

저작자표시-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

l 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

http://creativecommons.org/licenses/by-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-sa/2.0/kr/

공학석사 학위논문

From Music to Programming:

Designing Method for Introductory

Programming Using Musical

Metaphor and Auditory Feedback

초보자를 위한 프로그래밍 교육 방안 연구

-음악 구조와 프로그래밍 코드의 연결고리를 중심으로-

2014년 2월

서울대학교 대학원

융합과학부 디지털정보융합전공

고 은 정

i

Contents

LIST OF TABLES ... iii

LIST OF FIGURES ..iv

ABSTRACT……………………………………………………………v

1 Introduction .. 1

1.1 Background ... 1

1.2 Research Question .. 3

1.3 Research Goal and Objectives .. 3

2 Literature Review ... 4

2.1 Computer Science Education .. 4

2.1.1 Educational Programming Languages 4

2.1.2 Introductory Programming .. 6

2.2 Music and Programming ... 10

2.3 Summary of Literature Review ... 11

3 Methodology .. 13

3.1 System ... 13

3.1.1 Programming Style ... 13

3.1.2 Key Structures ... 16

3.1.3 Programming Environment ... 20

3.2 User Survey ... 23

ii

4 Experimental Evaluation…... ... 25

4.1 Introductory Course .. 26

4.2 Tutorials .. 29

4.3 Preliminary Case Study ... 31

4.4 Questionnaire .. 32

4.5 Participants .. 32

5 Results and Discussion…... .. 35

5.1 Data Analysis .. 35

5.2 Survey Feedback ... 41

5.3 In-depth Interview ... 46

6 Conclusion…... ... 48

6.1 Contributions ... 48

6.2 Limitation and Future work .. 50

ACKNOWLEDGEMENTS .. 51

REFERENCES .. 53

Appendix A: Online Survey Questionnaire ... 57

Appendix B: Offline Survey Questionnaire .. 59

Appendix C: Materials from SNU-IRB ... 65

Appendix D: Examples of tutorial ... 70

iii

List of Tables

Table 1 Lahtinen‟s (2005) check list in learning programming 6

Table 2 Data types and syntax ... 14

Table 3 Comparing between the two of function definitions 15

Table 4 Basic algorithms ... 16

Table 5 Musical settings as programming metaphors.............................. 20

Table 6 Background information of participants: Major (N=32) 33

Table 7 Inductive categorization of positive feedback from the student . 42

Table 8 Inductive categorization of negative feedback from the student 44

iv

List of Figures

Figure 1 The syntax of Java .. 14

Figure 2 The concept of proposed approach ... 15

Figure 3 Simplified programming syntax of conditional structure 17

Figure 4 Simplified programming syntax of loop structure 18

Figure 5 Simplified programming syntax of recursive example 1 19

Figure 6 Simplified programming syntax of recursive example 2 19

Figure 7 First prototype of code editor framework 20

Figure 8 Second prototype of code editor framework 21

Figure 9 Third prototype of code editor framework 21

Figure 10 An example of a Google Drive Excel sheet with the responses

data from the participants .. 24

Figure 11 Schedule for introductory course .. 26

Figure 12 Introduction of Tutorial (Study version) 30

Figure 13 Background information of participants: Age (N=32) 33

Figure 14 Comparison of control experimental group rating on self-

reported level of assistance and enjoyment ... 36

Figure 15 Comparison of control and experimental group rating on self-

reported level of understanding and satisfaction ... 37

Figure 16 Comparison of control and experimental group rating on self-

reported level of content and understanding about the process of the course . 38

Figure 17 Comparison of control and experimental group rating on self-

reported level of response about result form ... 40

Figure 18 Frequency of positive issues about the system 43

Figure 19 Frequency of negative issues about the system 45

v

Abstract

Despite advances in programming language education, many beginner

programmers face difficulties and give up in the early stages, just because

they are not familiar with the programming syntax and semantics. In this

research, we propose a method, for introductory programming using musical

metaphor with an aim to entice beginners to program. This methodology is

motivated by two concepts: first, music notation as an analogy to

programming provides an enjoyable programming experience; second, on-line

auditory feedback enables to notify the status of program for the users in a

pleasant way. We described musical the settings as programming metaphors

to help beginners learn them with ease and intuition. We built on this work

through the system by incorporating with Java API for on-line auditory

feedback. This system is to help beginners provide on-line auditory feedback

as a communication medium to immediately notify the results in a pleasant

way. We tested the methodology with 32 students as novice programmers and

found that those in the experimental condition qualified significantly more

inviting experience with this study. Participants in the control and

experimental groups took a course for introductory programming, and most

students felt that this methodology was a positive influence, particularly those

with enjoyment. These findings suggest that some useful ideas how

programming is taught, and it could be an impact on motivation to program

and influence students’ first-time experience.

Keywords: Introductory Programming; Computer Science Education;

Musical Metaphor; Auditory Feedback; Interactive Environments;

Student Number: 2012-22457

1

1. Introduction

1.1 Background

In order to gain and improve their knowledge in programming, novice

programmers conflict goals that occur in complex programming syntax and

semantics (Carter, 2006). People who do not write programs regularly face

many barriers in the process of learning a programming language (Fitzgerald,

2008). While there are numerous ways to teach people through educational

programming languages, it is inevitable that novice programmers often feel

difficulties in understanding abstract concepts without any similar

phenomenon in the daily life for comparison (Lahtinen, Ala-Mutka &

Jarvinen, 2005).

There are not enough resources and programming metaphors to support an

understand-able programming learning experience (Tarkan et al, 2010).

Furthermore, there is a rich history of studies on programming environments

for beginners, though; many of these methods have focused on visual

programming, because graphic aids for thinking allow amplifying cognition in

learning situations (Lee & Ko, 2011). These technologies do not provide

immediate feedback, which is essential in helping novice programmers

understand the status of their programs. There are rare cases that address the

form of result with auditory factors for interactive communication in

educational settings (Ko, Myers & Aung, 2004).

If inability to connect programs with metaphor on the environment affects

2

people‟s performance on traditional programming then, does useful metaphor

affect novice programmer‟s motivation and learning success? To examine this

question, we created the methodology to provide a positive programming

experience for students and introduce concepts of programming. Our decision

to use musical metaphor was motivated by the desire to make relationship

between music and programming that encourages effective interaction with

the system (Bramwell-Dicks et al, 2013; Huron, 2006). We designed on this

work through the system by incorporating with Java API for on-line auditory

feedback. The system is to help beginners provide on-line auditory feedback

as a communication medium to immediately notify the results in a pleasant

way.

To evaluate this design decision, we conducted a study comparing the

conventional method for introductory programming with Python and

involving observation and interviews of 32 students as novice programmers.

Our result shows that the process of introductory course in each condition was

easy for students to understand. However, this research offers several

significant advantages from learning perspective of introductory programming.

Among these, this research is more inviting and provides better support for

motivation to program. We hope that this study will provide concrete

evidence that using musical metaphor and on-line auditory feedback for

introductory programming can be an effective way to promote intrinsically

supported educational activities for students.

3

1.2 Research Question

There are two research questions being investigated in this study.

RQ1. Can this research assist students develop positive experience towards

programming?

RQ2. Can on-line auditory feedback proposed in this research effectively aid

students notify the status of program?

