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ABSTRACT

Seong-Woo Bae

Interdisciplinary Program in Cancer Biology
The Graduate School

Seoul National University

Objective: Cervical cancer is the third most common

cancer in women worldwide and radiotherapy is one of the
major treatment methods. Radioresistance of cancer cells
is a big obstacle in radiotherapy. Since the cell
proliferation and therapeutic efficacy might be related to
cell cycle, it is necessary to understand the radiation

effects on the cell cycle.

Recently, fluorescent, ubiquitination-based cell cycle
indicator (FUCCI) system was developed to visualize G1/GO

and/or S/G2/M phases of the cell cycle with distinct



colors.

In this study, I assessed the radiation effects on cell cycle

using the FUCCI system.

Methods: Cell division of FUCCI expressing HelLa cells

was observed in real time using a fluorescence microscope
(Olympus IX81). GO/Gl1 and S/G2/M phases were
determined using two different fluorescent proteins, Cdtl
and Geminin, which were activated by cell cycle specific

transcription factors.

In-vitro cell studies were performed using HelLa-FUCCI
cells. The cells were synchronized using 0.2 mM
hydroxyurea for 24 hours, and then cells were irradiated
with 6 Gy radiation using '®’Cs irradiator (IBL437C). The
time-lapse cellular change of irradiated or non-irradiated
control cells was visualized wusing the fluorescence

microscope. FACS analysis was also performed under the



same condition.

Xenografted HeLLa-FUCCI tumors were established in nude
mice. One side of two tumors on each mouse in the area
adjusted using multi-leaf colimators (MLC) of a linear
accelerator (Clinac 6EX) was irradiated with 6 Gy. All
tumors were isolated and sliced. The specimens were
imaged using a fluorescence microscope combined with a
TissueFAXS Plus® system. The portions of cancer cells in
each cell cycle phase were calculated by the Metamorph

software.

Results: After hydroxyurea treatment, S/G2/M phase

cells measured by FACS method and fluorescence
microscopy were 62.11£3.57% and 95.91£2.00%,

respectively.

The S/G2/M synchronization in irradiated cells more long

lasted than that in non-irradiated cells and the time



difference in the FACS and fluorescence microscopy was 4
hours and 8 hours, respectively. In the FACS data, the
lowest portion of S/G2/M phase cells in non-irradiated
group and irradiated group and was 18.23+3.17% at 12
hours and 32.77*1.68% at 16 hours, respectively. In the
fluorescence imaging data, the lowest portion of S/G2/M
phase cells in non-irradiated group and irradiated group
and was 13.05+6.84% at 8 hours and 26.39%t0.12% at 16

hours, respectively.

In xenograft models, the tumor at 16 hours after 6 Gy
irradiation showed that the ratio of S/G2/M phase to

G0/G1 phase was the highest (mMAG/mKO2 = 2.00£0.84).

Conclusion: Radiation induced prolongation of S/G2/M

synchronization in vitro cells and increase of the portion
of S/G2/M phase cells in vivo mouse model. The FUCCI

system can reflect radiation effects on cell cycle and



might be useful for studying the mechanism of

radioresistance.
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INTRODUCTION

I. The necessity of studying the radiation

effects on cell cycle

Cervical cancer is the third most common cancer
worldwide among gynecologic cancers [1]. Although
radiotherapy have been used in this cancer, radioresistance
is a big problem [2].

Ionizing radiation can cause DNA double-strand
breaks (DSBs) [3]. The DNA damage activates antaxia
telangiectasia mutated (ATM) and then ATM
phosphorylates p53 tumor suppressor protein [4]. The
phosphorylated p53 protein plays an important role in cell
cycle control and apoptosis.

In mammalian cells, two cell cycle checkpoints are
mediated for the repair of DSBs after exposure to the

radiation: one at the G1/S transition and the other at



G2/M transition. During the checkpoints, the repair

process occurs through one of two repair mechanisms:

nonhomologous end joining (NHEJ) and homologous

recombination repair (HRR). In NHEJ, DNA ligase IV

utilizes overhanging pieces of DNA neighbouring to the

break to join and fill in the ends. In HRR, the homologous

chromosome itself is used as a template for repair [3].

If the damage exceeds, the phosphorylated p53

activates genes that produce proteins involved in

apoptosis. p53 upregulated modulator of apoptosis (PUMA),

one of the proteins, promotes apoptosis by binding to and

inactivating the Bcl2 protein, an anti—-apoptotic protein

[51.

In pbd3-defective cancer cells, however, it is

possible to grow in an unlimited fashion avoding apoptosis.

The lack of functional p53 tumor suppressor gene allows

accumulation of Bcl2 protein and results in radioresistance



blocking apoptosis [6].
Therefore, it 1is necessary to investigate the
radiation effects on cell cycle in pb53-defective cancer

cells.

