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ABSTRACT

In quantum information theory, there are few quantum channels whose specific

formulas and properties are known. In this thesis, we introduce EPOSIC chan-

nels, a class of SU(2)-irreducibly covariant quantum channels, and compute their

χ-capacity and entropy in some cases. We review the basics of group representation

theory and quantum information theory, and we construct EPOSIC channels, a

new class of quantum channels, using representation theory. We also study specific

formulas and properties of EPOSIC channels.
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Chapter 1. Introduction

Quantum information theory is a branch of science that quantum mechanics

and information theory are combined. One of the important open questions in

quantum information theory is that of determining the capability of the channel

to transmit classical information, which is known as the classical capacity of the

channel. The Holevo capacity is defined to be the classical capacity for the channel

with the restriction that there are no entangled input states are allowed across many

uses of the channel [5]. The additivity conjecture in quantum information is that

the classical capacity of a quantum channel is additive. A fundamental result of

quantum information theory, “the quantum coding theorem” [7] and [8], implies

that the classical capacity of a quantum channel Φ is given by

lim
n→∞

Cχ(Φ⊗n)

n

where Cχ is the Holevo capacity. This shows that the additivity of the classical

capacity can be inferred from the additivity of another quantity, known as the

Holevo capacity. So, it is important to find counter-example of the additivity of the

Holevo capacity or to prove the additivity of the Holevo capacity for some class of

quantum channels. In 2008, Hastings [9] showed the existence of a counter-example

to the additivity of the Holevo capacity, using a random construction. However,

no explicit example was given. Moreover, there are few quantum channels whose

specific formulas and properties are well-known.

In this thesis, we present a new class of quantum channels whose specific formulas

is well-known from representation theory. And study their properties. The thesis

consists of six chapters. In chapter 1, we introduce our motivation of the study.

In chapter 2, we review the basic definitions and state all the related propositions

and theorem from representation theory. Chapter 3 contains the definitions and

all needed proposition about quantum channels. In chapter 4, we review the basic

definitions and state all the related propositions from quantum information theory.

Chapter 5 studies unitary representation of the compact group SU(2), and defines

an SU(2)-equivariant isometry, and construct EPOSIC channels. And see that

EPOSIC channels are the extreme points of SU(2)-irreducibly covariant channels.

Chapter 6 studies the properties of SU(2)-irreducibly covariant channels.
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Chapter 2. Basics in representation

theory

In this thesis, we assume all vector spaces to be finite dimensional complex

vector spaces. The construction of EPOSIC channels, to be introduced in chapter

5, depends heavily on the representations of the compact group SU(2). The present

chapter contains background definitions and results from reprentation theory needed

for the thesis. For more details, we refer the reader to [2].

Definition 2.1 (Topological group).

A topological group is a group G equipped with a topology with respect to which the

group operations are continuous. i.e. (x, y)→ xy and x→ x−1 are both continuous.

A compact group is a topological group whose topology is compact.

For example, the unit circle under complex multiplication with the usual topol-

ogy is a compact topological group. For another example, the set of real numbers

under the usual addition with the usual topology is a non-compact topological

group.

Definition 2.2 (Unitary representation).

Let G be a topological group and H be a Hilbert space.

A unitary representation of G in H is a group homomorphism π from G into the

group U(H) of unitary operators on H that is continuous with repect to the strong

operator topology.

That is, a map π : G → U(H) that satisfies π(xy) = π(x)π(y) and π(x−1) =

π(x)−1 = π(x)∗, and x→ π(x)u is continuous from G to H for any u ∈ H.

In this case, H is called the representation space of π.

For example, the group SU(n) has representations in Cn given by matirx mul-

tiplication for any n ∈ N.

Definition 2.3 (Irreducible representation).

Let (H,π) be a unitary representation of a topological group G. Suppose M is

a closed subspace of H. M is called an invariant subspace for π if π(g)M ⊂ M

for all g ∈ G. If M is invariant and nontrivial, then the restriction of π to M ,

πM (g) = π(g)|M , defines a representation of G on M , called a subrepresentation

of π.

If π admits an invariant subspace that is nontrivial, then π is called reducible,

otherwise π is irreducible.

We now introduce some standard terminology associated to unitary represen-

tations.
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Definition 2.4 (G-equivariant map). [2]

Let (H,πH) and (K,πK) be two unitary representations of a topological group G.

A G-equivariant map for πH and πK is a bounded linear map T : H → K such that

TπH(g) = πK(g)T for all g ∈ G.

A G-equivariant map is called an intertwing operator or an intertwiner.

The set of G-equivariant maps forms a vector spacae, denoted B(H,K)G or C(πH , πK).

πH and πK are (unitarily) G-equivalent if B(H,K)G contains a unitary operator

U, so that πK(x) = UπHU
−1.

In such a case, the spaces H and K are called G-equivalent, or G-isomorphic.

Definition 2.5.

Let H be a Hilbert space with orthonormal basis={e1, e2, · · · , en}.
Then un-normalized trace on B(H) is defined by the linear map

tr : B(H)→ C

T 7→ tr(T ) =

n∑
i=1

< ei|Tej >H

The definition of the trace does not depend on the choice of the basis.

If H and K are finite-dimensional, then B(H,K) is a Hilbert space endowed with

the Hilbert-Schmidt inner product given by

< A|B >B(H,K)= tr(A∗B) for A,B ∈ B(H,K)

Proposition 2.6.

Let (H,πH) and (K,πK) be two unitary representations of a topological group G.

Then the maps

πH ⊗ πK : G→ U(H ⊗K)

g 7→ πH(g)⊗ πK(g)

πH ⊕ πK : G→ U(H ⊕K)

g 7→ πH(g)⊕ πK(g)

πH,K : G→ U(B(H,K))

g 7→ πK(g)AπH(g−1)

define unitary representations of G in H ⊗K, H ⊕K, B(H,K) respectively.

Proof. Since the techniques to prove the three cases are same, we show only for

πH,K . It is straight forward to show that πH,K is a group homomorphism. And

πH,K ∈ B(B(H,K)) trivially.

Let A,B ∈ B(H,K). Then

< A|πH,K(g)B >B(H,K)=tr(A
∗πK(g)BπH(g−1)) = tr(πH(g−1)A∗πK(g)B)

= tr((πH,K(g−1)A)∗B) =< πH,K(g−1)A|B >B(H,K)
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By the uniqueness of the adjoint map, we have (πH,K(g))∗ = πH,K(g−1).

By construction, πH,K is continuous with respect to the strong operator topology.

From now on, unless specified otherwise, the representation of G on H ⊗K,
H ⊕K, and B(H,K) will be taken to be the one as given in Proposition 2.6.

Proposition 2.7. [1]

Let (H,πH) and (K,πK) be two unitary representations of a topological group G.

