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Abstract 

 

Multivariate approach to the analysis of 

correlated RNA-seq data 

 

 

Hyunjin Park 

Department of Statistics 

The Graduate School 

Seoul National University 

 

  High-throughput RNA-seq technology has emerged as a 

powerful tool for understanding the molecular basis of phenotype 

variation in biology, including disease. Recently, some correlated RNA-

seq datasets started to be generated. While there have been several 

approaches proposed for identifying the differentially expressed genes 

(DEGs), not many methods can analyze correlated RNA-seq data. We 

expect the simultaneous analysis of correlated RNA-seq data to 

increase of power of detecting DEGs. In this paper, we propose a 

multivariate method to find DEGs on correlated RNA-seq data based 

on the Generalized Estimating Equations (GEE) approach. The 
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advantage of the proposed method is to consider correlated RNA-seq 

data simultaneously while accounting for correlations. Through real 

data analysis and simulation studies, we show that our multivariate 

approach has higher power of detecting DEGs than the existing 

methods. 

 

Key words: RNA-seq, Differentially Expressed Gene (DEG), simultaneously, 

correlation, multivariate, Generalized Estimating Equations (GEE) 
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1.  Introduction 

1.1 Background 

 Microarrays have been widely used to perform gene expression 

analysis for more than 10 years. Recently, high-throughput sequencing 

of RNA sample (RNA-seq) has become an attractive method [1] to 

study the molecular basis of phenotype variation in biology, including 

disease [2].  

 A common purpose in analyzing RNA-seq data is to determine 

which genes are differentially expressed under several different 

experimental conditions. Recently, several statistical methods such as 

edgeR [3], DESeq [4], LPEseq [5], limma+voom [6] have been 

proposed to accomplish this goal. These methods use Poisson model to 

be extended via quasi-likelihood or negative binomial distribution to 

account for over-dispersion.  These methods were reported that they 

are powerful to analyze the independent RNA-seq data [7] in several 

review papers.  
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 Recently, some correlated RNA-seq datasets started to be 

generated. For example, the Genotype-Tissue Expression (GTEx; See : 

http://www.gtexportal.org/) project examined pattern of gene 

expression levels across tissues. It is reported that multiple brain 

regions are strongly correlated as a single unit [8]. However, there are 

also exist a distinct regions so that they are weakly correlated each 

other. For the case of the correlated RNA-seq data, the performances of 

pre-existing univariate method are not examined. 

 

1.2 Purpose 

 The present paper describes statistical method to find DEGs in 

correlated RNA-seq dataset. We applied the Generalized Estimating 

Equations (GEE) method to consider correlations between RNA-seq 

data. The advantages of the GEE method are that it does not require a 

specification of a joint distribution and it uses more information from 

given dataset by considering correlation. Through various real data 

analysis and simulation studies, we compare the results obtained from 

the GEE and other univariate methods. To compare the results of GEE, 

we used edgeR, DESeq, limma+voom, LPEseq methods, because 

comprehensive review papers reported that these methods perform 

much better than other univariate methods [7].  
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2.  Materials and Methods 

 

 In this part commonly used univariate methods and proposed 

multivariate method are briefly reviewed. Two different real datasets 

are also described in detail. 

 

2.1 Real RNA-seq datasets 

 We used two RNA-seq datasets to investigate the performance 

of each method containing GEE. The characteristics of these datasets 

are described in detail below.  

 

2.1.1 Diet data 

 We used the RNA-seq data generated by Kyungpook National 

University (KNU) to check the Korean traditional drug’s effect across 
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two organs (adipose tissue, liver). This dataset consisted of four groups. 

Each dataset contains three or four samples of A/J mouse. The dataset 

provide a case in which a small number of correlated datasets are 

available.  

