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ABSTRACT

In quantum information theory, there are few quantum channels whose specific
formulas and properties are known. In this thesis, we introduce EPOSIC chan-
nels, a class of SU(2)-irreducibly covariant quantum channels, and compute their
x-capacity and entropy in some cases. We review the basics of group representation
theory and quantum information theory, and we construct EPOSIC channels, a
new class of quantum channels, using representation theory. We also study specific

formulas and properties of EPOSIC channels.
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Chapter 1. Introduction

Quantum information theory is a branch of science that quantum mechanics
and information theory are combined. One of the important open questions in
quantum information theory is that of determining the capability of the channel
to transmit classical information, which is known as the classical capacity of the
channel. The Holevo capacity is defined to be the classical capacity for the channel
with the restriction that there are no entangled input states are allowed across many
uses of the channel [5]. The additivity conjecture in quantum information is that
the classical capacity of a quantum channel is additive. A fundamental result of
quantum information theory, “the quantum coding theorem” [7] and [8], implies
that the classical capacity of a quantum channel ® is given by

i SX(@77)
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where C is the Holevo capacity. This shows that the additivity of the classical
capacity can be inferred from the additivity of another quantity, known as the
Holevo capacity. So, it is important to find counter-example of the additivity of the
Holevo capacity or to prove the additivity of the Holevo capacity for some class of
quantum channels. In 2008, Hastings [9] showed the existence of a counter-example
to the additivity of the Holevo capacity, using a random construction. However,
no explicit example was given. Moreover, there are few quantum channels whose
specific formulas and properties are well-known.

In this thesis, we present a new class of quantum channels whose specific formulas
is well-known from representation theory. And study their properties. The thesis
consists of six chapters. In chapter 1, we introduce our motivation of the study.
In chapter 2, we review the basic definitions and state all the related propositions
and theorem from representation theory. Chapter 3 contains the definitions and
all needed proposition about quantum channels. In chapter 4, we review the basic
definitions and state all the related propositions from quantum information theory.
Chapter 5 studies unitary representation of the compact group SU(2), and defines
an SU(2)-equivariant isometry, and construct EPOSIC channels. And see that
EPOSIC channels are the extreme points of SU(2)-irreducibly covariant channels.

Chapter 6 studies the properties of SU(2)-irreducibly covariant channels.



Chapter 2. Basics in representation

theory

In this thesis, we assume all vector spaces to be finite dimensional complex
vector spaces. The construction of EPOSIC channels, to be introduced in chapter
5, depends heavily on the representations of the compact group SU(2). The present
chapter contains background definitions and results from reprentation theory needed

for the thesis. For more details, we refer the reader to [2].

Definition 2.1 (Topological group).
A topological group is a group G equipped with a topology with respect to which the
group operations are continuous. i.e. (x,y) — xy and x — 1 are both continuous.

A compact group is a topological group whose topology is compact.

For example, the unit circle under complex multiplication with the usual topol-
ogy is a compact topological group. For another example, the set of real numbers
under the usual addition with the usual topology is a non-compact topological

group.

Definition 2.2 (Unitary representation).

Let G be a topological group and H be a Hilbert space.

A unitary representation of G in H is a group homomorphism 7 from G into the
group U(H) of unitary operators on H that is continuous with repect to the strong
operator topology.

That is, a map © : G — U(H) that satisfies w(zvy) = n(z)n(y) and w(x~t) =
1

m(x)~t =w(z)*, and x — w(x)u is continuous from G to H for any u € H.

In this case, H is called the representation space of .

For example, the group SU(n) has representations in C" given by matirx mul-

tiplication for any n € N.

Definition 2.3 (Irreducible representation).

Let (H,7) be a unitary representation of a topological group G. Suppose M is
a closed subspace of H. M is called an invariant subspace for m if m(g)M C M
for all g € G. If M is invariant and nontrivial, then the restriction of m to M,
M(

7 (g) = w(g)|M, defines a representation of G on M, called a subrepresentation

of m.
If m admits an invariant subspace that is nontrivial, then w is called reducible,

otherwise m is irreducible.

We now introduce some standard terminology associated to unitary represen-

tations.



Definition 2.4 (G-equivariant map). [2]

Let (H,my) and (K, 7k) be two unitary representations of a topological group G.

A G-equivariant map for my and 7 is a bounded linear map T : H — K such that
Trp(g) =k (g)T for all g € G.

A G-equivariant map is called an intertwing operator or an intertwiner.

The set of G-equivariant maps forms a vector spacae, denoted B(H, K) or C(ry, k).
7y and T are (unitarily) G-equivalent if B(H, K)¢ contains a unitary operator
U, so that wx(x) = UngU~1.

In such a case, the spaces H and K are called G-equivalent, or G-isomorphic.

Definition 2.5.
Let H be a Hilbert space with orthonormal basis={ey,ea, -+ ,en}.

Then un-normalized trace on B(H) is defined by the linear map
tr: B(H) — C

T—tr(T) = Z <ei|Te; >q
i=1

The definition of the trace does not depend on the choice of the basis.

If H and K are finite-dimensional, then B(H,K) is a Hilbert space endowed with
the Hilbert-Schmidt inner product given by

< A|B >B(H,K): t?“(A*B) for A,B € B(H, K)

Proposition 2.6.
Let (H,my) and (K, 7k) be two unitary representations of a topological group G.
Then the maps

TH®7mkg:G—=UH®®K)

g mr(9) ®TK(9)
Ty @7 :G—UHK)

g mu(g9) ® 7K (9)
THK : G — U(B(H,K))
g i (9)Amp(g")

define unitary representations of G in H @ K, H ® K, B(H, K) respectively.

