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Abstract 

Background and aim: Helicobacter pylori (H. pylori) infection increases the risk of gastric 

cancer through disrupting the regulation of cell survival. H. pylori infection is associated with 

epithelial growth factor receptor (EGFR) activation. EGFR downstream targets, such as 

phosphatidyl inositol 3-OH kinase (PI3K)-Akt-glycogen synthase kinase-3 (GSK3) pathways, 

regulate cell survival and migration. H. pylori infection also induces cyclooxygenase-2 (COX-2) 

over-expression, and previous study suggested that selective COX-2 inhibitor, celecoxib, blocks 

Akt signaling pathways. COX-2 and EGFR may cross talk through Akt-signaling pathways. The 

aim of the present study was to evaluate the effect of H. pylori on EGFR signaling pathways 

and to find out whether celecoxib has inhibitory effect on the EGFR signaling pathway or not. 

Methods: AGS gastric epithelial cell lines were co-cultured with the toxigenic H. pylori cagA+, 

vacA+ G27 and the cagE- mutant of G27. The expressions of COX-2, EGFR, TGF-ß, Snail, 

Slug and E-cadherin were measured by real-time PCR. In the next, western blot analyses of 

COX-2, EGFR, total Akt (tAkt), phosphorylated Akt (pAkt) and pGSK3ß were carried out at 

various concentrations (0, 10, 20, 30μmol/L) of celecoxib treatment for 24 hours in H. pylori 

treated AGS cell lines.  

Results: H. pylori infection significantly up-regulated the mRNA levels of COX-2, EGFR,TGF-

ß, Snail, Slug and down-regulated E-cadherin in RT-PCR. AGS cell lines treated with cagE- 

mutants, which have a defective type IV secretion system did not show EGFR up-regulation. 

Celecoxib had inhibitory effects on H. pylori-induced over-expression of COX-2 (p=0.015), 

EGFR (p=0.025), pAkt (p=0.025) and pGSK3ß (p=0.029) in AGS cell lines in Western blot 

analysis.  

Conclusion: Infection by H. pylori with intact type IV secretion system activates EGFR signal 

pathways in AGS cell lines and celecoxib has inhibitory effect on this pathway. These finding 

provide insights into the anti-gastric cancer effect of celecoxib.  
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Introduction 

Helicobacter pylori (H. pylori) infection is a major risk factor of gastric cancer (1, 2). 

Infection with the organism is not the only factor associated with developing gastric cancer. 

Clinical outcome of the infection is the result of interaction of host genetics, environmental 

factors and the virulence of the bacteria such as vacuolating cytotoxin (vacA) and cag 

pathogenicity island (cagPAI) (3). VacA protein induces massive vacuolization in epithelial cells 

and cag PAI encodes CagA, major effector protein, and other proteins forming type IV secretion 

apparatus, which is used to penetrating the gastric epithelial cells and facilitating the 

translocation of CagA (4, 5). 

Cyclooxygenase (COX) is enzyme that catalyzes the conversion of arachidonic acids to 

prostaglandins, plays important role in physiological and pathological pathways (6). COX-2 is 

inducible form and expressed in response to inflammation and carcinogenesis. Several 

epidemiological and clinical studies have shown the relationship of COX-2 expression to gastric 

cancer progression (7, 8). H. pylori infection causes COX-2 over-expression in the early step of 

gastric carcinogenesis (9, 10). Therefore, there have been efforts to target COX-2 to prevent the 

development of gastric cancer. Non-steroidal anti-inflammatory drugs (NSAID), especially, 

selective COX-2 inhibitors, such as celecoxib, have been suggested to reduce the risk of gastric 

cancer in vivo and in vitro (11-13). The anti-cancer effect of celecoxib is mediated by COX-2 

independent pathways as well as by COX-2 dependent pathway (14-17). Our previous study 

showed that one of the anti-gastric cancer mechanisms of celecoxib is down-regulation of Akt 

signaling (16). 