The map Φ : B(H)→ B(K) is G− equivariant if and only if

Φ(πH(g)Aπ∗H(g)) = πK(g)Φ(A)π∗K(g) for all A ∈ B(H) and g ∈ G

Proposition 2.8.

For i=1,2, let (Hi, πHi
) and (Ki, πKi

) be representations of a group G.

And let Φi : B(Hi)→ B(Ki) be G-equivariant maps. Then

i) The tensor product and the direct sum of Φ1 and Φ2 are G-equivariant maps with

respect to the actions on the tensor product and the direct sum respectively.

ii) If Φ1 and Φ2 are composable, then their composition is also G-equivariant.

Example 2.9.

Let (H,πH) and (K,πK) be two unitary representations of a topological group G.

Define the linear map by

TrH : B(H ⊗K)→ B(K)

A⊗B 7→ tr(A)B

and extended by linearity, which is called the partial trace over H.

Then TrH is a G-equivariant map.

Proof. Let g ∈ G, and A1 ⊗A2 ∈ B(H ⊗K). Then

TrH((πH(g)⊗ πK(g))(A1 ⊗A2)(π∗H(g)⊗ π∗K(g)))

= TrH(πH(g)A1π
∗
H(g)⊗ πK(g)A2π

∗
K(g)) = tr(πH(g)A1π

∗
H(g))πK(g)A2π

∗
K(g)

= tr(A1)πK(g)A2π
∗
K(g) = πK(g)TrH(A1 ⊗A2)π∗K(g)

Example 2.10.

Let (H,πH) and (K,πK) be two unitary representations of a topological group G.

Define the linear map by

Adα : B(H)→ B(K)

A 7→ αAα∗

which is called the conjugation by α. Then

1. If α is G-equivariant, then α∗ is G-equivariant.

2. If α is G-equivariant, then Adα is G-equivariant.
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The following proposition is one of the fundamental result in representation

theory relating operators in B(H,K)G to reducibility properties of π.

Proposition 2.11 (Schur’s Lemma). [2]

Let (H,πH) and (K,πK) be two unitary representations of G. If α : H → K is a

G-equivariant map, then either α ≡ 0 or α is a G-isomorphism. In case of H=K

and πH = πK , then α = cIH for some c ∈ C.

Corollary 2.12. Let (H,πH) be a unitary representation of G. Any two non iso-

morphic G-irreducible subspaces of H are mutually orthogonal.

Proof. Let W1 and W2 be two non isomorphic G-irreducible subspaces of H, and

let qW1 and qW2 be the associated orthogonal projections.

Claim : qWi
are G− equivariant for i = 1, 2.

It’s enough to show that for i=1. Let h ∈ H ∼= W ⊕W⊥. Then h=x+y for some

x ∈W and y ∈W⊥. Then

qW1πH(g)(h) = qW1 (πH(g)(x) + πH(g)(y)) = πH(g)(x) = πH(g)qW1(h)

That is, qW1
is G-equivariant. ♦

So qW1q
∗
W2

= qW1ιW2 : W2 → W1 is G-equivariant. Since W1 and W2 are non

isomorphic, by Schur’s lemma, qW1
ιW2
≡ 0. That is, W1 and W2 are orthogonal.

Among many topological groups, compact groups have remarkable properties.

We present the basic results of unitary representations of compact groups.

Proposition 2.13. [2]

If G is compact, then

1. every irreducible representation of G is finite dimensional.

2. every unitary representation of G is a direct sum of irreducible representations.

Proposition 2.14. [11]

Let (H,πH) be an unitary representation of a compact group G.

There exists a decomposition

H = M⊕c11 ⊕M⊕c22 ⊕ · · · ⊕M⊕ckk

where Mi: G-irreducible distinct subspaces
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Chapter 3. Basics in quantum channels

Quantum channels are the objects we mainly treat in the thesis. This chapter

contains background definitions and propositions from both operator algebra and

the quantum information theory about quantum channels which is needed to our

study. For more details, we refer the reader to [4], [5], and [6].

Definition 3.1 (Completely positive maps). [4]

Let H and K be Hilbert spaces. A linear map Φ : B(H)→ B(K) is said to be

- positive if Φ(A) ≥ 0 for any positive matrix A ∈ B(H)

- n-positive if Φ⊗ In is positive, where Φ⊗ In : B(H)⊗Mn(C)→ B(K)⊗Mn(C) is

the linear map such that Φ⊗In(A⊗B) = Φ(A)⊗B for A ∈ B(H) and B ∈Mn(C).

- completely positive if it is n-positive for all n ≥ 1.

It follows from the definition that any completely positive map is postive. How-

ever, the converse is not true. For example [12] p.5, the transpose map T : Mn(C)→
Mn(C) defined by taking A 7→ At is an example of a positive map that is not com-

pletely positive.

Now we introduce a quantum system which we treat in the thesis. A formal defini-

tion of a state is the following.

Definition 3.2. [5]

Let H be a Hilbert space.

1. A state is a density operator ρ ∈ B(H), i.e, a positive operator in B(H) taht has

trace one.

Denote D(H) the set of all states of H, i.e. D(H) = {ρ ∈ B(H) : ρ ≥ 0, tr(ρ) = 1}.
2. A state that is a rank one projection is called a pure state. An impure state is

called a mixed state. Denote P(H) the set of all pure states of H.

i.e. P (H) = {ρ = ww∗ : w is an unit vector in H}.
3. The maximally mixed state of H is the state 1

dH
IH .

In quantum information theory, a quantum channel is a communication chan-

nel which can transmit quantum information between two quantum system. As

Definition 3.2, since a quantum state is positive and has trace one, the output state

transmitted by a quantum channel must be positve and have trace one. So, we can

guess a quantum channel must be positve and trace-preserving.

Definition 3.3. [4]

A quantum channel Φ : B(H) → B(K) is a linear completely positive trace-

preserving map. A quantum channel Φ is said to be unital if Φ( 1
dH
IH) = 1

dK
IK .

Denote QC(H,K) := {quantum channels from B(H) to B(K)}.
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The next proposition gives us a method to construct a new quantum channel

from given isometry. This technique is crucial in constructing EPOSIC channel, to

be introduced in chapter 5.

Proposition 3.4. [1]

Let H and K be Hilbert spaces. For any α ∈ B(H,K), the map Adα is a linear

completely positive map.

And Adα is a channel if and only if α is an isometry.

Proof. Let A ≥ 0 in B(H). Then there exists B ∈ B(H) such that A = BB∗. So,

Adα(A) = αAα∗ = αBB∗α∗ = αB(αB)∗ ≥ 0

Let n ∈ N. Note that B(H)⊗Mn(C) ∼= B(H⊗Cn). So Adα⊗ In = Adα⊗ICn . That

is, Adα is completely positive.

If α is an isometry, then tr(Adα(A)) = tr(αAα∗) = tr(A). That is, Adα is trace

preserving.

A quantum channel has many equivalent representations. We give some of

those in this chapter.

