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Abstract

Predicting Choices and Timings of
Phoneme Categorization with
a Perceptual Decision Model of
Phonemic Processing

JinYoung Kim
Brain and Cognitive Sciences
The Graduate School

Seoul National University

Despite crucial roles of pre-lexical units in speech perception, modeling efforts so far
have been heavily focused on information processing at lexical or post-lexical stages,
impeding the mechanistic investigation of speech perception. Given this dearth of
frameworks for studying pre-lexical units, the current study proposes a system-level
neural model for phoneme classification. A lynchpin idea behind the proposed model is
that the brain represents phonemes as probabilistic quantities, likelihoods. With this idea,
our model bridges three well-known canonical computations in the brain — sensory
encoding, likelihood decoding and evidence accumulation - along a cascade hierarchy of
neural processing towards generating inputs to a next stage of speech perception. At the
initial stage, sensory neurons with different tuning curves for physical properties
relevant to phoneme discrimination compute individual likelihoods for the presence of
those properties. Phoneme neurons at the following stage compute likelihoods for
specific phonemes by summing the outputs of those sensory encoding neurons with
weighting curves tuned for their preferred phonemes. At the final stage, evidence-
accumulation neurons compute and accumulate over time evidence to reach a discrete

phoneme classification by integrating outputs of phoneme neurons in a task-optimal



manner over time. The accumulation-to-bound mechanism operating at this stage
translates probabilistic information represented in the phoneme neurons’ output into
concrete choices at a certain time. This translation allowed us to test the empirical
viability of our model by assessing its capability of predicting actual patterns of choice
fractions and reaction times exhibited by human listeners engaging in phoneme
classification under various listening conditions. Using a small number of parameters,
the model predicted not only the static, categorical structure of phoneme classification
as a function of physical stimulus property, but also the adaptation-induced, dynamic
changes in classification on an identical stimulus. Furthermore, the model was flexible
enough to cover the wide range of individual differences in phoneme classification
behavior. With these behavioral constraints in conjunction with neural and
computational constraints exercised in model construction, our model provides a
framework for studying neural mechanisms underlying initial stages of speech
processing by generating hypotheses and predictions that are testable by

neurophysiological and behavioral experiments.

Keywords: phoneme categorization, perceptual decision, speech perception, sensory

encoding, likelihood decoding, neural model

Student Number: 2010-24020
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Introduction

Speech perception is effortless. Imagine yourself watching a world-cup final soccer
match in a huge stadium packed with loud spectators. Your eyes are quite busy chasing a
bouncing ball and top-notch athletes’ spectacular movements around it, but your ears are
not less. Despite constant ear-tearing waves of sounds coming from several thousand
different individuals and instruments cheering for players on the ground, you somehow
manage to listen to online radio streams of sport commentators’ busy chats over the
game through your left ear while reacting to occasional comments made by your friends
sitting on your right. Our daily life experiences, like the one illustrated above, readily
testify that the human brain must have implemented very sophisticated neuronal
computations that would ultimately lead to seamless, online translations of acoustic
input streams into meaningful linguistic entities with a great degree of robustness,

precision and speed.

Among those neuronal computations for speech perception, one foremost crucial step
is translating acoustic input streams into pre-lexical categories (Obleser & Eisner,
2009a). From a computational viewpoint, the forming of a limited number of abstract
phonological representations at an early stage of speech processing can help address
several fundamental problems in speech perception, including the ‘invariance
problem(Perkell & Klatt, 1986)’- a task of accomplishing perceptual constancy in a high
degree of variability in speech sensory input (Kraljic, Brennan, & Samuel, 2008). In
the example situation above, imagine that you have never heard the commentators
before, and they speak English with a strong Scottish accent, to which you are
unfamiliar. You can learn to recognize his speech much efficiently if the brain updates
only a limited number of sub-word units based on phonological features unique to his
pronunciation rather than if it has to adjust an entire set of word representations on a

case-by-case basis.

This computational importance of pre-lexical categorization forced many



psycholinguistic or computational models of speech perception to adopt, either
implicitly or explicitly, pre-lexical representations as primitive input to their lexical
processing system (McClelland & Elman, 1986; Norris, McQueen, & Cutler, 2000).
However, in majority, those models have been developed with a focus on the lexical
processing stage without specifying mechanisms of pre-lexical processing. In this regard,
there is even no clear consensus about the precise type of representations at the pre-
lexical level (McQueen 2005 Handbook of cognition). This is not surprising given the
meager, relative to lexical-level studies, amount of empirical or computational studies
on spoken language processing at pre-lexical stages. In general, structural and functional
properties of inputs can greatly constrain the way any given systems process those
inputs to achieve their computational goals. Hence, the lack of mechanism-level
understanding of pre-lexical representations imposes a fundamental limit on those
models. The work presented here was motivated to advance the mechanism-level
understanding of pre-lexical processing by predicting human observers’ categorical
responses to phoneme stimuli, which are widely believed to be one of the most likely
candidates for pre-lexical categorization units (McClelland & Elman, 1986), with a

model that is constrained both by computational optimality and by neural plausibility.

