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Abstract

Fractal dimensions of bridge bonds
in directed percolation models

Sangmin Choi

Department of Physics and Astronomy

The Graduate School

Seoul National University

Bond percolation is a mathematical model studying the emergence of a

spanning cluster as bonds are occupied in Euclidean space without any pre-

ferred direction. Bonds are classified into two types: bridge bonds and non-

bridge bonds. Bridge bonds are ones that once occupied, a spanning cluster

is created in one direction of the system. When the occupation of bridge

bonds is prohibited and only non-bridge bonds are occupied, the system

is divided into two parts; the boundary composed of bridge bonds forms a

fractal object. It has been revealed that the fractal dimension of that object

is related to the continuity of the so-called explosive percolation transition.

In the problem of directed percolation, however, where the bonds possess

a preferred direction of flow, not much is known about these bridges. We

obtain the fractal dimensions of the bridges in various dimensions and com-

pare them to those of ordinary percolation. It will further be shown that these
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bridges relate to the continuity of the phase transition in the same way those

of ordinary percolation do, and outline the implications of these results.

Keywords : Percolation transition, Directed percolation, Bridge bond, Dis-

tinuous percolation transition, Fractal dimension
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Chapter 1

Introduction

Bond percolation is an area of science that studies the emergence of a path of

bonds connecting two opposite surfaces. Consider a two-dimensional square

lattice: For some fraction 0≤ p≤ 1, we occupy p of the bonds with conduct-

ing wire, while leaving 1− p of them unoccupied. If the occupation fraction

is below a critical threshold pc, there will be no conducting path connecting

the top layer to the bottom layer. At p = pc, however, a path of conduction,

or percolation, emerges. The cluster of conducting wires keeps growing as

p approaches unity. Due to its simplicity and effectiveness of explaining

phenomena related to random media, percolation has received spotlight for

decades by scientists of diverse discipline.

Now, suppose that current can only flow in one direction in the wires.

One can think of this as replacing the wires with diodes. In this case, perco-

lation is achieved only if there exists a directed path of conduction connect-

ing the top and the bottom surfaces. This is called directed percolation, and

has diverse applications in the natural world.

Directed percolation has shown interesting connections with many seem-

ingly unrelated fields of study. In 1983 Domany and Kinzel showed the

equivalence of cellular automaton and directed percolation [1]. Pomeau con-

jectured in 1986 that a system showing abrupt transition from a laminar

state to a chaotic state can be described in terms of directed percolation [2],
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which was scrutinized by studies such as [3]. Following up these works,

Rolf, Bohr, and Jensen later presented strong evidence that the link between

spatiotemporal intermittency and directed percolation exists only when the

updating rules are asynchronous [4]. In 1998, Lopez and Jensen have shown

that a model used to explain the growth of fungi colonies can be mapped

onto a directed percolation process [5].

A closely related model is the directed percolation depinning(DPD)

model. It studies the growth of driven interface in disordered media, and

was first proposed simultaneously in 1992 by Tang et al [6] and Buldyrev et

al [7]. DPD can be described by the Kadar-Parisi-Zhang equation [8] with

quenched disorder [9], although it has been shown that their mechanisms of

surface growth differ [10].

In the last few years, studies have been done on the boundary formed

by bridge bonds, the bonds that achieve percolation upon occupation, of

ordinary percolation. When the lattice is grown to its maximum capacity

without connecting any bridge bonds, the system becomes partitioned into

two opposing clusters, forming a boundary in between. This line, called

bridge line, has been shown to have connections to concepts in different

areas of study, such as optimal path cracks and watersheds [11]. Moreover,

the bridge line forms a fractal structure with fractal dimension contingent on

the lattice structure and the boundary conditions [12]. In a more recent study,

it has been found that this fractal dimension bears direct relationship to the

continuity of the percolation phase transition when the model is modified to

suppress percolation rather than inhibit it [13].

In this paper, we extend the concept of fractal dimensions and their
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relationship with the phase transition to the models of directed percolation.

