofstAl =222 olojoil e x| AR A7HEE B Aol CHE T ol Y
o HEE god £ gLt 2 AFeME Z2ae1Y 2K BpHolM 7|xxel QR o]
sEsts B]o| TYEH ELich B AT E S a2 S8 22 T2 OS] 4 B
A =Z2Ieigol gt AT E STY ofFo|n Ol AT JHMoll gAY AHULIch 0|2

67

IRB No. 1311/001-003 27|17k 20144 118 6

33xcz Z2a2Y ojol cEt YuQlES| YT HE Foln A5stn Bedt us Yy
sa z2aed staol 3EXeR X gstalet 7icigLc

njo

HelgEate] MdRts MBoisn SENT|Si Y olnT m4(031-888-9150) Lich.
Jielel Atxel HEE B3 guct JHelo| MYHEE +7 U BRE[R| et sxjgh gy,
A, AHEEBI Eo W Z2OpHY FE EHE HEESR 0|88 + Uguch HEWIL
Zdntet LHEAAM ZHystdl Z2OeiY I ZABs HEY HEE QlE QIRERE M0
HNEE HFEIE Ssi 7lgX2ENeR AT Mxtyt HEE #elguch 47 Mextet
SRt JHel HE B3 E 9 A2 #el W 2Ystn o, 3T §Mos BEE AlE
F2ste AFXE A7E olole EXsK| fauch ATE olQds ERE FHY 4+
glgLict =3t YRe| A obxiof gret HEol 27{stof (7ot pEE e Y B
F H7|guct Fstel WEE WEE + e 2 AT7EHE 75 AN o it 7|Yye
FRIstor & o|F7 U220, B JHAIHERSE A%t Bt 2L Feo| 2 A7 A
2lo| lguict

2 o7 Hoi= olsl £t Bt HIBT WASHK| gigLict §2| Folz AKEX| AT 0f0]
Chet SOl Hslg + U2 Y= EILIcH

B 7o gt BolAtgol AUoAH HMEX| B AT KlolH 2oldtal = Usict EF

mgxto] Helot Sxjof et 2olAtgol U2 B AHTRE|MIANE AR BolstA
+ Aguch

geedxh: ol @ F (M2CHdn SR CIXYHESUNI)
I 2 3 (MScEn SEasE ClXIEEESHUTS). 031-888-9139

Mer) e s 4TS
T2k 02-880-5153

68

IRB No. 1311/001-003 87|17k 201444 118 6

MH S2o|M

ZEAE Et T2OoY S Yot 7

. 222 o] 7ol MM o2 R XQI o|Atol 2t FrodgfLct

. 202 7ol S i, 2o odEls o cis| S=2d dY¥s
EiaLch

. SIMER XIFEAH AT HoiE X = ASS L1 ULIcH

. Bl X MR "ot An ¥ 2oy 3= ARt o] ¢dFof o|8EE
ojsfstn dgLich #el2 ol 2t HIY |xIElo] X2lEcks Zg 21
A0 0|8 2HZ stof ol HEo| #Bof SlgfLich 22 o] d7et #E
Enxof 2lo| ol&0| HBEIX| of & olsHEfLic

. BQI2 Xtz Exof gt HEo| FHstE Htel Helrt SS ¢1 Aauch
o2 A7 Sxg s 2lol Jelxel X2t +F, X2l ¢E, ol§E:
Zof chal SolstiaLct

. K2 Esof pEt gl HEZ E3 g Helet 45EX| e #, 2fl2 o
AT E HofZl Jielxel Rtz Lt ZIHE 0|8 E + ASS HUFLICH

AT EOx} M ELy
Py M =

69

Appendix D: Examples of tutorial

Tutorial for experimental condition
Introduction

ERTT} WA

o223 1018 HabA ECIM 1S Hojet | 2 4 g
27| g =

Ofl ZEG| ofM5HA =2 2 Ut Ofel= Javazks Z2I2HY 210

HelloWorld

void n (String [] a

System.out . println("Hello World!");

Y AMEXE Yo Z2OWS HEAIZICHH AFERES| B2t “Hello World!”
| € ZolCh BRI MalEK| S EHAI0] 29 TCE MmEA
S & EA 2 Zolch {1} 0l FESS2 HX|? System.out 0|24