Our model is inspired by recent empirical observations and conceptual advancements
in visual neuroscience about how sensory neurons encode stimuli in their population
activity and downstream neurons decode task-directed information from that population
activity, and how the outcomes at those sensory encoding and decoding stages translate
into optimal decision behavior (see (Dayan & Abbott, 2001; Gold & Shadlen, 2007;
Pouget, Dayan, & Zemel, 2003) for review). At the core of our model are two key
conceptual frameworks that we borrowed from those visual neuroscience studies and
adapted to explain pre-lexical categorization. First, we posit that pre-lexical information
is represented in probabilistic values, not in unambiguous and deterministic values as
often assumed by many pre-existing cognitive models of speech perception. To be
specific, those probabilistic values are reflected in a set of high-tier decoding neurons

that read out likelihoods for pre-lexical units from a given population activity of



upstream neurons encoding acoustic features of speech signals (hereafter, those
encoding-stage and decoding-stage neurons will be referred to as ‘acoustic feature (AF)’
and ‘phoneme likelihood (PL)’ neurons, respectively). Second, to convert those PL
neurons’ responses into categorical choices made by observers with a certain temporal
lag, our model has a separate decision unit. A decision neuron (hereafter referred to as
an ‘evidence accumulation (EA)’ neuron) extracts decision evidence from PL neurons’
output in a task-dependent manner and accumulates over time the evidence until it hits a
bound, which terminates the decision process and triggers motor execution (Gold &
Shadlen, 2007). We adopted ‘EA’ neurons, which are prevalent throughout the brain
and thus considered as one of the canonical neural computations(Carandini, 2012),
because the task-optimal nature of their evidence abstraction (Jazayeri & Movshon,
2006) and its capability of resolving speed-accuracy tradeoff — making a most accurate
choice for a given speed or a fastest choice for a given accuracy - (Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006) together address the issue of optimality in pre-lexical
categorization behavior. Our model will be referred to as the ‘likelihood model of

phoneme classification', likelihood model in abbreviation.

To verify the viability of the likelihood model, we examined how capable it is of
capturing dynamical changes in human observers’ phoneme categorization responses to
artificial phoneme stimuli under various hearing conditions. In the first experiment, we
asked observers to classify stimuli into one of three stop-consonant phonemes (‘/da/’,
‘/ba/’, and ‘/ga/’) while systematically varying acoustic features of the stimuli along a
path in a multidimensional spectral space known to define the perceptual spectrum
encompassing those three target phonemes. This allows us to evaluate the robustness of
the model in mapping acoustic stimuli onto phoneme categories in a manner reflecting
‘steady-state’ phoneme representations idiosyncratic to individual observers. In the
following experiment, we challenged the model further by testing whether it can predict
‘dynamic-state’ phoneme representations subject to temporal contextual modulation. To
perturb observers’ intrinsic representations of phonemes temporarily, we exploited

adaptation effects, which have been used as a powerful behavioral tool to infer



mechanisms of neural coding of visual stimuli (Lee & Lee, 2012; Schwartz, Hsu, &
Dayan, 2007). With this adaptation protocol, we monitored the changes in categorization

of physically identical test stimuli while varying adapting stimuli.

Then, we fit the likelihood model to the categorization behavior of individual observers
in the two experiments in terms of two major types of decision metrics, choice fraction
and reaction time (RT). Using a fairly small number of parameters with biologically
plausible ranges of values, the model successfully generated the phoneme likelihoods,
for both static (Exp 1) and dynamic (Exp 2) state representations of given phoneme
stimuli, in the activity of PL neurons, which were translated by EA neurons into choice
fractions and RTs matched to the observed ones, respectively. In addition, in-depth
inspections and simulations of the model, which was designed to reflect specific
neuronal populations’ functional and computational properties, revealed two important
aspects of phoneme categorization. First, between its hierarchically organized neuronal
components, one encoding acoustic features and the other decoding phoneme
likelihoods, the model decisively indicated the former as an origin of adaptation effects,
a conclusion dovetailed with that of adaptation studies on visual motion (Kohn &
Movshon, 2003; Lee & Lee, 2012). Second, thanks to its decision-stage model
component implementing ‘accumulation-to-bound’ computation, the model could
provide a mechanistic account for intriguing patterns of RT variability across trials and
across individuals, which have been either neglected or left unexplained by previous

studies, based on optimal decision under the speed-accuracy trade-off context.



Likelihood model of Phoneme Classification

We assumed that, in the listener’s brain engaging in speech perception, phonemes are
represented as probabilistic quantities that are constructed through a neural process
consisting of sensory encoding and phoneme likelihood decoding (Fig 1). Given a sound
input, #,, made by the speaker with intention of generating a frue phoneme, w,, a
population of sensory neurons (SNs) encodes 6, in their responses, sri—;;,;(0y). If we
assume that each of those sensory neurons is broadly tuned as a function of 8, sr,=f;(0),
it is well established from previous work [Seung, H.S. & Sompolinsky, H 1993; Jazayeri
& Movshon 2006)] that individual neuron's responses sr in a given trial and their tuning

functions can jointly represent the likelihoods of the stimulus 6, in the log space:

bg Li(0s) = 5ibg fi(05) — fi(6s) —log(s;) )

Thus, at the initial stage of our model, the sound 6, evokes population responses of the
SNs tuned to different values of 6, sr, which in turn collectively encode ; by gauging

how likely 6 is present in an incoming physical input at a given moment.