 

2.1.2 Toxicity data 

 We studied RNA-seq data generated by Ying Yu et al. [9] to 

investigate the chemical toxicities effect across developmental stages 

(juvenile, adolescent, adult and aged). We analyzed the DEGs between 

juvenile and aged of male rats. Within each developmental stages, this 

dataset consisted of eight rats (four male and four female rats) from 11 

organs (Adrenal Gland, Brain, Heart, Kidney, Liver, Lung, Muscle, 

Spleen, Thymus and Testes for males and Uterus for female rats). For 

analysis between any other two developmental stages, we can do in the 

same manner. The dataset provide a case in which a large number of 

correlated datasets are available. 
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2.2 Review of commonly used approach 

 The following univariate methods were considered: edgeR, 

DESeq, and limma+voom. The main characteristics of these univariate 

methods are summarized in TABLE 1. 

 

2.2.1 edgeR [3] 

 edgeR was developed for performing differential expression 

test using count data under a negative binomial model especially on 

experiments with small numbers of replicates. Trimmed Mean of M 

values (TMM), Relative Log Expression (RLE), or Upper quantile 

normalization method can be used to calculate normalization factors 

between samples. We use empirical Bayes procedure to adjust over-

dispersion across genes. Finally, exact test or Generalized Linear Model 

(GLM) is used to find DEGs. It is reported that edgeR has a relatively 

high power in general. However, edgeR suffers from high false 

discovery rate in many cases [7]. 

 

2.2.2 DESeq [4] 

 DESeq was extension of edgeR method by allowing more 

general relationships of variance and mean and using DESeq 
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sizeFactors to adjust for different sequencing depth. Local regression 

between mean and variance is used to find these relationships and 

estimate over-dispersion. Finally, exact test adapted to over-dispersed 

data is used to find DEGs. DESeq is reported to be so conservative that 

it has relatively lower power in general [7]. 

 

2.2.3 limma+voom [6] 

 limma was widely used method to analyze microarray data. 

Nowadays, the ‘voom’ transformation gives immediate access to RNA-

seq analysts. limma is based on gene-wise linear model and uses TMM 

normalization to adjust for different sequencing depth. By using 

empirical Bayes method, limma can detect DEGs. This method has a 

great ability to control type1 error. However, limma has a lower power 

for small sample size [7]. 

 

Table 1. Characteristic of the commonly used univariate methods.  

Method 
Normalization 

method 

Differential expression 

test 
Other characteristic 

edgeR 
TMM/RLE/Upper 

quantile 
Exact test, GLM 

Generally high TPR 

Poor FDR control in many cases 

DESeq DESeq sizeFactors Exact test 

Generally low TPR 

Good FDR control for larger 
sample sizes 

limma+voom TMM Empirical Bayes method 
Good type I error control 

Low TPR for small sample sizes. 
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2.3 Proposed approach : GEE method 

 The GEE method is the extension of the Generalized Linear 

Model (GLM) with a proper correlation structure via quasi-likelihood 

approach [10]. We assume that Poisson distribution as the marginal 

distribution to account for count data. We assume that the correlation 

among {  } is unstructured, where {  } represents an expression of the 

{   } gene. We can assume other correlation working structures. It is 

well known that choosing a working correlation structure well 

approximating the true correlations can pay benefits regarding 

efficiency of estimation of the model parameters. After that we adjusted 

the over-dispersion dividing the Wald type statistics by the scale 

parameter which can be calculated by gee package in R [11].  

 To adapt the GEE method for correlated RNA-seq data, we 

relate the marginal response            to a linear combination of the 

covariates using link function                 . For simplicity, the 

number of correlated RNA-seq datasets is set to k and the number of 

groups is set to two. It can be easily extended to more than two groups 

by using dummy variables 

 



14 

 

 
      

 
      

    
    

  
  

  
  
  

  
  
    

 

 
 
 
 
   

   

 
   

    
 
 
 

 

 

where     are coefficients of group effects and     are gene expression 

which follows a Poisson distribution with mean     for     gene and 

    correlated RNA-seq data. Other types of design matrixes are also 

possible. For example, if we can assume that the covariate effects to 

genes are same in all of the correlated dataset, we can just use 1 

covariate effect variable to increase power. 