2k SME =2
REE U= ZEA
#1117 class Helloworld 0]

i

E 2ot public static void main(String [] args) 0124777
Z2 2o chel BiRE X2 2Xol sl =2lHo R M2tstn WHER o FsHs ME ojnldt
ch X2 Z2aiYof chsl e o, Javalt Z2 HOIE HiSAH| ECtH, ofF2| Tt EUE St

A ER = EHAE 22 201E T XSk HE Hifiok ECL
EEHI g xlats

40| 2iRolal sHEolZ CiEsll ElCiT JHEMS U 220l0] BRUS Cia
S| &t 742] Mlo|

OLHE OfsE & QS Zolch 12iLt HREs 8 22| Mz 8¢
EE() df2ts EXECH Z2 82 Moz SX5HX] et
About this method

E*E 22l= of o2 Lio] 2E Sy ’Eé‘:éwl AN otes E CiFshs g BUCL WE &
0f, ALHE S8 22 W27t PExo2 Fgs|D (B 7|50| HHEHeR 3= T2) 9f
HojlM =240 w2t g otC] 2 0|Sshz (g w2t +8s= 7|c0| Hafxl= Z20d) nHEs0|
2| Eoh E3H X siLisits (EH i) ARE PMsHs 247} EIiC)

Het 22 2B RE s ol 47| 22 —E— % O|20{T Z2TehY HH = ==Xt
o] Si&ol W7t Erk. C’E!L 0| 2EE JiMElOX} SO0 £FS WHBUX FCh SUS 0185t
ik 3"’*0!] IR _i:lEH“ S5 S A2 Adsln, B8 0185 T2t HlRE 7

3% wee
ot + 9, otuet R ool RAMNS OIRE ZEIAY W

70

H2 Z2THAUS HPT Holsts olB] £= 2R Z2 IS0 KRS8 a0l 2 Fo|ch At
o Z2THY HIE L2|2 #lstn A= HlRst ZRaMe| 7% o thel Seshs 2
S S8l ZEA= Z2a2HY shgof CfEt HHE HE 4 Qlon J|Ee| 2Tl oot RASH
TES Sofl A ZRIY SRt HHEAZ £ Us StE WS Mottt Sich, Z2 a3l
2UE Y| T2E 240|H 7|E 2doiet Hixst 2/@E T2 sl HA0IM CHECHH S
Sl SHdS AT0IM & o 2Ho| tis] H22 30| otz 4 QIS Zolct e 71X £ 71X 2
45 2F TE Wl oisl XIZRE YopEAH ALof Sttsit ZIFUEEHM T2 1M
Sitt 2 7| 29 Z2TOMs B o 24 olsHE - 18 Holct

.00 . Coconut shell

play { do rve mi do;)

Figure 1. Code editor

0| RE2IZE S0 HIRst Z2eiUS Fdsis 1bEg slgsle WEHE st FEalgoict
ST St M ARRZN= 22000 thal &8s Lyls Aoz J1asiy, Yittoz oaTafals
CEA T Xloff 2et stga ZigstH ok 0| RE2IYE D2HUS 0l6H5t7| et FetEel
LHEE CIRH, XISEEE =231l che Lot=EXL,

Statements

Z2I UM statement= Z2I2HYO| sliokEls US ZHES| ZIAIEICE 0122 HSAE E= X
AlArgfol2tn dzigh 4 Qlok siE WA play { } ol2tn Folg #2k2 stutel Ak zto] ok
SiLtel A Fz7HE Ch2at Zo| EEECH

play { do re mi do; }
E ChE P2 Ci2 2ol FeEct:

melody { do re mi mi;)

71

E A2 EF HE0M Z20S H¥stn HE ook 1218t X712 Boolean expressions2
Folg £ Itk Boolean2 20| st AlZHCHs YT S2|10) Cist E3 YHo|ct. siLtel 222
Cha ot 20| 74E(of ek

elo} o S0 S SECH ALL I £US SBAIA 51 AL MR Ch (4Rt 7|
&: SEJ} BXLE of TEY KO| Stels Ale] 7E)

Conditions (ZZ42)
ZUET2 ZIpP} FHAugt MeE= Fefolch ZAHSS XISty |off &olct £ EIgst7 (o HRlo|ct
SIHR| AEo| ZxBict sHe wHolME, if {), else if {), else { } 2 22 T2E2 U2 LIE}