Proof. Since the techniques to prove the three cases are same, we show only for
mh k- 1t is straight forward to show that 7y g is a group homomorphism. And
7w,k € B(B(H, K)) trivially.

Let A,B € B(H,K). Then

< Alru,k(9)B > x)=tr(A*nx (9)Bru(g7")) = tr(ru (97" ) A* 1k (9) B)
= tr((rux (97" A) B) =< 7tk (97 )AIB >p(m,x)
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By the uniqueness of the adjoint map, we have (my k(9))* = 7T x(g7").
By construction, g, i is continuous with respect to the strong operator topology.
O

From now on, unless specified otherwise, the representation of G on H ® K,
H & K, and B(H, K) will be taken to be the one as given in Proposition 2.6.

Proposition 2.7. [1]

Let (H,mg) and (K, 7k) be two unitary representations of a topological group G.
The map ¢ : B(H) — B(K) is G — equivariant if and only if

(mu(9)ATr(9)) = Tk (9)®(A)mE (g) for all A€ B(H) and g € G

Proposition 2.8.

For i=1,2, let (H;, ;) and (K;,7k,) be representations of a group G.

And let ®; : B(H;) — B(K;) be G-equivariant maps. Then

i) The tensor product and the direct sum of ®1 and Py are G-equivariant maps with

respect to the actions on the tensor product and the direct sum respectively.

1) If &1 and ®o are composable, then their composition is also G-equivariant.

Example 2.9.
Let (H,mp) and (K,7x) be two unitary representations of a topological group G.
Define the linear map by
Try : B(H® K) — B(K)
A® B tr(A)B

and extended by linearity, which is called the partial trace over H.

Then Try is a G-equivariant map.

Proof. Let g € G, and A; ® A2 € B(H ® K). Then

=Tru(ru(9)Aimy(9) @ Tr(9) A2k (9)) = tr(ma(9) Ay (9)) 7k (9) A (9)

Example 2.10.
Let (H,wy) and (K,7k) be two unitary representations of a topological group G.

Define the linear map by

Ad, : B(H) = B(K)
A~ aAa®
which is called the conjugation by . Then

1. If « is G-equivariant, then o is G-equivariant.

2. If a is G-equivariant, then Ad, is G-equivariant.



The following proposition is one of the fundamental result in representation

theory relating operators in B(H, K)© to reducibility properties of 7.

Proposition 2.11 (Schur’s Lemma). [2]
Let (H,mp) and (K,mx) be two unitary representations of G. If o : H — K is a
G-equivariant map, then either « = 0 or « is a G-isomorphism. In case of H=K

and Ty = T, then a = cly for some c € C.

Corollary 2.12. Let (H,7y) be a unitary representation of G. Any two non iso-

morphic G-irreducible subspaces of H are mutually orthogonal.

Proof. Let W1 and Wy be two non isomorphic G-irreducible subspaces of H, and

let qw, and g, be the associated orthogonal projections.
Claim : qw, are G — equivariant for ¢ =1,2.

It’s enough to show that for i=1. Let h € H = W @ W+. Then h=x+y for some
x €W and y € W+. Then

qw, i (9)(h) = qw, (71 (9)(2) + 71 (9)(y)) = 7r (9)(x) = 7r (9)qw, (h)

That is, qw, is G-equivariant. ¢

So qw, @y, = awitw, @ W2 — W is G-equivariant. Since W; and W» are non

isomorphic, by Schur’s lemma, gw, tw, = 0. That is, W; and W5 are orthogonal. [

Among many topological groups, compact groups have remarkable properties.

We present the basic results of unitary representations of compact groups.

Proposition 2.13. [2]
If G is compact, then
1. every irreducible representation of G is finite dimensional.

2. every unitary representation of G is a direct sum of irreducible representations.

Proposition 2.14. [11]
Let (H,7g) be an unitary representation of a compact group G.

There exists a decomposition
H=M oM. - &M

where M;: G-irreducible distinct subspaces



Chapter 3. Basics in quantum channels

Quantum channels are the objects we mainly treat in the thesis. This chapter
contains background definitions and propositions from both operator algebra and
the quantum information theory about quantum channels which is needed to our

study. For more details, we refer the reader to [4], [5], and [6].

Definition 3.1 (Completely positive maps). [4/

Let H and K be Hilbert spaces. A linear map ® : B(H) — B(K) is said to be

- positive if ®(A) > 0 for any positive matrix A € B(H)

- n-positive if ® ® I,, is positive, where PRI, : B(H) @M, (C) — B(K)®M,(C) is
the linear map such that ®Q1,(A® B) = ®(A)® B for A € B(H) and B € M, (C).

- completely positive if it is n-positive for alln > 1.

It follows from the definition that any completely positive map is postive. How-
ever, the converse is not true. For example [12] p.5, the transpose map 7" : M, (C) —
M., (C) defined by taking A — A? is an example of a positive map that is not com-
pletely positive.

Now we introduce a quantum system which we treat in the thesis. A formal defini-

tion of a state is the following.

Definition 3.2. [5]

Let H be a Hilbert space.

1. A state is a density operator p € B(H), i.e, a positive operator in B(H) taht has
trace one.

Denote D(H) the set of all states of H, i.e. D(H) ={p € B(H) : p>0,tr(p) = 1}.
2. A state that is a rank one projection is called a pure state. An impure state is
called a mized state. Denote P(H) the set of all pure states of H.

i.e. P(H)={p=ww*:w is an unit vector in H}.