1.3 Research Goal and Objectives

The main goal of this research is:

To help students develop positive attitude towards programming and lower the

barriers to programming with the assistance of musical metaphor and on-line

auditory feedback.

The research goal leads the implementation of a set of research objectives

supporting the purpose of this study and its formulation. The research

objectives are:

a) To gain empirical evidences of the realities on the students‟ learning

experience associated with this research.

b) To validate the musical features proposed in this research effectively

attract students to programming.

4

2. Literature Review

2.1 Computer Science Education

2.1.1 Educational Programming Languages

With respect to education, Wing stated that every educated person in the 21
st

century will know core computer science concepts, known as computational

thinking (Wing, 2006). The key point of computational thinking is that

information and tasks would be processed more systematically and efficiently

on the premise that one has knowledge in programming. This knowledge

assists students comprehend how system works. There are numerous ways to

equip students with dealing information systematically, teaching programming

is appropriate educational approach for thinking about computational thinking

and enticing students to design and modify program to adapt their needs

(Swan, 1991). We discuss our research on computer programming education

as an expanded concept of computational thinking.

There is a rich history of research on educational programming language since

Storytelling Alice. It was one of the first applications that demonstrated the

potential for the storytelling-style of programming and studies for novice

programmers have motivated learners to acquire programming skills (Kelleher,

Pausch & Kiesler, 2007). Alice helps students learn programming by

constructing 3D virtual stories. To encourage young people, the study focused

on inviting beginners to create and share stories. As computers play an

5

important role in our everyday lives, familiarity with computer and

programming becomes essential and many researches have explored methods

to introduce programming. The research with Alice had result that

performance and interest in programming depended on previous programming

experience (Kelleher, Pausch & Kiesler, 2007). Scratch, the most famous

language in computer science education, focused on a graphical programming

environment where young people could build interactive characters on game,

and art by creating blocks (Resnick, 2009). A lot of experiments have proven

the effectiveness and appealing points of Scratch, and many recent languages

have also adopted a puzzle piece metaphor incorporating with the concept of

connection interlocking visual elements. Today, this methodology of

providing a syntax-free programming interface that involves drag and drop of

the construct into program leads the trends of teaching programming (Horn,

Solovey & Jacob, 2008). Following a long tradition of computer science

education, we designed our method for introductory programming using

musical metaphor and auditory feedback.

In the case of feedback in learning, most introduced methods for

programming education use a familiar feedback of programming results (Lee

& Ko, 2011). Based on studies in education, negative feedback discourages

learners to proceed on further tasks (see Table 1). As Atlas reports, there was

considerable work in the area of self-reported motivation for programming

(Atlas, Taggart & Goodell, 2004). This research found that students‟

awareness to negative feedback have a strong relationship to self-reported

performance levels in the course. However, these works failed to track the

6

status of the program and the notifying errors intuitively, which are significant

processes of the basic programming curricular (Wolz, 2009).

Table 1. Lahtinen’s (2005) checklist in learning programming

Rank What kind of issues you feel difficult in learning programming?

1 How to design a program to solve a certain task

2 Dividing functionality into procedures

3 Finding bugs from their own programs

Rank Which programming concepts have been difficult for you to learn?

1 Recursion

2 Pointers and references

3 Abstract data types

Rank What kinds of materials have helped you in learning programming?

1 Example programs

2 Interactive visualizations

3 Lecture notes/copies of transparencies

2.1.2 Introductory Programming

Even though everyone uses a computer and interacts with integrated programs,

only a very few of them can program their own interactive media. As we live

in a society which is a full of interactive objects, familiarity with computers

7

and programs is becoming significant, and many studies are challenging

methods to introduce computer programming (Robins, Rountree & Rountree,

2003). The creation of the program requires challenge for learning about

traditional programming language. For experienced programmers who have

pursued computer science, it is also challenging for them. Research showed

that learning how to program may have a valuable effect on students‟

achievement, not in problem solving skills, but also in information science

education (Clements, 1999). The decades of studies about introductory

programming have been diverse, and the methods in which the activities are

integrated in with the broader curriculum (Horn, Solovey, Crouser, & Jacob,

2009; Clements, 1999).

There was a previous effort to make programming concepts easier for novice

programmers by dedicating some degree of conventional programming

language such as BASIC (Kelleher, Pausch & Kiesler, 2007). Today, Python is

another good example with many advantages for supporting as an

introductory model (Pears et al, 2007). The simple, pseudocode like syntax of

Python makes the description of code easier for students. Even though, C,

Java, and C++ top the list of the most widely used programming language for

both industry and educational area, usages of these languages were considered

as traditional views of learning and moving to knowledge about a particular

programming language.

Furthermore, increasing focus on initial enthusiasm for introducing

programming to children has occurred in a worldwide. Most previous studies

mentioned the factors about the difficulties of introductory programming.

8

There were many factors (Pears et al, 2007), such as “First, early

programming languages were too difficult to use. Many children had

difficulty mastering the syntax of programming languages. Second,

programming was often introduced with activities that were not connected to

children‟s interests or experiences. Third, children did not have access to a

literature of interesting computer programs. Even though young writers are

often inspired by reading great works of literature, there was no analogous

literature of programming projects to inspire new programmers. Fourth,

programming was often introduced in contexts where no one had the expertise

needed to provide guidance when things went wrong, or encourage deeper

explorations when things went right.”

Moreover, research on computing education also follows a long tradition.

Considering the key concepts which is essential for introductory programming

would be significant in the process of introductory programming (Pears et al,

2007). Schneider argued that there are the ten essential concepts and

objectives of an initial programming course in Computer Science (Schneider,

1978). This research have motivated some of these objectives

 The single most important concept in a programming course is the

concept of an algorithm.

 The presentation of a computer language should concentrate on

semantics and program characteristics not syntax.

Even though most traditional views of learning programming priorities the

9

structure and syntax of the language itself (Resnick et al, 2009). However, in

contrast to prior work, this study is not structured according to the constructs

of the particular programming language used.

There are many contributions for how to success in introductory programming

(Porter, Guzdial, McDoweel & Simon, 2013). Introduction of introductory

programming is important to invite students to take a course in computer

science, including students in non-programmers. Most of systems for

beginners and children were designed to assist in constructing correct

programs. For example, programming metaphors support an accessible

programming learning experience. Tarkan designed that cooking scenarios

were used as programming metaphor and the programs were created pictorial

recipes which controlled in a kitchen environment animation (Tarkan et al,

2010). Using virtual animation, children could strengthen cognitive skills such

as planning abilities and experience with problem-solving heuristics. To

explore ways in which to provide concrete real-world scenarios, a lot of

studies focused on iterative design work around programming. Another

metaphor was also suggested by Esper which they referred to as Codespells,

using the metaphor of wizardry (Esper, Foster & Griswold, 2013). They

created a unique novice experience with a new domain, because it could be

considered what expert programmers can do is regarded as “magical”.

Codespells allowed getting novice programmers immersed in programming

area and a positive view of their ability. The use of this approach has been

more child-focused activity and several advantages from programming

learning perspective. Without translation from program to real-world scenario,

10

students would be guided to focus on self-directed learning and to allow

creating knowledge through exploration.