 

 
      

 
      

    
   
   
   

   

 
   

  

   

 
   

  

  

 

So this method is flexibly applicable to correlated RNA-seq dataset. 
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3.  Simulations 

 

 To compare the GEE approach with other existing univariate 

methods, we generated correlated and over-dispersed count data using 

copula package in R [12]. Each marginal distribution is assumed to 

follow a negative binomial distribution with mean and over-dispersion 

parameter estimated from real data. The purpose of this simulation 

study was to investigate power. So we generated 10,000 genes in total 

for each dataset. The number of group was set to two and the number of 

sample in each group was set to five. We randomly selected  % of the 

total genes as DEGs and added effect size δ in one of randomly selected 

group.  % of DEGs in each correlated dataset was set to DEGs in all 

of the organs simultaneously. The number of correlated datasets was set 

to   and the correlation between the correlated datasets was set to 0.7. 

In our various simulation setting, we varied the value of      , and   

as stated below and investigated the power.  
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3.1 Simulation Settings 

 

3.1.1 Different number of DEGs 

 The number of DEGs can vary due to the biological 

phenomena of interest. We set 0%, 5%, 10%, 20% and 30% of total 

genes as to be DEGs and observed each method’s type 1 error rate and 

power. In this scenario,   was set to 400. These values were estimated 

from real dataset and    was set to 10 [8]. 

 

3.1.2 Different value of   

 The proportion of DEGs in all of the correlated datasets 

simultaneously can vary due to the environment of the data and 

relationship between datasets. We set 10%, 20%, 30% and 40% as the 

value of   . In this scenario,       and   was set to 20, 400 and 2 

respectively. 

 

3.1.3 Different number of correlated datasets 

 The number of correlated datasets can vary due to the 

limitation of budget. We varied the number of correlated datasets as 2, 
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3, 5, and 10. In this scenario,      and   was set to 20, 400 and 10 

respectively. 

 

3.2 Results of Simulation 

 We investigated the performance of GEE with other univariate 

methods for finding DEGs in all of the correlated datasets 

simultaneously. We apply four univariate methods (edgeR, DESeq, 

limma+voom, LPEseq) to each organ separately and select DEGs in all 

correlated datasets simultaneously with multiple comparison 

adjustment such as FDR [13] and Bonferroni correction. 

 

Table 2. Type 1 Error rate of each methods.  

 

First column shows the number of DEGs in each datasets. However, there are no 

DEGs which are set to DEGs in all of the correlated datasets simultaneously.  

 
# of DEGs in 

each datasets 
edgeR DESeq limma+voom LPEseq GEE 

0 0.0087 0.0043 0.0063 0.0038 0.0135 

500 0.0157 0.0098 0.0119 0.0090 0.0184 

1,000 0.0260 0.0182 0.0215 0.0164 0.0241 

2,000 0.0766 0.0601 0.0632 0.0448 0.0537 
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 First, we investigated type1 error rate of each methods at a 

nominal p-value threshold 0.05. Type 1 error rate is presented in Table2. 

The type1 error rate of GEE method is greater than other univariate 

methods. However, the type1 error rate of GEE is also small. 

 Next, we compare the power and false discovery rate of each 

method according to the several scenario mentioned above. When the 

number of DEGs is small, edgeR is the most powerful but the power is 

not significantly different in each method. However, when the number 

of DEGs is large, the GEE method find much more DEGs compared 

with other univariate methods. DESeq and limma+voom methods 

didn’t identify enough number of DEGs because these methods are so 

conservative. In other simulation scenario, we can find that edgeR is 

the most powerful to detect DEGs. However, edgeR has a problem to 

controlling false positive rate. Although DESeq and limma+voom has 

relatively low false positive rate, these methods also has low power to 

detect DEGs. LPEseq and GEE have moderately high power 

controlling false positive rate.  
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Table 3. Power of each method in scenario 1  

First column shows the number of DEGs in all of the correlated datasets 

simultaneously. Each datasets has 10 times more DEGs than the number of DEGs 

presented in first column.  