3. The maximally mized state of H is the state iIH'

In quantum information theory, a quantum channel is a communication chan-
nel which can transmit quantum information between two quantum system. As
Definition 3.2, since a quantum state is positive and has trace one, the output state
transmitted by a quantum channel must be positve and have trace one. So, we can

guess a quantum channel must be positve and trace-preserving.

Definition 3.3. [4/

A quantum channel ® : B(H) — B(K) is a linear completely positive trace-
preserving map. A quantum channel ® is said to be unital if @(ﬁIH) = iIK'
Denote QC(H, K) := {quantum channels from B(H) to B(K)}.

i
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The next proposition gives us a method to construct a new quantum channel
from given isometry. This technique is crucial in constructing EPOSIC channel, to

be introduced in chapter 5.

Proposition 3.4. [1]
Let H and K be Hilbert spaces. For any o € B(H,K), the map Ad, is a linear
completely positive map.

And Ad,, is a channel if and only if « is an isometry.

Proof. Let A >0 in B(H). Then there exists B € B(H) such that A = BB*. So,
Ady(A) = aAa™ = aBB*a* = aB(aB)* >0

Let n € N. Note that B(H) ®M,(C) = B(H®C"). So Ad, ®I, = Adugi..- That
is, Ad, is completely positive.
If « is an isometry, then tr(Ad,(A)) = tr(ada*) = tr(A). That is, Ad, is trace

preserving. O

A quantum channel has many equivalent representations. We give some of

those in this chapter.

Definition 3.5 (Stinespring representation).

Let H and K be Hilbet spaces and ® : B(H) — B(K) be a quantum channel. A
Stinespring representation of ® is a pair (E,«) consisting of a Hilbert space E (an
environment space), and an isometry « : H - K Q E such that ®(A) = Trg(aAa*)
for any A € B(H).

Definition 3.6 (Kraus representation).
Let H and K be Hilbet spaces and ® : B(H) — B(K) be a completely positive map.
A Kraus representation of ® is a set of operators {T; : 1 < j <k} C B(H,K) that

satisfies

k
D(A) =) TAT;
j=1

The operators {T; : 1 < j < k} are called Kraus operators. If ® is a quantum chan-

nel, then a Kraus representation of ® is required to satisfy the additional condition

k
=1

Theorem 3.7. [6]
Let H and K be Hilbert spaces and ® : B(H) — B(K) be a linear map. The fol-

lowings are equivalent:



1. ® is a quantum channel.
2. ® has a Stinespring representation (E, )

3. ® has a Kraus representation.

Note that a Stinespring represenation exists for any completely positive map
[12] p.43.
From now on, we assume the Hilbet spaces H and K are representation spaces of G.
And we restrict our study to a class of quantum channels that are also G-equivariant

maps with respect to a given group G, called G-covariant channels.

Definition 3.8 (G-covariant Channels). [4]

Let (H,wy) and (K, k) be two unitary representations of a topological group G.
A quantum channel ® : B(H) — B(K) is G-covariant if ®(my(g)An}(g)) =
7k (9)P(A) 5 (g) for all A€ B(H) and g € G.

If both my and mg are irreducible representations, then ® is called G-irreducibly

covartant.

We denote QC(H, K)¢ := {G—covariant quantum channels from B(H) to B(K)}.

Example 3.9.

Tryg is a G-covariant channel.

Proof. Since we know that Try is a G-equivariant map, it’s enough to show that
Try is a quantum channel. Note that Try is a quantum channel with a Stinespring

representation (H, Iggk)- O
The following proposition is straightforward.

Proposition 3.10.
Let G be a topological group. The tensor product of G-covariant channels, and the

composition of G-covariant channels are again G-covariant channels.

Proposition 3.11.
Let H, K, and E be Hilbert spaces. Let ® : B(H) — B(K) be a quantum channel
whose Stinespring representation is (E, ).

If a: H— K ® FE is G-equivariant, then ® is G-covariant.

Proof. By Example 3.9, the partial trace over E Trg is G-equivariant. By Exam-
ple 2.10, Ad, is G-equivariant. By Proposition 2.8 and definition of Stinespring

represenation, ® = Trg o Ad,, is a G-covariant channel. O



Chapter 4. Basics in quantum

information theory

The existence of noise in all information processing systems affects the trans-
mission of information over a quantum channel. A well-known measure of a channel
performance is the Minimal Output Entropy(MOE). In this chapter, we give the def-
inition of MOE, minimal output Rényi entropy, and exhibit some of its properties.

For more details, we refer the reader to [4].

Definition 4.1 (Entropy).
Let H and K be a Hilbert space, p € D(H), and ® € QC(H, K).

The von Neumann entropy of a density operator p is defined by

S(p) = —tr(plogzp)

The minimal output entropy(MOE) of a quantum channel ® is defined by
Smin(®) = min{S(®(p)) : p € D(H)}
where S is the von Neumann entropy.

Note that S(p) = >, —Ailoga\; where {);}; are the eigenvalues of p. By con-

vention, 0log20 = 0.

Theorem 4.2.

1. The von Neumann entropy is a concave nonnegative function, which is zero if
and only if the state is pure.

2. In a d dimentional Hilbert space H, the von Neumann entropy for a state of H

is at most logad. It is logad if and only if the state is the mazximal mized state 17”.

In the definition of minimal output entropy, the minimum is taken over all
the states in H. However, by the concavity of von Neumann entropy, the minimal

output entropy is achieved on a pure state.
i.e. Spmin(®) =min{S(®(p)): p € P(H)}

Proposition 4.3. [1]
Let H and K be Hilbert spaces and ® : B(H) — B(K) be a quantum channel. Then
Smin(®) = 0 if and only if there exist p € P(H) such that ®(p) € P(K).