Epidermal growth factor receptor (EGFR) is a member of the ErbB family and plays important 

roles in cell survival, proliferation, differentiation and migration. EGFR over-expression is 

frequently detected in human gastric cancers (18). It has been proposed that H. pylori VacA up-

regulates EGFR and the downstream target including Akt signaling pathways (19-21), which is 
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also proved to be downstream target of the COX-2 signaling pathway (16). In addition, H. 

pylori induced EGF activation has been reported to promote epithelial-mesenchymal transition 

(EMT) (22). Cells undergo EMT lose epithelial characteristics, such as, cell-to-cell adhesion, 

differentiation and acquire mesenchymal properties like mobility, invasiveness and resistance to 

apoptosis. It is regulated by transforming growth factor-ß (TGF-ß) mediated signal pathways; 

up-regulation of members of the EMT transcriptome, such as Snail and Slug, and down-

regulation of E-cadherin (23, 24). There has been evidence that COX-2 is related to EMT in 

colon cancer cells (25) and EGFR signaling is required to TGF- ß mediated COX-2 induction in 

bronchial epithelial and hepatocellular carcinoma cell lines (26, 27). However, the relationship 

of COX-2, EGFR and EMT pathway has not been clarified in gastric cancer cells.  

From this background, the aim of this study was to evaluate the effect on expression of COX-

2, EGFR and the downstream targets after H. pylori infection in the gastric cancer cell line. In 

addition, we investigated whether celecoxib, COX-2 selective antagonist, has inhibitory effect 

on H. pylori-induced EGFR signal conduction pathway, thus finally to find out the 

chemopreventive mechanism of celecoxib in gastric cancer. 

 

Materials and Methods 

Materials and reagents 

Purified celecoxib was provided by Pfizer Pharmaceuticals Korea (Seoul, Korea) and was 

dissolved in 100% dimethyl sulfoxide (DMSO); final DMSO concentrations in all cultures were 

below 0.1%. Cell was treated with increasing concentrations of celecoxib (0, 10, 20 and 30 µM) 

for 6 and 24 hours. 

 

Cell culture and H. pylori strain  
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G27 strain (cagA+, vacA+ [s1, m1]) wild type and cagE- isogeneic mutant of the strain, 

obtained from Professor S. Falkow (Stanford University, Stanford, CA, USA) , G69a strain 

(cagA+, vacA+), expressing green fluorescence protein (A gift from Dr. Reiner Haas, Munich, 

Germany) and HP 99 strain (cagA+, vacA+), were used in this experiment. Bacteria were 

cultured under micro-aerobic conditions (5% O2, 10% CO2 and 85% N2) at 37°C on Chocolate 

agar plates for 5 days. Bacteria were harvested and resuspended in RPMI-1640 (Gibco, 

GrandIsland, NY, USA). Then, those were supplemented with 10% fetal bovine serum, and 100 

U/mL penicillin and 100 mg/mL streptomycin for co-culture with the AGS cells (ATCC CRL 

1739; obtained from American type culture collection, Bethesda, MD, USA) at a multiplicity of 

infection (MOI) of 100:1. 

After 24 hours, the cells were rinsed with phosphate-buffered saline (PBS, pH 7.4, 37°C) and 

various concentrations (0, 10, 20, 30 μmol/L) of celecoxib were added and incubated for 

another 24h with serum starvation. The controls were treated with a DMSO vehicle at a 

concentration equal to that of the drug-treated cells.  