# of DEGs in 

all of the  

datasets 

edgeR DESeq limma+voom LPEseq GEE 

50 0.9155 0.2113 0.6761 0.8592 0.6620 

100 0.8967 0.4510 0.4185 0.8750 0.7500 

200 0.8952 0.5588 0.3971 0.8824 0.8640 

300 0.8230 0.5438 0.5621 0.8778 0.8932 

 

Table 4. False Discovery Rate (FDR) of each method in scenario 1  

First column shows the number of DEGs in all of the correlated datasets 

simultaneously. Each datasets has 10 times more DEGs than the number of DEGs 

presented in first column. 

# of DEGs in 

all of the  

datasets 

edgeR DESeq limma+voom LPEseq GEE 

50 0.0299 0.0000 0.0000 0.0000 0.1455 

100 0.0462 0.0119 0.0128 0.0183 0.0980 

200 0.1081 0.0380 0.0270 0.0123 0.0562 

300 0.2373 0.1227 0.1487 0.0098 0.0472 

 

Table 5. Power of each method in scenario 2 

First column shows the proportion of DEGs in all of the correlated datasets 

simultaneously in each datasets.  

proportion of 

DEGs in all of 

the  datasets 

edgeR DESeq limma+voom LPEseq GEE 

10 % 0.8952 0.5588 0.3971 0.8824 0.8640 

20 % 0.8922 0.5790 0.4267 0.8836 0.8650 

30 % 0.8896 0.5888 0.4353 0.8820 0.8617 

40 % 0.8869 0.5895 0.4346 0.8806 0.8576 
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Table 6. FDR of each method in scenario 2 

First column shows the proportion of DEGs in all of the correlated datasets 

simultaneously in each datasets. 

proportion of 

DEGs in all of 

the  datasets 

edgeR DESeq limma+voom LPEseq GEE 

10 % 0.1081 0.0380 0.0270 0.0123 0.0562 

20 % 0.0854 0.0290 0.0198 0.0081 0.0429 

30 % 0.0691 0.0252 0.0144 0.0071 0.0369 

40 % 0.0515 0.0192 0.0095 0.0036 0.0308 

 

Table 7. Power of each method in scenario 3 

First column shows the number of correlated datasets.   

# of correlated 

datasets 
edgeR DESeq limma+voom LPEseq GEE 

2 0.8952 0.5588 0.3971 0.8824 0.8640 

3 0.8504 0.4961 0.2992 0.8898 0.8150 

5 0.7610 0.2927 0.1171 0.7951 0.7317 

10 0.7000 0.2350 0.0850 0.7150 0.6100 

 

Table 8. FDR of each method in scenario 3 

First column shows the number of correlated datasets. 

# of correlated 

datasets 
edgeR DESeq limma+voom LPEseq GEE 

2 0.1081 0.0380 0.0270 0.0123 0.0562 

3 0.0809 0.0233 0.0130 0.0044 0.0282 

5 0.0250 0.0164 0.0400 0.0000 0.0066 

10 0.0000 0.0000 0.0000 0.0000 0.0000 
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4.  Application to Real Data 

 

 We analyzed two different real RNA-seq datasets by using 

edgeR, limma+voom, and GEE methods: diet dataset with a small 

number of correlated organs, and toxicity dataset with a large number 

of correlated organs. 

 First, we examined the diet dataset. This dataset has only two 

organs. The Pearson correlation between organ’s gene expression levels 

are about 0.7 which indicate that the two datasets are highly correlated. 

We compared the number of DEGs found by each method. Figure2 

shows the result using venn diagram. limma+voom, edgeR and GEE 

method identified 937, 161 and 1900 genes as DEGs after FDR 

correction[13], respectively. Among these, 62 genes were commonly 

identified in all methods. 

 Second, we examined the toxicity dataset. This dataset has ten 

organs (Adrenal Gland, Brain, Heart, Kidney, Liver, Lung, Muscle, 
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Spleen and Testes for males and Uterus for female mouse).The Pearson 

correlation between organs is presented in Figure3. This figure 

indicates that the ten organs are correlated with each other. We 

compared the result of GEE with those of edgeR and limma+voom. 