In the second stage, there exists a set of phoneme neurons (PNs) that decode the
likelihoods of particular phonemes from the population responses of the SNs at the
previous stage. The computation achieved by these PNs is a reverse engineering of the
speech production process, in which the speaker generates a sound stimulus 6; with an
intention of delivering a phoneme y; to the listener. The model assumed that each of the
phoneme neurons performs this reverse engineering by computing the likelihood of its
preferred phoneme w,, which can be formalized as a weighted sum of the SN

population’s likelihood representation of 6:



Sensory Phoneme

neuron —> neuron
l"honeme loaL(8.) loaL(w)
intended GL(v gL{Yd )
W Evidence
- 7 accumulation
Sog/ nd . neuron
' o [logLR{ya,4)
.
b c

=
D

Sensory Neurons

Choose A

urulated evidence
[logLR(W4)-logLR(Wp)

Accun

Choose #

Figure 1. Neural model for phoneme perception. (a)Neural process of phonemic decision making.
(b)A receptive field of sensory neurons (c)Likelihoods of three phonemes .(d) Evidence

accumulating neurons.
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bgL (ws) = PN (6;) = ?I:1Wibg L;(65)
=Y wisribg fi(65) (2)

From a previous work (Jazayeri & Movshon 2006), we know that the last two terms of
equation (1) can be ignored here because the sum of population tuning functions and
responses are both independent of 4. Here, a weighting function w is a set of pooling
weights assigned to the individual SNs. Conceptually, w can be understood as a neural
implementation of a reverse of the probability distribution of sounds & when she or he
intend to speak a given phoneme ;. In other words, individual SNs’ contributions to the
likelihood of a given phoneme are determined by their tuning function f;. There are PN
clusters with different phoneme preferences, and the number of those clusters matches

the limited number of phonemes for a spoken language used by the speaker and listener.

Although the second stage, where the likelihoods of phonemes are formed, comprises a
core part of the model, phoneme processing requires one more step to complete its
ultimate goal in the context of speech perception, categorization of sensory inputs into
discrete pre-lexical units. The model implemented the process of categorical perceptual
judgment by adopting evidence-accumulating neurons (EANs) [Yang & Shadlen, 2007;
Gold & Shadlen, 2006], which perform two key computations. First, the EANs extract
evidence for performing an impending task, e.g., identification or discrimination. The
phoneme categorization task can be conceptualized as choosing one out of multiple
known alternatives, phonemes. In the simplest version of categorization, where two
phoneme are discriminated, the EANs can extract the task-optimal evidence from the
PNs’ outputs at the previous stage by computing the ratio of the two likelihoods,
respectively represented by the two PNs with preferences for the two candidate
phonemes. Because the likelihood ratio is equivalent to the difference of log likelihoods,
the task-optimal evidence, Er, can be extracted if an EAN combines the outputs of the

two PN clusters with opposite signs:



Er = bgLR (Y4, ¥p) = bgL (P,) —bgl (Yp)
= PN,(65) — PNg(0s) (3)

The second important computation is to accumulate Ets over time until the integrated
evidence reaches one of the two bounds, assigned to the two candidate phonemes,
respectively. In the formalism of accumulation to bound, the identity of a resulting pre-
lexical unit is determined by which bound is hit by the integrated evidence whereas the

timing of that pre-lexical decision is determined by when the bound is hit.

In summary, the phoneme likelihood model translates a given sound input into a
categorical decision that is specified both in identity and in timing. While doing so as
described in the above, the model achieves two important kinds of computational
optimality, which relate to optimal behaviors demonstrated by human observers. First,
the computation of Et can be described as optimal in that it endows the model with the
capability of extracting evidence for pre-lexical decision in a task-optimal manner
(Jazayeri & Movshon, 2006). Second, the accumulation-to-bound computation helps the
model efficiently achieves adaptive compromises between speed and accuracy of task
performance, for example, by adjusting locations of decision bounds (Reddi and
Carpenter, 2001). In addition, the phoneme likelihood model achieves neural plausibility
by implementing those optimal computations based on several canonical neural
computations that have been supported empirically in visual neuroscience (Carandini,
2011). Given this theoretically healthy set of features, the likelihood model was put to
empirical tests on its ability to predict human subjects’ phoneme categorization behavior

in two different listening conditions.



Phoneme classification on a cyclic spectrum of stimuli

varying in frequency modulation

We conducted the first experiment to examine whether the model is capable of
describing a hallmark feature of phoneme perception, categorical perception. We asked
listeners to classify stimuli into one of three stop-consonant phonemes (‘/da/’, ‘/ba/’, and
‘/ga/’) while systematically varying acoustic features of the stimuli along a path in a
multidimensional spectral space known to define the perceptual spectrum encompassing
those three target phonemes. Listeners’ phoneme classification responses to a given
stimulus were assessed by two metrics: choice fraction (CF) and response time (RT).
Then we evaluated the robustness of the model in mapping acoustic stimuli onto these
two metrics in a manner reflecting ‘steady-state’ phoneme representations idiosyncratic

to individual observers.