Definition 3.5 (Stinespring representation).

Let H and K be Hilbet spaces and Φ : B(H) → B(K) be a quantum channel. A

Stinespring representation of Φ is a pair (E,α) consisting of a Hilbert space E (an

environment space), and an isometry α : H → K⊗E such that Φ(A) = TrE(αAα∗)

for any A ∈ B(H).

Definition 3.6 (Kraus representation).

Let H and K be Hilbet spaces and Φ : B(H)→ B(K) be a completely positive map.

A Kraus representation of Φ is a set of operators {Tj : 1 ≤ j ≤ k} ⊂ B(H,K) that

satisfies

Φ(A) =

k∑
j=1

TjAT
∗
j

.

The operators {Tj : 1 ≤ j ≤ k} are called Kraus operators. If Φ is a quantum chan-

nel, then a Kraus representation of Φ is required to satisfy the additional condition

k∑
j=1

T ∗j Tj = IH

.

Theorem 3.7. [6]

Let H and K be Hilbert spaces and Φ : B(H) → B(K) be a linear map. The fol-

lowings are equivalent:

7



1. Φ is a quantum channel.

2. Φ has a Stinespring representation (E,α)

3. Φ has a Kraus representation.

Note that a Stinespring represenation exists for any completely positive map

[12] p.43.

From now on, we assume the Hilbet spaces H and K are representation spaces of G.

And we restrict our study to a class of quantum channels that are also G-equivariant

maps with respect to a given group G, called G-covariant channels.

Definition 3.8 (G-covariant Channels). [4]

Let (H,πH) and (K,πK) be two unitary representations of a topological group G.

A quantum channel Φ : B(H) → B(K) is G-covariant if Φ(πH(g)Aπ∗H(g)) =

πK(g)Φ(A)π∗K(g) for all A ∈ B(H) and g ∈ G.

If both πH and πK are irreducible representations, then Φ is called G-irreducibly

covariant.

We denoteQC(H,K)G := {G−covariant quantum channels from B(H) to B(K)}.

Example 3.9.

TrH is a G-covariant channel.

Proof. Since we know that TrH is a G-equivariant map, it’s enough to show that

TrH is a quantum channel. Note that TrH is a quantum channel with a Stinespring

representation (H, IH⊗K).

The following proposition is straightforward.

Proposition 3.10.

Let G be a topological group. The tensor product of G-covariant channels, and the

composition of G-covariant channels are again G-covariant channels.

Proposition 3.11.

Let H, K, and E be Hilbert spaces. Let Φ : B(H) → B(K) be a quantum channel

whose Stinespring representation is (E,α).

If α : H → K ⊗ E is G-equivariant, then Φ is G-covariant.

Proof. By Example 3.9, the partial trace over E TrE is G-equivariant. By Exam-

ple 2.10, Adα is G-equivariant. By Proposition 2.8 and definition of Stinespring

represenation, Φ = TrE ◦Adα is a G-covariant channel.

8



Chapter 4. Basics in quantum

information theory

The existence of noise in all information processing systems affects the trans-

mission of information over a quantum channel. A well-known measure of a channel

performance is the Minimal Output Entropy(MOE). In this chapter, we give the def-

inition of MOE, minimal output Rényi entropy, and exhibit some of its properties.

For more details, we refer the reader to [4].

Definition 4.1 (Entropy).

Let H and K be a Hilbert space, ρ ∈ D(H), and Φ ∈ QC(H,K).

The von Neumann entropy of a density operator ρ is defined by

S(ρ) = −tr(ρlog2ρ)

The minimal output entropy(MOE) of a quantum channel Φ is defined by

Smin(Φ) = min{S(Φ(ρ)) : ρ ∈ D(H)}

where S is the von Neumann entropy.

Note that S(ρ) =
∑
i−λilog2λi where {λi}i are the eigenvalues of ρ. By con-

vention, 0log20 = 0.

Theorem 4.2.

1. The von Neumann entropy is a concave nonnegative function, which is zero if

and only if the state is pure.

2. In a d dimentional Hilbert space H, the von Neumann entropy for a state of H

is at most log2d. It is log2d if and only if the state is the maximal mixed state IH
d .

In the definition of minimal output entropy, the minimum is taken over all

the states in H. However, by the concavity of von Neumann entropy, the minimal

output entropy is achieved on a pure state.

i.e. Smin(Φ) = min{S(Φ(ρ)) : ρ ∈ P (H)}

Proposition 4.3. [1]

Let H and K be Hilbert spaces and Φ : B(H)→ B(K) be a quantum channel. Then

Smin(Φ) = 0 if and only if there exist ρ ∈ P (H) such that Φ(ρ) ∈ P (K).

Proof. By continuity of the von Neumann entropy and compactness of the set of

states[6, p.29], the minimum entropy is achieved. The other direction is trivial.
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We introduce another entopy of a quantum channel, called minimal output

Rényi entropy, which is important in that we can guess MOE using it.

Definition 4.4 (Rényi entropy).

Let p > 1, H and K be a Hilbert space, ρ ∈ D(H), and Φ ∈ QC(H,K).

The quantum Rényi entropy of order p of a density operator ρ is defined by

Rp(ρ) =
1

1− p
log2trρ

p

The minimal output Rényi entropy of order p of a quantum channel Φ is defined by

Řp(Φ) = min{Rp(Φ(ρ)) : ρ ∈ D(H)}

Remark 4.5. [4]

Let p > 1, H and K be a Hilbert space, ρ ∈ D(H), and Φ ∈ QC(H,K).

(i) As p↘ 1, Rp(ρ)↗ S(ρ) for any ρ ∈ D(H)

(ii) limp↘1 Řp(Φ) = Smin(Φ) for any Φ ∈ QC(H,K)

There is another important measure of a channel performance. A channel’s

capacity is defined to be the maximal rate of at which information can be reliably

transmitted through the channel. The capacity has a maximum when the channel

is an identity.

Notation 1.

A state ensemble {pi, ρi}i∈I is a finite probability distribution on D(H) ascribing pi

to ρi where I is a finite index set such that
∑
i∈I pi = 1

Definition 4.6 (Holevo capacity).

The Holevo capacity of a channel Φ : B(H)→ B(K) is defined by

Cχ(Φ) := max{pi,ρi}

[
S

(
Φ(
∑
i

piρi)

)
−
∑
i

piS(Φ(ρi))

]

where {pi, ρi}:a state ensemble

The Holevo capacity is sometimes called the χ-capacity or the product state

capacity. In a d dimentional Hilbert space H, the maximum of the Holevo capacity

is log2d, which is occured when the channel is an identity on B(H). The Holevo

capacity can be computed in another way other than definition for a number of

interesting channels. We present one of those ways we will use in the thesis.