2.2 Music and Programming

There was a previous attempt done by Dannenberg who drew analogies

between programming and music based on Pascal, and did a lecture on

teaching programming to musicians by programmatically creating audio

(Dannenberg & Dannenberg, 1984). The goal of the lecture was not focused

on programming education, but music composition. Most researchers

investigated the approach between music and programming on tasks for

composing and designed to examine music universalities in the music culture

(Wang & Cook, 2004).

On the other hand, studies on audio-based applications have shown that using

auditory feedback can develop and rehearse cognition (Baldis, 2001). Most of

these studies focused on the constructing cognition through audio-based

interfaces such as short-term memory, abstract memory, spatial abstraction,

and haptic perception. Based on this approach, Audio Programming Language

for blind learner was also introduced to assist novice blind programmers using

text-to-speech system (Sánchez & Aguayo, 2005).

In the field of Human Computer Interaction, auditory feedback can assist

exceptional cognition to express the way in which internal and external

representations and processing weave together in thought (Card, 1999). This

approach was to apply a similar idea to develop a programming education

11

method that attracts novice programmers to write code. Furthermore, this

approach focused on using music to facilitate introductory programming

concepts for learning process.

Another area that inspired our research was about students‟ motivation and

performance related to the effects of sensitivity (Atlas, Taggart & Goodell,

2004). This literature considered not programming education, but music

education. Regarding responses of music students to performance feedback,

performance anxiety appears to be related with levels of enjoyment and self-

perceptions of ability in such domain. This approaches explored the

relationship between music and education related to the enjoyment of the

activity and interaction. Moreover, research on music and education showed

that familiar component affects learning. Many of educational technologies

with music have focused on increasing learner motivation by educational

factors to entice learners to explore new activities.

2.3 Summary of Literature Review

The novelty of this approach is that it utilizes meaningful musical analogies

on the programming method for basic programming courses and uses on-line

auditory feedback for recognizing the status of the program. Novice

programmers can code by „listening‟ to the behavior of the implemented

program. Our research builds on the ideas from related works by designing

method for introductory programming using musical metaphor that will

cooperate with the similarities between music and programming. To help

12

engage students, we find several key concepts in programming language

syntax and semantics, and translate them into music notation to help beginner

programmers learn them with ease and intuition. For validating that our

prototype would make it possible for students to introduce programming, we

designed semi-structured interviews and surveys from previous research

tradition (Fincher, Tenenberg & Robins, 2011). Previous researches

accomplished its own mission to enabling novice programmers to introduce

programming in different ways. All of these researches attempted to entice

learners with their intrinsic interest about programming. Although there have

been applies to bring together music and programming via music composition

area, we wanted to formulate the method for introductory programming

focusing on basic concept of computer science education. Our approach

therefore, has been on exploring new design directions for computational

thinking that can support students who are explicitly experienced in

programming.

In the case of programming, students are encouraged to depart from daily life

and focus on programming syntax in details. We designed examples and a

learning support environment, allowing users to learn to program by them.

Moreover, we use music notation as an analogy to programming based on the

observation that there are similar attributes between the two, and provide

users with on-line auditory feedback to immediately notify the status in a

pleasant way.

13

3. Methodology

3.1 System

In this section, the specification for programming and details of

implementation about the system is described. First, we describe about

programming style related to conventional programming language, Java,

which is one of the most famous language in the world. Furthermore, we

describe key structures of this methodology, programming environment and

user survey for notation what was used in this research.

3.1.1 Programming Style

We illustrate several key concepts in programming language syntax and

semantics of our approach, and music notation for helping beginners learn

them with ease and intuition. It is important to recognize that novice

programmers would have difficulties with the syntax of any programming

language in early stage. This study proposed new concept of programming

language style with music notation (see Table 2). Based on our finding

between music and programming syntax, we were interested in the following

concepts. First, each musical note was assigned to basic variable for

programming and we defined as groups of sounds consisting of at least basic

scale in notes itself. For this prototype, we were interested in standard pitch in

scales. Second, students are allowed to increase their chances of programming

14

with melody, which is function or method of traditional programming

language. We conducted this approach for broadening knowledge of

programming from introductory programming to further in traditional way.

Third, repetition, loop, and ending signed were assigned to similarities based

on our observation for examples. More details might be advantageous in our

discussion of the results.

Table 2. Data types and syntax

Data type Description Example

Notes A pitched sound itself Do Re Mi Fa

Measures Melody segment First melody

Sign Musical symbols Repetition, ending

There is the syntax of Java which is easily we could see when we learn Java

in the class. We translated them into music notation to help beginners learn

them with ease and intuition.

Figure 1. The syntax of Java

The purpose of musical metaphor was to support students to realize how the

15

program works by comparing it with realistic alternative methods. We

formulated simplified programming language syntax to promote a conceptual

understanding of programming and lesson the load of learning programming

syntax (see Figure 2, Table 3).

Musical metaphor approach supports programming education because it

shares various similar aspects between the two, such as reusable signs, control

statements, and the combinations of sequential and algorithmic structures. In

addition, the simplicity of musical symbols provides an easy and enjoyable

learning experience through familiar notations.

Figure 2. The concept of proposed approach

Table 3. Comparing between the two of function definitions

Original version Using melody as method

int Fibonacci(int n)
{
 if(n<2)
 return n;
 else
 return
 Fibonacci(n-1)
 + Fibonacci(n-2);
}

melody(notes)
{
 if(Do)
 Do;
 else
 melody(notes-1)
 + melody(notes-2);
}

16

3.1.2 Key Structures

This section describes key control structures in the system. It is crucial that

the programming code should be written accurately based on precise

procedures. We introduced a set of basic algorithms with musical analogies by

providing an easy-to-understand methodology (see Table 4). This approach

allows learners to concentrate on the achieving the solution to the problems

rather than facing difficulties and give up in the early stages (see Table 5).

Table 4. Basic algorithms

Sequence Conditional Loop

Sequence

Sequence is a linear series where one task is performed sequentially after

another. Sequential control is indicated by writing one action after another,

the actions are performed in the sequence (top to bottom) that they are

17

written (Leiserson, Rivest & Stein, 2001).

In this research, we portrayed the sequence algorithm as playing several

melodies. Each action on a line by itself and all actions aligned sequentially.

Sequence is allowed to make a key structure for music composition, and

notes and melodies are arranged based on the consecutive order.

Conditional / Loop structures

Conditional statements, conditional expressions and structures describe

various computations and tasks based on Boolean condition, such as true or

false, and perform selectively changing the flow by different condition. Loop

statement describes program to be repeatedly executed.

The conditional is considered as the first-and-second ending notation in

music and the loop corresponds to its musical analogy as the repetition (see

Figure 3, Figure 4). Students can enhance their ability to understand the

knowledge of programming through other types of concepts (Esper, Foster &

Griswold, 2013).

Figure 3. Simplified programming syntax of conditional structure

18

Figure 4. Simplified programming syntax of loop structure

Arithmetic operations

Designing approaches for education suggested that instructions should

combine both concept of knowledge and strategies for the student in the

learning process. To do so, we implemented arithmetic and logic operations

using the chords in music.