Methods

Subjects and apparatus

Fifteen Korean native speakers and one Korean-English bi-lingual speaker with normal
hearing (four females; 18-28 years old) participated in experiments after providing
written informed consent. Before conducting a main experiment, listeners participated in
a hearing test, in which they performed a sound localization task (binaural
discrimination) on pure-tone audio stimuli matched to experimental stimuli with
frequency of 500 Hz ~ 4,000 Hz and amplitude of 25 dB stimuli that were generated.
Only those who showed 100% performance on this screening test participated in the
main experiments. Experiments were designed with E-Prime software in i-Mac and
conducted in a dark quiet room. Auditory stimuli were presented through earphones

(Etymotic Research ER-4B), with instructions being displayed on a monitor (HP



LP2065). Listeners’ responses were recorded with a numeric keypad (SAMSUNG
SNK2000).

Stimuli

Each stimulus, which was played for 475ms, consisted of six formants (Fig 2a). The
fundamental frequency (FO) was 132 Hz at onset time (25ms), and then it fell to 120 Hz
in 40ms. The starting frequency of the first harmonics (F1) was 200 Hz and reached its
steady state 720 Hz at 50ms. The steady state values of the second (F2) and third (F3)
were 1240 and 2850 Hz, respectively. The frequency values of the fourth, fifth, and sixth
formants were maintained at 3650, 4500, and 4900 Hz respectively. Using PRATT
software, we synthesized a cyclic spectrum of voiced stop consonant-vowel syllables by
gradually varying the starting frequencies of the F2 and F3 components (Steinschneider
et al., 1995), producing a total of eighteen syllables whose sounds smoothly change
from ‘/da/’ to ‘/ba/’ to ‘/ga/’ and then go back to ‘/da/’.

We defined a scale for those 18 stimuli in the following steps. First, the velocity of
frequency modulation (VFM) at the initial 50-ms modulation period was calculated
separately for the F2 and F3 components, resulting in two vectors of VFM. Second, we
normalized those two vectors by transforming into z values. Third, we mapped the
eighteen stimuli onto a space with axes defined by the two principal components, which
were identified by applying the principal component analysis to the two normalized
vectors of VFM values (Fig 2b). Finally, to make the scale reflect the physical similarity
in that principal space (so that it can function as an interval scale), we calculated an
angle of a vector connecting the space origin (0,0) and a given stimulus’ coordinate (the
colored lines in Fig 2b). This scaling procedure allows us to define the sound stimuli in a
one-dimensional cyclic space by assigning angular values, 0s. Hereafter, the physical

property of experimental stimuli will be represented in this angular metric.
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Figure 2. Synthesized stimuli for experiment 1. (a) Spectrograms of prototype sounds (/da/, /ba/,
/ga/). (b) Eighteen stimuli in a space defined by Principle Component Analysis (PCA) of F2 and
F3 velocity. Red refers to /ba/, green to /da/, and blue to /ga/.
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Procedure

Before the main experiment, listeners heard three prototypical syllables (/ba/, /da/, and
/ga/) repeatedly until they became familiar to synthesized stimuli. The prototypical
syllables were identified by a pilot test as those leading to the highest fraction of choice
for each phoneme category. Listeners proceeded to the main experiment when they
correctly discriminated those prototypical stimuli in more than 27 out of 30 trials

(>90%).

On each trial of the main experiment, listeners heard a single syllable stimulus and
performed a two-alternative forced choice task (2AFC) by classifying it into one of two
alternative categories. There were three type of trial blocks, differing only in terms of
which pair of phoneme categories was used as choice alternatives: /da/ vs /ba/, /ba/ vs
/ga/, and /ga/ vs /da/. In a given type of block, we presented only 6 neighboring stimuli
that bridge between the two prototypical phoneme stimuli corresponding to alternative
categories (e.g., 0 = [-0.76, -1.36, 1.38, 1.04, 0.64, ] for the /da/-vs-/ba/ block). Each
listener repeated each block type twice, completing 6 blocks in total, which took 30
mins approximately. To have control over speed-accuracy trade off, listeners were
instructed to complete their decision within 2,500 ms after stimulus onset. Listeners
made responses by pressing a button on a keypad using one of the three right-hand

fingers (index for /ba/, middle for /da/, and ring for /ga/).

Results

For the majority of listeners, categorical perception was evident both in CF and RT data.
When plotted as a function of 0, the FC data exhibited two signature features indicating
the presence of categorical classification. First, the CF curves had plateaus around
prototype stimuli, more conspicuous in the /ba/ and /ga/ curves (red and blue lines,

respectively, in Fig 3a) than in the /da/ curve (green lines in Fig 3a). Second, the CF

12



curves changed abruptly at around the boundaries between two given phoneme
categories, with steep slopes, which were again more prominent in the /ba/ and /ga/
curves than in the /da/ curve. These two features indicative of categorical classification
could be appreciated in the CF curves averaged across listeners, although the plateaus
and slopes were narrowed and flatter due to data smoothing associated with averaging

(Fig 3b).