Theorem 4.7. [4]

Let (H,πH) and (K,πK) be two irreducible representations of a topological group

G. Suppose Φ : B(H)→ B(K) is a G-irreducibly covariant quantum channel. Then

Cχ(Φ) = S
(

Φ
(
IH
dH

))
− Smin(Φ).
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Chapter 5. SU(2)-irreducible

representations and covariant channels

By Proposition 3.4 and Example 2.10, if we have a G-equivariant isometry α,

we can construct the G-covariant channel Adα. For the compact group SU(2), such

a G-equivariant isometry is already studied and known with its specific formulas,

by Clebsch and Gordan. According to the Clebsch-Gordan Decomposition [10] 87p,

if H and K are two SU(2)-irreducible subspaces, then the SU(2)-space K ⊗ E is

isomorphic to ⊕iHi where Hi is SU(2)-irreducible subspace with multiplicity one.

For each i, the inclusion map αi : Hi → K⊗E is an SU(2)-equivariant isometry. In

this chapter, we find an explicit formulas for the map αi and construct the SU(2)-

irreducibly covariant channel using αi, called an EPOSIC channel. For more details,

we refer the reader to [1], [13] and [14].

For m ∈ N, let Pm be the space of homogeneous polynomials of degree m in the two

variables x1, x2. Then Pm is a complex vector space of dimension m+1 with a basis

{xi1xm−i2 }. Define an inner product on Pm by < xl1x
m−l
2 , xk1x

m−k
2 >= l!(m− l)!δlk.

Then Pm is a Hilbert space. We choose the orthonormal basis for Pm given by the

polynomials {fml = almx
l
1x
m−l
2 : 0 ≤ l ≤ m} where aml = 1√

l!(m−l)!
. This basis is

called canonical [14] p.280.

Recall that SU(2) =


 a b

−b a

 : a, b ∈ C, |a|2 + |b|2 = 1


Remark 5.1. [14]

For m ∈ N, define πm : SU(2) → B(Pm) by (πm(g)f) (x1, x2) = f((x1, x2)g) =

f(ax1 − bx2, bx1 + ax2) for f ∈ Pm and g ∈ SU(2).

Note that the set {πm : m ∈ N} constitutes the full list of the irreducible represen-

tations of SU(2)

In representation theory,

πm ⊗ πn ∼= ⊕min{m,n}h=0 πm+n−2h

is a classical result. Consequently, we obtain

Pm ⊗ Pn ∼= ⊕min{m,n}h=0 Pm+n−2h

One remarkable fact is that the inclusion map from Pm+n−2h into Pm ⊗ Pn is an

SU(2)-equivariant isometry for 0 ≤ h ≤ min{m,n}. This is due to Clebsch and

Gordan.
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We build polynomial operators on the SU(2)-space Pm ⊗ Pn. To obtain a concrete

representation of Pm ⊗ Pn, let x = (x1, x2), y = (y1, y2), Pm := Pm(x), and Pn :=

Pn(y). We embed the tensor product Pm(x)⊗ Pn(y) into C[x, y] as follows:

Define the map Pm(x) × Pn(y) → C[x, y] by (f(x), g(y)) 7→ f(x)g(y). Then it is

a bilinear map. So we can extends to a linear map T : Pm(x) ⊗ Pn(y) → C[x, y]

taking f(x)⊗ g(y) to f(x)g(y). Let Pm,n denote the vector space of polynomials in

x and y of bi-degree (m,n). The space Pm,n has a basis consisting of

{xs1xm−s2 yt1y
n−t
2 =

1

ams a
n
t

T (fms ⊗ fnt ) : 0 ≤ s ≤ m, 0 ≤ t ≤ n}

Since the map T takes a basis for Pm⊗Pn to a basis in Pm,n, it is an isomorphsim.

Hence, we will use Pm,n as a concrete representation of Pm ⊗ Pn.

Definition 5.2.

For m,n ∈ N, define the following maps on Pm ⊗ Pn

∆xy : Pm ⊗ Pn → Pm+1 ⊗ Pn−1

f(x, y) 7→
(
x1

∂

∂y1
+ x2

∂

∂y2

)
f(x, y)

∆yx : Pm ⊗ Pn → Pm−1 ⊗ Pn+1

f(x, y) 7→
(
y1

∂

∂x1
+ y2

∂

∂x2

)
f(x, y)

Γxy : Pm ⊗ Pn → Pm+1 ⊗ Pn+1

f(x, y) 7→ (x1y2 + y1x2)f(x, y)

Ωxy : Pm ⊗ Pn → Pm−1 ⊗ Pn−1

f(x, y) 7→
(

∂

∂x1

∂

∂y2
+

∂

∂x2

∂

∂y1

)
f(x, y)

for f(x, y) ∈ Pm ⊗ Pn.

Remark 5.3.

The operators ∆xy, ∆yx, Γxy, and Ωxy are SU(2)-equivariant, and satisfies

∆∗xy = ∆yx, Γ∗xy = Ωxy

Theorem 5.4 (Clebsch-Gordan expansion).

Let m,n ∈ N and f(x, y) ∈ Pm ⊗ Pn.

Then

f(x, y) =

min{m,n}∑
h=0

cm,n,hΓhxy∆n−h
yx ∆n−h

xy Ωhxy(f(x, y))

12



where the coefficients cm,n,h are determined by induction as follows:

cm,0,0 = 1 for m ∈ N. And for n ≥ 1 and 0 ≤ h ≤ min{m,n},

cm,n,h =


1

(m+1)ncm+1,n−1,h, h = 0

1
(m+1)n [cm−1,n−1,h−1 + cm+1,n−1,h], 0 < h < n

1
(m+1)ncm−1,n−1,h−1, h = n

Definition 5.5.

For m,n, h ∈ N with 0 ≤ h ≤ min{m,n}, let

αm,n,h : Pm+n−2h → Pm ⊗ Pn

f(x1, x2) 7→ √cm,n,hΓhxy∆n−h
yx (f(x1, x2))

where f(x1, x2) ∈ Pm+n−2h.

αm,n,h is the inclusion map from Pm+n−2h into Pm ⊗ Pn as mentioned above.

By Remark5.3, the conjugate map of αm,n,h is given by

α∗m,n,h : Pm ⊗ Pn → Pm+n−2h

g(x1, x2, x3, x4) 7→ √cm,n,h∆n−h
xy Ωhxy(g(x1, x2, x3, x4))

and α∗m,n,h is also a SU(2)-equivariant map.

Note that αm,n,hα
∗
m,n,h(g) = cm,n,hΓhxy∆n−h

yx ∆n−h
xy Ωhxy(g). By Clebsch-Gordan ex-

pansion, we obtain
min{m,n}∑

h=0

αm,n,hα
∗
m,n,h = IPm⊗Pn

Proposition 5.6.

For m,n, h ∈ N with 0 ≤ h ≤ min{m,n}, the map αm,n,h is an SU(2)-equivariant

isometry.

Proof. Since Γxy and ∆yx are SU(2)-equivariant, αm,n,h is SU(2)-equivariant.