This strategy would let novice programmers define arithmetic operation

functions, which is one of the cognitively complex tasks for novices to

acquire correct results. By using this method, students might be able to solve

an addition, for example, with on-line auditory feedback. In the traditional

method, the process of leading to the correct answer of an arithmetic

operation is as follows:

1) Defining the method correctly

2) Calling in the appropriate position

3) Printing out the result

However, this research provides on-line auditory results that correspond with

19

what the student defined. To make problems easier for novice programmers,

the strategy of this research would provide interesting exercises that novices

can understand intuitively.

Recursion / Solving a certain task

In the Computer Science curriculum, dealing with program functionality or

function definitions is an essential construct in programming concepts. To

explore ways to help novice programmers with programming experience and

skills, we used musical melodies as method definitions in programming.

This could prove to be a useful perception, since the connection between

melody and function might support the iterative development of recursion

programming experience (see Figure 5, Figure 6).

Figure 5. Simplified programming syntax of recursive example 1

Figure 6. Simplified programming syntax of recursive example 2

20

Table 5. Musical settings as programming metaphors

Concepts Musical settings

Arithmetic operation Using a chord as the addition of notes

Function definition
Using a melody and making a sequence

with a variety of predefined melody

Conditional structures
First and second endings

for an if-else statement

Loop structures Repetition for loops

Recursion
Calling a rhythm and melody repeatedly

in a sequence

Solving a certain task Task with sorting example

Understanding the flow of program
Using an on-line auditory feedback

for communication

3.1.3 Programming Environment

Figure 7. First prototype of code editor framework

21

Figure 8. Second prototype of code editor framework

Figure 9. Third prototype of code editor framework

To allow for musical metaphor programming in the development environment,

we created a prototype of programming language. We were careful to make

the simplified programming language to be simply readable by students based

on common music notation and the programming environment providing on-

line auditory feedback and listening to the results immediately. Moreover,

interface should be related by analogy to daily experience and easy to

22

understand.

Java API with audio arguments

In this research, prototype of programming language provides a code editor as

the development environment using JFugue. JFugue is a Java API that allows

students to create MIDI files in the Java language. It is an open source

programming library for creating and playing music in real-time. To generate

music, the programmer defines a series of musical events in their Java

application. For example, this is an example of a Java program that plays the

C-major scale using JFugue. Programmers, who had previously taken

programming courses, who had the ability to write their own computer

programs, or who had contributed towards the development of computer

programs, could use this library to create an application with a variety of

formats. As mentioned previously, however, this research focused on the

beginners, and it was safe to assume that they were not aware of this library.

We utilize JFugue to implement this method for on-line auditory feedback as a

communication medium.

With simple syntax, novice programmers write their program and listen to the

results in line by line immediately through the code editor. This makes it

possible to notify the programmer about the status of program and aids users

in fixing them. We illustrated several key aspects of the code editor we

implemented (see Figure 7, Figure 8 and Figure 9). First, unlike previous code

editors, this code editor is simple and powerful for students and enables the

23

creation of codes using music notation. Second, the editor provides an

immediate on-line auditory feedback on the status of the program. When the

students write the program in the code editor, the string is inserted into the

source code, and every line in the source code triggers the system of what we

implemented to construct parse tree. By carefully monitoring every change in

the code editor, this research approach provides an appropriate on-line

auditory feedback of what students define and update for syntax highlighting,

which makes it easy and enjoyable for students to use. Finally, we display

only the essential functions of the code editor. A simple interface will be less

of a burden for beginner programmers in writing their own code.

3.2 User Survey

Before we presented our novel approach to teaching programming using

music notation, we reviewed the description by our previous research (Ko &

Lee, 2013) – especially the familiarity of music notation. We conducted a

survey that asked the level of understanding of music scores and experience in

music training. 132 respondents answered that they understood music scores

with an average degree of understanding of 3.54 on a scale of 1 to 5 (SD =

1.09). We offered a choice of five scales:

0) Not familiar with the notation

1) Somewhat unfamiliar

2) Undecided

24

3) Somewhat familiar

4) Very familiar with the notation

Figure 10. An example of a Google Drive Excel sheet with the responses

data from the participants

We wanted to highlight our own stances under comfortableness with music

symbols and indication that music could be a great tool for education and

communication medium.

25

4. Experimental Evaluation

In this section, we described our experimental setting for evaluation. This

research conducted two user studies. The first study asked the level of

understanding of music scores and experiences in music training. To validate

our proposal, we deployed the first study to generalize music notation, which

was used in this study could be a great tool for education and communication

mediums under comfortableness with music symbols.

Based on the first one, a second study was also conducted. We observed 32

students in two conditions – control and experimental – validating an aim to

entice students to program using music notation, as an analogy to

programming. By supporting an accessible programming learning experience,

this research focused on the first-time programmers‟ experiences in

introductory course. In the control condition, 16 students participated the class

for introductory programming using Python. Python was introduced as a

programming language itself with the basic concepts of assignment and

instruction of reading and writing statements. Python presents many

advantages for introductory programming (Pears et al, 2007). The simple

syntax like pseudocode of Python allows the beginning students to code easier

(Agarwal & Agarwal, 2006). There is a large community that supports Python

and many excellent books. Our research followed this tradition of

introductory programming to make control condition for user study. In

contrast, the experimental condition introduced the methodology of this

26

research as a gateway to programming language itself with the key concepts

in educational programming settings that make use of similar attributes

between music notation and programming. 16 students also participated the

class for introductory programming using the methodology of this research.

To allow for their first experience of programming, researcher focused on peer

mentoring. Both of them focused on increasing learner motivation by

collaborating various factors to invite learners to participate computational

activities (Lahtinen, Ala-Mutka & Järvinen, 2005).

In the rest of this section, we present the process of introductory course in

more detail and discuss the preliminary study designed to investigate the

hypothesis.

4.1 Introductory Course

Figure 11. Schedule for introductory course

An introductory programming course should always be taken into account

within the structure of a computing curriculum (Kelleher, Pausch & Kiesler,

27

2007). In tradition, most students who pursue their major in computer

science followed a computing curriculum. What are the key aspects in

university computing curricula?

Most of introductory computing course embodies a number of assumptions:

first, a computing course always makes assumptions regarding

computational metaphor and programming paradigm; second, a computing

course must focus on the spectrum of possible choices that want to

emphasize a particular them throughout the course (Utting et al, 2010). Our

intention was to provide an overview of learning about programming:

getting broader perspectives on and insight into the students‟ experience, and

being familiarity with the didactic techniques and that have been

demonstrated to have a positive impact on learning experience.

One of the most traditional views of introductory programming prioritizes

the syntax of the language itself (Resnick et al, 2009). However, some of

most influential movements include the component-first approach advocated

in. In this research, we put the contents of introductory courses before

tradition and designed the process of course specifically for the beginning

students. These fall into three steps (see Figure 11):

Day 1

In the introductory course, students were guided through sequence of course

with the cognition of basic learning in the introductory programming. During

the course, students followed the instruction interacting with researcher, in

other words, participated peer mentoring. Quantitative data involving student

28

behavior were recorded automatically as well as manually by the researcher.

The primary activity in the course was to learn how to get a result from the

system “hello world”. In experimental condition, we designed default

melody for students‟ first programming experience. The descriptions,

examples, tasks were designed to teach specific aspects of programming.

Each of examples focused on obscuring or elucidating the key features in

programming domain. In the beginning of the course, we introduced about

general concepts about programming, such as the structure and constructs.