The RT data almost mirrored the FC data (Fig 3c,d). The RT was fastest around the
centers of the plateaus in the FC data and steeply increased with approaching the
categorical bounds. We note that, although not observed for all of the listeners (probably
due to the small numbers of trials), the RT tended to keep increasing even beyond the
boundaries (the data points indicated by the arrows in Fig 3d). This monotonic increase
in RT with decreasing prototypicality has not been explicitly demonstrated in previous

studies.

To quantify these apparent anti-correlations between the CF and the RT data, we sorted
the population-averaged CF and RT data as a function of stimulus prototypicality, that is
a distance from the prototype stimulus (A0) (Fig 3e,f). The correlation analysis
confirmed the three main qualitative observations described above by resulting in the
corresponding significant correlations: the negative correlation between the CF and the
AB (r=-0.79, p < 0.01), the positive correlation between the RT and the A9 (r=0.82, p<
0.01), and negative correlation between the CF and the RT (r=-0.93, p <0.01).

13
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Dynamic changes in phoneme representation following

adaptation

The second experiment was designed to evaluate how capable the proposed model is of
capturing phoneme classification responses when listeners’ intrinsic representations of
phonemes were temporarily altered by temporal contextual modulation. To perturb
listeners’ intrinsic representations of phonemes in a laboratory, we modulated the
temporal context of sound stimuli by exploiting an adaptation paradigm, which have
been used as a powerful behavioral tool to infer mechanisms of neural coding of visual
stimuli (Lee & Lee, 2012; Schwartz et al., 2007). With this adaptation paradigm, we
monitored changes in phoneme categorization of physically identical test stimuli while

varying adapting stimuli systematically.
Methods

Stimuli

Seven stimuli were synthesized individually based on experiment 1 results. Three
stimuli per category were synthesized to observe adaptation effect depending on
different places on the category plateau, and an ambiguous sound between /ba/ and /da/

was generated as a test stimulus.

We made a model to fit choice performances from experiment 1 at first, and then found
appropriate stimuli for experiment two with own specified criteria (fig 4A). A function

below employed to define a place of each phoneme prototype.

ae{bxcos(x—p)} +m=y
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Figure 4. Stimuli for adaptation experiment. (a) Psychometric identification function of one
subject and seven selected stimuli. (b) The location of selected stimuli in PCA space of F2 and F3.
(¢) Results of a pre-identification test with selected stimuli.
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x refers to stimulus position in a polar space and y does to proportion of a certain-
category choice. a,b, and m are free parameters. The location of prototype, p, was

obtained by fitting data to the function, and it used as a prototype adaptor.

Afterward, we divided each category performance data into two parts with the
prototype as the center and then fitted each part to the cumulative normal distribute
function. Two 90% points on the obtained category were connected with a straight line,
and then 1/10 and 9/10 points on the line were selected as positions of a proximal and a
distal adaptor. A tester between /ba/ and /da/ was selected from a contact point of two
categories. Furthermore, we did verification tests with stimuli near the obtained position,
and selected appropriate stimuli that passed criterion (adaptors; above 95% choice
response, ambiguous stimulus; the closest 50% response). A name of the adaptor

(proximal or distal) was determined by relative position with the ambiguous stimulus.

[Pre adaptation]

Adaptor repetition
60 times
36 sec

[Post adaptation]

Top-up
Adaptor =>  600msx 4 times
2400ms

Stimulus& Response
1500ms

Figure 5. Procedure of an adaptation test. A session started with pre-adaptation that an adaptor
repetitively played for 36 sec. Post adaptation followed starting with 4 repetitions of top-up
adaptor and then a test stimulus presented. Subjects were instructed to response only when the
speaker sign was bright (tester was presented)
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Procedure

Nine blocks were provided in experiment 2 .One block was a simple classifying test
(‘ba’ versus ‘da’) and the others were adaptation tests. In the classifying test, three test
stimuli (prototype (prt) ba, da, and ambiguous(amb) stimulus) were randomly presented
for 100 trials (the ratio of prt ba, prt da, and amb stimulus; 1:1:2). A design of adaptation
tests was similar to those commonly used in vision research(Obleser & Eisner, 2009b).
An adaptor was repeated 60 times for 36 s at the beginning of each block and 4 times for
2.4 s before each trial. The length of sound stimulus was 475 ms and that of interval was
125ms between repetitions. A tester provided in 100ms after the 4 repetitions of top up
adaptor and this block was replayed for fifty times (Fig 5). Prt /ba/, prt /da/, and amb
stimulus used as testers in adaptation tests (ratio; prt/ba/:prt/da/;:amb = 1:1:8).
Participants were instructed to identify the test sound appeared with a visual sign, but
just listen carefully to adaptors without any response. In addition, they asked to respond
the test sound within 1500 ms. Eight subjects were conducted adaptation task with four
adaptors (proximal /ba/, distal /ba/, proximal /da/, and distal /da/) for two days, and the
rest eight subjects were with six adaptors (prt/ba/ and prt/da/ added) for three days.

One session took nearly 50 min.
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Figure 6. Behavioral results of experiment 2 with 4 adaptors from one particular subject.

normalized response time for choices according to adaptors.
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Results

Seven stimuli (proximal /ba/ and /da/, distal /ba/ and /da/, prototype /ba/ and /da/,
ambiguous /b?d?a/) for adaptation experiments were selected individually according to
individual identification function from experiment 1 (fig 4a). To confirm the selected
stimuli, pre-identification task was conducted before the experiment and the

performance result was as figure4c we expected.