Let 0 ≤ h, s ≤ min{m,n}. Then α∗m,n,hαm,n,s : Pm+n−2s → Pm+n−2h is an SU(2)-

equivariant map and Pm+n−2s, Pm+n−2h are irreducible spaces. By Schur’s lemma,

we have

α∗m,n,hαm,n,s =

0, h 6= s

cIPm+n−2h
, h = s

for some c ∈ C. Then we have

α∗m,n,h = α∗m,n,hIPm⊗Pn
= α∗m,n,h

min{m,n}∑
s=0

αm,n,sα
∗
m,n,s = cIPm+n−2h

α∗m,n,h = cα∗m,n,h

Since αm,n,h(xm+n−2h
1 ) 6= 0, αm,n,h 6= 0 whence α∗m,n,h 6= 0. Thus, c=1.

Since α∗m,n,hαm,n,h = IPm+n−2h
, αm,n,h is an isometry.

13



As mentioned in first of this chapter, since αm,n,h is an SU(2)-equivariant

isometry, by Proposition 3.4 and Example 2.10, we have the G-irreducibly covariant

channel Adαm,n,h
. And we know that TrPn

is a SU(2)-irreducibly covariant channel.

By Proposition 3.11, we can construct:

Proposition 5.7. [1]

For m,n, h ∈ N with 0 ≤ h ≤ min{m,n}. Define Φm,n,h : B(Pr) → B(Pm) by

Φm,n,h(A) = TrPn
(αm,n,hAα

∗
m,n,h) for A ∈ B(Pr).

Then Φm,n,h is an SU(2)-irreducibly covariant channel.

Proof. Note that Φm,n,h = TrPn
◦Adαm,n,h

.

We call the quantum channel Φm,n,h an EPOSIC channel. Denote by

EC(r,m) := {all EPOSIC channels from B(Pr) into B(Pm)}

and abbreviate EC(m,m) to EC(m).

Remark 5.8.

Let r,m ∈ N. Then EC(r,m) = {Φm,r+m−2l,m−l : 0 ≤ l ≤ min{r,m}} =

{Φm,r−m+2h,h : 0 ≤ h ≤ min{m, r −m+ 2h}, r −m+ 2h ≥ 0}.
Note that (Pn, αm,n,h) is a Stinespring representation of Φm,n,h.

For 0 ≤ j ≤ n, define Tj : Pr → Pm by Tj = (IPm
⊗ fnj

∗)αm,n,h. Then the

set {Tj : 0 ≤ j ≤ n} is a Kraus representation of Φm,n,h. We call these Kraus

opereators, the EPOSIC Kraus operators.

Now we introduce new notation:

Notation 2.

For m,n, h ∈ N with 0 ≤ h ≤ min{m,n}, denote r = m + n − 2h, 0 ≤ i ≤ r,

0 ≤ j ≤ n, 0 ≤ l ≤ m.

Define B(i) := {j : max{0,−m+ i+ h} ≤ j ≤ min{i+ h, n}} and lij := i− j + h.

The proof of Lemma 5.9 below is a direct computation. For the proof, we refer

the reader to [1] Appendix B.

Lemma 5.9.

Let m,n, h ∈ N with 0 ≤ h ≤ min{m,n}. Then

αm,n,h(fri ) =

h∑
s=0

min{i+s,n−h+s}∑
j=max{s,−m+i+h+s}

βm,n,hi,s,j fmlij ⊗ f
n
j

where

βm,n,hi,s,j = (−1)s

(
h
s

)(
n−h
j−s
)(

m−h
i−j+s

)
(m− h)!

√
cm,n,hr!m!n!(
r
i

)(
m

i−j+h
)(
n
j

)
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Corollary 5.10. [1]

Let m,n, h ∈ N with 0 ≤ h ≤ min{m,n}. Then

αm,n,h(fri ) =
∑
j∈B(i)

εji (m,n, h)fmlij ⊗ f
n
j

where εji (m,n, h) =

min{h,j,j+m−i−h}∑
s=max{0,j−i,j+h−n}

βm,n,hi,s,j

Corollary 5.11.

Let m,n, h ∈ N with 0 ≤ h ≤ min{m,n} and {Tj : 0 ≤ j ≤ n} are the EPOSIC

Kraus operators of Φm,n,h. Then for each 0 ≤ j ≤ n

Tj(f
r
i ) =

ε
j
if
m
lij
, if j ∈ B(i) where εji is given in Corollary 5.10

0, otherwise B(i) is given in Notation2

Proof.

Tj(f
r
i ) = (IPm

⊗ fnj
∗)αm,n,h(fri ) = IPm

⊗ fnj
∗

 ∑
j∈B(i)

εji (m,n, h)fmlij ⊗ f
n
j


=

ε
j
if
m
lij
, if j ∈ B(i)

0, otherwise

by Corollary 5.10.

Corollary 5.12.

Let m,n, h ∈ N with 0 ≤ h ≤ min{m,n}. For 0 ≤ i1, i2 ≤ r,

Φm,n,h(fri1f
r
i2
∗) =

∑
j∈B(i1)∩B(i2)

εji1ε
j
i2
fmli1j

fmli2j

∗

Proof. Let {Tj : 0 ≤ j ≤ n} be the EPOSIC Kraus operators of Φm,n,h. Then

Φm,n,h(fri1f
r
i2
∗) =

n∑
j=1

Tjf
r
i1f

r
i2
∗T ∗J =

n∑
j=1

(Tjf
r
i1)(Tjf

r
i2)∗

=
∑

j∈B(i1)∩B(i2)

(εji1f
m
li1j

)(εji2f
m
li2j

)∗ =
∑

j∈B(i1)∩B(i2)

εji1ε
j
i2
fmli1j

fmli2j

∗

by Corollary 5.11.

Here, we study SU(2)-irreducibly covariant channels. The rest of this chap-

ter depends heavily on [1] Chapter 5. We will see that EC(r,m) consists of all

the extreme points of QC(Pr, Pm)SU(2). This is why the name of the channels is

EPOSIC(the Extreme Points Of SU(2)-Irreducibly Covariant channels).

Proposition 5.13. [1]

Let r,m ∈ N. The set QC(Pr, Pm)SU(2) is the convex hull of EC(r,m).

Moreover, any element in QC(Pr, Pm)SU(2) is uniquely written as a convex combi-

nation of elements of EC(r,m).
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Proposition 5.14.

Let r,m ∈ N. The set EC(r,m) forms all the extreme points of QC(Pr, Pm)SU(2).

