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Abstract

A Bayesian Approach to Robust
Parameter Estimation of

Physiologically Based
Pharmacokinetics Model with

Drug Dissolution Model

Dae Shik Kim

Chemical and Biological Engineering

The Graduate School

Seoul National University

Physiologically based pharmacokinetics (PBPK) model can pre-

dict absorption, degradation, execration and metabolism in drug de-

livery system. Thus, it can be useful for regulating dose and estimat-

ing drug concentration at a particular time during the clinical demon-

stration. While PBPK model is generally expressed as a set of ordi-

nary differential equations with a large number of parameters, in-vivo

experimental data are often noisy and sparse. This makes it difficult

to estimate parameters with conventional least squares approaches.

Therefore, maximum a posteriori method from Bayesian approach

that is the robust parameter estimation technique can be used to esti-

mate parameters of PBPK model. However, the scheme of maximum

a posteriori method by using Markov Chain Monte Carlo sampling is

hard to use for parameter estimation of PBPK model because of the
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large number of parameters. This work introduces the Bayesian ap-

proach estimation method for parameter estimation of PBPK model.

In addition, a scheme of maximum a posteriori method is proposed

to find maximum of the posterior distribution without using Markov

Chain Monte Carlo sampling.

To regulate the concentration of drug and prevent side effect, the

studies of drug dosage form are developed. However, since PBPK

models and drug dissolution models are studied independently, there

is no consideration of the drug dissolution dynamics in PBPK model.

Therefore, accurate description of oral administrated drug delivery

system requires an improved PBPK model. This work proposes a

PBPK model that can describe orally administrated drug dissolution

model by combining the drug dissolution model and PBPK model.

This thesis simulates parameter estimation of PBPK model to

compare the performance of least squares method and maximum a

posteriori method. In addition, the case study for Tegafur delivery

system is conducted with in-vivo data and drug dissolution model

included PBPK model to predict concentration profile of Tegafur, and

to evaluate the proposed PBPK model.

Keywords: Bayesian approach, Parameter estimation, PBPK model,

Pharmacokinetics, Drug delivery system, Maximum a posteriori

Student Number: 2012-20933
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Chapter 1

Introduction

The drug discovery process and clinical demonstration take an

enormous amount of time, money, and effort. Nevertheless, to pre-

vent side effect of drug and to find optimal dosage, a large number

of demonstrations is conducted to various subjects. Especially, the

repetitive experiments of new drug have a great risk in human trial

phase because the informations of toxicity and side-effect of the new

drug are unknown. Mathematical models describing drug delivery

mechanism in terms of drug concentrations in each organ over the

time course can be of significant help in reducing the cost of devel-

opment and risk of failure. Therefore, time-course data are collected

to construct physiologically based pharmacokinetics (PBPK) models

during animal and human trials (Phases I-III) [1]. Pharmacokinetics

is the study of absorption, distribution, metabolism, and excretion of

chemicals in a living body and plays an important role in the devel-

opment of drugs [2]. The PBPK model combines pharmacokinetic

dynamics in organs involved drug delivery pathway to describe drug

delivery system of a biological entity [3]. If a PBPK model is con-

structed, not only can we use it for prediction of dynamics of drug

delivery but can also apply it to dose regulation as in feedback con-

trol strategies [1]. Therefore, the PBPK model can also help to decide
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optimal dosage and administration time [4].

Because PBPK models are only observing dynamics inside body,

they commonly consist of a number of organs and blood vessel and

have no consideration of drug dissolution dynamics. In the past, most

of medicines contain serious side effects or dosage sensitivity were

usually in the form of liquid because they need to be activated quickly

[5]. Therefore, since the drug is absorbed with high absorption rate or

injected directly, drug dissolution dynamics can be ignored. However,

with the recent development of various drug dosage forms, particu-

lar medicines are produced in the form of tablet or capsule to control

dissolution rate [6, 7]. Since the dissolution dynamics of non-liquid

dosage form of medicine can be an important part of drug delivery

system, a model describing dissolution dynamics is also necessary to

set up the PBPK model for that kind of drug. Nevertheless, the studies

for PBPK model and drug dissolution model are developed indepen-

dently. Therefore, a model that combines PBPK and drug dissolution

dynamics is necessary to describe the dynamics of non-liquid dosage

form and perform the accurate prediction of concentration.

Various parameters exist in PBPK model, physical parameters

and kinetic parameters. Physical parameters are related physical prop-

erties of individual such as organ volume, blood flow rate, blood

volume. Kinetic parameters are related pharmacokinetics dynamics,

such as absorption rate constant, Michaelis-Menten constant. Although

values of physical parameters can be measured easily, values of ki-

netic parameters are hard to know [8]. Therefore, to construct PBPK

model, unknown parameters should be estimated with experimental
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data. However, experiments to collect in-vivo data are expensive and

often have poor repeatability [9]. Estimating parameters of a PBPK

model with such data set is further complicated by the concentration

profiles showing a pattern of declining exponential functions, with

amplitudes and decay times [10]. In addition, since each individual

may have different parameter values depending on its own physi-

cal and properties, its concentration profile of drug can be different.