Eight subject were tested with four adaptors (proximal /ba/ and /da/, distal /ba/ and /da/)
and three testers (prototype /ba/ and /da/, ambiguous /b?d?a/). An ambiguous tester (A-
tester) placed between 'ba' and 'da' was affected by adaptation; subjects repetitively
heard 'ba' before doing identification task with it, then it was more perceived as 'da'
sound, while they heard 'da' before, then it was as 'ba' sound. Two tester, prototype 'ba’'
and 'da’', on the other hand, were hardly influenced by adaptation. The adaptation effect
to A-tester was, however, different according to types of adaptors. The adaptation effect
was getting higher, when the adaptor was farther from the A-tester. That is, A-testers
were more affected by distal adaptors than by proximal adaptors even though they
perceived same sound in a pre-identification test. In addition, normalized mean response

time decreased as adaptation effect increased (Fig 6,7).

We found that the adaptation effect was different in adaptors relative position to A-
tester, despite adapters in the same category with same identification performance(Fig
8,9) . The result showed the possibility that the adaptation effect comes from a low level
like acoustic channel not a phoneme level. It is also possible, however, that the proximal
stimulus more sounds like a certain phoneme category than distal stimulus. The other
eight subjects took the adaptation test with 2 more adaptors (prototype /ba/ and /da/) to

examine this possibility.

The effect of adaptation from /ba/ category increased as an adaptor was far from the A-
tester; distal /ba/ gave the highest effect, and prototype /ba/, proximal /ba/ in order. In

the case of adaptation with /da/ category sounds, there was a significant difference

23



between a proximal adaptor and prototype and distal adaptors, while no significance

between a distal and a prototype adaptor.

Simultaneous fit of the likelihood model to phoneme

classification responses with and without adaptation

In the first experiment, we probed ‘static-state’ phoneme representations across a wide
spectrum of sound stimuli. These data will allow us to evaluate the viability of the
proposed model in terms of how accurately it captures the static-state relationship
between physical property of sound stimuli and phoneme perception. The second
experiment was designed to evaluate how capable the same model is of incorporating
‘dynamic-state’ phoneme representations, which refers to temporary changes in
phoneme representation caused by temporal contextual modulation. Here we challenge
the viability of the model by testing whether it can simultaneously (meaning with the
same set of model parameters) capture the two sets of data, one associated with static-
state phoneme representations and the other with dynamic-state phoneme
representations. In addition, another challenge that the model has to address is to predict

the two metrics of phoneme classification responses, CFs and RTs, again simultaneously.

For the data from the both experiments, the input to the model was the angular
similarity value, 6, defined in radian space (Fig. 2b). At the sensory encoding stage, the
model had 360 SN model neurons whose tuning functions were determined by the cyclic

cosine function:

£:(8) = aev @) 4 (5),
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where a, bgy x; and m are the height-scaling, width, peak location and baseline
parameters, respectively, of tuning curve. All the other parameters except for bgy were
fixed such that the minimum and maximum values of fi are 0 and 1. In other words, the
model assumed that the tuning curves of SNs are identical in shape and differ only in its
preferred stimulus 6, such that p; of the ith neuron equal to i deg in angular scale. Only
one single model parameter, bgy, was set to be free to adjust the width of the tuning

curves of the entire population of SN,

At the phoneme likelihood decoding stage, the model had three phoneme neurons with
three different phoneme preferences /da/ (SNu.), /ba/ (SNy.) and /ga/ (SNy.). The
weighting function for summation of SN j, w;, was also model by the cyclic cosine

function:

w; (x) = ae?i®P) 4+ m (6),

where x is the preferred stimulus 6 of a given SN and p; is the center of weighting curve
pea. All the other parameters except for b; and p; were fixed such that the sum of values
of wj across the entire population of SNs is equal to zero. This ‘zero-sum’ constraint was
adopted to implement a moderate level of tuned suppression. Since each of the three
SNs has two free parameters, a total of 6 parameters were set to be free at the phoneme

likelihood decoding stage.

At the evidence accumulation stage, the model translated the outputs of the previous
stage into final model predictions, CFy and RTy with the following set of four
parameters: t,, a residual processing time reflecting afferent sensory processing plus
efferent motion execution times; r,, a mean rate of evidence accumulation; vg, a
variability in phoneme evidence; v,, a variability in evidence accumulation rate. The last

two parameters can be seen as terms representing levels of across-trial and within-trial
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noise at the evidence accumulation stage. Note that we implemented these noise
parameters at final stage for computational convenience. In principle, the model
assumes that those two types of noise can arise anywhere along the hierarchy (probably
across all of the three stages), e.g., across- and within-trial changes in firing rates in SNs,

PNs and EANSs.