II. FUCCI as a system to visualize cell cycle

There are many methodologies for cell cycle study
such as monitoring morphological changes in dividing
cells, FACS analysis of DNA content stained with either
propidium iodide (PI) or 4',6'-diamidino-2-phenylindole
(DAPI) and detection of 5'-bromo-2'-deoxyuridine (BrdU)
labeled to the DNA-replicating cells [7-9]. However, there
were no methods which can visualize the alteration of cell
cycle in living cells in real time.

Recently, fluorescent, ubiquitination-based cell
cycle indicator (FUCCI) developed by Sakaue-Sawano et al.

[7] has been used for visualizing cell cycle phases. The



principle of this system is the use of inversely oscillating
level of Cdtl and Geminin proteins.

Cdtl protein is a DNA replication licensing factor
expressed in G1 phase. The expression of Cdtl is
regulated by cell cycle-specific ubiquitination mediated by
an E3 ligase, SCF°*?, Geminin protein which is a Cdtl
inhibitor is also regulated by <cell cycle-specific
ubiquitination, in this case, mediated by APC“"!. Geminin
expression is observed in S/G2/M phases [10].

These proteins were fused to monomeric Kusabira
Orange 2 (mKO2) and monomeric Azami Green (mAG),
respectively. Consequently, by introducing the FUCCI, the
G0/G1 and S/G2/M phases can be visualized in red
fluorescence and green fluorescence, respectively (Figure
la).

The FUCCI system has been widely used for cell

cycle research in many studies [11-17]. Although the



FUCCI has some disadvantages that it cannot reflect S/G2
transition and recognize cell types and differentiation
states based on cell morphologies [18], it has great
advantages such as visualization of cell cycle phase in
living cells and analyzing cell cycle in locally distributed

population within tumors [19].

I1I. Purpose of this study

Although radiation effects on cell cycle have been
reported in many studies, radioresistance still remains
unclear [17]. It is important to understand radiation effects
on cell cycle in Hela cells known to be infected by human
papilloma virus (HPV) which induces p53 degradation and
deficiency [20] for improving therapeutic strategies.

In the present study, I evaluated the effects of
radiation on cell cycle in Hel.a cells, using FUCCI system

was used both in vitro and in vivo.



MATERIALS AND METHODS

Cell culture

HeLa-FUCCI cells (RCB2812) were purchased from
RIKEN Bio Resource Center, Japan. Cells were grown in
Dulbecco’ s Modified Eagle’ s Medium (DMEM, Welgene,
Daegu, Korea) containing 10% (v/v) fetal bovine serum
(FBS, Invitrogen, Grand Island, NY, USA) and 1%
Antibiotic-Antimycotic (Gibco BRL, Grand Island, NY,

USA).

Cytotoxicity test of hydroxyurea

To determine toxicity of hydroxyurea, a
ribonucleotide reductase inhibitor, which is used for
S-phase synchronization, cell counting kit-8 (CCK-8) was

performed according to the manufacturer’ s protocol.



Briefly, 5,000 cells/well were seeded in a 96-well plate.
Hydroxyurea (Sigma, St. Louis, MO, USA) in the range of
0.2 mM to 1 mM was added to each well and incubated for
17 hours. Cell viability was measured by reading the
optical density at 450 nm after adding WST-8
[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl) -
5-(2,4-disulfophenyl) -2H-tetrazolium, monosodium salt;

Dojindo] mixture and incubation for 2 hours.

Ionizing irradiation

HelLa-Fucci cells were irradiated at a dose of 6 Gy
in a IBL 437C blood irradiator. One side of two
established tumors on each BALB/c nude mouse in range of
the field generated using MLCs of a Clinac 6EX linear
accelerator (Varian, Palo Alto, CA, USA) was irradiated

with 6 Gy (Figure 5a).



Clonogenic assay

HeLa-FUCCI cells were seeded at a density 400 of
cells per well in six-well culture dishes and irradiated
with various doses (0, 1, 2, 3, 4, 5, and 6 Gy). After
incubation for 10 days, the colonies in each well was
stained with crystal violet to calculate cell viability in

vitro.

Flow Cytometry Analysis

Trypsinized cells and collected supernatant were
centrifuged together. Cells were fixed in 70% ethanol in
Phosphate-buffered saline (PBS) for few days. The fixed
cells were washed in PBS and incubated in 0.5 xg/xl
Rnase A (Bio Basic, Canada) for at least 30 minutes in 3
7C water bath. After adding 20 g1 of 7-AAD Staining

Solution (BD Bioscience), the cells were incubated for 1



hour at room temperature. Samples were analyzed using a

FACS Canto II flow cytometer (BD Bioscience).