Figure2 shows the result of venn diagram for limma+voom, edgeR and 

GEE method which identified 41, 9 and 44 genes as DEGs after FDR 

correction, respectively. Among these, two genes were commonly 

identified by all methods and 30 genes were additionally called as 

DEGs by GEE method. This additional set of genes contains Ect2 and 

Ndc80 DEGs. Ect2 is reported to be an oncogene in multiple human 

cancers [14]. Ndc80 is also reported to be related in benign tumor cells 

[15]. However, other genes in the list need to be investigated. 
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Figure 1. Correlation between organs in toxicity dataset. 

 

The plot represents the correlation between ten organs. The right upper corners 

represent correlations between each organ’s gene expression levels and the left 

bottom corners represent scatter plots between gene expression levels. 
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Figure 2. Venn-diagrams of the number of DEGs.  

 

The venn-diagram represent the number of DEGs in all of organs in a significance 

threshold put at an adjusted p-value of 0.05. GEE (green), limma+voom (red), edgeR 

(blue) were used. The left venn-diagram represents the result of diet datasets and right 

venn-diagram represents the result of toxicity datasets.  
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5.  Discussion 

 

 We proposed a method for testing DEGs in correlated RNA-

seq data. By using GEE method, we can increase power to detect DEGs 

in all of the correlated datasets simultaneously.  

 Our comparison through real and simulation studies shows that 

the GEE method detects more DEGs compared with other widely used 

univariate methods. In toxicity dataset, we examined 30 genes which 

were additionally found by GEE method and found out that some of 

these genes are already reported as a significant genes. In our 

simulation studies, we compared the performance of these method 

using power and false discovery rate (FDR). Compared to the 

univariate methods, the GEE method was shown to provide a similar 

power for the datasets with a small number of DEGs, and outperformed 

the other univariate methods for the datasets with a large number of 
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DEGs. Compared with others, the GEE method finds much more true 

positive genes, while it also finds more false positive genes. 

 

 

 

 

. 
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초   록 

 

 약 10 여 년이 넘는 기간 동안 리보 핵산 시퀀싱 기술은 

질병을 비롯하여 생물학에서 분자기반의 표현형 변이를 이해하는 

강력한 도구로 부상해 왔다. 또한, 최근에는 동일 사람의 다른 

장기로부터 얻은 데이터, 형제자매로부터 얻은 데이터 등 상호 

연관된 리보 핵산 시퀀싱 데이터들이 생성되기 시작했다. 

 리보 핵산 시퀀싱 데이터에 대해서 그룹에 따라 서로 

상이하게 발현 유전자 (DEG)를 찾는 많은 방법들이 알려져 있지만, 

이러한 상호 연관된 데이터들에 대한 분석 방법은 많이 알려져 

있지 않다. 이러한 이유로 우리는 여러 데이터에서 동시에 상이 

발현되는 유전자를 규명하기 위한 방법을 제시하고자 한다.   

 본 논문에서 우리는 일반화 추정 방정식 (Generalized 

Estimating Equation)을 통해 여러 장기에서 동시에 발현되는 

유전자를 규명하는 모델을 만들고 이에 대한 성능평가를 하였다. 

일반화 추정 방정식의 장점은 리보 핵산 시퀀싱 데이터들 사이의 

상관관계를 고려한 분석을 실시하고 데이터로부터 더 많은 정보를 

이용하고 이를 통하여 검정력을 높일 수 있다는 것이다. 다양한 

시뮬레이션 및 실제 데이터 분석을 통하여 이러한 다변량적 방법이 

기존에 제시된 방법에 비해 유사하거나 높은 검정력을 가진다는 

사실을 확인할 수 있었다.  

 

주요어: 리보 핵산 시퀀싱, 다변량, 일반화 추정 방정식 (GEE), 

상이 발현 유전자 (DEG) 
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