Proof. By continuity of the von Neumann entropy and compactness of the set of

states[6, p.29], the minimum entropy is achieved. The other direction is trivial. [



We introduce another entopy of a quantum channel, called minimal output

Rényi entropy, which is important in that we can guess MOE using it.

Definition 4.4 (Rényi entropy).
Let p> 1, H and K be a Hilbert space, p € D(H), and ® € QC(H, K).
The quantum Rényi entropy of order p of a density operator p is defined by

1
Rolp) = T logtr”

The minimal output Rényi entropy of order p of a quantum channel ® is defined by
R,(®) = min{R,(®(p)) : p € D(H)}

Remark 4.5. [4]

Let p> 1, H and K be a Hilbert space, p € D(H), and ® € QC(H, K).

(i) As p\ 1, Ry(p) / S(p) for any p € D(H)

(i) limp~ 1 Rp(®) = Simin(®) for any ® € QC(H, K)

There is another important measure of a channel performance. A channel’s
capacity is defined to be the maximal rate of at which information can be reliably
transmitted through the channel. The capacity has a maximum when the channel

is an identity.

Notation 1.
A state ensemble {p;, p; }icr is a finite probability distribution on D(H) ascribing p;
to p; where I is a finite index set such that ) ;. p; =1

Definition 4.6 (Holevo capacity).
The Holevo capacity of a channel ® : B(H) — B(K) is defined by

S (‘MZPM&)) - ZPiS ¢

CX(CI)) = MAT{p,;p;}

where {p;, p; }:a state ensemble

The Holevo capacity is sometimes called the y-capacity or the product state
capacity. In a d dimentional Hilbert space H, the maximum of the Holevo capacity
is logad, which is occured when the channel is an identity on B(H). The Holevo
capacity can be computed in another way other than definition for a number of

interesting channels. We present one of those ways we will use in the thesis.

Theorem 4.7. [/]
Let (H,mp) and (K,7k) be two irreducible representations of a topological group

G. Suppose ® : B(H) — B(K) is a G-irreducibly covariant quantum channel. Then
(@) =5 (0 (42)) = Swmin(®).

10



Chapter 5. SU(2)-irreducible

representations and covariant channels

By Proposition 3.4 and Example 2.10, if we have a G-equivariant isometry «,
we can construct the G-covariant channel Ad,,. For the compact group SU(2), such
a G-equivariant isometry is already studied and known with its specific formulas,
by Clebsch and Gordan. According to the Clebsch-Gordan Decomposition [10] 87p,
if H and K are two SU(2)-irreducible subspaces, then the SU(2)-space K ® E is
isomorphic to @;H; where H; is SU(2)-irreducible subspace with multiplicity one.
For each i, the inclusion map «; : H; = K ® E is an SU(2)-equivariant isometry. In
this chapter, we find an explicit formulas for the map «; and construct the SU(2)-
irreducibly covariant channel using «;, called an EPOSIC channel. For more details,
we refer the reader to [1], [13] and [14].

For m € N, let P,,, be the space of homogeneous polynomials of degree m in the two
variables x1, x2. Then P, is a complex vector space of dimension m—+1 with a basis
{zi2"~"}. Define an inner product on P, by < ztzy " akal =k >=11(m — 1)16y,.
Then P, is a Hilbert space. We choose the orthonormal basis for P, given by the
NI This basis is

polynomials {f/* = al, z}2~" : 0 <1 < m} where a]* =

called canonical [14] p.280.

Recall that SU(2) = ta,b e Clal®* + b =1

Remark 5.1. [1/]

For m € N, define m, : SU(2) = B(Pn) by (tm(9)f) (z1,72) = f((z1,72)9) =
flaxy — bxo, bry + axs) for f € Py, and g € SU(2).

Note that the set {m,, : m € N} constitutes the full list of the irreducible represen-
tations of SU(2)

In representation theory,
~ pmin{m,n}
Tm & Ty = @h:() Tm+n—2h
is a classical result. Consequently, we obtain

Pn®P, 2aymimnip o

One remarkable fact is that the inclusion map from P, 4,2, into P, ® P, is an
SU(2)-equivariant isometry for 0 < h < min{m,n}. This is due to Clebsch and
Gordan.

11
)
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We build polynomial operators on the SU(2)-space P, ® P,. To obtain a concrete
representation of P, ® P, let x = (z1,22), y = (y1,Y2), Pm := Pn(x), and P, :=
P, (y). We embed the tensor product P, (x) ® P,(y) into Clx,y] as follows:

Define the map P, (x) x P,(y) — Clz,y] by (f(z),9(y)) — f(x)g(y). Then it is
a bilinear map. So we can extends to a linear map T : Py, (z) ® P,(y) — Clz,y]
taking f(z) ® g(y) to f(x)g(y). Let Py, denote the vector space of polynomials in

x and y of bi-degree (m,n). The space P, , has a basis consisting of

1
{52l ylys " = T(f'® f):0<s<m,0<t<n}

m,mn
ag 0y

Since the map T takes a basis for P,, ® P, to a basis in P, ;, it is an isomorphsim.

Hence, we will use P, ,, as a concrete representation of P, ® F,.

Definition 5.2.
For m,n € N, define the following maps on P, ® P,

Axyipm®Pn_>Pm+l®Pn—l

o (12 o) s

Ayz : P, ®@ Py — Prim1 @ P

f(z,y) — <y15il +y28§2> f(z,y)
Tuy: P ® Py — Pyt ® Pyt

[z, y) = (z1y2 +y122) f(2,9)
Quy : Pn @ Py = Py ® Py

o 0 0 0
[z, y) — (83:18y2 +8:c28y1) f(z,y)

for f(z,y) € Py, ® P,.