Directed percolation, with its preferred direction of flow, would behave as

a more natural model to explain systems with an inclined tendency towards

certain directions, an intuitive example being a watershed lying on an in-

clined plane such as the side of a mountain. Three types of lattice struc-

tures are considered. First, we tackle the directed square lattice, the simplest

lattice in terms of both analysis and calculation. Next, we proceed to the

directed body-centered cubic lattice, which is structurally equivalent to di-

rected square lattice in 2D. It deviates from the square lattice in three and

higher dimensions, with exponentially increasing number of nearest neigh-

bors. Then we return to the square lattice, but this time allowing directed

edges only in the principal direction of percolation (vertical direction). In

this lattice, all edges perpendicular to the principal direction are bidirec-

tional. After we are done exploring the scaling behaviors of bridge bonds

in thse lattices, we wrap up the study with a brief assessment of the surface

roughness formed by the bridge bonds in directed percolation models.
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Chapter 2

Bridge Bonds in Directed Percolation

2.1 Directed Square Lattice

Bridge bond is a bond that, once occupied, leads to the emergence of a per-

colating pathway between two boundary surfaces. When sequentially choos-

ing and occupying random links, by prohibiting the occupation of bridge

bonds one can artificially grow the occupation fraction p close to any de-

sired value.

Consider a square lattice with directed bonds. Parallel bonds are set to

face the same direction, thus there are d bond directions in a d-dimensional

lattice. One arbitrary direction has been chosen so that percolation is defined

as a directed pathway formed by a sequence of occupied bonds connecting

a node at the bottom of this axis to one at its top.

Fig. 2.1 shows an example of a 100× 100 2D directed lattice grown

to p ≈ 1. The color of each node indicate the boundary surface it is con-

nected to. Unlike the case of bidirectional lattices, a bond connecting two

differently colored nodes can be occupied without leading to percolation.

Also, notice that each node has a preferred boundary surface. For exam-

ple, in Fig. 2.1, it is more probable for a node in the upper left corner to be

connected to the top surface, because the number of such possible paths out-

number that of paths connecting it to the bottom surface. A node in the lower

4



Fig. 2.1: A snapshot of a 100× 100 2D lattice with directed edges at p = 1. Blue
and yellow areas represent nodes connected to top and bottom boundaries, respec-
tively. Solid lines indicate the locations of bridge bonds that have been suppressed
in the growth. Notice the approximate 45° inclination of the boundary. The inset
illustrates a magnified view of the boundary. As visible from the inset, the formu-
lation of penninsula-like structures are possible due to the directions of the bonds.
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right corner, on the other hand, will prefer the bottom surface. This discrep-

ancy of the number of possible paths implies that the boundary formed be-

tween the two clusters will have a certain inclination, which will be more

conspicuous as the size of lattice becomes larger. This is clearly shown in

Fig. 2.1, with the boundary having an approximate slope of 1. The slope

will be taken into account later when we calculate the roughness exponents

of these boundaries.

It has been shown in [12] that in a 2D bidirectional lattice, the number

of bridge bonds NBB scales as L1/ν at p = pc = 0.5 and as L1.215 at p > pc,

where dBB is called the fractal dimension of the bridge bonds. We set up an

ansatz similar to that used in [12]:

NBB = L1/ν∥F
[
(p− pc)Lθ

]
, (2.1)

where F [x] ∼ xζ for x > 0 and F [x] ∼ const. for x = 0. ν∥ = 1.733847(6)

and pc = 0.64470015(5) are well-established values for 2D directed bond

percolation [14, 15]. Asserting that NBB ∼ LdBB at p well above pc, the fol-

lowing scaling relation will hold,

θ = ζ
−1
(

dBB −
1
ν∥

)
= ζ

−1
(

d −ϕ − 1
ν∥

)
, (2.2)

with ϕ ≡ d −dBB.

Fig. 2.2 shows simulation results for NBB in various system sizes. The

number of bridge bonds at pc and p = 1 clearly follow power laws with dif-

ferent exponents. The exponent at p = pc is measured to be 0.576, which is
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slope of the solid line, ζ = 0.6.

in excellent agreement with 1/ν∥ ≈ 0.577. We also obtain the fractal dimen-

sion of bridge bonds dBB = 1.072. As expected, a crossover behavior similar

to that of ordinary percolation is observed as p departs from pc.

In order to calculate the growth exponent ζ and the crossover exponent

θ , NBB and p were scaled in accordance with Eq. (2.1). In Fig. 2.3 the results

are plotted for various system sizes. One observes the data collapsing at

ζ = 0.6, along with θ = 0.825.