Fluorescence imaging of HelLa—FUCCI cells

To check the fluorescence expressions in each
phase, confocal laser microscopy was performed. Briefly,
5,000 cells (HeLa-FUCCI cells) were seeded in a 35mm
confocal dish and taken by a confocal laser microscope
(Leica TCS SP8, Germany). For time-lapese imaging,
5,000 cells (HeLa-FUCCI cells) were seeded in each well
of a 8-well glass bottom chamber and irradiated with 6 Gy
after treatment of 0.2 mM hydroxyurea for 24 hours. All
fluorescence images were taken for 16 hours using a
fluorescence microscope (Olympus IX81, Troy, NY, USA).

By counting the fluorescence emitted from nuclei in the



cells, the fluorescence images were analyzed.

Xenograft modeling

Four-week-old female BALB/c nude mice were
purchased from the Orient Bio Inc., (Seongnam, Korea).
HeLa-FUCCI cells (2 X 10°% were suspended in 20 xl
culture media and 80 g1 matrigel and then injected

subcutaneously into each flank of BALB/c nude mice.

Fluorescence imaging of tumor sections

FUCCI-expressing Hela xenograft tumors were
extracted and were fixed for 24 hours in 4%
paraformaldehyde in PBS. After paraffin embedding, the
specimens were cut into 4 xm sections. The slides were
incubated in a 67 T oven for 1 hour to melt the paraffin

and mounted with ProLong® Gold antifade reagent

10



(Invitrogen, Grand Island, NY, USA). Using a Zeiss
Axiolmager Z1 fluorescence microscope system with an
automated acquisition system TissueFAXS Plus®
(TissueGnostics, Vienna, Austria), fluorescence images for
each slide were acquired. The fluorescence intensity for
the whole tumor area was analyzed with the MetaMorph
Image Analysis Software (Molecular Devices, LLC,

Sunnyvale, CA, USA).

Statistical analysis

Results were presented as the mean of percentage
standard error. The Mann-Whitney U test was conducted to

measure P value. P values < 0.05 were considered to be

statistically significant.



RESULTS

Classification of cell cycle phases in cells

expressing the FUCCI probes

A typical fluorescence image of FUCCI expressing
HelLa cells shows distinct colors that red, yellow and
green represent G;-, early S- and S/Gz/M-phase cells
respectively were observed during the culture period.
(Figure 1b). To confirm whether the colors indicate GO/G1
and S/G2/M phases determined by Cdtl and Geminin,
respectively, a single cell was monitored using a
fluorescence microscope. The cell cycle began with a
green color and as the cycle continued the cell changed
colors and then turned back to the green color (Figure 1c¢).
This means that the FUCCI system in proliferating cells

was working appropriately.

12



Optimal condition of hydroxyurea and ionizing

radiation to induce cytotoxicity of cancer cells

For kinetic analyses of cell cycle progression, it
was needed to develop the experimental condition that
allows synchronization in S phase of the first cycle.
Before using hydroxyurea to synchronize cell cycle, the
non-toxic concentration was decided in 0.2 mM through
cytotoxicity test (Figure 2a). The most lethal radiation
dose was decided in 6 Gy (0.0056%+0.0066% cells survived)

through the clonogenic survival assay (Figure 2b).

Analysis of hydroxyurea-induced cell cycle

synchronization

After 0.2 mM hydroxyurea treatment, the cell
cycle was analyzed by comparison between FACS analysis

and fluorescence imaging. In the FACS analysis, S/G2/M

13



cells increased from 38.60*£1.37% to 62.11+3.57% (Figure
3a). In the fluorescence images, S/G2/M cells increased

from 56.66+10.78% to 95.91-2.00% (Figure 3b).

Radiation effects on cell cycle synchronization

According to the FACS data, the portion of
S/G2/M phase cells in the non-irradiated group was the
lowest at 12 hours (18.23£3.17%). The portion of S/G2/M
phase cells in the irradiated group was the lowest at 16
hours (32.77£1.68%) (Figure 4a). According to the
time-lapse imaging, the portion of S/G2/M phase cells in
the non-irradiated group was the lowest at 8 hours
(13.05+6.84%). The portion of S/G2/M phase cells in the
irradiated group was the lowest at 16 hours (26.39+0.12%)
(Figure 4b). These results showed that radiation induced

cell cycle arrest in S/G2/M phase.