Therefore, the values of parameter are distributed, they should be es-

timated by stochastic method. The widely used estimation method,

least squares method, estimates parameters by minimizing squares

error between data and measurements. Since there is no probabilis-

tic structure in least squares method, if the data are collected from

unusual case, the estimation result can not describe general concen-

tration profile. Moreover, since it is hard to collect a large number

of in-vivo data, the estimation accuracy of least squares method is

decreased [11]. Therefore, robust estimation method is necessary for

parameter estimation of PBPK model.

This study presents a Bayesian approach scheme for robust pa-

rameter estimation of PBPK model to address the difficulties, and

demonstrates its advantages over the least squares method. In addi-

tion, this work introduces a drug dissolution model to describe dis-

solution dynamics of non-liquid dosage form, and combines the dis-

solution model and PBPK model for oral administrated drug delivery

system to perform accurate concentration prediction. The proposed

estimation scheme and improved PBPK model are illustrated on the

Tegafur delivery system.
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Chapter 2

Background

2.1 Physiologically Based Pharmacokinetics Model

The mathematical model based on physiological reaction describes

pharmacokinetics in the body is called PBPK model [12]. When the

medicine is taken into the body, it is dissolved and absorbed into the

blood vessel. In a particular organ, it can be degraded or transformed

to a new structure by enzymes. It is also cleared out from the body

during the circulation of the blood. Those dynamics occurring inside

the body generate medicinal effects to the target place. However, if

concentration of the medicine in a certain organ exceeds a threshold

value, it can cause serious side-effects. In addition, if the concen-

tration cannot reach a particular value, the medicine can not work

effectively. Therefore, the optimum dosage should be determined to

control the concentration inside the body.

PBPK models involve two kinds of differential equations. The

first describes the transportation and metabolism of the medicine based

on mass balance.

V · dC
dt

= Q · (Cin −
C
P
)−Re (2.1)
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where V is the organ volume, Q is the volumetric flow rate of blood

in the organ, Cin is drug concentration into the organ and C is drug

concentration in the the organ. P is the tissue/blood partition coeffi-

cient of organ that describes the proportion of blood volume in the

organ. Re is the consumption term due to the metabolism in the organ

such as degradation, transformation and excretion. Since a drug is

transformed by a certain enzyme, transformation metabolism can be

described with Michaelis-Menten equation [13]. Michaelis-Menten

equation is the mathematical model of enzyme kinetics [14].

v =
Vmax ·C
Km +C

(2.2)

where v is the reaction rate of the enzyme, Vmax is a kinetic param-

eter that represents maximum reaction rate, Km is Michaelis-Menten

constant that represents concentration of substrate when the reaction

rate is Vmax
2 and C is the substrate concentration. Another metabolism,

clearance effect, is the rate of elimination to drug concentration in the

blood vessel [15]. Clearance effect can be described as below.

vcl =CL ·C (2.3)

where vcl is the rate of elimination, CL is the kinetic parameter of

clearance effect and C is the drug concentration. The consumption

term, Re, can be expressed with these two equations.

The second describes absorption of medicine to the capillary

blood vessel. The drug is absorbed into the organ from the capillary

blood vessel and circulates the body. This absorption dynamics can
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be described as

dC
dt

=

0 C = 0,

kabs ·C C > 0.
(2.4)

where kabs is the absorption rate of the medicine into the organ from

the capillary blood vessel. If there are particular organs playing an

important role in the metabolisms, we can set up a dynamic model

like (2.1) and (2.4) for each organ. The other organs can be neglect or

are considered a combined organ. The concentration of drug at each

time can be predicted by solving the set of differential equations.

2.2 Drug Dissolution Model

Noyes-Whitney equation is traditionally used for drug dissolu-

tion modelling [16]. Although this model equation is simple, it can

describe drug dissolution dynamics well. The equation assumes that

there are a diffusion layer with between the surface of drug and the

bulk solution whose drug concentration is uniformly distributed as

shown in Figure 1.

The driving force of the mass transfer is the concentration gradi-

ent between the solid surface and bulk phase. For simplification, 1-D

mass transfer is assumed, and the resulting Noyes-Whitney equation

takes the following form [17].

dW
dt

=
D ·A · (Cs −Cb)

L
(2.5)

where W is the mass of drug, D is the diffusion coefficient, A is the

surface area of the drug, L is the diffusion layer thickness, Cs is the
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Figure 1: The first order drug dissolution model for drug delivery system.

concentration of the boundary, and Cb is the concentration of bulk

solution.

2.3 Least Squares Method

Least squares method is an estimation technique to find the pa-

rameters that minimize the sum of squared difference between given

data and measurements [18]. This method is introduced by Gauss to

study planetary motions [19].

S =
n∑

i=1

ri
2 (2.6)

where i is the number of data points and r is residual between estima-

tion result and data point. If an model function has a parameter a and

b, the residual can be described below.

ri = yi − f (xi,a,b) (2.7)
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where yi is the ith data point and f (xi,a,b) is the ith model output.

The estimated values of a and b minimize the sum of squares error,

S.

The advantage of least squares method is the broad range of ap-

plication because of its simplicity [18]. However, there are no claims

about optimality and the statistical performance can not be assessed

about the probabilistic structure of the data [11].