It has recently been shown with ordinary percolation that the growth

exponent ζ and the fractal dimension of bridge bonds dBB are intimately

related with the continuity of percolation phase transition [13]. Consider a
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model in which the occupation of bridge bonds are not merely prohibited,

but instead m candidates are chosen at each time step among the set of bonds

that are not connected. Only in the case where all m candidates qualify as

bridge bonds does one get accepted, in which case a percolating pathway

emerges; otherwise a non-bridge bond is connected. In this model, the per-

colating threshold pcm(L) is a function of both m and L. The probability

q(p) of choosing all m candidadates to be bridge bonds at an occupation

fraction p is

q(p) =
[

NBB

Nb(1− p)

]m

, (2.3)

where Nb is the number of bonds in a fully connected square lattice. Since

Nb ∼ dNd and NBB ∼ LdBB(p− pc)
ζ at p > pc,

q(p)∼ N−m/mc

[
(p− pc)

ζ

(1− p)

]m

(2.4)

where mc, the critical number of candidates, is defined to be

mc =
d

d −dBB
. (2.5)

It has further been shown that for m < mc, pcm(L)− pc ∼ L−1/ν̄< with

1
ν̄<

≡ 1
mζ +1

(
1− m

mc

)
, (2.6)

9



Fig. 2.4: The differences between the critical thresholds and their respective con-
verging points are plotted against linear system size L for various m. Each data
point represent simulation results averaged over 104 samples, and dotted lines in-
dicate the anaylitically predicted slopes.

while for m > mc, 1− pc ∼ L−1/ν̄> with

1
ν̄>

≡ 1
m−1

(
m
mc

−1
)
. (2.7)

When m is chosen to be smaller than the critical value mc, the threshold

pcm(L) approaches the value pc = 0.6447 with increasing system size, which

implies that at the thermodynamic limit L → ∞ the system exhibits contin-

uous phase transition. In contrast, if m is chosen to be larger than mc, with

growing L the threshold pcm(L) converges to unity; this system exhibits triv-

ial discontinuous phase transition in the thermodynamic limit.

Since these arguments are made out of purely probabilistic reasonings
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without any role played by the bidirectionality of bonds, we expect them to

also hold in directed square lattices. Fig. 2.4 shows a plot of the simulation

results in 2D directed lattices. The data points are in good agreement with

the analytic expectations, which are drawn as lines. Fig. 2.5 plots pcm against

L for various m. As expected, the threshold at mc draws a horizontal line

above which the phase transition is discontinuous and below which it is

continuous.

In bidirectional square lattices, as d increases past its upper critical

dimension dc = 6, the fractal dimension dBB has been shown to converge

to d, i.e., ϕ converges to 0 [12]. This implies that mc diverges to ∞ when

d ≥ dc, and hence the percolation phase transition in the thermodynamic

limit is always continuous in this region no matter how high one chooses for

m to be.

To see if this is the case for directed square lattices, dBB has been mea-

sured up to d = 6, which is higher than the upper critical dimension dc = 5

of directed percolation. Fig. 2.6 shows the results obtained, accompanied

by an inset plotting the respective values of ϕ = d − dBB. Surprisingly, ϕ

does not come anywhere near 0, even past dc. Therefore, unlike the case of

bidirectional lattices, the phase transition of percolation in high-dimensional

directed lattices can be discontinuous, by choosing m > mc(d). Fig. 2.7 iil-

lustrates this result. The data points mark the critical values mc(d) for each

d, and these form a partition curve that divides the region of first-order phase

transition and that of second-order phase transition. The roman numerals in-

dicate the order of phase transition arising in the region. Although mc tends

to increase with increasing d, no divergence to ∞ is observed.
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Fig. 2.6: Number of bridge bonds NBB plotted against linear size L. Data points
represent simulation results and solid lines represent best fits. All results have been
averaged over 104 samples. The inset plots ϕ = d −dBB against d. Notice that dBB
stays far from d even past the upper critical dimension dc = 5 of directed percola-
tion. This indicates the presence of continuous phase transition at and above dc.
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Fig. 2.8: Scaling behavior of the bridge bonds and the cutting bonds. The number
of bonds in (a) are measured at the point of emergence of a percolating cluster,
while those in (b) are measured at a fully grown lattice excluding bridge bonds.
Besides some negligible finite size effects, the number of cutting bonds coincide
with that of the bridge bonds in a fully grown lattice.

Now let us consider a different type of bonds. Recall that, due to the

directionality of the bonds, there can exist bonds that connect two clusters,

one connected to the top and the other connected to the bottom, which does

not beget percolation. How do these bonds, the cutting bonds, scale with

system size?