 

Real-time PCR 

To extract total RNAs from AGS cell lines, we used TRIzol
®
 reagent (Invitrogen, Carlsbad, 

CA, USA) as recommended by the manufacturer and the collected RNA was purified using 

RNeasy mini kits (Qiagen, Valencia, CA, USA). RNA samples were diluted to a final 

concentration of 0.5 mg/ml in RNase-free water and stored at 80℃, until use. Real-time PCR 

reaction was performed on the ABI PRISM 7000 Sequence Detection System (Applied 

Biosystems, Foster City, CA, USA) in 20 L SYBR Premix Ex Taq
TM

 (Takara Bio, Shiga, Japan) 

using 200 ng cDNA. The thermal cycler conditions were 10 sec hold at 95℃, followed by 40-45 

cycles of 5 sec at 95℃ and 33 sec at 60℃. The following primers were used: COX-2 forward, 

TTCAAATGAGATTGTGGGAAAATTGCT; COX-2 reverse, 

AGATCATCTCTGCCTGAGTATCTT; HB-EGF forward, CTCTTTCTGGCTGCAGTTCTC; 
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HB-EGF reverse, AGCTGGTCCGTGGATACAGT;  EGFR forward, 

CTATGAGATGGAGGAAGACG ; EGFR reverse, CAGAGGAGGAGTATGTGTGA;TGF-ß 

forward, GTATGGGGTCGCAGGGTGTT; TGF-ß reverse, CAGATGCGCTGTGGCTTTGC; 

Snail forward, CCCCAATCGGAAGCCTAACT; Snail reverse, GGTCGTAGGGCTG 

CTGGAA; Slug forward, AAAAGCCAAACTACAGCGAACTG; Slug reverse, 

AGAATCTCTGCTTGTGGTATGACA; Vimentin forward, 

AAAACACCCTGCAATCTTTCAGA; Vimentin reverse, 

CACTTTGCGTTCAAGGTCAAGAC; E-cadherin forward, GGCGCCACCTCGAGAGA; E-

cadherin reverse, TGTCGACCGGTGCAATCTT; Homo sapiens actin, ß forward, 

TTCGAGCAAGAGATGGCCAC; Homo sapiens actin, ß reverse, 

CGGATGTCCACGTCACACTT. All equipment and reagents were purchased from Applied 

Biosystems and used according to their recommended protocols. 

 

Western blotting 

After washing twice with PBS (pH 7.4, 37°C), the AGS cells were treated with cell lyses 

buffer (Sigma Chemical Co, St. Louis, MO, USA), and the protein concentration was measured 

with the BCA TM protein assay kit (Pierce, Rockford, IL, USA). Cell extracts (20 mg protein) 

were subjected to 10% sodium dodecylsulfate–polyacrylamide gel electrophoresis (SDS-PAGE) 

and the separated proteins were transferred to polyvinylidene difluoride membranes. After 

blocking the non-specific binding sites with non-fat dry milk, the membranes were incubated 

with anti COX-2, anti-EGFR, anti-phospho-Ser473-Akt, anti-Akt, pGSK3β (phosphorylated 

glycogen synthase kinase-3β), and actin. The COX-2 membrane incubation with COX-2 

antibody (goat polyclonal IgG antibody, 1:1000, Santa Cruz Biotechnology, Santa Cruz, CA, 

USA) was carried out at 4°C overnight, then the blots were incubated with secondary antibody 

(donkey anti-goat antibody, 1:1000). The bound antibodies were detected using a 

chemiluminescence detection kit. Western blots were analyzed and quantified using the 
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Luminescent image analyzer LAS 1000-plus (Fuji Photo Film, Tokyo, Japan) and the Image 

Gauge ver. 3.12 (Fuji Photo Film). 

 

Statistical analyses 

SPSS for Windows (version 18.0; SPSS, Chicago, IL, USA) was used for the statistical 

analysis. The level of mRNA was expressed as fold changes (mean ± SEM) relative to the 

control groups. The level of protein was expressed as pg/ml (mean ± SEM). Mann-Whitney U-

test was used for the comparison between two groups. Statistical significance was set at p<0.05.  

 

Results 

H. pylori stimulates COX-2 and EGFR expression 

After 24-h incubation with G27 wild type, we could find over-expression of COX-2, EGFR, 

TGF-ß and Snail, Slug, Vimentin and down-regulation of E-cadherin in AGS cell lines (Table 1, 

Fig. 1). Similar patterns of mRNA expression were observed using different strains of H. pylori, 

such as G69a and HP99 (data not shown). However, AGS cells treated with cagE- mutant of 

G27 did not show significant difference compared to control (Table 1, Fig. 1). Comparing to 

AGS cells treated with G27 wild type, those treated with cagE- mutant showed significant lower 

level of mRNA expression in HB-EGF, EGFR, and Snail (Fig. 1). 