2.4 Bayesian Estimation Methods

Bayes’ rule is the equation about conditional probability of event

θ for given X [20]. Bayes’ rule can be described as (2.8).

P(θ|X) =
P(θ) ·P(X |θ)∫
P(θ) ·P(X |θ)dθ

(2.8)

P(θ) is called ‘Prior distribution’ describing the probability of

θ, P(X |θ) is called ‘Likelihood function’ describing the conditional

probability of X for given θ and P(θ|X) is called ‘Posterior distribu-

tion’ describing the conditional probability of θ for given X . The de-

nominator term is constant called ‘Normalizing factor’ which adjust

the maximum value of posterior probability that is equal to 1 [21].

In parameter estimation problem, since θ is the vector of parame-

ters and X is the given data, the posterior distribution describes the

conditional probability of parameters for given data. Therefore, the

parameter vector that has maximum value of posterior distribution is

the optimal parameter set of the objective model.
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2.4.1 Maximum Likelihood Method

The maximum likelihood estimation (MLE) method is to find

parameters that maximize the likelihood function, P(X |θ). In MLE

method, there is no consideration about probabilistic structure of pa-

rameters, only consideration about probabilistic structure of data. Since

the prior distribution P(θ) and the normalizing factor have constant

value, P(θ|X) is maximized by maximizing the likelihood function.

θ̂mle = arg max
θ

P(X |θ) (2.9)

Therefore, if there is no information about the parameters or the

parameters have deterministic values, MLE method can be used [11].

2.4.2 Maximum a Posteriori Method

When the parameters have probabilistic structure, P(θ|X) is max-

imized by the product of likelihood function and prior distribution

because the normalizing factor is constant. The estimation method by

maximizing the product of likelihood and prior distribution is called

‘Maximum a posteriori’ (MAP) method.

θ̂map = arg max
θ

P(θ) ·P(X |θ) (2.10)

Because the prior knowledge is incorporated into the estima-

tion, MAP method is the more robust estimation method than least

squares and MLE method [22, 23]. Therefore, MAP method can per-

form more accurate estimation when the data have serious noise [11].
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Chapter 3

Drug Dissolution Included PBPK Model for
Tegafur Delivery System

Tegafur is widely used in the treatment of a range of cancers, es-

pecially of colorectal cancer[24]. Tegafur is the oral administrated

drug and transform to 5-fluorouracil by CYP450 enzyme in liver,

thereby it can perform pharmacological action[25]. To set up the

PBPK model for Tegafur drug delivery system, human body is split

into each organ part. The most important parts of the body from the

viewpoint of the drug delivery are liver and tumor where transforma-

tion from Tegafur to 5-fluorouracil occurs. In addition, oral adminis-

trated Tegafur is dissolve in the body and absorbed from lumen to gut.

Drug is delivered by blood and also cleared out at blood. The other

organs are combined into well perfused organ and poorly perfused

organ. Therefore, the PBPK model can be constructed as in Figure 2

[26].

The Tegafur PBPK model consists of phamracokinetic model in

each organ. The Pharmacokinetic models in the organs from Figure 2

are (3.1) ∼ (3.13). The transformation and degradation by enzymes,

CYP450 and DPD, are described with Michaelis-Menten equation.

The notations are in Table 1 ∼ 3. The kinetic parameters, that is un-
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Figure 2: The PBPK model for Tegafur delivery system

known parameters, are in Table 1 and the physical parameters are in

Table 2 and 3.

Vlmn ·
dClmn

dt
=−kabs ·Clmn ·Vlmn (3.1)

Vg ·
dCg,T

dt
= kabs ·Vlmn ·Clmn +Qg ·Cb,T −Qg ·

Cg,T

Pg,T
(3.2)

Vl ·
dCl,T

dt
= (Ql −Qg) ·Cb,T −Ql ·

Cl,T

Pl,T
−

Vml,T ·Cl,T ·Vl

Kml,T ·Cl,T
(3.3)
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Vt ·
dCt,T

dt
= Qt ·Cb,T −Qt ·

Ct,T

Pt,T
−

Vmt,T ·Ct,T ·Vt

Kmt,T ·Ct,T
(3.4)

Vw ·
dCw,T

dt
= Qw ·Cb,T −Qw ·

Cw,T

Pw,T
(3.5)

Vp ·
dCp,T

dt
= Qp ·Cb,T −Qp ·

Cp,T

Pp,T
(3.6)

Vb ·
dCb,T

dt
= Ql ·

Cl,T

Pl,T
+Qt ·

Ct,T

Pt,T
+Qw ·

Cw,T

Pw,T

+Qp ·
Cp,T

Pp,T
−Qb ·Cb,T −CLT ·Cb,T (3.7)

Vg ·
dCg,FU

dt
= Qg ·Cb,FU −Qg ·

Cg,FU

Pg,FU
(3.8)

Vl ·
dCl,FU

dt
= (Ql −Qg) ·Cb,FU −Ql ·

Cl,FU

Pl,FU

+
Vml,T ·Cl,T ·Vl

Kml,T ·Cl,T
−

Vml,FU ·Cl,FU ·Vl

Kml,FU ·Cl,FU
(3.9)