Due to the symmetry of our directed square lattice, we expect the num-

ber of cutting bonds to be similar to the number of bridge bonds at p = 1.

This is exactly what is observed in Fig. 2.8(b). Except for the finite size

effects apparent in small-sized systems, the number of cutting bonds and

that of the bridge bonds are observed to coincide for all sizes. The case at

the critical point is non-trivial, however. The number of bonds at the critical

points are at the point of emergence of a percolating cluster. The two types

of bonds appear to scale similarly, but the bridge bonds outnumber cutting

bonds with a constant factor.
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Fig. 2.9: A snapshot of a 100×100 2D tilted lattice with directed edges at p = 1.
Blue and yellow areas represent nodes connected to top and bottom boundaries,
respectively. The inset is a magnified view of a part of the boundary.

2.2 Directed Body-Centered Cubic Lattice

This time, we consider the directed body-centered cubic(BCC) lattices. In a

d-dimensional directed BCC, we have L layers of d−1-dimensional hyper-

cubic lattice, with each vertex having 2d edges both incoming and outgoing.

For 2D, the structure of this lattice is equivalent to that of the directed square

lattice, tilted by 45°. Taking into account the horizontal symmetry of the lat-

tice, we impose periodic boundary consitions at the boundaries that do not

determine percolation. Again, we start from an empty lattice and fill the lat-

tice by subsequently occupying random bonds. The lattice can be grown to

any desired fraction of occupation p by forbidding the occupation of bridge

bonds.
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L pc(L)
30 0.522735
60 0.557689
120 0.583580
240 0.601748
480 0.614410
960 0.623559
1920 0.629973
3840 0.634444
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Fig. 2.10: (Left) The values of pc measured for various system sizes in a 2D di-
rected BCC lattice. Each value is an average of 104 independent measurements.
(Right) The number of bridge bonds NBB is plotted against the linear size L for 2D
tilted lattice with directed edges. Each data point marks simulation results averaged
over 104 samples. At p = 1, NBB ∼ LdBB with dBB = 1.41. At p = pc, the scaling
behavior of the bridge bonds is very similar to that of the case of square lattices.
For each system size the relevant value of pc(L) was used.

Fig. 2.9 shows a sample of the directed BCC lattice grown to p = 1.

In contrast to the case of directed square lattice, the boundary is very ir-

regular and does not show a trend to incline in any direction, even though

the structure of this lattice is nearly equivalent to the square lattice. Notice

the seaweed-like structures formed at the boundary. The emergence of these

structures owe to the fact that the number of possible horizontal boundaries

are almost negligible to the number of boundaries of this type due to the

directionality of the bonds pointing diagonally downwards.

How do the bridge bonds in this lattice scale? We again impose the

ansatz

NBB = L1/ν∥F
[
(p− pc)Lθ

]
, (2.8)
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to the number of bridge bonds NBB. Observing that in 2D the lattice structure

is equivalent to the directed square lattice, we expect NBB to scale as ∼ L1/ν||

at pc, with ν|| ≈ 0.5768. There is, however, a technical difficulty that needs

consideration. For this type of 2D lattice, the convergence of pc(L) to the

value pc(∞)≈ 0.6447 is too slow; the calculated values of pc(L) are shown

on the left table of Fig. 2.10, each averaged over 104 samples. To more

accurately measure the critical exponent, we used for each system size the

appropriate value of pc(L). The results are plotted on the right of Fig. 2.10

At p= pc the exponent is measured to be ≈ 0.577, in an excellent agreement

with the expected value 1/ν|| ≈ 0.5768. At p = 1, the fractal dimension is

measured to be dBB ≈ 1.38, radically different from the fractal dimensions

of both the directed square lattice and the isotropic square lattice.