Using the examples based on curricular, we previewed how we can code and

get a result from the code editor. Not only did it explained what action it is

taking in each step and heard these changes to the sequence in program, but

also students would be allowed to realize the status of system and how it

works. In each condition, students achieved the task for introduction, and

interactively programmed with the use of a particular language.

The aim of this course was to concentrate on instructional settings for

learning about programming. The contents of course were based on the

tutorial what we designed for the class and described in the followed section.

We implemented the questionnaire for quantitative and qualitative data to get

the insights about this methodology. Students were asked about the overall

opinion about programming through each condition. In addition, we asked a

leading question in the last part, which was “Do you want to continue this

introductory programming for gaining more details?”

Day 2

29

In the second day of the course, students who wanted to get a course

continually were guided specifically about the tasks of examples in peer

mentoring situation. In both conditions, the tutorial was designed to be easy

to access students know how we makes the program with the key structures.

A peer mentoring could be a scalable approach to improving control in this

tutoring (Lahtinen, Ala-Mutka & Järvinen, 2005). All participants were

educated to degree level and came from a variety of programming area

including basic concepts using the course materials.

Day 3

Finally, students were guided to participate quick quiz for checking the

experience about introductory programming. We examined several students‟

submissions in detail, to familiarize the programming not only with the

process of writing code but reading and understanding that of others.

4.2 Tutorials

In this session, we describe how the programming courses contents were

covered with two lectures and five problems sets on each condition. To

develop a variety of programming concepts, we then established a set of

instructional design principles that can help student deal with each concept.

30

Figure 12. Introduction of Tutorial (Study version)

In the first of the course, we introduced students to the most fundamental

constructs of programming, such as statements, boolean expressions,

conditions, loops, and functional definition. We first presented each construct

in the context of pseudocode based on the traditional methodology. We

explained each construct in the context of programs written in each condition,

conditional and experimental. With each of examples, students were allowed

to ask some questions what make them embarrassed. The tutorial of each

condition also included the usage of the environment itself (see Appendix D).

In the first set on Python, students were presented with a challenge of first-

programming experience. They were guided:

1) Print out the result like “Hello world!”

31

2) Make the program using one condition

3) Make the program using one loop

4) Define the function using previous example

Throughout we considered assigning several examples and tasks, each

focused on one or more concepts, we generally covered the key concepts for

introductory programming.

4.3 Preliminary Case Study

Since the scope of this research focused on the introductory programming, we

designed two versions of the user study discussing the factor of helping

students understand programming concepts with more ease. The control

version of the user study used Python, which is simple language as a first

language and its potential effect on future learning of more complex

languages (Agarwal & Agarwal, 2006); the experimental version used the

metaphor of music for programming with on-line auditory feedback based on

similar attributes between music score and programming.

We chose to investigate three key aspects of this research that were not

examined in most previous programming education. The goal of this research

is to examine the role of musical metaphor and on-line auditory feedback on

novices‟ motivation to program. To do this, this study used interview and

survey to elicit the parameters held by students in an introductory course.

32

4.4 Questionnaire

The Institutional Review Board of the Seoul National University for

Research approved the experimental procedures, and each subject provided

written informed consent. We described our questionnaire for preliminary

study of this research. The questionnaire was formed based on second topics:

expected completeness, comprehensiveness, enjoyment, and overall

feedback about the system (see Appendix B).

4.5 Participants

We observed 32 individuals from the undergraduate students at the Ewha

Womans University and each participant was randomly assigned one of the

two conditions (16 for the control condition and 16 for the experimental

condition). Of these, all of the participants were female ranging from 19 to 25

years old (M=21.63, SD=1.90), and we did in-depth interview with one of

participants for collecting intensive observation. Participants who completed

tasks in 2 hour session got rewards from researcher. The Institutional Review

Board of the Seoul National University for Research approved the

experimental procedures, and each subject provided written informed consent

(see Appendix C).

33

Figure 13. Background information of participants: Age (N=32)

Table 6. Background information of participants: Major (N=32)

Students were given a pre-survey and a unique code to receive payment for

their submission. The survey was designed to get demographic information

(age, gender, major), identify prior music and programming experience, and

elicit feedback and attitudes about the methodology. To validate supporting

first-time programmers‟ experience, we conducted a user study with constraint

as a novice programmer. We clarified all of the participants have never taken a

programming class, part in the development of a computer program. We

wanted to interact with the students through think aloud method in observing

during the introductory course.

In this study, our null hypothesis was:

 Item Frequency

College of
School

Liberal Arts 14
Social Sciences 7
Art and Design 6
Natural Science 4

Education 1
Total 32

34

H0: There is no difference in influencing a first-time programming experience

between the control condition, using traditional, soundless, off-line feedback

and the experimental condition, using musical metaphor and on-line auditory

feedback.

35

5. Results and Discussion

5.1 Data Analysis

Preliminary study was conducted to compare the effectiveness of the method

for introductory programming in two groups, control and experimental group.

The study was consistent with the observation of participants and analysis of

the results based on the data obtained during the course of introductory

programming. In this section, we present quantitative and qualitative results

that demonstrated measurement about the first-time programming experience.

This measures were normally dependent on parametric tests were used for

analyses. The level of confidence in this research was set at α=0.05. Due to

the explorative nature of this introductory study, meaningful results were

collected from the participants in both conditions.

Difference in the level of attraction to programming

Based on prior formative evaluation of the introductory programming, we

expected this research methodology to be highly inviting. We hoped that the

use of familiar objects like musical metaphor in this study would transform an

unfamiliar experience into an inviting experience. For comparison, we ran an

independent samples t-test for validating this hypothesis. The results, shown

in Figure 14, indicated that the form of programming result matters a great

deal for inviting. This case rejected the null hypothesis based on the

significant difference in the degree of accessibility (t(30)=4.87, p<0.0001).

36

Overall, students were significantly more likely satisfied with the result using

on-line auditory feedback (M=4.06, SD=0.90) rather than with a text form

(M=2.64, SD=0.79). This was especially true that students preferred to form

of auditory feedback. The self-reported average level of enjoyment in the

experimental condition was 4.00 (SD=0.94). The self-reported average level

of assistance in the control condition was 2.53 (SD=0.72). The difference

between two condition was significant (t(30)=5.14, p<0.0001). To gain some

insight into this effect, during the course, I asked the students‟ which form of

the results was more enjoyable. Ten of the students who answered

questionnaire that auditory feedback were more attractive than the

conventional way. We want to discuss more about this insight in the

discussion section.

Figure 14. Comparison of control and experimental group rating on self-

reported level of assistance and enjoyment

Similarly, the ratio of participation in the next step was 56.25% (experimental

group), while the ratio in another group was 12.5%.

4.06

2.64

4.06 4.00

2.53

37

Difference in the level of knowledge acquisition

Figure 15. Comparison of control and experimental group rating on self-

reported level of understanding and satisfaction

As we mentioned in introduction, one of our hypothesis was that the

experimental condition would be easier for students to understand than the

control condition. This hypothesis was caused by musical metaphor because

we felt that students would be familiar with it. Despite early expectations,

when participants were asked about “How much do you understand about

programming through this class?” the results of the study showed that there

was no significant difference between the two conditions (t(30)=1.87, p=0.07)

(see Figure 15). For the experimental group, 41% of students answered that

musical metaphor greatly help them visualize the overall picture of the

program. Students had a higher rating on understanding (M=3.18, SD=1.13)

compared to conditional group (M=2.53, SD=0.87). Based on this

introductory programming, participants in each group had similar level of

understanding. On the question of the measurement of satisfaction of the

3.18

2.53

3.59

2.29

38

system, the overall rating was high with experimental group (M=3.59,

SD=1.28), and different in conditional group (M=2.29, SD=0.99). In general,

participant felt satisfaction in the case of experimental group (t(30)=3.31,

p=0.002). This again supports the observation that even in introductory course

focused on intermediate level, understanding the overall picture of the

program can affect their satisfaction.