Remark 5.3.
The operators Agy, Ayz, Loy, and Qg are SU(2)-equivariant, and satisfies

A;y = Aym F::y = Q’zy
Theorem 5.4 (Clebsch-Gordan expansion).
Let m,n € N and f(z,y) € Py, ® Py.

Then

min{m,n}

fay) = Y cmnnlh,Ap AT (f(2,y))
h=0

12



where the coefficients ¢y, n,n are determined by induction as follows:
em,0,0 =1 form € N. And forn >1 and 0 < h < min{m,n},

1
(m+1)ncm+1,n—1,ha h=0
— 1
Cm,n,h = m[cm—l,n—l,h—l + Cmtin—1n)s, 0<h<n
1
(m+1)n ‘m—1,n—1,h—1, h=n

Definition 5.5.
Form,n,h € N with 0 < h < min{m,n}, let

Qm n,h - Pm+n—2h — P, ® P,

f(@1,2) = fCmm Uy Ap " (f (21, 32))
where f(x1,%2) € Pryn—2n-

Otym.n,h 18 the inclusion map from P, 4, _2p into P, ® P, as mentioned above.

By Remark5.3, the conjugate map of ayy, » p is given by

o P, ® P, —)Pm+n 2h

m,n,h *

9(w1, 32,23, 24) = \Cman AL Q8 (g(21, 2, 23, 24))

and a5, is also a SU(2)-equivariant map.
Note that aum,nnay, , 5 (9) = Cm,n,thyAZz hA” hQh 4(9). By Clebsch-Gordan ex-

pansion, we obtain
min{m,n}

*
g Omn,h Oy n h = IPm®Pn
h=0

Proposition 5.6.
For m,n,h € N with 0 < h < min{m,n}, the map vy np is an SU(2)-equivariant

isometry.

Proof. Since I'y,, and A, are SU(2)-equivariant, au, . p is SU(2)-equivariant.
Let 0 < h,s < min{m,n}. Then O hQmon,s @ Ptn—2s = Pmyn—2n is an SU(2)-
equivariant map and Py, 4n—2s, Pmtn—2r are irreducible spaces. By Schur’s lemma,

we have
. 0, h#s
am,n,ham,",\s -
CIPm+n72h7 h=s
for some ¢ € C. Then we have

* % % * _
am;ﬂ,h - am,n,hIPm@)Pn - am,mh E : Am,n Sam n,s CIPm+n—2ham,n7h - Cam,mh
s=0

Since am,n’h(m;”Jr"*Qh) #0, amnn # 0 whence a, , ;, # 0. Thus, c=1.

. N _ . .
Since Ay n hOmon,h = Ip, . . on> Qmn,n is an isometry. O

13



As mentioned in first of this chapter, since 5 is an SU(2)-equivariant
isometry, by Proposition 3.4 and Example 2.10, we have the G-irreducibly covariant

channel Ad

By Proposition 3.11, we can construct:

And we know that T'rp, is a SU(2)-irreducibly covariant channel.

®m,m,h "

Proposition 5.7. [I]
For m,n,h € N with 0 < h < min{m,n}. Define ®,, 1, : B(P.) — B(FPy) by
Dnn(A) =Trp, (am,nyhAa;’;%n’h) for A€ B(PR,).

Then @y pn.p 05 an SU(2)-irreducibly covariant channel.

Proof. Note that ®,, ,, , =Trp, o Ad

Qi m bt

We call the quantum channel ®,,, ,, , an EPOSIC channel. Denote by
EC(r,m) := {all EPOSIC channels from B(P,) into B(Py,)}

and abbreviate EC(m,m) to EC(m).

Remark 5.8.

Let rym € N. Then EC(r,m) = {®umrim-21,m—1 : 0 < 1 < min{r,m}} =
{Pm,r—m+onn: 0 < h <min{m,r —m+2h}, r —m+ 2h > 0}.

Note that (P, Qmn,n) IS a Stinespring representation of @, . p.

For 0 < j < n, defineT; : P, — P, by T, = (Ip, ® f]’-“‘*)amm,h. Then the
set {T; : 0 < j < n} is a Kraus representation of ®u,npn. We call these Kraus
opereators, the EPOSIC Kraus operators.

Now we introduce new notation:

Notation 2.

For myn,h € N with 0 < h < min{m,n}, denote r = m+n —2h, 0 < i <,
0<7<n, 0<l<m.

Define B(i) := {j : maz{0,—m + i+ h} < j <min{i + h,n}} and l;; :=i—j+ h.

The proof of Lemma 5.9 below is a direct computation. For the proof, we refer
the reader to [1] Appendix B.

Lemma 5.9.
Let myn,h € N with 0 < h < min{m,n}. Then

h min{i+s,n—h+s}

A (F) = > B f @ fr

s=0 j=max{s,—m+i+h+s}

where - .
( ) (7;—5) (iTj—i-s) Cm,n,hrlm!n!

Tn,@,h: _1)® s
e I i D) 6)

14



Corollary 5.10. [1]
Let m,n,h € N with 0 < h < min{m,n}. Then

O (f1) = Y elmn,h)fi" ® f}
JEB(1)
min{h,j,j+m—i—h}

le,n,h

where €] (m,n,h) = i,5,

s=maz{0,j—i,j+h—n}
Corollary 5.11.
Let m,n,h € N with 0 < h < min{m,n} and {T; : 0 < j < n} are the EPOSIC
Kraus operators of ®p, n.n. Then for each 0 < j <n
5{fl’:;-, if j € B(i) where ag is given in Corollary 5.10
0, otherwise B(i) is given in Notation2

Proof.