=S

off

ju
uin

H,

dy(happy) { do do sol sol; }
¥ rnd) { mi re do; }
) { la la sol; }

Lf(happy cncey |
)} else (

}

flel EE if-else X 0|ch AROA ZZ0)| w2t CHE W2C|7t KHME[= TZO0|C happy W2
CIE Folsta, ofzfel RS sHiE =Ziol| S o7t HMEl= SEefolct 9o FcoME =
off w2} first ending W2C| £ second ending WRC|7} XHMECH FF E8 7Hs3ICh W2C|Q|
QHoflM CHA| 2 R2C|E Eyshs 7x0|ch

O|Holl= BHE20i| chal ATHSict
Loops (2H=2)

Z2OYNM HHERS HAS Sa 0f217IK| AYS WEMOD AHE & ATk B ARWLIN
£ repeat 0|2t AIZfHs PR0| PHER0| B 4 UCt.

OlE &3,

repeat { sol mi sol mi; }

melody (twinkle) { do do sol sol;)

repeat (twinkle.twice);

72

0l PEE A0 et HISSE LY ECHE repeall) B2l F20IE HURDS HUY U+
HalM S8BiCk ECIE PE! repeat) o ZPolE X7io] Lot YIREE 2Bt (55, S
S YULS Olely ST AS Holch)

Variables (H42)

Hes EX I8 MEE £ Qleg|, f8lo|M x, y2 s Zin 242 Mato|o), 2 ¢ BN
= HeE0| 22 shtel Bo2 Exfisict M Xguaet MoHA7} Qct 2 SagtHolM X
W= Ll L2f QHofl ATt ALSE 4= QUCt

Thread ()

Z2O4Y0M Mes =23 oML stte| oL Z2aoR Ch2 M=ot SAle T#E
QICh 0f2] JHel MYEE FHEN s ZR2IYWES 5 Boll of27IX] US & 4 qUrk SUolM
Otx| f24he= 2at 22 Fx0|ct

nr <>

Function Definition

change(note) {
note + change{note+l);

change{note) {
note ¢ change{note+2);
+

Recursive Example

melody{note) {
if(note == do) do;
else

melody (note=1) + melodyv(note-2)

~

73

Tutorial for control condition
Introduction

A7} UM T2 SI01E WshAl BCH! IAS Hoigh B Y 4+ gl BUSE TA=f
97| W20l ZA5| OfABHA L 4 ICH Ofzhs Javadts Z2 1343 102 M9l meC,

HelloWorld

Brl MBI} Plo| m2IUS MBAIZICIH AISAIS| BI0IS “Helo World! 2t SME =
A 8 20/ck, B2kaE Seenl gE 2ol 39 TS UHIBA S3U S s 2E X

SS YuE BA & Holck { } 0|2 EES YX|? System.out 0|21 Y1? class HelloWorld 0]24
-"£ ﬂot.. public static void main(String [] args) 0124777

Z272A0f chal tiR= A SAlof st =2ldez Mzistn wHENo2 Faste Y
12 T2 220l sl HHE 1, 6lE S0 Java’l 22 2OE ei2A|
a% SLAL EX|2HE EHAK= MEE A0S 2D 24sHs B2 uioF ok,

10| QTN B1012 HBtsHA| ECtT JHEBES o 22010] BIRUS Cha ofEsi & xlats
A2 O{=HE OISIT 0lE 4 US 2o(Ch 13t PEENS B R|2 MaE BUSIK| et
o $t 7o) MOIZE() A4els ERBICIH TRIWS K| SHBIK| Bt

About Python

Python2 1991 T2 324021 Guido van Rossum0| YHESH 13 23212 0|2, Python2 &
e ci3nt 2ok

« TEE 251 JIE40| =4 2 7k
o« C, C++, Java HICH 2iCHEt 28 72X
4% iz EJEH“' & oks
o ZHARE| MOFINIK| ZEL ARAIE 28

74

000 i Python Shell _

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

>>> WARN'
visit http

555 |

Python 3.3.1 (v3.3.1:d9893d13¢628, Apr 6 2013, 11:07:11)

Type "Copyright™, "credits” or "licemse()” for more information.
The version of Tcl/Tk (8.5.9) in use may be unstab!
fwww. python.org/download/mac/teltk/ for curreat inf

Figure 1. python 7Hg! &4

Qa2 L Aol)Y ele BRI AYNoR SoE YAy 4+

ufotct 2f242 ASEA| HEE oot ol S, YA:

»>> print (he WY)

QIS w22, oteligt 2ol 2 o[tk

hello world

e BUS CHBT} 20| AW IZE AIBE 4 Uck

75

] ac 3(_7?‘% %)\1

= S

=3
=

|4 S2 mo|'M 210] ZExofl Lz

Gl I(+), 7 |(-), Z3E21(%), L2 1(/), L x| ol
ArSstn H2H, vi2 chignr 2

ol A
Tlo] 7| R0l HIZ ALEE + QUCL olE ST, Zilo] RE US
O] Alaket 4= Uk

2tef ofzlie] ol RARIX| & £ gloM nj2| 24Fsx|= Y|

>>> 16 ** 0.5
4.0

22> yport math
»>> math.sqrt(l6)
4.0

Statements (= ZH4)

Z2T24ollM, statement= L2200 sHOLEl= US 2HHS| KIAIBICE 012 A AR = XIA|
ArH0|2tm Y2ig 4~ UCh e WA, print () 02t HelE RIS Si8l0| A =S Liet
HCt shLtel &2 77k2 ofEat Zo| EsiEch:

>35> print (' V:

& OhE TR OhEat 20| Felgoh:

F@> e return3d():
print (5)

o ASHS

5 -t

def & 53l &+-8 Holstn 53 AuE &345t= 7
718, G412 EX AfoA Z2OE A#Etn A Zlo|ch 2248t 2712 Boolean expressions
= Folg £ Uch Boolean2 At Hlmoi| cigt st S2|;of cist m3o|ct grok (o] blmIt
SHIEH| O|R0X|X| Y2, Fit2E T=E M2 ASYFX| obCt dhte] 22 oign) 2ol 2
HElof ek

B2 ofo| £X(H DS WY S0l Y 81D SuH2A| Yo ofe] 70| UYEIK| YCh

Conditions (ZZ712)

~—

76

w

>>> # Boolean math

5>

»>> # Examples of if statements
>>> # General format:

>»> # if <condition is True>:

EEE <code to execute if condition is True»
>
S5
>»» 10 9 > 5:
print ("ves, § arealer ihan 57)
Yes, 9 greater than 35
B3>
33> 0 9 1= 5:

Yes, 9 not equal to 5

print ("Ves, § o qual 1)

>>> # An example of an if/else statement
>>> # General format:
>»> # if <condition is True>:

»ux <code to execute if condition is True>
»>>> ¥ else:

axx 8 <cede to execute if condition is False>
>

>>> 10 9 < 53 print ("vos O e i]

s oprint ("us 4 3 less than 57)

Ne 9 is not less than 3

S
=
=

A2 #nvt AUunt dsl= Feljoich, =222 7

71X HEolct sig g, i1 { } 2t 22 72

Loops (8H=2)

~

77

=
=

=}
=

15t 1ol Zolct £= TIgak (ol HAlolct

ZUEE LIEHACE

>»> ¥ For loop examples using range:

m>
»>> # Range with 1 argument goes from 0 through n-1
>3 num range(l0):
print (num)

0

2

3

4

5

6

7

8

9

>»» # Range with 2 arguments goes from the first number through the last-1
>>> for num Lo range(7, l5):
print (num)

Z2IAY0M, HEE2 FFEE S5 e7iA] HYs ST +~ AUt To|WiME for FR2Z
AMESHE YYR0| tERE0] E 4 AUk 5. G2 ST YRS o +#sln 4 Zolct of
o= H40ll Cisl 2ot}

Variables (8H4)

ZETIHYOM, Hrs S US MYY + UCL tipollME x v2 EHsts Aot 22 Y2o| =
4 QIch
L

HaTt & A US #A E0hH Boolean H=2t ElCt A, Boolean statement, ZUE, HHEE,
HEE SEsM S UED, O|HIE threadS Yol & Sl O Liop7ke Z2a2HY REE F
BYSIRL

Thread ()

DR IY0M, 2YE= T2 2tofMe] SHte) DjL] Z2THOIC) CHE Maj|=et S0 Tig
E 4 UCH of2{7He] M2 =2 MR U= ZT2IAME, F Holl of2{71X| LS & 4+ AUCH