Vt ·
dCt,FU

dt
= Qt ·Cb,FU −Qt ·

Ct,FU

Pt,FU

+
Vmt,T ·Ct,T ·Vt

Kmt,T ·Ct,T
−

Vmt,FU ·Ct,FU ·Vt

Kmt,FU ·Ct,FU
(3.10)
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Vw ·
dCw,FU

dt
= Qw ·Cb,FU −Qw ·

Cw,FU

Pw,FU
(3.11)

Vp ·
dCp,FU

dt
= Qp ·Cb,FU −Qp ·

Cp,FU

Pp,FU
(3.12)

Vb ·
dCb,FU

dt
= Ql ·

Cl,FU

Pl,FU
+Qt ·

Ct,FU

Pt,FU
+Qw ·

Cw,FU

Pw,FU

+Qp ·
Cp,FU

Pp,FU
−Qb ·Cb,FU −CLFU ·Cb,FU (3.13)

Table 1: Notations of unknown parameters

Parameter Description
Kml,T (nmol/min/g tissue) Vmax for CYP450 enzyme in liver

Vml,T (nmol/ml) Michaelis-Menten constant for CYP450 enzyme in liver
Kmt,T (nmol/min/gtissue) Vmax for CYP450 enzyme in tumor

Vmt,T (nmol/ml) Michaelis Menten-constant for CYP450 enzyme in tumor
Kml,FU (nmol/min/gtissue) Vmax for DPD enzyme in liver

Vml,FU (nmol/ml) Michaelis-Menten constant for DPD enzyme in liver
Kmt,FU (nmol/min/gtissue) Vmax for DPD enzyme in liver

Vmt,FU (nmol/ml) Michaelis Menten-constant for DPD enzyme in tumor
kabs(min−1) Absorption coefficient of Tegafur
K(min−1) Dissolution coefficient of Tegafur

CLT (ml/min) Clearance rate of Tegafur from plasma
CLFU (ml/min) Clearance rate of 5-flourouracil from plasma

The Tegafur PBPK model, however, has no consideration of the

drug dissolution dynamics. Since Tegafur is oral administration drug,

the drug dissolution dynamics can effect the drug delivery system.

The drug dissolution model for PBPK model can be derived from

13



Table 2: Notations about organ volume and blood flow rate

Organ Organ volume(ml) Blood flow rate(ml/min)
Blood Vb Qb
Gut Vg Qg

Liver Vl Ql
Tumor Vt Qt

Well perfused organs Vw Qw

Poorly perfused organs Vp Qp

Table 3: Notations about tissue/blood partition coefficient

Organ Tegafur(T) 5-fluorouacil(FU)
Blood Pb,T Pb,FU
Gut Pg,T Pg,FU

Liver Pl,T Pl,FU
Tumor Pt,T Pt,FU

Well perfused organs Pw,T Pw,FU

Poorly perfused organs Pp,T Pp,FU

(2.5). Since W of (2.5) is

W =Cs ·V ·Mw (3.14)

where V is the volume of drug and Mw is molecular weight of the

drug. Since V and Cs are the functions of time, the derivative of W is

dW
dt

= Mw ·V · dCs

dt
+Cs ·Mw · dV

dt
(3.15)

Because the volume of drug is much smaller than the organ, the

volume change of drug can be negligible. Therefore (2.5) can be writ-

ten as
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dCs

dt
=

D ·A
Mw ·V ·L

(Cs −Cb)

= K · (Cs −Cb) (3.16)

where K is the dissolution parameter equals to D·A
Mw·V ·L . Using (3.16),

The drug dissolution model (DDM) included PBPK model can be

constructed as Figure 3, and each pharmacokinetic models are (3.17)

∼ (3.30). The notations are also in Table 1 ∼ 3.

Figure 3: The DDM included PBPK model for Tegafur delivery system

dCtab

dt
=−K · (Ctab −Clmn) (3.17)

dClmn

dt
= K · (Ctab −Clmn)− kabs ·Clmn ·Vlmn (3.18)
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Vg ·
dCg,T

dt
= kabs ·Vlmn ·Clmn +Qg ·Cb,T −Qg ·

Cg,T

Pg,T
(3.19)

Vl ·
dCl,T

dt
= (Ql −Qg) ·Cb,T −Ql ·

Cl,T

Pl,T
−

Vml,T ·Cl,T ·Vl

Kml,T ·Cl,T
(3.20)

Vt ·
dCt,T

dt
= Qt ·Cb,T −Qt ·

Ct,T

Pt,T
−

Vmt,T ·Ct,T ·Vt

Kmt,T ·Ct,T
(3.21)

Vw ·
dCw,T

dt
= Qw ·Cb,T −Qw ·

Cw,T

Pw,T
(3.22)

Vp ·
dCp,T

dt
= Qp ·Cb,T −Qp ·

Cp,T

Pp,T
(3.23)

Vb ·
dCb,T

dt
= Ql ·

Cl,T

Pl,T
+Qt ·

Ct,T

Pt,T
+Qw ·

Cw,T

Pw,T

+Qp ·
Cp,T

Pp,T
−Qb ·Cb,T −CLT ·Cb,T (3.24)