Ti(f7) = Ip, @ [} )amnn(f1) = Ip, @ 7| D el(mn,h) [ @ f}

JEB(i)
elfin, if j € B()
0, otherwise
by Corollary 5.10. O

Corollary 5.12.
Let m,n,h € N with 0 < h < min{m,n}. For 0 <ij,is <r,
(I)m,n,h( Zl ZTQ*) = Z Eglegz‘fﬁ;j lln;*
JE€EB(i1)NB(i2)
Proof. Let {T; : 0 < j < n} be the EPOSIC Kraus operators of ®,, ,, 5. Then

n

O (f 1) = D Tif7 5T =Y (T fI(T 17"
j=1

i=1

_ J J _ J J *

- Z (Eilf;:ij)(ghflz;')* - Z Eilgizfl:rij ;ir;j
JEB(i1)NB(iz) JEB(i1)NB(i2)

by Corollary 5.11. O

Here, we study SU(2)-irreducibly covariant channels. The rest of this chap-
ter depends heavily on [1] Chapter 5. We will see that EC(r,m) consists of all
the extreme points of QC(P,, Pm)SU(Q). This is why the name of the channels is
EPOSIC(the Extreme Points Of SU(2)-Irreducibly Covariant channels).

Proposition 5.13. [1]
Let r,m € N. The set QC(P,, Py,)5Y @) is the convex hull of EC(r,m).
Moreover, any element in QC(P, P)Y ) s uniquely written as a convex combi-

nation of elements of EC(r,m).

15 A
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Proposition 5.14.
Let r,m € N. The set EC(r,m) forms all the extreme points of QC(P,, Py,)3V?).

Proof. By Proposition 5.13, every element in EC(r,m) can not be written as a
proper convex combination of elements of QC(P,, P,,)°V(?) other than itself. That
is, EC(r,m) are extreme points of QC(P,, P,,)5Y(2). Conversely, let ® be an extreme
point of QC(P,, P,,)3Y(?). Then it cannot be written as as convex combination of
elements of QC(P,, P,,)3Y?) other than itself. But QC(P,, P,,)°Y ) is the convex
hull of EC(r,m) by Proposition 5.13. Hence, ® must be in EC(r,m). O
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Chapter 6. Properties of

SU(2)-irreducibly covariant channels

In this chapter, we compute the entropy and the Holevo capacity of EPOSIC
channels. And using the relation between EPOSIC channels and SU(2)-irreducibly
covariant channels, we determine the entropy and the capacity of SU(2)-irreducibly
covariant channels. In addition to the result of [1], we give computation of the
Rényi entropy and the Holevo capacity for some cases in this thesis. To compute
the Holevo capacity of SU(2)-irreducibly covariant channels, we usually use Theorem
4.7. So, it is important to know the minimal output entropy of the channels. The
next proposition enable us to determine when the minimal output entropy of an
EPOSIC channel is zero.

Proposition 6.1. [1]
For m,n,h € N, the channel Spin(Pm.nn) =0 if and only if h = 0.

The following proposition and corollary is newly presented in this thesis.

Proposition 6.2.

Let M = minge pc(rm)Smin(®) and ® € QC(Py, P,,)5Y 3. Then
Z) M S Smin(q))
i1) 0 < Cy(®) < loga(m+1) — M

Proof. i) By continuity of von Neumann entropy and compactness of the set of
states, the minimam output entropy is achievable. That is, there exists p = ww* €
P(P,) such that S(®(p)) = Spin(®). Since co(EC(r,m)) = QC(P,, Py,) V3, if
|[EC(r,m)| = t, then & = Z§=1 c;; where ¢; > 0, Z§=1 ci =1, {t1,--- i} =
EC(r,m). So

Smin(®) = S(®(p)) =5 (Z Cﬂ/h‘(ﬂ)) >3 " aS (Wilp) =D ciSmin(thi) =Y eiM
i=1 i=1 i=1 i=1

=M

3 Ip,
u)ogcx(cb)s(cb <r+1

by Theorem 4.7 O

>)Smm(<I>) < loga(m+1)—Spin(®) < loga(m+1)—M

Corollary 6.3.
Form €N and 0 <r <m—1, O\ (®) < loga(m + 1) for any ® € QC(P,, P,,)5V®

17



Proof. Note that EC(r,m)= {®y, r—m+2n,h : 0 < h <min{m,r —m+2h}, r—m—+
2h > 0}. Tober—m+2h > 0 with 0 <r <m—1, h must be equal or greater than
1. Since Spmin(Pm,n.p) = 0if and only if b = 0, Sy, (¢) > 0 for any ¢ € EC(r,m).
Hence

M = minweEC(r’m)Smin(¢) >0

By Proposition 6.2, Cy(®) < loga(m + 1) — M < loga(m + 1). O

Now we compute measurement of SU(2)-irreducibly covariant channels such as
the minimal output entropy. Since EC(r,m) = {®p, r—m+2nn : 0 < h < min{m,r—
m+2h}, r—m+2h > 0} is a finite set whose cardinality depends on the numbers
r and m, it is possible to be easy for computing the measurement of the channels if
|EC(r,m)| < 2.

In this thesis, we compute Sy, (®) and R,(®) for any & € QC(Py, P,)V®), m €
N. Snin(®) have been computed by [1], but R,(®) is newly computed. In that
case, EC(1,m) = { @ m+1,ms Pm,m—1,m—1} and the standard basis for P; is given

by f&(xl,xg) = w9 and fi (21, 12) = 1.