No Difference in the process of the course

Figure 16. Comparison of control and experimental group rating on self-

reported level of content and understanding about the process of the

course

We measured the contentment in terms of the overall session for each group.

The average contentment of the course was 3.71 (SD=0.92) for the

experimental condition and 3.24 (SD=0.90) for the control condition. A two

sample t-test showed no significant difference between the two means

(t(30)=1.50, p=0.14) (see Figure 16). To put these results into perspective,

previous research on contentment in introductory programming showed that

3.71

3.24

3.82

2.12

39

the contents of the course ware really important to novice programmer (Pears

et al, 2007). Likewise, there was no significant difference in the contentment

participants felt about the course. There was, however, a significant difference

in participants‟ reporting that they understood programming through the

course (t(32)=4.96, p<0.0001). Participants in the experimental condition

(M=3.82, SD=1.19) were significantly more likely that those in the control

condition (M=2.12, SD=0.78) to agree to the statement.

Reaction-Time

During periods of observation, quantitative data involving student behavior

were obtained automatically as well as manually by the researcher. We

measured the time of reaction when students got the result from the program.

The minimum time spent recognizing the status of program for the control and

experimental condition was 4.84 seconds and 4.08 seconds, respectively. The

median overall reaction time for the control and experimental conditions were

4.35 seconds and 4.1 seconds, respectively. There was no significant

difference in the length of time participants in either condition programmed

tasks overall. We addressed possible explanations for this in the discussion.

Difference in the form of result

40

Figure 17. Comparison of control and experimental group rating on self-

reported level of response about result form

To measure the level of understandable, we assigned a level of understandable

and responsible from the logs. The distribution of „comprehendible‟ showed

that a number of participants from experimental group (M=3.82, SD=1.19)

and conditional group (M=2.65, SD=0.93) checked difference between the

two (t(30)=3.22, p=0.003) (see Figure 17).

The findings demonstrated that musical metaphor and auditory feedback can

increase student‟s motivation to program. More specifically, music notation as

an analogy to programming supported positive effects on students‟ acquisition

in learning a simple programming language. Overall, on the six measures, this

methodology was more inviting, more supportive of being apprehendable, and

more effective to learn. One of the goals of this research was to notify people

that “Programming is not that hard to learn”. In fact, learning how to program

is a sort of learning any other language. We wanted to invite novice

3.82

2.65

4.18

3.71

41

programmers to make their own ideas a reality based on the experience of

programming. In this study, we focused on using music to facilitate

introducing programming concepts for learning programming.

5.2 Survey Feedback

Positive

The purpose of musical metaphor was to enable students to figure out how

the methodology works by relating it to music. Student answered, for

example, that they could imagine the overall feature of the program based on

the music structure.

There are the six different issues noticeable in the context of learning, and

each issue is explained in Table 7 with quotes from the students:

Accessibility, creativity, enjoyment, on-line auditory feedback, overall

picture, peer tutoring, and music notation.

42

Table 7. Inductive categorization of positive feedback from the student

Issue Description Quotes

Accessibility
Lowering barriers to

programming

“I am contented with getting lesson from this approach. I think this

approach is helpful for novice programmers who have problem in

controlling the level of difficulty during the tutoring.”

“I think it affects introductory programming to explore possibility of

education methodology. Students who are not familiar with

programming can use this approach effectively for entering to

programming area.”

Creativity

Relationship between

music and

programming

“I am interested in the novelty of this research especially the

relationship between music and programming because it seems like

easy to access to programming.”

“I like the creativity of association between music (or instrument) and

programming. Students who have interest in programming might

consider this approach fresh because they didn‟t know about the

connection between programming and other fields.”

Enjoyment
Playful experience with

programming

“I think this introduction is good start for programming. I had fun with

music and preferred to jump into programming.”

“As a gateway to languages like traditional programming, then, this

study appears feasible choice.”

On-line auditory

feedback

Helping people notify

the status of program

“It is fun to use the system because I can hear what I programmed.”

“I like the form of result which is music attracting me a lot.”

Overall picture

Getting the overall

picture of the program

with the assistance of

musical metaphor

“The experience with this introduction helped me establish a general

idea of how to think like a programmer.”

“I can guess overall image of program through this approach. To novice

programmer, it is hard to think about the overall picture and status of

program.”

Peer tutoring

Teaching programming

with similar status as

the students being

tutored

“I feel peer tutoring influenced me during the tutoring time. Whenever I

wanted to use some computer program, I felt nervous because I don‟t

want to make some problems or something wrong.”

“In this study, I think importance of peer tutoring is really essential.”

Music notation
Being familiar with

music notation

“In the case of traditional programming language, I have to know about

the meaning of English. However in this case, I don‟t have to translate

them.”

“This notation can lower the barriers to programming.”

As shown in Figure 18, Accessibility (38.1%) appeared to be the most

common issue the students experienced in the introductory programming. On-

43

line auditory feedback (16.7%) was another issues that were chosen

considerably frequently in the context of introductory programming.

Enjoyment and Overall picture (14.3%) were other issues, and the issue of

peer mentoring and creativity counted for 12.5% and 9.4% respectively.

Figure 18. Frequency of positive issues about the system

Negative

There are also the seven different negative issues noticeable in the context of

learning, and each issue is explained in Table 8 with quotes from the

students: Error notification, range of the system, weakness, prior background,

motivation, unacceptability, and syntax.

44

Table 8. Inductive categorization of negative feedback from the student

Issue Description Quotes

Error

notification

Erasing the function

of error notification

to decrease negative

factor of runtime

error

“I am afraid about errors. However, even if it gives me negative effects, I

think I have to know about the existence of error in program.”

“When we learn something, realizing what is problem in this situation is

really important.”

Range

Focusing on the

introductory

programming

“I am not sure this is real programming. I think there is more serious thing

beyond this study.”

“Novice programmers also should know about the key concepts in

programming. There is no excuse for learning only a few things.”

Weakness
Being loaded from

the music

“People who don‟t like music at all might feel overwhelmed, because they

have to know about programming and even music.”

“We can meet people quite often someone who can‟t read music score.”

Backgrounds
Basic backgrounds

about programming

“It is hard to understand what researcher wants to talk about.”

“So what? What is programming?”

Motivation
Willing to learn

about programming

“There is no much relationship between enjoyment and willingness to learn

about programming.”

“I think it is totally different between just enjoying and being eager to

learn.”

Unacceptability
Barriers to learning

about programming

“For me, it is really hard to type something on keyboard.”

“It is so complicated.”

Syntax
Barriers to English

language for Korean

“During the course, I was overwhelmed by the syntax. I‟ve never seen that

kinds of things in my life.”