Vg ·
dCg,FU

dt
= Qg ·Cb,FU −Qg ·

Cg,FU

Pg,FU
(3.25)
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Vl ·
dCl,FU

dt
= (Ql −Qg) ·Cb,FU −Ql ·

Cl,FU

Pl,FU

+
Vml,T ·Cl,T ·Vl

Kml,T ·Cl,T
−

Vml,FU ·Cl,FU ·Vl

Kml,FU ·Cl,FU
(3.26)

Vt ·
dCt,FU

dt
= Qt ·Cb,FU −Qt ·

Ct,FU

Pt,FU

+
Vmt,T ·Ct,T ·Vt

Kmt,T ·Ct,T
−

Vmt,FU ·Ct,FU ·Vt

Kmt,FU ·Ct,FU
(3.27)

Vw ·
dCw,FU

dt
= Qw ·Cb,FU −Qw ·

Cw,FU

Pw,FU
(3.28)

Vp ·
dCp,FU

dt
= Qp ·Cb,FU −Qp ·

Cp,FU

Pp,FU
(3.29)

Vb ·
dCb,FU

dt
= Ql ·

Cl,FU

Pl,FU
+Qt ·

Ct,FU

Pt,FU
+Qw ·

Cw,FU

Pw,FU

+Qp ·
Cp,FU

Pp,FU
−Qb ·Cb,FU −CLFU ·Cb,FU (3.30)
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Chapter 4

Parameters Estimation Method for PBPK
Model

4.1 Parameter Estimation Schemes of Least Squares,
MLE, and MAP Method

PBPK model includes various parameters, and the number of

differential equations is equal to the number of organs. If there is

a PBPK model consists n differential equations with m parameters

and q measurements in l organs, the PBPK model can be described

as below.

dCi

dt
= fi [C(t), P, ω(t)] (4.1)

y(t) = g [C(t)]+ν(t) (4.2)

In (4.1) and (4.2), C(t) ∈ Rn×1 is the vector of the concentra-

tions of drug contains C1(t), C2(t), · · · , Cn(t). P ∈Rm×1 is the vector

of unknown parameters, y(t) ∈ Rl×1 is the vector of measurements

contains y1(t), y2(t), · · · , yl(t). ω(t) ∈ Rn×1 is the noise vector de-

scribing model mismatch and ν(t) ∈ Rl×1 is the measurement noise

18



vector.

To predict the concentration profile of the drug, the parameter

estimation with experiment data is needed. Least squares method is

easy to apply to the estimation problem of PBPK model because of its

simplicity. However, Bayesian estimation methods, especially MAP

method, is hard to apply since the posterior distribution, described as

the product of probability density functions, is complicated. Because

it is hard to know about the posterior distribution, Markov Chain

Monte Carlo (MCMC) sampling method can be used to find the max-

imum value [27]. The posterior distribution calculated from sampling

method is described as joint distributions of all parameters. From the

joint distributions, the parameter that maximize the posterior distribu-

tion can be found. However, since there are 11 or 12 parameters in the

PBPK model for Tegafur delivery system, 55 or 66 joint distributions

are generated. Therefore, it is impossible to find the parameters from

the joint distributions. This study proposes a objective function based

parameter estimation scheme for MAP method for PBPK model that

has a large number of parameters.

4.1.1 Least Squares Method

Least squares method is to find parameters minimizing the sum

of squares error. The objective function of least squares method is

(4.3) which depends on the given data set and parameters.

Jlse[ŷ(t),θ] =
l∑

k=1

[yk(t)− ŷk(t)]
T · [yk(t)− ŷk(t)] (4.3)
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where the yk(t) ∈ Rq×1 is the measurements in kth organ, ŷk(t) ∈
Rq×1 is the data points in kth organ and θ is the parameters in PBPK

model. When the experimental data is given, the parameter set θ̂,

which minimizes objective function Jlse[ŷ(t),θ], is the estimation re-

sult of least squares method.

θ̂lse = arg min
θ

Jlse[ŷ(t),θ] (4.4)

Since there are 11 or 12 parameters in PBPK model for Tegafur

delivery system and differential equations need to be solved to esti-

mate the parameters, the minimum of objective function can be found

by heuristic optimization tool, genetic algorithm.

4.1.2 MLE Method

From (4.2), g [C(t)] is the unknown concentration vector and

y(t) is the vector of measurements. The difference between g [C(t)]

and y(t) is measurements noise from sensors. Because the unbiased

sensor noise can be assumed to follow a normal distribution, the like-

lihood function can be described as below.

p[ŷ; θ] =
l∏

k=1

1√
2π ·det(Σ)

· e−
1
2 ·[yk(t)−ŷk(t)]

T ·Σ−1·[yk(t)−ŷk(t)] (4.5)

where Σ is the q-by-q covariance matrix of yk(t)− ŷk(t). Since the

concentrations in each organ are measured independently, the sensor

noises are uncorrelated. Therefore, the off-diagonal entries of the co-
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variance matrix are zero. In addition, because the measurements are

from the same type of sensors, the diagonal entries of covariance ma-

trix can be assumed as same value. To derive the objective function,

minus logarithm is taken to the likelihood function.