Proof. By Proposition 5.13, every element in EC(r,m) can not be written as a

proper convex combination of elements of QC(Pr, Pm)SU(2) other than itself. That

is, EC(r,m) are extreme points of QC(Pr, Pm)SU(2). Conversely, let Φ be an extreme

point of QC(Pr, Pm)SU(2). Then it cannot be written as as convex combination of

elements of QC(Pr, Pm)SU(2) other than itself. But QC(Pr, Pm)SU(2) is the convex

hull of EC(r,m) by Proposition 5.13. Hence, Φ must be in EC(r,m).
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Chapter 6. Properties of

SU(2)-irreducibly covariant channels

In this chapter, we compute the entropy and the Holevo capacity of EPOSIC

channels. And using the relation between EPOSIC channels and SU(2)-irreducibly

covariant channels, we determine the entropy and the capacity of SU(2)-irreducibly

covariant channels. In addition to the result of [1], we give computation of the

Rényi entropy and the Holevo capacity for some cases in this thesis. To compute

the Holevo capacity of SU(2)-irreducibly covariant channels, we usually use Theorem

4.7. So, it is important to know the minimal output entropy of the channels. The

next proposition enable us to determine when the minimal output entropy of an

EPOSIC channel is zero.

Proposition 6.1. [1]

For m,n, h ∈ N, the channel Smin(Φm,n,h) = 0 if and only if h = 0.

The following proposition and corollary is newly presented in this thesis.

Proposition 6.2.

Let M := minΦ∈EC(r,m)Smin(Φ) and Φ ∈ QC(Pr, Pm)SU(2). Then

i) M ≤ Smin(Φ)

ii) 0 ≤ Cχ(Φ) ≤ log2(m+ 1)−M

Proof. i) By continuity of von Neumann entropy and compactness of the set of

states, the minimam output entropy is achievable. That is, there exists ρ = ww∗ ∈
P (Pr) such that S(Φ(ρ)) = Smin(Φ). Since co(EC(r,m)) = QC(Pr, Pm)SU(2), if

|EC(r,m)| = t, then Φ =
∑t
i=1 ciψi where ci ≥ 0,

∑t
i=1 ci = 1, {ψ1, · · · , ψt} =

EC(r,m). So

Smin(Φ) = S(Φ(ρ)) = S

(
t∑
i=1

ciψi(ρ)

)
≥

t∑
i=1

ciS (ψi(ρ)) ≥
t∑
i=1

ciSmin(ψi) ≥
t∑
i=1

ciM

= M

ii) 0 ≤ Cχ(Φ) = S

(
Φ

(
IPr

r + 1

))
−Smin(Φ) ≤ log2(m+1)−Smin(Φ) ≤ log2(m+1)−M

by Theorem 4.7

Corollary 6.3.

For m ∈ N and 0 ≤ r ≤ m− 1, Cχ(Φ) < log2(m+ 1) for any Φ ∈ QC(Pr, Pm)SU(2)
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Proof. Note that EC(r,m)= {Φm,r−m+2h,h : 0 ≤ h ≤ min{m, r−m+ 2h}, r−m+

2h ≥ 0}. To be r−m+2h ≥ 0 with 0 ≤ r ≤ m−1, h must be equal or greater than

1. Since Smin(Φm,n,h) = 0 if and only if h = 0, Smin(ψ) > 0 for any ψ ∈ EC(r,m).

Hence

M := minψ∈EC(r,m)Smin(ψ) > 0

By Proposition 6.2, Cχ(Φ) ≤ log2(m+ 1)−M < log2(m+ 1).

Now we compute measurement of SU(2)-irreducibly covariant channels such as

the minimal output entropy. Since EC(r,m) = {Φm,r−m+2h,h : 0 ≤ h ≤ min{m, r−
m+ 2h}, r−m+ 2h ≥ 0} is a finite set whose cardinality depends on the numbers

r and m, it is possible to be easy for computing the measurement of the channels if

|EC(r,m)| ≤ 2.

In this thesis, we compute Smin(Φ) and Řp(Φ) for any Φ ∈ QC(P1, Pm)SU(2), m ∈
N. Smin(Φ) have been computed by [1], but Řp(Φ) is newly computed. In that

case, EC(1,m) = {Φm,m+1,m,Φm,m−1,m−1} and the standard basis for P1 is given

by f1
0 (x1, x2) = x2 and f1

1 (x1, x2) = x1.

Lemma 6.4. [1]

Let m ∈ N and w ∈ P1 with ‖w‖ = 1. Then

i) There exists g ∈ SU(2) such that π1(g)(f1
0 ) = w.

ii) If Φ : B(P1)→ B(Pm) is an SU(2)-equivariant map, then the matrices Φ(ww∗) and Φ(f1
0 f

1
0
∗
)

are similar.

Proof. i) Since P1 =< f1
0 , f

1
1 >, w = w0f

1
0 + w1f

1
1 for some w0, w1 ∈ C with

|w0|2 + |w1|2 = 1. Choose g =

 w0 w1

−w1 w0

 ∈ SU(2)

Then (π1(g)f1
0 )(x1, x2) = f1

0 (w0x1 − w1x2, w1x1 + w0x2) = w1x1 + w0x2

= w0f
1
0 (x1, x2) + w1f

1
1 (x1, x2) = w(x1, x2)

ii) Since Φ is SU(2)-equivariant and by i),

Φ(ww∗) = Φ(π1(g)f1
0 f

1
0
∗
π∗1(g)) = πm(g)Φ(f1

0 f
1
0
∗
)π∗m(g)

Lemma 6.5. [1]

1. Φm,m+1,m(f1
0 f

1
0
∗
) =

m∑
j=0

2(m− j + 1)

(m+ 1)(m+ 2)
fmm−jf

m
m−j

∗

2. Φm,m−1,m−1(f1
0 f

1
0
∗
) =

m−1∑
j=0

2(j + 1)

m(m+ 1)
fmm−j−1f

m
m−j−1

∗

18



Proof. Direct from Corollary 5.12 and the formula of εji .

Theorem 6.6.

Let m ∈ N and Φ ∈ QC(P1, Pm)SU(2). Then there exists p ∈ [0, 1] such that the

eigenvalues of Φ(f1
0 f

1
0
∗
) are

{λj =
2(m− j + 1)

(m+ 1)(m+ 2)
p+

2j

m(m+ 1)
(1− p)}

In that cases, Smin(Φ) = −
∑m
j=0 λj log2λj and Řp(Φ) = 1

1−p log2

(∑m
j=0 λj

p
)

Proof. Since Φ ∈ QC(P1, Pm)SU(2) = co (EC(1,m)) = co ({Φm,m+1,m,Φm,m−1,m−1}),
there exists p ∈ [0, 1] such that Φ = pΦm,m+1,m + (1− p)Φm,m−1,m−1. So

Φ(f1
0 f

1
0
∗
) = pΦm,m+1,m(f1

0 f
1
0
∗
) + (1− p)Φm,m−1,m−1(f1

0 f
1
0
∗
)

=
2p

m+ 2
fmm f

m
m + +

m∑
j=1

(
p

2(m− j + 1)

(m+ 1)(m+ 2)
+ (1− p) 2j

m(m+ 1)

)
fmm−jf

m
m−j

∗

=

m∑
j=0

(
p

2(m− j + 1)

(m+ 1)(m+ 2)
+ (1− p) 2j

m(m+ 1)

)
fmm−jf

m
m−j

∗ =

m∑
j=0

λjf
m
m−jf

m
m−j

∗

Hence, Smin(Φ) = S(Φ(ww∗)) = S(φ(f1
0 f

1
0
∗
)) = −

m∑
j=0

λj log2λj

Řp(Φ) = Rp(Φ(ww∗)) = Rp(φ(f1
0 f

1
0
∗
)) =

1

1− p
log2

 m∑
j=0

λj
p



Note that Cχ(Φ) = S
(

Φ
(
IH
dH

))
− Smin(Φ). To compute the Holevo capacity

of EPOSIC channels, we need to compute its minimal output entropy and von

Neumann entropy of Φm,n,h

(
IPr

r+1

)
.