“Why do I have to type only in English?”

Range The purpose of musical metaphor was to enable beginners to figure out

how the system works by relating it to music. However, as we developed this

metaphor, some problems arose, including inconsistencies with music

structure and complexities that do not exist in authentic music. We plan to

improve on our research along with the metaphor of music and engage

students such that they can feel positive about their experiences when learning

45

their further languages.

Motivation A lot of students mentioned about the relationship between

enjoyment and motivation. They mentioned that there is no much relationship

between excitement and willingness to learn about programming. Although

students currently had a critical attitude in the field of computer science,

Kelleher pointed out that previous experience programming and time spent

programming would lead to provide them performance and interest in

programming (Kelleher, Pausch & Kiesler, 2007). We could demonstrate this

concern with empirical evidences and the importance of supporting

collaboration to engage students.

Figure 19. Frequency of negative issues about the system

Error notification It is true that the experience of programming is

characterized by occasions of failure (Fitzgerald et al, 2008). The initial

experience with new programming language often leads to unexpected

results and unknown error messages from the program. Even though these

46

forms of feedback are important to supporting a programmer recognize what

status is and how program works, the experience might be quite

embarrassing and discouraging (Lee & Ko, 2011). Following a tradition of

previous studies, this research was also implicated in considering the form of

error messages. For most novice programmers, we decided that the system

do not notify any kinds of feedback when error occurs in program.

Traditional studies have shown that the system scold users for errors affect

users‟ performance negatively (Kelleher, Pausch & Kiesler, 2007). After the

user study, we got a lot of feedbacks about the form of feedback including

not only on-line auditory feedback, but also nonoccurrence of errors in

process. In future work, we will expand the capabilities of the prototype to

account for error finding issue.

5.3 In-depth Interview

For the purposes of this study, we defined active interaction as simultaneous

active participation, and I measured it by writing down every comment during

the course. In particular, we provided the result of in-depth interview from

one participant, who interested in learning about programming. Her major is

in statistics and she had weak backgrounds in statistical programming with R.

She gave clear comments that the approach of this research did indeed excite:

“This approach, programming with musical metaphor and on-line auditory

feedback, was a full of fun, and chance to think about understanding

introductory concepts through exploration. It was really nice having auditory

47

rewards for the results instead of colorful text those randomly generated by

the environments. When I learned about programming with R, the purpose of

the lectures was testing statistical hypothesis and drawing the figure from the

data. However, in a two hour session, I had never before programmed but I

was able use a tutorial to learn how to program in this approach, and then

continue to next step for additional programming courses.” This, in itself,

would be a success.

48

6. Conclusion

In this paper, we presented a study for introductory programming with

musical metaphor and on-line auditory feedback. We believe the effects of

using music notation as an analogy for introductory programming would

improve the performance and comprehension of students. Our results

provided empirical evidence that thoughtfully designed the methodology for

introductory course could offer significant advantages over the introduction of

traditional programming language in the context of computer science

education. Among these advantages, musical metaphors can be more inviting

and more conducive to be introduced programming. Moreover, in this study,

the musical metaphors are better at encouraging students to take an active role

in exploring and learning, an effect that seems especially who have interests

in music.

The results of this research suggest several ways for future work. We want to

further implement the methodology to better understand exactly. We are

planning to evaluate the methodology and following hypothesis will be

investigated: this research can assist students in enabling to identify the

program‟s flow easily in the learning process.

6.1 Contributions

We discuss this research on programming education as an expanded concept

of computational thinking. Moreover, the National Research Council

49

announced that digital fluency as “the ability to reformulate knowledge, to

express oneself creatively and appropriately, and to produce and generate

information goes beyond traditional notions of computer literacy requires a

deeper, more essential understanding and mastery of information technology

for information processing, communication, and problem solving than does

computer literacy as traditionally defined.” Due to the NRC report, ability

associated with programming take an important role in the development of

fluency (Resnick et al, 2009).

We conducted a user study comparing the methodology of this research with

other traditional programming language as a gateway to learn and introduce

programming. This study assessed the methodology and yielded results

about which features contributed to differences and statistically better.

Especially, we chose to examine two key features of the system that are not

found in traditional programming languages: musical metaphor and on-line

auditory feedback.

This study has several contributions. First, on the basis of previous work,

more key concepts in educational programming settings were improved that

make use of similar attributes between music notation and programming.

Second, the study described system design incorporating with JAVA API for

on-line auditory feedback. Third, the study provided the possible lessons

learned from encouraging novice programmers with music, which makes

stressful situations become more pleasant and enjoyable.

50

6.2 Limitation and Future Work

Some researchers in Computer Science, Education, and Human-Computer

Interaction (HCI) gave considerable and valuable comments to our previous

works. However, they troubled because this research might be different with

other programming systems. They concerned that students learning this

methodology might be not learning essential computer science concepts and

programming skills that would be needed in the future. We provided some

rebuttals that considered in the context of computer science education.

First, this research has introduced some valuable ideas that would impact

how programming is taught and what kinds of topics are considered. Some

of students would start to learn programming and computer science through

this research. Second, the purpose of this research was to enable a wide

range of students to visualize their ideas and challenge the opportunities of

programming. Moreover, it is significant that novice programmers‟ early

experiences are fulfilling ones. The problem is that most programming

systems are so complex to learn and use that most students are hard to fulfill

their goals. In this study, we focused on dealing with this problem and

helping students get familiar with the experience.

51

Acknowledgements

I would like to gratefully thank Prof. Kyogu Lee for his guidance,

understanding, insight, and his leadership during my graduate studies at

Music and Audio Research Group (MARG). He encouraged and inspired me

to explore my own individuality and self-sufficiency with independence. I

am very grateful for the many hours he spent discussing and his untiring

feedback in my research.

I would also like to thank my co-advisor, Prof. Joongseek Lee, and the other

advisors of Graduate School of Convergence Science and Technology

including Prof. Namjun Kang, Joonhwan Lee, and Bongwon Seo for their

guidance and support. Prof. Joonhwan Lee was especially generous to

suggesting the direction of the user studies and goal of the research. I was

extremely lucky to interact with advisors who cared so much about my study,

and who gave me valuable advice and support for my study. I would also

like to thank all the members of students at MARG for helping me during

my graduate studies and also providing for unforgettable memories in my

life. In particular, I would like to thank Boyeon Son, Ara Kim, and Yeonhwa

Kim for giving me heartfelt consideration, assistance and friendship.

I must express appreciation to my sincere friends, Jimin Choi, Joowon Park,

Hyunjin Joo, Julie Kim, and Shia Kim who have helped me in various ways

in my life. A special thanks to Jiexin Wang and Jason Koh whose counsel

and friendship were essential to make it possible to complete this study.

Finally, and most importantly, I would like to thank my family for their

52

unending encouragement and support, special thanks to my parents who

have given me quiet patience and unwavering love with their faith in me. I

would like to express my gratitude to my sister Hyun for her continued

encouragement. I am glad you have made many progresses in your life and

wish you the best of luck with your work!

53

Reference

Agarwal, K. K., & Agarwal, A. (2006). Simply python for cs0. Journal of Computing

Sciences in Colleges, 21(4), 162-170.

Atlas, G. D., Taggart, T., & Goodell, D. J. (2004). The effects of sensitivity to

criticism on motivation and performance in music students. British Journal

of Music Education, 21(01), 81-87.