 

Celecoxib inhibits COX-2 over-expression and EGFR up-regulation. 

To assess whether celecoxib inhibits H. pylori-induced over-expression of those mRNAs or  
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Table 1. RT-PCR of COX-2. EGFR, HB-EGF, TGF-ß, Snail, Slug, Vimentin, and E-cadherin in 

AGS cell line treated with wild type toxigenic H. pylori and its isogenic cagE-mutant. 

 AGS control G27 wild type cagE- mutant of G27  

COX-2 1.00 3.27 ± 0.92
†
 1.21 ± 0.19 

EGFR 1.00 2.55 ± 0.31
†
 1.43 ± 0.33 

HB-EGF 1.00 6.23 ± 1.21
†
 1.69 ± 0.47 

TGF-ß 1.00 1.68 ± 0.42* 1.18 ± 0.28 

Snail 1.00 7.65 ± 3.01
†
 1.96 ± 0.92 

Slug 1.00 6.79 ± 1.83
†
 2.52 ± 0.65 

Vimentin 1.00 2.33 ± 0.75* 1.32 ± 0.36 

E-cadherin 1.00 0.62 ± 0.03* 0.76 ± 0.37 

Data were shown as fold increase(mean± SE) of mRNA. 

*
p<0.05, 

†
p<0.005 compared to AGS cells.  
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not, we incubated AGS cell lines with H. pylori strain in the presence or absence of celecoxib. 

The effect of treatment with 0, 10, 20 and 30 µM of celecoxib for 6 hours on mRNA expression 

was evaluated. AGS cell lines were treated with G69a (n=6) and mRNA levels of COX-2, 

EGFR, TGF-ß, Snail, Slug, Vimentin and E-cadherin were measured by RT-PCR. Over-

expressions of COX-2, Snail and Slug were shown after H. pylori treatment compared to AGS 

control. Celecoxib had inhibitory effect on overexpression of COX-2 (p=0.026) and Snail 

(p=0.041) (data not shown). However, we could not find significant difference in expressions of 

the other mRNAs after H. pylori infection with any other dose of celecoxib. 

 

 

 

 

 

 

 

 

 

 

 

 



８ 

 

 

 

Figure 1. Effect of H. pylori infection on mRNA expressions of COX-2, EGFR, HB-EGF, TGF-ß, Snail, 

Slug, Vimentin, and E-cadherin in AGS cell line by RT-PCR. Incubation of AGS cells treated with H. 

pylori strain G27 wild type and cagE- isogenic mutant. (A) COX-2, (B) EGFR, (C) HB-EGF, (D) TGF-β, 

(E) Snail, (F) Slug, (G) Vimentin and (H) E-cadherin. Over-expressions of COX-2, EGFR, HB-EGF, 

TGF-β, Snail, Slug, Vimentin and down-regulation of E-cadherin were observed in AGS cell lines treated 
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with H. pylori strain G27 wild type. There was no significant difference in the levels of the eight mRNA 

in those treated with cagE- isogenic mutant and AGS control. Comparing to AGS cell lines treated with 

G27 wild type, expression of HB-EGF (p=0.001), EGFR (p=0.010) and Snail (p=0.013) was significant 

lower in those treated with cagE- isogenic mutant.  

Hp WT: H. pylori wild type, cagE mutant: cagE- isogenic mutant of H. pylori 

*
p<0.05 compared to AGS cells.