Remark 6.7.

We can compute Φm,n,h

(
IPr

r+1

)
for any m,n, h ∈ N with 0 ≤ h ≤ m+ n− 2h.

Proof.

S

(
Φm,n,h

(
IPr

r + 1

))
= S

(
Φm,n,h

(
r∑
i=0

1

r + 1
fri f

r
i
∗

))
= S

 r∑
i=0

∑
j∈B(i)

εij
2

r + 1
fmlijf

m
lij
∗


=calculation S

(
m∑
l=0

alf
m
l f

m
l
∗

)
= −

m∑
l=0

allog2al

So, it is relatively easy to compute the capacity of EPOSIC channels. Now we

compute Smin(Φm,1,1), Cχ(Φm,1,1), and Řp(Φm,1,1) for any m ≥ 1. Smin(Φm,1,1)

have been computed by [1], but Cχ(Φm,1,1), and Řp(Φm,1,1) are newly computed.
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Lemma 6.8. [1]

Let K be a finite dimensional Hilbert space, and A ∈ B(K) such that A =
∑n
j=1 ujuj

∗.

If {uj : 0 ≤ j ≤ n} are linearly independent vectors in K, then there exist a basis

for K such that the matrix represents A is in the form

< u1|u1 > < u1|u2 > · · · < u1|un > 0 · · · 0

< u2|u1 > < u2|u2 > · · · < u2|un > 0 · · · 0

...
...

...
...

...

< un|u1 > < un|u2 > · · · < un|un > 0 · · · 0

0 0 0 0 · · · 0

...
...

...
...

...

0 0 0 0 · · · 0


A matrix in a such form is called Gram matrix.

Proof. Let {un+1, un+2, · · · , udk} be a basis for the orthogonal complement of <

uj : 1 ≤ j ≤ n > in K. Set U = {u1, u2, · · · , un, un+1, un+2, · · · , udk}. Then U

forms a basis for K. For each uk ∈ U, we have

Auk =

n∑
j=1

ujuj
∗(uk) =


∑n
j=1 < uj |uk > uj , 1 ≤ k ≤ n

0, k > n

The result follews by writing the matrix for A with repect to the basis U.

Corollary 6.9. [1]

Let m,n ∈ N with n ≤ m, and ρ ∈ P (Pm−n). Then the matrix representing

Φm,n,n(ρ) is in the form of a Gram matrix.

Proof. Let {Tj : 0 ≤ j ≤ n} be the EPOSIC Kraus operators of Φm,n,n, and

ρ = ww∗ where w is a unit vector in Pr = Pm−n. Then

Φm,n,n(ww∗) =

n∑
j=0

ujuj
∗ where uj = Tjw =

m−n∑
i=0

wiε
j
if
m
i−j+n =

m−j∑
k=n−j

wk+j−nε
j
k+j−nf

m
k

Since εji (m,n, n) are nonzero, the set {uj : 0 ≤ j ≤ n} is linearly independent. By

Lemma 6.8, the result follows.

Note that for m ∈ N, the EPOSIC channel Φm,1,1 : B(Pm−1) → B(Pm) has

two Kraus operator {T0, T1}. Let w =
∑m−1
i=0 wif

m−1
i ∈ Pm−1 and ρ = ww∗.

Then u0 = T0w =
∑m
i=1 ε

0
i−1wi−1f

m
i and u1 = T1w =

∑m−1
i=0 ε1

iwif
m
i by Corollary

5.11. By Corollary 6.9, there exists a basis for Pm such that the matrix Φm,1,1 is
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represented by

A :=



< u0|u1 > < u0|u1 > 0 · · · 0

< u1|u0 > < u1|u1 > 0 · · · 0

0 0 0 · · · 0

...
...

...
...

0 0 0 · · · 0


The characteristic polynomial of A is given by

p(λ) = det(λI −A) = λ2 − (‖u0‖2 + ‖u1‖2)λ+ ‖u0‖2‖u1‖2 − | < u0|u1 > |2

Set R:=‖u0‖2‖u1‖2 − | < u0|u1 > |2.

Lemma 6.10.

For m ∈ N and εji := εji (m, 1, 1), we have

ε0
i =

√
i+ 1

m+ 1
, ε1

i = −
√
m− i
m+ 1

for 0 ≤ i ≤ m− 1

By Lemma 6.10, we obtain

‖u0‖2 + ‖u1‖2 =

m−1∑
i=0

(ε0
i )

2w2
i +

m−1∑
i=0

(ε1
i )

2w2
i =

m−1∑
i=0

(ε0
i )

2 + (ε1
i )

2w2
i

=

m−1∑
i=0

i+ 1

m+ 1
+
m− i
m+ 1

w2
i =

m−1∑
i=0

w2
i = 1

Hence p(λ) = λ2 − λ+R. So p(λ) = 0 implies λ = 1±
√

1−4R
2 .

Since Φm,1,1 is completely positive and ww∗ is positive, the eigenvalues are nonneg-

ative real numbers. So 0 ≤ 1− 4R ≤ 1.

Lemma 6.11.

For m ∈ N, the minimum value of R=‖u0‖2‖u1‖2 − | < u0|u1 > |2 is m
(m+1)2 .

Proof.