Lemma 6.4. [1]
Let m € N and w € Py with ||w|]| =1. Then
i) There exists g € SU(2) such that m1(9)(fa) = w.

i) If® : B(Py) — B(P,,) is an SU(2)-equivariant map, then the matrices ®(ww*) and ®(f3 f3*)

are similar.

Proof. i) Since P, =< f}, fi >, w = wof} + wifl for some wy,w; € C with

wo w1
|wo|? + |w1]? = 1. Choose g = € SU(2)

—wy; Wy

Then (Wl(g)f(})(x17$2) = f&(UTOM — Wik, W1T1 + Wo2) = W1L1 + WoL2

wo fo (x1, 2) + wi f1 (1, 22) = w(21, 22)

ii) Since ® is SU(2)-equivariant and by i),

®(ww*) = ©(m1(9)fo fo m1(9) = mu(9)®(f3 fo )3 (9)

Lemma 6.5. [1]

o o 2(m—j+1)
1rl . m m ¥
L. (I)m,m+1,m(f0 0 )* Z <m+ 1)(m+2)fm—j m—j
Jj=0
m—1 .
2. (I)m,m—l,m—l(f(% (} ): Z m(m+1)fm—j—1fm—j—1
Jj=0
18



Proof. Direct from Corollary 5.12 and the formula of 53 . O

Theorem 6.6.
Let m € N and & € QC(P1, P,,)V®). Then there exists p € [0,1] such that the
eigenvalues of ®(f fi7) are

C2m—j+1) 2j
= m+Dm+2)? " m(m+1)(1*p)}

In that cases, Spin(P) = — Z;”ZO Ajloga); and Rp(@) _ ﬁlogg (Zm A p>

P?”OOf. Since ® € QO(Pl, Pm)SU@) = Cco (EC(L m)) = Cco ({(I)m,m+1,77L7 (bm,m—l,m—l})a
there exists p € [0, 1] such that ® = p®y, mt1,m + (1 —P)Ppym—1,m—1. SO

1%

o(f; 1*>: PPimmitm(fofo )+ (1= D) Pmm-1m-1(f3 fo )

m—j+1) 2j moem
++Z( m+1)(m+2)+(1_p)m(m+1))fmj m=J

— . 4—’_1) — 27'7 ok m nz *
_Z< (m+1) m+2)+(1 p)m(erl)) Z)\

J=

Hence, Spn(®) = S(@(ww")) = S(b(fofs ) = — Z Ajloga )

Ry(®) = Ry(@(ww’)) = Ry(6(f5 /37)) = 1 log, >ON”
7=0

O

Note that C\ (@) = S <<I> (é—g)) — Simin(®). To compute the Holevo capacity

of EPOSIC channels, we need to compute its minimal output entropy and von

Neumann entropy of @, .5 (Tli"l)

Remark 6.7.
We can compute fbmnh( ) for any m,n,h € N with 0 < h <m+n — 2h.

Proof.

r r i2
Ip 1 €
Dn = = D n — [ f = §
S( ”h<r+1>) S( h<z RESEARL )) Tl 2
=0 =0 jeB(i)

m m
__calculation S E alflmflm* = — E ailogaa;
1=0 =0

ijdlij

O

So, it is relatively easy to compute the capacity of EPOSIC channels. Now we
compute Syin(®m11); Cy(®mi1), and Ry(®p,11) for any m > 1. Spin(P11)
have been computed by [1], but Cy (®,,1,1), and Ry(®,,.1,1) are newly computed.
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Lemma 6.8. [1]
Let K be a finite dimensional Hilbert space, and A € B(K) such that A = Z?Zl uju;.
If {u; : 0 < j < n} are linearly independent vectors in K, then there exist a basis

for K such that the matrix represents A is in the form

<wuplur > <ulug > - <wulu,> 0 - 0
<wglup > <wglug > o <uglup> 0 - 0
<uplur > <uplug > 0 <uglup> 0 -+ 0
0 0 0 0o --- 0
0 0 0 0 0

A matriz in a such form is called Gram matriz.

Proof. Let {un41,Unt2,- - ,uq, } be a basis for the orthogonal complement of <
uj 11 <j<n>inK Set U= {ug,u2, - ,Un,Unt1,Unt2, - ,Uq, }. Then U
forms a basis for K. For each u; € U, we have

2?21 <wujlug >u;, 1<k<n

n
Auy, = Zujuj*(uk) =
j=1 07 k>n

The result follews by writing the matrix for A with repect to the basis U. O

Corollary 6.9. [1]
Let myn € N with n < m, and p € P(P,_,). Then the matriz representing

D,y nn(p) is in the form of a Gram matriz.

Proof. Let {T; : 0 < j < n} be the EPOSIC Kraus operators of ®,,  », and

p = ww* where w is a unit vector in P, = P,,_,. Then

n m—n m—j

*) K Ty — Jgm _ ) J m

@y, (W) = E uju;” where u; = Thw = E , Wi Ji—jyn = E wk+J—n5k+j—nfk
j=0 i=0 k=n—j

Since Eg(m,n, n) are nonzero, the set {u; : 0 < j < n} is linearly independent. By

Lemma 6.8, the result follows. O

Note that for m € N, the EPOSIC channel ®,, 11 : B(Py-1) — B(P,,) has
two Kraus operator {Tp,71}. Let w = Zﬁglwifim_l € Pp-1 and p = ww*.
Then ug = Tow = > 1" €)_qw;—1 f™ and uy = Thw = Z;’;Bl elw,; f™ by Corollary

5.11. By Corollary 6.9, there exists a basis for P, such that the matrix ®,, 1 is
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represented by

< ’LLO|U1 > < Uo‘ul > 0 --- 0
<U1|U0> <U1‘U1> 0O --- 0

A= 0 0 0 --- 0
0 0 0 0

The characteristic polynomial of A is given by
p(A) = det(\L — A) = X* — ([luo||* + [ur )X + [Juol|*|lur[|* — | < uolus > |?
Set Ri=|lug|*|lus® — | < uolur > |2

Lemma 6.10.