Jmle[ŷ(t),θ] =
l
2

ln(2πσ
2)+

1
2σ2

l∑
k=1

[yk(t)− ŷk(t)]
T · [yk(t)− ŷk(t)]

=
n
2

ln(2πσ
2)+

1
2σ2 · Jlse[ŷ(t),θ] (4.6)

where σ2 is diagonal entries of the covariance matrix. From (4.6),

The minimizing Jmle is the same as minimizing Jlse. Therefore, maxi-

mum likelihood estimator is equal to least squares estimator when the

data noise follows the normal distribution. If there is a different dis-

tribution of data noise, the objective function of maximum likelihood

method can be changed, also the estimation result from maximum

likelihood method can be different.

4.1.3 MAP Method

For the estimation of the large number of parameters, finding

maximum of the posterior distribution from the joint posterior distri-

butions is impossible. However, since the objective of MAP method

is finding the parameters maximizing the posterior distribution, the

exact probability value of maximum point is unnecessary. Since the

posterior distribution is proportional to the product of the prior dis-

tribution and likelihood function, and those equations can be derived,
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this work proposed a scheme for the MAP method by deriving an ob-

jective function.

Because the likelihood function is derived in the previous sec-

tion, the objective function from taking minus logarithm to the prod-

uct of the prior distribution and likelihood function is

Jmap[ŷ(t),θ] =−
∑

lnP(θ)+
l
2

ln(2πσ
2)

+
1

2σ2

l∑
k=1

[yk(t)− ŷk(t)]
T · [yk(t)− ŷk(t)] (4.7)

The estimated parameters can be found by minimizing the ob-

jective function. The genetic algorithm is used to find the parameters

at minimum value of the objective function.

θ̂map = arg min
θ

Jmap[ŷ(t),θ] (4.8)

The prior probability term, −
∑

lnP(θ), depends on how the

prior distribution is defined. If there is a reliable deterministic param-

eter value from the literatures, the prior distribution can be defined as

a normal distribution. If there is a certain probability distribution for

prior term from the repetitive experimental results, the optimal pa-

rameter set minimizing objective function is calculated by numerical

method. However, if there is no information about the model param-

eter, the bootstrap method can be used. The bootstrap method is to

calculate unknown statistical knowledge of variables by the samples

from the target variables [28, 29]. In this estimation problem, the sim-
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ple bootstrap method by using samples from the result of least squares

method with random data is used.

4.2 Comparison Between Least Squares Method and
MAP Method

Least squares method and MAP method have different advan-

tages. Since PBPK model has a number of parameters, the simplic-

ity of least squares method can be strong advantage for this estima-

tion problem. However, because the size of the experimental data is

limited, the accuracy of least squares method can be poor. With this

limited size data set, if we have information of parameter set, MAP

method can perform better. To see how these two estimation tech-

niques work in the estimation problem of PBPK model, the parame-

ter estimation of PBPK model for Tegafur is conducted with arbitrary

noisy data sets.

Table 4: The arbitrary values of the parameters

Parameter Arbitrary value Parameter Arbitrary value
Kml,T 2700 nmol/min/gtissue Kmt,FU 2 nmol/min/gtissue
Vml,T 997 nmol/ml Vmt,FU 16.2 ×10 nmol/ml
Kmt,T 40nmol/min/gtissue kabs 1.29×10 min−1

Vmt,T 250.7 nmol/ml k 128 min−1

Kml,FU 2700 nmol/min/gtissue CLT 1 ml/min
Vml,FU 504 nmol/ml CLFU 0.1 ml/min

The arbitrary literature value of unknown parameters is shown
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in Table 4. The values of physical parameters are arbitrarily given.

the arbitrary data sets are assumed that they measured from gut, liver,

tumor cell and blood vessel. 700 data sets are made which have 4 ∼
10 data points of each organ and they have different mean squares

error compared with the concentration profile in Table 4. The prior

distributions of parameters are assumed as a normal distribution, and

the mean of the each distribution has 10% error compared with the

arbitrary literaturevalue. The PBPK model which includes DDM is

used and the proposed schemes for least squares method and MAP

method are used to compare which estimation method yields better

performance. Since the objective function depends on 12 parameters

and data, the heuristic optimization algorithm, genetic algorithm, can

be used effectively to find the global minimum [30, 31].

From the Figure 4, regardless of the mean squares error and the

size of data, the result of MAP method is closer to arbitrary literature

value. The mean squares errors of 622 estimation results of Bayesian

approach have lower value than the results of least squares method,

and only 78 least squares method results are better performed than

MAP method. Thus, the MAP method can perform the robust esti-

mation even if there is noise, and limited size of experimental data.

If the prior result is untrustworthy, the accuracy of the estimation

result by MAP method would be poor. In this case, the mean of the

each prior distribution is assumed that it has 50% error compared

with the arbitrary literature parameter values and the same procedure

is performed.

From the Figure 5, the estimation performance of MAP method

is lower than previous case, only the mean squares errors of 172 re-
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Figure 4: The result of parameter estimation with MAP method and least
squares method with the reliable prior knowledge.

sults are lower than the results by least squares method. However,

when the number of data points is small, 4 or 5 data points, mean

squares errors of 78 results and 51 results by MAP method have the

lower values than by least squares method. Consequently, when the

number of data points is small, the estimation performance of MAP

method are still better than that of least squares method even if the

prior knowledge is unreliable.
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Figure 5: The result of parameter estimation with MAP method and least
squares method with the untrustworthy prior knowledge.