The eleven parameters described so far were all common to the first (static) and second
(dynamic) data sets, except for only the two parameters at the evidence accumulation
stage, t;, and ry. The model assumed so because the residual time and accumulation rate
can differ between the two experiments because the former can fluctuate across different
daily sessions and the latter can be adjusted adaptively by listeners in reaction to
different speed and accuracy requirements between the two experiments (e.g., weakened
and ambiguous evidence after adaptation). The final parameter, ar — sensory adaptation
rate—, which is unique to the second experiment, was introduced to implement
adaptation-induced changes in response gain of SNs at the stimulus encoding stage. The
model assumed that the degrees of adaptation for SNs are proportional to their
preference strength to a given adapting stimulus. Thus the population profile of gain
after adaptation is a scaled copy of the reciprocal of population responses to an adapting
stimulus. The adaptation rate parameter, ar, determined the height of this post-adaptation

gain profile.
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Figurel0. Results of model fitting from one representative listener. Thick lines are the model
predictions, and thin lines with symbols are the observed data. (a),(b) Results from Exp 1.
Choice fractions (a) and reaction times (b) are plotted against the stimulus angles expressed in
the radian scale. Different colors represent choices made by listeners. The error bars are standard
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respectively, whereas the thick solid and broken lines are model predictions of choice /da/ and

/ba/, respectively.
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With these 14 parameters set to be free for individual listeners, we fitted the model
simultaneously to the two sets of data from the two experiments, each of which
consisted of the two different metrics of phoneme classification responses, CPs and RTs.
The model was fitted by the maximum likelihood method, in which likelihood
distributions of CP and RT data were estimated from binomial process and standard
error estimates, respectively. In average, 10 rounds of 500~1,000 iterations were enough

to reach stable values of maximum likelihood.

As seen in Figure 10, in which the observed data (symbols with thin lines) and the
model predictions (thick lines) from a representative listener were plotted together, the
model successfully captured the CP and RT data from the two experiments
simultaneously. Despite substantial amounts of individual differences, the model
predictions accounted for a substantial fraction of variance in the observed data for the
both types of metrics: the across-listener means (and standard deviations) of Pearson
linear correlations were 0.974 (0.020) for CF in Exp 1, 0.577 (0.185) for RT in Exp 1,
0.980 (0.013) for CF in Exp 2, and 0.431 (0.265) for RT in Exp 2. As an alternative
measure of goodness of model fit, we merged all the individual data points and the
corresponding model predictions and computed the correlation between the two for each
of the 2 experiments x 2 metrics conditions (Fig 11). The correlations were very high
and significant (p<10"°) in all the four conditions, 0.974 for CF in Exp 1; 0.872 for RT
in Exp 1; 0.980 for CF in Exp 2; 0.648 for RT in Exp 2. The regression analysis also
shows that the observed data and the model predictions were well matched in absolute
value (mean data) without any noticeable presences of stimulus-regime-dependent
prediction errors (non significant correlation between stimulus and model prediction

errors).
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Figure 12. Illustration of key parameters of the model fit to the data for a representative listener.
(a) Matrix of tuning curves of SNs at the sensory encoding stage. The brightness represents
response amplitude to a given stimulus (y axis) for a given SN with a certain stimulus preference
(x axis). (b) Weighting functions of PNs at the likelihood decoding stage. The green, red and
blue curves are summation weights for PNs with preferences for phoneme /da/, /ba/ and /ga/,
respectively. (c) Buildup of evidence in EANs at the evidence accumulation stage. The lines
with different colors represent the noise-free temporal accumulation of decision evidence for
different stimuli used in Expl. Thus, the slopes of the lines represent the rates of evidence
accumulation rate of the fitted model. The time point at which all of the lines begin to change
simultaneous is the residual time (time taken for afferent sensory processing and for efferent
motion execution). At each panel, the thick horizontal lines represent the bounds for decision.
The three rows are for the three different blocks of trials, in which a specific pair of phoneme
alternatives was discriminated.



Figure 12 visualizes internal components at the encoding and decoding stages of the
fitted model for the same listener whose data were shown in Figure 10. By inspecting
the relationship between the observed data and the fitted model parameters, we could
gain a few insights how the model managed to capture phoneme classification responses
common to all the individuals and those varying across individual listeners. First, the
width of the sensory tuning curves at the encoding stage was quite broad in the majority
of listeners (median bgy = 0.364) whereas the width of summation weighting curves
tended to be narrow and varied greatly across listeners (median bpy = 7.021 for PN/,
5.940 for PNp,, 1.735 for PNy,,). Second, the individual differences in category
boundary location, which were quite substantial in the data from the first experiment,
could be mostly explained by the variability in peak location of summation weighting
curve. Third, previous studies reported that adaptation to a particular phoneme stimulus
leads to a substantial repulsive shift of phoneme category boundaries (Samuel, 1986), as
we clearly observed in the second experiment. The proposed model offers one plausible
mechanistic-level account for this adaptation-induced repulsive shift of phoneme
categories. According to the model, one simple scenario that adaptation occurs mainly at
the sensory encoding stage and is inherited to the phoneme encoding stage, wherein the
imbalance between two neighboring phonemes is produced. This imbalance would result

in a distorted value of evidence, which leads to changes in CF and RT as well.
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Discussion

Given a dearth of models for pre-lexical unit representation despite its importance in
speech perception, we aimed at proposing a biologically plausible model that provides
theoretical accounts for how pre-lexical units can be represented in the brain while
capturing the key behavioral dynamics in actual human perception of pre-lexical units.
We developed a system-level neural model for phoneme classification, with an
assumption that phonemes are represented as probabilistic quantities in the brain. Our
model is distinguished from and goes beyond previous models (McClelland & Elman,

1986; Norris et al., 2000)in several aspects.