In order to study the percolation phase transitions in higher dimen-

sions, we now take a look at the fractal dimensions of bridge bonds for

higher-dimensional BCC lattices. Fig. 2.11 shows the results of the mea-

surements, from which one can see that the fractal dimensions dBB of bridge

bonds clearly follow power law as expected. Values of dBB can be read off

from the inset, which plots the values of ϕ ≡ d −dBB. Notice that ϕ seems

to be plunging to 0 until d = 4, but starts to increase at and over the up-

per critical dimension dc = 5 of directed percolation. What this indicates is

that dBB does not converge to d, even for d ≥ dc, and therefore first-order

phase transition still resides above the upper critial dimension in the high-m

regions. This is illustrated in Fig. 2.12, which shows the phase diagram con-

structed from the measurements, with roman numerals identifying the order

of phase transition.
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Fig. 2.11: The number of bridge bonds NBB against the linear system size L for the
body-centered lattice in various dimensions. Each data point represents simulation
results averaged over 104 samples, and each solid line represents the best fit. dBB
becomes large for higher dimensions, but stays finite over d > dc = 5.
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Fig. 2.12: Phase diagram constructed using the different values of mc(d) in the
directed BCC lattice. Again mc is finite above dc = 5, so first-order transitions are
observable in the high-m region for higher dimensions.
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Fig. 2.13: Scaling behavior of the bridge bonds and the cutting bonds for 2D tilted
lattice. Again, values of (a) are measured at the point of percolation, while those in
(b) are measured at p = 1. For this 2D lattice, finite size effect plays a larger role,
but at p = 1 the number cutting bonds still converge to the number of bridge bonds
for large L.
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We now turn our attention to the cutting bonds. As was the case of

directed square lattices, we measured in 2D the number of bridge bonds as

well as the number of cutting bonds both at the point of percolation and at

p = 1 in various system sizes. The results are plotted in Fig. 2.13. On the

left, values are plotted at the critical point. On the right, at p= 1. The utmost

difference between this lattice and the 2D directed square lattice is the finite

size effect on the cutting bonds, which was also conspicuous for the values

of pc in Fig. 2.10. This drives the number of cutting bonds away from power

law in systems of small sizes. However, one can still measure the asymptotic

trends, as done in Fig. 2.13. It is shown that although the scaling exponents

of the cutting bonds and the bridge bonds differ by a small amount at the

critical point, it is observed that the number of cutting bonds asymptotically

converge to NBB at p = 1.

2.3 Partially Directed Square Lattice

The bonds in the directed square lattice each had a preferred direction of

flow, with the restriction that parallel bonds prefer the same direction with

one another. This time, consider a slightly different model, in which there

is only one direction of flow instread of d. Recall that one axis was chosen

so that percolation is defined as the emergence of a pathway between the

two boundaries that are perpendicular to this axis. The preferred direction is

aligned to be parallel to this axis. Since the subspace formed by bidirectional

axes is now isotropic, we impose periodic boundary conditions along these

directions.
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Fig. 2.14: A snapshot of a 100 × 100 partially directed lattice in 2D at p = 1.
Horizontal bonds are bidirectional, whereas vertical bonds are directed upward.
Blue and yellow areas represent nodes connected to the top and bottom boundaries,
respectively. Solid lines indicate bridge bonds, which have been kept unoccupied
to suppress percolation. Boundaries with respect to bidirectional bonds, in this case
the left and right boundaries, are set to be periodic. The inset shows a magnified
view of a portion of the boundary.
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In this model, there is only one directional axis; the other d − 1 axes

bear bidirectional bonds. For the sake of brevity, we will henceforth call this

type of system as partially directed. This model can be viewed as a upright

square lattice imitating the properties of a tilted square lattice, in which

all the bonds are directed, but the two percolation boundaries are aligned

in a way to effectively render the directions parallel to them bidirectional.

Fig. 2.14 is a sample of 100× 100 partially directed lattice, grown to p =

1 excluding brige bonds on the way. Notice that the horizontal bonds are

bidirectional and the left and right boundaries are therefore periodic.

One might naively expect the boundary formed by the red and blue

clusters to become smooth as L increases. However, Fig. 2.14 overtly shows

that this is not the case. The boundary is bizarre, far from being straight. The

reason that this type of boundary is formed is because the one axis bearing a

preferred direction tips the balance between pathways. In a totally bidirec-

tional lattice, there are many chains of bonds connecting two horizontally

parted nodes. In this type of lattice, however, the only pathway is a chain

comprising only horizontal bonds, thereby rendering the emergence prob-

ability of such pathway very low. As we shall we in the next section, this

discrepancy leads to non-trivial boundaries even for high L.

The behavior of bridge bonds in partially directed percolation has been

measured. Fig. 2.15 plots the simulation results of NBB against L. The fractal

dimension dBB in 2D is ≈ 1.4, slightly higher than that of directed lattice.