 **
p<0.05 compared to G27 wild type in cagE- isogenic mutants.  
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Western blotting for COX-2, EGFR, Akt, GSK3ß with or without 

celecoxib treatment  

To assess whether H. pylori-induced protein expressions of COX-2 and EGFR-Akt pathway 

are suppressed by celecoxib, we incubated AGS cell lines with H. pylori strain G69a in the 

presence or absence of celecoxib. The effects of 0, 10, 20 and 30 µM of celecoxib treatment in 

AGS cells on the expression of COX-2, EGFR, Akt and pGSK3ß were evaluated. The 10, 20 

and 30 μmol/L concentrations of celecoxib showed significant inhibitory effects on the 

expression of COX-2 at 24 h of incubation in the AGS cell lines (Fig. 2A). The 20 μmol/L 

concentration of celecoxib showed significant inhibitory effects on the over-expression of COX-

2 by H. pylori infection (Fig. 2A). For EGFR, H. pylori infection induced EGFR over-

expression with G69a strain (Fig. 2B) and with G27 wild type (data not shown). However, over-

expression of EGFR was not observed in AGS cell lines treated with cagE- mutant of G27 strain 

(data not shown). The 20 and 30 μmol/L concentrations of celecoxib showed significant 

inhibitory effects on the expression of EGFR in H. pylori treated AGS cell lines with G69a 

strain (Fig. 2B).  

Akt, a threonine protein kinase, found at the multiple signaling pathways, plays a role as a 

regulator of cell proliferation apoptosis, glycogen metabolism, migration and cell survival (28). 

It is downstream target of EGFR-PI3K pathway and its complete activation need 

phosphorylation of regulate sites. Phosphorylated Akt (pAkt) targets glycogen synthase kinase 

3(GSK3), subsequently phosphorylates GSK3ß and GSK3α. We measured total Akt (tAkt), 

pAkt, and pGSK3ß as downstream targets of Akt signaling. AGS cell lines treated with H. pylori 

G69a strain showed significant over-expression of pAkt, not tAkt (p<0.001, Fig. 2C, Fig. 2D). 

Celecoxib showed significant inhibitory effects on the expression of pAkt in AGS control and H. 

pylori infected AGS cell lines (Fig. 2D). For pGSK3ß, we could observe that H. pylori induced 

over-expression of the protein and inhibitory effects of celecoxib (Fig. 2E). 
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Figure 2. Western blotting for (A) COX-2, (B) EGFR, (C) tAkt, (D) pAKt and (E) pGSK3β in H. pylori 



１２ 

 

infected AGS cell line. Incubation of AGS cells infected by H. pylori strain G69a and AGS cell control 

with various concentrations (0, 10, 20, 30 μmol/L) of celecoxib for 24 hours show different protein 

expression. (A) AGS cell lines treated with H. pylori G69a strain showed COX-2 over-expression 

(p=0.001). The 10, 20 and 30 μmol/L concentrations of celecoxib showed inhibitory effects on the protein 

expression of COX-2 in the AGS control (p=0.026. p=0.001, p=0.017, respectively). The 20 μmol/L 

concentration of celecoxib showed inhibitory effects on the protein expression of COX-2 in the H. pylori 

treated AGS cells (p=0.015). (B) AGS cell lines treated with H. pylori G69a strain showed significant 

EGFR over-expression (p<0.001). The 20 and 30 μmol/L concentrations of celecoxib showed inhibitory 

effects on the protein expression of EGFR in the H. pylori treated AGS cells (p=0.025, p=0.004 

respectively). (C), (D) AGS cell lines treated with H. pylori G69a strain showed over-expression of pAkt 

(p<0.001), not tAkt. The 10 and 30 μmol/L concentrations of celecoxib showed inhibitory effects on the 

expression of tAkt in the AGS control (p=0.010, p=0.020, respectively). There was significant increase in 

pAkt expression after H. pylori infection (p=0.001). The 10, 20 and 30 μmol/L concentrations of 

celecoxib inhibited the over-expression of pAkt at 24 h of incubation in the AGS control (p=0.026, 

p=0.001, p=0.017, respectively). The 20 μmol/L concentration of celecoxib showed inhibitory effect on 

the expression of COX-2 at 24h of incubation in the H. pylori treated AGS cell lines with G69a strain 

(p=0.015). (E) AGS cell lines treated with H. pylori G69a strain showed significant over-expression 

pGSK3ß (p<0.029). The 10 μmol/L concentrations of celecoxib showed significant inhibitory effect on 

the expression of pGSK3ß at 24 h of incubation in the AGS cell lines (p=0.029). 