~—

78

> core threading
30 datetime
>

>>> gmake thread class

»»» oloos ThreadClass(threading.Thread):
27 run(self)y:
now = datetime.datetime.now()
print ("% says Bello wWorl © %(self.getName(),now))

£S5y © i range(2):
t = Threadclass()
t.start()

Thread-3 says Hello World at time: 2013-11-04 20:53:04.991912
Thread-4 says Hello world at time: 2013-11-04 20:53:04.992292

Recursion Notes

non-recursive example:
o> Lt_sum(a_list):
result = 0
forox a_list:
result += x
© result

>2> it_sum([1,2,3])
(]

recursive example:

$55 ¢ rec_sum{a_list):
a_list == []:

7 a_list[0] + rec_sum(a_list(l:])

»»> rec_sum([1,2,3,4,5])
15

Ak 3hg:
rec_sum([1, 2, 3, 4, 5])

=1 +rec_sum([2, 3, 4, 5))
=1+ (2 + rec_sum([3, 4, 5]))

=142+ (3 + rec_sum((4 , 5]))

=142+ (3 + 4+ rec_sum([5])

1T+{243+4+5+ rec_sum((])

79

=1+(2+3+4+5+0)
=1+14

=15

Functional Programming

Defining Functions
>>> # def starts a function definition

names of functions follow variable naming conventions
»>> # functions can take zero or more parameters

»>> base = 10
>>> exp = 4

hello_world():
base = 20
print ("iuc

iloworld pace ic”, base)

>>> print (hello_world())

inside of helloworld base is 20

Hello, world!

>>> print (“oulside of hellowprld base 187, base)
outside of helloworld base is 1

>>> dof add(X,¥): roturn X4y

»>> add(2,3)
3

for exercise (Task)

>>> sum = 0;
»»> for i 1n range{l,l15):
sum = sum+i

»»> print(sum)

>>> money=2000
>>> 1 money >= 3000: print({
se: print(’ e’y

0

walking

~

80

> a = 1
»»> b = Laln
>>> print(a+b)
hellobaby

g

»x>C = :
>»> print(e*2)
coconutcoconut
5>

Task 1. ZAHE g&17|
Task 2. 2X1E F317|
Task 3. range &
Task 4. conditional

»»> a,b = poinon,
»>> print(a,b)
python coconut

»>> a,b = b,a

>>> print{a,b)
coconut python

5>

python function definition

def E==0|&(YHL):
(=E2EN)
(S-EX2)

return result

»>»> Aol sum(a,b):

result=a+b
" result

»»» sum(l,5)
]

S>>

81

	1 Introduction
	1.1 Background
	1.2 Research Question
	1.3 Research Goal and Objectives

	2 Literature Review
	2.1 Computer Science Education
	2.1.1 Educational Programming Languages
	2.1.2 Introductory Programming

	2.2 Music and Programming
	2.3 Summary of Literature Review

	3 Methodology
	3.1 System
	3.1.1 Programming Style
	3.1.2 Key Structures
	3.1.3 Programming Environment

	3.2 User Survey

	4 Experimental Evaluation
	4.1 Introductory Course
	4.2 Tutorials
	4.3 Preliminary Case Study
	4.4 Questionnaire
	4.5 Participants

	5 Results and Discussion
	5.1 Data Analysis
	5.2 Survey Feedback
	5.3 In-depth Interview

	6 Conclusion
	6.1 Contributions
	6.2 Limitation and Future work

<startpage>9
1 Introduction 1
 1.1 Background 1
 1.2 Research Question 3
 1.3 Research Goal and Objectives 3
2 Literature Review 4
 2.1 Computer Science Education 4
 2.1.1 Educational Programming Languages 4
 2.1.2 Introductory Programming 6
 2.2 Music and Programming 10
 2.3 Summary of Literature Review 11
3 Methodology 13
 3.1 System 13
 3.1.1 Programming Style 13
 3.1.2 Key Structures 16
 3.1.3 Programming Environment 20
 3.2 User Survey 23
4 Experimental Evaluation 25
 4.1 Introductory Course 26
 4.2 Tutorials 29
 4.3 Preliminary Case Study 31
 4.4 Questionnaire 32
 4.5 Participants 32
5 Results and Discussion 35
 5.1 Data Analysis 35
 5.2 Survey Feedback 41
 5.3 In-depth Interview 46
6 Conclusion 48
 6.1 Contributions 48
 6.2 Limitation and Future work 50
</body>