26



Chapter 5

Comparison Between The PBPK Model and
DDM Included PBPK Model

With a set of in-vivo experimental data, the parameters of PBPK

model are estimated to predict real concentration profile inside living

body. A 0.22 kg rat used for this experiment, and the concentration

of Tegafur and 5-fluorouracil are measured at 30 miniutes, an hour, 2

and 4 hours in gut, liver, tumor cell and blood vessel. Initial dose is

15 mg/kg of Tegafur and administrated at time 0. From the literature,

the information of physical parameters are in table 3 and 4 [26].

Table 5: Organ volumes and blood volumetric flow rates

Organ Volume (ml) Blood flow rate (ml/min)
Blood (Vb, Qb) 13.2 76.45
Gut (Vg, Qg) 7.92 17.1
Liver (Vl , Ql) 8.8 19

Tumor (Vt , Qt) 1.0 0.25
Well perfused organs (Vw, Qw) 8.5 38.9

Poorly perfused organs (Vp, Qp) 165 18.3

Since there is only one set of in-vivo data, and no available infor-

mation of parameters, the bootstrap method is needed to find the prior

distribution for Tegafur delivery system. To make a reliable prior dis-
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Table 6: Tissue/blood partition coefficients

Organ Tegafur (T) 5-fluorouacil (FU)
Blood (Pb) 0.808 0.794
Gut (Pg) 0.768 0.759

Liver (Pl) 0.895 0.5
Tumor (Pt) 0.336 0.169

Well perfused organs (Pw) 0.834 0.826
Poorly perfused organs (Pp) 0.8 0.795

tribution, 1000 sets of random data sets based on the experimental

data are generated randomly. With these random data, the informa-

tion of parameters is collected as a form of normal distribution by

using result of least squares estimation, P(θ) ∼ N(θ,Ω2). Now, the

objective function of MAP method can be described below.

Jmap[ŷ(t),θ] =
1
2

ln [2π ·det(Ω)]+
1
2
· [θ−θ]

T ·Ω−1 · [θ−θ]

+
l
2

ln(2πσ
2)+

1
2σ2

l∑
k=1

[yk(t)− ŷk(t)]
T

· [yk(t)− ŷk(t)] (5.1)

where θ is the m by 1 vector of parameters, θ is the m by 1 vector of

the means of parameters and Ω is the m by m covariance matrix. The

estimation result is the parameter set which minimizes this objective

function.

By using MAP method, unknown parameters of for the PBPK

model without DDM and include DDM are estimated. With estima-
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tion result, the ordinary differential equations of each PBPK model

are solved to observe concentration profiles at each organ. The pre-

dicted concentration profiles at each organ are in Figure 6 ∼ 13. The

solid line is the DDM included PBPK model, dotted line is the PBPK

model without DDM, and circle is in-vivo experimental data. From

the Figure 6 ∼ 13, although the MAP method is used to both of mod-

els, the result of DDM included PBPK model is more accurate. The

mean squares error of the DDM include model is 1.817 and that of

the model without DDM is 6.765 in log scale. In addition, from Ta-

ble 7, the mean squares error of the DDM included PBPK model is

lower than the mean squares error of the PBPK model without DDM

in all organs. Consequently, for oral administrated drug delivery sys-

tem, DDM helps to improve accracy of concentration prediction.

Table 7: The log scaled mean squares error of estimation result in each organ

The DDM included model The model without DDM
Tegafur in gut 0.042 0.674

Tegafur in liver 0.285 0.582
Tegafur in tumor 2.131 17.719
Tegafur in blood 0.049 1.093

5-fluorouacil in gut 1.915 6.428
5-fluorouacil in liver 1.548 14.917

5-fluorouacil in tumor 1.748 7.767
5-fluorouacil in blood 2.814 4.937

The estimation results from MAP method have probabilistic in-

formations. Table 8 shows 95% confidence intervals and variances

for each parameter. Based on these informations, the difference of

concentration profile for each individual can be predicted.
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Figure 6: Estimated Tegafur concentration profile at Gut.
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Figure 7: Estimated Tegafur concentration profile at Liver.
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Figure 8: Estimated Tegafur concentration profile at Tumor.
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Figure 9: Estimated Tegafur concentration profile at Blood vessel.
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Figure 10: Estimated 5-fluorouracil concentration profile at Gut.