*
p<0.05 compared to AGS cells. 
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Discussion 

In this study, H. pylori infection in AGS cell lines up-regulated COX-2, EGFR. PI3K/Akt 

pathway, TGF-β, and EMT related genes such as Slug, Snail, and Vimentin. Importantly, from 

the observation that selective COX-2 antagonist, celecoxib, had inhibitory effect on EGFR and 

its downstream targets; we suggest that COX-2 may have important role in EGFR pathway (19, 

20). Interestingly, AGS cells treated with cagE- strains did not show overexpression of EGFR 

compared to those treated with wild type. There have been numerous studies that H pylori 

strains that possess the cag PAI induce more severe gastritis and increase the risk of peptic ulcer 

disease gastric adenocarcinoma (29, 30). CagE, encoded in cag PAI, is one of structural protein 

of type IV secretion system that delivers the CagA protein into the host cell. This process is 

accomplished by specialized adhesin activates host cell integrins for subsequent delivery of 

CagA. Recently there have been studies that type IV secretion system, not only CagA paly 

important role in various signal pathways (31-33). The present study well corresponds with the 

previous studies that cag PAI, especially cagE is important in H. pylori induced EGFR 

transactivation. 

We could find over-expression of COX-2, EGFR, TGF-ß and Snail, Slug, Vimentin and 

down-regulation of E-cadherin in AGS cell lines after H. pylori infection by RT-PCR. In the 

next step, we tried to prove the inhibitory effects of celecoxib on those mRNAs. However, there 

was no significant over-expression of mRNAs after H. pylori treatment except COX-2, Slug and 

Snail; we could observe the inhibitory effect of celecoxib on those over-expressed mRNAs. 

Small sample size may contribute to the result. Although, we failed to observe inhibitory effect 

of celecoxib on EGFR mRNA expression, we could find celecoxib could inhibit EMT 

transcriptomes, such as Slug and Snail. This is new finding in gastric cancer cells. We could 

observe the over-expression of COX-2 and EGFR-pAkt-pGSK3β after H. pylori infection, and 
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celecoxib inhibited over-expression of those proteins in Western blotting. It well coincide with 

the previous study that show inhibitory effect of celecoxib onpAKt-pGSK3β in AGS cell line 

without H. pylori infection (16). We could observe the inhibitory effect of celecoxib on EGFR 

protein over-expression after H. pylori infection. The present study implies that H. pylori-

induced EGFR activation cross talk with COX-2 and plays important role in antiapoptotic 

pathway and EMT. Given that EGFR signaling is required to TGF-ß mediated COX-2 induction 

in bronchial and hepatocellular carcinoma cell lines (26, 27), COX-2 might involve in EMT as a 

downstream of EGFR pathway in gastric epithelial cell line (Fig.3). 

COX-2 over-expression is frequently detected in human cancers, including lung, prostate and 

colon cancers (34-36).
 
Thus, COX-2 inhibitors including NSAIDs and selective COX-2 

inhibitors have been the target of prevent cancers including gastric cancer (37, 38). However, 

several COX-2 inhibitors, such asvaldecoxib (Bextra) and rofecoxib (Vioxx), were removed 

from the market previously due to increased risk of cardiovascular events, especially myocardial 

infarction (39, 40). For celecoxib, there have been controversies in cardiovascular events. 

Although, CLASS study found the risk of cardiovascular events in celecoxib users (41), other 

studies showed that celecoxib exposure did not elevate the risk of cardiovascular events (40, 42). 