Note that < u0, u1 >=

m−1∑
i=1

ε0
i−1wi−1ε

1
iwi =

m−1∑
i=1

ε0
i−1wiε

1
iwi−1 =< v0, v1 >

where v0 =

m−1∑
i=1

ε0
i−1wif

m
i , v1 =

m−1∑
i=1

ε1
iwi−1f

m
i

Then ‖v0‖2 =

m−1∑
i=1

(ε0
i−1)2|wi|2 =

m−1∑
i=1

(ε0
i−1)2|wi|2 +

‖w‖2

m+ 1
− ‖w‖

2

m+ 1

=
1

m+ 1
|w0|2 +

m−1∑
i=1

(
(ε0
i−1)2 +

1

m+ 1

)
|wi|2 −

‖w‖2

m+ 1
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Since ε0
i =

√
i+1
m+1 , ε0

0 = 1
m+1 and (ε0

i−1)2 + 1
m+1 = (ε0

i )
2. Hence

‖v0‖2 = (ε0
0)2|w0|2 +

m−1∑
i=1

(ε0
i )

2|wi|2 −
1

m+ 1
=

m−1∑
i=0

(ε0
i )

2|wi|2 −
1

m+ 1

=

m∑
i=1

(ε0
i−1)2|wi−1|2 −

1

m+ 1
= ‖u0‖2 −

1

m+ 1

By same argument, ‖v1‖2 = ‖u1‖2 − 1
m+1 . So

| < u0|u1 > |2 = | < v0|v1 > |2 ≤ ‖v0‖2‖v1‖2 = (‖u0‖2 −
1

m+ 1
)(‖u1‖2 −

1

m+ 1
)

= ‖u0‖2‖u1‖2 −
1

m+ 1
(‖u0‖2 + ‖u1‖2) +

1

(m+ 1)2
= ‖u0‖2‖u1‖2 −

m

(m+ 1)2

Thus R = ‖u0‖2‖u1‖2 − | < u0|u1 > |2 ≥ m
(m+1)2

Since Rfm−1
0

= m
(m+1)2 , we conclude m

(m+1)2 is the minimum value of R.

By concavity of von Neumann entropy, S(Φm,1,1(ww∗)) achieves its minimum

when the difference between the two eigenvalues of Φm,1,1(ww∗) is maximum. This

happens when R takes its minimum value. Hence, we obtain

Theorem 6.12. [1]

Smin(Φm,1,1) = S(Φm,1,1(fm−1
0 fm−1

0

∗
)) = −(

1

m+ 1
log2

1

m+ 1
+

m

m+ 1
log2

m

m+ 1
)

Proof.

λ =
1

2

(
1±

√
1− 4Rfm−1

0

)
=

1

2

(
1±

√
1− 4

m

(m+ 1)2

)
=

1

2

(
1± m− 1

m+ 1

)
=

m

m+ 1
or

1

m+ 1

The following two theorems are newly computed in this thesis.

Theorem 6.13.

Let p > 1 and m ∈ N. Then

Řp(Φm,1,1) = Rp(Φm,1,1(fm−1
0 fm−1

0

∗
))

=
1

1− p
log2

((
1

2
+

1

2

√
1− 4m

(m+ 1)2

)p
+

(
1

2
− 1

2

√
1− 4m

(m+ 1)2

)p)
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Proof. By above argument, there exist a basis in Pm such that

Φm,1,1(ww∗)p =



λp0 0 0 · · · 0

0 λp1 0 · · · 0

0 0 0 · · · 0

...
...

...
...

0 0 0 · · · 0


where λ0 = 1+

√
1−4R
2 and λ1 = 1−

√
1−4R
2

So, Rp(Φm,1,1(ww∗)) = 1
1−p log2(λp0 + λp1).

Set b := 1
2

√
1− 4R. Then 0 ≤ b ≤ 1

2 since 0 ≤ 1− 4R ≤ 1. Define g(b) := λp0 + λp1.

Since p > 1 ⇒ 1
1−p < 0 and log2(x) is increasing on (0,∞), Rp(Φm,1,1(ww∗)) has

minimum when g(b) has maximum. Note that

g′(b) = pλp−1
0

dλ0

db
+ pλp−1

1

dλ1

db
= p

(
1

2
+ b

)p−1

− p
(

1

2
− b
)p−1

≥ 0 for 0 ≤ b ≤ 1

2

Hence g is increasing function on [0, 1
2 ]. Since b has maximum when R has minimum,

g(b) has maximum when R = m
(m+1)2 and w = fm−1

0 . Thus,

Řp(Φm,1,1) = Rp(Φm,1,1(fm−1
0 fm−1

0

∗
))

=
1

1− p
log2

((
1

2
+

1

2

√
1− 4m

(m+ 1)2

)p
+

(
1

2
− 1

2

√
1− 4m

(m+ 1)2

)p)

Theorem 6.14.

Cχ(Φm,1,1) =
m

m+ 1

(
log2

m

m+ 1
− log2

1

m+ 1

)
Proof. Note that B(i) = {j : 0 ≤ j ≤ 1} for any 0 ≤ i ≤ m− 1 = r. Then

S

(
Φm,1,1

(
IPm−1

m

))
= S

(
m−1∑
i=1

1

m

(
(ε0
i )

2fmi+1f
m
i+1
∗ + (ε1

i )
2fmi f

m
i
∗)) by Corollary 5.12

= S

(
1

m
(ε1

0)2fm0 f
m
0
∗ +

m−1∑
i=1

1

m

(
(ε0
i−1)2 + (ε1

i )
2
)
fmi f

m
i
∗ +

1

m
(ε0
m−1)2fmm f

m
m
∗

)

= S

(
1

m

m

m+ 1
fm0 f

m
0
∗ +

m−1∑
i=1

1

m

(
(ε0
i )

2 − 1

m+ 1
+ (ε1

i )
2

)
fmi f

m
i
∗ +

1

m

m

m+ 1
fmm f

m
m
∗

)

= S

(
1

m+ 1
fm0 f

m
0
∗ +

m−1∑
i=1

1

m

(
1− 1

m+ 1

)
fmi f

m
i
∗ +

1

m+ 1
fmm f

m
m
∗

)

= S

(
1

m+ 1
fm0 f

m
0
∗ +

m−1∑
i=1

1

m+ 1
fmi f

m
i
∗ +

1

m+ 1
fmm f

m
m
∗

)
= S

(
m∑
i=0

1

m+ 1
fmi f

m
i
∗

)

= −
m∑
i=0

1

m+ 1
log2

(
1

m+ 1

)
= −log2(

1

m+ 1
)
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Hence

Cχ(Φm,1,1) = S

(
Φm,1,1

(
IPm−1

m

))
− Smin(Φm,1,1)

= −log2(
1

m+ 1
) +

1

m+ 1
log2

1

m+ 1
+

m

m+ 1
log2

m

m+ 1

=
m

m+ 1

(
log2

m

m+ 1
− log2

1

m+ 1

)
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Summary

Some properties of SU(2)-irreducibly covariant
quantum channels

양자정보학에서정확한공식과성질이잘알려진양자채널은많이존재하지않는다. 본

학위논문에서는군 SU(2)에기약으로공변하는양자채널인 EPOSIC채널을소개하고,

그것의 χ-용량과 엔트로피를 계산한다. 군 표현론과 양자정보학의 기초를 복습하고,

군 표현론을 이용하여 새로운 양자채널들의 집합인 EPOSIC 채널을 만든다. 또한

EPOSIC 채널의 구체적인 공식과 성질들을 알아본다.

주요어: SU(2), EPOSIC 채널, 양자채널

학번: 2014-21188
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