0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

Concentration of 5−FU at Liver

time(min)

lo
g
(c

o
n
c
e
n
tr

a
ti
o
n
)(

n
m

o
l/
m

l)

 

 

Result include DDM

Result without DDM

Experimental data

Figure 11: Estimated 5-fluorouracil concentration profile at Liver.
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Figure 12: Estimated 5-fluorouracil concentration profile at Tumor.
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Figure 13: Estimated 5-fluorouracil concentration profile at Blood vessel.
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Table 8: 95% confidence intervals and variances for the estimated parame-
ters

Parameter Lower bound Upper bound Variance
Kml,T (nmol/min/g tissue) 7.485 × 103 7.726× 103 1.626× 103

Vml,T (nmol/ml) 1.886 × 103 2.041× 103 1.048× 103

Kmt,T (nmol/min/gtissue) 5.090 9.204 2.772× 10
Vmt,T (nmol/ml) 3.081 × 103 3.321× 103 1.609× 102

Kml,FU (nmol/min/gtissue) 1.416 × 103 1.463× 103 3.181× 102

Vml,FU (nmol/ml) 1.602 × 10 2.337× 10 4.955× 10
Kmt,FU (nmol/min/gtissue) 7.610 9.130 1.024× 10

Vmt,FU (nmol/ml) 2.720 × 10 3.048 × 10 2.211× 10
kabs(min−1) 1.685 2.191 3.409
K(min−1) 5.608 × 102 5.971× 102 2.452× 102

CLT (ml/min) 2.104 2.211 0.721
CLFU (ml/min) 1.840 2.040 1.35
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Chapter 6

Concluding Remarks

In this thesis, the drug dissolution model (DDM) included PBPK

model is proposed to describe oral administrated drug delivery sys-

tem, the maximum a posteriori (MAP) method is introduced to robust

parameter estimation, and the scheme of MAP method is proposed to

find the maximum of posterior distribution without using the joint

distribution. The scheme of MAP method is simulated with 700 ran-

dom data sets, and compared with least squares method. The case

study for Tegafur delivery system is conducted with in-vivo data to

compare the PBPK model and DDM included PBPK model.

The PBPK model is useful to predict concentration in drug deliv-

ery system. To predict concentration, since there are various parame-

ters in PBPK model, the parameter estimation with the experimental

data will be needed. However, because of the limitation of collect-

ing in-vivo concentration data, the robust estimation method should

be introduced for the estimation problem of the PBPK model. MAP

method can be used as a robust estimation technique even if there is

the small number of data points. To compare MAP method and least

squares method, parameters of PBPK model are estimated with 700

sets of random data. When there is the prior knowledge with 10%
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error, the 88% of estimation results are more accurate by using the

MAP method and only 12% of estimation results are more accurate

by using the least squares method. Even if the prior information has

50% error, despite of the lack of reliability for the prior knowledge,

64.5% of the estimation results are more accurate by MAP method

when the data points are only 4 and 5.

While a direct injected drug delivery system can be well de-

scribed by PBPK model, the drug dissolution dynamics of oral ad-

ministrated drug delivery system is not considered in PBPK model.

To describe the oral administration case, DDM is introduced and the

DDM included PBPK model is constructed by combining DDM and

PBPK model. When predict the concentration profile of drug deliv-

ery system for Tegafur with in-vivo data, mean squares error of the

DDM included model is 1.817 in log sclae, that is the 73% less than

the mean squares error of the PBPK model without DDM. Conse-

quentially, for oral administrated drug delivery system, the DDM in-

cluded PBPK model has more accurate prediction performance than

the PBPK model without DDM.
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초록

생리학적약동학모델은약물전달시스템에서일어나는대

사작용을 예측하는데 유용하게 쓰이는 기법이다. 따문에 특정

시간의약물의농도를예측하여약물의복용량을조절하는데매

우 효과적으로 사용되여 약물의 임상실험 단계에 도움을 줄 수

있다. 생리학적 약동학 모델은 여러 변수를 포함한 미분방정식

들로이루어져있는반면에,생체내실험데이터는매우오차가

심하고,측정횟수를늘리는것역시한계가있다.이러한이유로

최소자승법을 이용한 변수 추정에는 어려움이 따른다. 따라서

강건한 변수 추정 기법인 최대 사후 확률법을 생리학적 약동학

모델의 변수 추정에 사용할 수 있다. 하지만 마르코프 연쇄 몬

테카를로방법을통한최대사후확률기법은많은수의변수가

존재하는 생리학적 약동학 모델에서 사용하기 힘들다. 따라서

이 연구는 베이지안 접근을 기반으로 한 생리학적 약동학 모델

의 변수 추정 기법을 도입하고자 한다. 또, 마르코프 연쇄 몬테

카를로기법을이용하지않는새로운최대사후확률기법을제

안한다.

약물의 농도를 조절하고 부작용을 막기 위해 약물 제형에

관한연구가발전되어왔다.하지만약물제형에관한연구와생

리학적약동학모델의연구는서로독립적으로진행되었기때문

에, 생리학적 약동학 모델에서는 약물의 용해에 관한 동역학이

고려되지않는다.따라서,구강을통해복용되는약물전달시스

템을정확히표현하기위해서는새로운생리학적약동학모델이

필요하다.이연구는약물용해모델과생리학적약동학모델을

결합하여 구강을 통해 복용되는 약물 전달 시스템을 표현하는
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생리학적약동학모델을제안하고자한다.

이논문은모의실험을통해최소자승법과최대사후확률

기법의성능을비교하였다.또,체내에서수집된데이터와약물

용해모델이포함된생리학적약동학모델을이용하여 Tegafur의

약물 전달 시스템의 약물 농도를 예측하는 연구를 진행하였고

이를통해제안된생리학적약동학모델의성능을실험하였다.

주요어 : 베이지안접근,변수추정,생리학적약동학모델,약동

학,약물전달시스템,사후최대확률법

학번 : 2012-20933
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