Recently, a population-based intervention trial in China proved that celecoxib treatment alone 

could prevent progression of premalignant lesions to gastric cancer (43). In addition, there have 

been various combination of conventional chemotherapy with celecoxib have been studied (44-

48), some of them proved the effect of celecoxib co-treatment (44-46). Furthermore, there have 

been studies to target COX-2 and EGFR synergistically in metastatic colon cancer or recurred 

head and neck cancers (49, 50). Given that COX-2 play a role not only in the early stage of 

gastric cancer involving apoptosis, but also in the late stage of EMT, selective COX-2 inhibitor, 

celecoxib could be resurfaced as an anti-cancer agent with combination of molecular target 

chemotherapy.  
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In summary, infection by H. pylori with intact type IV secretion system activates EGFR 

signal pathways in AGS cell lines and celecoxib has inhibitory effect on this pathway. These 

findings provide insights into the anti-gastric cancer effect of celecoxib. 
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Figure 3. A schematic role of COX-2 in gastric cancer cell lines after H. pylori infection 
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국문 초록 

H. pylori 의 EGFR 신호전달에 미치는 

영향 및 celecoxib 의 위암발생 억제기전 

연구 

배경 : Helicobacter pylori (H. pylori)의 감염은 세포의 생존 조절능력을 저해하여 

위암의 발생위험을 증가시킨다. H. pylori 감염은 세포내 EGFR 의 활성화와 관련이 

있으며, 하부단계의 phosphatidylinositol 3-OH kinase (PI3K)-Akt-Glycogen synthase 

kinase-3 (GSK3) 와 같은 경로를 활성화시켜 세포의 생존과 이동을 조절하는 것으로 

알려져 있다. 또한 H. pylori 감염은 COX-2 의 과발현을 유발하는데, 이전 연구에서 

COX-2 억제제인 celecoxib 가 Akt 신호전달경로를 억제한다고 밝힌 바 있다. 

EGFR 과 COX-2 는 Akt 신호전달경로를 공유하며 긴밀한 영향을 주고받을 가능성이 

있다. 이에 본 연구는 H. pylori 가 EGFR 신호전달에 미치는 영향을 확인하고 

celecoxib 이 이를 억제하는지 확인하고자 하였다. 

연구재료 및 방법 : AGS 위암세포주를 H. pylori (cagA+, vacA+) G27과 cagE 돌연변이

를 가진 G27에 24시간동안 감염시킨 후 mRNA와 단백질의 발현을 확인하였다. 

COX-2, EGFR, TGF-ß, Snail, Slug, E-cadherin의 mRNA발현을 RT-PCR로확인하였다. 그

리고 다양한 농도(0, 10, 20, 30 µmol/L)의 ceclecoxib를 처리하여 COX-2, EGFR, tAkt, 

pAkt와 pGSK3ß의 단백질 발현을 확인하였다. 

결과 : AGS 위암세포주에서 wild type의 H. pylori 감염은 COX-2, EGFR, TGF-ß, Snail, 

Slug의 mRNA 발현을 증가시켰으며 E-cadherin의 mRNA발현을 감소시켰다. 또한 

wild type의 H. pylori 감염은 COX-2, EGFR, pAkt, pGSK3ß 의 단백질 발현을 증가시킨 
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반면, cagE 돌연변이로 인해 IV형 분비계에 결함이 있는 H. pylori에 의한 감염은 

EGFR을 활성화시키지 못하였다. Celecoxib은 H. pylori에 의해 과발현되는 COX-2 

(p=0.015), EGFR (p=0.025), pAkt (p=0.025)와 pGSK3ß (p= 0.029)를 억제시켰다.  

결론 : AGS 위암세포주에서 IV 형 분비계가 정상인 H. pylori 에 의한 감염은 EGFR 

신호전달체계를 활성화시켰으며, celecoxib 은 이를 억제하는 효과를 보였다.  

 

주요어: 위암; Helicobacter pylori; COX-2; EGFR; Celecoxib 

학번: 2010-23711 
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