14



Visualizing the fluorescence distributions in
HeLa-FUCCI tumors

Fluorescence images indicated that S/G2/M phase
at 16 hours post-irradiation was abundant unlike
non-irradiated control group and irradiated group at 24
hours (Figure 5a). In the non-irradiated group, the
mAG/mKO2 ratio obtained from the fluorescence calculated
using the MetaMorph software showed 0.98*0.10 and
1.35%£0.19 at 16 hours and 24 hours, respectively. In the
irradiated group, the ratio was 2.00+0.84 and 1.20*=0.63
at 16 hours and 24 hours, respectively. This result
indicated that radiation induced S/G2/M arrest in the

tumor at 16 hours.

15
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Figure 1. Fluorescence imaging of Hela cells
expressing the FUCCI system

(a) Schematic overview of the FUCCI system. The system
had three colors. Red, yellow, and green indicate GO0/G1
phase, G1/S transition, and S/G2/M phase, respectively.
(b) A representative confocal microscopy image of
HeLa-FUCCI cells representing cytokinesis/early G1 (no
fluorescence), G0/G1 (red), G1/S transition (yellow), and
S/G2/M (green). Scale bar represents 100 gm.

(c) Time-lapse images of HeLa-FUCCI cells. Cell division

of a single cell can be monitored (yellow arrow).

18
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Figure 2. Cytotoxicity of hydroxyurea and
radiation on HelLa-FUCCI cells

(a) Cytotoxicity of hydroxyurea was measured using a Cell
Counting Kit-8 (CCK-8) indicates that 0.2 mM is
non-toxic. NS, non-significant difference, *, p<0.05, #*=*,
p<0.001.

(b) The cell survival curve derived from clonogenic assay
for HeLa-FUCCI. The surviving fraction (SF) of irradiated
cells was normalized to the plating efficiency (PE) of
non-irradiated controls. Data show the average SF =

standard deviation (SD).
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Figure 3. Cell cycle synchronization of

HelLa-FUCCI cells exposed to hydroxyurea

(a) FACS analysis of HelLa-FUCCI cells after hydroxyurea
treatment. The histogram represents the portion of G0/G1
phase and S/G2/M phase.

(b) Fluorescence imaging of HeLa-FUCCI cells after
hydroxyurea treatment. The histogram represents the
portion of GO/Gl phase, G1/S transition and S/G2/M

phase.
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Figure 4. Radiation-induced extended cell

cycle synchronization

(@) FACS analysis of the synchronized cells after
irradiation. The curves for the time difference indicate
change of the portion of S/G2/M phase cells.

(b) Time-lapse images of the synchronized cells after
irradiation. The curves for the time difference indicate

change of the portion of S/G2/M phase cells.
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Figure 5. Fluorescence analysis in the FUCCI
expressing tumor sections following ionizing

radiation

(a) Schematic of the experiment. After the xenoplantation,
one side of two generated tumors in the field area (yellow
box) adjusted using MLCs of a linear accelerator was
irradiated.

(b) Representative fluorescence images of tumor sections
at the indicated times. Scale bar represents 50 xm.

(c) Calculation of the fluorescence intensity using the

MetaMorph Software.
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DISCUSSION

In this study, I found that S/G2/M synchronization
of HeLa-FUCCI cells was increased following ionizing
radiation both in-vitro cell study and in-vivo mouse
model. These results show that ionizing radiation may
induce G2/M arrest in HeLa cells, as reported [21]. It is
considered that the G2/M arrest is related with the

resistance to ionizing radiation in Hel.a cells.

It has been shown that subpopulation within a tumor
is heterogeneous [22]. In many cancers, glucose and
oxygen supply are highly required. Moreover, cancers
newly build circulatory system as they outgrow the
capillary system of normal tissues. The newly built system
tends to have inefficient and asymmetric vascular function.
Assymmetric nutrient deprivation in different areas in the

tumor is regarded as a main driver of the tumor



heterogeneity. A part of the nutrient deprived cells such

as hypoxic cells might develop radioresistance while

subpopulations might also undergo necrosis.

Under hypoxic condition, hypoxia-inducible factor 1

e (HIF1a) is stabilized. Radiotherapy also contributes to

the stabilization by causing tumor reoxygenation, an

increase in levels of reactive oxygen species (ROS) [23].

Hypoxia promotes vascular endothelial growth factor A

(VEGFA) production, leading to the formation of abnormal

vessels. The vasculogenesis aids tumor recurrence after

radiotherapy.

Although many studies have dealt with

radioresistant cancer, the mechanisms with respect to cell

cycle in radioresistant cancer cells are still poorly

understood [17]. For instance, mammalian cells generally

have features of radiosensitivity depending on cell cycle



phase: the most radioresistant S phase and the most
radiosensitive M phase. However, the precise molecular
mechanism of these phenomena has not been fully

elucidated.

In the present study, I visualized radiation effects
on cell cycle using the FUCCI system. I propose that the
FUCCI might be wuseful for mechanism study of

radioresistance in heterogeneous cancer cells.
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