This results in mc(d = 2)≈ 3.3, but nevertheless, as Fig. 2.16 shows, values

of m smaller then mc lead to second-order phase transition, while values

higher than mc lead to first-order. Again the values at mc draws the dividing
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Fig. 2.15: The number of bridge bonds NBB versus the linear size L in partially
directed lattices. Each data points show simulation results averaged over 104 sam-
ples. Solid lines represent the best fits. The inset plots ϕ = d−dBB against d, which
shows ϕ → 0 as d → dc = 5. This implies that above the upper critical dimension
dc, the phase transition is always continuous.
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Fig. 2.16: Percolation threshold pcm is plotted against linear size L for 2D partially
directed lattice. Each data point represents simulation results averaged over 104

samples. Above mc ≈ 3.3 the thresholds converge to pc(∞) = 0.55, while below mc
they converge to unity. This indicates that the threshold at m = mc defines a hor-
izontal line below and above which the percolation phase transition is continuous
and discontinuous, respectively.
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Fig. 2.17: The critical number of candidates mc plotted for each dimension. mc
diverges to infinity at the upper critical dimension dc = 5 and is not shown in the
plot. The phase transition is discontinuous above the curve connecting these points
and continuous below it. Since mc(dc = 5) = ∞, one cannot observe discontinuous
phase transition in d ≥ 5.

line between these two regimes. The inset in Fig. 2.15 shows that ϕ = d −

dBB drops to 0 at the upper critical dimension dc = 5 of directed percolation.

As is the case in bidirectional lattice, we have diverging mc above dc and

therefore the system only exhibits second-order transition in this region.

Fig. 2.17 illustrates this point. mc(d = 4) has a high but still finite value,

but past d = 5 no first-order transition can be observed for any values of m.

Roman numerals are used to indicate of what order the phase transition in

the region is.

The values obtained thus far for dBB and mc in dimensions up to d = 6

are listed in TABLE 2.1.
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Table. 2.1: The values for fractal dimensions of bridge bonds and the critical num-
ber of candidates obtained by simulations are listed for various dimensions.

DS Tilted PDS
d dBB mc dBB mc dBB mc

2 1.072 2.155 1.38 3.23 1.41 3.39
3 2.10 3.33 2.60 7.50 2.69 9.68
4 3.16 4.76 3.72 14.29 3.9 40.0
5 4.25 6.66 4.67 15.15 5.0 ∞

6 5.34 9.09 5.5 12.0 6.0 ∞
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Chapter 3

Roughness Exponent

If a directed square lattice is grown to p → 1 while prohibiting the occupa-

tion of bridge bonds, one could observe an inclined boundary emerging be-

tween the two connected clusters. One example of this surface is illustrated

in Fig. 3.18, which shows the boundary formed between the two colored

clusters. The shape of this boundary, however, is exotic, since the directed

bonds allow the formulation of tilted penninsulas.

A revised boundary can be formed by viewing the bottom cluster as liq-

uid, thereby ignoring any top-connected cluster that comes below it on the

account that the liquid will wet all cells beneath it. Note that this treatment

is very similar to the rules of surface growth used in DPD models. Fig. 3.18

marks the revised boundary with a dotted black line, and the preferred in-

clination is shown as solid red line. xi is the deviation of the dotted surface

from the red line, and hi is the horizontal gap between the two. We wish to

calculate the standard deviation of xi,

σ
2
x =

1
L

∑
i

x2
i −

(
1
L

∑
i

xi

)2

, (3.1)

so that

σx ∼ Lα (3.2)
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xi
hi

Fig. 3.18: A sample 70× 70 directed 2D lattice grown to p = 1 exluding bridge
bonds. The red and blue areas represent nodes connected to the top and bottom
surfaces. We define a surface similar to that created by the DPD model, thus we
sample out the maximum height of the boundary for each horizontal unit length.
This new surface is plotted with dotted black line. The distance from this surface to
red line xi must be measured, but instead we measure hi, since it only differs from
xi by a constant factor and does not affect the roughness exponent.
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Fig. 3.19: The standard deviation of height σh is plotted against linear size L for 2D
directional lattice at p = 1. Data points represent simulation results averaged over
104 samples, and solid line mark the best fit. The roughness exponent of 2D turns
out to be 0.62, which is similar to the roughness exponent 0.63 of 2D DPD models.

can be used to measure the roughness exponent α . However, this calculation

can be simplified by observing that the standard deviation of hi, σh, is in fact

a constant factor times σx:

σ
2
h =

1
L

∑
i

h2
i −

(
1
L

∑
i

hi

)2

(3.3)

=
1
L

∑
i

x2
i

cos2 θ
−

(
1
L

∑
i

xi

cosθ

)2

(3.4)

=
1

cos2 θ
σ

2
x (3.5)

where θ is the inclination (45° in 2D), and hi cosθ = xi has been used.