For m € N and Eg = 8{(m7 1,1), we have

1 —
5?:1/Z+ ,egz—wwfor()gigmfl
m+1 m+1

By Lemma 6.10, we obtain

m—1 m—1 m—1
luoll® + lua [* = D () *wi + Y (e))?wf = > (€0)* + (1) *w}

=0 1=0 1=0

m—1 . . m—1

1 _
_ 1+ n m Zw? _ w? 1
‘~ m+1 m+1 ,
i=0 =0

_ )2 — 0 il _ 1+V1—4R
Hence p(A) = A* = A+ R. So p(A\) = 0 implies A = ===,
Since ®,, 1,1 is completely positive and ww* is positive, the eigenvalues are nonneg-

ative real numbers. So 0 <1—-4R < 1.

Lemma 6.11.

For m € N, the minimum value of R:||U0H2||U1||2 — | < uplug > |2 is (m—i—Ll){"
Proof.
m—1 m—1
Note that <o, ur >= Z e W16 W; = Z €Y  wigiWi—1 =< vy, vy >
i=1 i=1
m—1 m—1
where vy = Z 5?71wifim7q;1 — Z 5llmflm
i=1 i=1
Then v ||2=mZ_1<€° >2\w-l2=”f<eo 2?4 Ll Jwl®
’ i—1 e P E m+1 m+1
-1
Lol S (0 ey L s lwl?
= —|W o - w2 — 12
—L ol +;(<11> b e - ol
21



: 0_ [it1 _o0_ _1 0y2
Since &) = /7=t €0 = i and (g]_ )—i-m—Jrl (€9)?. Hence

1 1
2 _ 2 _ 0N2), 12 _
m
1 1
2 _ 2
; i—1) |w1 1 W*HUOH I
By same argument, ||v1]|? = [juq]]® — m+1 So
1 1
| <wgluy > > =] < wolvr > [* < Jlwol *llvr|? = (luol® — miJrl)(llmll2 - m)
1 1 m
_ 2 2 2 2 _ 2 2
= ol s 2 = g o+ s )+ s = ol =
Thus R = |Juol|?||ui]|* — | < uolus > |*> > (m+1)
Since Rf[;nfl = (m+1)2, we conclude W is the minimum value of R. O

By concavity of von Neumann entropy, S(®,, 1,1 (ww*)) achieves its minimum
when the difference between the two eigenvalues of ®,,, 1 1 (ww*) is maximum. This

happens when R takes its minimum value. Hence, we obtain

Theorem 6.12. [1]

I 1 1
Sonin(@m11) = S @1 (fF ) = —(er 11092 + - logs

Proof.

A= % (u[ N —4Rfém) -

1 -1
14 1—a—" J=—Z(1+2—2
(m+1)2 2 m+1

DN | =

The following two theorems are newly computed in this thesis.

Theorem 6.13.
Let p > 1 and m € N. Then

Ry(®rm1,1) = Rp(Pran (f 1 F7)

b (i e N (o e
1\ 272 (m+1)2 2 2 (m+1)2
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Proof. By above argument, there exist a basis in P, such that

N0 0 0
0 A 0 0
D, 11 (WP = 0o 0 0 --- 0
0o 0 O 0

where \g = 71'“;_41% and \; = 71_@_45"

So, Ry(®pm 11 (ww*)) = lflplogg()\g + AD).
Set b := %\/1 —4R. Then 0< b < é since 0 <1 —4R < 1. Define g(b) := N + V.
Since p > 1 = ﬁ < 0 and logs(x) is increasing on (0,00), R, (P, 1,1(ww*)) has

minimum when g(b) has maximum. Note that

1 p-l 1 Pl 1
g/(b):p)\p 1d)\0+ )\p 1d)\1:p<+b> _p(2_b> >0f07"0<b<*

db db 2 2
Hence g is increasing function on [0, l] Since b has maximum when R has minimum,
g(b) has maximum when R = Ttz and w = =1 Thus,

Rp(®m1,1) = Rp(®r 1 (f 7 F7H))

p p
_ Loy 4m (L1 dAm
1272 (m + 1)2 279 (m+ 1)

Theorem 6.14.

m m 1
D,, = l —1
Cy(Prm,1,1) — <ngm+1 0 2m+1)

Proof. Note that B(i1) ={j:0<j <1} forany 0 <i<m —1=r. Then

(4)
Ip el
S ((I)m,l,l (ml)> =S5 <Z ooy (D Fi Il + (i >2fz’mfim*)> by Corollary 5.12
i=1
m—1 1

=S (;(65)2%” 0"+ Z —((€)® + D) S+ ;(5%_1)2f;n¢f$*>

1 m m = 1 1 m fm* 1 m opm*
:S<mm+1f0f Zm((E?)Q_erl+( ))fz fi Emiﬂff )
. L pme
f(T Z <17TL+1) fmfm ?fmfm )
(;n F+ Z 7fmfm* +fmfm*> (Z ml+1f’mflm*>

i=0
1 1 1
;m—l—lo‘qz(m—i—l) 092(m+1)
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(a2 (%))

1

- Smin((bm,l,l>

m

loga

m+1

1
m+1

+ logs —2>
0]
m+1 92m+1
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Summary

Some properties of SU(2)-irreducibly covariant
quantum channels
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