Baldis, J. J. (2001). Effects of spatial audio on memory, comprehension, and

preference during desktop conferences. In Proceedings of the SIGCHI

conference on Human factors in computing systems (pp. 166-173). ACM.

Bramwell-Dicks, A., et al. (2013). Affective Musical Interaction: Influencing Users‟

Behaviour and Experiences with Music, Music and Human-Computer

Interaction. Springer London, 67-83.

Card, S. K., Mackinlay, J. D., & Schneiderman, B. (Eds.). (1999). Readings in

information visualization: using vision to think. Morgan Kaufmann.

Carter, L. (2006). Why students with an apparent aptitude for computer

science don't choose to major in computer science. In ACM SIGCSE

Bulletin (Vol. 38, No. 1, pp. 27-31). ACM.

Clements, D. H. (1999). The future of educational computing research: The case of

computer programming. Information Technology in Childhood Education

Annual, 147-179.

Dannenberg, F. K., Dannenberg, R. B., & Miller, P. L. (1984). Teaching Programming

to Musicians.

Esper, S., Foster, S. R., & Griswold, W. G. (2013). CodeSpells: embodying the

metaphor of wizardry for programming. In Proceedings of the 18th ACM

conference on Innovation and technology in computer science education (pp.

249-254). ACM.

Fincher, S., Tenenberg, J., & Robins, A. (2011). Research design: necessary bricolage.

In Proceedings of the seventh international workshop on Computing

education research (pp. 27-32). ACM.

54

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L.,

& Zander, C. (2008). Debugging: finding, fixing and flailing, a multi-

institutional study of novice debuggers. Computer Science Education, 18(2),

93-116.

Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J. (2009). Comparing the use

of tangible and graphical programming languages for informal science

education. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (pp. 975-984). ACM.

Horn, M. S., Solovey, E. T., & Jacob, R. J. (2008). Tangible programming and

informal science learning: making TUIs work for museums. In Proceedings

of the 7th international conference on Interaction design and children (pp.

194-201). ACM.

Huron, D. (2006). Sweet Anticipation: Music and the Psychology of Expectation.

 MIT Press.

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle

school girls to learn computer programming. In Proceedings of the SIGCHI

conference on Human factors in computing systems (pp. 1455-1464). ACM.

Ko, A. J., Myers, B. A., & Aung, H. H. (2004). Six learning barriers in end-user

programming systems. In Visual Languages and Human Centric Computing,

2004 IEEE Symposium on (pp. 199-206). IEEE.

Ko, E., & Lee, K. (2013). Using Music Notation for Teaching Computer

Programming. ICCE.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of

novice programmers. In ACM SIGCSE Bulletin (Vol. 37, No. 3, pp. 14-18).

ACM.

Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms. T. H.

Cormen (Ed.). The MIT press.

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. In ACM

 SIGCSE Bulletin (Vol. 41, No. 1, pp. 260-264). ACM.

McIver, L., & Conway, D. (1996). Seven deadly sins of introductory programming

55

language design. In Software Engineering: Education and Practice.

Proceedings. International Conference (pp. 309-316). IEEE.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., & Paterson,

J. (2007). A survey of literature on the teaching of introductory

programming. In ACM SIGCSE Bulletin (Vol. 39, No. 4, pp. 204-223).

ACM.

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in introductory

programming: what works?. Communications of the ACM, 56(8), 34-36.

Resnick, M., Flanagan, M., Kelleher, C., MacLaurin, M., Ohshima, Y., Perlin, K., &

Torres, R. (2009). Growing up programming: democratizing the creation of

dynamic, interactive media. In Proceedings of the 27th international

conference extended abstracts on Human factors in computing systems (pp.

3293-3296). ACM.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming:

 A review and discussion. Computer Science Education, 13(2), 137-172.

Sánchez, J., & Aguayo, F. (2005). Blind learners programming through audio.

In CHI'05 extended abstracts on Human factors in computing systems(pp.

1769-1772). ACM.

Schneider, G. M. (1978). The introductory programming course in computer science:

 ten principles. ACM SIGCSE Bulletin, 10(1), 107-114.

Swan, K. (1991). Programming objects to think with: Logo and the teaching and

learning of problem solving. Journal of Educational Computing

Research, 7(1), 89-112.

Tarkan, S., Sazawal, V., Druin, A., Golub, E., Bonsignore, E. M., Walsh, G., & Atrash,

Z. (2010). Toque: designing a cooking-based programming language for

and with children. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (pp. 2417-2426). ACM.

Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. (2010). Alice,

greenfoot, and scratch--a discussion. ACM Transactions on Computing

Education (TOCE), 10(4), 17.

56

Wang, G., & Cook, P. R. (2004). On-the-fly programming: using code as an

expressive musical instrument. In Proceedings of the 2004 conference on

New interfaces for musical expression (pp. 138-143). National University of

Singapore.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-

35.

Wolz, U., Leitner, H. H., Malan, D. J., & Maloney, J. (2009). Starting with scratch in

 CS 1. In ACM SIGCSE Bulletin (Vol. 41, No. 1, pp. 2-3). ACM.

57

Appendix A: Online Survey Questionnaire

58

59

Appendix B: Offline Survey Questionnaire

60

61

62

63

64

65

Appendix C: Materials from SNU-IRB

66

67

68

69

70

Appendix D: Examples of tutorial

71

72

73

74

75

76

77

78

79

80

81

	1 Introduction
	1.1 Background
	1.2 Research Question
	1.3 Research Goal and Objectives

	2 Literature Review
	2.1 Computer Science Education
	2.1.1 Educational Programming Languages
	2.1.2 Introductory Programming

	2.2 Music and Programming
	2.3 Summary of Literature Review

	3 Methodology
	3.1 System
	3.1.1 Programming Style
	3.1.2 Key Structures
	3.1.3 Programming Environment

	3.2 User Survey

	4 Experimental Evaluation
	4.1 Introductory Course
	4.2 Tutorials
	4.3 Preliminary Case Study
	4.4 Questionnaire
	4.5 Participants

	5 Results and Discussion
	5.1 Data Analysis
	5.2 Survey Feedback
	5.3 In-depth Interview

	6 Conclusion
	6.1 Contributions
	6.2 Limitation and Future work

<startpage>9
1 Introduction 1
 1.1 Background 1
 1.2 Research Question 3
 1.3 Research Goal and Objectives 3
2 Literature Review 4
 2.1 Computer Science Education 4
 2.1.1 Educational Programming Languages 4
 2.1.2 Introductory Programming 6
 2.2 Music and Programming 10
 2.3 Summary of Literature Review 11
3 Methodology 13
 3.1 System 13
 3.1.1 Programming Style 13
 3.1.2 Key Structures 16
 3.1.3 Programming Environment 20
 3.2 User Survey 23
4 Experimental Evaluation 25
 4.1 Introductory Course 26
 4.2 Tutorials 29
 4.3 Preliminary Case Study 31
 4.4 Questionnaire 32
 4.5 Participants 32
5 Results and Discussion 35
 5.1 Data Analysis 35
 5.2 Survey Feedback 41
 5.3 In-depth Interview 46
6 Conclusion 48
 6.1 Contributions 48
 6.2 Limitation and Future work 50
</body>