First, the proposed model is plausible in a neural perspective. Our model not only
specified a hierarchical set of probabilistic computations required for phoneme
classification but also proposed the ways each of those computations can be achieved by
the activity of a specific population of neurons in parallel. The model consists of three
stages. The computation at the encoding stage is to calculate a set of individual
likelihoods for acoustic features in incoming sound input that are relevant for
distinguishing phonemes. The feature dimension crucial for distinguishing between
stop-consonant syllables, which were target phoneme stimuli in the current study, is
spectral-temporal dynamics in frequency harmonics during the initial 50 ms period after
stimulus onset. Single-cell studies on animals reported that a substantial fraction of
neurons in the primary auditory cortex has a spectral-temporal receptive field (‘STREF)
structure that is broadly tuned around a certain form of frequency modulation
(Bandyopadhyay & Young, 2004; Mesgarani, David, Fritz, & Shamma, 2008). Our
model posits that those neurons are likely candidates for operating the proposed
computation at the encoding stage. As shown previously (Seung, H.S. & Sompolinsky,
H 1993; Jazayeri & Movshon 2006) and here (Eq 1), the likelihoods can be computed
from individual neurons’ responses once their tuning functions are known. At the second
stage occurs the most crucial computation, decoding likelihoods for given phonemes

from individual sensory likelihoods that are available at the outputs of the computation
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at the first stage. According to the model, this computation can be operated by weighted
summation of presynaptic inputs at post-synaptic neurons. This ‘weighted summation’ at
neural synapses is one of the most fundamental and ubiquitous circuits in the brain,
evidenced by many sensory neural systems (Carandini, 2012; Rust, Mante, Simoncelli,
& Movshon, 2006). Compared to other typical sensory computations, phoneme
classification is unique in that its goal is not to estimate a certain physical quantity (e.g.,
orientation of an image contour for low-level vision), but to estimate the identity of a
‘phoneme’ that was intended by a speaker. This situation requires a listener’s brain to
perform a reverse engineering of the sound generation process performed by the speaker.
The reverse engineering is equivalent to the ‘weighted summation’ computation at the
second stage. Recent imaging studies reported the presence of neurons with selective
preferences for phoneme stimuli in several areas located in the superior temporal cortex,
which are believed to receive outputs of neurons in the primary auditory area,
presumably including neurons with ‘STRF’ as proposed by our model (Obleser & Eisner,
2009b). The computation operated at the final stage is to form and integrate the evidence
for making a discrete decision. This operation can be performed on the computational
output at the phoneme likelihood decoding stage by selecting neurons (or neural
populations) with preferences for phonemes relevant to an impending task. Previous
single-cell studies (Gold & Shadlen, 2007) have been reporting that neurons in many
cortical areas including superior colliculus, lateral infra-parietal area (LIP), frontal eye-
field area exhibited evidence accumulation behavior. In addition, Yang and Shadlen
(2007) convincingly demonstrated that responses of monkey LIP neurons integrate
sequential probabilistic evidences (likelihood) for a binary decision. In summary, neural
implementations of the computations at the core of our model are either supported by
empirical observations or at least highly plausible given their ubiquitous presence in

other sensory or cognitive brain regions.

Second, our model is well constrained by phoneme classification performance by
human listeners. Using a small number of parameters, the model captured the dynamical

changes in the two key aspects of phoneme classification behavior under various

33



listening conditions. In terms of behavioral aspects that were measure, our model
offered joint predictions for the two key metrics of phoneme classification behavior:
choice fraction and reaction time. In terms of contextual modulation, our model was
capable of describing not only the static, categorical structure of phoneme classification
as a function of physical stimulus property, but also the dynamic changes in
classification on an identical stimulus when listeners were exposed to biased samples of
sound stimuli for a prolonged period of time. Here, it should be underlined that this high
degree of explanatory power was achieved with a single, constant set of parameters for
the key computational elements of the model, including tuning curves of SNs, weighting
curves of PNs and evidence weight and accumulation rate of EANs. Furthermore, the
model was flexible enough to cover the wide range of individual differences in phoneme

classification behavior.

Finally, from a theoretical perspective, our model is comprehensive in that it
incorporates the cascade chains of essential information flows that start from true
phonemes intended by speakers and end at phoneme estimates that can be used as inputs
to the lexical system. Due to this comprehensive nature, the inspection of the way the
model operates provides valuable insights regarding a few general features of human
speech perception, and thus can guide future empirical neurophysiological or
psychophysical studies by generating testable hypotheses and predictions. For example,
the individual differences that were witnessed in our behavioral experiments are likely
associated with listeners’ idiosyncratic speech environments (e.g., regions with strong
dialects). Our model points to the ‘phoneme weighting functions’ between SNs and PNs
as neural correlates of those individual differences. This ‘reverse engineering’
hypothesis generates an intriguing possibility that phoneme neurons’ response properties
are readily modifiable, or alternatively new phoneme neurons evolve, by long-term

exposures to a new sample of phoneme sounds generated by speakers.
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