Fig. 3.19 plots the standard deviation of hi against the linear system size
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L for 2D. The data points clearly follow power law with exponent α(2D) =

0.62, which is similar to, but lower than, the roughness exponent α = 0.63

of DPD models.
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Chapter 4

Conclusion

We have extended the concepts of bridge bonds and fractal dimensions used

in ordinary percolation models to various models of directed percolation.

Probabilistic and numerical analysis suggest that the bridge bonds follow

power law similar to ordinary percolation, and that the critical exponent ν

should in this case be replaced by its analog of principal direction of perco-

lation, ν||. Simulation results show that fractal dimensions of directed per-

colation are highly sensitive to the boundaries of the system as well as the

structure of the lattice. Numerial data also confirms the validity of relation

between fractal dimensions of bridge bonds and the continuity of perco-

lation phase transition in the spanning-cluster-avoiding model, which was

shown to hold in ordinary percolation [13]. The scaling behavior of cutting

bonds have been investigated in relation to that of bridge bonds.

Moreover, we defined a surface that can be constructed from the bridge

bonds of directed percolation. Taking into account the tendency to be in-

clined, the fluctuation of the surface has been measured which was in turn

used to calculate the roughness exponent. The obtained exponent in 2D is

α ≈ 0.62, which is similar to α ≈ 0.63 of the QKPZ universality class. This

seems to be due to the similar nature of this surface to one grown in the DPD

model, with differences in the minor details of how to proceed after wetting

a depinned cell.
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There are certainly areas where further work is anticipated. It has been

shown that fractal dimensions of bridge bonds are highly sensitive to the

boundary conditions of the lattice, but how they are related is still an in-

triguing question that needs to be answered. Measurements of the critical

exponents of NBB differed by a notable value at the critical point, its value

depending on the method used to calculate it, which means the methods are

measuring different quantities. More work must be done to establish pre-

cisely what this difference is. Also, since we have obtained the roughness

exponent in 2D directed percolation, one direction of future work can be the

construction and definition of surfaces at higher dimensions. This can lead

to the calculation of the roughness exponent in higher dimensions, thereby

making a connection between the surface and some other universality class.

The bridge bonds in directed percolation opens up an interesting direc-

tion of research connecting the fractal dimensions, lattice structures, phase

transitions, and surface roughness. We believe our work can serve as another

step towards understanding the fundamental physics lying underneaths these

concepts.
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초록

본드 스미기 모형은 특정한 방향 선호도가 없는 유클리드 공간에서 본

드를 임의의 순서대로 연결해 나갈 때 서로 반대편의 끝을 잇는 거대 송

이의 생성을 탐구하기 위한 수학적인 모형이다. 본드는 크게 연결본드와

비연결본드로 나뉘는데, 여기서 연결본드란 연결되는 순간 여과경로를

생성하는 본드를 말한다. 이러한 연결본드의 연결을 억제한 상태로 본드

를채워나가다보면마지막에는시스템이두개의덩어리로나뉘게되고,

이 연결본드들은 쪽거리 구조를 가지게 된다. 최근 연구로 이 집합의 쪽

거리 차원이 폭발적 여과 상전이의 연속성과 밀접한 관련성을 갖다는 것

이 밝혀졌다. 하지만, 본드들이 방향성을 가지는 격자구조에서는 이러한

연결본드에 대해 알려진 것이 거의 없는 상황이다. 이 논문에서 우리는

방향성을 갖는 격자구조에서 연결본드가 역시 쪽거리 구조를 가진다는

점을확인하고,이구조의쪽거리차원을여러차원에서계산한후등방성

격자에서의값과비교해보고자한다.또한,이러한쪽거리차원들이여과

상전이의 연속성과 어떠한 관련이 있는지 탐구하고, 이러한 결과들이 갖

는파급효과에대해논해보도록하겠다.

주요어 : 여과 상전이, 방향성 스미기, 다리본드, 불연속 여과 상전이, 쪽

거리차원

학번 : 2011-20426
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